WorldWideScience

Sample records for mode pulsed dye

  1. Temporal dynamics of high repetition rate pulsed single longitudinal mode dye laser

    Indian Academy of Sciences (India)

    G Sridhar; V S Rawar; S Singh; L M Gantayet

    2013-08-01

    Theoretical and experimental studies of temporal dynamics of grazing incidence grating (GIG) cavity, single-mode dye laser pumped by high repetition rate copper vapour laser (CVL) are presented. Spectral chirp of the dye laser as they evolve in the cavity due to transient phase dynamics of the amplifier gain medium is studied. Effect of grating efficiency, focal spot size, pump power and other cavity parameters on the temporal behaviour of narrow band dye laser such as build-up time, pulse shape and pulse width is studied using the four level dye laser rate equation and photon evolution equation. These results are compared with experimental observations of GIG single-mode dye laser cavity. The effect of pulse stretching of CVL pump pulse on the temporal dynamics of the dye laser is studied.

  2. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    Science.gov (United States)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  3. Measurement of flow fluctuations in single longitudinal mode pulsed dye laser

    Indian Academy of Sciences (India)

    V S Rawat; N Kawade; G Sridhar; Sunita Singh; L M Gantayet

    2014-02-01

    A simple technique had been demonstrated for measuring flow-induced fluctuations in the single longitudinal mode (SLM) pulsed dye laser. Two prominent frequency components of 10.74 Hz and 48.83 Hz were present in the output of the Nd:YAG-pumped SLM dye laser. The flow-induced frequency component of 48.83 Hz was present due to the revolution per minute of the motor attached to the magnetically coupled gear pump. The time average bandwidth of 180 MHz has been obtained for this SLM dye laser. The effect of pump pulse energy on the bandwidth of the SLM dye laser was studied. The bandwidth of the SLM dye laser was increased to 285 MHz from 180 MHz, when the pump pulse energy was increased to 0.75 mJ from 0.15 mJ for a constant dye flow velocity of 0.5 m/s.

  4. Physics and technology of tunable pulsed single longitudinal mode dye laser

    Indian Academy of Sciences (India)

    G Sridhar; V S Rawat; Nitin Kawade; Sunita Singh; L M Gantayet

    2010-11-01

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams of ∼ 400 MHz (GIG configuration) and ∼ 600 MHz (Littrow configuration) bandwidth. Detailed performance studies of the Littrow and GIG dye laser resonators showed that GIG dye laser results in narrower linewidth and broad mode hop free wavelength scanning over 70 GHz. In this paper we present experimental studies carried out on the high repetition rate SLM dye laser system.

  5. Evaluation of energy transfer and utilization efficiency of azo dye removal by different pulsed electrical discharge modes

    Institute of Scientific and Technical Information of China (English)

    SHEN YongJun; LEI LeCheng; ZHANG XingWang

    2008-01-01

    The degradation of an azo dye, acid orange 7 (AO7), caused by different high voltage pulsed electrical discharge modes (spark, streamer and corona discharge) induced by the various initial conductivities was investigated. A new type of pulsed high voltage source with thyratron switch and Blumlein pulse forming net (BPFN) was used. The typical discharge waveforms of voltage, current, power, pulse en-ergy and the pictures of spark, streamer and corona discharge modes were presented. The results in-dicated that pulsed electrical discharges led to complete decolorization and substantial decrease of the chemical oxygen demand (COD) of the dye solution. The main intermediate products were monitored by GC-MS. The discharge modes changed from spark to streamer and to corona discharge, and the streamer length decreased with the liquid conductivity increasing. At a constant input power, the peak voltage, peak current, peak power and energy per pulse of the three discharge modes ranked in the following order: spark > streamer > corona. The effective energy transfer efficiency of AO7 removal was higher for spark discharge (57.2%) than for streamer discharge (40.4%) and corona discharge (27.6%). Moreover, the energy utilization efficiency of AO7 removal for spark discharge was 1.035×109 mol/J, and for streamer and corona discharge they were 0.646×10-8 and 0.589×10-9mol/J. Both the energy transfer efficiency and the energy utilization efficiency of spark discharge were the highest.

  6. Mode coupling in organic dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hirth, A.

    1973-10-25

    Saturable dye triggering is discussed together with relaxation time and pulse duration. The influence of stimulated emission is detailed. Experimental results of mode coupling with cyanines and xanthines, flash excited and not, are reported.

  7. Pulse propagation near zero group-velocity dispersion in a femtosecond dye laser.

    Science.gov (United States)

    Salin, F; Grangier, P; Georges, P; Brun, A

    1990-12-01

    The propagation of femtosecond pulses in a colliding-pulse mode-locked dye laser near zero group-velocity dispersion is studied. The pulse spectrum is shown to exhibit a double-peak structure. This structure and its dependence on the intracavity dispersion can be explained by nonlinear pulse propagation near zero dispersion. A value for the third-order dispersion of the laser cavity is deduced and is found to be predominant for pulses shorter than 50 fsec.

  8. Laser sclerostomy by pulsed-dye laser and goniolens

    Energy Technology Data Exchange (ETDEWEB)

    Latina, M.A.; Dobrogowski, M.; March, W.F.; Birngruber, R. (Massachusetts General Hospital, Boston (USA))

    1990-12-01

    We describe an ab-interno laser sclerostomy procedure using the method termed dye-enhanced ablation with a slit-lamp delivery system and special goniolens such that only the laser light beam penetrates the anterior chamber. The procedure uses a microsecond-pulsed-dye laser emitting at 666 nm and iontophoresis of methylene blue dye (absorption of 668 nm) into the sclera at the limbus to enhance the absorption of the laser light. We compared the number of pulses needed to perforate excised human sclera at pulse durations of 1.5, 20, and 300 microseconds. Pulse durations of 1.5 and 20 microseconds required 20 pulses or fewer to perforate excised human sclera with pulse energies of 75 to 100 mJ. The ab-interno laser sclerostomy procedure was performed in 54 eyes of Dutch-belted rabbits with pulse durations of 1.5 or 20 microseconds and a 100- or 200-microns incident spot diameter delivered using a CGF goniolens. Full-thickness fistulas were successfully created at both pulse durations in approximately 80% of eyes treated. A range of three to 25 pulses was required to perforate sclera with slightly fewer pulses and lower pulse energies at 1.5 microseconds compared with 20 microseconds. There were no significant complications from the procedure. This technique could permit filtration surgery to be performed on an outpatient basis.

  9. The effect of pulsewidth of pumping pulse on the stability of distributed feedback dye laser

    Science.gov (United States)

    Pasandideh, K.; Rahbari, M.; Sadighi Bonabi, R.

    2017-04-01

    The generation of a single and stable picosecond pulse by distributed feedback dye laser is investigated in this work. The numerical result for the rate equation system that includes the thermal effects in the lasing medium is provided. By applying this model to Rhodamine 6G, it is found that considerable improvement in the stability of the laser can be achieved by pumping the system with narrower laser pulses. The simulation shows that if the dye solution is pumped by sub-200 ps pulse, the laser can be operated in single-pulse output mode with acceptable stability in pulsewidth over a long range of pumping intensity. This result is confirmed by a more complicated model composed of non-averaged Maxwell and rate equations. Even though the thermal effects do not play a significant role in equivalent cavity lifetime, they result in considerable wavelength shift toward the shorter wavelengths.

  10. Pulse distortion in single-mode fibers. 3: Chirped pulses.

    Science.gov (United States)

    Marcuse, D

    1981-10-15

    The theory of pulse distortion in single-mode fibers is extended to include laser sources that suffer a linear wavelength sweep (chirp) during the duration of the pulse. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the chirp on the shape and rms width of the pulse. A somewhat paradoxical situation exists. A given input pulse can be made arbitrarily short by a sufficiently large amount of chirping, and, after a given fiber length, this chirped pulse returns to its original width. But at this particular distance an unchirped pulse would be only [equiation] times longer. Thus chirping can improve the rate of data transmission by only 40%.

  11. The generation of femtosecond light pulses from a laser with combined mode locking with new saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, B.V.; Prokhorenko, V.I.; Rodionov, G.D.; Sorokin, V.B.; Slominskii, IU.L.

    1989-01-01

    Combined mode locking was studied experimentally using new 3492-y and 3490-y dyes. In a linear single-stream R6G laser, the 3490-y dye provides for stable mode locking throughout the 576-615 nm tuning range. The pulse duration varies over the tuning range from 180-250 fs, the lasing efficiency amounting to 17 percent. 10 refs.

  12. Long-pulsed dye laser vs. intense pulsed light for the treatment of facial telangiectasias: a randomized controlled trial

    DEFF Research Database (Denmark)

    Nymann, Peter; Hedelund, Lene; Haedersdal, M

    2010-01-01

    This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias.......This study aims to compare the efficacy and adverse effects of long-pulsed dye laser (LPDL) and intense pulsed light (IPL) in the treatment of facial telangiectasias....

  13. Pulse distortion in single-mode fibers.

    Science.gov (United States)

    Marcuse, D

    1980-05-15

    A theory is presented of the propagation of Gaussian pulses in single-mode optical fibers by expanding the propagation constant in a Taylor series that includes the third derivative with respect to frequency. The light source is assumed to have a Gaussian spectral distribution whose width relative to the width of the Gaussian signal pulse is arbitrary. Formulas are derived for the spectrum of the ensemble average of the optical pulse, from which the shape of the average pulse itself is obtained by the fast Fourier transform. Also derived is an expression for the rms pulse width. The theory is applicable at all wavelengths including the vicinity of the zero first-order dispersion point.

  14. Recording sub-picosecond pulses in emission from neodymium dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Brekhov, O.M.; Lebedev, V.B.; Luzanov, V.B.; Maranichenko, N.I.; Prokhorenko, V.I.; Stepanov, B.M.; Tikhonov, E.A.

    1981-01-01

    Using the ''Agent-04M'' experimental optico -electronic camera, the sub-picosecond fluctuation structure at the output of a neodymium laser is recorded. The laser consists of a master oscillator whose non-dispersive resonator uses a tray containing 3274-M dye for passive mode locking, a system for isolating a single 8 to 25 picosecond pulse from the pulse train, and a five-stage amplifier with an output power of 1 gigawatt. The minimum duration of the substructure pulses, detected by the camera wtih a contrast of greater than or equal to 40%, does not exceed .3 picoseconds. The total width of the emission spectrum at the output of this amplifier is 9 nanometers, which in the hypothesis on the Gaussian shape of the pulses corresponds to their minimum duration of 2 picoseconds. The emission from the power amplifier is used to pump a superfluorescence 6zh rhodamine dye laser. Here the pulse duration is measured using both a camera and an autocorrelation method.

  15. Rate equation simulation of temporal characteristics of a pulsed dye laser oscillator

    Indian Academy of Sciences (India)

    S Kundu; K Dasgupta; S Sasikumar; J Singh; A K Ray; S Sinha

    2010-11-01

    A time-dependent, two-dimensional (in space) rate equation model of a transversely-pumped pulsed dye laser oscillator, which incorporates transverse pump intensity variation in the presence of intracavity dye laser radiation, is proposed to under-stand and predict its temporal behaviour. The model yields output pulses which agree well with experimental results using rhodamine 6G and kiton red dyes. The shape, amplitude and temporal position of the simulated pulse within the pump pulse vary dramatically across the tuning range of each dye depending on the relative gain and loss values.

  16. Degradation of Dye Wastewater by ns-Pulse DBD Plasma

    Science.gov (United States)

    Gao, Jin; Gu, Pingdao; Yuan, Li; Zhong, Fangchuan

    2013-09-01

    Two plasma reactors have been developed and used to degrade dye wastewater agents. The configuration of one plasma reactor is a comb-like extendable unit module consisting of 5 electrodes covered with a quartz tube and the other one is an array reactor which is extended from the unit module. The decomposition of wastewater by ns pulse dielectric barrier discharge (DBD) plasma have been carried out by atomizing the dyeing solutions into the reactors. During experiments, the indigo carmine has been treated as the waste agent. The measurements of UV-VIS absorption spectroscopy and the chemical oxygen demand (COD) are carried out to demonstrate the decomposition effect on the wastewater. It shows that the decoloration rate of 99% and the COD degradation rate of 65% are achieved with 15 min treatment in the unit reactor. The effect of electrical parameters on degradation has been studied in detail. Results from the array reactor indicate that it has a better degradation effect than the unit one. It can not only totally remove the chromogenic bond of the indigo carmine solution, but also effectively degrade unsaturated bonds. The decoloration rate reaches 99% after 10 min treatment, the decomposition rate of the unsaturated bond reaches 83% after 60 min treatment, and the COD degradation rate is nearly 74%.

  17. Treatment of Persistent Facial Postinflammatory Hyperpigmentation With Novel Pulse-in-Pulse Mode Intense Pulsed Light.

    Science.gov (United States)

    Park, Ji-Hye; Kim, Jung-In; Kim, Won-Serk

    2016-02-01

    Postinflammatory hyperpigmentation (PIH) is an acquired hypermelanosis induced by various causes including inflammatory dermatoses, injury, or cosmetic procedures, such as lasers or chemical peels, and it tends to affect dark-skinned people with greater frequency and severity. There are a variety of treatment options for PIH, including topical agents, chemical peels, laser, and light therapy. However, the results are not up to expectation. The purpose of this study was to examine the clinical efficacy and safety of novel pulse-in-pulse mode intense pulsed light (IPL) for the treatment of persistent facial PIH in Korean patients. Twenty-five Korean female patients (Fitzpatrick skin types III-V) with persistent facial PIH were enrolled in the study. The patients were treated with novel pulse-in-pulse mode IPL for 4 sessions at 1-week interval and 4 sessions at 2-week intervals. Treatment efficacy and patient satisfaction were evaluated using photographs and questionnaires. After 2 months of all treatments, 23 patients (92%) had more than 50% improvement and 22 patients (88%) were satisfied with the treatments. No adverse effects or aggravations were reported. The pulse-in-pulse mode IPL treatment is effective and safe for persistent facial PIH in dark-skinned patients.

  18. Single longitudinal mode oscillations in the converging-straight-diverging dye cell pumped by a 9 kHz copper vapor laser

    Science.gov (United States)

    Rawat, V. S.; Kawade, Nitin; Manohar, K. G.

    2017-01-01

    To minimize the thermal and flow induced effect on the single mode dye laser at higher pulse repetition rate several dye cell flow geometries have been studied using computational fluid dynamics (CFD) model. The evolution of velocity profiles along the straight section of a converging - straight - diverging dye cell has been studied and the boundary layer thickness at different locations in the straight section of the flow channel has been captured using the CFD model. It has been observed that the boundary layer thickness reduces with increasing flow velocity in the dye cell. The boundary layer thickness is minimum at the throat of the dye cell i.e., from where the straight section commence and the velocity profile is almost flat. This dye cell provides nearly two times lesser pressure drop for higher flow velocities in comparison to the straight rectangular dye cell. These dye cells have been used for generating single mode oscillation in the short cavity grazing incidence grating (GIG) cavity. We had experimentally observed that the wavelength fluctuations around the mean value is nearly 7 times less for the converging-straight-diverging dye cell at a relatively higher flow velocities of nearly 12 m/s. For rectangular straight dye cell it is very difficult to obtain a single mode laser at this higher flow velocity.

  19. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  20. Pulsed dye laser treatment for facial flat warts.

    Science.gov (United States)

    Grillo, E; Boixeda, P; Ballester, A; Miguel-Morrondo, A; Truchuelo, T; Jaén, P

    2014-01-01

    The facial flat wart is not only a contagious viral disease, but also a cause of a distressing cosmetic problem. Although there are many therapeutic options, including salicylic acid, imiquimod, cryotherapy, retinoids, intralesional immunotherapy, and topical 5-aminolevulinic acid photodynamic therapy among others, no monotherapy has been proved to achieve complete remission in every case. Treatment with pulsed dye laser (PDL) seems to be a promising therapeutic option. To assess the efficacy and safety of PDL in a series of patients with viral flat warts on the face, in this prospective study, 32 patients were treated with PDL at 595-nm wavelength, a laser energy density of 9 or 14 J/cm(2) with a spot size of 7 or 5 mm, respectively, with air cooling and a pulse duration of 0.5 millisecond. A complete response was noted in 14 patients (44%), and an excellent response was observed in 18 patients (56%) with 1-year follow-up, with only four recurrences. No significant side effects were reported except intense transitory purpuric response. We consider that PDL is a good option of treatment for flat warts on the face due to its good clinical results, fast response, and low incidence of side effects. © 2013 Wiley Periodicals, Inc.

  1. Measurement and compensation of frequency chirping in pulsed dye laser amplifiers

    NARCIS (Netherlands)

    Reinhard, I.; Gabrysch, M.; Von Weikersthal, B. Fischer; Jungmann, K.; Zu Putlitz, G.

    1996-01-01

    Rapid changes of the refractive index in the active medium of a pulsed, excimer laser pumped dye laser amplifier were investigated with an optical heterodyne technique. Time-dependent shifts in the phase of optical light waves could be observed which for Coumarin 102, 153 and 307 dyes at wavelengths

  2. Infantile hemangioma: pulsed dye laser versus surgical therapy

    Science.gov (United States)

    Remlova, E.; Dostalova, T.; Michalusova, I.; Vranova, J.; Jelinkova, H.; Hubacek, M.

    2014-05-01

    Hemangioma is a mesenchymal benign tumor formed by blood vessels. Anomalies affect up to 10% of children and they are more common in females than in males. The aim of our study was to compare the treatment efficacy, namely the curative effect and adverse events, such as loss of pigment and appearance of scarring, between classical surgery techniques and laser techniques. For that reason a group of 223 patients with hemangioma was retrospectively reviewed. For treatment, a pulsed dye laser (PDL) (Rhodamine G, wavelength 595 nm, pulsewidth between 0.45 and 40 ms, spot diameter 7 mm, energy density 9-11 J cm-2) was used and the results were compared with a control group treated with classical surgical therapy under general anesthesia. The curative effects, mainly number of sessions, appearance of scars, loss of pigment, and relapses were evaluated as a marker of successful treatment. From the results it was evident that the therapeutic effects of both systems are similar. The PDL was successful in all cases. The surgery patients had four relapses. Classical surgery is directly connected with the presence of scars, but the system is safe for larger hemangiomas. It was confirmed that the PDL had the optimal curative effect without scars for small lesions (approximately 10 mm). Surgical treatment under general anesthesia is better for large hemangiomas; the disadvantage is the presence of scars.

  3. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    Science.gov (United States)

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  4. Pulse properties of external cavity mode locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Kroh, Marcel; Mørk, Jesper

    2006-01-01

    The performance of an external-cavity mode-locked semiconductor laser is investigated both theoretically and experimentally. The optimization analysis focuses on the regimes of stable mode locking and the generation of sub-picosecond optical pulses. We demonstrate stable output pulses down to one...... picosecond duration with more than 30 dB trailing pulse suppression. The limiting factors to the device performance are investigated on the basis of a fully-distributed time-domain model.We find that ultrafast gain dynamics effectively reduce the pulse-shaping strength and inhibit the generation...

  5. Pulse mode operation of Love wave devices for biosensing applications

    OpenAIRE

    Newton, MI; McHale, G; Martin, F; Gizeli, E.; Melzak, KA

    2001-01-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmi...

  6. New Edge Coherent Mode Providing Continuous Transport in Long-Pulse H-mode Plasmas

    Science.gov (United States)

    Wang, H. Q.; Xu, G. S.; Wan, B. N.; Ding, S. Y.; Guo, H. Y.; Shao, L. M.; Liu, S. C.; Xu, X. Q.; Wang, E.; Yan, N.; Naulin, V.; Nielsen, A. H.; Rasmussen, J. Juul; Candy, J.; Bravenec, R.; Sun, Y. W.; Shi, T. H.; Liang, Y. F.; Chen, R.; Zhang, W.; Wang, L.; Chen, L.; Zhao, N.; Li, Y. L.; Liu, Y. L.; Hu, G. H.; Gong, X. Z.

    2014-05-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20-90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Superconducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ˜8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows the nature of dissipative trapped electron mode, as evidenced by gyrokinetic turbulence simulations.

  7. Power Enhancement Cavity for Burst-Mode Laser Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun [ORNL

    2015-01-01

    We demonstrate a novel optical cavity scheme and locking method that can realize the power enhancement of picosecond UV laser pulses operating at a burst mode with arbitrary burst (macropulse) lengths and repetition rates.

  8. Ablation of steel using picosecond laser pulses in burst mode

    Science.gov (United States)

    Lickschat, Peter; Demba, Alexander; Weissmantel, Steffen

    2017-02-01

    Results obtained in picosecond laser processing of steel applying the burst mode are presented. Using the burst mode, pulse trains, i.e., bursts, consisting of a number of picosecond pulses with an inter-pulse delay of 12.5 ns and 10 ps pulse duration are applied for material processing. Small cavities with sizes in the range of the laser beam diameter made by single-burst ablation are compared to quadratic cavities of 0.5 × 0.5 mm² produced by multiburst ablation and simultaneous scanning of the laser beam across the steel sample surface. The ablated volume per pulse within the burst was calculated either from the ablated volume per burst or from the ablation depth of the quadratic cavities. With the second to fourth pulses in the bursts, a reduction of the ablated volume per pulse in comparison with the first pulse in the bursts (i.e., to the use of single pulses) was found for both single- and multiburst ablation, which is assumed to be due to plasma shielding. By contrast, the ablated volume per pulse within the bursts increases for the fifth to eighth pulses. Heat accumulation effect and the influence of the heated plasma can be assumed to be the reason for these higher ablation rates. SEM micrographs also show that there is a higher melt ejection out of the laser processed area. This is indicated by the formation of bulges about the ablated area.

  9. Chirp of monolithic colliding pulse mode-locked diode lasers

    DEFF Research Database (Denmark)

    Hofmann, M.; Bischoff, S.; Franck, Thorkild

    1997-01-01

    Spectrally resolved streak camera measurements of picosecond pulses emitted by hybridly colliding pulse mode-locked (CPM) laser diodes are presented in this letter. Depending on the modulation frequency both blue-chirped (upchirped) and red-chirped (downchirped) pulses can be observed. The two...... different regimes and the transition between them are characterized experimentally and the behavior is explained on the basis of our model for the CPM laser dynamics. (C) 1997 American Institute of Physics....

  10. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Directory of Open Access Journals (Sweden)

    Chih-Ping Yen

    2016-08-01

    Full Text Available The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP, and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE for application to dye-sensitized solar cell (DSSC is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  11. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Science.gov (United States)

    Yen, Chih-Ping; Yu, Pin-Feng; Wang, Jyhpyng; Lin, Jiunn-Yuan; Chen, Yen-Mu; Chen, Szu-yuan

    2016-08-01

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  12. Deposition of organic dyes for dye-sensitized solar cell by using matrix-assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Chih-Ping [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Yu, Pin-Feng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Wang, Jyhpyng [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China); Lin, Jiunn-Yuan [Department of Physics, National Chung Cheng University, Chiayi 621, Taiwan (China); Chen, Yen-Mu [SuperbIN Co., Ltd., Taipei 114, Taiwan (China); Chen, Szu-yuan, E-mail: sychen@ltl.iams.sinica.edu.tw [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Department of Physics, National Central University, Taoyuan 320, Taiwan (China)

    2016-08-15

    The deposition of various distinct organic dyes, including ruthenium complex N3, melanin nanoparticle (MNP), and porphyrin-based donor-π-acceptor dye YD2-o-C8, by using matrix-assisted pulsed laser evaporation (MAPLE) for application to dye-sensitized solar cell (DSSC) is investigated systematically. It is found that the two covalently-bonded organic molecules, i.e., MNP and YD2-o-C8, can be transferred from the frozen target to the substrate with maintained molecular integrity. In contrast, N3 disintegrates in the process, presumably due to the lower bonding strength of metal complex compared to covalent bond. With the method, DSSC using YD2-o-C8 is fabricated, and an energy conversion efficiency of 1.47% is attained. The issue of the low penetration depth of dyes deposited by MAPLE and the possible resolution to it are studied. This work demonstrates that MAPLE could be an alternative way for deposition of organic dyes for DSSC.

  13. New Edge Coherent Mode Providing Continuous Transport in Long Pulse H-mode Plasmas

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Wan, B.N.

    2014-01-01

    An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond-coated reciproc......An electrostatic coherent mode near the electron diamagnetic frequency (20–90 kHz) is observed in the steep-gradient pedestal region of long pulse H-mode plasmas in the Experimental Advanced Super-conducting Tokamak, using a newly developed dual gas-puff-imaging system and diamond......-coated reciprocating probes. The mode propagates in the electron diamagnetic direction in the plasma frame with poloidal wavelength of ∼8 cm. The mode drives a significant outflow of particles and heat as measured directly with the probes, thus greatly facilitating long pulse H-mode sustainment. This mode shows...

  14. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  15. Pulse distortion in single-mode fibers. Part 2.

    Science.gov (United States)

    Marcuse, D

    1981-09-01

    The theory of pulse distortion in single-mode fibers is extended to include laser sources such as injection lasers operating simultaneously at several distinct wavelengths. The transmitted pulse is expressed as a Fourier integral whose spectral function is given by an analytical expression in closed form. The rms width of the transmitted pulse is also expressed in closed form. Numerical examples illustrate the influence of the spectral width of the source and of its asymmetry on the shape and rms width of the pulse.

  16. Propagation of pulse fluctuations in single-mode fibers.

    Science.gov (United States)

    Marcuse, D

    1980-06-01

    An earlier paper [Applied Optics 19, 1653 (1980)] dealt with the ensemble averages of pulses propagating in single-mode fibers. In this paper we discuss pulse fluctuations. The light pulses are generated by modulation of the power of a continuously operating light source consisting of N discrete sinusoidal frequencies randomly phased relative to each other. The fixed amplitudes of the sinusoidal frequency components of the source are adjusted to fit into a Gaussian envelope, and the modulating pulse has a Gaussian distribution in time. This mathematical model approximates a laser light source operating in several free-running longitudinal modes. We find that the fluctuations of the modulated light pulses can die out if the pulses travel a long distance in a dispersive fiber, provided the spacings between the sinusoidal frequency components of the light source are larger than the spectral width of the modulating signal. If the source frequency components are spaced more closely than the spectral width of the modulating pulse, fluctuations persist indefinitely independent of fiber length. However, in a practical system, whose input pulse is only about half as short as the output pulse, fluctuations are practically unaffected by transmission through a fiber.

  17. Study of potassium DPAL operation in pulsed and CW mode

    Science.gov (United States)

    Zhdanov, Boris V.; Rotondaro, Matthew D.; Schaffer, Michael K.; Knize, Randall J.

    2014-10-01

    This paper presents the results of our experiments on development of the efficient hydrocarbon free Diode Pumped Alkali Laser based on potassium vapor buffered by He gas at 600 Torr. We studied the performance of this laser operating in pulsed mode with pulses up to 5 ms long at different pulse energies and cell temperatures. A slope efficiency of more than 50% was demonstrated with total optical efficiency about 30% for the pump pulses with duration about 30 μs. For the longer pump pulses the DPAL efficiency degraded in time with a characteristic time in the range from 0.5 ms to 4.5 ms depending on the pump pulse energy and cell temperature. The recorded spectrum of the side fluorescence indicates that multi-photon excitation, energy pooling collisions and ionization may be strong candidates for explaining the observed performance degradation.

  18. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  19. Mode-locking based on a zero-area pulse formation in a laser with a coherent absorber

    CERN Document Server

    Arkhipov, Mikhail V; Kalinichev, Alexey A; Babuskin, Ihar; Rosanov, Nikolai N; Arkhipov, Rostislav M

    2016-01-01

    We observe experimentally a mode-locking in a continuous narrow-band tunable dye laser with molecular iodine absorber cells, which transitions have large phase relaxation time T2. We show that the mode-locking arises due to coherent interaction of light with the absorbing medium leading to Rabi oscillations, so that zero-area (0{\\pi}-) pulses in the absorber are formed. Such mode-locking regime is different to most typical passive modelocking mechanisms where saturation plays the main role.

  20. The efficacy of pulsed dye laser treatment for inflammatory skin diseases: A systematic review

    NARCIS (Netherlands)

    Erceg, A.; Jong, E.M.G.J. de; Kerkhof, P.C.M. van de; Seyger, M.M.B.

    2013-01-01

    BACKGROUND: The position of the pulsed dye laser (PDL) in the treatment of inflammatory skin diseases is still unclear. Evidence-based recommendations are lacking. OBJECTIVES: We sought to systematically review all available literature concerning PDL treatment for inflammatory skin diseases and to p

  1. Resistance-driven bunching mode of an accelerated ion pulse

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E.P.

    1981-10-16

    Amplification of a longitudinal perturbation of an ion pulse in a linear induction accelerator is calculated. The simplified accelerator model consists only of an applied field (E/sub a/), distributed gap impedance per meter (R) and beam-pipe capacity per meter (C). The beam is treated as a cold, one-dimensional fluid. It is found that normal mode frequencies are nearly real, with only a very small damping rate proportional to R. This result is valid for a general current profile and is not restricted to small R. However, the mode structure exhibits spatial amplification from pulse head to tail by the factor exp(RCLv/sub o//2), where L is pulse length and v/sub 0/ is drift velocity. This factor is very large for typical HIF parameters. An initially small disturbance, when expanded in terms of the normal modes, is found to oscillate with maximum amplitude proportional to the amplification factor.

  2. Pulse mode operation of Love wave devices for biosensing applications.

    Science.gov (United States)

    Newton, M I; McHale, G; Martin, F; Gizeli, E; Melzak, K A

    2001-12-01

    In this work we present a novel pulse mode Love wave biosensor that monitors both changes in amplitude and phase. A series of concentrations of 3350 molecular weight poly(ethylene glycol) (PEG) solutions are used as a calibration sequence for the pulse mode system using a network analyzer and high frequency oscilloscope. The operation of the pulse mode system is then compared to the continuous wave network analyzer by showing a sequence of deposition and removal of a model mass layer of palmitoyl-oleoyl-sn-glycerophosphocholine (POPC) vesicles. This experimental apparatus has the potential for making many hundreds of measurements a minute and so allowing the dynamics of fast interactions to be observed.

  3. High Efficiency Pulse Acetone Liquid Raman Laser Using DCM Fluorescent Dye as the Enhancement Medium

    Institute of Scientific and Technical Information of China (English)

    CHENG Andrew Yuk-Sun; YANG Jing-Guo; CHAN Mau-Hing

    2006-01-01

    Pumped by a frequency-doubled Nd:YAG laser, 10-Hz repetition rate, 320-mJ pump energy, and 5.1-ns pulse width, a liquid Raman laser using acetone as the Raman shifting medium has been established. The residual pump laser pulse and the generated Stokes pulse are directed to a DCM dye cell for energy enhancement of the Stokes pulse. The Raman laser system is capable to produce a laser pulse at wavelength 630 nm, with single pulse energy of 120 mJ, peak power of 70 MW and an average power of 1200 mW. The energy conversion efficiency is 37.5%, or equivalently a quantum efficiency of 44.5%.

  4. Diode-Pumped Nanosecond Pulsed Laser with Pulse-Transmission-Mode Q-Switch

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; HUO Yu-Jing; HE Shu-Fang; FENG Li-Chun

    2001-01-01

    Q-switched pulses at 1.064μm with a peak power of 5.02kW and a pulse width of2.8ns were obtained which were pumped by a 1 W laser diode on the Nd:YVO4 microchip at the 1 kHz repetition rate. These values were achieved by combining the techniques of aconsto-optic Q-switching and electro-optic pulse-transmission-mode Q-switching. The temporal characteristics of the pulses were analysed numerically. The experimental results are shown to be in good agreement with theoretical predictions.

  5. Independent tunability of the double-mode-locked cw dye laser.

    LENUS (Irish Health Repository)

    Bourkoff, E

    1979-06-01

    We report a new configuration that enables the double-mode-locked cw dye laser to be independently tunable. In addition, the output coupling at each of the two wavelengths can be independently specified. A series of oscillographs shows some interesting features unique to double mode locking and also shows the effects of varying the two cavity lengths with respect to each other.

  6. A pulsed mode electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-09-14

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device\\'s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg ± 0.3 μg per actuation pulse was achieved using 4 mW of power.

  7. Study of pulse mode of processing of the thermoplastic target

    Directory of Open Access Journals (Sweden)

    M. V. Derenovskii

    1983-12-01

    Full Text Available The temperature characteristics and parameters of the relief formation process of thermoplastic target in pulse mode of treatment of target. It was demonstrated the effect on the light transmission characteristics of the material amount of post-erase cycles.

  8. Modelling colliding-pulse mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Bischoff, Svend

    or to determine the optimum operation conditions. The purpose of this thesis is to elucidate some of the physics of interest in the field of semiconductor laser modelling, semiconductor optics and fiber optics. To be more specific we will investigate: The Colliding-Pulse Mode-Locked (CPM) Quantum Well (QW) laser...

  9. Status of the LIA-2. Double-pulse mode

    Science.gov (United States)

    Starostenko, D. A.; Akimov, A. V.; Bak, P. A.; Batazova, M. A.; Batrakov, A. M.; Boimelshtein, Yu. M.; Bolkhovityanov, D. Yu.; Eliseev, A. A.; Korepanov, A. A.; Kuznetsov, G. I.; Kulenko, Ya. V.; Logatchev, P. V.; Ottmar, A. V.; Pavlenko, A. V.; Pavlov, O. A.; Panov, A. N.; Pachkov, A. A.; Fatkin, G. A.; Akhmetov, A. R.; Kolesnikov, P. A.; Nikitin, O. A.; Petrov, D. V.

    2016-12-01

    The LIA-2 linear induction accelerator has been designed in the Budker Institute of Nuclear Physics as an electron-beam injector for a promising 20-MeV induction accelerator intended for tomography. Owing to the results of the first tests, it was decided to use the injector as an independent X-ray installation [1]. In 2014, the high-voltage power supply system of the LIA-2 was upgraded and tuned. The accelerator operates stably in the one-pulse mode at energies of up to 1.7 MeV; in the double-pulse mode it operates at energies of up to 1.5 MeV. The inhomogeneity in energy in each pulse does not exceed ±0.5%.

  10. Filament propagation length of femtosecond pulses with different transverse modes

    CERN Document Server

    Kaya, N; Kaya, G; Strohaber, J; Kolomenskii, A A; Schuessler, H A

    2014-01-01

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Gaussian, Laguerre-Gaussian, and Bessel-Gaussian incident beams. These different transverse modes for incident laser pulses were created from an initial Gaussian beam by using a computer generated hologram technique. We found that the length of the filament induced by the Bessel-Gaussian incident beam was longer than that for the other transverse modes under the conditions of the same peak intensity, pulse duration, and the size of the central part of the beam. To better understand the Bessel-Gaussian beam propagation, we performed a more detailed study of the filament length as a function of the number of radial modal lobes. The length increased with the number of lobes, implying that the radial modal lobes serve as an energy reservoir for the filament formed by the central intensity peak.

  11. Limiting the intensity of femtosecond pulses with anti-stokes excitation of organic dye solutions

    Science.gov (United States)

    Svetlichnyi, V. A.; Meshalkin, Yu. P.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2010-08-01

    Results of experimental investigations into the nonlinear absorption of the symmetric polymethine 1-butyl -3,3-dimethyl-2-[5-(1-butyl-3,3-dimethyl-3H-benz[e]indoline-2-uledene)-1,3-pentadienyl]-3H-benz[e]indolium perchlorate dye solution excited by radiation of a femtosecond titanium-sapphire laser (20 fs, 800 nm, 75 MHz, and 300 mW) by the open aperture z-scan method are presented. Record limitation of the femtosecond laser radiation intensity (by 300 times at a 93% linear transmission of the medium) was achieved. The nonlinear absorption mechanisms in organic dyes with anti-Stokes excitation by wideband high-power pulsed radiation to the absorption band edge and the prospects for organic dye application for limitation of the femtosecond laser radiation intensity are discussed.

  12. Quantum model for mode locking in pulsed semiconductor quantum dots

    Science.gov (United States)

    Beugeling, W.; Uhrig, Götz S.; Anders, Frithjof B.

    2016-12-01

    Quantum dots in GaAs/InGaAs structures have been proposed as a candidate system for realizing quantum computing. The short coherence time of the electronic quantum state that arises from coupling to the nuclei of the substrate is dramatically increased if the system is subjected to a magnetic field and to repeated optical pulsing. This enhancement is due to mode locking: oscillation frequencies resonant with the pulsing frequencies are enhanced, while off-resonant oscillations eventually die out. Because the resonant frequencies are determined by the pulsing frequency only, the system becomes immune to frequency shifts caused by the nuclear coupling and by slight variations between individual quantum dots. The effects remain even after the optical pulsing is terminated. In this work, we explore the phenomenon of mode locking from a quantum mechanical perspective. We treat the dynamics using the central-spin model, which includes coupling to 10-20 nuclei and incoherent decay of the excited electronic state, in a perturbative framework. Using scaling arguments, we extrapolate our results to realistic system parameters. We estimate that the synchronization to the pulsing frequency needs time scales in the order of 1 s .

  13. Hair dryer use to optimize pulsed dye laser treatment in rosacea patients.

    Science.gov (United States)

    Kashlan, Lana; Graber, Emmy M; Arndt, Kenneth A

    2012-06-01

    Rosacea is a common chronic inflammatory condition characterized by erythema, telangiectasias, papules, and pustules. While there are many effective treatment options for the papulopustular type, laser therapy remains the most effective modality to treat erythematotelangiectatic rosacea. Erythema and flushing associated with rosacea remains an uncomfortable and socially embarrassing problem for patients. Unfortunately, patients often do not have significant erythema or flushing when they present for laser treatment. With this in mind, we propose a novel technique aimed at enhancing the response of rosacea patients being treated for erythema with pulsed dye laser. Specifically, we present a split-face example of our clinical observation that pre-treatment with forced heated air prior to pulsed-dye laser leads to a greater response in rosacea patients with erythema and flushing.

  14. Pulsed Dye Laser Therapy in the Treatment of Warts: A Review of the Literature.

    Science.gov (United States)

    Veitch, David; Kravvas, Georgios; Al-Niaimi, Firas

    2017-04-01

    Warts or verrucae vulgaris are common cutaneous infections with currently no definitive curative treatments available. To determine the efficacy of pulsed dye laser (PDL) in the treatment of warts. A literature search was performed using the PubMed and MEDLINE databases. A search using {(Wart[s], verruca or condylomata)} AND [(Pulsed dye laser)] was used. Forty-four articles were identified as relevant to this review. Simple warts were very responsive to PDL, being treated successfully in over 95% of patients. Facial and anogenital warts also demonstrated excellent outcomes. Recalcitrant warts, displayed significant variability in their response, ranging between 50% and 100% across all articles. The response rates seen in peripheral warts (involving the hands and feet) were also very variable, ranging between 48% and 95%. Recurrence rates at 4 months of follow-up were documented as 0% to 15%. Complications have been described as very few and rare, the main ones being topical discomfort and erythema. Pulsed dye laser is a safe and effective modality in the treatment of warts that can be applied to most body parts. Cost and availability remain a limitation to the use of PDL; however, this modality can be used when other more traditional and accessible treatments have failed.

  15. Pulsed dye laser and intralesional bleomycin for the treatment of recalcitrant cutaneous warts.

    Science.gov (United States)

    Dobson, Joelle S; Harland, Christopher C

    2014-02-01

    Viral warts are a common ailment. Clinicians often combine multiple treatments to boost efficacy. One such novel combination is pulsed dye laser with bleomycin intralesionally (PDL + BI), described for the successful treatment of single hand warts. To evaluate PDL + BI for the treatment of poor prognosis hand and foot warts. This 4-year retrospective case series examined the efficacy of PDL + BI used consecutively on patients whose warts were treated with this modality alone. PDL 595 nm was used in stacking mode to achieve hemorrhagic blistering prior to intralesional bleomycin (1 mg/ml normal saline). Twenty cases (65% male, age 13-62, mean age 42) were identified. Two (10%) were immunocompromised. Twenty five percent of warts affected hands, 55% feet, 20% both. Thirty five percent were solitary >1 cm(2) , 40% were multiple or mosaic verucae. The mean duration was 5.1 years (0.5-15). Seventy five percent received local anesthetic. Mean number of treatments was two. Post-operative pain varied from none to severe, sometimes causing difficulty in walking. Blistering and crusting disappeared after 17 days (range 7-42). Outcome had a mean follow-up of 24 months (3-53) with 60% complete response, 15% partial, 25% no response. Mean satisfaction level was 7 (range 0-10, 10 highest). Outcome was better with local anesthetic (complete response 75%) as it permitted more aggressive treatment. Patients that had both anesthetic and repeat treatment sessions experienced 92% complete response. PDL + BI offers a novel method for treatment of recalcitrant warts, but local anesthetic and repeat treatments are recommended. © 2013 Wiley Periodicals, Inc.

  16. Two-mode dynamics in pulse-modulated control systems

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z.T.; Yanochkina, O.O.; Mosekilde, Erik

    2010-01-01

    as an example the paper provides a survey of three new mechanisms of torus bifurcation that can be observed in pulse-modulated control systems. The paper concludes with a discussion of the influence that operation in the torus regimes will have on the efficiency of the converter......Pulse-modulated converter systems play an important role in modern power electronics. Systems of this type also deserve considerable theoretical interest because of the complex interplay they exhibit between ordinary (smooth) bifurcations and so-called border-collision bifurcations generated...... by the switching dynamics. Particularly interesting are the unusual transitions to torus dynamics, i.e., to a mode of behavior in which the regular switching dynamics is modulated by another oscillatory mode that may arise through instability in the feedback control. Using the model of a two-level DC/DC converter...

  17. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    Science.gov (United States)

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited.

  18. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    Science.gov (United States)

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization.

  19. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Hsuan; Chen, Chih-Sheng [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tsai, Chuen-Horng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China)

    2014-11-03

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I{sub 3}{sup −} to I{sup −}) of redox electrolyte. In combination with a N719 dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm{sup −2}). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%.

  20. Melting and freezing of light pulses and modes in mode-locked lasers.

    Science.gov (United States)

    Gordon, Ariel; Vodonos, Boris; Smulakovski, Vladimir; Fischer, Baruch

    2003-12-15

    We present a first experimental demonstration of melting of light pulses and freezing of lightwave modes by applying external noise which acts like temperature, verifying our recent theoretical prediction (Gordon and Fischer [1]). The experiment was performed in a fiber laser passively mode-locked by nonlinear rotation of polarization. The first order phase transition was observed directly in time domain and also by measurement of the quartic order parameter (RF power).

  1. Quantum beats in forward scattering: subnanosecond studies with a mode-locked dye laser.

    Science.gov (United States)

    Harde, H; Burggraf, H; Mlynek, J; Lange, W

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D(1) and D(2), lines were resolved. The ground-state splitting could be determined with an accuracy of better than 10(-3).

  2. Quantum beats in forward scattering - Subnanosecond studies with a mode-locked dye laser

    Science.gov (United States)

    Harde, H.; Burggraf, H.; Mlynek, J.; Lange, W.

    1981-06-01

    Time-resolved polarization spectroscopy of transient coherent superpositions of atomic substates is extended to the picosecond time scale by using a synchronously pumped mode-locked dye laser. As a first demonstration, hyperfine beats in the sodium D1 and D2 lines were resolved. The ground-state splitting could be determined with an accuracy of better than 0.001.

  3. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    DEFF Research Database (Denmark)

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL...

  4. Synergistic Decolouration of Azo Dye by Pulsed Streamer Discharge Immobilized TiO2 Photocatalysis

    Institute of Scientific and Technical Information of China (English)

    LI Jie; WANG Huijuan; LI Guofeng; WU Yan; QUAN Xie; LIU Zhigang

    2007-01-01

    Photocatalyst was prepared by immobilizing TiO2 on glass beads using the traditional sol-gel method.Ultraviolet light(UV)produced by pulsed streamer discharge Was then used to induce photocatalytic activity of TiO2 photocatalyst.Decolouration efficiency of the representative azo dye(acid orange 7,AO7)was investigated using the synergistic system of pulsed streamer discharge plasma and TiO2 photocatalysis.The obtained results showed that the decolouration rate of AO7 could be increased by 16.7% under the condition of adding supported TiO2 in the pulsed streamer discharge system,compared to that in the sole pulsed streamer discharge plasma system,due to the synergistic effect of pulsed streamer discharge and TiO2 photocatalysis induced by pulsed streamer discharge.The synergistic system of pulsed streamer discharge and TiO2 photocatalyst Was found to have more reactive radicals for degradation of organic compounds in Water.

  5. Anapole nanolasers for mode-locking and ultrafast pulse generation

    KAUST Repository

    Gongora, Juan S. Totero

    2017-05-31

    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry.

  6. Pulsed squeezed light: simultaneous squeezing of multiple modes

    CERN Document Server

    Wasilewski, W; Banaszek, K; Radzewicz, C; Wasilewski, Wojciech; Banaszek, Konrad; Radzewicz, Czeslaw

    2005-01-01

    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these cond...

  7. Long-pulsed dye laser versus long-pulsed dye laser-assisted photodynamic therapy for acne vulgaris: A randomized controlled trial

    DEFF Research Database (Denmark)

    Haedersdal, M.; Togsverd, K.; Wiegell, S.R.;

    2008-01-01

    Background: Long-pulsed dye laser (LPDL)-assisted photodynamic therapy has been suggested to be superior to laser alone for acne vulgaris but no evidence is available. Objective: To evaluate the efficacy and safety of LPDL alone versus LPDL in photodynamic therapy with methylaminolevulinic acid...... (MAL-LPDL) for acne vulgaris. Methods: Fifteen patients received a series of 3 full-face LPDL treatments and half-face prelaser MAL treatments; the latter being randomly assigned to the left or right side. Results: Inflammatory lesions were reduced more on MAL-LPDL-treated than on LPDL-treated sides...... to draw conclusions about the efficacy of the LPDL, only about the efficacy of MAL-LPDL compared with LPDL alone. Conclusions: MAL-LPDL is slightly superior to LPDL for the treatment of inflammatory acne Udgivelsesdato: 2008/3...

  8. Higgs mode excitation in superconductors by intense terahertz pulse

    Science.gov (United States)

    Matsunaga, Ryusuke; Shimano, Ryo

    2016-05-01

    Recent development of intense terahertz (THz) pulse generation technique has offered novel opportunities to reveal ultrafast phenomena in a variety of materials on tabletop experiments and provided a new pathway toward ultrafast control of quantum phases. Here we present our recent study of nonequilibrium dynamics in metallic superconductors NbN excited by intense THz pulse. Since the superconducting gap energy is located in the THz frequency range, the intense THz pulse excitation makes it possible to instantaneously excite high-density quasiparticles at the gap edge without injecting excess energies. It has also become possible to coherently drive the superconducting ground state without exciting incoherent quasiparticles by tuning the pump frequency below the gap energy. The ultrafast dynamics of the order parameter induced by such an intense low energy excitation is directly probed, and the nature of a collective excitation, namely the Higgs amplitude mode, is revealed. Efficient THz higher-harmonic generation from a superconductor is discovered, manifesting the nonlinear coupling between the THz wave and the Higgs mode. We also report the experimental results in a multi-gap superconductor MgB2.

  9. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    Institute of Scientific and Technical Information of China (English)

    Young Sun MOK; Hyun Tae AHN; Joeng Tai KIM

    2007-01-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  10. Bistable mode of THG for femtosecond laser pulse

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.; Kuchik, Igor E.

    2016-09-01

    We develop an analytical solution for the THG problem with taking into account self- and cross- modulation of interacting waves. Consideration is made in the framework of long pulse duration approximation and plane wave approximation. Using the original approach, we obtain the explicit solution of Schrödinger equations describing the THG in the framework under consideration both for zero-value amplitude of a wave with triple frequency and for its non-zero value. It should be stressed that the main feature of our approach consists in conservation laws using, which correspond to wave interaction process. We found various regimes of frequency trebling and showed that the THG process possesses a bistable feature under certain condition. We found out also the THG mode, at which the intensities of interacting waves do not change along their propagation coordinate. This leads to existence of soliton solution for THG of femtosecond laser pulses.

  11. Rate equation dynamics of passively mode-locked quasi-continuous lasers: pulse stability and dynamic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    New, G.H.C.; Orkney, K.E.; Nock, M.J.W.

    1976-09-01

    New theoretical results connected with the stability of multiple pulsing in a passively mode-locked quasicontinuous laser in the rate equation approximation are presented. Together with earlier results, these allow the number of pulses per cavity transit to be predicted and a qualitative estimate made of the pulse duration for any combination of parameters. The results are illustrated by computer evolutions.

  12. Fractional Carbon Dioxide, Long Pulse Nd:YAG and Pulsed Dye Laser in the Management of Keloids.

    Science.gov (United States)

    Annabathula, Ashwini; Sekar, C Shanmuga; Srinivas, C R

    2017-01-01

    Keloids are abnormal wound responses characterised by excessive deposition of collagen and glycoprotein. They are both aesthetically and symptomatically distressing for most of the patients. There are reports of keloid management with pulsed dye laser (PDL), fractional carbon dioxide (CO2) laser and neodymium-doped yttrium aluminium garnet (Nd:YAG) laser individually and also in combination of CO2 with PDL and CO2 with Nd:YAG. Here, we discuss a combination of all the 3 lasers as a therapy for keloids. This study aims to assess the efficacy of fractional CO2 laser, long pulse Nd:YAG laser and PDL in the management of keloids. Fifteen patients with keloids were treated by fractional CO2 laser, followed by PDL and long pulse Nd:YAG laser at monthly intervals. Four patients discontinued the study and were lost for follow-up. Photographs were taken at the beginning of the treatment and at the end of five sessions. Clinical improvement was analysed based on a visual analogue scale graded by three blinded observers after assessing the clinical photographs for the improvement in size, colour and aesthetic impression. Of the 11 patients, one patient had excellent improvement, one patient had good improvement, four patients had moderate improvement, two patients had mild improvement and three had no improvement. Lasers may have a synergistic effect when combined with other modalities of treatment but cannot be used as monotherapy in the treatment of keloids.

  13. A review of the quality of life following pulsed dye laser treatment for erythemotelangiectatic rosacea.

    Science.gov (United States)

    Bonsall, Alexandra; Rajpara, Sanjaykumar

    2016-01-01

    Rosacea is a chronic condition, affecting up to 10% of the population. It has a negative impact on patients' quality of life (QOL), leading to loss of self-confidence, emotional distress and withdrawal from normal societal interactions. Erythemotelangiectatic (ET) rosacea is a frequent reason for consultation and difficult to treat, as vascular signs such as flushing, erythema and telangiectasia often persist despite medical therapy. Several studies have demonstrated objective improvements in vascular signs following pulsed dye laser (PDL) treatment, but very few have investigated improvement in QOL. We reviewed the current literature to find evidence for the effect of PDL on QOL in ET rosacea.

  14. Raman spectroscopy of organic dyes adsorbed on pulsed laser deposited silver thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, E.; Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina, Italy. (Italy); Valenti, A. [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá di Messina, V.le F. Stagno d’Alcontres 31, I-98166, Messina, Italy. (Italy); Ossi, P.M., E-mail: paolo.ossi@polimi.it [Dipartimento di Energia, Politecnico di Milano, via Ponzio 34-3, 20133 Milano, Italy. (Italy); Trusso, S.; Ponterio, R.C. [CNR-Istituto per i Processi Chimico-Fisici Sede di Messina, V.le F. Stagno d’Alcontres 37, I-98158 Messina, Italy. (Italy)

    2013-08-01

    The results of a surface-enhanced Raman scattering (SERS) study performed on representative organic and inorganic dyes adsorbed on silver nanostructured thin films are presented and discussed. Silver thin films were deposited on glass slides by focusing the beam from a KrF excimer laser (wavelength 248 nm, pulse duration 25 ns) on a silver target and performing the deposition in a controlled Ar atmosphere. Clear Raman spectra were acquired for dyes such as carmine lake, garanza lake and brazilwood overcoming their fluorescence and weak Raman scattering drawbacks. UV–visible absorption spectroscopy measurements were not able to discriminate among the different chromophores usually referred as carmine lake (carminic, kermesic and laccaic acid), as brazilwood (brazilin and brazilein) and as garanza lake (alizarin and purpurin). SERS measurements showed that the analyzed samples are composed of a mixture of different chromophores: brazilin and brazilein in brazilwood, kermesic and carminic acid in carmine lake, alizarin and purpurin in garanza lake. Detection at concentration level as low as 10{sup −7} M in aqueous solutions was achieved. Higher Raman intensities were observed using the excitation line of 632.8 nm wavelength with respect to the 785 nm, probably due to a pre-resonant effect with the molecular electronic transitions of the dyes.

  15. Use of reflectance spectrophotometry to predict the response of port wine stains to pulsed dye laser.

    Science.gov (United States)

    Halachmi, Shlomit; Azaria, Ron; Inbar, Roy; Ad-El, Dean; Lapidoth, Moshe

    2014-01-01

    Reflectance spectroscopy can be used to quantitate subtle differences in color. We applied a portable reflectance spectrometer to determine its utility in the evaluation of pulsed dye laser treatment of port wine stains (PWS) and in prediction of clinical outcome, in a prospective study. Forty-eight patients with PWS underwent one to nine pulsed dye laser treatments. Patient age and skin color as well as PWS surface area, anatomic location, and color were recorded. Pretreatment spectrophotometric measurements were performed. The subjective clinical results of treatment and the quantitative spectrophotometry results were evaluated by two independent teams, and the findings were correlated. The impact of the clinical characteristics on the response to treatment was assessed as well. Patients with excellent to good clinical results of laser treatments had pretreatment spectrophotometric measurements which differed by more than 10%, whereas patients with fair to poor results had spectrophotometric measurements with a difference of of less than 10%. The correlation between the spectrophotometric results and the clinical outcome was 73% (p Spectrophotometry has a higher correlation with clinical outcome and a better predictive value than other nonmeasurable, nonquantitative, dependent variables.

  16. Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency

    Institute of Scientific and Technical Information of China (English)

    Bing Sun; Nyein Nyein Aye; Zhiying Gao; Dan Lv; Xiaomei Zhu; Masayuki Sato

    2012-01-01

    The pulsed high-voltage discharge is a new advanced oxidation technology for water treatment.Methyl Orange (MO) dye wastewater was chosen as the target object.Some investigations were conducted on MO decoloration including the discharge characteristics of the multi-needle reactor,parameter optimization,and the degradation mechanism.The following results were obtained.The color group of the azo dye MO was effectively decomposed by water surface plasma.The decoloration rate was promoted with the increase of treatment time,peak voltage,and pulse frequency.When the initial conductivity was 1700 tS/cm,the decoloration rate was the highest.The optimum distahce between the needle electrodes and the water surface was 1 mm,the distance between the grounding electrode and the water surface was 28 mm,and the number of needle electrodes and spacing between needles were 24 and 7.5 mm,respectively.The decoloration rate of MO was affected by the gas in the reactor and varied in the order oxygen > air> argon > nitrogen,and the energy yield obtained in this investigation was 0.45 g/kWh.

  17. Combined pulsed dye and CO2 lasers in the treatment of angiolymphoid hyperplasia with eosinophilia.

    Science.gov (United States)

    Sagi, Lior; Halachmi, Shlomit; Levi, Assi; Amitai, Dan Ben; Enk, Claes D; Lapidoth, Moshe

    2016-08-01

    Angiolymphoid hyperplasia with eosinophilia (ALHE) is an uncommon dermatosis of unknown etiology that manifests as characteristic red nodules and papules with a predilection for the scalp and periauricular region. Treatment is required for both esthetic and functional reasons, as lesions may ulcerate and bleed. Many treatment approaches have been reported, including excision, systemic medical approaches, topical or intralesional therapies, and non-invasive modalities including cryotherapy, electrosurgery, and laser. Treatments have exhibited variable efficacy, and the recurrence rate is 100 %. We report the combination of pulsed dye laser and CO2 laser in the treatment of ALHE in 14 patients. All patients exhibited clinical response after a mean of 2.4 ± 0.4 treatment sessions. The clinical efficacy of the combined treatment, together with its well-tolerated nature, render the use of pulsed dye laser in combination with CO2 laser, a viable treatment for debulking ALHE lesions. Ongoing maintenance treatments are needed to due to the high degree of relapse.

  18. Impact of the molecular structure and adsorption mode of D-π-A dye sensitizers with a pyridyl group in dye-sensitized solar cells on the adsorption equilibrium constant for dye-adsorption on TiO2 surface.

    Science.gov (United States)

    Ooyama, Yousuke; Yamaguchi, Naoya; Ohshita, Joji; Harima, Yutaka

    2016-12-07

    D-π-A dyes NI-4 bearing a pyridyl group, YNI-1 bearing two pyridyl groups and YNI-2 bearing two thienylpyridyl groups as the anchoring group on the TiO2 surface have been developed as dye sensitizers for dye-sensitized solar cells (DSSCs), where NI-4 and YNI-2 can adsorb onto the TiO2 electrode through the formation of the coordinate bond between the pyridyl group of the dye and the Lewis acid site (exposed Ti(n+) cations) on the TiO2 surface, but YNI-1 is predominantly adsorbed on the TiO2 electrode through the formation of the hydrogen bond between the pyridyl group of the dye and the Brønsted acid sites (surface-bound hydroxyl groups, Ti-OH) on the TiO2 surface. The difference in the dye-adsorption mode among the three dyes on the TiO2 surface has been investigated from the adsorption equilibrium constant (Kad) based on the Langmuir adsorption isotherms. It was found that the Kad values of YNI-1 and YNI-2 are higher than that of NI-4, and more interestingly, the Kad value of YNI-2 is higher than that of YNI-1. This work demonstrates that that for the D-π-A dye sensitizers with the pyridyl group as the anchoring group to the TiO2 surface the number of pyridyl groups and the dye-adsorption mode on the TiO2 electrode as well as the molecular structure of the dye sensitizer affect the Kad value for the adsorption of the dye to the TiO2 electrode, that is, resulting in a difference in the Kad value among the D-π-A dye sensitizers NI-4, YNI-1 and YNI-2.

  19. Efficacy and safety of long-pulse pulsed dye laser delivered with compression versus cryotherapy for treatment of solar lentigines

    Directory of Open Access Journals (Sweden)

    Hassan Seirafi

    2011-01-01

    Full Text Available Background: Although cryotherapy is still the first-line therapy for solar lentigines, because of the side effects such as post-inflammatory hyperpigmentation (PIH, especially in patients with darker skin types, pigment-specific lasers should be considered as a therapy for initial treatment. Aim: The aim of this study is to evaluate the efficacy and safety of cryotherapy compared with 595-nm pulsed dye laser (PDL with cutaneous compression in the treatment of solar lentigines. Materials and Methods: Twenty-two patients (skin type II−IV with facial or hand lentigines participated in this study. Lesions of one side of the face or each hand were randomly assigned and treated with either cryotherapy or PDL. Treatments were performed with radiant exposures of 10 J/cm 2 , 7-mm spot size and 1.5 ms pulse duration with no epidermal cooling. Photographs were taken before treatment and 1-month later. The response rate and side effects were compared. Results: PDL was more likely to produce substantial lightening of the solar lentigines than cryotherapy, especially in skin type III and IV (n = 8, n = 9; P 0.05. PIH was seen only in cryotherapy group. PDL group had only minimal erythema. No purpura was observed. Conclusion: PDL with compression is superior to cryotherapy in the treatment of solar lentigines in darker skin types.

  20. Pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce: A randomized, comparative, observer-blinded study.

    Science.gov (United States)

    Ibrahim, S M

    2016-01-01

    Angiokeratoma of Fordyce is typically asymptomatic, blue-to-red papules with a scaly surface located on the scrotum, shaft of penis or labia majora. They can be treated with some locally destructive treatment modalities such as excision, electrocoagulation, cryotherapy and laser. To compare the effects of the pulsed dye laser versus long pulsed Nd:YAG laser in the treatment of angiokeratoma of Fordyce. Twenty tow patients with angiokeratoma of Fordyce were included in this study. All participants received three sessions of pulsed dye laser on the selected side or part of lesional area and long pulsed Nd:YAG laser on the other side or part of lesional area. Two dermatologists independently evaluated the photographs of the baseline and two-month follow-up after last session using a grade system in which treatment response was categorized into six grades. Both PDL and long pulsed Nd:YAG laser revealed statistically significant improvements in angiokeratoma of fordyce. Comparatively, there was a statistical difference between them (overall mean improvement with PDL, 61.8%, versus Nd:YAG, 77.63%; p laser are effective and safe in the treatment of angiokeratoma of Fordyce with better response in Nd:YAG laser than pulsed dye laser.

  1. Determination of the food dye carmine in milk and candy products by differential pulse polarography

    Directory of Open Access Journals (Sweden)

    Ummihan Taskoparan Yilmaz

    2014-09-01

    Full Text Available As a basis for the development of a sensitive analytical method for the determination of carmine food dye, a study of the differential pulse polarographic reduction of carminic acid (CA on a dropping mercury electrode was performed. For the analytical differential pulse polarographic method running at pH 2.0 Britton–Robinson (B–R buffer solution (peak at −489 mV, the relationship between the peak current and CA concentration was linear in the range of 1 μM to 90 μM with a detection limit of 0.16 μM. The proposed electrochemical procedure was successfully applied to the determination of carmine food dye in spiked commercially available strawberry flavored milk. The method was extended to the determination of CA in candy and results were in agreement with that obtained by a spectrophotometric comparison method. A cyclic voltammogram of CA in 2.0 B–R buffer electrolyte was obtained on the dropping mercury electrode at pH 2.0 during potential scans from 0.00 mV to 1000 mV versus Ag/AgCl. From repetitive cyclic voltammograms, one cathodic peak at −500 mV and three anodic peaks on the reverse scan between approximately −340 mV and −460 mV were recorded. The influences of some other commonly found inorganic and organic salts on the determination of CA were also examined. The sufficiently good recoveries and low standard deviations for the data reflect the high accuracy and precision of the proposed differential pulse polarographic method.

  2. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    Science.gov (United States)

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  3. Pulse formation and characteristics of the cw mode-locked titanium-doped sapphire laser

    Science.gov (United States)

    Zschocke, Wolfgang; Stamm, Uwe; Heumann, Ernst; Ledig, Mario; Guenzel, Uwe; Kvapil, Jiri; Koselja, Michael P.; Kubelka, Jiri

    1991-10-01

    We report on measurements of transient and steady-state pulse characteristics of an acousto- optically mode-locked titanium-doped sapphire laser. During the pulse evolution, oscillations in the pulse width and pulse energy are found. A steady state is reached after about 40 to 60 microsecond(s) . The steady-state pulse width is strongly influenced by the mode-locking loss as well as the intracavity bandwidth. Shortest pulses of typically 15 ps are obtained. The experiment is compared with results of a simple computer simulation.

  4. Treatment of Basal Cell Carcinomas with Pulsed Dye Laser: A Case Series

    Directory of Open Access Journals (Sweden)

    Norman Minars

    2012-01-01

    Full Text Available Background. Basal cell carcinoma (BCC is the most prevalent skin cancer. Because of its highly vascular characteristic, it is amendable to treatment with pulse dye laser (PDL. The goal of this study is to determine the safety and efficacy of PDL therapy for mostly facial BCCs. Materials and Methods. Sixteen men and thirteen women (29 total with 39 biopsy-proven BCCs were treated with 1–4 PDL (595 nm therapies at 2–4-week intervals. The treatment parameters included pulse energy of 15 J/cm 2, pulse length of 3 millisecond, with no dynamic cooling, and 7 mm spot size. The age of the patients was 30–90 years (mean 73 years. Response rates were evaluated by the clinical assessments with mean followup of 11 months. Results. Twenty-four patients with thirty-two tumors reached at least three months followup: 24/32 (75% tumors with complete resolution (mean 3 treatment sessions; 5/32 (16% tumors recurred; 3/32 (9% tumors with incomplete responses after four treatments. Minimal side effects and discomfort were experienced by the patients with PDL therapy. Conclusion. PDL is a safe, tolerable, and moderately effective method of treating various BCCs. The ideal niche and standardized settings for PDL treatment of BCCs are yet to be determined.

  5. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Directory of Open Access Journals (Sweden)

    Olga N Pakhomova

    Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  6. Two modes of cell death caused by exposure to nanosecond pulsed electric field.

    Science.gov (United States)

    Pakhomova, Olga N; Gregory, Betsy W; Semenov, Iurii; Pakhomov, Andrei G

    2013-01-01

    High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation"), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.

  7. Pulse Evolution Characteristics in Self-Similar Mode-locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    TU Cheng-Hou; LI Zhen; LEI Ting; LI Yong-Nan; GUO Wen-Gang; WEI Dai; ZHU Hui; ZHANG Shuang-Gen; LU Fu-Yun

    2007-01-01

    A self-similar mode locked fibre laser is studied based on a numerical model. By introducing a dimensionless factor k to characterize the pulse shape, the self-similar pulse evolution, formation and the temporal and spectral shape changes due to the elements in the cavity are investigated throughout the iaser cavity. The results show that in the self-similar mode locked fibre laser, self-similar pulse is first formed in the single-mode fibre, which is then amplified in the gain fibre. Gain bandwidth has a small influence on pulse shape, so high energy self-similar pulse can be obtained after amplification. Because net cavity dispersion directly influences the pulse width as well as peak power after compression by a pair of gratings, which can determine the pulse self-similar evolution, it is very important to control the net cavity dispersion to a certain range to obtain self-similar pulses.

  8. Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves

    Science.gov (United States)

    Liu, Yan; Yang, Li; Yang, Gang; Zhang, Yanzong; Zhang, Xiaohong; Deng, Shihuai

    2014-12-01

    Degradation of methylene blue (MB) was performed using the pulsed discharge process (PDP) combined with spent tea leaves (STLs). The effects of STL dosage, concentration of initial solution, and pH were analyzed in the combined treatment. Results showed that the combined treatment was effective for dye wastewater degradation; when the dosage of STLs was 3.2 g/L, the degradation efficiency reached 90% after 15 min treatment, and STLs showed a good repeatability. The degradation rate decreased with increasing initial MB concentration but not related to the solution pH in the combined treatment. Fourier-transform infrared spectra and N2 adsorption suggested that the number of acidic and basic groups in the STL surface increased after the treatment, but the surface area and pore volume remained unchanged.

  9. Performance investigation of the pulse and Campbelling modes of a fission chamber using a Poisson pulse train simulation code

    Science.gov (United States)

    Elter, Zs.; Jammes, C.; Pázsit, I.; Pál, L.; Filliatre, P.

    2015-02-01

    The detectors of the neutron flux monitoring system of the foreseen French GEN-IV sodium-cooled fast reactor (SFR) will be high temperature fission chambers placed in the reactor vessel in the vicinity of the core. The operation of a fission chamber over a wide-range neutron flux will be feasible provided that the overlap of the applicability of its pulse and Campbelling operational modes is ensured. This paper addresses the question of the linearity of these two modes and it also presents our recent efforts to develop a specific code for the simulation of fission chamber pulse trains. Our developed simulation code is described and its overall verification is shown. An extensive quantitative investigation was performed to explore the applicability limits of these two standard modes. It was found that for short pulses the overlap between the pulse and Campbelling modes can be guaranteed if the standard deviation of the background noise is not higher than 5% of the pulse amplitude. It was also shown that the Campbelling mode is sensitive to parasitic noise, while the performance of the pulse mode is affected by the stochastic amplitude distributions.

  10. [Combination of pulsed dye laser and propranolol in the treatment of ulcerated infantile haemangioma].

    Science.gov (United States)

    Rodríguez-Ruiz, M; Tellado, M G; del Pozo Losada, J

    2016-02-01

    Ulceration is the most common complication of infantile haemangioma, with 15.8% of them usually appearing in the proliferative phase. They can be managed in several ways. We present our experience in the treatment of ulcerated haemangioma with the combination of pulsed dye laser and propranolol. A retrospective observational study was conducted on patients with ulcerated infantile haemangioma treated with pulsed dye laser in association with propranolol. The study included 7 patients, 3 cases in labial area and 4 cases in the nappy area. A review was also performed on a historical cohort of 5 children with ulcerated haemangiomas with the same features, but treated only with propranolol, topical agents and occlusive dressings. The median size of the ulcer was 1.0 cm, and there was a mean time of onset pre-treatment of 2 weeks. Pain and bleeding was present in all patients. After 2 weeks of combined propranolol and laser treatment, all lesions were healed. The pain disappeared after the first laser session. Patients with ulcerative haemangioma in the labial area obtained a better response than patients with haemangioma in the nappy area. The cohort of patients treated with propranolol required a mean healing time of 5.2 weeks, with the addition of an occlusive dressing with ointment. We believe that our results suggest that combined treatment, laser and propranolol, has synergistic effects that accelerate the healing of ulcerated haemangioma, as observed in our patients. Further studies with larger numbers of patients are needed to confirm this fact. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  11. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes.

    Science.gov (United States)

    Reis, L A; Rocha, M S

    2017-05-01

    In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 μM) and presents equilibrium binding constants of the order of ∼10(7) M(-1) for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼10(5) M(-1) ).

  12. An investigation of the spectral content of a mode-locked pulsed CO2 laser

    NARCIS (Netherlands)

    Bormans, B.J.M.; Olbertz, A.H.M.

    1980-01-01

    The frequency width of a pulse train in a pulsed mode-locked CO2 laser has been accurately measured by means of a Fabry-Perot interferometer. We succeeded in resolving the longitudinal mode structure. The results are in excellent agreement with the results of previous measurements of the line width

  13. CONTROL SYSTEM FEATURES OF MAGNETIC-PULSE INSTALLATION AT UNIPOLAR MODE

    Directory of Open Access Journals (Sweden)

    Dzyubenko, A.

    2012-06-01

    Full Text Available Construction features of monitoring and control system of magnetic pulse installation at work in unipolar mode were detected. Installation control system algorithm at work in multiple repeating mode of discharge pulses is proposed. Description of monitoring and control system structure schemes and their purposes have been conducted.

  14. Picosecond pulse generation from a synchronously pumped mode-locked semiconductor laser diode

    Science.gov (United States)

    Auyeung, J. C.; Johnston, A. R.

    1982-01-01

    A semiconductor laser diode was mode locked in an external cavity when synchronously pumped with 90-ps current pulses. Transform-limited optical pulses with a 10-ps pulse width and a peak power of 160 mW were produced. Operating characteristics of such a system are described.

  15. Three types of pulses delivered from a nanotube-mode-locked fiber laser

    Science.gov (United States)

    Yao, X. K.

    2015-07-01

    Three types of pulses are experimentally investigated in a switchable normal-dispersion nanotube-mode-locked fiber laser by adjusting polarizer controller and pump power. They are a standard dissipative-soliton (DS), conventional soliton (CS)-like pulse, and noiselike pulse, which correspond to three mode-locking states. The standard DS with a rectangular spectrum possesses a Gaussian-shape pulse. The CS-like operation has a Lorenz shape, and the spectrum involves several sidebands similar to the CS case. For the noiselike pulse with a bell-shaped spectrum, a 317 fs peak rides upon the 132.5 ps pedestal in the autocorrelation trace. The spectra of these three pulse operations are centered at three close wavelengths. The generation of three such different types of pulses in one identical normal- dispersion laser cavity may find an important application for the future of mode-locked laser research.

  16. Treatment of port-wine stains with flash lamp pumped pulsed dye laser on Indian skin: A six year study

    Directory of Open Access Journals (Sweden)

    Chandroth Ponnambath Thajudheen

    2014-01-01

    Full Text Available Context: Port-wine stain (PWS is one of the commonly encountered congenital cutaneous vascular lesions, with an equal sex distribution. Pulsed dye lasers (PDL have revolutionized the treatment of both congential and acquired cutaneous vascular lesions. The pulsed dye lasers owing to its superior efficacy and safety profile have become the gold standard for the management of port-wine stains. Aims: To evaluate the efficacy and side effects of pulsed dye laser for the management of Port-wine stain on Indian skin. Materials and Methods: Seventy five patients of Fitzpatrick skin types IV&V with PWS underwent multiple treatments with PDL (V beam-Candela over a period of six years at monthly intervals. Laser parameters were wavelength 595nm, spot sizes 7-10mm, fluence 6-12 j/cm2, pulse duration 0.45-10ms, along with cryogen cooling. Serial photographs were taken before and after every session. Clinical improvement scores of comparable photographs using a quartile grading (o=80% were judged independently by two dermatologists after the series of treatment. Minimum number of treatments was 6 and maximum 17.They were followed up at six monthly intervals to observe re darkening of PWS. Results: No patient showed total clearance.Grade3 improvement was observed in 70 % of children and 50% of adults after 8-10 sessions. Children showed better and faster response than adults. Thirty percent of patients developed post inflammatory hyper pigmentation which resolved over a period of six to eight weeks. Two patients had superficial scarring due to stacking of pulses. None of the patients showed re darkening of PWS till now. Conclusion: Pulsed dye laser is an effective and safe treatment for port-wine stain in Indian skin.

  17. Current mode pulse width modulation/pulse position modulation based on phase lock loop

    Science.gov (United States)

    Wisartpong, Pichet; Silaphan, Vorapong; Kurutach, Sunee; Wardkein, Paramote

    2017-05-01

    In this paper, the fully integrated CMOS current mode PLL with current input injects at the place of input or output of the loop filter without summing amplifier circuit. It functions as PPM and PWM circuit is present. In addition, its frequency response is an analysis which electronic tuning BPF and LPF are obtained. The proposed circuit has been designed with 0.18 μm CMOS technology. The simulation results of this circuit can be operated at 2.5 V supply voltage, at center frequency 100 MHz. The linear range of input current can be adjusted from 43 μA to 109 μA, and the corresponding duty cycle of pulse width output is from 93% to 16% and the normalized pulse position is from 0.93 to 0.16. The power dissipation of this circuit is 4.68 mW with the total chip area is 28 μm × 60 μm.

  18. Single-mode solid-state polymer dye laser fabricated with standard I-line UV lithography

    DEFF Research Database (Denmark)

    Balslev, Søren; Mironov, Andrej; Nilsson, Daniel

    2005-01-01

    We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G.......We present single-mode solid-state polymer dye lasers fabricated with standard UV lithography. The lasers use a high-order Bragg grating and rely on index-tuning of a photosensitive polymer for waveguiding. The gain medium is Rhodamine 6G....

  19. Equal-Amplitude Optical Pulse Generation from a Rational Harmonic Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    FENG Xin-Huan; YUAN Shu-Zhong; LI Yao; LIU Yan-Ge; KAI Gui-Yun; DONG Xiao-Yi

    2004-01-01

    A simple technique for the generation of equal-amplitude high repetition rate pulses from a rational harmonic mode-locked fibre ring laser is demonstrated. The principle is based on the combination of the nonlinear characteristics of the modulator and the effect of rational harmonic mode-locking. The two sources act on each other and the integrated effect eventually leads to the pulse amplitude-equalization. We obtain amplitude-equalized short pulses up to the fifth-order rational harmonic mode-locking with an optimum bias level and modulation depth of the modulator, which demonstrates the efficiency of this method.

  20. Time domain measuring system of molecular fluorescence with real-time monitor and control of pulsed dye laser

    Science.gov (United States)

    Taira, Y.; Suzuki, T.; Kato, H.; Konishi, N.; Kasuya, T.

    1982-04-01

    A computer controlled system is presented for a high-precision, time-domain measurement of molecular fluorescence induced by a pulsed dye laser field. In this system three intelligent functions are assembled by the system controller: they are an automatic wavelength control of pulsed dye laser to 0.45 GHz resolution, a digital wavelength meter of 10-7 precision, and a high-speed waveform digitizer with 10 ps inherent resolution. Then the system achieves a unique capability such as to record real-time data of fluorescence decay in the nanosecond regime under an on-line monitor and control of the laser wavelength to milliangstrom precision. The basic constitution and practical performance of the system are described with particular emphasis on its high precision and multi-task capability.

  1. Laser Mode-Dependent Size of Plasma Zones Induced by Femtosecond Laser Pulses in Fused Silica

    Institute of Scientific and Technical Information of China (English)

    TANG Shan-Chun; JIANG Hong-Bing; LIU Yi; GONG Qi-Huang

    2008-01-01

    We carry out the numerical simulations of #emtosecond laser propagation with TEM00 mode, TEM10 mode and a beam combining both the modes in fused silica. It is found that the transverse size of plasma zones induced by laser pulses with the TEM10 mode is smaller than that induced by the TEMoo mode, while the longitudinal size is almost the same, and the saturated plasma density is higher. The transverse size, the longitudinal size and the ratio of the longitudinal to transverse size, for the beam combining both the modes, all could be reduced at the same time in comparison with the TEMoo mode under the same focusing conditions.

  2. Design of large-mode-area three layered fiber structure for femtosecond laser pulse delivery

    Science.gov (United States)

    Babita; Rastogi, Vipul; Kumar, Ajeet

    2013-04-01

    This paper presents three layered fiber that has been designed for delivering pulses of 100-fs through the fundamental mode. Design of the fiber ensures no intermodal coupling, low bending loss, and high fabrication tolerances while maintaining large-mode-area. We numerically demonstrate propagation of 55.5-kW peak power, 1550-nm wavelength, 100-fs duration laser pulse through fundamental mode of 4-m long fiber having mode area of 1900 μm2. Mode stability while propagation through the fiber has been ascertained by keeping enough spacing between the effective indices of LP01 and LP11 modes. Distortion-free propagation of the pulse has been achieved by keeping ratio of dispersion to nonlinear length close to 1.

  3. Pulsed laser interference patterning of polyimide grating for dye-doped polymer laser

    Science.gov (United States)

    Kok, Soon Yie; Tou, Teck Yong; Yap, Seong Ling; Yap, Seong Shan

    2016-07-01

    Direct laser interference patterning of polyimide (PI) films was performed by using a pulsed 355-nm laser. At laser fluence of 0.4 J/cm2, gratings with spatial periods of 3.8 μm to 344 nm were created. The highest aspect ratio of the grating structure (0.8) was obtained for the 344-nm grating. An all-polymer dye laser was then fabricated by spin-coating a layer of disodium fluorescein (DF)-doped polyvinyl alcohol (PVA) film on bare and patterned PI substrate. Green laser emission was obtained when transversely pumped by a 355-nm laser. The lasing threshold reduced by ˜10 times for the sample with 344-nm grating while the laser intensity was ˜18 times higher. The enhancements are ascribed to the 344-nm grating structures, which act as an efficient distributed feedback resonator and distributed Bragg reflector grating for DF-doped PVA emitting at ˜563 nm, on top of being a passive light-trapping structures.

  4. Pulsed microwave heating method for preparation of dye-sensitized solar cells for greener, faster, cheaper production of photovoltaic materials

    Science.gov (United States)

    Murphy, Clifford B.; Cotta, Robert; Blais, Timothy; Hall, Charles B.

    2015-05-01

    Microwave heating methods are very popular for developing chemical syntheses that are achieved much more rapidly or with less solvent than via conventional heating methods. Their application to solar cell development has been primarily in developing improvements in the synthesis of dyes and curing of polymer substrates, but not in assisting the photoanode construction of dye-sensitized solar cells. Microwave heating of conducting substrates can lead to arcing of electricity in the reactor, which in turn, can lead to extensive degradation or complete destruction of the photoanode. Here we present our work in applying a pulsed microwave heating method that affords quicker dye deposition times in comparison to conventional heating (μw 40 min, conventional 60 min) with similar dye concentrations as characterized by UV-Vis absorbance, contact angle measurements, and cyclic voltammetry. Our photoanodes are constructed with anatase TiO2 cured onto FTO glass, and deposition of the N719 ruthenium dye either directly to the TiO2 layer or through amide bond formation to a silane layer that has been deposited on the TiO2 layer. Modest improvements in the solar energy conversion efficiency are shown through the microwave method in comparison to conventional heating (μw 0.78% vs. conventional 0.25% reported by K. Szpakolski, et. Al. Polyhedron, 2013, 52, 719-732.)

  5. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    DEFF Research Database (Denmark)

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids, and symme......Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic.......031, 3, 6 months). Irregular pigmentation and skin texture improved from both treatments with no significant side-to-side differences. No reduction was seen of rhytides on LPDL- or IPL-treated sides. Treatment-related pain scores were significantly higher after IPL (medians 7-8) than LPDL (4...

  6. High Resolution Mode-Selective Excitation by Adaptive Femtosecond Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    LI Xia; ZHANG Hui; ZHANG Xiang-Yun; ZHANG Shi-An; CHEN Guo-Liang; WANG Zu-Geng; SUN Zhen-Rong

    2008-01-01

    High resolution mode-selective excitation in the mixture of C6H6(992cm-1)and C6D6(945cm-1)is experimentally achieved by adaptive femtosecond pulse shaping based on the genetic algorithm(GA),and second harmonic generation frequency-resolved optical gating(SHG-FROG)is adopted to characterize the original and optimal laser pulses,and its mechanism is experimentally validated by tailoring the frequency components of the pump pulses at the Fourier plane.It is indicated that two-pulse coherent mode-selective excitation of the Raman scattering mainly depends on the effective frequency components of the pump pulse related to specific molecular vibrational mode.The experimental results have attractive potential appfications in the complicated molecular system.

  7. Synchronization of Fourier-Synthesized Optical Pulses to a Mode-Locked Optical Clock

    Institute of Scientific and Technical Information of China (English)

    Masaharu; Hyodo; Kazi; Sarwal; Abedin; Noriaki; Onodera; Masayoshi; Watanabe

    2003-01-01

    A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.

  8. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  9. Modelling and characterization of colliding-pulse mode-locked (CPM) quantum well lasers. [MPS1

    DEFF Research Database (Denmark)

    Bischoff, Svend; Brorson, S.D.; Franck, T.;

    1996-01-01

    A theoretical and experimental study of passive colliding pulse mode-locked quantum well lasers is presented. The theoretical model for the gain dynamics is based on semi-classical density matrixequations. The gain dynamics are characterized exp...

  10. Sharp photonic Crystal Defect Modes and Their Response to Ultrashort Optical Pulses

    Institute of Scientific and Technical Information of China (English)

    Kyozo; Kanamoto; Sheng; Lan; Naoki; Ikeda; Yoshimasa; Sugimoto; Kiyoshi; Asakawa; Hiroshi; Ishikawa

    2003-01-01

    Single photonic crystal defects based on an air-bridge structure were fabricated. We obtained sharp defect modes with quality factors higher than 600 and observed their response to ultrashort optical pulses by utilizing two-photon absorption.

  11. Study Pulse Parameters versus Cavity Length for Both Dispersion Regimes in FM Mode Locked

    Directory of Open Access Journals (Sweden)

    Bushra Razooky Mhdi

    2015-03-01

    Full Text Available To demonstrate the effect of changing cavity length for  FM mode locked on pulse parameters and make comparison for both dispersion regime , a plot for each pulse parameter as Lr function are presented for normal and anomalous dispersion regimes. The analysis is based on the theoretical study and the results of numerical simulation using MATLAB. The effect of both normal and anomalous dispersion regimes on output pulses is investigate Fiber length effects on pulse parameters are investigated by driving the modulator into different values. A numerical solution for model equations using fourth-fifth order, Runge-Kutta method is performed through MATLAB 7.0 program. Fiber length effect on pulse parameters is investigated by driving the modulator into different values of lengths. Result shows that, the output pulse width from the FM mode locked equals to τ= 501ns anomalous regime and τ=518ns in normal regime.

  12. Flexible pulses from carbon nanotubes mode-locked fiber laser

    Science.gov (United States)

    Yang, Ling-Zhen; Yang, Yi; Wang, Juan-Fen

    2016-12-01

    We demonstrate a flexible erbium-doped pulsed fiber laser which achieves the wavelength and pulse width tuning by adjusting an intracavity filter. The intracavity filter is flexible to achieve any of the different wavelengths and bandwidths in the tuning range. The wavelength and width of pulse can be tuned in a range of ˜ 20 nm and from ˜ 0.8 ps to 87 ps, respectively. The flexible pulsed fiber laser can be accurately controlled, which is insensitive to environmental disturbance. Project supported by the National Natural Science Foundation of China (Grant No. 61575137) and the Program on Social Development by Department of Science and Technology of Shanxi Province, China (Grant No. 20140313023-3).

  13. Short pulse generation in a passively mode-locked photonic crystal semiconductor laser

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Blaaberg, Søren; Mørk, Jesper

    2010-01-01

    We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties......We present a new type of passively mode-locked laser with quantum wells embedded in photonic crystal waveguides operating in the slow light regime, which is capable of emitting sub picosecond pulses with widely controllable properties...

  14. Spectral development of pico second pulses of mode-locked Nd-glass lasers

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, A.; Weinhardt, N.

    1983-04-01

    The spectra of single picosecond pulses of mode-locked Nd-glass lasers are investigated along the pulse train. In addition to self-phase modulation, the spectra are modified due to spectral hole burning in the inhomogeneous gain profile of the active medium.

  15. Mode-selective terahertz emission from rippled air irradiated by femtosecond laser pulses

    Science.gov (United States)

    Shin, Junghun; Zhidkov, Alexei; Jin, Zhan; Hosokai, Tomonao; Kodama, Ryosuke

    2014-04-01

    Terahertz (THz) emission from rippled air is studied in multidimensional particle-in-cell simulations that include optical field ionization. The ionization modulation in a plasma channel produced by a laser pulse propagating along a ripple and the pulse self-focusing result in THz mode selection with the generation of intense signals having quasi-monochromatic spectral distributions.

  16. Holes and chaotic pulses of traveling waves coupled to a long-wave mode

    CERN Document Server

    Herrero, H; Herrero, Henar; Riecke, Hermann

    1997-01-01

    Localized traveling-wave pulses and holes, i.e. localized regions of vanishing wave amplitude, are investigated in a real Ginzburg-Landau equation coupled to a long-wave mode. In certain parameter regimes the pulses exhibit a Hopf bifurcation which leads to a breathing motion. Subsequently the oscillations undergo period-doubling bifurcations and become chaotic.

  17. Holes and chaotic pulses of traveling waves coupled to a long-wave mode

    Science.gov (United States)

    Herrero, Henar; Riecke, Hermann

    1997-02-01

    It is shown that localized traveling-wave pulses and holes can be stabilized by a coupling to a long-wave mode. Simulations of suitable real Ginzburg-Landau equations reveal a small parameter regime in which the pulses exhibit a breathing motion (presumably related to a front bifurcation), which subsequently becomes chaotic via period-doubling bifurcations.

  18. Multipulse mode of heating nanoparticles by nanosecond, picosecond and femtosecond pulses

    Science.gov (United States)

    Letfullin, Renat R.; Iversen, Christian B.; George, Thomas F.

    2010-02-01

    Nanoparticles are being researched as a noninvasive method for selectively killing cancer cells. With particular antibody coatings on nanoparticles, they attach to the abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be heated with UV/visible/IR or RF pulses, heating the surrounding area of the cell to the point of death. Researchers often use single-pulse or multipulse lasers when conducting nanoparticle ablation research. In the present paper, we are conducting an analysis to determine if the multipulse mode has any advantage in heating of spherical metal nanoparticles (such as accumulative heating effect). The laser heating of nanoparticles is very sensitive to the time structure of the incident pulsed laser radiation, the time interval between the pulses, and the number of pulses used in the experiments. We perform time-dependent simulations and detailed analyses of the different nonstationary pulsed laser-nanoparticle interaction modes, and show the advantages and disadvantages of multipulse (set of short pulses) and single-pulse laser heating of nanoparticles. A comparative analysis for both radiation modes (single-pulse and multipulse) are discussed for laser heating of metal nanotargets on nanosecond, picosecond and femtosecond time scales to make recommendations for efficient laser heating of nanomaterials in the experiments.

  19. Adjustable high-repetition-rate pulse trains in a passively-mode-locked fiber laser

    Science.gov (United States)

    Si Fodil, Rachid; Amrani, Foued; Yang, Changxi; Kellou, Abdelhamid; Grelu, Ph.

    2016-07-01

    We experimentally investigate multipulse regimes obtained within a passively-mode-locked fiber laser that includes a Mach-Zehnder (MZ) interferometer. By adjusting the time delay imbalance of the MZ, ultrashort pulse trains at multi-GHz repetition rates are generated. We compare the observed dynamics with high-harmonic mode locking, and show that the multi-GHz pulse trains display an inherent instability, which has been overlooked. By using a recirculation loop containing the MZ, we demonstrate a significant improvement of the pulse train stability.

  20. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    Science.gov (United States)

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  1. Solar Lentigines: Evaluating Pulsed Dye Laser (PDL) as an Effective Treatment Option

    Science.gov (United States)

    Ghaninejhadi, Hayedeh; Ehsani, Amirhooshang; Edrisi, Ladan; Gholamali, Fatemeh; Akbari, Zahra; Noormohammadpour, Pedram

    2013-01-01

    Introduction: Solar lentigines are among commonest cosmetic problems. There are many topical therapies suggested to treat these lesions including cryotherapy, chemical peeling with tri chloro acetic acid (TCA) and laser therapy with q-switched lasers as well as long pulsed lasers. Considering possible treatment side effects (PIH, scar) with cryotherapy and peeling in Iranian patients (darker skin types) it seems necessary to try to find alternative measures. The aim of the present study was to evaluate effect of long pulsed dye laser (LPDL) on lentigines via an objective method (computerized dermoscopy). Methods: Patients with pathologically confirmed lentigines were selected if they agreed to participate in the study,were not treated before, hadn’t history of psoriasis, vitiligo, scar formation and were not pregnant. Letigines were dermoscopied before and after treatment with PDL (V-beam, 595nm, Candela Corp. Wayland, USA) using fluence of 10 joules,without DCD (dynamic cooling device) via extra compress lens provided with laser system.The resulting figures were compared by two academic unrelated dermatologists as well as by computerized analysis. Post laser side effects were treated with topical antibiotics and mild topical steroids. Patients were followed for six months after the end of the study to determine the rate of recurrence via dermoscopy of sites of previous lesions and also delayed side effects. Results: A total of 21 patients with the same number of lesions, were included in the study.Mean age of patients was 54.2 years (±23.3) ranging from 39 to 71 years. Included patient swere 18 females and three males. From 21 treated lesions, 11 were located on the hands and 10 on the face. Comparing before and after photographs taken through dermoscopy system,revealed that approximately 57% of patients had more than 75% improvement. Mean pigment analysis score (calculated by computerized dermoscope software) was respectively 8 and 2 before and after PDL

  2. Experience With Esthetic Reconstruction of Complex Facial Soft Tissue Trauma; Application of the Pulsed Dye Laser

    Directory of Open Access Journals (Sweden)

    Ebrahimi

    2014-08-01

    Full Text Available Background Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. Objectives The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. Patients and Methods We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL post-operatively. Results In our study, 63 patients including 18 (28.5% women and 45 (71.5% men aged 8-70 years (mean 47 years underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23% patients and blunt trauma lacerations were seen in 52 (77% patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Conclusions Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks after suture removal for better aesthetic results.

  3. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive rea...

  4. MONO-PULSE RADAR 3-D IMAGING TECHNIQUES FOR TARGET IN STEPPED TRACKING MODE

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao; Ma Changzheng; Zhang Qun; Zhang Shouhong

    2002-01-01

    A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followed, so the problem of precisely tracking of target is solved. Finally the validity of these methods is proven by the simulation results.

  5. MONO-PULSE RADAR 3-D IMAGING TECHNIQUES FOR TARGET IN STEPPED TRACKING MODE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A method for mono-pulse radar 3-D imaging in stepped tracking mode is presented and the amplitude linear modulation of error signals in stepped tracking mode is analyzed with its compensation method followes,so the problem of precisely tracking of target is solved.Finally the validity of these methods is proven by the simulation results.

  6. Thermomechanical and Photophysical Properties of Crystal-Violet-Dye/H2O Based Dissolutions via the Pulsed Laser Photoacoustic Technique

    Directory of Open Access Journals (Sweden)

    Vicente Torres-Zúñiga

    2014-01-01

    Full Text Available Different thermoelastic parameters, for example, the acoustic attenuation and the speed of sound, are fundamental for instrumental calibration and quantitative characterization of organic-based dissolutions. In this work, these parameters as functions of the concentration of an organic dye (crystal-violet: CV in distillated water (H2O based dissolutions are investigated. The speed of sound was measured by the pulsed-laser photoacoustic technique (PLPA, which consists in the generation of acoustic-waves by the optical absorption of pulsed light in a given material (in this case a liquid sample. The thermally generated sound-waves traveling through a fluid are detected with two piezoelectric sensors separated by a known distance. An appropriate processing of the photoacoustic signals allows an adequate data analysis of the generated waves within the system, providing an accurate determination of the speed of sound as function of the dye-concentration. The acoustic attenuation was calculated based on the distance of the two PZT-microphones to an acoustic-source point and performing linear-fitting of the experimental data (RMS-amplitudes as function of the dye-concentration. An important advantage of the PLPA-method is that it can be implemented with poor or null optical transmitting materials permitting the characterization of the mechanical and concentration/aggregate properties of dissolved organic compounds.

  7. Ultrafast pulse generation in a mode-locked Erbium chip waveguide laser

    CERN Document Server

    Khurmi, Champak; Zhang, Wen Qi; V., Shahraam Afshar; Chen, George; Genest, Jérôme; Monro, Tanya M; Lancaster, David G

    2016-01-01

    We report mode-locked ~1550 nm output of transform-limited ~180 fs pulses from a large mode-area (diameter ~ 50 {\\mu}m) guided-wave erbium fluorozirconate glass laser. The passively mode-locked oscillator generates pulses with 25 nm bandwidth at 156 MHz repetition rate and peak-power of 260 W. Scalability to higher repetition rate is demonstrated by transform-limited 410 fs pulse output at 1.3 GHz. To understand the origins of the broad spectral output, the laser cavity is simulated by using a numerical solution to the Ginzburg-Landau equation. This paper reports the widest bandwidth and shortest pulses achieved from an ultra-fast laser inscribed waveguide laser.

  8. Flattop pulse generation based on the combined action of active mode locking and nonlinear polarization rotation.

    Science.gov (United States)

    Fang, Xiaohui; Wai, P K A; Lu, Chao; Chen, Jinhua

    2014-02-10

    A pulse-width-tunable 10 GHz flattop pulse (FTP) train is generated based on the combined action of active mode locking and nonlinear polarization rotation pulse shaping. Although the setup was previously used for other applications, the mechanism of FTP generation based on it is first analyzed and confirmed in the experiment. An FTP with pulse width tunable from 12 to 20 ps by changing polarization controllers is generated within the wavelength tuning range of 20 nm. The generated pulse reveals good stability, with the side mode suppression ratio of 65 dB, timing jitter of 92 fs, and amplitude fluctuation of 0.36%.

  9. Mode-locked picosecond pulse generation from an octave-spanning supercontinuum

    CERN Document Server

    Kielpinski, D; Canning, J; Stevenson, M; Westbrook, P S; Feder, K S

    2011-01-01

    We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000 - 2000 nm wavelength range.

  10. Average Number of Coherent Modes for Pulse Random Fields

    CERN Document Server

    Lazaruk, A M; Lazaruk, Alexander M.; Karelin, Nikolay V.

    1997-01-01

    Some consequences of spatio-temporal symmetry for the deterministic decomposition of complex light fields into factorized components are considered. This enables to reveal interrelations between spatial and temporal coherence properties of wave. An estimation of average number of the decomposition terms is obtained in the case of statistical ensemble of light pulses.

  11. Generation of the numerator=2 rational harmonic mode-locked pulses in fiber ring lasers

    Institute of Scientific and Technical Information of China (English)

    Pinghe Wang(汪平河); Li Zhan(詹黎); Qinghao Ye(叶庆好); Yuxing Xia(夏宇兴)

    2004-01-01

    In conventional rational harmonic mode-locking, optical pulse trains with the repetition rate of(pn + 1)fc are generated when the modulation frequency of the in-cavity modulator is set at fm=(n + 1/p)fc, where n and p are both integers, fc is the fundamental cavity frequency. In this paper, we report that rational harmonic mode locking phenomenon takes place in the fiber lasers when the modulation frequency is set at fm =(n + 2/p)fc. The pulse generations are experimentally demonstrated when the numerator of the rational corresponds to 2 in 5th and 7th order rational harmonic mode-locking.

  12. Sub-nanometer tuning of mode-locked pulse by mechanical strain on tapered fiber

    Science.gov (United States)

    Ahmad, Harith; Faruki, Md Jahid; Tiu, Zian Cheak; Thambiratnam, K.

    2017-03-01

    A tunable mode-locked fiber laser based on the non-linear polarization rotation (NPR) technique is proposed and demonstrated. A passively generated mode-locked output is obtained with a repetition rate of about 70 ns and an average output power of 0.7 mW, as well as a laser efficiency of 0.53%. The mode-locked pulses can be tuned over a span of 4.4 nm, from 1560.6 nm to 1556.2, corresponding to a stretching of the tapered fiber from 0 to 100 μm in 10 μm increments. The pulses have an average signal-to-noise ratio of about 41 dB in the frequency domain, indicating a highly stable mode-locked output. The system can repeat and reverse the generation of these pulses, a crucial criterion of many communications and sensing applications.

  13. High-resolution microwave-photonic applications via precise synchronization between RF and mode-locked laser pulses (Conference Presentation)

    Science.gov (United States)

    Shi, Kebin; Lu, Xing; Lv, Zhiqiang

    2016-10-01

    Precise synchronization between radio frequency and mode-locked laser pulses provides a high resolution capability for detecting either time jitter in laser pulse train or phase noise in radio frequency. In this talk, we will present our recent progresses on radio frequency dissemination and fiber optical sensing based on sub-femtosecond level synchronization between radio frequency and mode-locked pulse train.

  14. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ruobing [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)]. E-mail: zrbingdut@163.com; Zhang Chi [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Cheng Xingxin [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wang Liming [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wu Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Guan Zhicheng [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2007-04-02

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m{sup 3}/h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 {mu}S/cm. The decolorization reaction has a high rate constant (k = 0.0269 min{sup -1}) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k {sub min} = 0.01603 min{sup -1}), then increases to 0.02105 min{sup -1} when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment.

  15. Low-pulse energy Q-switched Nd:YAG laser treatment for hair-dye-induced Riehl's melanosis.

    Science.gov (United States)

    On, Hye Rang; Hong, Won Jin; Roh, Mi Ryung

    2015-06-01

    Riehl's melanosis, a form of dermatitis characterized by reticulate pigmentation, typically presents as a gray-brown to black hyperpigmentation on the face and neck. Among the various etiologic factors suggested, photoallergic reaction and pigmented contact dermatitis resulting from exposure to drugs, coal tar dyes, optical whitener, or other ingredients found in cosmetics are believed to be the major contributing factors in this disease. The histopathological features of Riehl's melanosis mainly consist of pigmentary incontinence along with infiltration of numerous dermal melanophages and lymphohistiocytes.1,2 Additionally, notable clinical improvements in the treatment of this condition have been reported for intense pulsed light (IPL) therapy, in comparison to long-term topical application of bleaching agents.2 Here, we report the cases of two Asian patients treated with a low-pulse energy 1,064-nm Q-switched (QS) Nd:YAG laser for hair dye-induced Riehl's melanosis on the face and neck. In conclusion, we observed that Riehl's melanosis on the face and neck was effectively and safely treated with a low-pulse energy 1,064-nm QS Nd:YAG laser. We suggest that this method can be used in Asian patients with Riehl's melanosis at risk of postinflammatory hyperpigmentation from excessive light or laser energy delivery.

  16. Self-similar Shape Mode of Optical Pulse Propagation in Medium with non-stationary Absorption

    Science.gov (United States)

    Trofimov, Vycheslav A.; Lysak, Tatyana M.; Fedotov, Mihail V.; Prokopenko, Alexander S.

    2015-03-01

    We discuss laser pulse propagation with the self-similar shape in a medium with instantaneous nonlinear absorption. We consider two cases of the laser pulse propagation. First one corresponds to problem of laser-induced plasma generation in silica under action of TW laser pulse. The second one corresponds to femtosecond laser pulse propagation in medium with nanoparticles of noble metals. In both cases the mode of the self-similar shape of pulse is of interest. We discuss also a physical mechanism of non-linear acceleration or slowing-down for laser pulse propagation in a medium with nanoparticles. The last phenomena are important, in particular, for a problem of data processing of all optical method. We used analytical approach for considered problem as well as computer simulation.

  17. N-Annulated perylene substituted zinc–porphyrins with different linking modes and electron acceptors for dye sensitized solar cells

    KAUST Repository

    Luo, Jie

    2016-05-03

    Three new N-annulated perylene (NP) substituted porphyrin dyes WW-7-WW-9 with different linking modes and accepting groups were synthesized and applied in Co(ii)/(iii) based dye sensitized solar cells (DSCs). The bay-linked porphyrins WW-7 and WW-8 exhibited moderate power conversion efficiency (PCE = 4.4% and 4.8%, respectively), while the peri-linked porphyrin dye WW-9 showed a PCE up to 9.2% which is slightly lower than that of our reference dye WW-6. Detailed physical measurements (optical and electrochemical), DFT calculations, and photovoltaic characterizations were performed to understand how the structural changes affect their light-harvesting ability, molecular orbital profile, energy level alignment, and eventually the photovoltaic performance. It turned out that the lower efficiencies of the cells based on WW-7 and WW-8 could be ascribed to the weak π-conjugation between the bay-substituted NP and phenylethynyl substituted porphyrin unit. The introduction of a benzothiadiazole acceptor at the anchoring group has induced a significant red shift of the IPCE action spectra of WW-8 and WW-9, by about 90 nm and 50 nm as compared to that of WW-7 and WW-6, respectively. However, less efficient electron injection was observed. Our studies gave some insight into the important role of electronic interactions between different components when one designs a dye for high-efficiency DSCs. © The Royal Society of Chemistry 2016.

  18. Edge Detection System using Pulse Mode Neural Network for Image Enhancement

    Directory of Open Access Journals (Sweden)

    S.Jagadeesh Babu

    2012-04-01

    Full Text Available Edge detection of an image reduces significantly the amount of data and filters out information that may be regarded as less irrelevant. Edge detection is efficient in medical imaging. Pulse mode neural networks are becoming an attractive solution for function approximation based on frequency modulation. Early pulse mode implementation suffers from some network constraints due to weight range limitations. To provide the best edge detection, the basic algorithm is modified to have pulse mode operations for effective hardware implementation. In this project a new pulse mode network architecture using floating point operations is used in the activation function. By using floating point number system for synapse weight value representation, any function can be approximated by the network. The proposed pulse mode MNN is used to detect the edges in images forming a heterogeneous data base. It shows good learning capability. In addition, four edge detection techniques have been compared. The coding is written in verilog and the final result have been simulated using Xilinx ISE simulator.

  19. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H;

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 months...

  20. Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2015-12-01

    Full Text Available It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distributions within the burst by pre-shaping the seed pulse burst with a Pockels cell. Furthermore, this technique allows for the precompensation of any static modulations across the burst, which may be introduced during the subsequent amplification process. Therefore, a pulse burst with a uniform energy distribution can also be generated. The method is tested with an ultra-short pulse burst mode laser amplifier system producing bursts of a 1 ms duration with a pulse repetition rate of 1 MHz and a maximum output power of 800 W during the burst. Furthermore, a method to predict the influence of the amplifier on a non-uniformly shaped burst is presented and successfully tested to produce a pre-defined pulse shape after amplification.

  1. Study on Pulse Skip Modulation Mode in Smart Power Integrated Circuits and Its Test Technology

    Institute of Scientific and Technical Information of China (English)

    LUO Ping

    2005-01-01

    @@ Up to now, the popular control modes for smart power integrated circuit (SPIC) are PWM and PFM.PWM bases on constant frequency variable width (CFVW) control pulse, whereas, PFM bases on constant width variable frequency (CWVF) control pulse. PWM converter has low efficiency with light loads and high amplitude harmonic. On the other hand,the control circuit and filter for PFM are much complex. This dissertation proposes a novel modulation mode named pulse skip modulation (PSM)for SPIC converter, which bases on constant width constant frequency (CWCF) control pulse. It is shown that PSM converter would improve its efficiency and suppress EMI. It also has quick response speed, good interfere rejection and strong robust. Furthermore, it is easy to realize PSM control circuit. The modulating theories of PSM are firstly studied in the world according to the author's investigation.

  2. Analysis of THG modes for femtosecond laser pulse

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Sidorov, Pavel S.

    2017-05-01

    THG is used nowadays in many practical applications such as a substance diagnostics, and biological objects imaging, and etc. With developing of new materials and technology (for example, photonic crystal) an attention to THG process analysis grow. Therefore, THG features understanding are a modern problem. Early we have developed new analytical approach based on using the problem invariant for analytical solution construction of the THG process. It should be stressed that we did not use a basic wave non-depletion approximation. Nevertheless, a long pulse duration approximation and plane wave approximation has applied. The analytical solution demonstrates, in particular, an optical bistability property (and may other regimes of frequency tripling) for the third harmonic generation process. But, obviously, this approach does not reflect an influence of a medium dispersion on the frequency tripling. Therefore, in this paper we analyze THG efficiency of a femtosecond laser pulse taking into account a second order dispersion affect as well as self- and crossmodulation of the interacting waves affect on the frequency conversion process. Analysis is made using a computer simulation on the base of Schrödinger equations describing the process under consideration.

  3. Ultraviolet absorption spectroscopy in optically dense fireballs using broadband second-harmonic generation of a pulsed modeless dye laser.

    Science.gov (United States)

    Soo, Michael; Glumac, Nick

    2014-01-01

    Broadband frequency doubling of a modeless dye laser pulse is used to enable single-shot absorption spectroscopy in the ultraviolet for optically dense, energetic-materials fireball applications. Band widths of approximately 1-3 nm are generated in the 226 and 268 nm regions using a doubling crystal. Strong focusing of the fundamental beam onto the crystal is found to be sufficient to achieve 1-5% conversion efficiency with a pulse intensity sufficient to saturate the array detector even after 75% attenuation through the fireball. The technique is demonstrated with nitric oxide (NO) absorption in a gas cell and is then used to perform the first detection and temperature fitting of aluminum monofluoride (AlF) and magnesium monofluoride (MgF) in a fireball environment.

  4. Optically induced mode conversion in graded-index fibers using ultra-short laser pulses

    CERN Document Server

    Hellwig, Tim; Fallnich, Carsten

    2013-01-01

    We propose the use of graded-index few-mode fibers for mode-conversion by long-period gratings (LPG) transiently written by ultrashort laser pulses using the optical Kerr effect. The mode inter- action is studied by numerically solving the multi-mode coupled nonlinear Schroedinger equations. We present highly efficient conversion of the LP 01 - into the LP 11 -mode preserving the pulse shape in contrast to previous results in step-index fibers. Furthermore, mode conversion using different wavelengths for inducing and probing the LPG is shown. Due to the flat phase-matching curve of the examined modes in the graded-index fiber, mode-conversion can be observed for probe center wavelengths of 1100nm up to 1800nm with a write beam centered around 1030nm. Therefore, a complete separation of the probe from the write beam should be possible as well as the application of optically induced guided mode conversion for all optical modulation across a broad wavelength range.

  5. Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Di Bella, Maurizio Salvatore [Department of Energy, Information Engineering and Mathematical Models (DEIM), Thin Films Laboratory, Università di Palermo, Viale delle Scienze, Building 9, 90128 Palermo (Italy); Gerosa, Matteo [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Chiodoni, Angelica; Bianco, Stefano [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Mosca, Mauro; Macaluso, Roberto; Calì, Claudio [Department of Energy, Information Engineering and Mathematical Models (DEIM), Thin Films Laboratory, Università di Palermo, Viale delle Scienze, Building 9, 90128 Palermo (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-01-01

    Among all the photovoltaic technologies developed so far, dye-sensitized solar cells are considered as a promising alternative to the expensive and environmentally unfriendly crystalline silicon-based solar cells. One of the possible strategies employed to increase their photovoltaic efficiency is to reduce the charge recombination at the cell conductive substrate through the use of a compact blocking layer. In this paper, we report on the fabrication and characterization of dye-sensitized solar cells employing niobium pentoxide (Nb{sub 2}O{sub 5}) thin film blocking layer deposited through the pulsed laser deposition technique on conductive substrates. The careful selection of the optimal film thickness led to a 30% enhancement of the photoconversion efficiency with respect to reference cells fabricated without blocking layer. Open circuit voltage decay and electrochemical impedance spectroscopy techniques proved that the effective suppression of the charge recombination occurring at the substrate/electrolyte interface represents the main reason for the improvement of the photovoltaic efficiency. - Highlights: • Niobium pentoxide thin films were fabricated through pulsed laser deposition. • The deposited films were employed as recombination blocking layer in DSCs. • The selection of the optimal film thickness led to the enhancement of the efficiency.

  6. Initial clinical experience with a new pulsed dye laser device in angioplasty of limb ischemia and shunt fistula obstructions

    Energy Technology Data Exchange (ETDEWEB)

    Zwaan, M.; Weiss, H.D.; Kagel, H.; Gmelin, E.; Rinast, E. (Medical University of Luebeck (Germany). Department of Radiology); Goethlin, J.H. (Sahlgrenska Sjukhuset, Goeteborg (Sweden)); Kummer, D. (Medical University of Luebeck (Germany). Department of Angiology and Geriatry); Scheu, M. (Medical Laser Center Luebeck (Germany))

    Selective plaque ablation with laser radiation at 405-530 nm in vitro has been reported. The possibilities are investigated of a new pulsed dye laser device for in vivo recanalization of arteries in ischemic lower limbs and stenoses/occlusions of arterio-venous hemo-dialysis shunt fistulae. A specially designed 9F or 7F multifiber catheter was used for treatment of 10 patients with lower limb artery obliterations and 11 patients with malfunctioning hemodialysis access fistulae (HAF). The recanalization technical success was 5/5 in the iliac arteries (IA), 4/5 in the superficial femoral arteries (SFA), and 11/11 in the HAF. Early re-occlusions occurred in one SFA and IA, respectively, caused by very bad run-off. There was one clinically insignificant SFA perforation. Additional balloon angioplasty was considered necessary in 10/16 lesions. Mean ankle-arm index increased from 0.68 to 0.97. With two exceptions all HAF patients were re-integrated in the dialysis program. Pulsed dye laser angioplasty promises to be an effective and fast method for plaque ablation debulking. The first clinical experience confirms previous in vitro results. In particular laser recanalization may become the method of choice for treatment of rigid HAF obstructions and it seems to be superior to vascular surgery or balloon angioplasty alone. (author). 15 refs.; 2 figs.

  7. Pulsed dye laser treatment of pigmented lesions: a randomized clinical pilot study comparison of 607- and 595-nm wavelength lasers.

    Science.gov (United States)

    Chern, Peggy L; Domankevitz, Yacov; Ross, E Victor

    2010-12-01

    The 595-nm pulsed dye laser has been used for the treatment of benign epidermal pigmented lesions (EPLs), but there is a risk of inducing undesirable purpura with treatment. To compare a 607-nm laser with a commercially-available 595-nm laser for the treatment of EPLs. Monte-Carlo simulations were performed to characterize laser interaction with skin. Ten patients with EPLs were treated with a 607-nm study prototype laser and the 595-nm pulsed dye laser twice at 2- to 4-week intervals on the left or right side on a randomized basis. Study endpoints included clearance rate of lesions, side effects immediately after treatment and at final follow-up, and patient discomfort/pain. Monte-Carlo simulations show that the 607-nm is absorbed more specifically by melanin than the 595-nm wavelength. Both lasers were effective in treatment of EPLs. The average degree of improvement overall was 41.2% with the 607-nm laser and 40% with the 595-nm laser. Patients reported less discomfort/pain during treatment with the 607-nm laser. Our findings suggest that the 607-nm laser is safe and at least as effective as the 595-nm laser in treatment of EPLs. There was less patient discomfort/pain during treatment using the 607-nm laser. Copyright © 2010 Wiley-Liss, Inc.

  8. Dye-doped spheres with plasmonic semi-shells: Lasing modes and scattering at realistic gain levels

    Directory of Open Access Journals (Sweden)

    Nikita Arnold

    2013-12-01

    Full Text Available We numerically simulate the compensation of absorption, the near-field enhancement as well as the differential far-field scattering cross section for dye-doped polystyrene spheres (radius 195 nm, which are half-covered by a silver layer of 10–40 nm thickness. Such silver capped spheres are interesting candidates for nanoplasmonic lasers, so-called spasers. We find that spasing requires gain levels less than 3.7 times higher than those in commercially available dye-doped spheres. However, commercially available concentrations are already apt to achieve negative absorption, and to narrow and enhance scattering by higher order modes. Narrowing of the plasmonic modes by gain also makes visible higher order modes, which are normally obscured by the broad spectral features of the lower order modes. We further show that the angular distribution of the far-field scattering of the spasing modes is by no means dipole-like and is very sensitive to the geometry of the structure.

  9. Hybrid mode-locked ultrashort-pulse erbium-doped fiber laser

    Science.gov (United States)

    Lazarev, Vladimir A.; Sazonkin, Stanislav S.; Pniov, Alexey B.; Tsapenko, Konstantin P.; Krylov, Alexander A.; Obraztsova, Elena D.

    2014-03-01

    One of the implementations of fs-laser with CNT-film for mode-locking is considered. Scheme of single-pulse, self-starting, stable mode-locked laser generation by appropriate polarization controllers adjustment is suggested. The mechanism of cavity length stabilization for a femtosecond fiber laser based on the pump source modulation is considered. Bandwidth of the feedback frequency stabilization system based on pump source modulation method is defined.

  10. Observation of self-mode-locked noise-like pulses from a net normal dispersion erbium-doped fiber laser

    Science.gov (United States)

    Li, Kexuan; Tian, Jinrong; Guoyu, Heyang; Xu, Runqin; Song, Yanrong

    2017-04-01

    Self-mode-locked noise-like pulses (NLPs) were experimentally investigated from a normal dispersion erbium-doped fiber laser. Different from noise-like pulses with a broadband spectrum, the self-mode-locked NLPs have a narrow optical spectrum of 1-2 nm and hundreds of nanoseconds duration. However, the intra-cavity maximum energy of NLPs is up to 560 nJ without pulse breaking. The higher pulse energy output is promising in the proposed fiber laser. To confirm whether self-mode-locked NLPs are caused by an invisible nonlinear polarization rotation (NPR) mechanism owing to slight residual polarization asymmetry of the fiber and components used, we compared the output characteristics between self-mode-locked NLPs and NPR mode-locked pulses in the same cavity. The experimental results show that the formation mechanism of such self-mode-locked NLPs could be related to a weak NPR effect.

  11. Investigation of pulsed mode operation with the frequency tuned CAPRICE ECRIS.

    Science.gov (United States)

    Maimone, F; Tinschert, K; Endermann, M; Hollinger, R; Kondrashev, S; Lang, R; Mäder, J; Patchakui, P T; Spädtke, P

    2016-02-01

    In order to increase the intensity of the highly charged ions produced by the Electron Cyclotron Resonance Ion Sources (ECRISs), techniques like the frequency tuning and the afterglow mode have been developed and in this paper the effect on the ion production is shown for the first time when combining both techniques. Recent experimental results proved that the tuning of the operating frequency of the ECRIS is a promising technique to achieve higher ion currents of higher charge states. On the other hand, it is well known that the afterglow mode of the ECRIS operation can provide more intense pulsed ion beams in comparison with the continuous wave (cw) operation. These two techniques can be combined by pulsing the variable frequency signal driving the traveling wave tube amplifier which provides the high microwave power to the ECRIS. In order to analyze the effect of these two combined techniques on the ion source performance, several experiments were carried out on the pulsed frequency tuned CAPRICE (Compacte source A Plusiers Résonances Ionisantes Cyclotron Electroniques)-type ECRIS. Different waveforms and pulse lengths have been investigated under different settings of the ion source. The results of the pulsed mode have been compared with those of cw operation.

  12. Experimental study on dielectric barrier discharge actuators operating in pulse mode

    NARCIS (Netherlands)

    Kotsonis, M.; Veldhuis, L.

    2010-01-01

    An experimental investigation is performed on the operation of dielectric barrier discharge plasma actuators used as manipulators of secondary and unsteady flow structures such as boundary layer instabilities or shedding vortices. The actuators are tested mainly in pulse mode. High sample rate hot-w

  13. Coherent Enhancement of 10 s Burst-Mode Ultraviolet Pulses at Megawatt Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Abudureyimu, Reheman [ORNL; Liu, Yun [ORNL

    2017-01-01

    A doubly-resonant optical cavity and its locking technique have been developed to achieve coherent enhancement of 402.5-MHz, 50-ps, megawatt peak power ultraviolet (355 nm) laser pulses operating at a 10- s/10-Hz burst mode.

  14. Discrete excitation of mode pulses using a diode-pumped solid-state digital laser

    CSIR Research Space (South Africa)

    Ngcobo, Sandile

    2016-02-01

    Full Text Available In this paper, we experimentally demonstrate novel method of generating discrete excitation of on-demand Lagaurre-Gaussian (LG) mode pulses, in a diode pumped solid-state digital laser. The digital laser comprises of an intra-cavity spatial light...

  15. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I. [Ioffe Physical-Technical Institute, St. Petersburg (Russian Federation); Viktorov, E. A. [National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg (Russian Federation); Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium); Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Abusaa, M. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Arab American University, Jenin, Palestine (Country Unknown); Danckaert, J. [Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); Kolykhalova, E. D. [St. Petersburg State Electrotechnical University “LETI,” St. Petersburg (Russian Federation); Soboleva, K. K. [St. Petersburg State Polytechnical University, St. Petersburg (Russian Federation); Zhukov, A. E. [Academic University, St. Petersburg (Russian Federation); Sibbett, W. [University of St. Andrews, St. Andrews (United Kingdom); Rafailov, E. U. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Erneux, T. [Optique Nonlinéaire Théorique, Campus Plaine CP 231, 1050 Bruxelles (Belgium)

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  16. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  17. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Science.gov (United States)

    Zysset, B.; LaGasse, M. J.; Fujimoto, J. G.; Kafka, J. D.

    1989-02-01

    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  18. Sliding mode pulse-width modulation technique for direct torque controlled induction motor drive

    Science.gov (United States)

    Bounadja, M.; Belarbi, A. W.; Belmadani, B.

    2010-05-01

    This paper presents a novel pulse-width modulation technique based sliding mode approach for direct torque control of an induction machine drive. Methodology begins with a sliding mode control of machine's torque and stator flux to generate the reference voltage vector and to reduce parameters sensitivity. Then, the switching control of the three-phase inverter is developed using sliding mode concept to make the system tracking reference voltage inputs. The main features of the proposed methodologies are the high tracking accuracy and the much easier implementation compared to the space vector modulation. Simulations are carried out to confirm the effectiveness of proposed control algorithms.

  19. New driving parameters for diamond deposition reactors: pulsed mode versus continuous mode

    Directory of Open Access Journals (Sweden)

    Gicquel Alix

    2003-01-01

    Full Text Available Experimental investigation and modeling of pulsed H2/CH4 plasmas used for diamond deposition are presented. Two plasma configurations are studied : a 2.45 GHz microwave cavity configuration and a 915 MHz surface-wave configuration. Time-resolved measurements of the gas temperature determined from the Doppler broadening of the Balmer ­Ha line, of the H-atom relative density and of the discharge volume (Vpl are reported. The experimental time-variations of the gas temperature are characterized by a sharp increase at the beginning of the pulse (t 1 ms. The simulations enable us to estimate time-variations of the electron energy distribution function, gas temperature and chemical species densities. The in-pulse steady state temperature obtained from the model is in agreement with the measured one, although a discrepancy is obtained on the shape of the early time-variation. Calculations were carried out in order to study the effects of the in-pulse power, the duty cycle and the off-plasma time on the H-atom and CH3-radical densities. It is seen that, at a constant power density averaged over a period, low duty cycles favor high H-atom and CH3 - radical densities, while too long off-plasma times reduce the H-atom density during the pulse. In addition, the production of H atoms was seen to be governed by thermal dissociation in the 2.45 GHz microwave cavity system, and by electronic impact dissociation in the 915 MHz surface wave system, the latter operating under high gas velocities.

  20. H- extraction from electron-cyclotron-resonance-driven multicusp volume source operated in pulsed mode

    Science.gov (United States)

    Svarnas, P.; Bacal, M.; Auvray, P.; Béchu, S.; Pelletier, J.

    2006-03-01

    H2 microwave (2.45GHz) pulsed plasma is produced from seven elementary electron cyclotron resonance sources installed into the magnetic multipole chamber "Camembert III" (École Polytechnique—Palaiseau) from which H- extraction takes place. The negative-ion and electron extracted currents are studied through electrical measurements and the plasma parameters by means of electrostatic probe under various experimental conditions. The role of the plasma electrode bias and the discharge duty cycle in the extraction process is emphasized. The gas breakdown at the beginning of every pulse gives rise to variations of the plasma characteristic parameters in comparison with those established at the later time of the pulse, where the electron temperature, the plasma potential, and the floating potential converge to the values obtained for a continuous plasma. The electron density is significantly enhanced in the pulsed mode.

  1. Electrical Addressing and Temporal Tweezing of Localized Pulses in Passively Mode-Locked Semiconductor Lasers

    CERN Document Server

    Camelin, P; Marconi, M; Giudici, M

    2016-01-01

    We show that the pumping current is a convenient parameter for manipulating the temporal Localized Structures (LSs), also called localized pulses, found in passively mode-locked Vertical-Cavity Surface-Emitting Lasers. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing to control the position and the dynamics of LSs. We show that the localized pulses drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on an finite timescale and breaks the parity invariance along the cavity, thus leading to a new paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. ...

  2. Pulse mode irradiation at Radachlorin PDT shifted cell death to apoptosis in vitro

    Science.gov (United States)

    Klimenko, Vladimir V.; Bogdanov, Alexey A.; Knyazev, Nickolay A.; Dubina, Michael V.

    2015-07-01

    Photodynamic therapy (PDT) is a clinically approved treatment that can exhibit onsite cytotoxic activity toward tumor cells. One of the main factors limiting PDT efficiency is tissue hypoxia derived from photodynamic action. PDT with pulse mode irradiation at the same peak fluence rates as in continuous wave (CW) mode and with appropriate irradiation parameters could be more effective in the potency of 1O2 generation and the cytotoxic effect enhancement by tissue reoxygenation. In this study, we demonstrated theoretically that the main parameter of pulse mode irradiation is the intermittency factor, which makes it possible to maintain the intended 3O2 concentration and to regulate the efficiency of 1O2 generation. We also showed experimentally that photodynamic treatment with pulse mode irradiation has congruent cytotoxicity to CW mode but induces preferable cell apoptosis. We assume that not only is cumulative 1O2 concentration is important in photodynamic cytotoxicity, but so is the temporal distribution of 1O2 generation, which determines the types of cell death.

  3. Amplification of short pulses from a mode-locked diode laser in an ytterbium-doped fiber

    NARCIS (Netherlands)

    Hekelaar, M.G.; Adhimoolam, B.; Gross, P.; Lindsay, I.D.; Boller, Klaus J.

    2005-01-01

    We report the first mode-locked diode laser at 1.04 µm with subsequent amplification of the pulses in an ytterbium-doped fiber amplifier. The generated pulses have a pulse duration of 70ps and peak power of 50W.

  4. Effects of lower fluence pulsed dye laser irradiation on production of collagen and the mRNA expression of collagen relative gene in cultured fibroblasts in vitro

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yan; CHEN Da-fang; WANG Qi; CHENG Hao

    2006-01-01

    Background Lower fluence of 585-nm flashlamp-pumped pulsed dye laser has been successfully used as a nonablative technique in the treatment of wrinkles. The objective of this study was to evaluate the effect of the pulsed dye laser (585 nm) on the production of collagen and the mRNA expression of collagen related gene in fibroblasts in vitro.Methods Cultured fibroblasts were treated with a 585-nm flashlamp-pumped pulsed dye laser ( fluence 3 J/cm2,4 J/cm2, spot size 7 mm, pulse duration 450 μs). The production of collagen and the mRNA expression of transforming growth factor (TGF)-β1, SMAD2, SMAD3, SMAD4, SMAD7 and type I procollagen α1, α2 in fibroblasts were investigated by colorimetry or real time polymerase chain reaction.Results The production of collagen was significantly up-regulated after treatment with a 585-nm flashlamp-pumped pulsed dye laser with a fluence of 3 J/cm2 (P <0.001). The mRNA expression of TGF- β1,SMAD2, SMAD3, SMAD4, SMAD7 and procollagen I was significantly up-regulated after treatment with a 585-nm flashlamp-pumped pulsed dye laser with a fluence of 3 J/cm2 (P <0.001). No significant difference of mRNA expression of SMAD2, SMAD3, SMAD4, SMAD7 and type I procollagen was found between controls and fibroblasts treated with pulsed dye laser with a fluence of 4 J/cm2 (P >0.05).Conclusions Lower fluence (3 J/cm2) pulsed dye laser increased the collagen production in fibroblasts by up-regulating TGF-β1, SMAD2, SMAD3, SMAD4, SMAD7 and type I procollagen mRNA expression. These may be the reason it can be effectively used in the treatment of wrinkles.

  5. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    Science.gov (United States)

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm(2) and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  6. APPLICATION OF PULSE-PERIODICAL MODE FOR IMPROVEMENT OF LASER TREATMENT EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available The purpose of the paper is to estimate an application of pulse-periodical mode for improvement of laser treatment efficiency. Laser technologies have been widely used in the processes of material treatment with the purpose to provide them the required surface properties and also for high accuracy cutting of sheet materials. Application of complex treatment is of great interest and especially when it is used for worn-out surfaces with formation of a coating by gas-flame laying of powder mixture of specific composition and subsequent laser fusion.Increase of laser unit capacity is very important task for higher efficiency of laser technology application in mechanical engineering. Nowadays technological processes using lasers with high average power (more than 100 W have been applying only sources that are working in two modes, namely: continuous and pulse- periodical (P-P with pulse repetition rate from some units to several hundred hertz and pulse duration within dozens to hundreds of microseconds and even within milliseconds. On the other hand, in some cases shielding effect of plasma cloud formed during laser alloying, cladding or welding reduces the efficiency of laser treatment up to 50 % depending on plasma composition and laser beam length. High frequency P-P laser systems with high average power working in mode of Q-factor modulation allow to realize principally other mechanism of irradiation interaction with materials that is an ablation. In this case it is possible to provide local energy release both in space and time.The performed analysis has revealed that P-P mode of laser operation for a majority of treatment processes is much better and more efficient from energetic point of view in comparison with the continuous mode. On the basis of the developments it is possible to make a conclusion that there is a possibility to create laser systems working in high frequency P-P mode with high average power above hundreds watt.

  7. Pulse-reverse electrodeposition of transparent nickel phosphide film with porous nanospheres as a cost-effective counter electrode for dye-sensitized solar cells.

    Science.gov (United States)

    Wu, Mao-Sung; Wu, Jia-Fang

    2013-12-01

    A Ni2P nanolayer with porous nanospheres was directly coated on fluorine-doped tin oxide glass by pulse-reverse deposition as a low-cost counter electrode catalyst for dye-sensitized solar cells, and the photoelectron conversion efficiency of the cell was increased to 7.32% by using a porous nanosphere catalyst due to the significantly improved ion transport.

  8. Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers

    Directory of Open Access Journals (Sweden)

    A. Komarov

    2012-01-01

    Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.

  9. Optical 40 GHz pulse source module based on a monolithically integrated mode locked DBR laser

    Science.gov (United States)

    Huettl, B.; Kaiser, R.; Kroh, M.; Schubert, C.; Jacumeit, G.; Heidrich, H.

    2005-11-01

    In this paper the performance characteristics of compact optical 40 GHz pulse laser modules consisting of a monolithic mode-locked MQW DBR laser on GaInAsP/InP are reported. The monolithic devices were fabricated as tunable multi-section buried heterostructure lasers. A DBR grating is integrated at the output port of an extended cavity in order to meet the standardized ITU wavelength channels allocated in the spectral window around 1.55 μm in optical high speed communication networks. The fabricated 40 GHz lasers modules not only emit short optical pulses (< 1.5 ps) with very low amplitude noise (<1.5 %) and phase noise levels (timing jitter: 50 fs) but also enable good pulse-to-pulse phase and long-term stability. A wavelength tuning range of 6 nm is possible and large locking bandwidths between 100 ... 260 MHz are observed. All data have been achieved by operating the lasers in a hybrid mode-locking scheme with a required minimum micro-wave power of only 12 dBm for pulse synchronization. Details on laser chip architecture and module performance are summarized and the results of a stable and error free module performance in first 160 Gb/s (4 x 40 Gb/s OTDM) RZ-DPSK transmission experiments are presented.

  10. Passively mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback

    Science.gov (United States)

    Roy, Vincent; Lamonde, Martin; Babin, Francois; Piche, Michel

    2003-02-01

    A polarization additive pulse mode-locked stretched-pulse erbium-doped fiber ring laser with a regenerative feedback producing near transform-limited femtosecond pulses is reported. The regenerative feedback makes use of an intensity modulator driven at twice the fundamental repetition rate of the passively mode-locked fiber laser. The laser is self-starting for a limited range of pump power. The de-chirped pulses have a duration of 90 fs (FWHM) and a pulse time-bandwidth product of 0.44. The pulse energy amounts to 0.3 nJ. Pulses with nearly twice that energy could be obtained, though without self-starting capability. The laser RF power spectrum measurement yields an amplitude noise as low as 0.15% (rms) and a pulse timing jitter of 150 fs (rms). In addition, RF spectra show no relaxation oscillation in the self-starting regime.

  11. Clinical feasibility of various optical instruments for quantitative evaluation of pulsed-dye laser treatment of port wine stain skin

    Science.gov (United States)

    Kim, Chang-Seok; Jung, Byungjo; Choi, Bernard; Verkruysse, Wim; Zhang, Rong; Nelson, John S.

    2005-04-01

    For quantitative prediction and evaluation of pulsed dye laser therapy of port wine stain (PWS) skin, the CIE L*a*b* color difference, ΔE*, has been utilized to characterize numerically the color differences between normal untreated and treated PWS skin. Three optical instruments (Minolta chromameter CR-200, a cross-polarized diffuse reflectance imaging system, and visual reflectance spectrometers) are compared to investigate their clinical feasibility for quantitative color assessment. Compared to the chromameter as a standard measurement instrument, other instruments also provide valuable measurements of skin color for the relative quantification of PWS treatment outcome. The fiber-optic visual reflectance spectrometer is preferable for continuous measurement of a small area of skin. The cross-polarized imaging system is useful as a simple non-contact measurement technique to provide spatially resolved color difference images.

  12. Mode-locked pulse oscillation of a self-resonating enhancement optical cavity

    CERN Document Server

    Hosaka, Yuji; Kosuge, Atsushi; Omori, Tsunehiko; Sakaue, Kazuyuki; Takahashi, Tohru; Uesugi, Yuuki; Urakawa, Junji; Washio, Masakazu

    2016-01-01

    A power enhancement optical cavity is a compelling means of realizing a pulsed laser with a high peak power and a high repetition frequency, which is not feasible by using a simple amplifier scheme. However, a precise feedback system is necessary for maintaining the narrow resonance condition of the optical cavity, and has become a major technical issue in developing such cavities. We developed a new approach that does not require any active feedback system, by placing the cavity in the outer loop of a laser amplifier. We report on the first demonstration of a mode-locked pulse oscillation using the new system.

  13. A modified split—step fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    RaoMin; SunXiao-Han; ZhangMing-De

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schroedinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and demonstrate that our approach is much faster with no loss of pre-chirped RZ(CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD values and the extinct ratio has a great impact on the transmission performance.

  14. DC motor operation controlled from a DC/DC power converter in pulse mode with low duty cycle

    OpenAIRE

    Stefanov, Goce; Kukuseva, Maja; Citkuseva Dimitrovska, Biljana

    2016-01-01

    In this paper pulse mode of operation of DC motor controlled by DC/DC power converter is analyzed. DC motor operation with time intervals in which the motor operates without output load is of interest. In this mode it is possible the motor to restore energy. Also, in the paper are represented calculations for the amount of the restored energy in the pulse mode operation of the motor for different duty cycles.

  15. Structure of picosecond pulses of a Q-switched and mode-locked diode-pumped Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Donin, V I; Yakovin, D V; Gribanov, A V [Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2015-12-31

    The pulse duration of a diode-pumped Nd:YAG laser, in which Q-switching with mode-locking (QML regime) is achieved using a spherical mirror and a travelling-wave acousto-optic modulator, is directly measured with a streak camera. It is found that the picosecond pulses can have a non-single-pulse structure, which is explained by excitation of several competing transverse modes in the Q-switching regime with a pulse repetition rate of 1 kHz. In the case of cw mode-locking (without Q-switching), a new (auto-QML) regime is observed, in which the pulse train repetition rate is determined by the frequency of the relaxation oscillations of the laser field while the train contains single picosecond pulses. (control of laser radiation parameters)

  16. The history, chemistry and modes of action of carmine and related dyes.

    Science.gov (United States)

    Dapson, R W

    2007-08-01

    Carmine has been used in biological staining to demonstrate selectively nuclei, chromosomes or mucins, depending on the formulation. Throughout its history in science, complaints and frustrations have been expressed about dye quality. Inconsistencies in dye quality or identity have prevented thorough understanding of staining mechanisms and have caused many stain solutions to behave unsatisfactorily. The aim of this review is to (1) detail causes of these problems, which are rooted in history, geography and production, (2) offer ways to minimize problems and (3) provide modern explanations for stain behavior. Carmine is a "semi-synthetic" dye, i.e., a complex of aluminum and the natural dye cochineal (carminic acid). Carmine shows considerable batch-to-batch variability. Geography, politics, history, agricultural practices and iconography all contribute to the variability of cochineal. In addition, widely divergent manufacturing methods are used to produce carmine. Also, confusion in terminology has led to mislabeling. Pressure from the food industry for a more satisfactory colorant for acidic foods led to the introduction of a new dye, aminocarminic acid, which could enter the biological market inadvertantly. Improved methods of analysis should help the certification process by the Biological Stain Commission. Further standardization could be achieved by replacing most of the methods of solubilizing carmine. The majority of these methods use heat, which is likely to damage the dye molecule. Fortunately, carmine is readily dissolved by raising the pH of the aqueous solvent above 12, and a new form of the dye, now available commercially, is soluble in water without the need for heat or pH adjustment. Chemical structures and physical properties of carminic acid, carmine, aminocarminic acid and kermesic acid are reviewed. A new configuration for carmine is proposed, as well as possible changes to carminic acid and carmine molecules as a result of decomposition caused

  17. Screening of Obstructive Sleep Apnea with Empirical Mode Decomposition of Pulse Oximetry

    CERN Document Server

    Schlotthauer, Gastón; Larrateguy, Luis D; Milone, Diego H

    2014-01-01

    Detection of desaturations on the pulse oximetry signal is of great importance for the diagnosis of sleep apneas. Using the counting of desaturations, an index can be built to help in the diagnosis of severe cases of obstructive sleep apnea-hypopnea syndrome. It is important to have automatic detection methods that allows the screening for this syndrome, reducing the need of the expensive polysomnography based studies. In this paper a novel recognition method based on the empirical mode decomposition of the pulse oximetry signal is proposed. The desaturations produce a very specific wave pattern that is extracted in the modes of the decomposition. Using this information, a detector based on properly selected thresholds and a set of simple rules is built. The oxygen desaturation index constructed from these detections produces a detector for obstructive sleep apnea-hypopnea syndrome with high sensitivity ($0.838$) and specificity ($0.855$) and yields better results than standard desaturation detection approach...

  18. A power ramped pulsed mode laser piercing technique for improved CO 2 laser profile cutting

    Science.gov (United States)

    Tirumala Rao, B.; Ittoop, M. O.; Kukreja, L. M.

    2009-11-01

    Laser piercing is one of the inevitable requirements of laser profile cutting process and it has a direct bearing on the quality of the laser cut profiles. We have developed a novel power ramped pulsed mode (PRPM) laser piercing technique to produce much finer pierced holes and to achieve a better control on the process parameters compared to the existing methodology based on normal pulsed mode (NPM). Experiments were carried out with both PRPM and NPM laser piercing on 1.5-mm-thick mild steel using an in-house developed high-power transverse flow continuous wave (CW)-CO 2 laser. Significant improvements in the spatter, circularity of the pierced hole and reproducibility were achieved through the PRPM technique. We studied, in detail, the dynamics of processes involved in PRPM laser piercing and compared that with those of the NPM piercing.

  19. A modified split-step Fourier method for optical pulse propagation with polarization mode dispersion

    Institute of Scientific and Technical Information of China (English)

    饶敏; 孙小菡; 张明德

    2003-01-01

    A modified split-step Fourier method (SSFM) is presented to solve the coupled nonlinear Schrǒdinger equation (CNLS) that can be used to model high-speed pulse propagation in optical fibres with polarization mode dispersion (PMD). We compare our approach with the SSFM and démonstrate that our approach is much faster with no loss of accuracy. We discuss the pulse distortion and system Q-factor of non-return-to-zero (NRZ), return-to-zero (RZ) and pre-chirped RZ (CRZ) formats in the presence of high PMD through this approach. The simulation results show that CRZ pulses are the most tolerant to high PMD wlues and the extinct ratio has a great impact on the transmission performance.

  20. Second harmonic pico-second pulse generation with mode-locked 1064nm DBR laser diodes

    Science.gov (United States)

    Klehr, A.; Prziwarka, T.; Jedrzejczyk, D.; Brox, O.; Bugge, F.; Wenzel, H.; Paschke, K.; Erbert, G.; Tränkle, G.

    2014-02-01

    Detailed experimental investigations of the generation of high-energy short infrared and green pulses with a mode-locked multi-section distributed Bragg reflector (DBR) laser in dependence on the lengths of the gain section and the saturableabsorber (SA) section as well the corresponding input currents and reverse voltages, respectively, are presented. The laser under investigation is 3.5 mm long and has a 500 μm long DBR section. The remaining cavity was divided into four 50 μm, four 100 μm, two 200 μm and eight 250 μm long electrically separated segments so that the lengths of the gain and SA sections can be simply varied by bonding. Thus, the dependence of the mode-locking behavior on the lengths of the gain and SA sections can be investigated on the same device. Optimal mode-locking was obtained for absorber lengths between LAbs = 200 μm and 300 μm and absorber voltages between UAbs= -2 V and -3 V. A pulse length of τ ≍ 10 ps, a repetition frequency of 13 GHz and a RF line width of less than 100 kHz were measured. An infrared peak pulse power of 900 mW was reached. The FWHM of the optical spectrum was about 150 pm. With an 11.5 mm long periodically poled MgO doped LiNbO3 crystal having a ridge geometry of 5 μm width and 4 μm height green light pulses were generated. With an infrared pump peak power of 900 mW a green pulse energy of 3.15 pJ was reached. The opto-optical conversion efficiency was about 31%.

  1. Outcomes of childhood hemangiomas treated with the pulsed-dye laser with dynamic cooling: a retrospective chart analysis.

    Science.gov (United States)

    Rizzo, Carina; Brightman, Lori; Chapas, Anne M; Hale, Elizabeth K; Cantatore-Francis, Julie L; Bernstein, Leonard J; Geronemus, Roy G

    2009-12-01

    Laser treatment of childhood hemangiomas remains controversial. Previous studies have used outdated technology, resulting in a potential overrepresentation of adverse outcomes. To evaluate outcomes of hemangiomas treated with the most current laser technology. A retrospective chart analysis of 90 patients with a median age of 3.0 months and a total of 105 hemangiomas were enrolled over a 2.5-year period. All were treated with the 595-nm long-pulse pulsed-dye laser (LP-PDL) with dynamic epidermal cooling at 2- to 8-week intervals depending on the stage of growth. Exclusion criteria were previous laser, surgical, or corticosteroid treatment. Three reviewers assessed outcomes. Near-complete or complete clearance in color were achieved for 85 (81%) and in thickness for 67 (64%) hemangiomas. There was no scarring or atrophy. Ulceration occurred in one case and resolved during treatment. Hyperpigmentation and hypopigmentation occurred in 4% and 14% of hemangiomas, respectively. Early treatment of childhood hemangiomas with the 595-nm LP-PDL with dynamic cooling may reduce the proliferative phase and result in excellent rates of clearing and few adverse events.

  2. Electrical addressing and temporal tweezing of localized pulses in passively-mode-locked semiconductor lasers

    Science.gov (United States)

    Camelin, P.; Javaloyes, J.; Marconi, M.; Giudici, M.

    2016-12-01

    We show that the pumping current is a convenient parameter for manipulating the temporal localized structures (LSs), also called localized pulses, found in passively-mode-locked vertical-cavity surface-emitting lasers. While short electrical pulses can be used for writing and erasing individual LSs, we demonstrate that a current modulation introduces a temporally evolving parameter landscape allowing one to control the position and the dynamics of LSs. We show that the localized pulse drifting speed in this landscape depends almost exclusively on the local parameter value instead of depending on the landscape gradient, as shown in quasi-instantaneous media. This experimental observation is theoretically explained by the causal response time of the semiconductor carriers that occurs on a finite time scale and breaks the parity invariance along the cavity, thus leading to a different paradigm for temporal tweezing of localized pulses. Different modulation waveforms are applied for describing exhaustively this paradigm. Starting from a generic model of passive mode locking based upon delay differential equations, we deduce the effective equations of motion for these LSs in a time-dependent current landscape.

  3. Passively mode-locked soliton femtosecond pulses employing graphene saturable absorber

    Science.gov (United States)

    Lau, K. Y.; Muhammad, F. D.; Latif, A. A.; Abu Bakar, M. H.; Yusoff, Z.; Mahdi, M. A.

    2017-09-01

    We demonstrate a passively mode-locked fiber laser incorporating graphene thin film (GTF) as saturable absorber (SA). The SA is fabricated by sandwiching the GTF between two single mode fiber ferrules through a fiber adaptor. The transmission loss at 1560 nm and non-linear saturation absorption modulation depth for GTF-SA are 0.8 dB and 2.90%, respectively. An erbium-doped fiber laser cavity is constructed to verify the functionality of GTF-SA and is designed to have net anomalous dispersion. It generates large spectral width of 4.99 nm with pulse repetition rate of 9.655 MHz and pulse width of 670 fs. Net anomalous dispersion and time bandwidth product higher than the sech2 transform-limited pulse validate the experimental result. In short, we demonstrate high performance GTF-SA that is able to generate ultrafast pulse duration in femtosecond range effortlessly with simple and green SA fabrication procedures.

  4. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions

    Science.gov (United States)

    Hermann, G.; Tremblay, J. C.

    2016-11-01

    In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.

  5. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  6. Inert gas cutting of titanium sheet with pulsed mode CO 2 laser

    Science.gov (United States)

    Rao, B. Tirumala; Kaul, Rakesh; Tiwari, Pragya; Nath, A. K.

    2005-12-01

    The present work aimed at studying the dynamic behavior of melt ejection in laser cutting of 1 mm thick titanium sheet and to obtain dross-free cuts with minimum heat affected zone (HAZ). CO 2 laser cutting of titanium sheet was carried out with continuous wave (CW) and pulsed mode laser operation with different shear gases namely argon, helium and nitrogen. Laser cutting with high frequency and low-duty cycle pulse mode operation produced dross-free cuts with no noticeable HAZ. Helium, because of its high heat convection and ability to generate high shear stress, produced laser-cuts with narrow HAZ and low dross, as compared to those produced with argon as the shear gas. Microscopic features of laser cut surfaces were analyzed and correlated with dynamic mechanism involved in laser cutting process. Process parameters for laser piercing, required for the initiation of fusion cut within the sheet, were also studied. Laser piercing requires either CW or high-duty cycle (>80%) pulse mode operation.

  7. Blood volume measurement with indocyanine green pulse spectrophotometry: dose and site of dye administration

    NARCIS (Netherlands)

    M.R. Germans; P.C. de Witt Hamer; L.J. van Boven; K.A.H. Zwinderman; G.J. Bouma

    2010-01-01

    (1) To determine the optimal administration site and dose of indocyanine green (ICG) for blood volume measurement using pulse spectrophotometry, (2) to assess the variation in repeated blood volume measurements for patients after subarachnoid hemorrhage and (3) to evaluate the safety and efficacy of

  8. Pulsed dye laser versus Nd:YAG laser in the treatment of plantar warts: a comparative study.

    Science.gov (United States)

    El-Mohamady, Abd El-Shakor; Mearag, Ibrahim; El-Khalawany, Mohamed; Elshahed, Ahmed; Shokeir, Hisham; Mahmoud, Anas

    2014-05-01

    Plantar warts are common viral infection that are usually challenging in treatment. Conventional treatment methods are usually invasive, have low efficacy, and need long recovery periods. In this study, we compared pulsed dye laser (PDL) and neodymium yttrium aluminum garnet (Nd:YAG) lasers in the treatment of recalcitrant plantar warts. The study included 46 patients with multiple plantar warts. In each patient, lesions were divided into two groups: one treated with Nd:YAG (spot size, 7 mm; energy, 100 J/cm(2); and pulse duration, 20 ms) and the other with PDL (spot size, 7 mm; energy, 8 J/cm(2); and pulse duration, 0.5 ms). Laser sessions were applied every 2 weeks with maximum of six sessions. The study included 63% males and 37% females with a mean age of 29.6 ± 7.34 years. The cure rate was 73.9% with PDL with no significant difference (p = 0.87) from Nd:YAG (78.3%). The number of sessions required was more in PDL (mean, 5.05 ± 0.2) compared with Nd:YAG (mean, 4.65 ± 0.5) but without significant difference. Complications were significantly higher with Nd:YAG (43.5%) compared with PDL (8.7%). Hematoma was the most common complication recorded by Nd:YAG (28.3 %), and it was significantly higher (p = 0.002) than PDL (2.2%). Relapse was recorded in 8.7% with Nd:YAG compared with 13% in PDL with no significant difference (p = 0.74). Our results suggested that PDL and Nd:YAG lasers are effective in the treatment of resistant plantar warts. PDL is safer and less painful but needs more sessions, while Nd:YAG is more painful and shows more complications.

  9. Neuronal excitation and permeabilization by 200-ns pulsed electric field: An optical membrane potential study with FluoVolt dye.

    Science.gov (United States)

    Pakhomov, Andrei G; Semenov, Iurii; Casciola, Maura; Xiao, Shu

    2017-07-01

    Electric field pulses of nano- and picosecond duration are a novel modality for neurostimulation, activation of Ca(2+) signaling, and tissue ablation. However it is not known how such brief pulses activate voltage-gated ion channels. We studied excitation and electroporation of hippocampal neurons by 200-ns pulsed electric field (nsPEF), by means of time-lapse imaging of the optical membrane potential (OMP) with FluoVolt dye. Electroporation abruptly shifted OMP to a more depolarized level, which was reached within 10s), so cells remained above the resting OMP level for at least 20-30s. Activation of voltage-gated sodium channels (VGSC) enhanced the depolarizing effect of electroporation, resulting in an additional tetrodotoxin-sensitive OMP peak in 4-5ms after nsPEF. Omitting Ca(2+) in the extracellular solution did not reduce the depolarization, suggesting no contribution of voltage-gated calcium channels (VGCC). In 40% of neurons, nsPEF triggered a single action potential (AP), with the median threshold of 3kV/cm (range: 1.9-4kV/cm); no APs could be evoked by stimuli below the electroporation threshold (1.5-1.9kV/cm). VGSC opening could already be detected in 0.5ms after nsPEF, which is too fast to be mediated by the depolarizing effect of electroporation. The overlap of electroporation and AP thresholds does not necessarily reflect the causal relation, but suggests a low potency of nsPEF, as compared to conventional electrostimulation, for VGSC activation and AP induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High-repetition-rate femtosecond dye amplifier using a laser-diode-pumped neodymium:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.

    1989-02-06

    A high-repetition-rate femotosecond dye amplifier is demonstrated using a laser-diode-pumped Q-switched Nd:YAG laser. Amplification of wavelength-tunable 300-fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  11. Range accuracy of photon heterodyne detection with laser pulse based on Geiger-mode APD.

    Science.gov (United States)

    Luo, Hanjun; Yuan, XiuHua; Zeng, Yanan

    2013-08-12

    In this paper, we propose a combined system of heterodyne detection with laser pulse and photon counting based on Geiger-mode avalanche photodiode (GM-APD) that is designed to achieve the range of remote non-cooperative target. Based on the heterodyne principle and assuming that the creation of primary electrons in GM-APD is Poisson-distributed, the range accuracy model is established. The factors that influence the range accuracy, namely pulse width, echo intensity, local oscillator (LO) intensity, noise, echo position, and beat frequency, are discussed. The results show that these six factors have significant influence on the range accuracy when the echo intensity is extremely weak. In case that the primary electrons of the echo signal are beyond 4, the pulse width and echo intensity are the main influence factors. It is also shown that the stronger echo intensity, narrower pulse width, low noise, large echo position, and small beat frequency produce higher range accuracy in a pulsed photon heterodyne detection system based on GM-APD.

  12. Up to 400 GHz burst-mode pulse generation from a hybrid harmonic mode-locked Er-doped fibre laser

    Science.gov (United States)

    Wang, Sheng-Min; Lai, Yinchieh

    2017-02-01

    By inserting a birefringence filter with FSR  =  100 GHz inside a hybrid mode-locked Er-doped fibre laser, we successfully generate ps to sub-ps optical burst pulses with the intra-burst pulse rate up to 400 GHz. Multiplication of the intra-burst pulse rate is attributed to a new effect analogous to rational harmonic mode-locking, which occurs due to the relative alignment of the cavity harmonic frequencies, the external phase modulation induced frequencies, and the filter-selected frequencies.

  13. Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis.

    Science.gov (United States)

    Malo, Sergio; Fateri, Sina; Livadas, Makis; Mares, Cristinel; Gan, Tat-Hean

    2017-07-01

    Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

  14. Different photodynamic effect between continuous wave and pulsed laser irradiation modes in k562 cells in vitro

    Science.gov (United States)

    Klimenko, V. V.; Bogdanov, A. A.; Knyazev, N. A.; Rusanov, A. A.; Dubina, M. V.

    2014-10-01

    Photodynamic therapy is a cancer treatment method is used primarily continuous mode laser radiation. At high power density irradiation occurs intense consumption of molecular oxygen and this caused hypoxic tumor tissue, which leads to inefficiency PDT. In this paper, pulsed and continuous irradiation modes during PDT photosensitizer Radachlorin were compared. A mathematical model for the generation of singlet oxygen 1O2 in tumor cells during photodynamic therapy with tissue oxygenation was developed. Our study theoretically and experimentally demonstrates the increased singlet oxygen generation efficiency in a pulsed irradiation mode compared to continuous wave mode with the same power density 20mW/cm2. Experimental in vitro showed that pulsed irradiation mode mostly induces apoptosis k562 tumor cells at irradiation doses of k562 1.25 - 2.5J/cm2 while the continuous mode induced necrosis.

  15. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode%Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    Institute of Scientific and Technical Information of China (English)

    Alexander I. PUSHKAREV; Yulia I. ISAKOVA

    2011-01-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode.

  16. Evanescent field interaction of tapered fiber with graphene oxide in generation of wide-bandwidth mode-locked pulses

    Science.gov (United States)

    Ahmad, H.; Faruki, M. J.; Razak, M. Z. A.; Tiu, Z. C.; Ismail, M. F.

    2017-02-01

    Pulses with picosecond pulse widths are highly desired for high precision laser applications. A mode-locked pulse laser utilizing evanescent field interaction of a tapered fiber with graphene oxide (GO) is demonstrated. A homemade fabrication stage was used to fabricate the tapered fiber using systematic flame brushing and a GO solution was used to coat the microfiber using optical deposition technique. Pulse trains with a pulse width of 3.46 ps, a 3 dB optical bandwidth of 11.82 nm and a repetition rate of 920 kHz were obtained. The system has substantial potential for many crucial medical, communication, bio processing, military, and industrial applications.

  17. Ordering of the flame track in the ring mode of the Trichel pulse negative corona discharge

    Science.gov (United States)

    Amirov, R. H.; Barengolts, S. A.; Korostylev, E. V.; Pestovskii, N. V.; Petrov, A. A.; Samoylov, I. S.; Savinov, S. Yu

    2014-11-01

    The ring mode of the Trichel pulse negative corona discharge was studied in atmospheric air. The localization of the discharge flame track in the stable self-organized regular pattern of 3, 4, 5 and 6 - pointed star was found at the cathode surface. This phenomenon was observed at mean currents in the range 100-115 μA at the conditions of the experiment, when the modes with one or two rings are not stable. The conclusion was made that the ring mode of the discharge, which is caused by the symmetrical distribution of the volumetric charges in the conditions of the symmetrical electric field, may be unstable. This instability results in the spatial self-organization of these parameters and causes the organization of the discharge flame track at the cathode surface in the regular patterns.

  18. Thermal Spray Using a High-Frequency Pulse Detonation Combustor Operated in the Liquid-Purge Mode

    Science.gov (United States)

    Endo, T.; Obayashi, R.; Tajiri, T.; Kimura, K.; Morohashi, Y.; Johzaki, T.; Matsuoka, K.; Hanafusa, T.; Mizunari, S.

    2016-02-01

    Experiments on thermal spray by pulsed detonations at 150 Hz were conducted. Two types of pulse detonation combustors were used, one operated in the inert gas purge (GAP) mode and the other in the liquid-purge (LIP) mode. In both modes, all gases were supplied in the valveless mode. The GAP mode is free of moving components, although the explosive mixture is unavoidably diluted with the inert gas used for the purge of the hot burned gas. In the LIP mode, pure fuel-oxygen combustion can be realized, although a liquid-droplet injector must be actuated cyclically. The objective of this work was to demonstrate a higher spraying temperature in the LIP mode. First, the temperature of CoNiCrAlY particles heated by pulsed detonations was measured. As a result, the spraying temperature in the LIP mode was higher than that in the GAP mode by about 1000 K. Second, the temperature of yttria-stabilized zirconia (YSZ) particles, whose melting point was almost 2800 °C, heated by pulsed detonations in the LIP mode was measured. As a result, the YSZ particles were heated up to about 2500 °C. Finally, a thermal spray experiment using YSZ particles was conducted, and a coating with low porosity was successfully deposited.

  19. Two-Photon Absorption-Induced Emission Properties of Dye HMASPS Doped Polymer

    Institute of Scientific and Technical Information of China (English)

    王东; 周广勇; 任燕; 杨胜军; 许心光; 邵宗书; 蒋民华

    2002-01-01

    The 0.01M two-photon absorption dye trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methyl-pyridinium p-toluene sulfonate (HMASPS) doped polymer has been prepared. When pumped by the picosecond pulse from the pulsed mode-locked Nd: YAG laser, the polymer emits more intense upconverted fluorescence and superradiance compared to the solution sample of the dye. The two-photon pumped lasing with oscillating pulses has also been obtained. Compared to the dye in its solution state, the emission spectra of the polymer are all blueshifted.The polymer has a long upconverted fluorescent lifetime of about 4.041 ± 0.04 ns.

  20. Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser

    CERN Document Server

    Liu, Ya; Hu, Guoqing; Li, Cui; Zhao, Bofeng; Zheng, Zheng

    2016-01-01

    Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with highly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses wit...

  1. 2, Pulse-mode expansions and refractive indices in plane-wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.; Sacks, R.; Karr, T.; Morris, J.; Paisner, J.A.

    1987-06-20

    This memo presents basic background theory for treating simultaneous propagation of electromagnetic pulses of various colors, directed along a common ray, through a molecular vapor. The memo discusses some techniques for expanding the positive frequency part of the transverse electric field into pulse modes, characterized by carrier frequencies within a modulated envelope. We discuss, in the approximation of plane waves with slowly varying envelopes, a set of uncoupled envelope equations in which a polarization mode-envelope acts as a source for an electric-field envelope. These equations, when taken with a prescription for the polarization field, are the basic equations of plane-wave pulse propagation through a molecular medium. We discuss two ways of treating dispersive media, one based upon expansions in the frequency domain and the other based in the time domain. In both cases we find envelope equations that involve group velocities. This memo represents a portion of a more extensive treatment of propagation to be presented separately. Many of the equations presented here have been described in various books and articles. They are collected and described here as a summary and review of contemporary theory.

  2. Simultaneous determination of banned acid orange dyes and basic orange dyes in foodstuffs by liquid chromatography-tandem electrospray ionization mass spectrometry via negative/positive ion switching mode.

    Science.gov (United States)

    Fang, Guozhen; Wu, Yu; Dong, Xiaomeng; Liu, Cuicui; He, Shaoyuan; Wang, Shuo

    2013-04-24

    Simultaneous detection of two classes of dyes possessing different chemical properties is difficult. In this study, through negative/positive ion switching mode, simultaneous determination of four typical acid orange dyes and three typical basic orange dyes was achieved by a single high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the analytical efficiency of multiresidues identification was greatly improved. To enhance detection sensitivity, the sample pretreatment conditions and HPLC-MS/MS determining conditions were carefully optimized. Under optimal conditions, good linearity was obtained over the range of 5-500 μg L(-1) with a correlation coefficient (R(2)) >0.9998. Limits of detection (LODs) and limits of quantification (LOQs) of the seven dyes were 0.5-3.0 and 2.0-6.0 μg kg(-1), respectively. The recoveries of the seven dyes in soybean products and marinated eggs were 74-126% with relative standard deviations (RSDs) of 2.22-25.4%, suggesting the developed method is promising for the accurate quantification of the seven dyes at trace levels in foods.

  3. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Abudureyimu, Reheman [ORNL; Huang, Chunning [ORNL; Liu, Yun [ORNL

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  4. Wavelength tunable stretched-pulse mode-locked all-fiber erbium ring laser with single polarization fiber.

    Science.gov (United States)

    Li, Shenping; Chen, Xin; Kuksenkov, Dmitri V; Koh, Joohyun; Li, Ming-Jun; Zenteno, Luis A; Nolan, Daniel A

    2006-06-26

    A wavelength tunable stretched-pulse mode-locked all-fiber ring laser using single polarization fiber (SPF) was demonstrated. In this laser, a segment of SPF was used simultaneously as a polarizer and a tunable filter in the laser cavity. Self-starting mode-locking with femtosecond output pulses was demonstrated. A wavelength tuning of ~20nm was achieved by bending the SPF with different radii.

  5. Self-heating in pulsed mode for signal quality improvement: application to carbon nanostructures-based sensors

    OpenAIRE

    Monereo, O.; Casals Guillén, Olga; Prades García, Juan Daniel; Cirera Hernández, Albert

    2016-01-01

    Sensor signal instability and drift are still unresolved challenges in conductometric gas sensors. Here, the use of self-heating effect to operate a gas sensor in a pulsed temperature modulation mode (pulsed self-heating operation) is presented as an effective method to enhance signal stability and reduce consumption figures down to a few W. The sensor operation temperature was pulsed periodically between two levels, obtaining two different sensing states from one single device driven with se...

  6. 1030-nm diode-laser-based light source delivering pulses with nanojoule energies and picosecond duration adjustable by mode locking or pulse gating operation

    Science.gov (United States)

    Klehr, A.; Liero, A.; Wenzel, H.; Bugge, F.; Brox, O.; Fricke, J.; Ressel, P.; Knigge, A.; Heinrich, W.; Tränkle, G.

    2017-02-01

    A new compact 1030 nm picosecond light source which can be switched between pulse gating and mode locking operation is presented. It consists of a multi-section distributed Bragg reflector (DBR) laser, an ultrafast multisection optical gate and a flared power amplifier (PA), mounted together with high frequency electronics and optical elements on a 5×4 cm micro bench. The master oscillator (MO) is a 10 mm long ridge wave-guide (RW) laser consisting of 200 μm long saturable absorber, 1500 μm long gain, 8000 μm long cavity, 200 μm long DBR and 100 μm long monitor sections. The 2 mm long optical gate consisting of several RW sections is monolithically integrated with the 4 mm long gain-guided tapered amplifier on a single chip. The light source can be switched between pulse gating and passive mode locking operation. For pulse gating all sections of the MO (except of the DBR and monitor sections) are forward biased and driven by a constant current. By injecting electrical pulses into one section of the optical gate the CW beam emitted by the MO is converted into a train of optical pulses with adjustable widths between 250 ps and 1000 ps. Peak powers of 20 W and spectral linewidths in the MHz range are achieved. Shorter pulses with widths between 4 ps and 15 ps and peak powers up to 50 W but larger spectral widths of about 300 pm are generated by mode locking where the saturable absorber section of the MO is reversed biased. The repetition rate of 4.2 GHz of the pulse train emitted by the MO can be reduced to values between 1 kHz and 100 MHz by utilizing the optical gate as pulse picker. The pulse-to-pulse distance can be controlled by an external trigger source.

  7. Diode-pumped dye laser

    Science.gov (United States)

    Burdukova, O. A.; Gorbunkov, M. V.; Petukhov, V. A.; Semenov, M. A.

    2016-10-01

    This letter reports diode pumping for dye lasers. We offer a pulsed dye laser with an astigmatism-compensated three-mirror cavity and side pumping by blue laser diodes with 200 ns pulse duration. Eight dyes were tested. Four dyes provided a slope efficiency of more than 10% and the highest slope efficiency (18%) was obtained for laser dye Coumarin 540A in benzyl alcohol.

  8. High-order rational harmonic mode-locking and pulse-amplitude equalization of SOAFL via reshaped gain-switching FPLD pulse injection.

    Science.gov (United States)

    Lin, Gong-Ru; Kang, Jung-Jui; Lee, Chao-Kuei

    2010-04-26

    The 40-GHz rational harmonic mode-locking (RHML) and pulse-amplitude equalization of a semiconductor optical amplifier based fiber-ring laser (SOAFL) is demonstrated by the injection of a reshaped 10-GHz gain-switching FPLD pulse. A nonlinearly biased Mach-Zehnder modulator (MZM) is employed to detune the shape of the double-peak pulse before injecting the SOA, such that a pulse-amplitude equalized 4th-order RHML-SOAFL can be achieved by reshaping the SOA gain within one modulation period. An optical injection mode-locking model is constructed to simulate the compensation of uneven amplitudes between adjacent RHML pulse peaks before and after pulse-amplitude equalization. The indirect gain compensation technique greatly suppresses the clock amplitude jitter from 45% to 3.5% when achieving 4th-order RHML, and the amplitude fluctuation of sub-rational harmonic modulating envelope is attenuated by 45 dB. After pulse-amplitude equalization, the pulsewidth of the optical-injection RHML-SOAFL is 8 ps, which still obeys the trend predicted by the inverse square root of repetition rate. The phase noise contributed by the residual ASE noise of the RHML-SOAFL is significantly decreased from -84 to -90 dBc/Hz after initiating the pulse-amplitude equalization, corresponding to the timing jitter reduction from 0.5 to 0.28 ps.

  9. Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.

    Science.gov (United States)

    Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert

    2013-01-01

    Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.

  10. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    Science.gov (United States)

    Asua, E.; García-Arribas, A.; Etxebarria, V.; Feuchtwanger, J.

    2014-02-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional-integral-derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm.

  11. Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes.

    Science.gov (United States)

    Fernandez, M E; Nunell, G V; Bonelli, P R; Cukierman, A L

    2010-12-01

    The feasibility of using cypress cone chips from Cupressus sempervirens as a low-cost biosorbent for the removal of two representative basic dyes, methylene blue (MB) and rhodamine B (RhB), from aqueous solutions was investigated in batch and continuous modes. Dyes biosorption was strongly dependent on the solution's pH. Sorption kinetics was determined and properly described by the pseudo-second-order rate model. Experimental equilibrium isotherms fitted the Langmuir model, showing maximum biosorption capacities of 0.62 mmol/g for MB and 0.24 mmol/g for RhB. Competitive experiments from a binary solution of the dyes demonstrated the preference of the cone chips for biosorbing MB. Very low desorption efficiencies were obtained for both dyes. Dynamic experiments showed that the breakthrough time was three times higher for MB biosorption than for RhB for the same conditions. Breakthrough curves were properly represented by a mathematical model.

  12. ECR-driven multicusp H^- volume source operated in pulsed or cw mode

    Science.gov (United States)

    Svarnas, Panayiotis

    2005-10-01

    Electron cyclotron resonance (ECR) driven multicusp H^- volume hybrid source [1, 2] operates in continuous (cw) or pulsed microwave (2.45 GHz) mode up to 3 kW. The hydrogen plasma is produced between 1 and 7 mTorr by seven elementary ECR sources housed in the magnetic multipole chamber ``Camembert III'' [3]. This ECR configuration could be applied both to accelerator and fusion ion sources. Negative ion or electron extracted currents and plasma characteristics are studied in both modes with electrical measurements, electrostatic probe and photodetachment. The role of the plasma electrode bias in the values of the extracted currents is major. H^- current is maximized for a bias voltage close to plasma potential. An optimum pressure at 4-5 mTorr yields enhanced H^- density in the center of the chamber, under cw regime. Finally, the post-discharge formation of H^-, in the pulsed mode, is observed. [1] A.A. Ivanov Jr., C. Rouille, M. Bacal, Y. Arnal, S. Bechu, J. Pelletier, Rev. Sci. Instrum. 75(5), 1750 (2004) [2] M. Bacal, A.A. Ivanov Jr., C. Rouille, P. Svarnas, S. Bechu, J. Pelletier, AIP Conf. Proc. No 763 (Kiev, Ukraine) (2004) [3] C. Courteille, A.M. Bruneteau, M. Bacal, Rev. Sci. Instrum. 66(3), 2533 (1995)

  13. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Effectiveness of combined pulsed dye and Q-switched ruby laser treatment for large to giant congenital melanocytic naevi.

    Science.gov (United States)

    Funayama, E; Sasaki, S; Furukawa, H; Hayashi, T; Yamao, T; Takahashi, K; Yamamoto, Y; Oyama, A

    2012-11-01

    There is no consensus on the most appropriate treatment for patients with large to giant congenital melanocytic naevi (CMN) because of the risk of melanoma development. Surgical excision followed by skin grafting or expanded skin coverage may cause unfavourable scarring. There is a balance to be achieved between minimizing the disfiguring appearance and the risk of malignant change. The pulsed dye laser (PDL) is commonly used for vascular lesions and is highly absorbed by melanin and haemoglobin. Its pulse duration is longer than that of Q-switched ruby lasers (QsRL), which can have nonspecific photothermolytic effects on surrounding nonpigmented naevus cells. To investigate the effectiveness of combined treatment with the PDL and QsRL for large to giant CMN. Six patients with large to giant CMN were enrolled in this study. Treatment consisted of one pass of PDL treatment followed by one pass of QsRL treatment. Multiple rounds of treatment were applied to all patients. All patients responded to this combined regimen, and the lesional colour was effectively reduced. The mean number of rounds of laser treatment required to achieve skin lightening was 7·7. No patients suffered severe hypertrophic scarring. No cases of recurrence or malignant transformation were observed. The histological results from the patient who underwent the most laser therapy in this study showed a remarkable reduction in the number of melanocytic naevus cells after treatment. This technique may enable the removal of most of the pigmented lesion and melanocytic naevus cells with minimal scarring. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  15. Femtosecond pulse generation from a Topological Insulator mode-locked fiber laser

    CERN Document Server

    Liu, Hao; Liu, Meng; Zhao, Nian; Luo, Ai-Ping; Luo, Zhi-Chao; Xu, Wen-Cheng; Zhang, Han; Zhao, Chu-Jun; Wen, Shuang-Chun

    2014-01-01

    We reported on the generation of femtosecond pulse in an anomalous-dispersion fiber ring laser by using a polyvinyl alcohol (PVA)-based Topological Insulator (TI), Bi2Se3 saturable absorber (SA). The PVA-TI composite has a low saturable optical intensity of 12 MW/cm2 and a modulation depth of ~3.9%. By incorporating the fabricated PVA-TISA into a fiber laser, mode-locking operation could be achieved at a low pump threshold of 25 mW. After an optimization of the cavity parameters, optical pulse with ~660 fs centered at 1557.5 nm wavelength had been generated. The experimental results demonstrate that the PVA could be an excellent host material for fabricating high-performance TISA, and also indicate that the filmy PVA-TISA is indeed a good candidate for ultrafast saturable absorption device.

  16. Laser ultrasonic analysis of normal modes generated by a voltage pulse on an AT quartz sensor.

    Science.gov (United States)

    Goossens, Jozefien; Martinez, Loïc; Glorieux, Christ; Wilkie-Chancellier, Nicolas; Ehssein, Chighali Ould; Serfaty, Stéphane

    2006-12-22

    Laser ultrasonic detection is a versatile and highly sensitive tool for the observation of surface waves. In the following study, laser ultrasonic detection is used for the experimental study of spurious normal vibration modes of a disk quartz sensor excited by a voltage pulse. The AT cut crystal (cut of the crystal relative to the the main crystallographic axis is 35.25 degrees) is optimal for generating mainly thickness-shear vibrations (central frequency 6 MHz) on the quartz surface. However, resulting from shear-to-longitudinal and shear-to-surface mode conversion, and from the weak coupling with the other crystallographic axes, other modes (thickness-compressional and bending modes) are always present in the plate response. Since the laser vibrometer is sensitive to normal displacements, the laser investigation shows waves that can be considered as unwanted for the AT quartz used as a shear sensor. The scanned three dimensional (3D) amplitude-space-time signals are carefully analysed using their representation in three dual Fourier domains (space-time, wave number-frequency). Results on the transient analysis of the waves, the normal bending modes and the dispersion curves are shown.

  17. Pulsed dye laser does not seem as effective as red light in Basal cell carcinoma mal-pdt: a small pilot study.

    Science.gov (United States)

    Fernández-Guarino, M; Harto, A; Jaén, P

    2012-01-01

    Multiple light sources can be used for photodynamic therapy (PDT) with good results, but there are few comparative studies. This study compares the efficacy of treatment of basal cell carcinoma with PDT and two light sources, the non-coherent red light and pulsed dye laser 595 nm. In this small pilot study red light is more effective, but many more studies are needed to draw definitive conclusions.

  18. Pulsed Dye Laser Does Not Seem as Effective as Red Light in Basal Cell Carcinoma Mal-Pdt: A Small Pilot Study

    OpenAIRE

    Fernández-Guarino, M.; Harto, A.; Jaén, P.

    2012-01-01

    Multiple light sources can be used for photodynamic therapy (PDT) with good results, but there are few comparative studies. This study compares the efficacy of treatment of basal cell carcinoma with PDT and two light sources, the non-coherent red light and pulsed dye laser 595 nm. In this small pilot study red light is more effective, but many more studies are needed to draw definitive conclusions.

  19. Pulsed Dye Laser Does Not Seem as Effective as Red Light in Basal Cell Carcinoma Mal-Pdt: A Small Pilot Study

    Directory of Open Access Journals (Sweden)

    M. Fernández-Guarino

    2012-01-01

    Full Text Available Multiple light sources can be used for photodynamic therapy (PDT with good results, but there are few comparative studies. This study compares the efficacy of treatment of basal cell carcinoma with PDT and two light sources, the non-coherent red light and pulsed dye laser 595 nm. In this small pilot study red light is more effective, but many more studies are needed to draw definitive conclusions.

  20. Pulse-to-pulse correlation in CryoSat SAR mode radar altimeter echoes from the sea surface

    Science.gov (United States)

    Smith, W. H.

    2012-12-01

    Serial correlation among successive radar echoes returned from the ocean surface is an important design constraint in satellite altimetry. Walsh [1974, 1982] established the conventional wisdom. Taking the radar footprint to be a uniformly radiating disk, he derived a theoretically expected echo decorrelation time of about 0.5 milliseconds. Following Walsh, ocean altimeters usually employ a pulse repetition frequency (PRF) around 2 kHz, in order to obtain statistically independent echoes at (so it is thought) the maximum possible rate. CryoSat, designed for ranging to ice surfaces, employs a PRF of 18.2 kHz in its SAR mode. CryoSat SAR echo sequences over ocean surfaces can be used to empirically determine the ocean echo decorrelation, and thus to test Walsh's model. Such a test is presented in this paper. The analysis begins by forming the ensemble average of complex cross products of pairs of echoes separated by a time lag L * PRI, where the pulse repetition interval (PRI) is 55 microseconds and the echo lag L runs from 0 to 32. The L = 0 case yields the conventional pulse-limited waveform, which is used to determine the sea state in each ensemble average. The averages of lagged echo cross products reveal the complex coherency, with sampling in both slow time (lag, L), and fast time (range, sampled in waveform gates). Data from many areas and sea states are analyzed, and the results are explained using a simple theory approximating the complex coherency expected from a Gaussian radar pulse. This theory generalizes the classical Brown [1977] waveform model to lagged echo cross products, and generalizes Walsh's work to the case of footprints with non-uniform illumination and diffuse edges. Phase is due to vertical motion of the antenna. Amplitude variations in fast time are due to horizontal motion of the antenna, and are independent of wave height; their functional form confirms Brown's assumption that scattering is independent of azimuth. In slow time, the

  1. Telangiectasis in CREST syndrome and systemic sclerosis: correlation of clinical and pathological features with response to pulsed dye laser treatment.

    Science.gov (United States)

    Halachmi, Shlomit; Gabari, Osama; Cohen, Sarit; Koren, Romelia; Amitai, Dan Ben; Lapidoth, Moshe

    2014-01-01

    Telangiectasia are cardinal features of systemic sclerosis (SS) and calcinosis, Raynaud's syndrome, esophageal motility, sclerodactyly, telangiectasias (CREST) syndrome. The etiology of telangiectasia in these syndromes is unknown, but vascular dysfunction has been proposed. However, the telangiectasia of CREST have anecdotally been considered relatively resistant to pulse dye laser (PDL), the treatment of choice for classic telangiectasia. The study was designed to test whether SS/CREST telangiectasia require more treatments than sporadic telangiectasia and to identify clinical and histological features that could explain such an effect. Nineteen skin biopsies from patients with SS or CREST and 10 control biopsies were examined and compared for features that may predict a differential response to PDL. Sixteen cases of SS or CREST treated with PDL between 1997 and 2007 were evaluated and response to treatment was compared with 20 patients with sporadic telangiectasis. Relative to normal skin, CREST/scleroderma telangiectasia exhibited thickened vessels in 17 out of 19 sections and thickened collagen fibers in the reticular or deep dermis in all sections. The number of treatments required to clear SS/CREST telangiectasia was approximately twofold higher. SS/CREST telangiectasia are more resistant to PDL but can be effectively cleared with more treatments.

  2. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  3. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov

    2001-01-01

    In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...... of systematic tests, the applicability of this system is tested on an industrial 1 kW Nd:YAG laser. Three separate series of tests are conducted, one with the diffractive optical system at 500 W and two without the diffractive system at 400 W and 500 W, respectively. In principle the diffractive, optical system...

  4. Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers.

    Science.gov (United States)

    Zaytsev, Alexey; Lin, Chih-Hsuan; You, Yi-Jing; Chung, Chia-Chun; Wang, Chi-Luen; Pan, Ci-Ling

    2013-07-01

    We report generation of broadband supercontinuum (SC) by noise-like pulses (NLPs) with a central wavelength of 1070 nm propagating through a long piece of standard single-mode fibers (~100 meters) in normal dispersion region far from the zero-dispersion point. Theoretical simulations indicate that the physical mechanism of SC generation is due to nonlinear effects in fibers. The cascaded Raman scattering is responsible for significant spectral broadening in the longer wavelength regions whereas the Kerr effect results in smoothing of SC generated spectrum. The SC exhibits low threshold (43 nJ) and a flat spectrum over 1050-1250 nm.

  5. Kinetic instabilities in pulsed operation mode of a 14 GHz electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, O., E-mail: olli.tarvainen@jyu.fi; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J. [Department of Physics, University of Jyväskylä, 40500 Jyväskylä (Finland); Izotov, I.; Mansfeld, D. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Skalyga, V. [Institute of Applied Physics, RAS, 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation)

    2016-02-15

    The occurrence of kinetic plasma instabilities is studied in pulsed operation mode of a 14 GHz A-electron cyclotron resonance type electron cyclotron resonance ion source. It is shown that the temporal delay between the plasma breakdown and the appearance of the instabilities is on the order of 10-100 ms. The most important parameters affecting the delay are magnetic field strength and neutral gas pressure. It is demonstrated that kinetic instabilities limit the high charge state ion beam production in the unstable operating regime.

  6. Mode-locked Yb-doped fiber laser emitting broadband pulses at ultra-low repetition rates

    CERN Document Server

    Bowen, Patrick; Provo, Richard; Harvey, John D; Broderick, Neil G R

    2016-01-01

    We report on an environmentally stable, Yb-doped, all-normal dispersion, mode-locked fibre laser that is capable of creating broadband pulses with ultra-low repetition rates. Specifically, through careful positioning of fibre sections in an all-PM-fibre cavity mode-locked with a nonlinear amplifying loop mirror, we achieve stable pulse trains with repetition rates as low as 506 kHz. The pulses have several nanojules of energy and are compressible down to ultrashort (< 500 fs) durations.

  7. Picosecond pulse measurements using the active laser medium

    Science.gov (United States)

    Bernardin, James P.; Lawandy, N. M.

    1990-01-01

    A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.

  8. Pulsed Mode Operation and Longitudinal Parameter Measurement of the Rossendorf SRF Gun

    CERN Document Server

    Teichert, J; Buettig, H; Justus, M; Lehnert, U; Michel, P; Schamlott, A; Schneider, Ch; Schurig, R; Xiang, R; Klemz, G; Kamps, T; Rudolph, J; Schenk, M; Will, I

    2011-01-01

    The Rossendorf SRF gun with a 3½ cell cavity has been operated since 2007. It has produced CW beam with the electron energy of 3 MeV and the average current up to 16 μA. The electron beam of the gun has been successfully injected into the ELBE superconducting linac since 2010. The Nb cavity has shown constant quality during the operation and for the Cs2Te photocathode life time of months could be obtained. Recently the gun started to run in the pulsed mode with higher gradient. The longitudinal Parameters have been measured in this mode. The dark current arose from the high gradient is studied. The main field emission source has been found to be the half cell. In this paper the new status of the SRF gun will be presented, and the latest results of the beam experiments will be discussed.

  9. Reconstruction method of X-mode ultrashort-pulse reflectometry in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Y; Uchino, K [Graduate School of Engineering Sciences, Kyushu University, Kasuga 816-8580 (Japan); Mase, A [Art Science and Technology Center for Cooperative Research, Kyushu University, Kasuga 816-8580 (Japan); Kogi, Y [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Tokuzawa, T; Kawahata, K; Nagayama, Y [National Institute for Fusion Science, Toki 509-5292 (Japan); Hojo, H, E-mail: yokotay5@asem.kyushu-u.ac.j [Plasma Research Center, University of Tsukuba, Tsukuba 305-8577 (Japan)

    2010-05-01

    Reflectometry is considered to be one of the key diagnostics to measure density profiles and density fluctuations of fusion oriented plasmas. When an electromagnetic wave is launched into a plasma, the wave is reflected at the corresponding cutoff layer of the ordinary (O) mode or the extraordinary (X) mode. Reflectometry measures the time of flight (TOF) or group delay of the reflected wave. We have applied ultrashort-pulse reflectometry (USPR) to Large Helical Device (LHD) at National Institute for Fusion Science (NIFS). The highspatial analysis method called signal record analysis (SRA) is utilized to reconstruct the density profiles from the TOF signal. Also, it is noted that the remote control system using super science information network (super-SINET) has been introduced to the present USPR system. This remote system is exclusive, and it seems to be quite effective for collaborating experiment of large devices such as ITER.

  10. Effects of the Liquid Conductivity on Pulsed High-voltage Discharge Modes in Water

    Institute of Scientific and Technical Information of China (English)

    Bin YANG; Le Cheng LEI; Ming Hua ZHOU

    2004-01-01

    Spark, stream and corona pulsed high-voltage discharges in water induced by the various initial conductivities have been examined in this paper. The discharge modes changed from spark to corona discharge with the liquid conductivity increasing. The apparent production of OH radical and quantum yield generated by spark discharge in distilled water were 11.57 μmol/L and 0.0978photon/s, respectively. A preliminary study on acid fuchsine (AF) treatment indicated that higher AF removal efficiency has been achieved by spark discharge. The process of degradation showed that the oxidative effects through OH radical oxidation did not play an important role and did increase with the discharge mode changing to spark discharge.

  11. Mode-Selective Photon Counting Via Quantum Frequency Conversion Using Spectrally-Engineered Pump Pulses

    Science.gov (United States)

    Manurkar, Paritosh

    Most of the existing protocols for quantum communication operate in a two-dimensional Hilbert space where their manipulation and measurement have been routinely investigated. Moving to higher-dimensional Hilbert spaces is desirable because of advantages in terms of longer distance communication capabilities, higher channel capacity and better information security. We can exploit the spatio-temporal degrees of freedom for the quantum optical signals to provide the higher-dimensional signals. But this necessitates the need for measurement and manipulation of multidimensional quantum states. To that end, there have been significant theoretical studies based on quantum frequency conversion (QFC) in recent years even though the experimental progress has been limited. QFC is a process that allows preservation of the quantum information while changing the frequency of the input quantum state. It has deservedly garnered a lot of attention because it serves as the connecting bridge between the communications band (C-band near 1550 nm) where the fiber-optic infrastructure is already established and the visible spectrum where high efficiency single-photon detectors and optical memories have been demonstrated. In this experimental work, we demonstrate mode-selective frequency conversion as a means to measure and manipulate photonic signals occupying d -dimensional Hilbert spaces where d=2 and 4. In the d=2 case, we demonstrate mode contrast between two temporal modes (TMs) which serves as the proof-of-concept demonstration. In the d=4 version, we employ six different TMs for our detailed experimental study. These TMs also include superposition modes which are a crucial component in many quantum key distribution protocols. Our method is based on producing pump pulses which allow us to upconvert the TM of interest while ideally preserving the other modes. We use MATLAB simulations to determine the pump pulse shapes which are subsequently produced by controlling the amplitude and

  12. Tunable GHz pulse repetition rate operation in high-power TEM(00)-mode Nd:YLF lasers at 1047 nm and 1053 nm with self mode locking.

    Science.gov (United States)

    Huang, Y J; Tzeng, Y S; Tang, C Y; Huang, Y P; Chen, Y F

    2012-07-30

    We report on a high-power diode-pumped self-mode-locked Nd:YLF laser with the pulse repetition rate up to several GHz. A novel tactic is developed to efficiently select the output polarization state for achieving the stable TEM(00)-mode self-mode-locked operations at 1053 nm and 1047 nm, respectively. At an incident pump power of 6.93 W and a pulse repetition rate of 2.717 GHz, output powers as high as 2.15 W and 1.35 W are generated for the σ- and π-polarization, respectively. We experimentally find that decreasing the separation between the gain medium and the input mirror not only brings in the pulse shortening thanks to the enhanced effect of the spatial hole burning, but also effectively introduces the effect of the spectral filtering to lead the Nd:YLF laser to be in a second harmonic mode-locked status. Consequently, pulse durations as short as 8 ps and 8.5 ps are obtained at 1053 nm and 1047 nm with a pulse repetition rate of 5.434 GHz.

  13. Pulse-mode measurement of electron beam halo using diamond-based detector

    Science.gov (United States)

    Aoyagi, Hideki; Asano, Yoshihiro; Itoga, Toshiro; Nariyama, Nobuteru; Bizen, Teruhiko; Tanaka, Takashi; Kitamura, Hideo

    2012-02-01

    Using a diamond-based detector, the electron beam halo in a high-energy accelerator can be measured with a lower detection limit than that using other instruments, such as a core monitor, a dose meter, or an optical fiber. We have successfully measured an electron beam halo using diamond-based detectors operating in the ionization mode, which were installed in the beam duct to measure the intensity of the beam halo directly. Pulse-by-pulse measurements were adopted to suppress the background noise efficiently. Feasibility tests on the diamond-based detector and beam halo monitor were performed in the beam dump area of the 8 GeV SPring-8 synchrotron booster and at the 250 MeV SPring-8 Compact SASE Source test accelerator for the SPring-8 Angstrom Compact free electron LAser (SACLA), respectively. We achieved a lower detection limit of 2×103electrons/pulse for single-shot measurement, which corresponds to a ratio of about 10-6 relative to the typical charge of the beam core of 0.3 pC. We also confirmed the feasibility of the electron beam halo monitor for use as an interlock sensor to protect undulator permanent magnets used in SACLA from radiation damage.

  14. Explosive-Emission Plasma Dynamics in Ion Diode in Double-Pulse Mode

    Science.gov (United States)

    Alexander, I. Pushkarev; Yulia, I. Isakova

    2011-12-01

    The results of an experimental investigation of explosive-emission plasma dynamics in an ion diode with self-magnetic insulation are presented. The investigations were accomplished at the TEMP-4M accelerator set in a mode of double pulse formation. Plasma behaviour in the anode-cathode gap was analyzed according to both the current-voltage characteristics of the diode (time resolution of 0.5 ns) and thermal imprints on a target (spatial resolution of 0.8 mm). It was shown that when plasma formation at the potential electrode was complete, and up until the second (positive) pulse, the explosive-emission plasma expanded across the anode-cathode gap with a speed of 1.3±0.2 cm/μs. After the voltage polarity at the potential electrode was reversed (second pulse), the plasma erosion in the anode-cathode gap (similar to the effect of a plasma opening switch) occurred. During the generation of an ion beam the size of the anode-cathode gap spacing was determined by the thickness of the plasma layer on the potential electrode and the layer thickness of the electrons drifting along the grounded electrode.

  15. Pulse-mode measurement of electron beam halo using diamond-based detector

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2012-02-01

    Full Text Available Using a diamond-based detector, the electron beam halo in a high-energy accelerator can be measured with a lower detection limit than that using other instruments, such as a core monitor, a dose meter, or an optical fiber. We have successfully measured an electron beam halo using diamond-based detectors operating in the ionization mode, which were installed in the beam duct to measure the intensity of the beam halo directly. Pulse-by-pulse measurements were adopted to suppress the background noise efficiently. Feasibility tests on the diamond-based detector and beam halo monitor were performed in the beam dump area of the 8 GeV SPring-8 synchrotron booster and at the 250 MeV SPring-8 Compact SASE Source test accelerator for the SPring-8 Angstrom Compact free electron LAser (SACLA, respectively. We achieved a lower detection limit of 2×10^{3}  electrons/pulse for single-shot measurement, which corresponds to a ratio of about 10^{-6} relative to the typical charge of the beam core of 0.3 pC. We also confirmed the feasibility of the electron beam halo monitor for use as an interlock sensor to protect undulator permanent magnets used in SACLA from radiation damage.

  16. Micro-Fluidic Dye Ring Laser - Experimental Tuning of the Wavelength and Numerical Simulation of the Cavity Modes

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2006-01-01

    We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view.......We demonstrate wavelength tuning of a micro-fluidic dye ring laser. Wavelength tunability is obtained by controlling the liquid dye concentration. The device performance is modelled by FEM simulations supporting a ray-tracing view....

  17. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  18. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  19. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    Science.gov (United States)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  20. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, D A; Bialek, J; Byrne, P J; De Bono, B; Levesque, J P; Li, B Q; Mauel, M E; Navratil, G A; Pedersen, T S; Rath, N; Shiraki, D [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY (United States)

    2011-07-15

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15{sup 0}, spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  1. Pulsed laser deposited porous nano-carpets of indium tin oxide and their use as charge collectors in core-shell structures for dye sensitized solar cells.

    Science.gov (United States)

    Garvey, Timothy R; Farnum, Byron H; Lopez, Rene

    2015-02-14

    Porous In2O3:Sn (ITO) films resembling from brush carpets to open moss-like discrete nanostructures were grown by pulsed laser deposition under low to high background gas pressures, respectively. The charge transport properties of these mesoporous substrates were probed by pulsed laser photo-current and -voltage transient measurements in N719 dye sensitized devices. Although the cyclic voltammetry and dye adsorption measurements suggest a lower proportion of electro-active dye molecules for films deposited at the high-end background gas pressures, the transient measurements indicate similar electron transport rates within the films. Solar cell operation was achieved by the deposition of a conformal TiO2 shell layer by atomic layer deposition (ALD). Much of the device improvement was shown to be due to the TiO2 shell blocking the recombination of photoelectrons with the electrolyte as recombination lifetimes increased drastically from a few seconds in uncoated ITO to over 50 minutes in the ITO with a TiO2 shell layer. Additionally, an order of magnitude increase in the electron transport rate in ITO/TiO2 (core/shell) films was observed, giving the core-shell structure a superior ratio of recombination/transport times.

  2. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Science.gov (United States)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  3. Investigation of the Stability of the Ruthenium based Dye (N719) Utilizing the Polarization Properties of Dispersive Raman Modes and/or of the Fluorescent Emission

    DEFF Research Database (Denmark)

    Hassing, Søren; Jernshøj, Kit Drescher; Phuong, Nguyen

    2013-01-01

    Dye-sensitized solar cells (DSCs) offer intriguing new possibilities with the integration of these into, e.g., power generating windows or facade applications. For the DSCs to constitute a viable investment, the thermal appliance with respect to the working conditions typically encountered must...... be considered. One of the aspects governing the long-term thermal stability of the DSC is the dye stability and hence whether or not the dye is degraded upon heating or illumination. This emphasizes the need for a sensitive and nondestructive measuring technique with which it is possible to distinguish between...... for short) is possible by exploiting a combination of the polarization properties of the dispersive Raman modes with the small spectral change in the visible absorption spectrum and/or the difference in the polarization of the fluorescence related to the difference in molecular configuration. By measuring...

  4. Polarization Maintaining, Very-Large-Mode Area, Er Fiber Amplifier for High Energy Pulses at 1572.3 nm

    Science.gov (United States)

    Nicholoson, J. W.; DeSantolo, A.; Yan, M. F.; Wisk, P.; Mangan, B.; Puc, G.; Yu, A.; Stephen, M.

    2016-01-01

    We demonstrate the first polarization maintaining, very-large-mode-area Er-doped fiber amplifier with 1000 square micron effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single frequency one microsecond pulses with pulse energy of 368 microJoules, M2 of 1.1, and polarization extinction greater than 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection.

  5. Diffractive optics for reduction of hot cracking in pulsed mode Nd:YAG laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Olesen, Søren; Roos, Sven-Olov;

    2001-01-01

    of systematic tests, the applicability of this system is tested on an industrial 1 kW Nd:YAG laser. Three separate series of tests are conducted, one with the diffractive optical system at 500 W and two without the diffractive system at 400 W and 500 W, respectively. In principle the diffractive, optical system......In order to reduce the susceptibility to hot cracking in pulsed mode laser welding of austenitic stainless steel, an optical system for reduction of the cooling rate is sought developed. Based on intensive numerical simulations, an optical system producing three focused spots is made. In a number...... functions as intended. Three spots are produced with a variable amount of energy between the center spot and two support spots. On average, the penetration depth drops to roughly half of that obtained with standard optics and the seam width increases 30 to 40 percent. The results show that at similar...

  6. SWITCH MODE PULSE WIDTH MODULATED DC-DC CONVERTER WITH MULTIPLE POWER TRANSFORMERS

    DEFF Research Database (Denmark)

    2009-01-01

    A switch mode pulse width modulated DC-DC power converter comprises at least one first electronic circuit on a input side (1) and a second electronic circuit on a output side (2). The input side (1) and the output side (2) are coupled via at least two power transformers (T1, T2). Each power...... transformer (T1, T2) comprises a first winding (T1a, T2a) arranged in a input side converter stage (3, 4) on the input side (1) and a second winding (T1 b, T2b) arranged in a output side converter stage (5) on the output side (2), and each of the windings (T1a, T1 b, T2a, T2b) has a first end and a second end...

  7. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array

    Science.gov (United States)

    Luo, Hanjun; Xu, Benlian; Xu, Huigang; Chen, Jingbo; Fu, Yadan

    2015-05-01

    When designing and evaluating the performance of laser radar system, maximum detection range achievable is an essential parameter. The purpose of this paper is to propose a theoretical model of maximum detection range for simulating the Geiger-mode laser radar's ranging performance. Based on the laser radar equation and the requirement of the minimum acceptable detection probability, and assuming the primary electrons triggered by the echo photons obey Poisson statistics, the maximum range theoretical model is established. By using the system design parameters, the influence of five main factors, namely emitted pulse energy, noise, echo position, atmospheric attenuation coefficient, and target reflectivity on the maximum detection range are investigated. The results show that stronger emitted pulse energy, lower noise level, more front echo position in the range gate, higher atmospheric attenuation coefficient, and higher target reflectivity can result in greater maximum detection range. It is also shown that it's important to select the minimum acceptable detection probability, which is equivalent to the system signal-to-noise ratio for producing greater maximum detection range and lower false-alarm probability.

  8. Broadly Tunable SOA-Based Active Mode-Locked Fibre Ring Laser by Forward Injection Optical Pulse

    Institute of Scientific and Technical Information of China (English)

    YAN Shuang-Yi; ZHANG Jian-Guo; ZHAO Wei; LU Hong-Qiang; WANG Wei-Qiang

    2008-01-01

    @@ We present a broadly tunable active mode-locked fibre ring laser based on a semiconductor optical amplifier (SOA), with forward injection optical pulses. The laser can generate pulse sequence with pulsewidth about 12ps and high output power up to 8.56dBm at 2.5 GHz stably. Incorporated with a wavelength-tunable optical bandpass filter, the pulse laser can operate with a broad wavelength tunable span up to 37nm with almost constant pulsewidth. A detailed experimental analysis is also carried out to investigate the relationship between the power of the internal cavity and the pulsewidth of the output pulse sequence. The experimental configuration of the pulse laser is very simple and easy to setup with no polarization-sensitive components.

  9. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser.

    Science.gov (United States)

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-05-06

    We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearly Fourier limited 2.8 ps and 18.5 ps pulses, respectively. With a 4 nm interference filter, one obtains picosecond pulses that have been externally dechirped down to 130 fs.

  10. Picosecond to femtosecond pulses from high power self mode-locked ytterbium rod-type fiber laser

    OpenAIRE

    Deslandes, Pierre; Perrin, Mathias; Saby, Julien; Sangla, Damien; Salin, François; Freysz, Eric

    2013-01-01

    International audience; We have designed an ytterbium rod-type fiber laser oscillator with tunable pulse duration. This system that delivers more than 10 W of average power is self mode-locked. It yields femtosecond to picosecond laser pulses at a repetition rate of 74 MHz. The pulse duration is adjusted by changing the spectral width of a band pass filter that is inserted in the laser cavity. Using volume Bragg gratings of 0.9 nm and 0.07 nm spectrum bandwidth, this oscillator delivers nearl...

  11. Q-switching and mode-locking pulse generation with graphene oxide paper-based saturable absorber

    Directory of Open Access Journals (Sweden)

    Sulaiman Wadi Harun

    2015-06-01

    Full Text Available Q-switched and mode-locked erbium-doped fibre lasers (EDFLs are demonstrated by using non-conductive graphene oxide (GO paper as a saturable absorber (SA. A stable and self-starting Q-switched operation was achieved at 1534.4 nm by using a 0.8 m long erbium-doped fibre (EDF as a gain medium. The pulse repetition rate changed from 14.3 to 31.5 kHz, whereas the corresponding pulse width decreased from 32.8 to 13.8 µs as the pump power increased from 22 to 50.5 mW. A narrow spacing dual-wavelength Q-switched EDFL could also be realised by including a photonics crystal fibre and a tunable Bragg filter in the setup. It can operate at a maximum repetition rate of 31 kHz, with a pulse duration of 7.04 µs and pulse energy of 2.8 nJ. Another GOSA was used to realise mode-locked EDFL in a different cavity consisting of a 1.6 m long EDF in conjunction with 1480 nm pumping. The laser generated a soliton pulse train with a repetition rate of 15.62 MHz and pulse width of 870 fs. It is observed that the proposed fibre lasers have a low pulsing threshold pump power as well as a low damage threshold.

  12. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  13. Safety and Efficacy Evaluation of Pulsed Dye Laser Treatment, CO2 Ablative Fractional Resurfacing, and Combined Treatment for Surgical Scar Clearance.

    Science.gov (United States)

    Cohen, Joel L; Geronemus, Roy

    2016-11-01

    Surgical scars are an unwanted sequela following surgical procedures. Several different treatment modalities and approaches are currently being employed to improve the cosmesis of surgical scars with each having varying degrees of success. The objective of this study was to assess the ef cacy and safety pulsed dye laser treatment, CO2 ablative fractional resurfacing, and a combined treatment with these two modalities for the cosmetic improvement of surgical scarring that occurred following the surgical removal of skin cancer from different anatomic areas. Twenty-five patients with surgical scarring most frequently on the face following recent surgical excision of skin cancer with Mohs surgery were included in this multicenter, prospective clinical study. Patients were randomized into 4 treatment arms, namely, pulsed dye laser alone, CO2 laser alone, a combined treatment with these two modalities, and CO2 ablative fractional resurfacing on the same day of surgery to half of the scar, followed by a combined treatment with the two modalities to that half of the scar. Patients in each study arm received a total of 3-4 treatments, while those patients in Arm 4 underwent an additional treatment with CO2 laser immediately after surgery. Patients were followed up at 1 and 3 months after the final treatment session. No adverse events were seen. Significant improvements in the appearance of scars were achieved in all study arms, as as- sessed by the Vancouver Scar Scale and Global Evaluation Response scales, with the best clinical outcomes seen in those scars that underwent a combination treatment. All patients reported very high satisfaction from treatment. Both pulsed dye laser treatment and CO2 ablative fractional resurfacing, when used as a monotherapy, are safe and effective in the treatment and improvement of recent surgical scarring. When both of these modalities are used in combination, however, they appear to potentially have a synergistic effect and an accelerated

  14. Mode-locked laser realized by selective area growth for short pulse generation and optical clock recovery in TDM systems

    Science.gov (United States)

    Lach, Eugen; Baums, Dieter; Bouayad-Amine, Jamal; Hache, Claudia; Haisch, Hansjorg; Kuhn, Edgar; Satzke, Klaus; Schilling, Michael; Weber, Juergen; Zielinski, Erich

    1996-04-01

    We report on monolithically integrated active/passive coupled cavity mode locked lasers for 1.55 micrometer realized by selective area growth technology of InGaAs(P) quantum wells. Mode locked FP or DBR lasers are fabricated with an integrated cavity comprising up to three different band gaps. The devices emit short light pulses at around 10 GHz repetition rate with pulse width down to 8.7 ps. A time-bandwidth product of 0.5 is achieved for mode locked DBR lasers. Active/passive integrated mode locked laser is used for generation of optical 10 GHz clock signal from optical 10 Gb/s PRBS RZ data stream injected into the laser cavity.

  15. Implementations of artificial neural networks using current-mode pulse width modulation technique.

    Science.gov (United States)

    El-Masry, E I; Yang, H K; Yakout, M A

    1997-01-01

    The use of a current-mode pulse width modulation (CM-PWM) technique to implement analog artificial neural networks (ANNs) is presented. This technique can be used to efficiently implement the weighted summation operation (WSO) that are required in the realization of a general ANN. The sigmoidal transformation is inherently performed by the nonlinear transconductance amplifier, which is a key component in the current integrator used in the realization of WSO. The CM-PWM implementation results in a minimum silicon area, and therefore is suitable for very large scale neural systems. Other pronounced features of the CM-PWM implementation are its easy programmability, electronically adjustable gains of neurons, and modular structures. In this paper, all the current-mode CMOS circuits (building blocks) required for the realization of CM-PWM ANNs are presented and simulated. Four modules for modular design of ANNs are introduced. Also, it is shown that the CM-PWM technique is an efficient method for implementing discrete-time cellular neural networks (DT-CNNs). Two application examples are given: a winner-take-all circuit and a connected component detector.

  16. Fabrication of polarization-independent single-mode waveguides in lithium niobate crystal with femtosecond laser pulses

    CERN Document Server

    Qi, Jia; Liao, Yang; Chu, Wei; Liu, Zhengming; Wang, Zhaohui; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of depressed cladding optical waveguides buried in lithium niobate crystal with shaped femtosecond laser pulses. Depressed cladding waveguides of variable mode-field sizes are fabricated by forming the four sides of the cladding using a slit-beam shaping technique. We show that the waveguides fabricated by our technique allows single-mode propagation of the light polarized in both vertical and horizontal directions.

  17. Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes

    Science.gov (United States)

    Gholamzadeh, R.; Jafari, K.; Gharooni, M.

    2017-01-01

    A sensitive half-bridge MEMS accelerometer fabricated by sequential and pulsed-mode processes is presented in this paper. The proposed accelerometer is analyzed by using conventional equations and the finite element method. The micromachining technology used in this work relies on two processes: sequential and pulsed-mode. In the sequential deep reactive ion etching process, a mixture of hydrogen and oxygen with a trace value of SF6 is used instead of polymeric material in the passivation step. The pulsed-mode process employs periodic hydrogen pulses in continuous fluorine plasma. Because of the continuous nature of this process, plus the in situ passivation caused by the hydrogen pulses, scallop-free sidewalls are achieved and the etch rate is also relatively high. Furthermore, the functional characteristics of the fabricated accelerometer sensor are measured and reported. Measurement results, which are in good agreement with simulations, show that the functional characteristics of the fabricated sensor are as follows: resonance frequency of about 2 kHz, sensitivity of 76 mV g-1 and Brownian noise equivalent acceleration of 4.74~μ g {{\\sqrt{\\text{Hz}}}-1} .

  18. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  19. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    Science.gov (United States)

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-04

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  20. Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration

    CERN Document Server

    Cunning, B V; Kielpinski, D

    2011-01-01

    Saturable absorbers are a key component for mode-locking femtosecond lasers. Polymer films containing graphene flakes have recently been used in transmission as laser mode-lockers, but suffer from high nonsaturable loss, limiting their application in low-gain lasers. Here we present a saturable absorber mirror based on a film of pure graphene flakes. The device is used to mode lock an erbium-doped fiber laser, generating pulses with state-of-the-art, sub-200-fs duration. The laser characteristic indicate that the film exhibits low nonsaturable loss (13% per pass) and large absorption modulation depth (45% of low-power absorption).

  1. Characterization of a pulsed mode high voltage power supply for nuclear detectors

    Science.gov (United States)

    Ghazali, A. B.; Ahmad, T. S.; Abdullah, N. A.

    2013-06-01

    This paper discusses the characterization of a pulsed mode high voltage power supply (HVPS) using LT1073 chip. The pulsed modulated signal generated from this chip is amplified using a step-up ferrite core transformer of 1:20 turn ratio and then further multiplied and converted into DC high voltage output using a diode-capacitor arrangement. The circuit is powered by a 9V alkaline battery but regulated at 5V supply. It was found that the output for this setup is 520V, 87 μA with 10% load regulation. This output is suitable to operate a pancake-type GM detector, typically model LND 7317 where the plateau is from 475V to 675V. It was also found that when a β-source with intensity of 120 cps is used, the power consumption of the circuit is 5 V, 10.1 mA only. When the battery was left 'on' for 40 hours continuously, the battery's voltage has dropped to 6.9V, meaning that the 5V supply as well as 520V output is still maintained. It is noted that the minimum output voltage of 475V has reached when the regulated supply has reduced to 4.6V and consequently the 9V battery dropped to 6.5V, and this had happened after approximately 3 days of continuous operation. The power efficiency for this circuitry was found to be 89.5%. This result has far better in performance since the commercial portable equipment of this type has normally specified that not less than 8 hours continuous operation only. On the circuit design for this power supply, it was found that the enveloped frequency is 133 Hz with approximately 50% duty cycle. The modulated frequency during 'on' state was found to be 256 KHz in which the majority of power consumption is required.

  2. Pulsed Dye Laser Treatment in Infantile Hemangioma%婴幼儿血管瘤的脉冲染料激光治疗

    Institute of Scientific and Technical Information of China (English)

    吕东泽(综述); 马刚; 林晓曦(审校)

    2014-01-01

    [Summary] Infantile hemangioma (IH) is the most common benign tumor of infancy. Although it is self-limiting, its cosmetic problems and complications still has been the psychological concerns of the patients and parents. Pulsed dye laser (PDL) is the criterion standard for treating vascular lesions. It is controversial in treating IH, despite the 20 years' application. In this article, the current knowledge of the PDL treatment of IH was reviewed comprehensively and the new implications and directions for management of IH in the future were provided.%婴幼儿血管瘤(Infantile hemangioma,IH)是最常见的婴幼儿良性肿瘤,虽为自限性疾病,但其外观及并发症影响患儿的身心发育,成为家长的心理负担。脉冲染料激光(Pulse dye laser,PDL)是用于血管性病灶的规范化激光,用于治疗浅表婴幼儿血管瘤已有20余年,但仍存在争议。本文综合阐述PDL治疗IH的研究进展,为IH的治疗提供方向。

  3. Generation of sub-100 fs pulses from mode-locked Nd,Y:SrF2 laser with enhancing SPM

    Science.gov (United States)

    Zhu, Jiangfeng; Wei, Long; Tian, Wenlong; Liu, Jiaxing; Wang, Zhaohua; Su, Liangbi; Xu, Jun; Wei, Zhiyi

    2016-05-01

    A mode-locked laser using Nd,Y:SrF2 crystal as the gain medium is presented in this letter. By special design of the cavity for enhancing the self-phase modulation effect, femtosecond mode-locking with 97 fs pulse duration and 13.2 nm spectral width centered at 1061 nm is obtained at a repetition rate of 96 MHz. The average output power is 102 mW under 925 mW pump power, corresponding to the optical-to-optical efficiency of 11%. To the best of our knowledge, these are the first sub-100 fs pulses generated from a mode-locked Nd doped crystal laser.

  4. Antimicrobial photodynamic treatment of gram-negative bacteria with a cationic phenothiazine dye under pulsed light irradiation

    Science.gov (United States)

    Kawauchi, Satoko; Sato, Shunichi; Yamaguchi, Toru; Shinomiya, Nariyoshi; Saito, Daizo; Ashida, Hiroshi; Obara, Minoru; Kikuchi, Makoto

    2005-08-01

    In-vitro photodynamic inactivation of Ps. aeruginosa with methylene blue under pulsed light excitation was investigated at different pulse repetition rates. Bacterial suspensions were illuminated with 670-nm nanosecond pulsed light with a peak intensity of 2.0 MW/cm2 at pulse repetition rates in the range of 5-30 Hz. Photobactericidal effect increased with increasing pulse repetition rate for the same total light dose; more than two orders in magnitude reduction of bacterial survival fraction was obtained at 30 Hz. Such a positive dependence of photobactericidal effect on pulse repetition rate was inconsistent with our previous results for human lung cancer cells that were photodynamically treated with a lysosomal sensitizer. The reason for the increased photobactericidal effect at the high pulse repetition rate is discussed.

  5. Comparative studies of semiconductor saturable absorber mirror mode-locking dynamics in pulsed diode-end-pumped picosecond Nd:GdVO4 and Nd:YAG lasers

    Institute of Scientific and Technical Information of China (English)

    Bingyuan Zhang; Gang Li; Meng Chen; Guoju Wang; Yonggang Wang

    2006-01-01

    Ultrashort pulses were generated in passively mode-locked Nd:YAG and Nd:GdVO4 lasers pumped by a pulsed laser diode with 10-Hz repetition rate. Stable mode-locked pulse trains were produced with the pulse width of 10 ps. The evolution of the mode-locked pulse was observed in the experiment and was discussed in detail. Comparing the pulse evolutions of Nd:YAG and Nd:GdVO4 lasers, we found that the buildup time of the steady-state mode-locking with semiconductor saturable absorber mirrors (SESAMs) was relevant to the upper-state lifetime and the emission cross-section of the gain medium.

  6. Hybrid mode-locking in pulsed ytterbium fiber laser with carbon nanotube saturable absorber

    Science.gov (United States)

    Khudyakov, Dmitry V.; Borodkin, Andrey A.; Lobach, Anatoly S.; Vartapetov, Sergey K.

    2015-10-01

    Ultrafast pulse generation in all-normal dispersion Yb-doped fiber laser on 1.04 μm have been reported. Stable self-starting pulse generation in output of the ring fiber laser have been investigated where nonlinear polarization rotation interacted with contribution from the single walled carbon nanotube saturable absorber. Laser pulses with 0.7 nJ pulse energy and 1.7 ps pulse width at 35.6 MHz repetition rate were achieved. The output pulse could be externally compressed to width of 180 fs by pair of gratings.

  7. 35 GHz passive mode-locking of InGaAs/GaAs quantum dot lasers at 1.3 μm with Fourier-limited pulses

    DEFF Research Database (Denmark)

    Kuntz, M.; Fiol, G.; Laemmlin, M.;

    2004-01-01

    We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses.......We report 35 GHz passive mode-locking and 20 GHz hybrid mode-locking of quantum dot (QD) lasers at 1.3 ìm. Our investigations show ultrafast absorber recovery times and for the first time transform-limited mode-locked pulses....

  8. Efficiency of pulse-mode dielectric barrier discharge excimer lamp in constant duty cycle

    Science.gov (United States)

    Akashi, Haruaki; Oda, Akinori; Sakai, Yosuke

    2008-10-01

    Efficiency of pulse-mode dielectric barrier discharge (DBD) excimer lamp under constant duty cycle with increasing applied voltage has been simulated using two dimensional fluid model[1]. Xe gas with 300Torr pressure is assumed. And the simulated region considered in this model is 1cm(gap length)x3cm(radial length). Periodical boundary conditions are assumed for the radial direction boundaries. The both electrodes are covered with dielectrics and their thickness is 0.2cm. 5˜8kV trapezoid shape voltage is applied with the same voltage rising ratio and 50% duty ratio waveform with 200x10^3pps repetition rate. The discharge occurs at the rising edge and tailing edge of applied voltage. 172nm VUV intensity obtained from first discharge is higher than second one in lower applied voltage (<6kV) case. And in higher voltage case, the intensity from second discharge becomes higher. This is explained by shortening of interval time between the discharges. The short interval time makes higher initial electron density for second discharge. As a results, the input and 172nm VUV output power increases with increasing applied voltage, but the efficiency decreases. Because of inefficient surface discharge [1]H. Akashi et al, IEEE Trans. Plasma Science, Vol.33,No.2(2005,4)pp.308-309

  9. Short pulse generation and mode control of broadband terahertz quantum cascade lasers

    CERN Document Server

    Bachmann, Dominic; Süess, Martin J; Beck, Mattias; Unterrainer, Karl; Darmo, Juraj; Faist, Jérôme; Scalari, Giacomo

    2016-01-01

    We report on a waveguide engineering technique that enables the generation of a bandwidth up to 1 THz and record ultra-short pulse length of 2.5 ps in injection seeded terahertz quantum cascade lasers. The reported technique is able to control and fully suppress higher order lateral modes in broadband terahertz quantum cascade lasers by introducing side-absorbers to metal-metal waveguides. The side-absorbers consist of a top metalization set-back with respect to the laser ridge and an additional lossy metal layer. In continuous wave operation the side-absorbers lead to octave spanning laser emission, ranging from 1.63 to 3.37 THz, exhibiting a 725 GHz wide at top within a 10 dB intensity range as well as frequency comb operation with a bandwidth of 442 GHz. Numerical and experimental studies have been performed to optimize the impact of the side-absorbers on the emission properties and to determine the required increase of waveguide losses. Furthermore, these studies have led to a better understanding of the ...

  10. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge

    Energy Technology Data Exchange (ETDEWEB)

    Oks, E. M. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk (Russian Federation); Shandrikov, M. V., E-mail: shandrikov@opee.hcei.tsc.ru; Vizir, A. V. [Institute of High Current Electronics, Siberian Branch of Russian Academy of Science, Tomsk (Russian Federation)

    2016-02-15

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H{sub 2}), the ion beam contained three species: H{sup +}, H{sub 2}{sup +}, and H{sub 3}{sup +}. For all experimental conditions, the fraction of H{sub 2}{sup +} ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H{sup +} and H{sub 3}{sup +} depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H{sup +} fraction in ion beam. The maximum fraction of H{sup +} reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H{sub 3}{sup +} fraction in the beam. At optimum parameters, the fraction of H{sub 3}{sup +} ions reached 60% of the total ion beam current.

  11. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    Science.gov (United States)

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  12. Synthesis of Silver-Doped Zinc Oxide Nanocomposite by Pulse Mode Ultrasonication and Its Characterization Studies

    Directory of Open Access Journals (Sweden)

    T. Siva Vijayakumar

    2013-01-01

    Full Text Available The synthesis of silver-doped zinc oxide (Ag:ZnO nanocomposite material was achieved using a simple chemical coprecipitation method, in which 0.2 M zinc chloride and 0.001 M silver nitrate coprecipitated with 25% ammonia solution by pulse mode dispersion using ultrasonicator. The obtained silvery white precipitate was dried overnight at 110°C in hot air oven, and the powder was collected. The resulted Ag:ZnO nanocomposite was structurally and optically characterized using various techniques. The X-ray diffraction (XRD pattern clearly showed the presence of crystalline Ag:ZnO particles. Further, UV-Vis spectrophotometer and fourier transform infrared spectroscopy (FT-IR results showed the presence of Ag:ZnO nanocomposite at specific wavelengths. The scanning electron microscopy (SEM and transmission electron microscopy (TEM analysis confirm that the synthesized Ag:ZnO nanocomposite material was truncated nanorod in shape and has 48 to 226 nm size in diameter.

  13. Temporal output profile of gain-coupled distributed feedback dye laser

    Science.gov (United States)

    Pasandideh, K.; Souri, S.; Gohari Kamel, N.; Sadighi-Bonabi, R.

    2017-08-01

    The lasing mechanism and temporal output profile of distributed feedback dye lasers is investigated, using a model based on induced polarization in the dye solution, where a more accurate behavior of the laser output is predicted. It is found that the temporal output profile of the laser is mostly determined by the concentration of dye solution and the lifetime of the upper laser level of dye molecules. To a large extent, the results of this work agree with experimental studies, even at high-level pump intensities where the self Q-switched model fails to be applied. Especially, the experimentally observed irregular intensity profile of laser output is explained. It is also shown that, when pumping dye solution by narrower pulses, the single-pulse output mode can be realized in the wider range of pump intensities and the pulsewidth stability of laser can be improved.

  14. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Science.gov (United States)

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  15. Lommel pulses: an analytic form for localized waves of the focus wave mode type with bandlimited spectrum.

    Science.gov (United States)

    Sheppard, Colin J R; Saari, Peeter

    2008-01-07

    A criticism of the focus wave mode (FWM) solution for localized pulses is that it contains backward propagating components that are difficult to generate in many practical situations. We describe a form of FWM where the strength of the backward propagating components is identically zero and derive special cases where the field can be written in an analytic form. In particular, a free-space version of "backward light" pulse is considered, which moves in the opposite direction with respect to all its spectral constituents.

  16. Ultrashort-pulse generation in a YAG:Nd(3+) laser in a scheme with colliding pulses

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Tikhonov, E.A.; Iatskiv, D.IA.; Bushmakin, E.N.

    1987-04-01

    The time, energy, and statistical characteristics of a picosecond mode-locked YAG:Nd(3+) laser with colliding pulses are studied. Under these conditions, no additional pulse shortening occurs as compared to a laser utilizing an absorber which is in contact with the nontransmitting mirror. However, this mode of operation is characterized by a greater reproducibility of the emitted pulse duration. A direct recording of the duration and the spectrum is used. It is shown that spectrally limited pulses are emitted only when the cell with a saturable absorber (dye No. 3274) is located in the center of the antiresonant reflector. 11 references.

  17. Generation of 30  fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser.

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode-locked 8.43 optical-cycle pulses have a spectral bandwidth of ∼50  nm and a pulse repetition frequency of ∼113.5  MHz. To the best of our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique for directly generating few-cycle optical pulses from a laser oscillator.

  18. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO_4 laser

    Science.gov (United States)

    Ma, Jie; Huang, Haitao; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2016-03-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  19. Generation of 30-fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO4 laser

    CERN Document Server

    Ma, Jie; Ning, Kaijie; Xu, Xiaodong; Xie, Guoqiang; Qian, Liejia; Loh, Kian Ping; Tang, Dingyuan

    2015-01-01

    Stable 30 fs pulses centered at 1068 nm (less than 10 optical cycles) are demonstrated in a diode pumped Yb:CaYAlO4 laser by using high-quality chemical vapor deposited monolayer graphene as the saturable absorber. The mode locked 8.43 optical-cycle pulses have a spectral bandwidth of ~ 50 nm and a pulse repetition frequency of ~ 113.5 MHz. To our knowledge, this is the shortest pulse ever reported for graphene mode-locked lasers and mode-locked Yb-doped bulk lasers. Our experimental results demonstrate that graphene mode locking is a very promising practical technique to generate few-cycle optical pulses directly from a laser oscillator.

  20. The discharge mode transition and O(5p1) production mechanism of pulsed radio frequency capacitively coupled plasma

    Science.gov (United States)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Shi, J. J.

    2012-07-01

    The discharge mode transition from uniform plasma across the gas gap to the α mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He2* dominate the production of O(5p1) through dissociation and excitation of O2. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  1. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    Science.gov (United States)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  2. Third-Harmonic Generated in EH32 Mode of a Gas-Filled Waveguide by fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    CHEN Bao-Zhen; HUANG Zu-Qia

    2007-01-01

    In this paper it is reported for the first time that the third harmonic generated in EH32 mode of a gas-filled waveguide by fs pulses has higher generation efficiency. The new finding contrasts with the experiment in [C.G. Durfee Ⅲ, S. Backus, M.M. Murnane, and H.C. Kapteyn, Opt. Lett. 22 (1997) 1565]. Some possible factors, which produce the contradiction, are discussed briefly.

  3. Improved performance of Li-ion cells under pulsed load using double-layer capacitors in a hybrid circuit mode

    Energy Technology Data Exchange (ETDEWEB)

    ROTH,EMANUEL P.; NAGASUBRAMANIAN,GANESAN

    2000-02-07

    Electrical characteristics of hybrid power sources consisting of Li-ion cells and double-layer capacitors were studied at 25 C and {minus}20 C. The cells were initially evaluated for pulse performance and then measured in hybrid modes of operation where they were coupled with the high-power capacitors. Cells manufactured by Panasonic measured at 25 C delivered full capacities of 0.76 Ah for pulses up to 3A and cells from A and T delivered full capacities of 0.73 Ah for pulses up to 4A. Measured cell resistances were 0.15 ohms and 0.12 ohms, respectively. These measurements were repeated at {minus}20 C. Direct coupling of the cells and capacitors (coupled hybrid) using 10F Panasonic capacitors in a 8F series/parallel combination extended the full capacity pulse limits (3.0V threshold) to 5.6A for the Panasonic cells and to 9A for the A and T cells. A similar arrangement using 100F capacitors from Elna in a 60F combination increased the Panasonic cell limit to 10 A. Operation in an uncoupled hybrid mode using uncoupled cell/capacitor discharge allowed fill cell capacity usage at 25 C up to the capacitor discharge limit and showed a factor of 5 improvement in delivered capacity at {minus}20 C.

  4. Achieving a Linear Dose Rate Response in Pulse-Mode Silicon Photodiode Scintillation Detectors Over a Wide Range of Excitations

    Science.gov (United States)

    Carroll, Lewis

    2014-02-01

    We are developing a new dose calibrator for nuclear pharmacies that can measure radioactivity in a vial or syringe without handling it directly or removing it from its transport shield “pig”. The calibrator's detector comprises twin opposing scintillating crystals coupled to Si photodiodes and current-amplifying trans-resistance amplifiers. Such a scheme is inherently linear with respect to dose rate over a wide range of radiation intensities, but accuracy at low activity levels may be impaired, beyond the effects of meager photon statistics, by baseline fluctuation and drift inevitably present in high-gain, current-mode photodiode amplifiers. The work described here is motivated by our desire to enhance accuracy at low excitations while maintaining linearity at high excitations. Thus, we are also evaluating a novel “pulse-mode” analog signal processing scheme that employs a linear threshold discriminator to virtually eliminate baseline fluctuation and drift. We will show the results of a side-by-side comparison of current-mode versus pulse-mode signal processing schemes, including perturbing factors affecting linearity and accuracy at very low and very high excitations. Bench testing over a wide range of excitations is done using a Poisson random pulse generator plus an LED light source to simulate excitations up to ˜106 detected counts per second without the need to handle and store large amounts of radioactive material.

  5. Induction of anoxic microenvironment in multi-phase metabolic shift strategy during periodic discontinuous batch mode operation enhances treatment of azo dye wastewater.

    Science.gov (United States)

    Nagendranatha Reddy, C; Naresh Kumar, A; Annie Modestra, J; Venkata Mohan, S

    2014-08-01

    Variation in anoxic microenvironment (multi-phase (MP) metabolic shift strategy) during cycle operation of periodic discontinuous batch/sequencing batch (PDBR/SBR) mode operation showed enhanced degradation of recalcitrant azo dye (C.I. Acid Black 10B) at higher dye load (1250mg/l). The process performance was evaluated by varying anoxic phasing period during cycle operation. Before multiphase (BMP) operation with 2.1% of anoxic period showed color/COD removal efficiency of 41.9%/46.3%. Increment in anoxic period responded favorable in enhancing treatment efficiency [AMPI (16.2%), 49.4%/52.4%; AMPII (26.6%), 54.7%/57.2%; AMPIII (34.9%), 58.4%/61.5%]. Relatively higher bio-electrochemical activity, persistent reductive behavior (redox catalytic currents, 0.26/-0.72μA), prevalence of redox shuttlers (Fe-S proteins, cytochromes, quinones) facilitating enhanced electron transfer by minimization of associated losses and higher enzyme activities were observed with induction of anoxic phase. Anoxic condition shifts system microenvironment between oxidation and reduction assisting reduction of dye to its intermediates followed by their mineralization.

  6. Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb³⁺:CaF₂.

    Science.gov (United States)

    Körner, Jörg; Hein, Joachim; Liebetrau, Hartmut; Seifert, Reinhard; Klöpfel, Diethard; Kahle, Martin; Loeser, Markus; Siebold, Mathias; Schramm, Ulrich; Kaluza, Malte C

    2013-11-18

    We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.

  7. Inferring radar mode changes from elementary pulse features using Fuzzy ARTMAP classification

    CSIR Research Space (South Africa)

    Potgieter, PF

    2007-11-01

    Full Text Available , 2 10 )(log2 nfaPD σ= (3) where Pfa is the probability of a false alarm within a snapshot. Signal samples above the threshold, D are filtered to discriminate and group pulse rising, nir and falling, nif edge index pairs. Thus pulse width...

  8. Single mode solid state distributed feedback dye laser fabricated by grey scale electron beam lithography on dye doped SU-8 resist

    DEFF Research Database (Denmark)

    Balslev, Søren; Rasmussen, Torben; Shi, Peixiong

    2005-01-01

    are optically pumped at 532 nm, and exhibit low lasing threshold from 530 nJ/mm2 and single mode output at selectable wavelengths from 580 to 630 nm, determined by the grating pitch. The lasers are well suited for integration into polymer based lab-on-chip circuits for interference based sensing....

  9. In vivo histological evaluation of non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode.

    Science.gov (United States)

    Harth, Yoram; Frank, Ido

    2013-12-01

    Microneedle radiofrequency is a novel method that allows non-thermal penetration of the epidermis followed by RF coagulation in selected depth of the dermis surrounded by zone of non-coagulative volumetric heating. The first generation of Microneedle RF applicators used insulated needles. These treatments were limited by a few factors, including low volume of dermal heating, lack of effect in the papillary dermis and pinpoint bleeding during the treatment. The system tested in this study (EndyMed PRO, Intensif applicator, EndyMed Medical, Cesarea, Israel) utilizes special extra sharp tapered non-insulated microneedles and a special pulse mode, allowing full coagulation during treatment and higher effective volume of dermal heat. After Ethics Committee approval, one female pig (Type Large white X Landrace, 34 Kg) was chosen for the study. The animal was anesthetized using Ketamine, Xylazin and Isofluran. The EndyMed PRO, Intensif applicator (was used for treatment with different needle depth penetration (1 mm-3.5 mm) and in multiple energy settings. Six mm punch biopsies were harvested for histological analysis at the following time points: immediately after the treatment, 4 days after the treatment and 14 days after the treatment. H&E and Masson-Trichrome stains were processed. Visual inspection of the treated skin, immediately after the treatment, revealed arrays of pinpoint erythematous papules surrounded by undamaged epidermal tissue. Treatment field showed no sign of bleeding. Mild to moderate Erythema and Edema developed a few minutes after the treatment, varying according to the total energy delivered. The histologies taken 4-day after therapy showed in all energy settings, dry micro crusts over the treatment zones, with full healing of epidermis. In the 14-day specimens there was a replacement of the crusts/debris by a normal looking stratum corneum with complete healing of epidermis and dermis. The current in vivo study confirms that the EndyMed PRO

  10. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    Science.gov (United States)

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.

  11. Time-domain study of acoustic pulse propagation in an ocean waveguide using a new normal mode model

    Science.gov (United States)

    Sidorovskaia, Natalia Anatol'evna

    1997-11-01

    This study is focused on issues of numerical modeling of sound propagation in diverse ocean waveguides. A new normal mode acoustical model (Shallow Water Acoustic Mode Propagation-SWAMP) has been developed. The algorithm for obtaining the vertical modal solution is based on a warping matrix transformation of the solution of an isovelocity (reference) waveguide to one of arbitrary velocity profile. An efficient mode coupling scheme with an adaptive step-size in range has been implemented for range-dependent environments. The new algorithm allows fairly arbitrary ocean layering and readily works at high frequency. An important advantage of the new procedure is that vertical modal eigenfunctions can easily be transformed to a spherical representation suitable for coupling in object scattering problems. Benchmarking results of the new code against established acoustic models based on parabolic equation and existing normal mode approaches show good agreement for range-independent and up-slope and down-slope bathymetries and a very competitive calculation speed. Broad-band pulse propagation in deep and shallow water with double (surface and bottom) ducts has been modeled using the new normal mode model for a variety of ocean waveguide parameters and different frequency bands. The surface duct generates a series of the surface-duct-trapped- modes, which form amplitude-modulated precursors in the far field pulse response. It has been found that the arrival times of the precursors could not be explained by the conventional concept of group velocity so that a more general principle based on the rate of energy transfer has been used. The Airy function solution was found to explain the amplitude modulation of the precursors. It has been learned from the numerical simulation that for a range-independent environment the time separation between precursors is fixed and any variations from this have been a result of range-dependence and mode coupling in the model. The time

  12. Development of long pulse RF heating and current drive for H-mode scenarios with metallic walls in WEST

    Energy Technology Data Exchange (ETDEWEB)

    Ekedahl, Annika, E-mail: annika.ekedahl@cea.fr; Bourdelle, Clarisse; Artaud, Jean-François; Bernard, Jean-Michel; Bufferand, Hugo; Colas, Laurent; Decker, Joan; Delpech, Léna; Dumont, Rémi; Goniche, Marc; Helou, Walid; Hillairet, Julien; Lombard, Gilles; Magne, Roland; Mollard, Patrick; Nardon, Eric; Peysson, Yves; Tsitrone, Emmanuelle [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-12-10

    The longstanding expertise of the Tore Supra team in long pulse heating and current drive with radiofrequency (RF) systems will now be exploited in the WEST device (tungsten-W Environment in Steady-state Tokamak) [1]. WEST will allow an integrated long pulse tokamak programme for testing W-divertor components at ITER-relevant heat flux (10-20 MW/m{sup 2}), while treating crucial aspects for ITER-operation, such as avoidance of W-accumulation in long discharges, monitoring and control of heat fluxes on the metallic plasma facing components (PFCs) and coupling of RF waves in H-mode plasmas. Scenario modelling using the METIS-code shows that ITER-relevant heat fluxes are compatible with the sustainment of long pulse H-mode discharges, at high power (up to 15 MW / 30 s at I{sub P} = 0.8 MA) or high fluence (up to 10 MW / 1000 s at I{sub P} = 0.6 MA) [2], all based on RF heating and current drive using Ion Cyclotron Resonance Heating (ICRH) and Lower Hybrid Current Drive (LHCD). This paper gives a description of the ICRH and LHCD systems in WEST, together with the modelling of the power deposition of the RF waves in the WEST-scenarios.

  13. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  14. Development of a numerical tool to study the mixing phenomenon occurring during mode one operation of a multi-mode ejector-augmented pulsed detonation rocket engine

    Science.gov (United States)

    Dawson, Joshua

    A novel multi-mode implementation of a pulsed detonation engine, put forth by Wilson et al., consists of four modes; each specifically designed to capitalize on flow features unique to the various flow regimes. This design enables the propulsion system to generate thrust through the entire flow regime. The Multi-Mode Ejector-Augmented Pulsed Detonation Rocket Engine operates in mode one during take-off conditions through the acceleration to supersonic speeds. Once the mixing chamber internal flow exceeds supersonic speed, the propulsion system transitions to mode two. While operating in mode two, supersonic air is compressed in the mixing chamber by an upstream propagating detonation wave and then exhausted through the convergent-divergent nozzle. Once the velocity of the air flow within the mixing chamber exceeds the Chapman-Jouguet Mach number, the upstream propagating detonation wave no longer has sufficient energy to propagate upstream and consequently the propulsive system shifts to mode three. As a result of the inability of the detonation wave to propagate upstream, a steady oblique shock system is established just upstream of the convergent-divergent nozzle to initiate combustion. And finally, the propulsion system progresses on to mode four operation, consisting purely of a pulsed detonation rocket for high Mach number flight and use in the upper atmosphere as is needed for orbital insertion. Modes three and four appear to be a fairly significant challenge to implement, while the challenge of implementing modes one and two may prove to be a more practical goal in the near future. A vast number of potential applications exist for a propulsion system that would utilize modes one and two, namely a high Mach number hypersonic cruise vehicle. There is particular interest in the dynamics of mode one operation, which is the subject of this research paper. Several advantages can be obtained by use of this technology. Geometrically the propulsion system is fairly

  15. The influence of pulsed light exposure mode on quality and bioactive compounds of fresh-cut mangoes.

    Science.gov (United States)

    de Almeida Lopes, Mônica Maria; Silva, Ebenezer Oliveira; Laurent, Sandrine; Charles, Florence; Urban, Laurent; de Miranda, Maria Raquel Alcântara

    2017-07-01

    This study investigated the effect of pulsed light (PL) on the respiratory rate, quality (firmness, color and soluble solid content), bioactive compounds (ascorbate and carotenoid) and total antioxidant activity of fresh-cut "Tommy Atkins" mangoes. Fresh-cut mangoes were subjected to PL treatments: control (0P), 1 pulse (1P; 0.7 J cm(-2)), 4 successive pulses (4P; 2.80 J cm(-2)) and 1 pulse per day for 4 days (1P4D; 2.80 J cm(-2)) before storage for 7 days at 6 °C. The 1P and the 4P treatments reduced fresh mass loss during storage, while 4P-treated samples also showed a slower decline of yellow color, as shown by parameter b and overall better visual appearance. After 7 days of storage, total ascorbate content was 40% higher in the 1P4D treatment than in control, whereas total carotenoid content (0.894 mg g(-1) FM) and total antioxidant activity (144 μmol trolox 100 g(-1) FM) were the highest in the 4P-treated samples. Results suggest that PL mode of application is more important than the fluence or final dose received by fresh-cut mangoes; moreover, 4P is an effective method to preserve, or even improve quality of fresh-cut mangoes.

  16. High Compact, High Quality Single Longitudinal Mode Hundred Picoseconds Laser Based on Stimulated Brillouin Scattering Pulse Compression

    Directory of Open Access Journals (Sweden)

    Zhenxu Bai

    2016-01-01

    Full Text Available A high beam quality hundred picoseconds single-longitudinal-mode (SLM laser is demonstrated based on stimulated Brillouin scattering (SBS pulse compression and aberration compensation. Flash-lamp-pumped Q-switched Nd3+:Y3Al5O12 (Nd:YAG SLM laser with Cr4+:Y3Al5O12 (Cr4+:YAG as a saturable absorber is used as the seed source. By combining master-oscillator-power-amplifier (MOPA, a compact single-cell with FC-770 as working medium is generated as pulse compressor. The 7.8 ns SLM laser is temporally compressed to about 450 ps, and 200 mJ energy is obtained at 1064 nm without optical damage. The energy stability is better than 3% with beam quality factor M2 less than 1.8, which makes this laser system an attractive source for scientific and industrial applications.

  17. Prospective Comparison of Dual Wavelength Long-Pulsed 755-nm Alexandrite/1,064-nm Neodymium:Yttrium-Aluminum-Garnet Laser versus 585-nm Pulsed Dye Laser Treatment for Rosacea

    Science.gov (United States)

    Seo, Hyun-Min; Kim, Jung-In; Kim, Han-Saem; Choi, Young-Jun

    2016-01-01

    Background Rosacea treatments including oral/topical medications and laser therapy are numerous but unsatisfactory. Objective To compare the effectiveness of the dual wavelength long-pulsed 755-nm alexandrite/1,064-nm neodymium: yttrium-aluminum-garnet laser (LPAN) with that of 585-nm pulsed dye laser (PDL) for rosacea. Methods This was a randomized, single-blinded, comparative study. Full face received four consecutive monthly treatments with LPAN or PDL, followed-up for 6 months after the last treatment. Erythema index was measured by spectrophotometer, and digital photographs were evaluated by consultant dermatologists for physician's global assessment. Subjective satisfaction surveys and adverse effects were recorded. Results Forty-nine subjects with rosacea enrolled and 12 dropped out. There were no significant differences between LPAN and PDL in the mean reduction of the erythema index (p=0.812; 3.6% vs. 2.8%), improvement of physician's global assessment (p=1.000; 88.9% vs. 89.5%), and subject-rated treatment satisfaction (p=0.842; 77.8% vs. 84.2%). PDL showed more adverse effects including vesicles than LPAN (p=0.046; 26.3% vs. 0.0%). No other serious or permanent adverse events were observed in both treatments. Conclusion Both LPAN and PDL may be effective and safe treatments for rosacea. PMID:27746641

  18. Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser.

    Science.gov (United States)

    Moskalenko, Valentina; Latkowski, Sylwester; Tahvili, Saeed; de Vries, Tjibbe; Smit, Meint; Bente, Erwin

    2014-11-17

    In this paper, we present the detailed characterization of a semiconductor ring passively mode-locked laser with a 20 GHz repetition rate that was realized as an indium phosphide based photonic integrated circuit (PIC). Various dynamical regimes as a function of operating conditions were explored in the spectral and time domain. A record bandwidth of the optical coherent comb from a quantum well based device of 11.5 nm at 3 dB and sub-picosecond pulse generation is demonstrated.

  19. Generation of 170-fs Laser Pulses at 1053 nm by a Passively Mode-Locked Yb:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bin-Bin; WEI Zhi-Yi; LI De-Hua; TENG Hao; Bourdet G. L

    2009-01-01

    A novel method is developed to obtain 1.05μm laser operation with a Yb:YAG laser. By using a Yb:YAG crystal with proper length and doping concentration, a femtosecond Yb: YAG laser is realized at the central wavelength of 1053nm. The measured pulse duration and spectral bandwidth (FWHM) are 17ors and 7nm; the repetition rate is 80 MHz. Under a power pump of 2 W, an average mode-locking power of 180mW is achieved.

  20. SiOx Ink-Repellent Layer Deposited by Radio Frequency(RF) Plasmas in Continuous Wave and Pulse Mode

    Institute of Scientific and Technical Information of China (English)

    CHEN Qiang; FU Ya-bo; PANG Hua; ZHANG Yue-fei; ZHANG Guang-qiu

    2007-01-01

    Low surface energy layers,proposed application for non-water printing in computer to plate (CTP) technology,are deposited in both continuous wave and pulse radio frequency (13.56 MHz) plasma with hexamethyldisiloxane (HMDSO) as precursor.It is found that the plasma mode dominates the polymer growth rate and the surface composition.Derived from the spectra of X-ray photoelectron spectroscopy (XPS) and combined with printable test it is concluded that concentration of Si in coatings plays an important role for the ink printability and the ink does not adhere on the surface with high silicon concentration.

  1. Attosecond timing jitter pulse trains from semiconductor saturable absorber mode-locked Cr:LiSAF lasers

    OpenAIRE

    Sennaroğlu, Alphan; Li, Duo; Demirbaş, Ümit; Benedick, Andrew; Fujimoto, James G.; Kaertner, Franz X.

    2012-01-01

    The timing jitter of optical pulse trains from diode-pumped, semiconductor saturable absorber mode-locked femtosecond Cr:LiSAF lasers is characterized by a single-crystal balanced optical cross-correlator with an equivalent sensitivity in phase noise of -235 dBc/Hz. The RMS timing jitter is 30 attoseconds integrated from 10 kHz to 50 MHz, the Nyquist frequency of the 100 MHz repetition rate oscillator. The AM-to-PM conversion induced excess phase noise is calculated and compared with experime...

  2. The Study on the Variation of the Cavity Length's Influence on the Output Pulse Train of the Actively Mode-Locked Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    LUO Hong-e; TIAN Xiao-jian; GAO Bo

    2005-01-01

    The influence of actively mode-locked Erbium-Doped Fiber Laser(EDFL) cavity length variation on the noises of an optical pulse train is investigated, in theory and in MATLAB simulation. Using a simple model, the noise characteristics of the output pulse train are studied. The results show that the noises of the output pulse train increase with the increasing of the variation of the cavity length. The theory analysis and the simulation results agree well. This result is very significant for us to improve the reliability and the stability of the actively mode-locked fiber laser.

  3. Ultrashort-pulse lasers based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bezrodnyi, V.I.; Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.; Iatskiv, D.IA.

    1988-01-01

    Results of experimental studies carried out on passively mode-locked and synchronously pumped ultrashort-pulse lasers with cavities based on the Sagnac interferometer are reported. It is shown that the use of the interferometer makes it possible to substantially improve the principal parameters of the ultrashort-pulse laser, such as repeatability, stability, spatial-angular characteristics, and the frequency tuning range. In particular, results are presented for YAG:Nd(3+) and dye lasers with Sagnac interferometers. 10 references.

  4. A Q-Swicthed All-Solid-State Single-Longitudinal-Mode Laser with Adjustable Pulse-Width and High Repetition Rate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; XU Shi-Zhong; HOU Xia; WEI Hui; CHEN Wei-Biao

    2006-01-01

    A single-longitudinal-mode (SLM) laser-diode pumped Nd: YAG laser with adjustable pulse width is developed by using the techniques of pre-lasing and changing polarization of birefingent crystal. The Q-switching voltage is triggered by the peak of the pre-lasing pulse to achieve the higher stability of output pulse energy. The output energy of more than 1mJ is obtained with output energy stability of 3% (rms) at 100 Hz. The pulsewidth can be adjusted from 30ns to 300ns by changing the Q-switching voltage. The probability of putting out single-longitudinal-mode pulses is almost 100%. The laser can be run over four hours continually without mode hopping.

  5. Picosecond pulses of variable duration from a high-power passively mode-locked Nd:YVO(4) laser free of spatial hole burning.

    Science.gov (United States)

    Nadeau, Marie-Christine; Petit, Stéphane; Balcou, Philippe; Czarny, Romain; Montant, Sébastien; Simon-Boisson, Christophe

    2010-05-15

    We report on a high-power passively mode-locked TEM(00)Nd:YVO(4) oscillator, 888 nm diode-pumped, with pulse durations adjustable between 46 ps and 12 ps. The duration tunability was obtained by varying the output coupler (OC) transmission while avoiding resorting to spatial hole burning (SHB) for pulse shortening. At a repetition rate of 91 MHz and for an output power ranging from 15 Wto45 W, we produced SHB-free 12-ps-to32-ps-long pulses. Within this range of power, these are the shortest pulse durations obtained directly from Nd:YVO(4) oscillators.

  6. Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser.

    Science.gov (United States)

    Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V

    2014-01-13

    For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.

  7. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  8. Influences of Excess Oscillation of Voltage Pulse and Discharge Mode on NO Removal Using Barrier-Type Plasma Reactor

    Science.gov (United States)

    Kadowaki, Kazunori; Suzuki, Yoshiaki; Ihori, Haruo; Kitani, Isamu

    This paper presents experimental results of NO removal from a simulated exhausted-gas using a barrier type reactor with screw electrodes subjected to polarity-reversed voltage pulses. The polarity-reversed pulse was produced by direct grounding of a charged coaxial cable because a traveling wave voltage was negatively reflected at the grounding end with a change in its polarity and then it propagated to the plasma reactor at the opposite end. Influence of cable length on NO removal was studied for two kinds of cable connection, single-connected cable and parallel-connected cables. NO removal ratio for a 50m-long cable was lower than that for much shorter cables in both single and parallel connections when the applied voltage became high. Energy efficiency for NO removal also increased with decreasing the cable length. This was because excess discharges during the voltage oscillation caused by the large stored energy in the long cable resulted in reproduction of NO molecules. Energy efficiency was further improved by changing the discharge mode from dielectric barrier discharge (DBD) to surface discharge (SD). Energy efficiency was up to 110g/kWh with 55% NO removal ratio and 34g/kWh with 100% NO removal ratio by using a single 10m-long cable in SD mode.

  9. Grain refinement, hardening and metastable phase formation by high current pulsed electron beam (HCPEB) treatment under heating and melting modes

    Energy Technology Data Exchange (ETDEWEB)

    Grosdidier, T., E-mail: Thierry.grosdidier@univ-metz.f [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zou, J.X. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), Universite Paul Verlaine-Metz, Ile du Saulcy, 57045 Metz (France); Bolle, B. [Laboratoire d' Etude des Textures et Applications aux Materiaux (LETAM, CNRS 3143), ENIM, Ile du Saulcy, 57045 Metz (France); Hao, S.Z.; Dong, C. [Lab of Materials Modification by Laser, Ion and Electron Beams and School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2010-08-15

    High current pulsed electron beam is a recently developed technique for surface modification. The pulsed electron irradiation introduces concentrated energy depositions in the thin surface layer of the treated materials, giving rise to an extremely fast heating and subsequent rapid cooling of the surface together with the formation of dynamic stress waves. Improved surface properties (hardness, corrosion resistance) can be obtained under the 'melting' mode when the top surface is melted and rapidly solidified (10{sup 7} K/s). In steels, this is essentially the result of nanostructures formed from the highly undercooled melt, melt surface purification, strain hardening induced by the thermal stress waves as well as metastable phase selections in the rapidly solidified melted layers. The use of the 'heating' mode is less conventional, combining effects of the heavy deformation and recrystallization/recovery mechanisms. A detailed analysis of a FeAl alloy demonstrates grain size refinement, hardening, solid-state enhanced diffusion and texture modification without modification of the surface geometry.

  10. Percutaneous Treatment of Failed Native Dialysis Fistulas: Use of Pulse-Spray Pharmacomechanical Thrombolysis as the Primary Mode of Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Ki; Shin, Sung Wook; Do, Young Soo; Park, Kwang Bo; Choo, Sung Wook; Choo, In Wook [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Han, Heon; Kim, Sam Soo; Lee, Ji Yeon [Kangwon National University College of Medicine, Kangreung (Korea, Republic of)

    2006-09-15

    To determine the efficacy and outcome of percutaneous treatment in restoring the function of failed native arteriovenous fistulas (AVFs) where pulse-spray pharmacomechanical thrombolysis was used as the primary mode of therapy. From June 2001 to July 2005, 14 patients who had thrombosis of native AVFs underwent percutaneous restoration following 20 episodes of thrombosis. These included 6 repeated episodes in one forearm AVF and two episodes in another forearm AVF. All patients except one were treated with urokinase injection utilizing the pulse-spray technique and had subsequent balloon angioplasty. One patient was treated by percutaneous angioplasty alone. We retrospectively evaluated the feasibility of percutaneous treatment in restoring the function of the failed AVFs. The primary and secondary patencies were calculated by using a Kaplan-Meier analysis. Both technical and clinical success were achieved in 15 (75%) of 20 AVFs. Four of the five technical failures resulted from a failure to cross the occluded segment. One patient refused further participation in the trial through a brachial artery access following failure to cross the occluded segment via an initial retrograde venous puncture. There were no major procedure related complications observed. Including the initial technical failures, primary patency rates at six and 12 months were 64% and 55%, respectively. Secondary patency rates at six and 12 months were 71% and 63%, respectively. Pulse-spray pharmacomechanical thrombolysis for treatment of the thrombosed AVFs is safe, effective and durable. This procedure should be considered as an option for the management of failed AVFs prior to surgical intervention.

  11. Properties of water surface discharge at different pulse repetition rates

    Energy Technology Data Exchange (ETDEWEB)

    Ruma,; Yoshihara, K. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Hosseini, S. H. R., E-mail: hosseini@kumamoto-u.ac.jp; Sakugawa, T.; Akiyama, H. [Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555 (Japan); Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Akiyama, M. [Department of Electrical and Electronic Engineering, Kagoshima University, Kagoshima 890-0065 (Japan); Lukeš, P. [Institute of Plasma Physics, AS CR, Prague, Prague 18200 (Czech Republic)

    2014-09-28

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H₂O₂) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H₂O₂ and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  12. Acne vulgaris in the context of complex medical co-morbities: the management of severe acne vulgaris in a female with retinitis pigmentosa - utilizing pulse dye laser in conjunction with medical therapy.

    Science.gov (United States)

    Shariff, Ayesha; Keck, Laura; Zlotoff, Barrett

    2014-03-17

    Acne vulgaris is a pervasive inflammatory disorder of the skin, with multiple etiologies and treatment options. Although first-line therapies exist, it is often the case that a patient will present with an underlying disorder that prohibits the use of most currently accepted treatment modalities. We present a patient with severe acne vulgaris and a history of retinitis pigmentosa who was treated with 595 nanometer pulsed dye laser therapy, in conjunction with therapeutic alternatives to first-line acne medications. Our patient exhibited a significant and sustained improvement with the combined use of 595 nanometer pulsed dye laser, Yaz (drospirenone-ethinyl estradiol), dapsone, topical metronidazole, sodium-sulfacetamide wash, and topical azelaic acid. The positive results in this case, suggest that this combined treatment modality may serve as an example of a safe and effective treatment alternative in the management of acne vulgaris complicated by medical co-morbidities that contraindicate the use of most first-line treatment options.

  13. Gain engineering for all-optical microwave and high speed pulse generation in mode-locked fiber lasers

    Science.gov (United States)

    Li, Fangxin; Helmy, Amr S.

    2014-03-01

    Pulsed sources based on approaches that employ only photonic components and no RF components will be discussed in this talk. Several technologies have been explored to generate actively mode-locked sources using electronically driven fiber ring cavities. However, for these sources the pulse repetition rate is usually limited by the bandwidth of the intracavity modulator. Filtering of highly-stable low repetition rate optical combs utilizing cavities such as Fabry-Perot etalons can be used to overcome this limitation. This scheme is not flexible as it requires highly precise control of ultrahigh finesse etalons which limits the repetition rate to the free spectral range of the filter. Pulsed sources based on semiconductor devices offer many advantages, including large gain bandwidth, rapid tunability, long-term stability. In this work we introduce a novel, simple method to generate optical clock with wavelength tunability using two continuous wave (CW) lasers. The lasers are injected into a conventional SOAs-based fiber ring laser. The beating signal generated by these two lasers causes the modulation of the SOA gain saturation inside the cavity. Thus, the SOA provides gain and functions as the modulator as well as the gain medium. When the lasing mode inside the cavity is amplified, it also results in gain-induced four wave mixing. The proposed technique is particularly versatile, overcoming the bandwidth limitation of other techniques, which require RF sources. Moreover, this technique provides the possibility for hybrid integration as it is comprised of semiconductor chips that can be heterogeneously integrated on a Si platform.

  14. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode

    Science.gov (United States)

    Khoshkhoo, R.; Jahangirian, A.

    2016-09-01

    A numerical simulation method is employed to investigate the effects of the unsteady plasma body force over the stalled NACA 0015 airfoil at low Reynolds number flow conditions. The plasma body force created by a dielectric barrier discharge actuator is modeled with a phenomenological method for plasma simulation coupled with the compressible Navier-Stokes equations. The governing equations are solved using an efficient implicit finitevolume method. The responses of the separated flow field to the effects of an unsteady body force in various inter-pulses and duty cycles as well as different locations and magnitudes are studied. It is shown that the duty cycle and inter-pulse are key parameters for flow separation control. Additionally, it is concluded that the body force is able to attach the flow and can affect boundary layer grow that Mach number 0.1 and Reynolds number of 45000.

  15. Ultra-fast pulsed microwave plasma breakdown: evidence of various ignition modes

    Science.gov (United States)

    Carbone, Emile; Nijdam, Sander

    2014-02-01

    In this communication, we investigate the ignition of pulsed microwave plasmas in a narrow dielectric tube with an electrodeless configuration. The plasma is generated using a surfatron cavity. The power is modulated as a square wave with a rise-time of 30 ns at variable frequencies from 100 Hz up to 5 MHz. The ignition and plasma propagation inside the 3 mm radius quartz tube are imaged spatially and resolved with nanosecond time resolution using an iCCD camera. The plasma is found to propagate in the form of a front moving from the launcher to the end of the plasma column with the microwave power being gradually absorbed behind it. The velocity of the plasma front decreases while the plasma goes towards a steady state. The ionization front is found to be strongly non-uniform and various structures as a function of the pulse repetition frequency (i.e. power-off time) are shown in the axial and radial directions. At low frequencies, finger-like structures are found. The plasma becomes more hollow at smaller power-off times. At higher repetition frequencies (kHz regime), a critical repetition frequency is found for which the plasma light intensity sharply increases at the head of the propagation front, taking a shape resembling a plasma bullet. This critical frequency depends on the pressure and power. For even higher frequencies, the bullet shape disappears and plasma volume ignition from the launcher to the end of the plasma column is observed. These results bring a new insight into the ignition mechanisms of pulsed microwave plasmas inside dielectric tubes. A wide variety of effects are found which seem to mostly depend on the background ionization degree. Moreover, the results show that only a 3D time-dependent model can, in general, correctly describe the ignition of a pulsed microwave discharge.

  16. Efficacy of treating children with anterior commissure and true vocal fold respiratory papilloma with the 585-nm pulsed-dye laser.

    Science.gov (United States)

    Hartnick, Christopher J; Boseley, Mark E; Franco, Ramon A; Cunningham, Michael J; Pransky, Seth

    2007-02-01

    To report preliminary results regarding the safety and efficacy of the 585-nm pulsed-dye laser (PDL) for the treatment of juvenile-onset recurrent respiratory papillomatosis (JORRP) in the pediatric population. Prospective longitudinal cohort study. Two pediatric otolaryngology referral centers. Twenty-three pediatric patients ranging in age from 6 months to 17 years. The 585-nm PDL was used for at least 1 treatment on each of these patients to treat JORRP of the true vocal folds or anterior commissure. Complications from the use of the 585-nm PDL in the treatment of JORRP. There was no evidence of anterior commissure webbing or true vocal fold scarring in this group of 23 patients followed up for 3 months to 1 year. The 585-nm PDL seems to be a safe instrument for treatment of JORRP. There is the potential that improved voice outcomes may be apparent when compared with traditional therapies because the vocal fold epithelium seems to be unharmed when treated with this method. Furthermore, the lack of epithelial damage incurred by the 585-nm PDL should enable more aggressive surgical excision of anterior commissure disease. Further prospective longitudinal studies examining voice outcomes are needed.

  17. Rapid sintering of MoS2 counter electrode using near-infrared pulsed laser for use in highly efficient dye-sensitized solar cells

    Science.gov (United States)

    Jeong, Hansol; Kim, Jae-Yup; Koo, Bonkee; Son, Hae Jung; Kim, Dongwhan; Ko, Min Jae

    2016-10-01

    Molybdenum disulfide (MoS2) is a promising material for use as a low-cost electrocatalytic counter electrode (CE) in photoelectrochemical dye-sensitized solar cells (DSSCs). However, currently, the MoS2 CEs are generally prepared with a high temperature sintering for the synthesis and crystallization of MoS2. Here, we report a simple and rapid method for the preparation of highly efficient MoS2 CEs. The MoS2 films were synthesized at 70 °C, followed by sintering with a near-infrared (IR) pulsed laser for 1 min. Compared to the conventional heat-sintered MoS2 CE, the laser-sintered CE showed enhanced crystallinity and improved interconnection between the MoS2 particles, resulting in superior electrocatalytic activity towards the I-/I3- redox couple. When used in a DSSC, the laser-sintered MoS2 CE exhibited a higher conversion efficiency (η = 7.19%) compared to that of the heat-sintered CE (η = 5.96%). Furthermore, the laser-sintered CE had a comparable conversion efficiency compared to that of the conventional Pt CE (η = 7.42%).

  18. Bound soliton pulses in a passively mode-locked fibre ring laser

    Institute of Scientific and Technical Information of China (English)

    Zhang Shu-Min; Lü Fu-Yun; Gong Yan-Dong; Zhou Xiao-Qun; Yang Xiu-Feng; Lü Chao

    2005-01-01

    The bound solitons in a passively mode-locked fibre ring laser are observed and their formation mechanism is summarized in this paper. In order to obtain stable bound solitons, a strong CW laser field at the centre of the soliton spectral is necessary to suppress and synchronize the random soliton phase variations.

  19. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    Directory of Open Access Journals (Sweden)

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  20. Pulse mode readout of MEMS bulk disk resonator based mass sensor

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2011-01-01

    We propose a pulse excitation setup applied on a Micro-Electro-Mechanical bulk disk resonator aimed for mass detection. This scheme offers measuring not only the resonant frequency, which defines the mass change, but also the quality factor and the feedthrough/parasitic capacitance of the disk wh...... with a unique input signal within a range of 300kHz. In addition, the readout method is high speed with no complicated feedback configuration. Here we present a full electro-mechanical model, predicting the behavior of the disk, and the model is verified by the experimental results....

  1. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser

    CERN Document Server

    Yang, Heewon; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13-GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz - 10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-walled carbon nanotube (SWCNT)-coated mirrors. To our knowledge, this is the lowest timing jitter optical pulse train with the GHz repetition rate ever measured. If this pulse train is used for direct sampling of 565-MHz signals (Nyquist frequency of the pulse train), the demonstrated jitter level corresponds to the projected effective-number-of-bit (ENOB) of 17.8, which is much higher than the thermal noise limit of 50-ohm load resistance (~14 bits).

  2. The high performance readout chain for the DSSC 1Megapixel detector, designed for high throughput during pulsed operation mode

    Science.gov (United States)

    Kirchgessner, M.; Soldat, J.; Kugel, A.; Donato, M.; Porro, M.; Fischer, P.

    2015-01-01

    The readout chain of the DSSC 1M pixel detector currently built at DESY, Hamburg for the European X-Ray Free Electron Laser is described. The system operates in pulsed operation mode comparable to the new ILC. Each 0.1 seconds 800 images of 1M pixels are produced and readout by the DSSC DAQ electronics. The total data production rate of the system is about 134 Gbit/s. In order to deal with the high data rates, latest technology components like the Xilinx Kintex 7 FPGA are used to implement fast DDR3-1600 image buffers, high speed serial FPGA to FPGA communication and 10 GB Ethernet links concentrated in one 40 Gbit/s QSFP+ transceiver.

  3. ANALYTICAL EXPRESSION FOR THE ELECTRIC FIELD OF THE SINGLE MODE LASER HOMOGENEOUS BROADENING IN THE PULSE REGIME

    Directory of Open Access Journals (Sweden)

    S. Ayadi

    2015-07-01

    Full Text Available The simplest model of the laser is that of a single mode system homogenously broadened. The dynamical behavior of this laser is described by three differential equations, called Haken-Lorenz equations[1],  similar to the Lorenz model [1] already known to predict deterministic chaos. In previous recent work [5-7] we have proposed a simple harmonic expansion method to obtain a series of harmonics terms that yield analytical solutions to the laser equations. ¶This method allows us to derive an analytical expression of the laser field amplitude  when this last  undergoes a  periodic oscillations around zero mean value. We also obtain an analytical expression of the pulsing frequency.

  4. Influences of edge localized mode-like pulsed plasma bombardment on deuterium retention in tungsten

    Science.gov (United States)

    Nishijima, D.; Kikuchi, Y.; Nakatsuka, M.; Baldwin, M. J.; Doerner, R. P.; Nagata, M.; Ueda, Y.

    2011-12-01

    Deuterium (D) retention in tungsten (W) subjected to pulsed D plasma bombardment (surface absorbed energy density Q ~0.5-0.7 MJ m-2 at ~0.3-0.5 ms) has been investigated in a magnetized coaxial plasma gun. A high temperature desorption peak of D2 appears at ~1000-1100 K following transients at ~0.5 MJ m-2. At a higher Q ~0.7 MJ m-2, the total amount of D retained in W is significantly reduced. Nano-sized helium (He) bubbles, created by steady-state He plasma pre-exposure at ~573 K, slightly lower D retention, while a significant reduction is observed for a W fuzzy surface formed by steady-state high temperature (~1100 K) He plasma pre-exposure.

  5. Generation of "gigantic" ultra-short microwave pulses based on passive mode-locking effect in electron oscillators with saturable absorber in the feedback loop

    Science.gov (United States)

    Ginzburg, N. S.; Denisov, G. G.; Vilkov, M. N.; Zotova, I. V.; Sergeev, A. S.

    2016-05-01

    A periodic train of powerful ultrashort microwave pulses can be generated in electron oscillators with a non-linear saturable absorber installed in the feedback loop. This method of pulse formation resembles the passive mode-locking widely used in laser physics. Nevertheless, there is a specific feature in the mechanism of pulse amplification when consecutive energy extraction from different fractions of a stationary electron beam takes place due to pulse slippage over the beam caused by the difference between the wave group velocity and the electron axial velocity. As a result, the peak power of generated "gigantic" pulses can exceed not only the level of steady-state generation but also, in the optimal case, the power of the driving electron beam.

  6. Generation of ultrashort pulses with minimum duration of 90\\ {\\text{fs}} in a hybrid mode-locked erbium-doped all-fibre ring laser

    Science.gov (United States)

    Dvoretskiy, D. A.; Sazonkin, S. G.; Voropaev, V. S.; Negin, M. A.; Leonov, S. O.; Pnev, A. B.; Karasik, V. E.; Denisov, L. K.; Krylov, A. A.; Davydov, V. A.; Obraztsova, E. D.

    2016-11-01

    Regimes of ultrashort pulse generation in an erbium-doped all-fibre ring laser with hybrid mode locking based on single-wall carbon - boron nitride nanotubes and the nonlinear Kerr effect in fibre waveguides are studied. Stable dechirped ultrashort pulses are obtained with a duration of ˜ 90 {\\text{fs}}, a repetition rate of ˜ 42.2 {\\text{MHz}}, and an average output power of ˜ 16.7 {\\text{mW}}, which corresponds to a pulse energy of ˜ 0.4 {\\text{nJ}} and a peak laser power of ˜ 4.4 {\\text{kW}}.

  7. Passive mode lockers for lasers generating at a wavelength of 1.06 micron

    Science.gov (United States)

    Mikhailov, V. P.; Demchuk, M. I.; Lugovskii, A. P.; Sosnovskii, G. M.; Iumashev, K. V.

    1983-04-01

    New polymethine dyes that can be used for the passive mode locking of lasers generating at 1.06 micron are investigated using YAG:Nd as the active element. The effect of introducing various substituents into the heterocyclic nuclei of the end groups of polymethine dyes is discussed. It is shown that substituents generally increase the energy of the ultrashort pulse while also increasing its length.

  8. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuchen [State Key Lab for Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Zhou, Xue [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Liu, Jason X. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, Berkeley, California 94720 (United States); Anders, André, E-mail: aanders@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  9. Feature Extraction for the Wrist-pulse-signals in Traditional Chinese Medicine by Ensemble Empirical Mode Decomposition

    Institute of Scientific and Technical Information of China (English)

    向程; 覃开蓉

    2008-01-01

    @@ Pulse diagnosis plays a vital role in Traditional Chinese Medicine (TCM). To extract effective and properfeatures from the wrist-pulse-signals is a crucial step for the recognition and classification of the pulse signals.

  10. Superficial hemangioma is better treated by topical 5-aminolevulinic followed by 595-nm pulsed dye laser therapy rather than 595-nm laser therapy alone.

    Science.gov (United States)

    Zeng, Ming; Shen, Songke; Chen, Wei; Yang, Chunjun; Liu, ShengXiu

    2017-08-16

    The aim of this study was to compare the efficacy and adverse effects of a 595-nm pulsed dye laser therapy alone (PDL alone) with a 5-aminolevulinic (5-ALA) local application followed by a 595-nm PDL (5-ALA PDL) in the treatment of superficial hemangioma (SH). A prospectively randomized study in 181 patients with SH was carried out over a period of 24 months. One hundred and ninety-three patients were seen. One hundred and eighty-one patients with SH were enrolled, of which 165 completed final follow-up. One hundred and nineteen patients received PDL alone and 46 received 5-ALA PDL. The patients were assessed clinically and the patient's parents were given a satisfaction questionnaire. Baseline patient data (gender, lesion size, lesion site, treatment times, cure rate, and adverse reactions) were recorded and the results of the treatment of the two groups were analyzed and compared. Complete clearing of the lesion (recovery grade 4) was achieved in 44/119 (37.0%) of the PDL alone group and 31/46 (67.4%) of the 5-ALA PDL group (X (2) = 10.30, p < 0.001). Atrophic scars, hyper- and hypopigmentation occurred in both groups (X (2) = 3.32, p = 0.564). The patients' parents' satisfaction was greater in the 5-ALA PDL group. The clinical outcome of 5-ALA PDL was superior to that of PDL alone in the treatment of SH and only minor adverse events occurred in each group.

  11. Nd:YAG and pulsed dye laser therapy in infantile haemangiomas: a retrospective analysis of 271 treated haemangiomas in 149 children.

    Science.gov (United States)

    Hartmann, F; Lockmann, A; Grönemeyer, L-L; Haenssle, H A; Zutt, M; von Fintel, H; Kühnle, I; Schön, M P; Thoms, K-M

    2017-08-01

    Infantile haemangiomas (IH) are common benign tumours in infancy. Most IH resolve spontaneously, but some require treatment due to ulceration, functional impairment or cosmetic disfiguration. While systemic propranolol is effective in many cases, laser therapy may be a safe topical alternative. To assess the efficacy of combined Nd:YAG/pulsed dye laser (PDL) or PDL alone for therapy of IH. A total of 271 IH in 149 infants were treated with combined Nd:YAG/PDL or PDL alone. Based on photographs before and 4-6 weeks after the last treatment, the results were evaluated independently by three physicians. Remissions were categorized as 0-25% (I), 26-50% (II), 51-75% (III) and 76-100% (IV). In total, 472 laser treatments were performed. In 137 of 149 infants (91.9%) laser therapy was performed during a short sevoflurane mask anaesthesia, while 12 of 149 infants (8.1%) received topical anaesthetic gel. Combined Nd:YAG/PDL was applied in 187 of 271 IH (69.0%), while PDL alone in 84 of 271 IH (31.0%). On average, 1.74 treatments per IH were necessary (Nd:YAG/PDL: 1.95, PDL: 1.26). Moderate or strong (III/IV) improvement was observed in 92.4% of all IH treated. No serious adverse effects were observed. Combined Nd:YAG/PDL therapy is an effective and well-tolerated local treatment option for IH of any classification, in any phase of development and at any age. With regard to the systemic use of propranolol, combined Nd:YAG/PDL therapy seems a safe and promising alternative in many cases. © 2016 European Academy of Dermatology and Venereology.

  12. Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity

    Science.gov (United States)

    Dikandé, Alain M.; Voma Titafan, J.; Essimbi, B. Z.

    2017-10-01

    The transition dynamics from continuous-wave to pulse regimes of operation for a generic model of passively mode-locked lasers with saturable absorbers, characterized by an active medium with non-Kerr nonlinearity, are investigated analytically and numerically. The system is described by a complex Ginzburg–Landau equation with a general m:n saturable nonlinearity (i.e {I}m/{(1+{{Γ }}I)}n, where I is the field intensity and m and n are two positive numbers), coupled to a two-level gain equation. An analysis of stability of continuous waves, following the modulational instability approach, provides a global picture of the self-starting dynamics in the system. The analysis reveals two distinct routes depending on values of the couple (m, n), and on the dispersion regime: in the normal dispersion regime, when m = 2 and n is arbitrary, the self-starting requires positive values of the fast saturable absorber and nonlinearity coefficients, but negative values of these two parameters for the family with m = 0. However, when the spectral filter is negative, the laser can self-start for certain values of the input field and the nonlinearity saturation coefficient Γ. The present work provides a general map for the self-starting mechanisms of rare-earth doped figure-eight fiber lasers, as well as Kerr-lens mode-locked solid-state lasers.

  13. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren

    2006-01-01

    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  14. An optical pulse width modulation generator based on the injection-locking property of single mode FP-LD

    Science.gov (United States)

    Tran, Quoc Hoai; Nakarmi, Bikash; Won, Yong Hyub

    2013-03-01

    A novel simple optical pulse width modulation generator (OPWMG) based on injection-locking property of a single mode FP-LD (SMFP-LD) has been proposed and experimentally verified. The OPWMG consists of a SMFP-LD (which acts as comparator), an optical sinusoidal wave source (analog input), and a continuous optical beam (control signal). The power required for fully injection-locking the SMFP-LD acts as the referent power whereas the combination power of continuous optical beam and analog optical sinusoidal signals work as control signals for changing the duty cycle of the proposed OPWMG. The presence of only continuous optical beam is not sufficient to suppress the dominant mode of SMFP-LD with high ON/OFF contrast ratio; however, the application of additional sinusoidal wave of constant amplitude and frequency, the dominant mode of SMFP-LD can be suppressed for the certain time window. Since, injection-locking power is dependent with the combined power of input injected continuous beam and sinusoidal optical wave, the time window of injection-locking can be varied by changing input beam power which provides different duty cycle of 13% to 68% at the output. Current available schemes for generating PWM signals are in electrical domain, hence, they need to convert electrical signals into optical domain by using expensive O/E converters for application in optical control and signal processing. The proposed OPWMG scheme has several advantages, such as low cost, low power consumption (~0.5 mW) which can be used for various applications where the effect of EMI/EMR is considered as an important factor such as control circuit for high voltage converters in power plant and electrical vehicles.

  15. Pulse-Width Saturation and Kelly-Sideband Shift in a Graphene-Nanosheet Mode-Locked Fiber Laser with Weak Negative Dispersion

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Chi, Yu-Chieh; Wu, Chung-Lun; Lo, Jui-Yung; Lin, Gong-Ru

    2015-04-01

    The optimized soliton mode locking of the erbium-doped fiber laser (EDFL) and its pulse-shortening dynamic with the graphene nanosheet is demonstrated by precisely detuning the weakly negative group-delay dispersion (GDD) and maintaining strong self-phase-modulation (SPM), to obtain the shortest pulse width of 449 fs with a spectral linewidth of 6.02 nm. The pulse evolution with the mode-locking mechanism changing from the self-amplitude-modulation of the saturable absorber, to the soliton compression caused by the GDD and SPM is experimentally and numerically investigated in detail. Under high pumping powers, the enlarged up-chirp inside the EDFL cavity can induce a significant Kelly-sideband shift of up to 0.5 nm. The passively-mode-locked EDFL pulse width is controllable by detuning the GDD and SPM parameters, so that the pulse width can be compressed from 642 to 449 fs while reducing the negative GDD from -0.354 to -0.154 ps2 . The compression ratio can be also improved by strengthening the SPM at this stage.

  16. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  17. Generation of soliton and bound soliton pulses in mode-locked erbium-doped fiber laser using graphene film as saturable absorber

    Science.gov (United States)

    Haris, H.; Harun, S. W.; Anyi, C. L.; Muhammad, A. R.; Ahmad, F.; Tan, S. J.; Nor, R. M.; Zulkepely, N. R.; Ali, N. M.; Arof, H.

    2016-04-01

    We report an observation of soliton and bound-state soliton in passive mode-locked fibre laser employing graphene film as a passive saturable absorber (SA). The SA was fabricated from the graphene flakes, which were obtained from electrochemical exfoliation process. The graphene flakes was mixed with polyethylene oxide solution to form a polymer composite, which was then dried at room temperature to produce a film. The film was then integrated in a laser cavity by attaching it to the end of a fibre ferrule with the aid of index matching gel. The fibre laser generated soliton pulses with a 20.7 MHz repetition rate, 0.88 ps pulse width, 0.0158 mW average output power, 0.175 pJ pulse energy and 18.72 W peak power at the wavelength of 1564 nm. A bound soliton with pulse duration of ~1.04 ps was also obtained at the pump power of 110.85 mW by carefully adjusting the polarization of the oscillating laser. The formation of bound soliton is due to the direct pulse to pulse interaction. The results show that the proposed graphene-based SA offers a simple and cost efficient approach of generating soliton and bound soliton in mode-locked EDFL set-up.

  18. Generation of 10 GHz transform-limited pulse train from dual-pump mode-locking erbium-doped fiber laser

    Science.gov (United States)

    He, Li; Yang, Bojun; Zhang, Xiaoguang; Yu, Li

    2006-09-01

    A dual-pump 10 GHz mode-locking erbium-doped fiber laser was demonstrated. With 10-GHz signal modulation of the modulator, less than 12 ps mode-locked pulse at 10 GHz repetition rate with 1.097 mW average output power was obtained. The corresponding spectrum width is 0.277 nm, which is centered at 1561 nm. The corresponding product of time and bandwidth is Δv*Δt which equals 0.433. Gaussian pulse shape is assumed, the output pulse is almost transform limited. Compared with single-pump fiber ring laser, the dual-pump fiber ring laser is helpful for suppression of supermode noise, which make this kind of fiber ring laser more stable.

  19. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A.J.; Zhu, L.; Israelsen, Stine Møller;

    2015-01-01

    We present an Yb-fiber oscillator with an all-polarization-maintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity......, in contrast to dispersion compensation schemes used in previous demonstrations of all-polarization maintaining Yb-fiber oscillators. The performance of the saturable absorber mirror modelocked oscillator, that employs a free space scheme for coupling onto the saturable absorber mirror and output coupling......-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses...

  20. Characterization of nonlinear saturation and mode-locking potential of ionically-doped colored glass filter for short-pulse fiber lasers.

    Science.gov (United States)

    Zhang, M; Kelleher, E J R; Popov, S V; Taylor, J R

    2013-05-20

    The nonlinear saturable absorption of an ionically-doped colored glass filter is measured directly using a Z-scan technique. For the first time, we demonstrate the potential of this material as a saturable asborber in fiber lasers. We achieve mode-locking of an ytterbium doped system. Mode-locking of cavities with all-positive and net-negative group velocity dispersion are demonstrated, achieving pulse durations of 60 ps and 4.1 ps, respectively. This inexpensive and optically robust material, with the potential for broadband operation, could surplant other saturable absorber devices in affordable mode-locked fiber lasers.

  1. B-Mode and pulsed Doppler sonography of kidney in healthy sheep according to age

    Directory of Open Access Journals (Sweden)

    Bianca P. Santarosa

    2016-06-01

    Full Text Available Abstract: There is no standardization in the literature of kidney length in sheep at different ages, as there are few studies about the access with the Doppler triplex ultrasound for the renal vascularization in this species. Eighty healthy sheep of three age groups of Ile de France and White Dorper breed were used: 20 lambs, 30 yearlings and 30 adults (8 rams and 22 ewes. Renal healthiness of the animals was confirmed by serum biochemical tests of urea and creatinine, and by observation of renal architecture with conventional ultrasound, besides measurement of vital parameters. A portable ultrasound (My LabTM30 Vet Gold Esaote®, Esaote Healthcare device was used, with a convex transducer with 3.5MHz frequency. After identification of the kidneys in two-dimensional mode, the measurement of length in the sagittal section was performed in all sheep (n=80. Then color Doppler was activated for visualization of renal and interlobar arteries of the right kidney, and the resistivity index (RI of the yearlings (n=30 and ewes (n=22 was measured. Biochemical tests remained within normal limits and renal architecture was preserved. The values of the right and left renal length were different between the groups, increasing with age (4.34cm and 4.31cm in lambs; 6.08cm and 6.23cm in yearlings; 7.57cm and 7.37cm in adults, respectively. Median values of RI of the renal artery were statistically different (p<0.05 between the groups of yearlings (0.57 and ewes (0.52. The median RI of the interlobar artery was similar in yearlings (0.58 and ewes (0.54.

  2. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    Science.gov (United States)

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications.

  3. [Tattooing dyes].

    Science.gov (United States)

    Lehmann, G; Pierchalla, P

    1988-01-01

    Nine different tattoo dyes were analysed by various tests. Mixtures of organic dyes and inorganic filler were found; the inorganic filler consisted mainly of titanium dioxide (TiO2). Heavy metals, e.g. mercury, cadmium, or chrome as the common components of the traditional tattoo dyes, are capable of evoking unwanted skin reactions, but were not detected. Tattoo dyes are not officially controlled, and thus it is not known which substances-in addition to those identified by us-are presently used to produce ornamental tattoos. However, our results suggest that classic dyes have been superceded by newer, mainly synthetic dyes.

  4. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-01

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into ``coffee'' rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly

  5. Characterization of continuous and pulsed emission modes of a hybrid micro focus x-ray source for medical imaging applications

    Science.gov (United States)

    Ghani, Muhammad U.; Wong, Molly D.; Ren, Liqiang; Wu, Di; Zheng, Bin; Rong, John. X.; Wu, Xizeng; Liu, Hong

    2017-05-01

    The aim of this study was to quantitatively characterize a micro focus x-ray tube that can operate in both continuous and pulsed emission modes. The micro focus x-ray source (Model L9181-06, Hamamatsu Photonics, Japan) has a varying focal spot size ranging from 16 μm to 50 μm as the source output power changes from 10 to 39 W. We measured the source output, beam quality, focal spot sizes, kV accuracy, spectra shapes and spatial resolution. Source output was measured using an ionization chamber for various tube voltages (kVs) with varying current (μA) and distances. The beam quality was measured in terms of half value layer (HVL), kV accuracy was measured with a non-invasive kV meter, and the spectra was measured using a compact integrated spectrometer system. The focal spot sizes were measured using a slit method with a CCD detector with a pixel pitch of 22 μm. The spatial resolution was quantitatively measured using the slit method with a CMOS flat panel detector with a 50 μm pixel pitch, and compared to the qualitative results obtained by imaging a contrast bar pattern. The focal spot sizes in the vertical direction were smaller than that of the horizontal direction, the impact of which was visible when comparing the spatial resolution values. Our analyses revealed that both emission modes yield comparable imaging performances in terms of beam quality, spectra shape and spatial resolution effects. There were no significantly large differences, thus providing the motivation for future studies to design and develop stable and robust cone beam imaging systems for various diagnostic applications.

  6. Ultrasound assisted enhancement in natural dye extraction from beetroot for industrial applications and natural dyeing of leather.

    Science.gov (United States)

    Sivakumar, Venkatasubramanian; Anna, J Lakshmi; Vijayeeswarri, J; Swaminathan, G

    2009-08-01

    There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 degrees C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol-water with 80W ultrasonic power for 3h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80W as compared to MS process both using 1:1 ethanol-water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from

  7. Comparison of 532 nm Potassium Titanyl Phosphate Laser and 595 nm Pulsed Dye Laser in the Treatment of Erythematous Surgical Scars: A Randomized, Controlled, Open-Label Study.

    Science.gov (United States)

    Keaney, Terrence C; Tanzi, Elizabeth; Alster, Tina

    2016-01-01

    The pulsed dye laser (PDL) has long been used for treatment of erythematous and hypertrophic scars. Its effectiveness has been attributed in large part to its vascular-specificity. The vascular-specific potassium titanyl phosphate (KTP) laser has also been reported to be clinically effective for scars, but has not been compared to the PDL. To compare the safety and clinical efficacy of a 532-nm KTP laser versus a 595-nm PDL in improving the appearance of erythematous surgical scars. Twenty patients with matched bilateral erythematous surgical scars or a single linear erythematous scar measuring longer than 5 cm were enrolled in the study. Single scars were divided into equal halves with each half randomized to receive 3 successive treatments at 6-week intervals with either a 532-nm KTP laser (Excel V; Brisbane, CA) or a 595-nm PDL (Cynergy; Cynosure Inc., Chelmsford, MA) at equivalent laser parameters. Bilateral matched scars were similarly randomized to receive three 532-nm KTP or 595-nm PDL treatments. Clinical efficacy was evaluated 12 weeks after the third (final) laser treatment by independent, blinded photographic scar assessments. Secondary evaluations included final investigator and subject treatment/satisfaction assessments, Vancouver scar scale (VSS) scores, subject scar symptoms, intraoperative pain scores, and incidence of side effects. Clinical improvement of erythematous surgical scars was observed with both 532-nm KTP and 595-nm PDL systems. No statistically significant differences between the 2 treatment arms were noted in the independent, blinded photographic scar assessments, investigator and subject treatment/satisfaction assessments, subject scar symptoms, and intraoperative pain scores. The KTP arm produced statistically significant improvement for the vascularity component of the VSS only. Side effects were limited to mild treatment discomfort and minimal transient post-treatment erythema and purpura. No vesiculation, infection, scarring or

  8. Treatment of port wine stains with pulsed dye laser: a retrospective study of 848 cases in Shandong Province, People’s Republic of China

    Directory of Open Access Journals (Sweden)

    Shi W

    2014-12-01

    Full Text Available Wenhao Shi,1–3 Jinliang Wang,4,5 Yan Lin,4,5 Jianhui Geng,4,5 Haixia Wang,4,5 Yueqin Gong,4,5 Huaxu Liu,1,4,5 Furen Zhang1–4 1Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, 2Shandong Provincial Key Lab for Dermatovenereology, 3School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 4Shandong Provincial Hospital for Skin Diseases, Shandong University, 5Shandong Provincial Medical Center for Dermatovenereology, Jinan, Shandong, People’s Republic of China Background: Currently, 595 nm pulsed dye laser (PDL therapy is offered as one of the effective treatments of port wine stains (PWSs. However, the efficacy of PDL differs in different populations.Objective: The purpose of the study was to investigate the efficacy, and related factors, of 595 nm PDL in the treatment of PWSs in Chinese patients with skin type III to IV. Methods: A total of 848 cases that were treated with PDL were enrolled and analyzed in this study. An independent dermatologist evaluated these lesions according to the before and after photographs.Results: The response rate (RR of all the 848 PWS patients was 69.9%, within which the cure rate was 6.3%. The patients aged ≤1 year had the highest RR (93.9%, whereas those treated after age 50 reacted the worst (RR =25%. We analyzed the anatomical distribution of the lesion and found that the temporal region had the highest lesion clearance (RR =75.3%, while the extremities had the lowest clearance (RR =44.5%. Compared with the patients whose lesion size was larger than 80 cm2, the patients with small lesion size, of 0–20 cm2, had better clinical effect (RR =73.8% vs 53.2%. The reactions of the patients with hyperplastic lesion were worse than those with red patches (RR =36.4% vs 71.7%. As well, increasing treatment numbers could achieve higher clearance rates (P=0.005.Conclusion: The PDL had a relatively high RR but a low clearance

  9. 50-GHz repetition-rate, 280-fs pulse generation at 100-mW average power from a mode-locked laser diode externally compressed in a pedestal-free pulse compressor

    Science.gov (United States)

    Tamura, Kohichi R.; Sato, Kenji

    2002-07-01

    280-fs pedestal-free pulses are generated at average output powers exceeding 100 mW at a repetition rate of 50 GHz by compression of the output of a mode-locked laser diode (MLLD) by use of a pedestal-free pulse compressor (PFPC). The MLLD consists of a monolithically integrated chirped distributed Bragg reflector, a gain section, and an electroabsorption modulator. The PFPC is composed of a dispersion-flattened dispersion-decreasing fiber and a dispersion-flattened dispersion-imbalanced nonlinear optical loop mirror. Frequency modulation for linewidth broadening is used to overcome the power limitation imposed by stimulated Brillouin scattering.

  10. Pulsed and CW adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser system for surgical laser soft tissue ablation applications.

    Science.gov (United States)

    Huang, Yize; Jivraj, Jamil; Zhou, Jiaqi; Ramjist, Joel; Wong, Ronnie; Gu, Xijia; Yang, Victor X D

    2016-07-25

    A surgical laser soft tissue ablation system based on an adjustable 1942 nm single-mode all-fiber Tm-doped fiber laser operating in pulsed or CW mode with nitrogen assistance is demonstrated. Ex vivo ablation on soft tissue targets such as muscle (chicken breast) and spinal cord (porcine) with intact dura are performed at different ablation conditions to examine the relationship between the system parameters and ablation outcomes. The maximum laser average power is 14.4 W, and its maximum peak power is 133.1 W with 21.3 μJ pulse energy. The maximum CW power density is 2.33 × 106 W/cm2 and the maximum pulsed peak power density is 2.16 × 107 W/cm2. The system parameters examined include the average laser power in CW or pulsed operation mode, gain-switching frequency, total ablation exposure time, and the input gas flow rate. The ablation effects were measured by microscopy and optical coherence tomography (OCT) to evaluate the ablation depth, superficial heat-affected zone diameter (HAZD) and charring diameter (CD). Our results conclude that the system parameters can be tailored to meet different clinical requirements such as ablation for soft tissue cutting or thermal coagulation for future applications of hemostasis.

  11. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Kan WU; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  12. Dye Painting!

    Science.gov (United States)

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  13. Dye Painting!

    Science.gov (United States)

    Johnston, Ann

    This resource provides practical instructions for applying color and design directly to fabric. Basic information about the dye painting process is given. The guide addresses the technical aspects of fabric dye and color use and offers suggestions for fabric manipulation and dye application in order to achieve various design effects. This…

  14. High energy, 1572.3 nm pulses for CO2 LIDAR from a polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier.

    Science.gov (United States)

    Nicholson, J W; DeSantolo, A; Yan, M F; Wisk, P; Mangan, B; Puc, G; Yu, A W; Stephen, M A

    2016-08-22

    We demonstrate the first polarization-maintaining, very-large-mode-area, Er-doped fiber amplifier with ~1100 μm2 effective area. The amplifier is core pumped by a Raman fiber laser and is used to generate single-frequency, one-microsecond, pulses with pulse energy of 541 μJ, peak power of 700 W, M2 of 1.1, and polarization extinction > 20 dB. The amplifier operates at 1572.3 nm, a wavelength useful for trace atmospheric CO2 detection.

  15. The non-destructive threshold of the graphite surface by STM in the ultra-fast pulse mode

    Institute of Scientific and Technical Information of China (English)

    Xu Chun-Kai; Wei Zheng; Chen Xiang-Jun; Xu Ke-Zun

    2007-01-01

    In this paper single ultra-fast voltage pulses are introduced to the Pt/Ir tip of a scanning tunnelling microscope (STM),and the non-destructive threshold of the graphite surface is studied systematically in a wide range of pulse durations(from 104 to 8 ns).Considering the waveform distortion of the pulses at the tunnelling region,this paper gives the corrected threshold curve of pulse amplitude depending on pulse duration.A new explanation of threshold power has been suggested and fits the experimental results well.

  16. [INVITED] On the mechanisms of single-pulse laser-induced backside wet etching

    Science.gov (United States)

    Tsvetkov, M. Yu.; Yusupov, V. I.; Minaev, N. V.; Akovantseva, A. A.; Timashev, P. S.; Golant, K. M.; Chichkov, B. N.; Bagratashvili, V. N.

    2017-02-01

    Laser-induced backside wet etching (LIBWE) of a silicate glass surface at interface with a strongly absorbing aqueous dye solution is studied. The process of crater formation and the generated optoacoustic signals under the action of single 5 ns laser pulses at the wavelength of 527 nm are investigated. The single-pulse mode is used to avoid effects of incubation and saturation of the etched depth. Significant differences in the mechanisms of crater formation in the "soft" mode of laser action (at laser fluencies smaller than 150-170 J/cm2) and in the "hard" mode (at higher laser fluencies) are observed. In the "soft" single-pulse mode, LIBWE produces accurate craters with the depth of several hundred nanometers, good shape reproducibility and smooth walls. Estimates of temperature and pressure of the dye solution heated by a single laser pulse indicate that these parameters can significantly exceed the corresponding critical values for water. We consider that chemical etching of glass surface (or molten glass) by supercritical water, produced by laser heating of the aqueous dye solution, is the dominant mechanism responsible for the formation of crater in the "soft" mode. In the "hard" mode, the produced craters have ragged shape and poor pulse-to-pulse reproducibility. Outside the laser exposed area, cracks and splits are formed, which provide evidence for the shock induced glass fracture. By measuring the amplitude and spectrum of the generated optoacoustic signals it is possible to conclude that in the "hard" mode of laser action, intense hydrodynamic processes induced by the formation and cavitation collapse of vapor-gas bubbles at solid-liquid interface are leading to the mechanical fracture of glass. The LIBWE material processing in the "soft" mode, based on chemical etching in supercritical fluids (in particular, supercritical water) is very promising for structuring of optical materials.

  17. 脉冲染料激光治疗鲜红斑痣的临床疗效分析%Analysis of therapeutic effect of pulse dye laser in the treatment of port wine stains

    Institute of Scientific and Technical Information of China (English)

    谭志建; 童晓荣; 刘凌; 万兴祥

    2001-01-01

    利用脉冲染料激光器治疗了l617例鲜红斑痣患者,并从年龄的大小、皮损类型、面积大小、发生的部位及副作用进行了分组观察研究。其年龄小、淡红型皮损,面积小、发生于颈部、面部偏侧者疗效显著。1617例中仅有l例下唇发生 轻度增生性瘢痕。由此认为脉冲染料激光是目前治疗鲜红斑痣安全有效的方法。%One thousand six hundred and seventeen patients with port winestains were treated with the pulsed dye laser in the Laser Center. The patients were analysed according to the ages of patients type, size and location of the lesions, and side effects of the treatment. It was found that the therapeutic effect was better in patients with younger age, the lesions with light red color, small size and located on the neck and one side of the face. Mild hypertrophic scar occurred in one patient among 1617 patients treated. The conclusion is that the pulsed dye laser is a safe and effective method for the treatment of port wine stains.

  18. A fast and quantitative evaluation of the Aspergillus fumigatus biofilm adhesion properties by means of digital pulsed force mode

    Energy Technology Data Exchange (ETDEWEB)

    Maiorana, Alessandro [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Papi, Massimiliano, E-mail: m.papi@rm.unicatt.it [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Bugli, Francesca; Torelli, Riccardo [Istituto di Microbiologia, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Maulucci, Giuseppe [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); Cacaci, Margherita; Posteraro, Brunella; Sanguinetti, Maurizio [Istituto di Microbiologia, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy); De Spirito, Marco [Istituto di Fisica, Università Cattolica del S. Cuore, L. go F. Vito 1, 00168 Roma (Italy)

    2013-08-15

    The opportunistic pathogenic mould Aspergillus fumigatus (A. fumigatus) is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network embedded in an extracellular matrix (ECM) meanly composed by polysaccharides, melanin, proteins. Because adhesion properties is one primary factor affecting the balance between growth, detachment and biofilm formation, its quantification is essential in understanding, predicting, and modelling biofilm development. Atomic force microscopy (AFM) imaging and force spectroscopy have recently opened a range of novel applications in microbiology including the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes. Nevertheless, the principal disadvantage of this approach is the relatively slow acquisition rate that makes AFM is not able to detect fast dynamics. In this study we demonstrated that digital pulsed force mode (DPFM) atomic force microscopy can be used to obtain high-resolution topographical images and to quantify the adhesion properties of the A. fumigatus biofilm with an high acquisition rate. Here we show by means of DPFM-AFM that Alginate Lyase (AlgL), an enzyme known to reduce negatively charged alginate levels in microbial biofilm, is able to reduce the biofilm adhesion forces forming several nano-fractures in the ECM. These results suggest that the AlgL could used to enhance the antifungal drugs transit through the ECM.

  19. A fast and quantitative evaluation of the Aspergillus fumigatus biofilm adhesion properties by means of digital pulsed force mode

    Science.gov (United States)

    Maiorana, Alessandro; Papi, Massimiliano; Bugli, Francesca; Torelli, Riccardo; Maulucci, Giuseppe; Cacaci, Margherita; Posteraro, Brunella; Sanguinetti, Maurizio; De Spirito, Marco

    2013-08-01

    The opportunistic pathogenic mould Aspergillus fumigatus (A. fumigatus) is an increasing cause of morbidity and mortality in immunocompromised and in part immunocompetent patients. A. fumigatus can grow in multicellular communities by the formation of a hyphal network embedded in an extracellular matrix (ECM) meanly composed by polysaccharides, melanin, proteins. Because adhesion properties is one primary factor affecting the balance between growth, detachment and biofilm formation, its quantification is essential in understanding, predicting, and modelling biofilm development. Atomic force microscopy (AFM) imaging and force spectroscopy have recently opened a range of novel applications in microbiology including the imaging and manipulation of membrane proteins at the subnanometer level, the observation of the surface of living cells at high resolution, the mapping of local properties such as surface charges, the measurement of elastic properties of cell-surface constituents and the probing of cellular interactions using functionalized probes. Nevertheless, the principal disadvantage of this approach is the relatively slow acquisition rate that makes AFM is not able to detect fast dynamics. In this study we demonstrated that digital pulsed force mode (DPFM) atomic force microscopy can be used to obtain high-resolution topographical images and to quantify the adhesion properties of the A. fumigatus biofilm with an high acquisition rate. Here we show by means of DPFM-AFM that Alginate Lyase (AlgL), an enzyme known to reduce negatively charged alginate levels in microbial biofilm, is able to reduce the biofilm adhesion forces forming several nano-fractures in the ECM. These results suggest that the AlgL could used to enhance the antifungal drugs transit through the ECM.

  20. Generation of Stable Picosecond Chirp-Free Pulses at 10 GHz from a Nonpolarization Maintaining Regeneratively Mode-Locked Fibre Laser

    Institute of Scientific and Technical Information of China (English)

    TAN Bin; LI Zhi-Yong; WANG Zhao-Ying; GE Chun-Feng; JIA Dong-Fang; NI Wen-Jun; LI Shi-Chen

    2004-01-01

    @@ A 10 GHz regeneratively mode-lockedfibre laser (RMLFL) at 1550nm constructed with commercially available radio frequency components is presented. Chirp-free hyperbolic secant pulses with duration from 4.4ps to 8ps and output reaching 3.6 mW are acquired. Without any cavity length or polarization maintaining mechanism,the error-free operation of this RMLFL can be carried out in room temperature.

  1. Piezoelectric-transducer-based optoelectronic frequency synchronizer for control of pulse delay in a femtosecond passively mode-locked Ti:sapphire laser.

    Science.gov (United States)

    Un, Gong-Ru; Chang, Yung-Cheng; Liu, Tze-An; Pan, Ci-Ling

    2003-05-20

    We propose a piezoelectric transducer-(PZT-) based optoelectronic frequency synchronizer to control simultaneously change in the repetition rate, the relative pulse delay, and the phase noise of a passively mode-locked femtosecond Ti:sapphire laser with an intracavity saturable Bragg reflector absorber with respect to an electronic frequency reference. An optoelectronic phase-locked-loop-based PZT feedback controller with a proportional, integral, and differential (PID) circuit and a tunable voltage regulator is designed to achieve frequency synchronization, phase-noise suppression, and delay-time tuning. When the controlling voltage is tuned from -2.6 to 2.6 V, the maximum pulse-delay range, tuning slope, and tuning resolution of the laser pulse-train are 11.3 ns, 2.3 ps/mV, and 1.2 ps, respectively. Setting the gain constant of the PID circuit at 10 or larger causes the delay-time tuning function to be linearly proportional to the controlling voltage. In the delay-time tuning mode the uncorrelated single-side-band phase-noise density of the frequency-synchronized laser is approximately -120 dBc/Hz at an offset frequency of 5 kHz, which is only 7 dBc/Hz higher than that of the electrical frequency reference. The proposed system also supports linear,continuous switching,and programmable control of the delay time of Ti:sapphire laser pulses when they are frequency synchronized to external reference clocks.

  2. Monte Carlo Simulations of High-speed, Time-gated MCP-based X-ray Detectors: Saturation Effects in DC and Pulsed Modes and Detector Dynamic Range

    Energy Technology Data Exchange (ETDEWEB)

    Craig Kruschwitz, Ming Wu, Ken Moy, Greg Rochau

    2008-10-31

    We present here results of continued efforts to understand the performance of microchannel plate (MCP)–based, high-speed, gated, x-ray detectors. This work involves the continued improvement of a Monte Carlo simulation code to describe MCP performance coupled with experimental efforts to better characterize such detectors. Our goal is a quantitative description of MCP saturation behavior in both static and pulsed modes. We have developed a new model of charge buildup on the walls of the MCP channels and measured its effect on MCP gain. The results are compared to experimental data obtained with a short-pulse, high-intensity ultraviolet laser; these results clearly demonstrate MCP saturation behavior in both DC and pulsed modes. The simulations compare favorably to the experimental results. The dynamic range of the detectors in pulsed operation is of particular interest when fielding an MCP–based camera. By adjusting the laser flux we study the linear range of the camera. These results, too, are compared to our simulations.

  3. Low-timing-jitter, stretched-pulse passively mode-locked fiber laser with tunable repetition rate and high operation stability

    Science.gov (United States)

    Liu, Yuanshan; Zhang, Jian-Guo; Chen, Guofu; Zhao, Wei; Bai, Jing

    2010-09-01

    We design a low-timing-jitter, repetition-rate-tunable, stretched-pulse passively mode-locked fiber laser by using a nonlinear amplifying loop mirror (NALM), a semiconductor saturable absorber mirror (SESAM), and a tunable optical delay line in the laser configuration. Low-timing-jitter optical pulses are stably produced when a SESAM and a 0.16 m dispersion compensation fiber are employed in the laser cavity. By inserting a tunable optical delay line between NALM and SESAM, the variable repetition-rate operation of a self-starting, passively mode-locked fiber laser is successfully demonstrated over a range from 49.65 to 50.47 MHz. The experimental results show that the newly designed fiber laser can maintain the mode locking at the pumping power of 160 mW to stably generate periodic optical pulses with width less than 170 fs and timing jitter lower than 75 fs in the 1.55 µm wavelength region, when the fundamental repetition rate of the laser is continuously tuned between 49.65 and 50.47 MHz. Moreover, this fiber laser has a feature of turn-key operation with high repeatability of its fundamental repetition rate in practice.

  4. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    Science.gov (United States)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2017-02-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  5. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes

    Science.gov (United States)

    Alshaer, W. G.; Rady, M. A.; Nada, S. A.; Palomo Del Barrio, Elena; Sommier, Alain

    2016-05-01

    The present article reports on a detailed experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management (TM) of electronic devices subjected to pulsed power. The TM module was fabricated by infiltrating paraffin wax (RT65) as a phase change material (PCM) and multi walled carbon nanotubes (MWCNTs) as a thermal conductivity enhancer in a carbon foam as a base structure. Two carbon foam materials of low and high values of thermal conductivities, CF20 and KL1-250 (3.1 and 40 W/m K), were tested as a base structure for the TM modules. Tests were conducted at different power intensities and power cycling/loading modes. Results showed that for all power varying modes and all carbon foams, the infiltration of RT65 into carbon foam reduces the temperature of TM module and results in damping the temperature spikes height. Infiltration of MWCNTS into RT65 further improves the effectiveness of TM module. Temperature damping was more pronounced in stand-alone pulsed power cycles as compared to pulsed power spikes modes. The effectiveness of inclusion of RT65 and RT65/MWCNTs in damping the temperature spikes height is remarkable in TM modules based on KL1-250 as compared to CF-20.

  6. Characteristics and energy distribution of modulated multi-pulse injection modes based diesel HCCI combustion and their effects on engine thermal efficiency and emissions

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; SU Wanhua; WANG Hui; HUANG Haozhong

    2007-01-01

    Cycle fuel energy distribution and combustion characteristics of early in-cylinder diesel homogenous charge compression ignition (HCCI) combustion organized by modulated multi-pulse injection modes are studied by the engine test.It is found that heat loss due to unburned fuel droplets and CO emission can be decreased effectively by injection mode regulation,and thermal efficiency can be potentially increased by 4%-12%.From the analyses of combustion process,it is also found that diesel HCCI combustion is a process with a finite reaction rate and is very sensitive to injection timing and injection mode.At injection timing of-90℃A ATDC,extra low NOx emissions can be obtained along with high thermal efficiency.

  7. A stable pulsed picosecond GSGG:Nd(3+) laser with a resonator based on the Sagnac interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, V.I.; Surovtsev, D.V.; Tikhonov, E.A.; Iatskiv, D.IA. (Institut Fiziki, Kiev (Ukrainian SSR))

    1990-03-01

    A study is made of a passively mode-locked laser based on chromium-doped gadolinium-scandium-gallium garnet operating in the ultrashort-pulse emission mode. Statistical expressions are presented which relate the width, energy, and repeatability of the generated pulses as a function of the position of a cell with a saturable absorbent (dye 3274 in ethanol) in the interferometer and its initial transmission. A new resonator scheme with asymmetric positioning of the active element with the interferometer ring is described which makes it possible to achieve stable generation at the lower transverse mode without additional spatial selection. 8 refs.

  8. Pulse generation and propagation in dispersion-managed ultralong erbium-doped fiber lasers mode-locked by carbon nanotubes.

    Science.gov (United States)

    Rosa, H G; Thoroh de Souza, E A

    2012-12-15

    We present a study of pulse generation and propagation in erbium-doped fiber lasers with cavity length varying from 8 m to 3.5 km. We demonstrate that soliton effect determines the pulse stabilization in ultralong cavities, measuring pulses with an average 7.0 ps pulsewidth for cavity lengths between 2.25 and 3.5 km. We also demonstrate that, by filling fundamental soliton requirements, pulsewidth can be determined by length and total dispersion cavity parameters.

  9. Dye Photodestruction in a Solid-State Dye Laser with a Polymeric Gain Medium

    Science.gov (United States)

    Popov, Sergei

    1998-09-01

    The process of dye photodestruction in a solid-state dye laser is studied, and implemented is a polymeric gain medium doped with a strongly concentrated dye. The behavior of the conversion efficiency in the polymeric gain medium pumped with different laser-pulse repetition rates and the process of dye photobleaching are analyzed. The contribution of the heating of the host material into the dye molecules deactivation is discussed. The negative effect of high dye concentration on the dye stability under a high pump repetition rate is reported and analyzed for the first time to my knowledge. A comparison of the present results with recently published data demonstrates the major role of photodestruction, rather than direct thermodestruction, in the dye stability of the solid-state gain medium. The role of additives with low molecular weights in the polymeric matrix, for increasing the stability of the gain material, is discussed.

  10. A Coupled Cavity Micro Fluidic Dye Ring Laser

    CERN Document Server

    Gersborg-Hansen, M; Mortensen, N A; Kristensen, A

    2004-01-01

    We present a laterally emitting, coupled cavity micro fluidic dye ring laser, suitable for integration into lab-on-a-chip micro systems. The micro-fluidic laser has been successfully designed, fabricated, characterized and modelled. The resonator is formed by a micro-fluidic channel bounded by two isosceles triangle mirrors. The micro-fluidic laser structure is defined using photo lithography in 10 microns thick SU-8 polymer on a glass substrate. The micro fluidic channel is sealed by a glass lid, using PMMA adhesive bonding. The laser is characterized using the laser dye Rhodamine 6G dissolved in ethanol or ethylene glycol as the active gain medium, which is pumped through the micro-fluidic channel and laser resonator. The dye laser is optically pumped normal to the chip plane at 532 nm by a pulsed, frequency doubled Nd:YAG laser and lasing is observed with a threshold pump pulse energy flux of around 55 micro-Joule/square-milimeter. The lasing is multi-mode, and the laser has switchable output coupling into...

  11. The combination of pulsed acousto-optic imaging and B-mode diagnostic ultrasound for three-dimensional imaging in ex vivo biological tissue

    Science.gov (United States)

    Sui, Lei; Murray, Todd W.; Roy, Ronald A.

    2006-02-01

    A multimode imaging system, producing conventional ultrasound (US) and acousto-optic (AO) images, has been developed and used to detect optical absorbers buried in excised biological tissue. A commercially-available diagnostic ultrasound imaging transducer is used to both generate B-mode ultrasound images and as a pump for AO imaging. Due to the fact that the steered and focused beam used for US imaging and the US source for pumping the AO image are generated from the same ultrasound probe, the acoustical and optical images are intrinsically co-registered. AO imaging is performed using short ultrasound pulse trains at a frequency of 5 MHz. The phase-modulated light emitted from the interaction region is detected using a photorefractive-crystal based interferometry system. Experimental results have previously been presented for the two-dimensional imaging in tissue-mimicking phantoms. In this paper, we report further experimental developments demonstrating three-dimensional fusion of B-mode ultrasound imaging and pulsed acousto-optic imaging in excised biological tissue (~2 cm thick). By mechanically scanning the ultrasound transducer array in a direction perpendicular to its imaging plane, both the acoustical and optical properties of an embedded target are obtained in three dimensions. The results suggest that AO imaging could be used to supplement conventional B-mode ultrasound imaging with optical contrast, and the multimode imaging system may find application in the detection and diagnosis of cancer.

  12. Nanosecond soliton pulse generation by mode-locked erbium-doped fiber laser using single-walled carbon-nanotube-based saturable absorber.

    Science.gov (United States)

    Ismail, Mohd Afiq; Harun, Sulaiman Wadi; Zulkepely, Nurul Rozullyah; Nor, Roslan Md; Ahmad, Fauzan; Ahmad, Harith

    2012-12-20

    We demonstrate a simple and low cost mode-locked erbium-doped fiber laser (EDFL) operating in the nanosecond region using a single-walled carbon nanotube (SWCNT)-based saturable absorber (SA). A droplet of SWCNT solution is applied on the end of a fiber ferrule, which is then mated to another clean connector ferrule to construct an SA. Then the SA is integrated into a ring EDFL cavity for nanosecond pulse generation. The EDFL operates at around 1570.4 nm, with a soliton-like spectrum with small Kelly sidebands, which confirms the attainment of the anomalous dispersion. It produces a soliton pulse train with a 332 ns width, repetition rate of 909.1 kHz, an average output power of 0.31 mW, and energy of 0.34 nJ at the maximum pump power of 130.8 mW.

  13. Investigation of positive and negative modes of nanosecond pulsed discharge in water and electrostriction model of initiation

    CERN Document Server

    Seepersad, Yohan; Dobrynin, Danil

    2013-01-01

    This work investigates the development of nanosecond pulsed discharges in water ignited with the application of both positive and negative polarity pulses to submerged pin to plane electrodes. Optical diagnostics are used to study two main aspects of these discharges: the initiation phase, and the development phase. Nanosecond pulses up to 24 kV with 4 ns rise time, 10 ns duration and 5 ns fall time are used to ignite discharges in a 1.5 mm gap between a copper plate and a tungsten needle with radius of curvature of 25 um. Fast ICCD imaging is used to trace the discharge development over varying applied pulse amplitudes for both positively and negatively applied pulses to the pin electrode. The discharge is found to progress similar to that of discharges in long gaps in gases, both in structure and development. The more important initiation phase is investigated via Schlieren transmission imaging. The region near the tip of the electrode is investigated for slightly under-breakdown conditions, and changes in ...

  14. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    Science.gov (United States)

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  15. Pulse-shape discrimination of scintillation from alpha and beta particles with liquid scintillator and Geiger-mode multipixel avalanche diodes

    CERN Document Server

    Kreslo, I; Delaquis, S; Ereditato, A; Janos, S; Messina, M; Moser, U; Rossi, B; Zeller, M

    2011-01-01

    A successfull application of Geiger-mode multipixel avalanche diodes (GMAPDs) for pulse-shape discrimination in alpha-beta spectrometry using organic liquid scintillator is described in this paper. Efficient discrimination of alpha and beta components in the emission of radioactive isotopes is achieved for alpha energies above 0.3 MeV. The ultra-compact design of the scintillating detector helps to efficiently suppress cosmic-ray and ambient radiation background. This approach allows construction of hand-held robust devices for monitoring of radioactive contamination in various environmental conditions.

  16. The Thermal State Computational Research of the Low-Thrust Oxygen-Methane Gaseous-Propellant Rocket Engine in the Pulse Mode of Operation

    Directory of Open Access Journals (Sweden)

    O. A. Vorozheeva

    2014-01-01

    Full Text Available Currently promising development direction of space propulsion engineering is to use, as spacecraft controls, low-thrust rocket engines (RDTM on clean fuels, such as oxygen-methane. Modern RDTM are characterized by a lack regenerative cooling and pulse mode of operation, during which there is accumulation of heat energy to lead to the high thermal stress of RDTM structural elements. To get an idea about the thermal state of its elements, which further will reduce the number of fire tests is therefore necessary in the development phase of a new product. Accordingly, the aim of this work is the mathematical modeling and computational study of the thermal state of gaseous oxygen-methane propellant RDMT operating in pulse mode.In this paper we consider a model RDTM working on gaseous propellants oxygen-methane in pulse mode.To calculate the temperature field of the chamber wall of model RDMT under consideration is used the mathematical model of non-stationary heat conduction in a two-dimensional axisymmetric formulation that takes into account both the axial heat leakages and the nonstationary processes occurring inside the chamber during pulse operation of RDMT.As a result of numerical study of the thermal state of model RDMT, are obtained the temperature fields during engine operation based on convective, conductive, and radiative mechanisms of heat transfer from the combustion products to the wall.It is shown that the elements of flanges of combustion chamber of model RDMT act as heat sinks structural elements. Temperatures in the wall of the combustion chamber during the engine mode of operation are considered relatively low.Raised temperatures can also occur in the mixing head in the feeding area of the oxidant into the combustion chamber.During engine operation in the area forming the critical section, there is an intensive heating of a wall, which can result in its melting, which in turn will increase the minimum nozzle throat area and hence

  17. The discharge mode transition and O({sup 5}p{sub 1}) production mechanism of pulsed radio frequency capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. Y.; Hu, J. T.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P. [National State Key Lab of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, HuBei 430074 (China); Shi, J. J. [College of Science, Donghua University, Shanghai 201620 (China)

    2012-07-23

    The discharge mode transition from uniform plasma across the gas gap to the {alpha} mode happens at the rising phase of the pulsed radio frequency capacitively coupled plasma (PRF CCP). This transition is attributed to the fast increasing stochastic heating at the edge of sheath. In the second stage with the stable current and voltage amplitude, the consistency between experimental and numerical spatial-temporal 777 nm emission profile suggests that He* and He{sub 2}* dominate the production of O({sup 5}p{sub 1}) through dissociation and excitation of O{sub 2}. Finally, the sterilization efficiency of PRF CCP is found to be higher than that of plasma jet.

  18. 6.5 µJ pulses from a compact dissipative soliton resonance mode-locked erbium-ytterbium double clad (DC) laser

    Science.gov (United States)

    Krzempek, K.; Abramski, K.

    2017-01-01

    The feasibility of constructing a compact, all-fiber, dissipative soliton resonance (DSR) mode-locked erbium-ytterbium double clad laser emitting 6.517 µJ pulses directly from the cavity is presented. The laser was built in a figure-8 configuration and mode-locked using a nonlinear optical loop mirror. A DSR regime of operation was enforced in the cavity by large net-anomalous dispersion (-21.431 ps2), obtained by incorporating 1 km of SMF28 fiber in the resonator. The laser operated at a 201 kHz repetition rate, with maximum average output power of 1.31 W at 7.2 W of pump power, yielding an impressive 20% slope efficiency.

  19. Broadband single-transverse-mode fluorescence sources based on ribs fabricated in pulsed laser deposited Ti: sapphire waveguides

    NARCIS (Netherlands)

    Grivas, C.; May-Smith, T.C.; Shepherd, D.P.; Eason, R.W.; Pollnau, M.; Jelinek, M.

    2004-01-01

    Active rib waveguides with depths and widths varying from 3 to 5 μm and from 9 to 24 μm, respectively, have been structured by $Ar^{+}$-beam etching in pulsed laser deposited Ti:sapphire layers. Losses in the channel structures were essentially at the same levels as the unstructured planar waveguide

  20. Vbeam脉冲染料激光治疗皮肤葡萄酒色斑的疗效分析%Therapeutic effect of Vbeam pulsed dye laser in the treatment of port wine stains

    Institute of Scientific and Technical Information of China (English)

    王美水; 黄循镭; 黄祖根; 庄福连; 王彪; 熊舒原; 郑厚兵

    2008-01-01

    Objective To evaluate the clinical therapeutic effects of Vbeam 595 nm pulsed dye laser in114 cases of port wine stains.Methods 114 patients with port wine stains were treated with Vbeam 595 nm pulsed dye laser with 3~10 ms pulse width and 7mm spot size.The energy fluence used varied from 10 to 15 J/cm2.Dynamic cooling device(DCD)was used to protect epiderm,with DCD spray 30~40 ms and DCD delay 10~30 ms.The interval of therapy was 4~8 weeks.The results were graded on basis of cleaning and fading as follows:grade Ⅰ(>75%),gradeⅡ(50%to 74%),grade Ⅲ(25%to 49%),and grade Ⅳ(<25%).Results 114 patients completed the therapy.The number of treatments ranged from 1 to 10(mean 5.9).The results evaluated as grades Ⅰ,Ⅱ,Ⅲ and Ⅳ were 74 patients(64.9%),29 patients(25.4%),9 patients(7.9%)and 2 patients(1.8%),respectively.The therapeutic effect was analysed according to number of treatments.the ages of patients,site and color of the lesions.It was found that the therapeutic effect was prominent in patients of younger age,with pink lesions located on the neck and face.No recurrence and scar happened after 6 months to 2 years follow-up.Conclnsions Vbeam 595nm pulsed dye laser is a safe and effective method for the treatent of port wine stains,with less complications.%目的 评价595 nm Vbeam脉冲染料激光治疗皮肤葡萄酒色斑(Pint wine stains,PWS)的临床疗效.方法 共114例PWS患者接受595 nm Vbeam脉冲染料激光治疗,脉宽3~10 ms,光斑直径7mm,能量密度10-15 J/cm2,动态冷却喷射30~40 ms,间隔10~30 ms,治疗间隔4~8周.根据皮损消退,将疗效分为4级:Ⅰ级为>75%,Ⅱ级为50%~74%,Ⅲ级为25%~49%,Ⅳ级为<25%.结果 114例经过1~10次治疗(平均5.9次),取得很好临床效果,其中Ⅰ级74例(64.9%),Ⅱ级29例(25.4%),Ⅲ级9例(7.9%),Ⅳ级2例(1.8%).并分析治疗次数、年龄大小、发生部位、颜色特点和疗效的关系,年龄小、发生于颈面部位、粉红

  1. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.

    Science.gov (United States)

    Sabaeian, Mohammad; Rezaei, Hamidreza; Ghalambor-Dezfouli, Abdolmohammad

    2017-02-01

    Pulsed laser beam excitations are more commonly used in thermal lens spectroscopy (TLS) than continuous-wave (CW) ones, because CW excitations limit the measurement to linear absorption processes [J. Opt. A5, 256 (2003)]. In this work, we present a new and full analytical model for a single-pulsed laser excitation dual-beam mode-mismatched TLS for low absorption solid-state and liquid samples. Our model has been based on a new solution of time-dependent heat equation for a finite-radius cylindrical sample exposed to a single-pulsed excitation laser beam. For low absorbent samples, unlike previous models, all aberration terms associated in the thermal lens were taken into account in Fresnel integration. Besides, the model provides a full analytical mathematical expression for the temperature rise, normalized signal intensity, and Z-scan photothermal lens signal. The model was confirmed with experimental data of distilled deionized water with excellent agreement. Therefore, the model allows us to extract thermo-optical properties of samples in an analytical and more accurate way.

  2. Pulsed Current-Mode Supply of Dielectric Barrier Discharge Excilamps for the Control of the Radiated Ultraviolet Power

    OpenAIRE

    2010-01-01

    International audience; UV excimer lamps are efficient narrowband sources of UV radiation with applications in various domains. The issue of controlling the UV emission by means of the power supply associated with such lamps favors pulsed current-controlled generators. After having established the previous statements, we propose a dedicated power converter topology which implements the needed performances. The analysis of the degrees of freedom of this structure shows the capability of this pu...

  3. 普萘洛尔联合脉冲染料激光治疗婴幼儿血管瘤的护理体会%The nursing experience of propranolol combined with pulsed dye laser to treat infantile hemangioma

    Institute of Scientific and Technical Information of China (English)

    刘东平; 刘小加; 王晶; 罗明灿

    2016-01-01

    Objective This paper summarizes the nursing experience of propranolol combined with pulsed dye laser in the treatment of 75 cases of infantile hemangioma. Methods This stuty included the children with oral propranolol delivery methods, medication missionary. Preparation of pre-operative nursing care by Pulse Dye Laser treatment. In order to increase the safety of treatment, we used"parcels"and language exchange to reduce children with tampering and fear, assisted the doctor for laser treatment, used cold therapy and smear MEBO for wound immediately after treatment. The patients were given follow-up nursing care after discharge, medication guide and drug adverse reaction of observation,wound care and observation, reservation referral treatment time,let the children do not interrupt the care due to discharge. Results Application of propranolol combined pulsed dye laser treatment of infantile hemangioma clinical effect is remarkable. High quality of nursing and to carry out the continuity of care in the whole treatment process seamlessly. To guarantee children comprehensive nursing instruction, recover at an early date. Conclusion The treatment of infantile hemangioma is a long-term process, drug care, laser treatment, wound care and continuity of care for the whole treatment process to play a cooperative role in the treatment process.%目的:总结普萘洛尔联合脉冲染料激光治疗婴幼儿血管瘤75例的护理体会。方法:主要包括患儿口服普萘洛尔药物的给药方法,用药宣教;脉冲染料激光治疗术前护理准备工作,治疗时采用“包裹法”和语言交流,增加治疗安全性,协助医生进行激光治疗,治疗后即刻给予创面冷疗和涂抹美宝湿润烧伤膏;患儿出院后给予后续性护理,进行用药指导和药物不良反应的观察、创面护理及观察、预约复诊治疗时间。结果:应用普萘洛尔联合脉冲染料激光治疗婴幼儿血管瘤临床效果显著,

  4. Q-Switched and Mode Locked Short Pulses from a Diode Pumped, YB-Doped Fiber Laser

    Science.gov (United States)

    2009-03-26

    500fs.pdf. 43. H. Leblond, M. Salhi, A. Hideur, T. Chartier , M. Brunel, F. Sanchez, "Experimental and theoretical study of the passively mode...locked ytterbium-doped double-clad fiber laser", Physical Review A, Vol. 65 063811 (2002) pp 1-9. 44. B. Ortac, A. Hideur, M. Brunel, T. Chartier , M

  5. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser

    Institute of Scientific and Technical Information of China (English)

    KONG Duan-Hua; ZHU Hong-Liang; LIANG Song; QIU Ji-Fang; ZHAO Ling-Juan

    2012-01-01

    A 1.56 μm passively mode-locked laser diode with a two-section tensile strained multi-quantum-well structure is fabricated.Without any external pulse compression,a Lorentz pulse train with a pulse width of 1.03 ps and a repetition rate of 35.6 GHz is obtained,which is one of the best results that have been reported on similar devices.The optical pulse has a 300 kHz line width and a 50dB peak over the noise floor in the photodetected radio-frequency electrical spectrum.%A 1.56μm passively mode-locked laser diode with a two-section tensile strained multi-quantum-well structure is fabricated. Without any external pulse compression, a Lorentz pulse train with a pulse width of 1.03ps and a repetition rate of 35.6 GHz is obtained, which is one of the best results that have been reported on similar devices. The optical pulse has a 300 kHz line width and a 50 dB peak over the noise floor in the photodetected radio-frequency electrical spectrum.

  6. Safe and effective one-session fractional skin resurfacing using a carbon dioxide laser device in super-pulse mode: a clinical and histologic study.

    Science.gov (United States)

    Trelles, Mario A; Shohat, Michael; Urdiales, Fernando

    2011-02-01

    Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and

  7. Phase-matched four-wave mixing of sub-100-TW/ cm2 femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber.

    Science.gov (United States)

    Konorov, S O; Serebryannikov, E E; Akimov, D A; Ivanov, A A; Alfimov, M V; Zheltikov, A M

    2004-12-01

    Hollow-core photonic-crystal fibers are shown to allow propagation and nonlinear-optical frequency conversion of high-intensity ultrashort laser pulses in the regime of isolated guided modes confined in the hollow gas-filled fiber core. With a specially designed dispersion of such modes, the 3omega=2omega+2omega-omega four-wave mixing of fundamental (omega) and second-harmonic (2omega) sub-100- TW/ cm(2) femtosecond pulses of a Cr:forsterite laser can be phase matched in a hollow photonic-crystal fiber within a spectral band of more than 10 nm, resulting in the efficient generation of femtosecond pulses in a well-resolved higher-order air-guided mode of 417-nm radiation.

  8. Nonlinear High-Energy Pulse Propagation in Graded-Index Multimode Optical Fibers for Mode-Locked Fiber Lasers

    Science.gov (United States)

    2014-12-23

    bels or specify how to translate the μ index into the p;m index pair. jAμzj2 represents the optical power in the LGpm mode. Fig. 1. GIMF of...crystal fiber,” Opt. Lett. 31, 1480–1482 (2006). 19. T. F. S. Büttner, D. D. Hudson, E. C. Mägi, A. Casas Bedoya, T. Taunay, and B. J. Eggleton

  9. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres.

    Science.gov (United States)

    Wadsworth, W; Joly, N; Knight, J; Birks, T; Biancalana, F; Russell, P

    2004-01-26

    Photonic crystal fibres exhibiting endlessly single-mode operation and dispersion zero in the range 1040 to 1100 nm are demonstrated. A sub-ns pump source at 1064 nm generates a parametric output at 732 nm with an efficiency of 35%, or parametric gain of 55 dB at 1315 nm. A broad, flat supercontinuum extending from 500 nm to beyond 1750 nm is also demonstrated using the same pump source.

  10. Clinical experience of pulsed dye laser in the treatment of facial photoaging skin%脉冲染料激光治疗面部光老化皮肤的临床体会

    Institute of Scientific and Technical Information of China (English)

    袁金宝

    2014-01-01

    目的:研究并分析脉冲染料激光治疗面部光老化皮肤的临床效果。方法选择我院2013年1月到2013年8月收治的48例面部光老化皮肤患者作为研究对象,采用美国Cynosune公司的脉宽脉冲染料激光机进行治疗,具体的参数根据患者皮肤类型与年龄进行调整,根据患者治疗前后的毛细血管扩张度、皱纹多少、皮肤角化以及色素沉着情况评价治疗效果,并统计患者满意度。结果治疗效果显示,痊愈、显效、有效、无效例数分别为16、24、6、2,治疗有效率为83.3%。I型、II型与III型治疗有效率分别为100%、78.3%、25%,无患者出现瘢痕与色素沉着的不良反应,患者满意度为100%。结论脉冲燃料激光治疗法对于面部光老化皮肤患者可以起到良好的治疗效果,不良反应发生率低,该种治疗措施是值得在临床中进行推广和使用的。%Objective To study the clinical effect and analysis of pulsed dye laser in the treatment of facial photoaging skin. Methods 48 cases in our hospital from 2013 January to 2013 facial skin photoaging patients admitted in August as the research object, using the pulse width America Cynosune were treated with pulsed dye laser machine, specific parameters were adjusted according to patients with skin type and age, according to the capillary expansion before and after treatment in patients with tension, wrinkles, skin hyperkeratosis and how much pigmentation to evaluate the effect of treatment, patients’ satisfaction and statistics. Results the therapeutic effect of display, heal, effect, valid, invalid cases were 16, 24, 6, 2, the effective rate of treatment was 83.3%. II type and III type of I, the treatment efficiency were 100%, 78.3%, 25%, no adverse reactions in patients with scar and pigmentation, patient satisfaction was 100%. Conclusion for the patients with facial photoaging skin can play a good therapeutic effect of pulsed fuel laser therapy

  11. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  12. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    Science.gov (United States)

    Asano, M.; Özdemir, Ş. K.; Chen, W.; Ikuta, R.; Yang, L.; Imoto, N.; Yamamoto, T.

    2016-05-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  13. Controlling slow and fast light and dynamic pulse-splitting with tunable optical gain in a whispering-gallery-mode microcavity

    CERN Document Server

    Asano, Motoki; Chen, Weijian; Ikuta, Rikizo; Yang, Lan; Imoto, Nobuyuki; Yamamoto, Takashi

    2016-01-01

    We report controllable manipulation of slow and fast light in a whispering-gallery-mode (WGM) microtoroid resonator fabricated from Erbium (Er3+) doped silica. We observe continuous transition of the coupling between the fiber-taper waveguide and the microresonator from undercoupling to critical coupling and then to overcoupling regimes by increasing the pump power even though the spatial distance between the resonator and the waveguide was kept fixed. This, in turn, enables switching from fast to slow light and vice versa just by increasing the optical gain. An enhancement of delay of two-fold over the passive silica resonator (no optical gain) was observed in the slow light regime. Moreover, we show dynamic pulse splitting and its control in slow/fast light systems using optical gain.

  14. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin;

    2008-01-01

    B. The reciprocal HC-PCF-to-PM-SMF splice loss is found to be 2.19 ± 0.33 dB, which is caused by the mode evolution in HC-PCF. The return loss in both cases was measured to be −14 dB. We show that a splice defect is caused by the HC-PCF cleave defect, and the lossy splice can be predicted at an early stage...... of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond...

  15. High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser.

    Science.gov (United States)

    Georges, P; Estable, F; Salin, F; Poizat, J P; Grangier, P; Brun, A

    1991-02-01

    We present the amplification of a continuous-wave single-mode ring dye laser in Ti:sapphire. A peak gain of 2 x 10(6) has been obtained in a passive multipass amplifier, which yielded 20-nsec pulses of 0.7-mJ energy at 780 nm. We discuss the advantages of this passive multipass amplifier in comparison with a regenerative amplifier that we have also developed. By second-harmonic generation we obtained high-peak-power UV pulses from the amplified single-mode laser.

  16. Effect of a Ga-doped ZnO thin film with a ZTO buffer layer fabricated by using pulsed DC magnetron sputter for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Woo; Lee, Kyung-Ju; Roh, Ji-Hyung; Park, On-Jeon; Kim, Hwan-Sun; Moon, Byung-Moo [Korea University, Seoul (Korea, Republic of); Ji, Min-Woo [Yonsei University, Seoul (Korea, Republic of)

    2014-08-15

    The electrical property of a Ga-doped ZnO(GZO) thin film is well known to be similar that of commercialized fluorine-doped tin oxide(FTO). However GZO is limited for use at high process temperatures for solar cells because of its unstable resistivity at temperatures above 300 .deg. C. A GZO thin film compared to zinc tin oxide(ZTO)-GZO multilayer can be used at high process temperatures. A GZO thin film was deposited on glass by using pulsed DC magnetron sputter. Then, a ZTO buffer layer was deposited on the GZO surface. During the deposition, the working pressure was 5 mTorr (Z-1 glass) and 1 mTorr (Z-2 glass). Dye-sensitized solar cells (DSSCs) were fabricated using Z-1, Z-2 and commercialized FTO glasses. Z-2 showed a conversion efficiency of 4.265%, which was enhanced by 0.399% compared to that of the DSSCs using FTO(3.784%). The conversion efficiency for Z-1 (3.889%) was a little higher than that of FTO. Thus, the ZTO-GZO electrode showed better characteristics than those obtained using the FTO electrode, which can be attributed to the reduced charge recombination and series resistance.

  17. Comparison of fractional, nonablative, 1550-nm laser and 595-nm pulsed dye laser for the treatment of facial erythema resulting from acne: a split-face, evaluator-blinded, randomized pilot study.

    Science.gov (United States)

    Park, Kui Young; Ko, Eun Jung; Seo, Seong Jun; Hong, Chang Kwun

    2014-06-01

    Postinflammatory erythema is commonly seen in patients with inflammatory acne. There are no reliable treatment guidelines for acne erythema. We compared the effect and safety of a nonablative, 1550-nm fractional laser and a 595-nm pulsed dye laser (PDL) for the treatment of acne erythema. Twelve Korean patients with acne erythema were enrolled. Sides of the face were randomized to receive treatment with a fractional laser or a PDL for a total of three treatments at 4-week intervals. The assessment of effectiveness was mean change in mexameter scores, investigator's and patients' clinical assessments. Statistically significant improvements in baseline acne erythema were observed through an improved erythema index on both treated sides. But, the improvements from each laser treatment were not significantly different. Mean scores of investigator assessments were 3.42 ± 0.67 in fractional laser-treated sites and 3.33 ± 0.65 in PDL-treated sites. Patients assessed their improvement as good or excellent in 91.7% of fractional laser-treated sites and 75% of PDL-treated sites. Both lasers are effective and safe modalities for the treatment of acne erythema; however, these data suggest better clinical efficacy with the use of a 1550-nm, erbium-glass fractional laser.

  18. The Removal of Composite Reactive Dye from Dyeing Unit Effluent Using Sewage Sludge Derived Activated Carbon

    OpenAIRE

    REDDY, Sajjala SREEDHAR

    2006-01-01

    Activated carbon was prepared from dried municipal sewage sludge and batch mode adsorption experiments were conducted to study its potential to remove composite reactive dye from dyeing unit effluent. Adsorption parameters for the Langmuir and Freundlich isotherms were determined and the effects of effluent pH, adsorbent dosage, contact time and initial dye concentration were studied. The toxicity characteristic leaching protocol (TCLP) was used to assess the acceptability of sewage ...

  19. Waterless Textile Dyeing

    OpenAIRE

    Odabaşoğlu, Hakkı Yasin; AVİNÇ, Osman Ozan; Arzu YAVAŞ

    2013-01-01

    Supercritical carbon dioxide (scCO), having liquid-like densities, hereby provides hydrophobic dyes an advantage on dissolving. Their gas-like low viscosities and diffusion properties can lead to shorter dyeing durations compared to conventional water dyeing process. Supercritical carbon dioxide dyeing, a novel dyeing process, is an anhydrous dyeing and this process involves the use of less energy and chemicals than conventional water dyeing processes resulting in a potential of up to 50% low...

  20. Investigation of Copper Vapor Pulsed Laser with Industrial Active Elements of “Kulon” Series using One Convex Mirror Mode and Its Capabilities for Technological Applications

    Directory of Open Access Journals (Sweden)

    N. A. Lyabin

    2014-01-01

    Full Text Available Within the scope of the given paper spatial, time and energy characteristics of a copper vapor laser (CVL| have been investigated in the mode of one convex mirror using the most powerful industrial sealed-off active elements (AE of “Kulon” series: 15 W GL-206D model and 20 W GL-206I model in order to define the capabilities of using its one-beam radiation for effective microprocessing of materials.The carried out calculations and experimental investigations showed that one can vary the radiation beam divergence within a wide range by changing the radius of curvature of CVL convex mirror; and one can reach values close to diffraction limit at radii of curvature one-two orders lower than the distance from the mirror to AE output aperture. At small radii of mirror curvature (R = 6-30 mm the CVL output radiation beam divergence can only 2-3 times (0.15- 0.35 mrad differ from diffraction limit. At these divergences the peak power density in a focused spot can reach 109…1010 W/cm2 values.With the increase of AE discharge channel length the CVL output radiation beam divergence in one-mirror mode decreases and tends to diffraction limit, while power increases, which in the aggregate leads to the sharp increase of peak power density. Therefore, from practical point of view the industrial AEs “Crystal” GL-205А and GL-205B with 0.93 and 1.23 m discharge channel length and 20 mm diameter are the most effective ones. Besides the formation of one high quality beam, the advantages of one-mirror mode include a high axis stability of directivity pattern of this beam and pulsed energy, which increase the quality of microprocessing of materials.Practical experience of using CVL with one convex mirror shows that 109 W/cm2 peak power density level is sufficient only for efficient microprocessing of foiled materials and solder cutouts (0.02-0.1 мм. The use of this CVL as a driving oscillator (DO in a copper vapor laser system (CVLS of the type: driving

  1. Integrated optics dissipative soliton mode-locked laser on glass

    Science.gov (United States)

    Charlet, Bertrand; Bastard, Lionel; Broquin, Jean-Emmanuel

    2011-01-01

    Mode-lock lasers have been studied a lot in the past years for producing pulses as short as possible. These devices have mostly been realized in bulk optics and they are consequently cumbersome and sensitive to vibrations. There are only a few studies on integrated optics mode-lock lasers, though this technology is very promising because of its stability, compactness and the possibility to integrate several functions on a single chip. In this paper, we present an ion-exchange passively mode-locked laser in dissipative soliton operation. One of the key characteristics of this structure is its mechanical stability. Indeed, no bulk optics is needed because the saturable absorber is hybridized on the top of the waveguide in order to interact with the evanescent part of the guided mode. Indeed, the device that has been obtained is composed of an ion-exchanged single mode waveguide realized in a Neodymium doped phosphate glass. The laser feedback is produced by a Fabry-Perot cavity realized with two multilayers dielectric mirrors stuck on the waveguides facets. We implemented a bis(4- dimethylaminodithiobenzil)nickel (BDN) dye included in a cellulose acetate thick film, which presents a saturable absorber behaviour around 1.06 μm. With this structure, pulses with repetition rates of 3.3 GHz and a single mode output have been measured. Moreover, the use of an autocorrelation set-up allowed us measuring picosecond pulse durations.

  2. Efficient second harmonic generation of picosecond laser pulses.

    Science.gov (United States)

    Rabson, T. A.; Ruiz, H. J.; Shah, P. L.; Tittel, F. K.

    1972-01-01

    Efficient conversion to the second harmonic (SH) using KD2PO4 and CsH2AsO4 crystals inside a folded cavity of a high-power-dye mode-locked neodymium-glass laser is reported. For the first time, frequency-doubled picosecond light pulses have been obtained in CsH2AsO4 with peak powers of the order of 1 GW/sq cm at 0.531 micron for an effective pump power density of 4 GW/sq cm.

  3. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  4. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller;

    2015-01-01

    , was investigated for different settings of the intracavity dispersion. When the cavity is operated with close to zero net dispersion, highly stable 0.5-nJ pulses externally compressed to sub-100-fs are generated. These are to our knowledge the shortest pulses generated from an all-polarization-maintaining Yb......-fiber oscillator. The spectral phase of the output pulses is well behaved and can be compensated such that wing-free Fourier transform limited pulses can be obtained. Further reduction of the net intracavity third order dispersion will allow generating broader output spectra and consequently shorter pulses......, without sacrificing pulse fidelity....

  5. Nonlinear and Dispersive Optical Pulse Propagation

    Science.gov (United States)

    Dijaili, Sol Peter

    In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.

  6. Temperature-dependent strain and temperature sensitivities of fused silica single mode fiber sensors with pulse pre-pump Brillouin optical time domain analysis

    Science.gov (United States)

    Bao, Yi; Chen, Genda

    2016-06-01

    This paper reports a distributed temperature and strain sensor based on pulse pre-pump Brillouin optical time domain analysis. An uncoated, telecom-grade fused silica single-mode fiber as a distributed sensor was calibrated for its sensitivity coefficients under various strains and temperatures up to 800 °C. The Brillouin frequency of fiber samples changed nonlinearly with temperature and linearly with strain. The temperature sensitivity decreased from 1.113 to 0.830 MHz /°C in the range of 22-800 °C. The strain sensitivity was reduced from 0.054 to 0.042 MHz /μɛ as the temperature increased from 22 to 700 °C and became unstable at higher temperatures due to creep effect. The strain measurement range was reduced from 19 100 to 6000 μɛ in the temperature range of 22-800 °C due to fused silica’s degradation. The calibrated fiber optic sensor demonstrated adequate accuracy and precision for strain and temperature measurements and stable performance in heating-cooling cycles. It was validated in an application setting.

  7. Reconfigurable Solid-state Dye-doped Polymer Ring Resonator Lasers

    Science.gov (United States)

    Chandrahalim, Hengky; Fan, Xudong

    2015-01-01

    This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold coherent light sources on a chip. PMID:26674508

  8. Spectroscopic and lasing characterisation of a dicarbazovinylene-MEH-benzene dye

    Science.gov (United States)

    Bansal, A. K.; Holzer, W.; Penzkofer, A.; Kley, E. B.

    2008-07-01

    The dye 1,4-bis(9-ethyl-3-carbazovinylene)-2-methoxy-5-(2'-ethyl-hexyloxy)-benzene (abbreviated 2CzV-MEH-B) dissolved in tetrahydrofuran (THF) and as neat film is characterised by optical absorption and emission spectroscopy. The absorption and stimulated emission cross-section spectra, the fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarisation, and fluorescence lifetimes are determined. A lasing characterisation is carried out by pumping with single second harmonic pulses of a mode-locked ruby laser (wavelength 347.15 nm, pulse duration 35 ps). The excited-state absorption at the pump laser wavelength is determined by saturable absorption measurements. Laser oscillation of the dye in THF in a rectangular cell is achieved by transverse pumping using the uncoated cell windows for light feedback. From the emission behaviour around threshold the excited-state absorption cross-section spectrum in the laser active spectral region is extracted. The wave-guided travelling-wave lasing behaviour of the dye as neat film is studied by analysis of the amplification of the transverse pumped spontaneous emission. Surface emitting distributed-feedback lasing was achieved with a neat film on corrugated second-order periodic gratings.

  9. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...... propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...

  10. Zeolite-dye micro lasers

    CERN Document Server

    Vietze, U; Laeri, F; Ihlein, G; Schüth, F; Limburg, B; Abraham, M

    1998-01-01

    We present a new class of micro lasers based on nanoporous molecular sieve host-guest systems. Organic dye guest molecules of 1-Ethyl-4-(4-(p-Dimethylaminophenyl)-1,3-butadienyl)-pyridinium Perchlorat were inserted into the 0.73-nm-wide channel pores of a zeolite AlPO$_4$-5 host. The zeolitic micro crystal compounds where hydrothermally synthesized according to a particular host-guest chemical process. The dye molecules are found not only to be aligned along the host channel axis, but to be oriented as well. Single mode laser emission at 687 nm was obtained from a whispering gallery mode oscillating in a 8-$\\mu$m-diameter monolithic micro resonator, in which the field is confined by total internal reflection at the natural hexagonal boundaries inside the zeolitic microcrystals.

  11. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    Science.gov (United States)

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  12. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    Science.gov (United States)

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  13. Optofluidic dye laser in a foil

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Christiansen, Mads Brøkner; Mappes, Timo;

    2010-01-01

    First order distributed feedback optofluidic dye lasers embedded in a 350 mu m thick TOPAS (R) foil are demonstrated. They are designed in order to give high output pulse energies. Microfluidic channels and first order distributed feedback gratings are fabricated in parallel by thermal nanoimprin...

  14. Clinical comparison between photodynamic therapy and pulsed dye laser for the treatment of port wine stains%光动力疗法与脉冲染料激光治疗鲜红斑痣的临床比较

    Institute of Scientific and Technical Information of China (English)

    吴秋菊; 周展超; 林彤; 戎惠珍; 贾高蓉

    2016-01-01

    Objective To compare the clinical efficacy and adverse effects of photodynamic therapy (PDT) versus pulsed dye laser(PDL)for the treatment of port wine stains(PWS). Methods Forty⁃five patients with PWS were enrolled in this study. The PWS lesions in each patient were randomly divided into PDT and PDL areas. Hematoporphyrin monomethyl ether of 5 mg/kg was injected intravenously into the PDT area protected from light, followed by 20⁃minute irradiation with a 532⁃nm, solid⁃state, continuous⁃wave laser(power density:80-100 mw/cm2;spot diameter: 7 cm)10 minutes later. The PDL area was treated with a single session of 595⁃nm pulsed dye laser radiation(spot diameter:7 mm;pulse width:10 ms;energy density:10-12 J/cm2). The interval between PDT and PDL treatment was no shorter than two months. Follow up visits were scheduled on day 4 and week 8 after each treatment. Adverse reactions were recorded, and photographs were taken before and 8 weeks after the treatment for evaluation of lesion regression. Results In the case of PDT area, 10 cases(22.22%)were nearly cured, 22(48.89%)achieved marked improvement, 9(20.00%)improvement, 4(8.89%)no improvement. As far as the PDL area is concerned, 6 cases(13.33%)were nearly cured, 16(35.56%)achieved marked improvement, 18(40.00%)improvement, and 5 (11.11%)no improvement. The response rate was significantly higher in the PDT area than in the PDL area(Z=2.48, P0.05). Conclusion For the treatment of PWS, both PDT and PDL are effective and safe, and single⁃session PDT appears to be superior to single⁃session PDL.%目的:探讨光动力疗法(PDT)和脉冲染料激光(PDL)治疗鲜红斑痣的疗效差异,并比较两种疗法不良反应发生情况。方法将45例鲜红斑痣患者的自身皮损随机分成PDT治疗区和PDL治疗区。PDT区治疗区在避强光条件下静脉输注5 mg/kg血卟啉注射液,10 min后开始532 nm连续波激光照射,照射20 min后结束,照射功率密度80~100 mW/cm2

  15. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  16. Measurement of pulse lengthening with pulse energy increase in picosecond Nd:YAG laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Cutolo, A.; Zeni, L.; Berardi, V.; Bruzzese, R.; Solimeno, S.; Spinelli, N.

    1989-03-15

    Taking advantage of a new technique, we have monitored the relative variations of time duration and mode size as a function of the pulse energy for 30-ps-long Nd:YAG laser pulses. In particular, by carrying out a statistical analysis, we have observed that the pulse time duration is an increasing function of the pulse energy, according to the theoretical modeling of passively mode-locked lasers. The measurements can be easily extended to the femtosecond regime.

  17. Transabdominal pulse inversion harmonic imaging improves assesment of ovarian morphology in virgin patients with PCOS: comparison with conventional B-mode sonography

    Energy Technology Data Exchange (ETDEWEB)

    Mahmutyazicioglu, Kamran; Tanriverdi, H. Alper; Oezdemir, Hueseyin; Barut, Aykut; Davsanci, Halit; Guendogdu, Sadi

    2005-02-01

    Objective: In virgin policystic ovary syndrome (PCOS) patients transabdominal sonography is the preferential method of the pelvic examination. The purpose of this study was to determine ovarian morphology by the transabdominal route by pulse inversion harmonic imaging (PIHI) in virgin PCOS patients and to compare the diagnostic image quality with conventional B-mode ultrasonography (CBU). Methods: Fifty-two ovaries in 26 virgin patients were evaluated by the transabdominal approach. Each ovary was examined using both PIHI and CBU. The sharpness of the follicular cysts walls, degree of internal echo definitions of the follicle cysts and overall ovarian conspicuity was assessed subjectively, using 4 point scoring (0, being worst; 3, being best score). The number of countable follicles, the size of largest and smallest ovarian follicle and ovarian volumes were assessed quantitively by both techniques. The effect of body mass index (BMI) on qualitative and quantitative scoring was evaluated. Results: The sharpness of the cyst wall and internal echo structure was significantly better with PIHI than with CBU (P < 0.001 P < 0.001 and P < 0.001, respectively). PIHI improved overall ovarian conspicuity in 41 (78.8%) of 52 examination. The number of countable follicles was significantly lower with CBU (P < 0.001). The maximum diameter of the largest follicle was larger with PIHI sonography to compared CBU (P < 0.001). Mean ovarian volume was significantly larger with CBU (P < 0.001). When data were analyzed separately according to BMI, number of non-diagnostic overall ovarian conspicuity scores with CBU was markedly high in obese patients (88% with CBU versus 3.8% with PIHI). On the other hand, mean number of countable follicles with CBU became much more lower in the obese group (P < 0.001). Conclusion: In virgin PCOS patients, when compared to transabdominal CBU, PIHI significantly improved the detection of ovarian follicles, especially in high BMI obese subjects, through

  18. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    Science.gov (United States)

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range.

  19. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    Science.gov (United States)

    2016-12-13

    their mitigation with applications in scaling of pulsed and continuous- wave high- energy lasers Balaji Srinivasan INDIAN INSTITUTE OF TECHNOLOGY...high- energy lasers 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-5044 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Balaji Srinivasan 5d...use of vortex beams to mitigate thermal mode instability in high energy fiber amplifiers. The investigation is carried out through (1) the

  20. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  1. Avalanche mode of high-voltage overloaded p{sup +}–i–n{sup +} diode switching to the conductive state by pulsed illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kyuregyan, A. S., E-mail: ask@vei.ru [Lenin All-Russia Electrical Engineering Institute (Russian Federation)

    2015-07-15

    A simple analytical theory of the picosecond switching of high-voltage overloaded p{sup +}–i–n{sup +} photodiodes to the conductive state by pulsed illumination is presented. The relations between the parameters of structure, light pulse, external circuit, and main process characteristics, i.e., the amplitude of the active load current pulse, delay time, and switching duration, are derived and confirmed by numerical simulation. It is shown that the picosecond light pulse energy required for efficient switching can be decreased by 6–7 orders of magnitude due to the intense avalanche multiplication of electrons and holes. This offers the possibility of using pulsed semiconductor lasers as a control element of optron pairs.

  2. A model for recombination in Type II dye-sensitized solar cells: Catechol-thiophene dyes

    Science.gov (United States)

    Manzhos, Sergei; Segawa, Hiroshi; Yamashita, Koichi

    2011-03-01

    Recombination in dye-sensitized solar cells with direct injection is cast as internal conversion in the dye-Ti(OH) 2 complex. For catechol-thiophene dyes with 1, 2, or 3 thiophene units, the complex reproduces the previously observed dye-to-semiconductor bands. We compare the decomposition of the internal conversion rate by vibrational mode and predict a trend in recombination with the extension of conjugation, which offers an explanation for the trend in DSSC efficiency. We employ a simple model for the vibrational factors and show that they are only important in the presence of vibrational modes with ℏω⩽kT and strong electronic factors, as is the case here.

  3. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...

  4. Organic synthetic dye degradation by modified pinhole discharge

    Science.gov (United States)

    Lončarić Božić, A.; Koprivanac, N.; Šunka, P.; Člupek, M.; Babický, V.

    2004-03-01

    The aim of this work was to investigate the possibility of applying a high voltage pulsed electrical discharges for dye wastewater treatment. Commercial organic monochlorotriazine reactive dye of the anthraquinone type C.I. Reactive Blue 49 (RB49) was chosen as a representative of persistent and recalcitrant wastewater pollutant. The modified pinhole discharge flow-through reactor was used to treat such type of contaminant. Applying HV pulses 30 kV, 3.15 J/pulse, 50 Hz repetition rate, complete decolorisation and partial mineralization of RB49 has been reached and demonstrated by means of UV/VIS absorption, TOC and AOX measurements.

  5. Research of actively-passively mode-locked Nd:YAG laser pumped by pulse xenon lamp%主被动锁模脉冲氙灯抽运Nd:YAG激光器的研究

    Institute of Scientific and Technical Information of China (English)

    袁易君

    2011-01-01

    为了克服主动锁模脉冲能量低、被动调Q锁模稳定性差、锁模不完全的缺点,采用Cr:YAG和声光锁模器进行主被动联合锁模脉冲氙灯抽运的Nd:YAG激光器,实验验证和分析了Cr:YAG被动锁模,声光锁模器主动锁模及两者联合主被动锁模3种情况下输出脉冲的特性.结果表明,主被动联合锁模可得到200mJ输出能量、输出幅值和能量抖动小于±5%、锁模深度100%、脉宽小于450ps的1064nm锁模脉冲输出,腔外增加KTP倍频晶体,可得到约41%的转换效率的532nm稳定锁模脉冲输出.这一结果验证了主被动锁模技术的可行性,有利于锁模技术的进一步发展.%In order to resolve the low output energy of active mode-locked laser and instability of passive mode-locked laser,Cr4+ :YAG passive mode-locker and acousto-optic active mode-locker were used jointly for Nd:YAG laser mode-locking.The output characteristics of passively mode-locked by Cr4+ :YAG only, actively mode-locked by anousto-optic mode-locker only and mode-locked by Cr+ :YAG and acousto-optic jointly were analyzed and compared through experiments.Results showed that the joint mode-locking method gave good resolution to the low output energy and stability, and the mode-lock amplitude and energy fluctuation were less than ± 5%, with the depth of mode locking of 100%, pulse width less than 450ps and output energy near 200mJ at 1064nm wavelength.Adding KTP crystal out of the cavity, the output conversion efficiency was about 41% at 532nm wavelength.The results show the possibility of actively-passively mode-locked technology and it is helpful for the development of mode-locking technology.

  6. Dyeing Properties of Basofil Fiber

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; DAI Jin-jin

    2002-01-01

    The structures and properties of Basofil fiber were studied using X- rays small angle diffraction analysis,differential- scanuing calorimeter and scanning electron microscopy. Disperse dyes, acid dyes and reactive dyes had been tried for dyeing Basefil fiber. It was shown disperse dyes were superior to other ones. The two series of high temperature dyes and low temperature dyes were compared for their suitability for Basofil fiber, and their dyeing behaviors were determined.

  7. Modelling the Ohmic L-mode ramp-down phase of JET hybrid pulses using JETTO with Bohm-gyro-Bohm transport

    Science.gov (United States)

    Bizarro, João P. S.; Köchl, Florian; Voitsekhovitch, Irina; EFDA Contributors, JET

    2016-11-01

    The empirical Bohm-gyro-Bohm (BgB) transport model implemented in the JETTO code is used to predictively simulate the purely Ohmic (OH), L-mode current-ramp-down phase of three JET hybrid pulses, which combine two different ramp rates with two different electron densities (at the beginning of the ramp). The modelling is discussed, namely the strategy to reduce as much as possible the number of free parameters used to benchmark the model predictions against the experimental results. Hence, keeping the gas puffing rate as measured whilst controlling the line-averaged electron density via the recycling coefficient (which in the modelling is taken at the separatrix instead of the wall), one of the many possible ways to fix the total particle source, it is shown that the BgB model reproduces well the experimental data, as far as both average quantities (plasma internal inductance and volume-averaged electron temperature) and profiles (electron density and temperature) are concerned, with relative errors remaining mostly below 20 % . The sensitivenesses with respect to the recycling coefficient, the ion effective charge, the energy of neutrals entering the plasma through the separatrix and the need to introduce a particle pinch are assessed; the necessity for a proper sawtooth model if experimental results are to be reproduced is also shown. The strong non-linear coupling in a OH plasma between density, temperature and current (essentially via interplay between the power-balance equation, Joule’s heating with a temperature-dependent resistivity and the dependence of BgB transport coefficients on profile gradients) is put in evidence and analyzed in light of modelling results. It is still inferred from the modelling that the real value of the recycling coefficient at the separatrix (basically, the so-called fuelling efficiency times the actual recycling coefficient at the wall) must become close to one in the final stages of the discharges, when the gas puffing is

  8. Benzidine Dyes Action Plan

    Science.gov (United States)

    This Action Plan addresses the use of benzidine-based dyes and benzidine congener-based dyes, both metalized and non-metalized, in products that would result in consumer exposure, such as for use to color textiles.

  9. Dyeing of Polypropylene Fibers with Vat Dyes

    Institute of Scientific and Technical Information of China (English)

    LIU Hang; ETTERS J. Nolan; LEONAS Karen K

    2006-01-01

    Polypropylene fibers have been extensively used in a variety of products, including carpets and upholstery, due to their non-absorbency, good weather resistance, good resistance to microorganisms and so on. Because of their hydrophobic and highly crystalline nature, those well-established conventional dyeing processes are difficult to apply to unmodified polypropylene. Colors of polypropylene fibers are primarily obtained by mass coloration which has the disadvantages of limited number of colors available and difficulties in inventory control due to the rapidly changing color needs of the market. In this paper, the use of vat dyes to dye polypropylene fabrics is investigated. Seventeen vat dyes were screened and factors influencing uptake of dyes by polypropylene fabrics were studied.

  10. Plasmon mode excitation and photoluminescence enhancement on silver nanoring

    CERN Document Server

    Kuchmizhak, A A; Kulchin, Yu N; Vitrik, O B

    2015-01-01

    We demonstrate a simple and high-performance laser-assisted technique for silver nanoring fabrication, which includes the ablation of the Ag film by focused nanosecond pulses and subsequent reactive ion polishing. The nanoring diameter and thickness can be controlled by optimizing both the pulse energy and the metal film thickness at laser ablation step, while the subsequent reactive ion polishing provides the ability to fabricate the nanoring with desirable height. Scattering patterns of s-polarized collimated laser beam obliquely illuminating the nanoring demonstrate the focal spot inside the nanoring shifted from its center at a distance of ~ 0.57Rring. Five-fold enhancement of the photoluminescence signal from the Rhodamine 6G organic dye near the Ag nanoring was demonstrated. This enhancement was attributed to the increase of the electromagnetic field amplitude near the nanoring surface arising from excitation of the multipole plasmon modes traveling along the nanoring. This assumption was confirmed by d...

  11. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  12. Removal Factor Analysis of Chemical Oxygen Demand by Bipolar Pulsed Discharge in Dye Waste Water with Plasma Treatment%双极性脉冲放电等离子体处理染料废水时化学需氧量去除效果相关因素分析

    Institute of Scientific and Technical Information of China (English)

    张若兵; 马文长; 张弦

    2012-01-01

    在双极性脉冲放电等离子体用于染料废水的降解过程中,废水化学需氧量(chemicaloxygendemand,COD)的变化是在更深层次上反映该技术对有机污染物的降解能力的重要指标。为此,重点研究了在气液固三相混合体双极性脉冲放电条件下典型染料废水COD的去除规律,测试了不同电压、气体流量、初始浓度等条件下染料废水COD的变化。实验结果表明:当负载电压较高时,染料废水的COD值会先升高然后不断降低;而负载电压较低时,COD值会在一定程度内缓慢上升;气体流量越高,COD的去除效果越好;废水初始浓度增加,COD的去除率略有下降;初始电导率增加,COD的去除率降低;对具有不同官能团的染料废水进行放电处理发现,双极性脉冲放电对于各种结构的染料均有良好的处理效果。%The removal rule of chemical oxygen demand (COD) in the typical dye solution was investigated using a packed bed reactor by bipolar pulsed discharge in the air-water-solid mixture, and the value of COD in different conditions such as different voltages, air flow rates and initial concentrations was measured. Experimental results prove that the COD value of dye waste water will increase first and then decrease constantly at a high load voltage, while the COD value increase slowly to a certain extent at a low load voltage. The removal effect of COD is better when the air flow rate is higher and is worse when the initial concentration and conductivity of the dye waste water increase. It is found that the degradation effect on dyes with different functional groups is remarkable after the bipolar pulsed discharge treatment.

  13. Ultrasonic dyeing of cellulose nanofibers.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  14. Ranking of hair dye substances according to predicted sensitization potency

    DEFF Research Database (Denmark)

    Søsted, H; Basketter, D A; Estrada, E

    2004-01-01

    Allergic contact dermatitis following the use of hair dyes is well known. Many chemicals are used in hair dyes and it is unlikely that all cases of hair dye allergy can be diagnosed by means of patch testing with p-phenylenediamine (PPD). The objectives of this study are to identify all hair dye...... in order to help select a number of chemically diverse hair dye substances that could be used in subsequent clinical work. Various information sources, including the Inventory of Cosmetics Ingredients, new regulations on cosmetics, data on total use and ChemId (the Chemical Search Input website provided...... by the National Library of Medicine), were used in order to identify the names and structures of the hair dyes. A QSAR model, developed with the help of experimental local lymph node assay data and topological sub-structural molecular descriptors (TOPS-MODE), was used in order to predict the likely sensitization...

  15. Temporal resolution beyond the average pulse duration in shaped noisy-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Meyer, Kristina; Müller, Niklas; Liu, Zuoye; Pfeifer, Thomas

    2016-12-20

    In time-resolved spectroscopy, it is a widespread belief that the temporal resolution is determined by the laser pulse duration. Recently, it was observed and shown that partially coherent laser pulses as they are provided by free-electron-laser (FEL) sources offer an alternative route to reach a temporal resolution below the average pulse duration. Here, we demonstrate the generation of partially coherent light in the laboratory like we observe it at FELs. We present the successful implementation of such statistically fluctuating pulses by using the pulse-shaping technique. These pulses exhibit an average pulse duration about 10 times larger than their bandwidth limit. The shaped pulses are then applied to transient-absorption measurements in the dye IR144. Despite the noisy characteristics of the laser pulses, features in the measured absorption spectra occurring on time scales much faster than the average pulse duration are resolved, thus proving the universality of the described noisy-pulse concept.

  16. Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

    DEFF Research Database (Denmark)

    Verhoef, A. J.; Zhu, L.; Israelsen, Stine Møller

    2015-01-01

    We present an Yb-fiber oscillator with an all-polarizationmaintaining cavity with a higher-order-mode fiber for dispersion compensation. The polarization maintaining higher order mode fiber introduces not only negative second order dispersion but also negative third order dispersion in the cavity...

  17. The Role of Lithium Conditioning in Achieving High Performance, Long Pulse H-mode Discharges in the NSTX and EAST Devices

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [PPPL; Mansfield, D. K. [PPPL; Gong, X. Z. [IPPCAS; Sun, Z. [IPPCAS; Bell, M. G. [PPPL

    2014-10-01

    In this paper, the role of lithium wall conditioning on the achievement of high performance, long pulse discharges in the National Spherical Torus Experiment (NSTX) and the Experimental Advanced Superconducting Tokamak (EAST) is documented. Common observations include recycling reduction and elimination of ELMs. In NSTX, lithium conditioning typically resulted in ELM-free operation with impurity accumulation, which was ameliorated e.g. with pulsed 3D fields to trigger controlled ELMs. Active lithium conditioning in EAST discharges has overcome this problem, producing an ELM-free Hmode with controlled density and impurities.

  18. Enhanced analogue front-end for the measurement of the high state of wide-band voltage pulses with 87 dB common-mode rejection ratio and ±0.65 ppm 1-day offset stability

    Science.gov (United States)

    Arpaia, Pasquale; Baccigalupi, Carlo; Martino, Michele

    2015-09-01

    An improved analogue front-end for measuring the high state of trapezoidal voltage pulses with transition duration of 3 μs is presented. A new measurement system, composed by a front-end and the state-of-the-art acquisition board NI PXI-5922, has been realized with improved Common Mode Rejection Ratio (CMRR) of more than 87 dB at DC and 3-sigma stability of ±0.65 ppm over 1 day. After highlighting the main design enhancements with respect to state-of-the-art solutions, the CMRR measurement is reported. The output drift due to temperature and humidity is assessed to be negligible. Finally, the worst-case repeatability is measured both with shorted-to-ground inputs and with an applied common-mode voltage of 10 V, which represents the nominal working condition.

  19. Enhanced analogue front-end for the measurement of the high state of wide-band voltage pulses with 87 dB common-mode rejection ratio and ±0.65 ppm 1-day offset stability

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Martino, Michele

    2015-01-01

    An improved analogue front-end for measuring the high state of trapezoidal voltage pulses with transition duration of 3 μs is presented. A new measurement system, composed by a front-end and the state-of-the-art acquisition board NI PXI-5922, has been realized with improved Common Mode Rejection Ratio (CMRR) of more than 87 dB at DC and 3-sigma stability of }0.65 ppm over 1 day. After highlighting the main design enhancements with respect to state-of-the-art solutions, the CMRR measurement is reported. The output drift due to temperature and humidity is assessed to be negligible. Finally, the worst-case repeatability is measured both with shorted-to-ground inputs and with an applied common-mode voltage of 10 V, which represents the nominal working condition.

  20. Ultrabroadband pulse shaping with a push-pull deformable mirror.

    Science.gov (United States)

    Bonora, Stefano; Brida, Daniele; Villoresi, Paolo; Cerullo, Giulio

    2010-10-25

    We report the programmable pulse shaping of ultrabroadband pulses by the use of a novel design of electrostatic deformable mirror based on push pull technology. We shape few-optical pulses from near-IR and visible optical parametric amplifiers, and demonstrate strong-field control of excited state population transfer in a dye molecule.

  1. Clinical analysis of pulsed dye laser combined with topical 5%Imiquimod Creamtreatment of port wine stains%脉冲染料激光联合外用5%咪喹莫特乳膏治疗微静脉畸形的疗效观察

    Institute of Scientific and Technical Information of China (English)

    周颖华; 郝思辉; 倪小丽; 王路

    2015-01-01

    Objective Through the implementation of pulsed dye laser in patients with nevus flammeus with topical 5% mi sinensis mulder cream therapy,to observe the clinical use of combination therapy,evaluate the curative effect. Methods 80 patients to the hospital treatment of nevus flammeus,to use ordinary pulsed dye laser treatment of the control group and the pulsed dye laser in combination with topical 5% mi sinensis mott cream 1 months,4 months after treatment,8 months and 12 months follow-up,by observing patients with skin color changes and computational efficient,and test the therapeutic part of hemoglobin index for overall evaluation of treatment effect, finally USES the computer SPSS12.0 software for statistical analysis. Results The observation group after treatment of 1,4,8,12 month hemoglobin index was lower than those of before treatment,the basic stability in the follow-up,the hemoglobin index than the control group were statistically significant(P<0.05).The combined treatment group effective rate was 87.5%,higher than 77.5% in the control group. Conclusion The pulsed dye laser in combination with topical 5% mi sinensis mott cream in the treatment of nevus flammeus has advantages of good continuity,low recurrence rate of curative effect,has good clinical application prospects.%目的:通过对微静脉畸形患者施行脉冲染料激光联合外用5%咪喹莫特乳膏治疗,来观测此联合疗法的临床使用情况,评估其疗效。方法:80例微静脉畸形患者,随机分为两组。联合组:40例,采用脉冲染料激光联合外用5%咪喹莫特乳膏治疗;对照组:40例,采用普通脉冲染料激光治疗;治疗后1个月、4个月、8个月和12个月进行随访,通过观测患者皮损颜色变化情况并计算有效率,测试治疗部位的血红蛋白指数整体评估治疗效果,最后采用计算机SPSS12.0软件进行统计学分析。结果:联合组治疗后的1、4、8、12月血红蛋白指数较治

  2. Dyes as teratogens.

    Science.gov (United States)

    Sandor, S

    1992-01-01

    The main fats and problems of the role of dyes in prenatal pathology are reviewed. The first section deals with the practical aspects related to teratological screening of industrial dyes (including also the results obtained in this laboratory). In the second section, various aspects of azo-dye teratogenesis are largely discussed, including also the experimental contributions of this laboratory. Concluding remarks are made with respect to the importance and to the perspectives of this field of research.

  3. WATERLESS DYEING [REVIEW

    Directory of Open Access Journals (Sweden)

    DEVRENT Nalan

    2015-05-01

    Full Text Available The textile industry is believed to be one of the biggest consumers of water. Water consumption and exhaustion in dyeing textile materials in conventional methods is an important environmental problem. The cost of waste water treatment will cause a prominent problem in the future as it does today. Increasing consideration of ecologic consequences of industrial processes as well as legislation enforcing the avoidance of environmental problems have caused a reorientation of thinking and promoted projects for replacement of conventional technologies. One of these new technologies is dyeing in supercritical fluids. Dyeing with supercritical carbon dioxide is a favourable concept considering the value of water as a natural resource and the cost of waste water treatment. This dyeing method offers many advantages over conventional aqueous dyeing: During this dyeing process no water is used, therefore there is no waste water problem, no other chemicals are required; the carbon dioxide can be recycled; the dystuff which is not adsorbed on the substrate can be collected and reused; The necessary energy consumption in this process is relatively lower than is needed to heat water in conventional methods of dyeing. Due to unnecessary of drying process, it helps to save both energy and time; and dyeing cycle is shorter compared with traditional methods. In addition carbon dioxide is non-toxic and non-flammable. Supercritical fluid, supercritical dyeing, disperse dyestuffs, solid-fluid equilibrium

  4. Sampling system for pulsed signals. Study of the radioactive lifetimes of excited 3{sup 2}P1/2 and 3{sup 2}P3/2 states of Na, excited by a tunable dye laser; Sistema de muestreo para senales pulsadas. Estudio de vidas medias de niveles 3{sup 2} P1/2 y 3{sup 2}P3/2 excitados por un laser de colorantes pulsado

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.; Campos, J.

    1979-07-01

    A system for sampling and averaging repetitive signals in the order of nanoseconds is discussed. The system uses as storage memory a multichannel analyzer operating in multi scaling mode. This instrument is employed for the measurement of atomic level lifetimes using a dye laser to excite the atoms and is applied to the study of lifetimes of the 3{sup 2}P1/2 and 3{sup 2}P3/2 states of sodium. (Author) 32 refs.

  5. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  6. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  7. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also because many azo

  8. Anaerobic azo dye reduction

    NARCIS (Netherlands)

    Zee, van der F.P.

    2002-01-01

    Azo dyes, aromatic moieties linked together by azo (-N=N-) chromophores, represent the largest class of dyes used in textile-processing and other industries. The release of these compounds into the environment is undesirable, not only because of their colour, but also b

  9. Efficient Pulsed Quadrupole

    CERN Document Server

    Petzenhauser, I.; Spiller, P.; Tenholt, C.

    2016-01-01

    In order to raise the focusing gradient in case of bunched beam lines, a pulsed quadrupole was designed. The transfer channels between synchrotrons as well as the final focusing for the target line are possible applications. The quadrupole is running in a pulsed mode, which means an immense saving of energy by avoiding standby operation. Still the high gradients demand high currents. Hence a circuit had to be developed which is able to recover a significant amount of the pulsing energy for following shots. The basic design of the electrical circuit of the quadrupole is introduced. Furthermore more energy efficient circuits are presented and the limits of adaptability are considered.

  10. Photophysical and laser characteristics of pyrromethene 567 dye: Experimental and theoretical studies

    Indian Academy of Sciences (India)

    K K Jagtap; D K Maity; A K Ray; K Dasgupta; S K Ghosh

    2010-11-01

    Narrow-band laser performance of alcohol solutions of pyrromethene 567 (PM567) and rhodamine 6G (RH6G) dye was investigated using a home-made GIG- configured dye laser, excited by the second-harmonic radiation (at 532 nm) of a pulsed Nd:YAG laser. Higher laser efficiency was observed with PM567 dye (∼ 23% peak) in comparison to the commonly used RH6G dye (16.5%), in spite of much lower fluorescence quantum efficiency of the PM567 (0.83) vis-à-vis RH6G (0.98) dye solutions in ethanol. First principle-based electronic structure calculations were performed on PM567 dye in the ground (0) and excited states (1) using density functional theory to elucidate the structure and photophysical properties of the dye.

  11. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  12. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    P. K. Saha

    2013-12-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF as well as to the main ring (MR at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100π  mm mrad for the MR switching from the MLF painting area of 150π  mm mrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the

  13. Fourier-transform-limited laser pulses tunable in wavelength and in duration (400-2000 ps)

    NARCIS (Netherlands)

    Schiemann, S.; Hogervorst, W.; Ubachs, W.M.G.

    1998-01-01

    A combined system of an injection-seeded pulsed dye amplifier and a pulse compressor based on stimulated Brillouin scattering (SBS) is investigated, It allows for the generation of powerful pulses both tunable in wavelength and in duration. Online tuning of the pulse duration is possible due to the

  14. Development of the plastic solid-dye cell for tunable solid-state dye lasers and study on its optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Do Kyeong; Lee, Jong Min; Cha, Byung Heon; Jung, E. C.; Kim, Hyun Su; Lim, Gwon

    2001-01-01

    we have fabricated solid-state dyes with PMMA and sol-gel materials. We developed single longitudianl mode solid-state dye laser with the linewidth of less than 500MHz. We have constructed a self-seeded laser and observed the increase of the output power because of self-seeding effect. We investigated the operating characteristics of the dualwave laser oscillator and DFDL with solid-state dyes. And we have constructed the 3-color solid-state dye laser oscillator and amplifier system and observed 3-color operation. We also improved the laser oscliiator with disk-type solid-state dye cell which can be translated and rotated with the help of the two stepping motors. With the help of computer control, we could constantly changed the illuminated area of the dye cell and, therefore, were able to achieve long time operation and to use almost the entire region of the solid-state dye cell.

  15. Pulsed-wave tissue Doppler and color tissue Doppler echocardiography: calibration with M-mode, agreement, and reproducibility in a clinical setting

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; Jons, Christian; Fritz-Hansen, Thomas

    2009-01-01

    of the two methods in a routine clinical setting. METHODS: For Study A, the displacements of 63 basal myocardial segments from 13 patients were examined with M-mode and compared with the velocity-time integral of PWTD and CTD velocities. For Study B, the basal lateral segments from 58 patients were examined...... 2.29 +/- 1.82 cm/sec; P numerically smaller tissue velocities than PWTD, mostly due to an overestimation of true tissue motion by PWTD...

  16. Determining Compatibilities of Reactive Dyes in Pad Dyeing

    Institute of Scientific and Technical Information of China (English)

    屠天民

    2001-01-01

    Compatibilities of reactive dyes were conventionally shown by exhausting curves. But the change of proportion of dyes in padding dyebath was difficult for pad dyeing to be described by these curves. In this paper, a kind of simulation of pad dyeing process was used to determine dyestuff compatibility in pad dyeing for ramie and linen fabrics. Seven reactive dyes were divided into three groups and tested., The group with Cibacron Yellow C - 2R, Red C - R, and Blue C - R showed very good compatibility both for ramie and linen,and the other two groups of dyes gave out correspondingly low compatibilities in the pad dyeing tests. The results of the method for determining the compatibility of dyes displayed good consistency with the actul pad dyeing process.

  17. Treatment of Azo-dye Orange II with Nozzle-cylinder Electrode by Negative High-voltage Pulse Discharge System Combined with Ti02 Photocatalysis%喷嘴-筒式放电极负高压脉冲放电协同二氧化钛光催化对偶氮类染料酸性橙Ⅱ的处理

    Institute of Scientific and Technical Information of China (English)

    王少启; 孙明; 鲁晓辉; 郝夏桐

    2012-01-01

    The pulse discharge system produce discharge plasma and the high-energy electron, ultraviolet light, ozone etc, can be comprehensively dealt with water or atmospheric pollutants. In this paper, pulse discharge system combined with TiO2 photocatalysis, by designing nozzle-electrode of nozzle-cylinder reactor with coating of TiO2. With using ultraviolet of pulse discharge process to achieve catalytic of TiO2, for increaseing the active radicals quantity of primarily hydroxyl, The paper studied the azo-dye Orange Ⅱ to compare with coating of TiO2 electrode on degradation rate of pollutants. The main research is about degradation rate of acid orange Ⅱ in respectively with before and after coating on pulse peak voltage, pulse repetition frequency, discharge electrode diameter, initial concentration of solution and other factors.%脉冲放电过程在产生放电等离子体的同时,产生高能电子、紫外光.O3等多因素,可综合作用于水中或大气中的污染物。本文把脉冲放电等离子体和TiO2光催化相结合,对我们设计的喷嘴一筒式反应器中的喷嘴放电极进行二氧化钛镀膜,利用脉冲放电过程中的紫外光实现对二氧化钛的催化.增加放电过程以羟基为主的活性自由基的数量。以偶氮类染料酸性橙Ⅱ为研究对象,对比了放电极二氧化钛镀膜对放电等离子体技术对污染物降解效率的影响。研究了镀膜前后分别脉冲峰值电压,溶液初始浓度、溶液pH值、电导率等因素对偶氮类染料酸性橙Ⅱ液降解率的影响。

  18. Unsymmetrical Heptamethine Dyes for NIR Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Geiger

    2014-01-01

    Full Text Available Seven unsymmetrical heptamethine dyes with carboxylic acid functionality were synthesized and characterized. These near-infrared dyes exhibit outstanding photophysical properties depending on their heterocyclic moieties and molecular structure. As proof of principle, the dyes were used as photosensitizers in dye-sensitized solar cells. Using the most promising dye, an overall conversion efficiency of 1.22% and an almost colorless solar cell were achieved.

  19. Dyeing of Polyester with Disperse Dyes: Part 2. Synthesis and Dyeing Characteristics of Some Azo Disperse Dyes for Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Alya M. Al-Etaibi

    2016-06-01

    Full Text Available The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

  20. Fong's: Saving Water in Dyeing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ In an effort to save the precious water resource and reduce the environmental impact, Fong's Industries Group along with its member companies, namely "Fong's National", "THEN", "Goller" and "Fong's Water Technology" provide an ecological dyeing solution to reduce the water consumption drastically through their innovative technologies covering the processes from yarn dyeing to piece dyeing and recycling of discharge after dyeing and finishing.

  1. Plasmonic Dye-Sensitized Solar Cells

    KAUST Repository

    Ding, I-Kang

    2010-12-14

    This image presents a scanning electron microscopy image of solid state dye-sensitized solar cell with a plasmonic back reflector, overlaid with simulated field intensity plots when monochromatic light is incident on the device. Plasmonic back reflectors, which consist of 2D arrays of silver nanodomes, can enhance absorption through excitation of plasmonic modes and increased light scattering, as reported by Michael D. McGehee, Yi Cui, and co-workers.

  2. Laser dyes excited by high PRR Nd:YAG laser second-harmonic radiation

    Science.gov (United States)

    Soldatov, A. N.; Donin, V. I.; Jakovin, D. V.; Reimer, I. V.

    2008-01-01

    The lasing characteristics of red-emitting dyes in ethanol excited by Nd:YAG laser second-harmonic radiation are examined. The Nd:YAG laser was pumped by a diode matrix. The pump pulse repetition rates (PRRs) were 2.5 - 10 kHz and the pulse duration was 60 - 300 ns. The following dyes were evaluated: oxazine 17, DCM, DCM sp, and pyridine 1. The conversion efficiency for oxazine was 25 % without wavelength selection and 15 % with wavelength selection over the tuning range from 630 to 700 nm. The Nd:YAG and dye laser designs used are described elsewhere [1,2].

  3. High-definition color image in dye thermal transfer printing by laser heating

    Science.gov (United States)

    Kitamura, Takashi

    1999-12-01

    In laser thermal transfer printing using dye sublimation type medium, a high definition and continuous tone image can be obtained easily because the laser beam is focused to small spot and heat energy can be controlled by the pulse width modulation of laser light. The donor ink sheet is composed of the laser absorbing layer and sublimation dye layer. The tone reproduction was depend on the mixture ratio of dye to binder and thickness of ink layer. The four color ink sheets such as cyan, magenta, yellow and black were prepared for color printing image which have a high resolution and good continuous tone reproduction using sublimation dye transfer printing by laser heating.

  4. Extraction of dye

    African Journals Online (AJOL)

    ... Uganda is a home of thousands of largely unknown and undocumented plants. ... Dyes of natural origins are great for color appreciation as any variation in the ... Asteraceae characterized by bitter leaves, traditionally used for treating fever.

  5. 人眼安全高重频窄脉宽单模全光纤激光器特性研究%Characteristics of eye-safe high repetition frequency narrow pulse width single mode all fiber laser

    Institute of Scientific and Technical Information of China (English)

    张鑫; 刘源; 贺岩; 杨燕; 侯霞; 陈卫标

    2015-01-01

    介绍了基于主振荡功率放大结构的人眼安全全光纤激光器。首先对比了电光调制及直接调制产生的种子激光在百kHz重复频率、纳秒级脉冲宽度的激光放大器中优缺点,综合系统需求选择直接调制方式;之后对窄脉冲单模放大中出现的脉冲分裂现象进行了研究,选用10μm纤芯的双包层铒镱共掺光纤,仅通过两级放大即获得了1550 nm,重复频率为200 kHz,脉冲宽度为4.07 ns,峰值功率为1.02 kW的单模激光输出。具有结构紧凑、稳定可靠的特点,可用于三维视频激光雷达。%An eye-safe, all fiber, single mode, fiber laser based on master oscillator power amplifier configuration was presented. The advantages and disadvantages were compared between using a directly modulated diode laser and an electro-optical modulated continuous-wave diode as seed laser in sub-Mega Hertz, nanosecond fiber amplifier. The main restriction of power scaling in nanosecond fiber laser was pulse split. 10μm core double cladding erbium ytterbium co-doped fiber was employed as gain fiber of power amplifier. The directly modulated seed laser was then amplified by only two stage amplifiers. Finally, a peak power of 1.02 kW with 4.07 ns pulse duration at 200 kHz pulse repetition frequency with single-mode output was obtained and it is applicable in three dimensional video imaging lidar system.

  6. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...... with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular...... lattice is described by two orthogonal unit vectors of length a and b, defining the P and X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle () depending on the lattice constant b (355 nm...

  7. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  8. Research of reduced common-mode voltage technique with nonzero vector pulse width modulation for three-phase inverters%三相逆变器的无零矢量共模电压抑制技术研究

    Institute of Scientific and Technical Information of China (English)

    章勇高; 邝光健; 龙立中

    2013-01-01

    The common-mode suppression techniques with nonzero vector pulse width modulation (NZPWM) for three-phase inverters are studied. They are random state pulse width modulation (RSPWM), active zero state PWM1 (AZSPWM1), active zero state PWM3 (AZSPWM3) and near state PWM (NSPWM). Firstly, the operation areas of modulation factor and reference voltage vector with different modulation strategies are analyzed. The results show that RSPWM has a smaller operation area than other three NZPWM and is suitable for the application with lower modulation ratio. Secondly, the DC voltage utilization rate and output harmonic of different NZPWM are researched and compared with that of traditional space vector modulation (SVM) by using theoretical analysis and simulation. The results show that AZPWM1, AZPWM3 and NSPWM can not only suppress the common mode voltage of three-phase inverters efficiently, but also maintain high DC voltage utilization rate. However, three-phase inverters with NSPWM have the higher output harmonic comparing with the traditional SVM. The research results provide theoretical basis and instruction for the selection of common mode voltage suppression technique with NZPWM for three-phase inverters and its further study.%  研究了三相逆变器的 RSPWM、AZSPWM1、AZSPWM3和 NSPWM 无零矢量共模电压抑制技术。首先,分析了不同调制策略的调制因数和参考电压矢量的工作区间,说明了 RSPWM 的工作区间较小,适用于低调制比工作场合。再次,利用理论分析和仿真方法,研究了无零矢量调制策略的直流电压利用率和输出谐波特性,并与传统 SVM 调制策略比较。结果表明,AZSPWM1、AZSPWM3和 NSPWM 调制策略能够有效地抑制三相逆变器共模电压,同时保持了较高的直流电压利用率。但相对 SVM 调制策略,三相逆变器的输出谐波含量有所增大。研究结果为三相逆变器的无零矢量共模电压抑制技术的选用及进一步研究提供了理论依据和指导。

  9. Dye Application, Manufacture of Dye Intermediates and Dyes

    Science.gov (United States)

    Freeman, H. S.; Mock, G. N.

    It is difficult if not impossible to determine when mankind first systematically applied color to a textile substrate. The first colored fabrics were probably nonwoven felts painted in imitation of animal skins. The first dyeings were probably actually little more than stains from the juice of berries. Ancient Greek writers described painted fabrics worn by the tribes of Asia Minor. But just where did the ancient craft have its origins? Was there one original birthplace or were there a number of simultaneous beginnings around the world?

  10. Techniques for increasing output power from mode-locked semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mar, A.; Vawter, G.A.

    1996-02-01

    Mode-locked semiconductor lasers have drawn considerable attention as compact, reliable, and relatively inexpensive sources of short optical pulses. Advances in the design of such lasers have resulted in vast improvements in pulsewidth and noise performance, at a very wide range of repetition rates. An attractive application for these lasers would be to serve as alternatives for large benchtop laser systems such as dye lasers and solid-state lasers. However, mode-locked semiconductor lasers have not yet approached the performance of such systems in terms of output power. Different techniques for overcoming the problem of low output power from mode-locked semiconductor lasers will be discussed. Flared and arrayed lasers have been used successfully to increase the pulse saturation energy limit by increasing the gain cross section. Further improvements have been achieved by use of the MOPA configuration, which utilizes a flared semiconductor amplifier s amplify pulses to energies of 120 pJ and peak powers of nearly 30W.

  11. Fluorescence anisotropy excitation by polarization-shaped laser pulses after transmission through a kagome fiber

    Science.gov (United States)

    Otto, J.; Patas, A.; Althoff, J.; Lindinger, A.

    2016-08-01

    We report improved fluorescence contrast between dyes by two-photon excitation with polarization-shaped laser pulses after transmission through a kagome fiber utilizing the anisotropy of the dye molecules. Particularly phase- and polarization-tailored pulse shapes are employed for two-photon excited fluorescence of dyes in a liquid environment at the distal end of the kagome fiber. The distortions due to the optical fiber properties are precompensated in order to receive predefined polarization-shaped laser pulses after the kagome fiber. This enables to optimally excite one dye in one polarization direction and simultaneously the other dye in the other polarization direction. The presented method has a high potential for endoscopic applications due to the unique properties of kagome fibers for guiding ultrashort laser pulses.

  12. Resonance vector mode locking

    CERN Document Server

    Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P

    2015-01-01

    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...

  13. PM567-Doped solid dye lasers based on PMMA

    Institute of Scientific and Technical Information of China (English)

    Li Xiao-Hui; Fan Rong-Wei; Xia Yuan-Qin; Liu Wei; Chen De-Ying

    2007-01-01

    Polymers are a kind of attractive hosts for laser dyes due to their high transparency in both pumping and lasing ranges and superior optical homogeneity. In this paper solid dye samples based on polymethyl methacrylate (PMMA)doped with different concentrations of 1, 3, 5, 7, 8 -pentamethyl-2, 6-diethylpyrromethene-BF2 (PM567) are prepaed.The absorption, fluorescence and lasing spectra of the samples are obtained. Wide absorption and fluorescence bands are obtained and a red shift of the maxima of the lasing emission spectra is observed. With the second-harmonic generation of Q-switched Nd:YAG laser (532 nm, ~20 ns) pumping the samples longitudinally, the slope efficiencies of the samples are obtained. There is an optimal dye concentration for the highest slope efficiency when the pumping energy is lower than some typical value (~250 m J), and the highest slope efficiency 35.6% is obtained in the sample with a dye concentration of 2 × 10-4 mol/L. Pumping the samples at a rate of 10Hz with a pulse energy as high as 200 mJ (the fluence is 0.2J/cm2), the output energy drops to one-half of its initial value after approximate 15500 pulses and the normalized photostability is 5.17GJ/mol. A kind of solid dye laser which could have some applications is built.

  14. 经皮穿刺手动调压脉冲射频模式治疗颈椎间盘突出症%THE CLINICAL EFFECTS OF PERCUTANEOUS PUNCTURE MANUAL VOLTAGE REGULATION PULSED RADIOFREQUENCY MODE ON CERVICAL DISC HERNIATION

    Institute of Scientific and Technical Information of China (English)

    吴大胜; 刘娜; 宫小文; 宋永光

    2012-01-01

    Objective: To evaluate the clinical effects of percutaneous puncture manual voltage regulation pulsed radiofrequency mode on the treatment cervical disc herniation. Methods: From August 2010 to September 2011, 112 patients with cervical disc herniation were given with percutaneous puncture manual voltage regulation pulsed radiofrequency mode guided through C arm X-ray machine, CT or DSA. The visual analogue scale (VAS) score and clinical effects were recorded before and after treatment. Results: After 3 d the treatment, the excellent cases were 96, the good cases were 14, and the bad cases were 2, the excellent and good rate was 98.2%. There were 2 bad cases because the doctor failed to grasp the good indication. Compared with pre-operation (7.8 ± 0.4), the VAS at 3 d after operation (1.5 ± 0.3) was decreased (P < 0.05). Conclusion: Percutaneous puncture manual voltage regulation pulsed radiofrequency mode therapy is a suitable treatment for cervical disc herniation, with the advantages of simple operation, easy to master, small trauma, not influencing the stability of spine biomechanics, no serious complications.%目的:评估手动调压脉冲射频模式治疗颈椎间盘突出症的临床可行性.方法:2010年8月~2011年9月,112例颈椎间盘突出症患者,在C型臂X线机、CT或DSA引导下接受经皮穿刺手动调压脉冲射频模式治疗.观察并记录术前后的视觉模拟评分(visual analogue scale,VAS),并进行疗效评估.结果:本组112例患者,经过该技术治疗后3d,其中96例治疗效果达优级,14例治疗效果良好,2例效果差,优良率98.2%.其中,效果较差的2例是因为未把握好适应症.与术前VAS评分(7.8±0.4)相比,术后3天VAS评分(1.5±0.3)降低(P<0.05).结论:经皮穿刺手动调压脉冲射频模式治疗颈椎间盘突出症具有操作简单、易于掌握、创伤小、不影响脊柱生物力学稳定性、无严重并发症等特点.是一种可供临床选用的、效果确切又较

  15. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study.

    Science.gov (United States)

    Beer, F; Körpert, W; Buchmair, A G; Passow, H; Meinl, A; Heimel, P; Moritz, A

    2013-05-01

    Since the diode laser is a good compromise for the daily use in dental offices, finding usage in numerous dental indications (e.g., surgery, periodontics, and endodontics), the minimization of the collateral damage in laser surgery is important to improve the therapeutical outcome. The aim of this study was to investigate the effect of water/air cooling on the collateral thermal soft tissue damage of 980-nm diode laser incisions. A total of 36 mechanically executed laser cuts in pork liver were made with a 980-nm diode laser in micropulsed mode with three different settings of water/air cooling and examined by histological assessment to determine the area and size of carbonization, necrosis, and reversible tissue damage as well as incision depth and width. In our study, clearly the incision depth increased significantly under water/air cooling (270.9 versus 502.3 μm-test group 3) without significant changes of incision width. In test group 2, the total area of damage was significantly smaller than in the control group (in this group, the incision depth increases by 65 %). In test group 3, the total area of damage was significantly higher (incision depth increased by 85 %), but the bigger part of it represented a reversible tissue alteration leaving the amount of irreversible damage almost the same as in the control group. This first pilot study clearly shows that water/air cooling in vitro has an effect on collateral tissue damage. Further studies will have to verify, if the reduced collateral damage we have proved in this study can lead to accelerated wound healing. Reduction of collateral thermal damage after diode laser incisions is clinically relevant for promoted wound healing.

  16. Pulsed Electron Holography

    CERN Document Server

    Germann, Matthias; Escher, Conrad; Fink, Hans-Werner

    2013-01-01

    A technique of pulsed low-energy electron holography is introduced that allows for recording highly resolved holograms within reduced exposure times. Therefore, stacks of holograms are accumulated in a pulsed mode with individual acquisition times as short as 50 {\\mu}s. Subsequently, these holograms are aligned and finally superimposed. The resulting holographic record reveals previously latent high-order interference fringes and thereby pushing interference resolution into the sub-nanometer regime. In view of the non-damaging character of low-energy electrons, the method is of particular interest for structural analysis of fragile biomolecules.

  17. Croatian Traditional Herbal Dyes For Textile Dyeing

    OpenAIRE

    Sutrlović, Ana

    2011-01-01

    Textiles, namely protein fibers, in continental part of central Europe have been traditionally dyed by natural dyes. In the process textile materials were pre or after treated by metal salts – mordants (usually: KAl(SO4)2•12H2O, SnCl2•2H2O, FeSO4•7H2O, CuSO4•5H2O). Most represented active substances in herbal extracts are flavonoid derivatives, which by complexing with metal ions constitute colored complexes. Depending on herb species and mordant applied, a wide palette of colors is available...

  18. Laser dye technology

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  19. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  20. Solution-processable, photo-stable, low-threshold, and broadly tunable thin film organic lasers based on novel high-performing laser dyes

    Science.gov (United States)

    Díaz-García, María. A.; Morales-Vidal, Marta; Ramírez, Manuel G.; Villalvilla, José M.; Boj, Pedro G.; Quintana, José A.; Retolaza, A.; Merino, S.

    2015-09-01

    Thin film organic lasers (TFOLs) represent a new generation of inexpensive, mechanically flexible devices with demonstrated applicability in numerous applications in the fields of spectroscopy, optical communications and sensing requiring an organic, efficient, stable, wavelength-tunable and solution-processable laser material. A distributed feedback (DFB) laser is a particularly attractive TFOL because it shows single mode emission, low pump energy, easy integration with other devices, mechanical flexibility and potentially low production cost. Here, amplified spontaneous emission (ASE) and DFB laser applications of novel high performing perylene dyes and p-phenylenevinylene (PV) oligomers, both dispersed in thermoplastic polymers, used as passive matrixes, are reported. Second-order DFB lasers based on these materials show single mode emission, wavelength tunability across the visible spectrum, operational lifetimes of >105 pump pulses, larger than previously reported PV oligomers or polymers, and thresholds close to pumping requirements with light-emitting diodes.

  1. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  2. Dyes with high affinity for polylactide

    Institute of Scientific and Technical Information of China (English)

    Liang He; Shu Fen Zhang; Bing Tao Tang; Li Li Wang; Jin Zong Yang

    2007-01-01

    Attempts were made to develop dyes with high affinity for polylactide as an alternative to the existent commercial disperse dyes.The dyes synthesized according to the affinity concept of dye to polylactide exhibited excellent dyeing properties on polylactide compared with the commercial disperse dyes.

  3. Azaquinolone dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P.R.; Atkins, R.L.; Henry, R.A.; Fletcher, A.N.

    1978-07-25

    The invention provides a dye laser comprising a lasing solution of a 7-substituted azaquinolone-2 in which the aza nitrogen occupies at least one of the 5, 6 and 8 ring positions. The 7-substituent is hydroxy, alkoxy, amino or substituted amino. Substituents may be attached to other ring positions. The present lasing compounds are aza analogs of corresponding quinolone compounds and, hence, are named ''azaquinolone'' compounds. The dye lasers lase in the blue to near ultraviolet region.

  4. Hair care and dyeing.

    Science.gov (United States)

    Draelos, Zoe Diana

    2015-01-01

    Alopecia can be effectively camouflaged or worsened through the use of hair care techniques and dyeing. Proper hair care, involving hair styling and the use of mild shampoos and body-building conditioners, can amplify thinning scalp hair; however, chemical processing, including hair dyeing, permanent waving, and hair straightening, can encourage further hair loss through breakage. Many patients suffering from alopecia attempt to improve their hair through extensive manipulation, which only increases problems. Frequent haircuts to minimize split ends, accompanied by gentle handling of the fragile fibers, is best. This chapter offers the dermatologist insight into hair care recommendations for the alopecia patient.

  5. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available stream_source_info Cummings_2009.pdf.txt stream_content_type text/plain stream_size 3362 Content-Encoding UTF-8 stream_name Cummings_2009.pdf.txt Content-Type text/plain; charset=UTF-8 DYE SOLAR CELL RESEARCH Franscious... Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2...

  6. Textile dye decolorization using cyanobacteria.

    Science.gov (United States)

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  7. Response surface optimization of bioremediation of Acid black 52 (Cr complex dye) using Aspergillus tamarii.

    Science.gov (United States)

    Ghosh, Arpita; Dastidar, Manisha Ghosh; Sreekrishnan, T R

    2017-02-01

    Bioremediation of the Cr complex dye (Acid black 52) was performed in batch and continuous modes using growing Aspergillus tamarii. The removal of Cu which may be present as an impurity was 100% at 100 mg/L initial dye concentration. The removal of color and Cr decreased from 87% to 4% and from 92% to 8%, respectively, by increasing dye concentration from 100 to 5000 mg/L in batch mode. The removal of color and Cr increased from 27% to 67.8% and from 32% to 72%, respectively, with increasing hydraulic retention time from 28 to 220 h at 100 mg/L dye concentration in continuous mode. For optimization of color removal using response surface methodology (RSM) the ranges of parameters were kept at dye concentration: 200-500 mg/L; pH: 4-6 and time: 35-50 hours. Maximum color removal suggested by the model was 85.6809% at initial dye concentration 200 mg/L, pH 5.25 and time 50 h. The validation experiments in batch and continuous modes were conducted at the optimum conditions as suggested by the RSM model. The theoretical and experimental responses of color removal were in close agreement in batch mode. The scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy and gas chromatography-mass spectroscopy analyses indicated biosorption and biodegradation of dye.

  8. Millijoule pulse energy picosecond fiber chirped-pulse amplification system

    Institute of Scientific and Technical Information of China (English)

    Zhi Yang; Xiaohong Hu; Yishan Wang; Wei Zhang; Wei Zhao

    2011-01-01

    @@ The efficient generation of a 1.17-mJ laser pul8e with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally.A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulse8 with hundreds of picosecond widths.Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier, All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR).The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.%The efficient generation of a 1.17-mJ laser pulse with 360 ps duration using an ytterbium (Yb)-doped fiber amplifier chain seeded by a homemade mode-locked fiber laser is demonstrated experimentally. A specially designed figure-of-eight fiber laser acts as the seed source of a chirped-pulse amplification (CPA) system and generates mode-locked pulses with hundreds of picosecond widths. Two kinds of large-mode-area (LMA) double-clad Yb-doped fibers are employed to construct the pre-amplifier and main amplifier. All of the adopted instruments help avoid severe nonlinearity in fibers to raise sub-nanosecond pulse energy with acceptable signal-to-noise ratio (SNR). The output spectrum of this fiber-based CPA system shows that amplified spontaneous emission (ASE) is suppressed to better than 30 dB, and the onset of stimulated Raman scattering is excluded.

  9. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  10. Full-field dye concentration measurement within saturated/unsaturated thin slabs of porous media

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology; Glass, R.J. [Sandia National Labs., Albuquerque, NM (United States)

    1992-12-31

    This paper presents a full-field dye concentration measurement technique that extends our experimental capabilities to the measurement of transient dye concentration fields within steady state flow fields under unsaturated or saturated conditions. Simple light absorption theory provides a basis for translating images into high resolution dye concentration fields. A series of dye pulse experiments that demonstrate the combined use of the full-field saturation and dye concentration techniques was conducted at four different degrees of saturation. Each of these experimental sequences was evaluated with respect to mass balance, the results being within 5% of the known dye mass input. An image windowing technique allowed us to see increased dispersion due to decreasing moisture content, tailing of concentration at the rear of the dye pulse and slight velocity changes of the dispersive front due to changes in moisture content. The exceptional resolution of dye concentration in space and time provided by this laboratory technique allows systematic experimentation for examining basic processes affecting solute transport within saturated/unsaturated porous media. Future challenges for this work will be to use these techniques to analyze more complex systems involving heterogeneities, scaling laws, and detailed investigations of the relationship between transverse and longitudinal dispersion in unsaturated media.

  11. REUSE OF DECOLORIZED DYEING EFFLUENTS IN REPEATED DYEINGS

    Directory of Open Access Journals (Sweden)

    ÖNER Erhan

    2016-05-01

    Full Text Available In this experimental work, the effluents of the reactive and disperse dyeings were reused in the next dyeing after the decolourization by ozone gas. Accordingly, the polyester woven samples were dyed with C.I. Disperse Yellow 160, C.I. Disperse Red 77 and C.I. Disperse Blue 79:1, and the cotton woven samples were dyed with C.I. Reactive Yellow 176, C.I. Reactive Red 239 and C.I. Reactive Blue 221. The effluents of the dyeings with these dyes and also with their mixtures were decolorized by ozone gas. The colours of the samples dyed with the decolorized effluents were compared with the original dyeings (standards and the colour differences were calculated. Under the experimental conditions of this investigation, the many of the dyeing effluents were decolorized successfully, except the effluent of C.I. Disperse Red 77. In the case that this red disperse dye present in the dyebath, the decolorized effluent had a slight reddish colour. The colour differences between the original dyeing (standard and the samples dyed with the decolorized effluent are mostly below the tolerance (DE<1 or slightly above the tolerance. The solid colours and uniform dyeings were achieved in the dyeings. The method seems promising in decreasing the amount of water used in textile dyeings.

  12. OPTIMIZATION OF DYEING PARAMETERS TO DYE COTTON WITH CARROT EXTRACTION

    Directory of Open Access Journals (Sweden)

    MIRALLES Verónica

    2017-05-01

    Full Text Available Natural dyes derived from flora and fauna are believed to be safe because of non-toxic, non-carcinogenic and biodegradable nature. Furthermore, natural dyes do not cause pollution and waste water problems. Natural dyes as well as synthetic dyes need the optimum parameters to get a good dyeing. On some occasions, It is necessary the use of mordants to increase the affinity between cellulose fiber and natural dye, but there are other conditions to optimize in the dyeing process, like time, temperature, auxiliary porducts, etc. In addition, the optimum conditions are different depends on the type of dye and the fiber nature. The aim of this work is the use of carrot extract to dye cotton fabric by exhaustion at diverse dyeing conditions. Diffferent dyeing processes were carried out to study the effect of pH condition and the temperature, using 7, 6 and 4 pH values and 95 ºC and 130ºC for an hour. As a result some images of dyed samples are shown. Moreover, to evaluate the colour of each sample CIELAB parameters are analysed obtained by reflexion spectrophotometre. The results showed that the temperature used has an important influence on the colour of the dyed sample.

  13. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  14. Alzheimer's Dye Test?

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  15. Alzheimer's Dye Test?

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Massachusetts Institute of Technology (MIT) scientists have developed a new dye that could offer noninvasive early diagnosis of Alzheimer's disease, a discovery that could aid in monitoring the progression of the disease and in studying the efficacy of new treatments to stop it. The work is published in Angewandte Chemie. Today, doctors can only…

  16. Synthesis of azo pyridone dyes

    OpenAIRE

    Mijin Dušan Ž.; Ušćumlić Gordana S.; Valentić Nataša V.; Marinković Aleksandar D.

    2011-01-01

    Over 50% of all colorants which are used nowdays are azo dyes and pigments, and among them arylazo pyridone dyes (and pigments) have became of interest in last several decades due to the high molar extinction coefficient, and the medium to high light and wet fastness properties. They find application generally as disperse dyes. The importance of disperse dyes increased in the 1970s and 1980s due to the use of polyester and nylon as the main synthetic fibers. Also, disperse dyes were use...

  17. TEXTILE DYEING AND FINISHING JOURNAL

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Abstract: Optim is dyed with Lanasol CE series dyes by micro-suspension technology, and the dyeing result is compared with that by traditional process. The optimal micro-suspension dyeing process is determined as follows: formic acid 1.5% (owl), micro-suspension promoter WR1.0% (owf), micro-suspension promoter TS 0.5 % (owl), dyestuff 5% (owf). The results show that micro-suspension dyeing increases the dye uptake percentage and colour fixation rate significantly; improves the handle and bulkiness without damaging the colour fastness of the dyed fabric.

  18. Multilayer Slab Waveguide Distributed Feedback Dye Laser Sensors

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, M.

    2013-01-01

    Organic dye-based distributed feedback (DFB) lasers are widely tunable laser light sources in the visible wavelength range and exhibit low-cost, simple fabrication, low threshold and single-mode emission [1]. Precise emission wavelength modeling is essential for understanding and optimization of ...

  19. Dye Aggregation in Ink Jet

    Institute of Scientific and Technical Information of China (English)

    Thomas Paul; Sarfraz Hussain

    2004-01-01

    Dye aggregation has long been recognised as a key factor in performance, and this is no less so in ink jet applications. The aggregation state was shown to be important in many different areas ranging from the use of dyes in photodynamic therapies all the way to colorants for dying of fabrics. Therefore different methods to investigate dye association qualitatively and quantitatively were developed. A simple procedure to study aggregation could be a useful tool to characterise dyes for ink jet printing. It is critically reviewed the methods used to study dye aggregation, and discussed some of the main conclusions. This will be illustrated by examples of ink jet dye aggregation and its study in aqueous and ink systems. The results are used to correlate the solution behaviour of dyes with their print performance.

  20. Optical Properties of Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    李戎; 陈东辉

    2001-01-01

    Fluorescent dyes have been widely used these years.Because of the special optical performance, conventional CCM systems seem to be unable to predict the recipes of fabrics dyed with fluorescent dyes. In order to enhance the functions of CCM systems, the optical properties of fluorescent dyes in their absorption region were investigated. It has been found that there was a fixed maximum absorption wavelength for each fluorescent dyes whatever its concentration is. Both absorption region and maximum absorption wavelength of the dyes in solution are the same to those in fabric, and that the absorption is directly proportional to the concentration of the dye. So the optical properties obtained in solutions cna be applied for describing the optics performance of fluorescent dyes in fabrics.