WorldWideScience

Sample records for mode psfs based

  1. Simulating PSFs for WFIRST and JWST with WebbPSF

    Science.gov (United States)

    Long, Joseph D.; Perrin, Marshall D.; Van Der Marel, Roeland P.

    2016-01-01

    Accurate models of a telescope's point spread function are key to predicting its performance and extracting information from observations. Developed at STScI since 2010, WebbPSF is a flexible Python-based PSF simulation tool initially developed for JWST's imaging, spectroscopy, and coronagraphic instruments. We present improvements that allow this tool to simulate PSFs for the WFIRST wide-field imaging mode, as well as additional spectroscopy modes for the NIRSpec, MIRI, and NIRISS instruments on JWST. The WFIRST wide field imaging mode is also the first WebbPSF model to simulate PSF variation across the entire field of view. These variations are included in the Fraunhofer-domain PSF calculation as Zernike polynomial terms up to Z22. As WFIRST is still early in its development, high-spatial-frequency wavefront errors (beyond Z22) are incorporated using an optical path difference map from another notable 2.4 meter space telescope. Common infrastructure to build simulated optical instruments has been made available as POPPY (Physical Optics Propagation in Python), an open-source library that has seen contributions from users in astronomy and beyond.

  2. Human Error Probabilites (HEPs) for generic tasks and Performance Shaping Factors (PSFs) selected for railway operations

    DEFF Research Database (Denmark)

    Thommesen, Jacob; Andersen, Henning Boje

    at task level, which can be performed with fewer resources than a more detailed analysis of specific errors for each task. The generic tasks are presented with estimated Human Error Probabili-ties (HEPs) based on and extrapolated from the HRA literature, and estimates are compared with samples of measures......This report describes an HRA (Human Reliability Assessment) of six generic tasks and four Perfor-mance Shaping Factors (PSFs) targeted at railway operations commissioned by Banedanmark. The selection and characterization of generic tasks and PSFs are elaborated by DTU Management in close...... on estimates derived from industries other than rail and the general warning that a task-based analysis is less precise than an error-based one. The authors recommend that estimates be adjusted to actual measures of task failures when feasible....

  3. Study on Performance Shaping Factors (PSFs) Quantification Method in Human Reliability Analysis (HRA)

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Jang, Inseok Jang; Seong, Poong Hyun; Park, Jinkyun; Kim, Jong Hyun

    2015-01-01

    The purpose of HRA implementation is 1) to achieve the human factor engineering (HFE) design goal of providing operator interfaces that will minimize personnel errors and 2) to conduct an integrated activity to support probabilistic risk assessment (PRA). For these purposes, various HRA methods have been developed such as technique for human error rate prediction (THERP), simplified plant analysis risk human reliability assessment (SPAR-H), cognitive reliability and error analysis method (CREAM) and so on. In performing HRA, such conditions that influence human performances have been represented via several context factors called performance shaping factors (PSFs). PSFs are aspects of the human's individual characteristics, environment, organization, or task that specifically decrements or improves human performance, thus respectively increasing or decreasing the likelihood of human errors. Most HRA methods evaluate the weightings of PSFs by expert judgment and explicit guidance for evaluating the weighting is not provided. It has been widely known that the performance of the human operator is one of the critical factors to determine the safe operation of NPPs. HRA methods have been developed to identify the possibility and mechanism of human errors. In performing HRA methods, the effect of PSFs which may increase or decrease human error should be investigated. However, the effect of PSFs were estimated by expert judgment so far. Accordingly, in order to estimate the effect of PSFs objectively, the quantitative framework to estimate PSFs by using PSF profiles is introduced in this paper

  4. An experimental investigation on relationship between PSFs and operator performances in the digital main control room

    International Nuclear Information System (INIS)

    Park, Jooyoung; Lee, Daeil; Jung, Wondea; Kim, Jonghyun

    2017-01-01

    Highlights: • The relationship between performance shaping factors and operator performances are experimentally investigated. • The experiment includes features of digital main control room. • The result indicates that the operator’s experience level is the most effective on the performance. - Abstract: This study designs an experiment to investigate the relationship between performance shaping factors (PSFs) and operator performances. This study involves selecting three PSFs that are controllable in the experiments: (1) experience, (2) complexity, and (3) urgency. Six scenarios are developed to reflect the PSFs. The experiment involves the participation of licensed operators and the use of an APR1400 simulator. During the experiment, operator performances, such as completion time, error, secondary task, workload, and situation awareness, are measured and collected. The experimental result indicates that the operator’s experience is most effective on the overall performances. The task complexity influences the secondary tasks and situation awareness.

  5. Multi-kernel deconvolution for contrast improvement in a full field imaging system with engineered PSFs using conical diffraction

    Science.gov (United States)

    Enguita, Jose M.; Álvarez, Ignacio; González, Rafael C.; Cancelas, Jose A.

    2018-01-01

    The problem of restoration of a high-resolution image from several degraded versions of the same scene (deconvolution) has been receiving attention in the last years in fields such as optics and computer vision. Deconvolution methods are usually based on sets of images taken with small (sub-pixel) displacements or slightly different focus. Techniques based on sets of images obtained with different point-spread-functions (PSFs) engineered by an optical system are less popular and mostly restricted to microscopic systems, where a spot of light is projected onto the sample under investigation, which is then scanned point-by-point. In this paper, we use the effect of conical diffraction to shape the PSFs in a full-field macroscopic imaging system. We describe a series of simulations and real experiments that help to evaluate the possibilities of the system, showing the enhancement in image contrast even at frequencies that are strongly filtered by the lens transfer function or when sampling near the Nyquist frequency. Although results are preliminary and there is room to optimize the prototype, the idea shows promise to overcome the limitations of the image sensor technology in many fields, such as forensics, medical, satellite, or scientific imaging.

  6. The M 4 Core Project with HST - V. Characterizing the PSFs of WFC3/UVIS by focus★

    Science.gov (United States)

    Anderson, J.; Bedin, L. R.

    2017-09-01

    As part of the astrometric Hubble Space Telescope (HST) large program GO-12911, we conduct an in-depth study to characterize the point spread function (PSF) of the Uv-VISual channel of the Wide Field Camera 3 (WFC3), as a necessary step to achieve the astrometric goals of the program. We extracted a PSF from each of the 589 deep exposures taken through the F467M filter over the course of a year and find that the vast majority of the PSFs lie along a 1-D locus that stretches continuously from one side of focus, through optimal focus, to the other side of focus. We constructed a focus-diverse set of PSFs and find that with only five medium-bright stars in an exposure it is possible to pin down the focus level of that exposure. We show that the focus-optimized PSF does a considerably better job fitting stars than the average 'library' PSF, especially when the PSF is out of focus. The fluxes and positions are significantly improved over the 'library' PSF treatment. These results are beneficial for a much broader range of scientific applications than simply the program at hand, but the immediate use of these PSFs will enable us to search for astrometric wobble in the bright stars in the core of the globular cluster M 4, which would indicate a dark, high-mass companion, such as a white dwarf, neutron star or black hole.

  7. Whispering-gallery-mode-based seismometer

    Science.gov (United States)

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  8. PLC-based mode multi/demultiplexer for MDM transmission

    Science.gov (United States)

    Hanzawa, N.; Saitoh, K.; Sakamoto, T.; Matsui, T.; Tsujikawa, K.; Koshiba, M.; Yamamoto, F.

    2013-12-01

    We propose a PLC-based multi/demultiplexer (MUX/DEMUX) with a mode conversion function for mode division multiplexing (MDM) transmission applications. The PLC-based mode MUX/DEMUX can realize a low insertion loss and a wide working wavelength bandwidth. We designed and demonstrated a two-mode (LP01 and LP11 modes) and a three-mode (LP01, LP11, and LP21 modes) MUX/DEMUX for use in the C-band.

  9. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  10. Burst Mode ASIC-Based Modem

    Science.gov (United States)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  11. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  12. Aptasensors Based on Whispering Gallery Mode Resonators

    Directory of Open Access Journals (Sweden)

    Gualtiero Nunzi Conti

    2016-07-01

    Full Text Available In this paper, we review the literature on optical evanescent field sensing in resonant cavities where aptamers are used as biochemical receptors. The combined advantages of highly sensitive whispering gallery mode resonator (WGMR-based transducers, and of the unique properties of aptamers make this approach extremely interesting in the medical field, where there is a particularly high need for devices able to provide real time diagnosis for cancer, infectious diseases, or strokes. However, despite the superior performances of aptamers compared to antibodies and WGMR to other evanescent sensors, there is not much literature combining both types of receptors and transducers. Up to now, the WGMR that have been used are silica microspheres and silicon oxynitride (SiON ring resonators.

  13. Multicore fiber-based mode multiplexer/demultiplexer

    Science.gov (United States)

    Sasaki, Yusuke; Uemura, Hitoshi; Takenaga, Katsuhiro; Nishimoto, Shoko; Uematsu, Takui; Omichi, Koji; Goto, Ryuichiro; Matsuo, Shoichiro; Saitoh, Kunimasa

    2015-01-01

    A multicore fiber (MCF)-based mode multiplexer/demultiplexer (MUX/DEMUX) that can overcome the alignment issue of the fiber-based mode MUX/DEMUX is proposed. Design concept and fabrication results of the MCF-based mode MUX/DEMUX for two-spatial-mode operation (LP01 and LP11) (2M-MUX/DEMUX) and for three-spatial-mode operation (LP01, LP11a, and LP11b) (3M-MUX/DEMUX) are presented. The fabricated 2M-MUX/DEMUXes for C-band or L-band, using the same MCF with different elongation ratios demonstrate a coupling efficiency of greater than 90% over each band. Finally, a 3M-MUX/DEMUX with a fan-in/fan-out device is presented. The selective excitation of LP01, LP11a, and LP11b modes depending on input ports is experimentally demonstrated.

  14. [The improvement of periodontal teaching mode based on PDCA theory].

    Science.gov (United States)

    Wang, Hong-Yan; Han, Ling-Na; Zhu, Xiao-Hua; Ma, Hong-Mei; Pan, Ya-Ping

    2016-08-01

    To evaluate the effect of PDCA teaching mode on clinical ability in the process of periodontal clinical internship. Forty-eight undergraduate interns coming from School of Stomatology, China Medical University were divided into 2 groups, one group received traditional teaching mode, the other group received a teaching mode based on PDCA cycle. At the end of internship, every student was assessed by theoretical examinations, case reports and clinical skill practice. χ 2 -test was used to determine the significant difference in clinical ability between the two groups. Statistical analysis was carried out using SPSS 13.0 software package. In clinical skill examination, 17 students in PDCA teaching mode group got "excellent" grade , 8 students got "good" grade, none student got "passed" grade; in traditional teaching mode group, 7 students got "excellent" grade, 16 students got "good" grade, 1 student got "passed" grade. The difference between the two groups was statistically significant (PPDCA teaching mode group got "excellent" grade, 8 students got "good" grade, none student got "passed" grade; in traditional teaching mode group, 12 students got "excellent" grade, 9 students got "good" grade, and 3 students got "passed" grade. The difference between the two groups wasn't statistically significant (P>0.05). PDCA teaching will train each student in a personalized mode, which is beneficial to finding defects existed in clinical practice and reinforcing the ability of communication and clinical practice.

  15. A new mixed-mode filter based on MDDCCs

    Science.gov (United States)

    Wang, Lixue; Wang, Chunyue; Zhang, Junru; Liang, Xiao; Jiang, Shuangshuang

    2015-12-01

    A new mixed mode filter based on MDDCC (Modify Differential Difference Current Conveyor) is proposed, the structure of filter is simple, the circuit consist of only three active MDDCCs, five resistors and three grounded capacitors. The filter can realize the filter of current mode and voltage mode, which can realize the function of low pass biquad, band pass biquad and high pass biquad simultaneously. The computer simulation of PSPICE uses 0.18μm TSMC CMOS and the theoretical results are validated the proposed circuit.

  16. All-fiber optical mode switching based on cascaded mode selective couplers for short-reach MDM networks

    Science.gov (United States)

    Ren, Fang; Li, Juhao; Wu, Zhongying; Yu, Jinyi; Mo, Qi; Wang, Jianping; He, Yongqi; Chen, Zhangyuan; Li, Zhengbin

    2017-04-01

    We propose and experimentally demonstrate an all-fiber optical mode switching structure supporting independent switching, exchanging, adding, and dropping functionalities in which each mode can be switched individually. The mode switching structure consists of cascaded mode selective couplers (MSCs) capable of exciting and selecting specific higher order modes in few-mode fibers with high efficiency and one multiport optical switch routing the independent spatial modes to their destinations. The data carried on three different spatial modes can be switched, exchanged, added, and dropped through this all-fiber structure. For this experimental demonstration, optical on-off-keying (OOK) signals at 10-Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. The mode switch exhibits power penalties of less than 3.1 dB after through operation, less than 2.7 dB after exchange operation, less than 2.8 dB after switching operation, and less than 1.6 dB after mode adding and dropping operations at the bit-error rate (BER) of 10-3, while all three channels carried on three spatial modes are simultaneously routed. The proposed structure, compatible with current optical switching networks based on single-mode fibers, can potentially be used to expand the switching scalability in advanced and flexible short-reach mode-division multiplexing-based networks.

  17. Railway Wheel Flat Detection Based on Improved Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Yifan Li

    2016-01-01

    Full Text Available This study explores the capacity of the improved empirical mode decomposition (EMD in railway wheel flat detection. Aiming at the mode mixing problem of EMD, an EMD energy conservation theory and an intrinsic mode function (IMF superposition theory are presented and derived, respectively. Based on the above two theories, an improved EMD method is further proposed. The advantage of the improved EMD is evaluated by a simulated vibration signal. Then this method is applied to study the axle box vibration response caused by wheel flats, considering the influence of both track irregularity and vehicle running speed on diagnosis results. Finally, the effectiveness of the proposed method is verified by a test rig experiment. Research results demonstrate that the improved EMD can inhibit mode mixing phenomenon and extract the wheel fault characteristic effectively.

  18. H.264 SVC Complexity Reduction Based on Likelihood Mode Decision

    Directory of Open Access Journals (Sweden)

    L. Balaji

    2015-01-01

    Full Text Available H.264 Advanced Video Coding (AVC was prolonged to Scalable Video Coding (SVC. SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.

  19. H.264 SVC Complexity Reduction Based on Likelihood Mode Decision.

    Science.gov (United States)

    Balaji, L; Thyagharajan, K K

    2015-01-01

    H.264 Advanced Video Coding (AVC) was prolonged to Scalable Video Coding (SVC). SVC executes in different electronics gadgets such as personal computer, HDTV, SDTV, IPTV, and full-HDTV in which user demands various scaling of the same content. The various scaling is resolution, frame rate, quality, heterogeneous networks, bandwidth, and so forth. Scaling consumes more encoding time and computational complexity during mode selection. In this paper, to reduce encoding time and computational complexity, a fast mode decision algorithm based on likelihood mode decision (LMD) is proposed. LMD is evaluated in both temporal and spatial scaling. From the results, we conclude that LMD performs well, when compared to the previous fast mode decision algorithms. The comparison parameters are time, PSNR, and bit rate. LMD achieve time saving of 66.65% with 0.05% detriment in PSNR and 0.17% increment in bit rate compared with the full search method.

  20. Ringing phenomenon based whispering-gallery-mode sensing.

    Science.gov (United States)

    Ye, Ming-Yong; Shen, Mei-Xia; Lin, Xiu-Min

    2016-01-22

    Highly sensitive sensing is one of the most important applications of whispering-gallery-mode (WGM) microresonators, which is usually accomplished through a tunable continuous-wave laser sweeping over a whispering-gallery mode with the help of a fiber taper in a relative slow speed. It is known that if a tunable continuous-wave laser sweeps over a high quality whispering-gallery mode in a fast speed, a ringing phenomenon will be observed. The ringing phenomenon in WGM microresonators is mainly used to measure the Q factors and mode-coupling strengths. Here we experimentally demonstrate that the WGM sensing can be achieved based on the ringing phenomenon. This kind of sensing is accomplished in a much shorter time and is immune to the noise caused by the laser wavelength drift.

  1. Technology Innovation Mode of Agricultural Leading Enterprises - Based on the Virtual Organization Mode

    OpenAIRE

    Chen, Nian-hong; Cao, Jian

    2010-01-01

    Based on the definition of technology innovation of agricultural leading enterprises by domestic and foreign experts and scholars, technology innovation of agricultural enterprises is a process of new market increment, which uses new knowledge, technology, process and production mode, produces new products, offers new services and realizes commercialization. Characteristics of agricultural technology innovation are introduced, such as obvious regionality, relatively high risk, long-term perio...

  2. Mode division multiplexing coupler of four LP modes based on a five-core microstructured optical fiber

    Science.gov (United States)

    Zhang, Hongwei; Liu, Yange; Wang, Zhi; Han, Ya; Yang, Kang; Yu, Jie

    2018-03-01

    An all-fiber mode division multiplexing coupler based on a five-core microstructured optical fiber is proposed to multiplex or demultiplex LP11, LP21, LP02 and LP01 modes simultaneously. The five-core microstructured optical fiber is composed of a few mode core supporting the four LP modes propagating at 1550 nm and four single-mode cores surrounding the few-mode core. The coupling mechanism between LP01 mode in each single-mode core and the corresponding four LP modes in the few-mode core is based on avoid-crossing effect. Numerical simulation results show that coupling bandwidths of LP11, LP21, LP02 and LP01 mode are 115 nm, 56 nm, 30 nm, 46 nm respectively, with a coupling length of 2156.1 μm. The proposed mode division multiplexing coupler can multiplex or demultiplex four LP modes simultaneously with large operation bandwidth, making it a good candidate for space-division multiplexing system.

  3. [An intelligent optometry system based on Client/Server Mode].

    Science.gov (United States)

    Li, Qing-Li; Xue, Yong-Qi; Shi, Peng-Fei

    2005-05-01

    The optometry in physical examinations is conducted manually at present and this method is neither precise nor efficient. After studying the standard logarithmic visual acuity charts which is popular in our country, we have designed an optometry system based on Client/Server Computing Mode. The system's architecture and its working principle are also presented in the article.

  4. Cyclotron operating mode determination based on intelligent methods

    International Nuclear Information System (INIS)

    Ouda, M.M.E.M.

    2011-01-01

    Particle accelerators are generators that produce beams of charged particles with energies depending on the accelerator type. The MGC-20 cyclotron is a cyclic particle accelerator used for accelerating protons, deuterons, alpha particles, and helium-3 to different energies. Main applications are isotopes production, nuclear reactions studies, and mass spectroscopy studies and other industrial applications. The cyclotron is a complicated machine depends on using a strong magnetic field and high frequency-high voltage electric field together to accelerate and bend charged particles inside the accelerating chamber. It consists of the following main parts, the radio frequency system, the main magnet with the auxiliary concentric and harmonic coils, the electrostatic deflector, and the ion source, the beam transport system, and high precision and high stability DC power supplies.To accelerate a particle to certain energy, one has to adjust the cyclotron operating parameters to be suitable to accelerate this particle to that energy. If the cyclotron operating parameters together are adjusted to accelerate a charged particle to certain energy, then these parameters together are named the operating mode to accelerate this particle to that energy. For example the operating mode to accelerate protons to 18 MeV is named the (18 MeV protons operating mode). The operating mode includes many parameters that must be adjusted together to be successful to accelerate, extract, focus, steer a particle from the ion source to the experiment. Due to the big number of parameters in the operating modes, 19 parameters have been selected in this thesis to be used in an intelligent system based on feed forward back propagation neural network to determine the parameters for new operating modes. The new intelligent system depends on the available information about the currently used operating modes.The classic way to determine a new operating mode was depending on trial and error method to

  5. Structural system identification based on variational mode decomposition

    Science.gov (United States)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  6. Detecting mode hopping in single-longitudinal-mode fiber ring lasers based on an unbalanced fiber Michelson interferometer.

    Science.gov (United States)

    Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming

    2012-10-20

    A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.

  7. Multiwavelength mode-locked cylindrical vector beam fiber laser based on mode selective coupler

    Science.gov (United States)

    Huang, Ping; Cai, Yu; Zhang, Zuxing

    2017-10-01

    We propose and demonstrate a multiwavelength mode-locked fiber laser with cylindrical vector beam generation for the first time, to the best of our knowledge. The mode-locking mechanism is nonlinear polarization rotation, and the multiwavelength operation is contributed to the in-line birefringence fiber filter with periodic multiple passbands formed by incorporating a section of polarization maintaining fiber into the laser cavity with a polarizer. Furthermore, using the mode selective coupler, which acts as mode converter from fundamental mode to higher-order mode, multiwavelength mode-locked cylindrical vector beams have been obtained, which may have potential applications in mode-division multiplexing optical fiber communication and material processing.

  8. Back-scatter based whispering gallery mode sensing

    Science.gov (United States)

    Knittel, Joachim; Swaim, Jon D.; McAuslan, David L.; Brawley, George A.; Bowen, Warwick P.

    2013-01-01

    Whispering gallery mode biosensors allow selective unlabelled detection of single proteins and, combined with quantum limited sensitivity, the possibility for noninvasive real-time observation of motor molecule motion. However, to date technical noise sources, most particularly low frequency laser noise, have constrained such applications. Here we introduce a new technique for whispering gallery mode sensing based on direct detection of back-scattered light. This experimentally straightforward technique is immune to frequency noise in principle, and further, acts to suppress thermorefractive noise. We demonstrate 27 dB of frequency noise suppression, eliminating frequency noise as a source of sensitivity degradation and allowing an absolute frequency shift sensitivity of 76 kHz. Our results open a new pathway towards single molecule biophysics experiments and ultrasensitive biosensors. PMID:24131939

  9. On-chip Mode Multiplexer Based on a Single Grating Coupler

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2012-01-01

    A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes.......A two-mode multiplexer based on a single grating coupler is proposed and demonstrated on a silicon chip. The LP01 and LP11 modes of a few-mode fiber are excited from TE0 and TE1 silicon waveguide modes....

  10. Comprehensive comparison of macro-strain mode and displacement mode based on different sensing technologies

    Science.gov (United States)

    Hong, Wan; Zhang, Jian; Wu, Gang; Wu, Zhishen

    2015-01-01

    A comprehensive comparison of macro-strain mode and displacement mode obtained from distributed macro-strain sensing and high-density point sensing (such as accelerometers) technologies is presented in this paper. Theoretical derivation reveals that displacement mode shape from accelerometers and modal macro-strain from distributed macro-strain sensors can be converted into each other. However, it is realized that displacement mode shape as global behavior of a structure can still be calculated with high-precision from modal macro-strain considering measurement errors in practical monitoring, whereas modal macro-strain can hardly be accurately achieved from displacement mode shape when signals are corrupted with noise in practical monitoring. Simulation and experiment results show that the calculated displacement mode shapes are very close to the actual ones even if the noise level reaches 5%. Meanwhile, damage index using measured modal macro-strain is still effective when the measurements are corrupted with 5% noise which is reliable for damage detection in practical monitoring. Calculating modal macro-strain from noise-polluted displacement mode shape will cause an unacceptable error if the noise level reaches only 0.5%, which has been verified in the simulation.

  11. Fused-fiber-based 3-dB mode insensitive power splitters for few-mode optical fiber networks

    Science.gov (United States)

    Ren, Fang; Huang, Xiaoshan; Wang, Jianping

    2017-11-01

    We propose a 3-dB mode insensitive power splitter (MIPS) capable of broadcasting and combining optical signals. It is fabricated with two identical few-mode fibers (FMFs) by a heating and pulling technique. The mode-dependent power transfer characteristic as a function of pulling length is investigated. For exploiting its application, we experimentally demonstrate both FMF-based transmissive and reflective star couplers consisting of multiple 3-dB mode insensitive power splitters, which perform broadcasting and routing signals in few-mode optical fiber networks such as mode-division multiplexing (MDM) local area networks using star topology. For experimental demonstration, optical on-off keying signals at 10 Gb/s carried on three spatial modes are successfully processed with open and clear eye diagrams. Measured bit error ratio results show reasonable power penalties. It is found that a reflective star coupler in MDM networks can reduce half of the total amount of required fibers comparing to that of a transmissive star coupler. This MIPS is more efficient, more reliable, more flexible, and more cost-effective for future expansion and application in few-mode optical fiber networks.

  12. GA-Based Fuzzy Sliding Mode Controller for Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    P. C. Chen

    2008-01-01

    Full Text Available Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller (FSMC or an adaptive fuzzy sliding mode controller (AFSMC capable of rapidly and efficiently controlling complex and nonlinear systems is how to select the most appropriate initial values for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based reference adaptive fuzzy sliding model controller capable of handling these types of problems for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules. Next, the initial values of the consequent parameter vector are decided via a genetic algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and control the system, is derived. The stability of the nonlinear system is ensured by the derivation of the stability criterion based upon Lyapunov's direct method. Finally, an example, a numerical simulation, is provided to demonstrate the control methodology.

  13. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Da Ros, Francesco

    2013-01-01

    Abstract: We demonstrate a novel on-chip two-mode division multiplexing circuit using a tapered directional coupler-based TE0&TE1 mode multiplexer and demultiplexer on the silicon-on-insulator platform. A low insertion loss (0.3 dB), low mode crosstalk (< −16 dB), wide bandwidth (~100 nm), and la......Abstract: We demonstrate a novel on-chip two-mode division multiplexing circuit using a tapered directional coupler-based TE0&TE1 mode multiplexer and demultiplexer on the silicon-on-insulator platform. A low insertion loss (0.3 dB), low mode crosstalk (...), and large fabrication tolerance (20 nm) are measured. An on-chip mode multiplexing experiment is carried out on the fabricated circuit with non return-to-zero (NRZ) on-off keying (OOK) signals at 40 Gbit/s. The experimental results show clear eye diagrams and moderate power penalty for both TE0 and TE1...

  14. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  15. New type of wavelet-based spectral analysis by which modes with different toroidal mode number are separated

    Science.gov (United States)

    Ohdachi, S.

    2016-11-01

    A new type of wavelet-based analysis for the magnetic fluctuations by which toroidal mode number can be resolved is proposed. By using a wavelet, having a different phase toroidally, a spectrogram with a specific toroidal mode number can be obtained. When this analysis is applied to the measurement of the fluctuations observed in the large helical device, MHD activities having similar frequency in the laboratory frame can be separated from the difference of the toroidal mode number. It is useful for the non-stationary MHD activity. This method is usable when the toroidal magnetic probes are not symmetrically distributed.

  16. Mode Equivalence of Health Indicators Between Data Collection Modes and Mixed-Mode Survey Designs in Population-Based Health Interview Surveys for Children and Adolescents: Methodological Study.

    Science.gov (United States)

    Mauz, Elvira; Hoffmann, Robert; Houben, Robin; Krause, Laura; Kamtsiuris, Panagiotis; Gößwald, Antje

    2018-03-05

    The implementation of an Internet option in an existing public health interview survey using a mixed-mode design is attractive because of lower costs and faster data availability. Additionally, mixed-mode surveys can increase response rates and improve sample composition. However, mixed-mode designs can increase the risk of measurement error (mode effects). This study aimed to determine whether the prevalence rates or mean values of self- and parent-reported health indicators for children and adolescents aged 0-17 years differ between self-administered paper-based questionnaires (SAQ-paper) and self-administered Web-based questionnaires (SAQ-Web), as well as between a single-mode control group and different mixed-mode groups. Data were collected for a methodological pilot of the third wave of the "German Health Interview and Examination Survey for Children and Adolescents". Questionnaires were completed by parents or adolescents. A population-based sample of 11,140 children and adolescents aged 0-17 years was randomly allocated to 4 survey designs-a single-mode control group with paper-and-pencil questionnaires only (n=970 parents, n=343 adolescents)-and 3 mixed-mode designs, all of which offered Web-based questionnaire options. In the concurrent mixed-mode design, both questionnaires were offered at the same time (n=946 parents, n=290 adolescents); in the sequential mixed-mode design, the SAQ-Web was sent first, followed by the paper questionnaire along with a reminder (n=854 parents, n=269 adolescents); and in the preselect mixed-mode design, both options were offered and the respondents were asked to request the desired type of questionnaire (n=698 parents, n=292 adolescents). In total, 3468 questionnaires of parents of children aged 0-17 years (SAQ-Web: n=708; SAQ-paper: n=2760) and 1194 questionnaires of adolescents aged 11-17 years (SAQ-Web: n=299; SAQ-paper: n=895) were analyzed. Sociodemographic characteristics and a broad range of health indicators for

  17. GEOTECNOLOGIA COMO SUPORTE PARA GERÊNCIA DE PSFs: UM ESTUDO DE CASO PARA O MUNICÍPIO DE VIÇOSA – MG

    Directory of Open Access Journals (Sweden)

    Taciano Oliveira da Silva

    2010-08-01

    Full Text Available Neste artigo abordou-se a aplicação da geotecnologia na área de saúde pública, a partir da elaboração de um banco de dados sobre as ocorrências de diarréias, dengue, diabetes e hipertensão, no município de Viçosa – MG. Os dados foram coletados nos postos de saúde da família (PSFs, no posto de combate a dengues e no setor de vigilância epidemiológica da secretaria municipal de saúde, e são referentes ao ano de 2007, com exceção para as ocorrências de diarréia que constam também os dados do ano de 2006. A geotecnologia, a partir do uso de equipamento GPS e de um sistema de informação geográfica (SIG, forneceu um suporte valioso para a análise e a compreensão do comportamento espacial das doenças analisadas. Este entendimento permitiu verificar os locais mais carentes de assistência de saúde preventiva. A geração de mapas auxiliará os agentes de saúde na localização das áreas de ocorrência dos eventos, otimizando o trabalho preventivo de saúde no município.

  18. A fast dynamic mode in rare earth based glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L. Z.; Xue, R. J.; Zhu, Z. G.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ngai, K. L. [Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2016-05-28

    Metallic glasses (MGs) usually exhibit only slow β-relaxation peak, and the signature of the fast dynamic is challenging to be observed experimentally in MGs. We report a general and unusual fast dynamic mode in a series of rare earth based MGs manifested as a distinct fast β′-relaxation peak in addition to slow β-relaxation and α-relaxation peaks. We show that the activation energy of the fast β′-relaxation is about 12RT{sub g} and is equivalent to the activation of localized flow event. The coupling of these dynamic processes as well as their relationship with glass transition and structural heterogeneity is discussed.

  19. Dynamic Mode Decomposition based on Kalman Filter for Parameter Estimation

    Science.gov (United States)

    Shibata, Hisaichi; Nonomura, Taku; Takaki, Ryoji

    2017-11-01

    With the development of computational fluid dynamics, large-scale data can now be obtained. In order to model physical phenomena from such data, it is required to extract features of flow field. Dynamic mode decomposition (DMD) is a method which meets the request. DMD can compute dominant eigenmodes of flow field by approximating system matrix. From this point of view, DMD can be considered as parameter estimation of system matrix. To estimate such parameters, we propose a novel method based on Kalman filter. Our numerical experiments indicated that the proposed method can estimate the parameters more accurately if it is compared with standard DMD methods. With this method, it is also possible to improve the parameter estimation accuracy if characteristics of noise acting on the system is given.

  20. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  1. Kinect-Based Sliding Mode Control for Lynxmotion Robotic Arm

    Directory of Open Access Journals (Sweden)

    Ismail Ben Abdallah

    2016-01-01

    Full Text Available Recently, the technological development of manipulator robot increases very quickly and provides a positive impact to human life. The implementation of the manipulator robot technology offers more efficiency and high performance for several human’s tasks. In reality, efforts published in this context are focused on implementing control algorithms with already preprogrammed desired trajectories (passive robots case or trajectory generation based on feedback sensors (active robots case. However, gesture based control robot can be considered as another channel of system control which is not widely discussed. This paper focuses on a Kinect-based real-time interactive control system implementation. Based on LabVIEW integrated development environment (IDE, a developed human-machine-interface (HMI allows user to control in real time a Lynxmotion robotic arm. The Kinect software development kit (SDK provides a tool to keep track of human body skeleton and abstract it into 3-dimensional coordinates. Therefore, the Kinect sensor is integrated into our control system to detect the different user joints coordinates. The Lynxmotion dynamic has been implemented in a real-time sliding mode control algorithm. The experimental results are carried out to test the effectiveness of the system, and the results verify the tracking ability, stability, and robustness.

  2. Loosen Couple Workflow Mode of Lean Operator Improvement Based on Positive Feedback

    Directory of Open Access Journals (Sweden)

    Yao Li

    2013-04-01

    Full Text Available In order to promote the core competitive power for telecom operating enterprises to face market fine operation, this article compares the ECTA mode (Extension Case Transmission Mode and the LCA mode (Loosen Couple Mode, both of which are promoted by WfMC. By comparing these two modes, the suitable situations for these two modes are determined. We also carry out empirical analysis based on the customization mode of mobile phones between China telecom and mobile phone manufacturers and to expound the ascension effect of mechanism based on the agile telecom loose coupling workflow with positive feedback to the telecom enterprises. Finally, on the basis of positive feedback system, the task complexity and information transparency of LCA mode are improved, so that the semantics of public flow mode is kept unchanged and the sub workflow is optimized when modifying the sub workflow.

  3. Study of research-based teaching mode in the course of Geometric Optics and Optical Instruments

    Science.gov (United States)

    Wang, Zefeng; Geng, Meihua; Cheng, Xiangai; Jiang, Zongfu

    2017-08-01

    Modern teaching opinions require research-based teaching mode in research universities. It is an advanced teaching mode enabling students to explore science and technology autonomously. It has a lot of advantages comparing with the conventional knowledge-oriented teaching mode. In this paper, we show some understanding of research-based teaching mode. And based on the course features of Geometric optics and optical instruments and characteristics of students, we explore the research-based teaching mode in the part of Practical Optical Systems.

  4. Modeling the interdependent network based on two-mode networks

    Science.gov (United States)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  5. Genetic algorithm based two-mode clustering of metabolomics data

    NARCIS (Netherlands)

    Hageman, J.A.; van den Berg, R.A.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2008-01-01

    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering

  6. Terahertz Spectrum Analysis Based on Empirical Mode Decomposition

    Science.gov (United States)

    Su, Yunpeng; Zheng, Xiaoping; Deng, Xiaojiao

    2017-08-01

    Precise identification of terahertz absorption peaks for materials with low concentration and high attenuation still remains a challenge. Empirical mode decomposition was applied to terahertz spectrum analysis in order to improve the performance on spectral fingerprints identification. We conducted experiments on water vapor and carbon monoxide respectively with terahertz time domain spectroscopy. By comparing their absorption spectra before and after empirical mode decomposition, we demonstrated that the first-order intrinsic mode function shows absorption peaks clearly in high-frequency range. By comparing the frequency spectra of the sample signals and their intrinsic mode functions, we proved that the first-order function contains most of the original signal's energy and frequency information so that it cannot be left out or replaced by high-order functions in spectral fingerprints detection. Empirical mode decomposition not only acts as an effective supplementary means to terahertz time-domain spectroscopy but also shows great potential in discrimination of materials and prediction of their concentrations.

  7. Beam quality evaluation of 20/400 µm large-mode-area fiber based on mode decomposition and reconstruction

    Science.gov (United States)

    Bai, Gang; Chen, Xiaolong; Yang, Yifeng; Zheng, Ye; Zhao, Xiang; Liu, Kai; Zhao, Chun; Qi, Yunfeng; He, Bing; Zhou, Jun

    2018-02-01

    We implement a fast beam quality factor evaluation of a large-mode-area 20/400 µm fiber based on mode decomposition and reconstruction. Each transverse mode power weight factor and relative phase difference at the fiber output facet are estimated by the stochastic parallel gradient descent algorithm based simply on the instantaneous acquired charge coupled device near-field beam profile. The beam quality factor M 2 in two orthogonal directions can be analyzed in consideration of the complex amplitude of each transmission mode. The performance of our method is verified by applying it to the beam quality measurement of a 217.4 W high-power fiber laser. The calculated M 2 in two directions are 1.25 and 1.18, respectively, which is in good agreement with the measured results of 1.29 and 1.24. The proposed method could be helpful for beam quality evaluation of high-power fiber lasers and amplifiers, where the rapid change of the beam quality factor is difficult to detect due to mode instability.

  8. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  9. Single VDTA Based Dual Mode Single Input Multioutput Biquad Filter

    Directory of Open Access Journals (Sweden)

    Rajeshwari Pandey

    2016-01-01

    Full Text Available This paper presents a dual mode, single input multioutput (SIMO biquad filter configuration using single voltage differencing transconductance amplifier (VDTA, three capacitors, and a grounded resistor. The proposed topology can be used to synthesize low pass (LP, high pass (HP, and band pass (BP filter functions. It can be configured as voltage mode (VM or current mode (CM structure with appropriate input excitation choice. The angular frequency (ω0 of the proposed structure can be controlled independently of quality factor (Q0. Workability of the proposed biquad configuration is demonstrated through PSPICE simulations using 0.18 μm TSMC CMOS process parameters.

  10. The TriLab, a Novel ICT Based Triple Access Mode Laboratory Education Model

    Science.gov (United States)

    Abdulwahed, Mahmoud; Nagy, Zoltan K.

    2011-01-01

    This paper introduces a novel model of laboratory education, namely the TriLab. The model is based on recent advances in ICT and implements a three access modes to the laboratory experience (virtual, hands-on and remote) in one software package. A review of the three modes is provided with highlights of advantages and disadvantages of each mode.…

  11. Optimal Control of Micro Grid Operation Mode Seamless Switching Based on Radau Allocation Method

    Science.gov (United States)

    Chen, Xiaomin; Wang, Gang

    2017-05-01

    The seamless switching process of micro grid operation mode directly affects the safety and stability of its operation. According to the switching process from island mode to grid-connected mode of micro grid, we establish a dynamic optimization model based on two grid-connected inverters. We use Radau allocation method to discretize the model, and use Newton iteration method to obtain the optimal solution. Finally, we implement the optimization mode in MATLAB and get the optimal control trajectory of the inverters.

  12. Based on Intelligent Robot of E-business Distribution Center Operation Mode Research

    Directory of Open Access Journals (Sweden)

    Li Juntao

    2016-01-01

    Full Text Available According to E-business distribution center operation mode in domestic and advanced experience drawing lessons at home and abroad, this paper based on intelligent robot researches E-business distribution center operation mode. And it proposes the innovation logistics storage in E-business and sorting integration system, and elaborates its principle, characteristics, as well as studies its business mode and logistics process, and its parameters and working mode of AGV equipment.

  13. Vector mode conversion based on tilted fiber Bragg grating in ring-core fibers

    Science.gov (United States)

    Mi, Yuean; Ren, Guobin; Gao, Yixiao; Li, Haisu; Zhu, Bofeng; Liu, Yu

    2018-03-01

    We propose a vector mode conversion approach based on tilted fiber Bragg grating (TFBG) written in ring-core fiber with effective separation of eigenmodes. The mode coupling properties of TFBG are numerically investigated. It is shown that under the constraint of phase matching, the conversion of high-order vector modes could be achieved at specific wavelengths. Moreover, the polarization of incident light and tilt angle of TFBG play critical roles in mode coupling process. The proposed TFBG provides an efficient method to realize high-order vector mode conversion, and it shows great potential for fibers based OAM beam generation and fiber lasers with vortex beams output.

  14. Unsteady flow characteristic analysis of turbine based combined cycle (TBCC inlet mode transition

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available A turbine based combined cycle (TBCC propulsion system uses a turbine-based engine to accelerate the vehicle from takeoff to the mode transition flight condition, at which point, the propulsion system performs a “mode transition” from the turbine to ramjet engine. Smooth inlet mode transition is accomplished when flow is diverted from one flowpath to the other, without experiencing unstart or buzz. The smooth inlet mode transition is a complex unsteady process and it is one of the enabling technologies for combined cycle engine to become a functional reality. In order to unveil the unsteady process of inlet mode transition, the research of over/under TBCC inlet mode transition was conducted through a numerical simulation. It shows that during the mode transition the terminal shock oscillates in the inlet. During the process of inlet mode transition mass flow rate and Mach number of turbojet flowpath reduce with oscillation. While in ramjet flowpath the flow field is non-uniform at the beginning of inlet mode transition. The speed of mode transition and the operation states of the turbojet and ramjet engines will affect the motion of terminal shock. The result obtained in present paper can help us realize the unsteady flow characteristic during the mode transition and provide some suggestions for TBCC inlet mode transition based on the smooth transition of thrust.

  15. A multi-mode operation control strategy for flexible microgrid based on sliding-mode direct voltage and hierarchical controls.

    Science.gov (United States)

    Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning

    2016-03-01

    Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. ELMs and constraints on the H-mode pedestal: A model based on peeling-ballooning modes

    International Nuclear Information System (INIS)

    Snyder, P.B.; Ferron, J.R.; Wilson, H.R.

    2003-01-01

    We propose a model for Edge Localized Modes (ELMs) and pedestal constraint based upon theoretical analysis of instabilities which can limit the pedestal height and drive ELMs. The sharp pressure gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and ballooning modes. The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability constraints on the pedestal, including con straits on the pedestal height. Because of the impact of collisionality on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately, rather than simply on the pressure. A model of various ELM types is developed, and quantitatively compared to data. A number of observations agree with predictions, including ELM onset times, ELM depth and variation in pedestal height with collisionality and discharge shape. Stability analysis of series of model equilibria are used both o predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future burning plasma tokamak designs. (author)

  17. Decoherence and mode hopping in a magnetic tunnel junction based spin torque oscillator.

    Science.gov (United States)

    Muduli, P K; Heinonen, O G; Akerman, Johan

    2012-05-18

    We discuss the coherence of magnetic oscillations in a magnetic tunnel junction based spin torque oscillator as a function of the external field angle. Time-frequency analysis shows mode hopping between distinct oscillator modes, which arises from linear and nonlinear couplings in the Landau-Lifshitz-Gilbert equation, analogous to mode hopping observed in semiconductor ring lasers. These couplings and, therefore, mode hopping are minimized near the current threshold for the antiparallel alignment of free-layer with reference layer magnetization. Away from the antiparallel alignment, mode hopping limits oscillator coherence.

  18. Sensorless sliding mode torque control of an IPMSM drive based on active flux concept

    OpenAIRE

    Hassan, A.A.; El-Sawy, A.M.; Mohamed, Y.S.; Shehata, E.G.

    2012-01-01

    This paper investigates a novel direct torque control of a sensorless interior permanent magnet synchronous motor based on a sliding mode technique. The speed and position of the interior permanent magnet synchronous motor are estimated online based on active flux concept. To overcome the large ripple content associated with the direct torque, a torque/flux sliding mode controller has been employed. Two integral surface functions are used to construct the sliding mode controller. The command ...

  19. Fuzzy-logic-based hybrid locomotion mode classification for an active pelvis orthosis: Preliminary results.

    Science.gov (United States)

    Yuan, Kebin; Parri, Andrea; Yan, Tingfang; Wang, Long; Munih, Marko; Vitiello, Nicola; Wang, Qining

    2015-01-01

    In this paper, we present a fuzzy-logic-based hybrid locomotion mode classification method for an active pelvis orthosis. Locomotion information measured by the onboard hip joint angle sensors and the pressure insoles is used to classify five locomotion modes, including two static modes (sitting, standing still), and three dynamic modes (level-ground walking, ascending stairs, and descending stairs). The proposed method classifies these two kinds of modes first by monitoring the variation of the relative hip joint angle between the two legs within a specific period. Static states are then classified by the time-based absolute hip joint angle. As for dynamic modes, a fuzzy-logic based method is proposed for the classification. Preliminary experimental results with three able-bodied subjects achieve an off-line classification accuracy higher than 99.49%.

  20. [Empirical mode of combination of the wavelet threshold filtering and empirical mode decomposition (EMD) based on energy estimate].

    Science.gov (United States)

    Li, Xin; Wang, Huihui; Wang, Yueru; Zhao, Fangfang

    2011-12-01

    According to the frequency overlapping of intrinsic mode function (IMF) based on the temporal and spatial filtering of empirical mode decomposition (EMD), which will lead to the question of useful signals and noises filtered together, we proposed a method that numbers of IMF is determined by energy estimate, temporal and spatial filtering combing wavelet threshold and EMD integrating wavelet local signal characteristics of time and scale domain. This method not only used multi-resolution wavelet transform features, but also combined the EMD and Hilbert decomposition of the adaptive spectral analysis of instantaneous frequency and significance of the relationship between energy, so as to solve the problem of useful signal being weakened. With MIT/BIH ECG database standard data subjects, experimental results showed it was an effective method of data processing for handling this type of physiological signals under strong noise.

  1. Nonlinear adaptive control based on fuzzy sliding mode technique and fuzzy-based compensator.

    Science.gov (United States)

    Nguyen, Sy Dzung; Vo, Hoang Duy; Seo, Tae-Il

    2017-09-01

    It is difficult to efficiently control nonlinear systems in the presence of uncertainty and disturbance (UAD). One of the main reasons derives from the negative impact of the unknown features of UAD as well as the response delay of the control system on the accuracy rate in the real time of the control signal. In order to deal with this, we propose a new controller named CO-FSMC for a class of nonlinear control systems subjected to UAD, which is constituted of a fuzzy sliding mode controller (FSMC) and a fuzzy-based compensator (CO). Firstly, the FSMC and CO are designed independently, and then an adaptive fuzzy structure is discovered to combine them. Solutions for avoiding the singular cases of the fuzzy-based function approximation and reducing the calculating cost are proposed. Based on the solutions, fuzzy sliding mode technique, lumped disturbance observer and Lyapunov stability analysis, a closed-loop adaptive control law is formulated. Simulations along with a real application based on a semi-active train-car suspension are performed to fully evaluate the method. The obtained results reflected that vibration of the chassis mass is insensitive to UAD. Compared with the other fuzzy sliding mode control strategies, the CO-FSMC can provide the best control ability to reduce unwanted vibrations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  3. Innovative research on the group teaching mode based on the LabVIEW virtual environment

    Science.gov (United States)

    Liang, Pei; Huang, Jie; Gong, Hua-ping; Dong, Qian-min; Dong, Yan-yan; Sun, Cai-xia

    2017-08-01

    This paper discusses the widely existing problems of increasing demand of professional engineer in electronic science major and the backward of the teaching mode at present. From one specialized course "Virtual Instrument technique and LABVIEW programming", we explore the new group-teaching mode based on the Virtual Instrument technique, and then the Specific measures and implementation procedures and effect of this teaching mode summarized in the end.

  4. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

  5. Single CFTA Based Current-Mode Universal Biquad Filter

    Directory of Open Access Journals (Sweden)

    S.V. Singh

    2016-12-01

    Full Text Available This paper introduces a new current-mode (CM universal biquad filter structure with optimum number of active and passive elements. In the design, the proposed circuit uses a single active element namely, current follower trans-conductance amplifier (CFTA and two grounded capacitors as passive elements. The main feature of the proposed circuit is that it can realize all five standard filtering functions such as low pass (LP, band pass (BP, high pass (HP, band stop (BS and all pass (AP responses across an explicit high impedance output terminal through the appropriate selection of three inputs. In addition, the same circuit is also capable to simultaneously realize three filtering functions (LP, BP and HP by the use of single current input signal. Moreover, the proposed structure is suited for low voltage, low power operations and offers the feature of electronic tunability of pole-frequency and quality factor. Further to extend the utility of the proposed circuit block higher order current-mode filters are also realized through direct cascading. A detailed non-ideal and parasitic study is also included. The performance of the circuits has been examined using standard 0.25 μ m CMOS parameters from TSMC.

  6. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  7. Improved Frame Mode Selection for AMR-WB+ Based on Decision Tree

    Science.gov (United States)

    Kim, Jong Kyu; Kim, Nam Soo

    In this letter, we propose a coding mode selection method for the AMR-WB+ audio coder based on a decision tree. In order to reduce computation while maintaining good performance, decision tree classifier is adopted with the closed loop mode selection results as the target classification labels. The size of the decision tree is controlled by pruning, so the proposed method does not increase the memory requirement significantly. Through an evaluation test on a database covering both speech and music materials, the proposed method is found to achieve a much better mode selection accuracy compared with the open loop mode selection module in the AMR-WB+.

  8. Design of hybrid sliding mode controller based on fireworks algorithm for nonlinear inverted pendulum systems

    Directory of Open Access Journals (Sweden)

    Te-Jen Su

    2016-12-01

    Full Text Available The objective of this article is to optimize parameters of a hybrid sliding mode controller based on fireworks algorithm for a nonlinear inverted pendulum system. The proposed controller is a combination of two modified types of the classical sliding mode controller, namely, baseline sliding mode controller and fast output sampling discrete sliding mode controller. The simulation process is carried out with MATLAB/Simulink. The results are compared with a published hybrid method using proportional–integral–derivative and linear quadratic regulator controllers. The simulation results show a better performance of the proposed controller.

  9. New operational modes for the Ta2O5-based electrolyte conductance cell

    NARCIS (Netherlands)

    Olthuis, Wouter; Smith, A.; van der Zalm, R.A.J.; Bergveld, Piet

    1994-01-01

    Based on the recently presented conductance cell, two specific operational modes are proposed. In the oscillator mode, the conductivity of the electrolyte determines the frequency of an oscillator, experimentally obtaining a shift from 10 to 27 kHz for a KCl concentration range from 0.5 to 100 mM.

  10. Specialized Courses Teaching Mode Innovation of the Independent College Based on MOOCS

    Science.gov (United States)

    Hongxia, Sun; Na, Zhao; Zhixiang, Zhang; Feng, Li; Pengcheng, Zhu

    2017-01-01

    Independent college is a new kind of school-running pattern, on the basis of independent college computer professional course teaching, based on the background of MOOCS, specialized course teaching mode principle, on the basis of design is given priority to, the class online course of classroom teaching mode. To a certain extent can motivate we…

  11. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  12. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications.

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25  ° C to 65  ° C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  13. Electromagnetic controllable surfaces based on trapped-mode effect

    Directory of Open Access Journals (Sweden)

    V. Dmitriev

    2012-10-01

    Full Text Available In this paper we present some recent results of our theoretical investigations of electromagnetically controllable surfaces. These surfaces are designed on the basis of periodic arrays made of metallic inclusions of special form which are placed on a thin substrate of active material (magnetized ferrite or optically active semiconductor. The main peculiarity of the studied structures is their capability to support the trapped-mode resonance which is a result of the antiphase current oscillations in the elements of a periodic cell. Several effects, namely: tuning the position of passband and the linear and nonlinear (bistable transmission switching are considered when an external static magnetic field or optical excitation are applied. Our numerical calculations are fulfilled in both microwave and optical regions.

  14. Fish's Muscles Distortion and Pectoral Fins Propulsion of Lift-Based Mode

    Science.gov (United States)

    Yang, S. B.; Han, X. Y.; Qiu, J.

    As a sort of MPF(median and/or paired fin propulsion), pectoral fins propulsion makes fish easier to maneuver than other propulsion, according to the well-established classification scheme proposed by Webb in 1984. Pectoral fins propulsion is classified into oscillatory propulsion, undulatory propulsion and compound propulsion. Pectoral fins oscillatory propulsion, is further ascribable to two modes: drag-based mode and lift-based mode. And fish exhibits strong cruise ability by using lift-based mode. Therefore to robot fish design using pectoral fins lift-based mode will bring a new revolution to resources exploration in blue sea. On the basis of the wave plate theory, a kinematic model of fish’s pectoral fins lift-based mode is established associated with the behaviors of cownose ray (Rhinoptera bonasus) in the present work. In view of the power of fish’s locomotion from muscle distortion, it would be helpful benefit to reveal the mechanism of fish’s locomotion variation dependent on muscles distortion. So this study puts forward the pattern of muscles distortion of pectoral fins according to the character of skeletons and muscles of cownose ray in morphology and simulates the kinematics of lift-based mode using nonlinear analysis software. In the symmetrical fluid field, the model is simulated left-right symmetrically or asymmetrically. The results qualitatively show how muscles distortion determines the performance of fish locomotion. Finally the efficient muscles distortion associated with the preliminary dynamics is induced.

  15. Development of a wearable exoskeleton rehabilitation system based on hybrid control mode

    Directory of Open Access Journals (Sweden)

    Yi Long

    2016-10-01

    Full Text Available Lower limb rehabilitation exoskeletons usually help patients walk based on fixed gait trajectories. However, it is not suitable for unilateral lower limb disorders. In this article, a hybrid training mode is proposed to be applied in rehabilitation for unilateral lower limb movement disorders. The hybrid training includes two modes, that is, the passive training mode and the active assist mode. At an early stage of the rehabilitation therapy, the passive training mode is utilized, in which microelectromechanical systems-based attitude and heading reference system is used to collect the gait trajectory of the healthy limb. The exoskeleton on the unhealthy limb will be driven to track the joint trajectory of the healthy limb. If the patient’s abilities recovered, the rehabilitation system can be switched to the active assist mode. Two force sensors are imbedded into the interface on the thigh to measure the interaction information in order to detect the patient’s initiative walking intention. In the active mode, the walking gait trajectory is modified and generated based on the gait trajectory of the healthy side via the attitude and heading reference system. In this article, a position close control loop is designed to drive the mechanical leg to help the unhealthy limb walk. Laboratory experiments are performed on a healthy human subject to illustrate the proposed approach. Experimental results show that the proposed method can be applied and extended in the passive and active rehabilitation mode for the unilateral lower limb disorders.

  16. Experimental Demonstration of 6-Mode Division Multiplexed NG-PON2: Cost Effective 40 Gbit/s/Spatial-Mode Access Based on 3D Laser Inscribed Photonic Lanterns

    DEFF Research Database (Denmark)

    Asif, Rameez; Hu, Hao; Mitchell, Paul

    We report the first space-division-multiplexed based symmetric NG-PON2 network by effi- ciently transmitting 40 Gbit/s/spatial-mode. Error free transmission (BER of 10−9 ) is obtained for all the downstream and upstream data tributaries over 1-km 6-spatial-mode FMF without using MIMO DSP......We report the first space-division-multiplexed based symmetric NG-PON2 network by effi- ciently transmitting 40 Gbit/s/spatial-mode. Error free transmission (BER of 10−9 ) is obtained for all the downstream and upstream data tributaries over 1-km 6-spatial-mode FMF without using MIMO DSP...

  17. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    Science.gov (United States)

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  18. Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure.

    Science.gov (United States)

    Tian, Ke; Farrell, Gerald; Wang, Xianfan; Yang, Wenlei; Xin, Yifan; Liang, Haidong; Lewis, Elfed; Wang, Pengfei

    2017-08-07

    A fibre-optic strain sensor based on a gourd-shaped joint multimode fibre (MMF) sandwiched between two single-mode fibres (SMFs) is described both theoretically and experimentally. The cladding layers of the two MMFs are reshaped to form a hemisphere using an electrical arc method and spliced together, yielding the required gourd shape. The gourd-shaped section forms a Fabry-Perot cavity between the ends of two adjacent but non-contacting multimode fibres' core. The effectiveness of the multimode interference based on the Fabry-Perot interferometer (FPI) formed within the multimode inter-fibre section is greatly improved resulting in an experimentally determined strain sensitivity of -2.60 pm/με over the range 0-1000 με. The sensing characteristics for temperature and humidity of this optical fibre strain sensor are also investigated.

  19. Model-Based Resource and Mode Management for Lunar Surface Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based resource and mode management system for space robotics systems that will allow real time assessment of...

  20. Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling

    Science.gov (United States)

    Yahiaoui, R.; Burrow, J. A.; Mekonen, S. M.; Sarangan, A.; Mathews, J.; Agha, I.; Searles, T. A.

    2018-04-01

    We demonstrate a classical analog of electromagnetically induced transparency (EIT) in a highly flexible planar terahertz metamaterial (MM) comprised of three-gap split-ring resonators. The keys to achieve EIT in this system are the frequency detuning and hybridization processes between two bright modes coexisting in the same unit cell as opposed to bright-dark modes. We present experimental verification of two bright modes coupling for a terahertz EIT-MM in the context of numerical results and theoretical analysis based on a coupled Lorentz oscillator model. In addition, a hybrid variation of the EIT-MM is proposed and implemented numerically to dynamically tune the EIT window by incorporating photosensitive silicon pads in the split gap region of the resonators. As a result, this hybrid MM enables the active optical control of a transition from the on state (EIT mode) to the off state (dipole mode).

  1. Channel impulse response equalization scheme based on particle swarm optimization algorithm in mode division multiplexing

    Science.gov (United States)

    Yasear, Shaymah; Amphawan, Angela

    2017-11-01

    Mode division multiplexing (MDM) technique has been introduced as a promising solution to the rapid increase of data traffic. However, although MDM has the potential to increase transmission capacity and significantly reduce the cost and complexity of parallel systems, it also has its challenges. Along the optical fibre link, the deficient characteristics always exist. These characteristics, damage the orthogonality of the modes and lead to mode coupling, causing Inter-symbol interference (SI) which limit the capacity of MDM system. In order to mitigate the effects of mode coupling, an adaptive equalization scheme based on particle swarm optimization (PSO) algorithm has been proposed. Compared to other traditional algorithms that have been used in the equalization process on the MDM system such as least mean square (LMS) and recursive least squares (RLS) algorithms, simulation results demonstrate that the PSO algorithm has flexibility and higher convergence speed for mitigating the effects of nonlinear mode coupling.

  2. Stable Gait Generation of a Quasi-Passive Biped Walking Robot Based on Mode Decomposition

    Science.gov (United States)

    Matsumoto, Itaru

    A passive walker is a robot which can walk down a shallow slope without active control or energy input, being powered only by gravity. This paper proposes a control law that can stabilize the gait of a quasi-passive walker by manipulating torque at the hip joint. The motion of the quasi-passive walker is divided into two modes: one is a sinusoidal mode and the other a hyperbolic sinusoidal mode. The controller is designed with a servo system which forces the motion of the sinusoidal mode to track the reference input signal obtained from the phase-plane trajectory of the hyperbolic sinusoidal mode. The generated gait is quite natural, because the input of the servo system is made based on the system dynamics. The results of simulations have demonstrated the effectiveness of the proposed control law.

  3. Strain and temperature characteristics of the LP11 mode based on a few-mode fiber Bragg grating and core-offset splicing

    Science.gov (United States)

    Jin, Wenxing; Xu, Yao; Jiang, Youchao; Wu, Yue; Yao, Shuzhi; Xiao, Shiying; Qi, Yanhui; Ren, Wenhua; Jian, Shuisheng

    2018-02-01

    We propose and demonstrate a ring fiber laser based on a few-mode fiber Bragg grating for strain and temperature sensing using only the LP11 mode. The core-offset splicing method is used to ensure effective coupling from the fundamental mode to the LP11 mode. A stable erbium-doped fiber laser operating as a single LP11 mode with a 3 dB linewidth of about 0.02 nm and an optical signal-to-noise ratio over 42 dB is achieved by appropriately adjusting the polarization controller between the optical circulator and the few-mode fiber Bragg grating. A high axial strain sensitivity of 0.8778 pm μ\\varepsilon-1 and a temperature sensitivity of 9.9214 pm °C-1 are achieved with the advantages of all-fiber, simple construction and easy control.

  4. Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures.

    Science.gov (United States)

    Das, Ritwick; Srivastava, Triranjita; Jha, Rajan

    2014-02-15

    The transverse magnetic (TM) polarized hybrid modes formed as a consequence of coupling between Tamm plasmon polariton (TM-TPP) mode and surface plasmon polariton (SPP) mode exhibit interesting dispersive features for realizing a highly sensitive and accurate surface plasmon resonance (SPR) sensor. We found that the TM-TPP modes, formed at the interface of distributed Bragg reflector and metal, are strongly dispersive as compared to SPP modes at optical frequencies. This causes an appreciably narrow interaction bandwidth between TM-TPP and SPP modes, which leads to highly accurate sensing. In addition, appropriate tailoring of dispersion characteristics of TM-TPP as well as SPP modes could ensure high sensitivity of a novel SPR platform. By suitably designing the Au/TiO₂/SiO₂-based geometry, we propose a TM-TPP/SPP hybrid-mode sensor and achieve a sensitivity ≥900  nm/RIU with high detection accuracy (≥30  μm⁻¹) for analyte refractive indices varying between 1.330 and 1.345 in 600-700 nm wavelength range. The possibility to achieve desired dispersive behavior in any spectral band makes the sensing configuration an extremely attractive candidate to design sensors depending on the availability of optical sources.

  5. Cavity modes with optical orbital angular momentum in a metamaterial ring based on transformation optics.

    Science.gov (United States)

    Wu, H W; Wang, F; Dong, Y Q; Shu, F Z; Zhang, K; Peng, R W; Xiong, X; Wang, Mu

    2015-12-14

    In this work, we theoretically study the cavity modes with transverse orbital angular momentum in metamaterial ring based on transformation optics. The metamaterial ring is designed to transform the straight trajectory of light into the circulating one by enlarging the azimuthal angle, effectively presenting the modes with transverse orbital angular momentum. The simulation results confirm the theoretical predictions, which state that the transverse orbital angular momentum of the mode not only depends on the frequency of the incident light, but also depends on the transformation scale of the azimuthal angle. Because energy dissipation inevitably reduces the field amplitude of the modes, the confined electromagnetic energy and the quality factor of the modes inside the ring are also studied in order to evaluate the stability of those cavity modes. The results show that the metamaterial ring can effectively confine light with a high quality factor and maintain steady modes with the orbital angular momentum, even if the dimension of the ring is much smaller than the wavelength of the incident light. This technique for exploiting the modes with optical transverse orbital angular momentum may provides a unique platform for applications related to micromanipulation.

  6. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  7. Batch mode generation of residue-based diagrams of proteins.

    NARCIS (Netherlands)

    Campagne, F.; Bettler, E.J.M.; Vriend, G.; Weinstein, H.C.

    2003-01-01

    SUMMARY: Residue-based diagrams of proteins are graphical representations that can be used in protein information systems. These diagrams make it possible to visually integrate different types of biological information. The approach has been used successfully for membrane proteins. We developed the

  8. Demand and supply-based operating modes--a framework for analyzing health care service production.

    Science.gov (United States)

    Lillrank, Paul; Groop, P Johan; Malmström, Tomi J

    2010-12-01

    The structure of organizations that provide services should reflect the possibilities of and constraints on production that arise from the market segments they serve. Organizational segmentation in health care is based on urgency and severity as well as disease type, bodily function, principal method, or population subgroup. The result is conflicting priorities, goals, and performance metrics. A managerial perspective is needed to identify activities with similar requirements for integration, coordination, and control. The arguments in this article apply new reasoning to the previous literature. The method used in this article to classify health care provision distinguishes different types of health problems that share generic constraints of production. The analysis leads to seven different demand-supply combinations, each with its own operational logic. These are labeled demand and supply-based operating modes (DSO modes), and constitute the managerial building blocks of health care organizations. The modes are Prevention, Emergency, One visit, Project, Elective, Cure, and Care. As analytical categories the DSO modes can be used to understand current problems. Several operating modes in one unit create managerial problems of conflicting priorities, goals, and performance metrics. The DSO modes are constructed as managerially homogeneous categories or care platforms responding to general types of demand, and supply constraints. The DSO modes bring methods of industrial management to bear on efforts to improve health care. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.

  9. Construction and Implementation of Teaching Mode for Digital Mapping based on Interactive Micro-course Technology

    Directory of Open Access Journals (Sweden)

    Ning Gao

    2018-02-01

    Full Text Available The era of “Internet + education” has caused reforms in teaching ideas, teaching modes, and learning styles. The emergence of micro-course technology provides new strategies for integrating learning styles. Task-driven digital mapping teaching, known as traditional classroom organization, has poor teaching effect due to single learning style and strategy. A new teaching mode for digital mapping was constructed in this study based on micro-course technology by combining interactive micro-course technology and digital mapping teaching to adapt to the demands of modern teaching. This teaching mode mainly included four modules, namely, micro-courseware, micro-video, micro-exercise, and micro-examination. It realized the hierarchical teaching of knowledge points in digital mapping course, simplification of basic principles, simulation of engineering cases, and self-evaluation of learning outcomes. The teaching mode was applied to 114 students from the Mapping Engineering Department of Henan University of Urban Construction. Results indicate that the proposed teaching mode based on interactive micro-course technology promoting the independent after-class learning of the students, stimulating their learning enthusiasm, enhancing their practical abilities of the students, and improving the effect of teaching. This mode of teaching provides a new concept for the teaching mode reform of other courses in mapping engineering.

  10. Transverse single-mode edge-emitting lasers based on coupled waveguides.

    Science.gov (United States)

    Gordeev, Nikita Yu; Payusov, Alexey S; Shernyakov, Yuri M; Mintairov, Sergey A; Kalyuzhnyy, Nikolay A; Kulagina, Marina M; Maximov, Mikhail V

    2015-05-01

    We report on the transverse single-mode emission from InGaAs/GaAs quantum well edge-emitting lasers with broadened waveguide. The lasers are based on coupled large optical cavity (CLOC) structures where high-order vertical modes of the broad active waveguide are suppressed due to their resonant tunneling into a coupled single-mode passive waveguide. The CLOC lasers have shown stable Gaussian-shaped vertical far-field profiles with a reduced divergence of ∼22° FWHM (full width at half-maximum) in CW (continuous-wave) operation.

  11. A frequency conversion mode for dispenser in the service station based on flow rate signal

    International Nuclear Information System (INIS)

    Liu, Y J; Tang, D; Huang, J B; Liu, J; Jia, P F

    2012-01-01

    Dispenser is an integrated fuel transport and measurement system at the service station. In this paper, we developed a frequency conversion mode for the dispenser, based on the flow rate signal which is obtained from the converter measuring flow capacity. After introducing the frequency conversion mode to dispenser, we obtained that pump rotates at a high speed when fuelled with high flow rate, and it rotates at a low speed when fuelled with low flow rate. This makes the fuel dispenser more energy-efficient and controllable. We also did some valve optimizations on the dispenser and developed a new control mode for preset refuelling based on the frequency conversion mode, Experimental and theoretical studies have shown that the new dispenser not only can meet the national standards, but also performs better than the ordinary one especially in preset refuelling.

  12. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    OpenAIRE

    Li, Guohui; Zhang, Songling; Yang, Hong

    2017-01-01

    Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD) and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs) and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN) is used to predict it. Finally, the reconstructed ...

  13. N-Annulated Perylene as a Donor in Cyclopentadithiophene Based Sensitizers: The Effect of Linking Mode

    KAUST Repository

    Luo, Jie

    2015-11-24

    Two types of cyclopentadithiophene dyes with different linking modes with an N-annulated perylene (NP) donor were designed and synthesized. These new dyes were applied in Co(II)/(III) based dye-sensitized solar cells and an efficiency up to 7.8% could be obtained for peri-NP linked CPD-1. The effect of the linking mode on the material properties and device performance was discussed.

  14. A Gyro Signal Characteristics Analysis Method Based on Empirical Mode Decomposition

    OpenAIRE

    Zeng, Qinghua; Gu, Shanshan; Liu, Jianye; Liu, Sheng; Chen, Weina

    2016-01-01

    It is difficult to analyze the nonstationary gyro signal in detail for the Allan variance (AV) analysis method. A novel approach in the time-frequency domain for gyro signal characteristics analysis is proposed based on the empirical mode decomposition and Allan variance (EMDAV). The output signal of gyro is decomposed by empirical mode decomposition (EMD) first, and then the decomposed signal is analyzed by AV algorithm. Consequently, the gyro noise characteristics are demonstrated in the ti...

  15. An Application of Chaotic Chua's System for Secure Chaotic Communication Based on Sliding Mode observer

    Science.gov (United States)

    Kemih, K.; Halimi, M.; Ghanes, M.; Zhang, G.

    2011-12-01

    In this paper, we study the design and implementation of analog secure communication systems via synchronized chaotic Chua's circuit with sliding mode observer. For this, we adopt an approach based on an inclusion of the message in the transmitter and in the receiver; we use a sliding mode observer with un-known input in order to recover the information. Finally, an analog electronic circuit with Multisim software is designed to physically realize the complete system (transmitter-receiver).

  16. A Multi-agent Supply Chain Information Coordination Mode Based on Cloud Computing

    OpenAIRE

    Wuxue Jiang; Jing Zhang; Junhuai Li

    2013-01-01

     In order to improve the high efficiency and security of supply chain information coordination under cloud computing environment, this paper proposes a supply chain information coordination mode based on cloud computing. This mode has two basic statuses which are online status and offline status. At the online status, cloud computing center is responsible for coordinating the whole supply chain information. At the offline status, information exchange can be realized among different nodes by u...

  17. Low-cost sliding mode control of WECS based on DFIG with stability analysis

    OpenAIRE

    DJOUDI, ABDELHAK; CHEKIREB, HACHEMI; BERKOUK, EL MADJID; BACHA, SEDDIK

    2015-01-01

    The aim of this work is to developing sliding mode control of active and reactive stator powers produced by a wind energy conversion system (WECS), based on doubly fed induction generator (DFIG). A flux estimation model and rotor current sensor are no longer required. The controller is developed from the DFIG nonlinear-coupled model. Moreover, the global stability and the DFIG states' boundedness when our low-cost sliding mode control is applied are established analytically. It is re...

  18. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber.

    Science.gov (United States)

    Tian, Zhaobing; Yam, Scott S-H; Loock, Hans-Peter

    2008-05-15

    A simple refractive index sensor based on a Michelson interferometer in a single-mode fiber is constructed and demonstrated. The sensor consists of a single symmetrically abrupt taper region in a short piece of single-mode fiber that is terminated by approximately 500 nm thick gold coating. The sensitivity of the new sensor is similar to that of a long-period-grating-type sensor, and its ease of fabrication offers a low-cost alternative to current sensing applications.

  19. An improved pattern synthesis algorithm based on metric modes

    Science.gov (United States)

    Tan, Yongqian; Zeng, Fanju; Zhang, Song; Yang, Yongliang

    2017-08-01

    Based on the principle of texture image synthesis of block splicing, the application of texture synthesis algorithm in pattern synthesis is studied. Through the study of the characteristics of texture image and texture pattern, it is found that texture is a special image with both localization and stability, and the pattern is a kind of whole structure with stronger structure. Texture synthesis algorithm in the more texture image synthesis, can achieve a more satisfactory results, but the synthesis of the pattern cannot achieve better synthesis results. In this paper, through the study of the characteristics of the pattern, on the basis of the texture synthesis algorithm, by improving the measurement method, when judging the similarity of two matching blocks, while the color and gradient of the image block as the two matching blocks are similar between the important parameters. Experiments show that the improved algorithm can achieve better synthesis effect when synthesizing most of the patterns.

  20. Sensorless sliding mode torque control of an IPMSM drive based on active flux concept

    Directory of Open Access Journals (Sweden)

    A.A. Hassan

    2012-03-01

    Full Text Available This paper investigates a novel direct torque control of a sensorless interior permanent magnet synchronous motor based on a sliding mode technique. The speed and position of the interior permanent magnet synchronous motor are estimated online based on active flux concept. To overcome the large ripple content associated with the direct torque, a torque/flux sliding mode controller has been employed. Two integral surface functions are used to construct the sliding mode controller. The command voltage is estimated from the torque and flux errors based on the two switching functions. The idea of the total sliding mode is used to eliminate the problem of reaching phase stability. The space vector modulation is combined with the sliding mode controller to ensure minimum torque and flux ripples and provides high resolution voltage control. The proposed scheme has the advantages of simple implementation, and does not require an external signal injection. In addition, it combines the merits of the direct torque control, sliding mode controller, and space vector modulation besides to the sensorless control. Simulation works are carried out to demonstrate the ability of the proposed scheme at different operating conditions. The results confirm the high performance of the proposed scheme at standstill, low and high speeds including load disturbance and parameters variation.

  1. A robo-pigeon based on an innovative multi-mode telestimulation system.

    Science.gov (United States)

    Yang, Junqing; Huai, Ruituo; Wang, Hui; Lv, Changzhi; Su, Xuecheng

    2015-01-01

    In this paper, we describe a new multi-mode telestimulation system for brain-microstimulation for the navigation of a robo-pigeon, a new type of bio-robot based on Brain-Computer Interface (BCI) techniques. The multi-mode telestimulation system overcomes neuron adaptation that was a key shortcoming of the previous single-mode stimulation by the use of non-steady TTL biphasic pulses accomplished by randomly alternating pulse modes. To improve efficiency, a new behavior model ("virtual fear") is proposed and applied to the robo-pigeon. Unlike the previous "virtual reward" model, the "virtual fear" behavior model does not require special training. The performance and effectiveness of the system to alleviate the adaptation of neurons was verified by a robo-pigeon navigation test, simultaneously confirming the practicality of the "virtual fear" behavioral model.

  2. Mode-hopping mechanism generating colored noise in a magnetic tunnel junction based spin torque oscillator

    International Nuclear Information System (INIS)

    Sharma, Raghav; Dürrenfeld, P.; Iacocca, E.; Heinonen, O. G.; Åkerman, J.; Muduli, P. K.

    2014-01-01

    The frequency noise spectrum of a magnetic tunnel junction based spin torque oscillator is examined where multiple modes and mode-hopping events are observed. The frequency noise spectrum is found to consist of both white noise and 1/f frequency noise. We find a systematic and similar dependence of both white noise and 1/f frequency noise on bias current and the relative angle between the reference and free layers, which changes the effective damping and hence the mode-hopping behavior in this system. The frequency at which the 1/f frequency noise changes to white noise increases as the free layer is aligned away from the anti-parallel orientation w.r.t the reference layer. These results indicate that the origin of 1/f frequency noise is related to mode-hopping, which produces both white noise as well as 1/f frequency noise similar to the case of ring lasers.

  3. Analysis of space payload operation modes based on divide-and-conquer clustering

    Directory of Open Access Journals (Sweden)

    Si Feng

    2016-01-01

    Full Text Available With the development of space electronic technology, the space payload operation modes are more and more complex, and manual interpretation is prone to errors for much workload. Generally the space payload’s operation modes are reflected by its telemetry data. By analysing the characteristics of the payload telemetry data, it is proposed an automatic analysis method of payload operation modes based on divide–and–conquer clustering. The clustering method combines division and incremental clustering. The principle of the method is introduced and the method is validated using the actual payload telemetry data. Furthermore the improved method is proposed to the problems encountered. Experimental results show that divide–and–conquer clustering method has the feature of calculation simple and classification accurate, when applied to the classification of payload operation modes. Furthermore this method can be applied to the other areas of payload data processing by extending the method.

  4. Robust Sliding Mode Control of Permanent Magnet Synchronous Generator-Based Wind Energy Conversion Systems

    Directory of Open Access Journals (Sweden)

    Guangping Zhuo

    2016-12-01

    Full Text Available The subject of this paper pertains to sliding mode control and its application in nonlinear electrical power systems as seen in wind energy conversion systems. Due to the robustness in dealing with unmodeled system dynamics, sliding mode control has been widely used in electrical power system applications. This paper presents first and high order sliding mode control schemes for permanent magnet synchronous generator-based wind energy conversion systems. The application of these methods for control using dynamic models of the d-axis and q-axis currents, as well as those of the high speed shaft rotational speed show a high level of efficiency in power extraction from a varying wind resource. Computer simulation results have shown the efficacy of the proposed sliding mode control approaches.

  5. Simulation-based comparisons of four apparel cell production modes of one clothing production line

    Directory of Open Access Journals (Sweden)

    Guoqiang Pan

    2014-10-01

    Full Text Available Purpose: This research, by using the SIMIO simulation platform, provides a quantitative and comparative analysis of how the efficiency of four different cell production modes is affected. It is hoped that the outcomes will be of some help for garment factories to optimize their production lines. Design/methodology/approach: The SIMIO simulation platform was employed in the research and comparisons were made of the simulation test results about the four different production modes. Findings: The operation mode, number of operators, and number of buffer areas are key factors affecting the production line efficiency, and need to be reasonably set to achieve the highest efficiency. Originality/value: As most research literature so far is qualitative, this research provided a simulation-based quantitative analysis of the production efficiency under different cell production modes.

  6. The Study of Operation Modes and Control Strategies of a Multidirectional MC for Battery Based System

    Directory of Open Access Journals (Sweden)

    Saman Toosi

    2015-01-01

    Full Text Available To enhance the performance of stand-alone battery based system and to achieve the continuous power transmission, the behavior of multidirectional matrix converter (MDMC has been analyzed in different operation modes. A systematic method interfacing a renewable source, a storage battery, and a load is proposed for a stand-alone battery based power system (SABBPS to utilize the MDMC as PWM converter, inverter, or PWM converter and inverter in different operation modes. In this study, the Extended Direct Duty Pulse Width Modulation (EDDPWM technique has been applied to control the power flow path between the renewable source, load, and the battery. Corresponding to generator voltage, input frequency, and loads demands, several operating states and control strategies are possible. Therefore, the boundaries and distribution of operation modes are discussed and illustrated to improve the system performance. The mathematical equation of the EDDPWM under different operation modes has been derived to achieve the maximum voltage ratio in each mode. The theoretical and modulation concepts presented have been verified in simulation using MATLAB and experimental testing. Moreover, the THD, ripple, and power flow direction have been analyzed for output current to investigate the behavior of system in each operation mode.

  7. Analisys of Current-Bidirectional Buck-Boost Based Automotive Switch-Mode Audio Amplifier

    DEFF Research Database (Denmark)

    Bolten Maizonave, Gert; Andersen, Michael A. E.; Kjærgaard, Claus

    2011-01-01

    The following study was carried out in order to assess quantitatively the performance of the buck-boost converter when used as switch-mode audio amplifier. It comprises of, to begin with, the delimitation of design criteria based on the state-ofthe- art solution, which is based in a differential ...

  8. Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.

    Science.gov (United States)

    Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min

    2012-07-25

    A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.

  9. Sliding mode control of photoelectric tracking platform based on the inverse system method

    Directory of Open Access Journals (Sweden)

    Yao Zong Chen

    2016-01-01

    Full Text Available In order to improve the photoelectric tracking platform tracking performance, an integral sliding mode control strategy based on inverse system decoupling method is proposed. The electromechanical dynamic model is established based on multi-body system theory and Newton-Euler method. The coupled multi-input multi-output (MIMO nonlinear system is transformed into two pseudo-linear single-input single-output (SISO subsystems based on the inverse system method. An integral sliding mode control scheme is designed for the decoupled pseudo-linear system. In order to eliminate system chattering phenomenon caused by traditional sign function in sliding-mode controller, the sign function is replaced by the Sigmoid function. Simulation results show that the proposed decoupling method and the control strategy can restrain the influences of internal coupling and disturbance effectively, and has better robustness and higher tracking accuracy.

  10. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method.

    Science.gov (United States)

    Mendez, I; Hartman, V; Hudej, R; Strojnik, A; Casar, B

    2013-01-01

    A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma-distributed single hit model based on

  11. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    Directory of Open Access Journals (Sweden)

    Amphawan Angela

    2017-01-01

    Full Text Available A free-space optics mode-wavelength division multiplexing (MWDM system using Laguerre-Gaussian (LG modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  12. Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles

    DEFF Research Database (Denmark)

    Dohn, Søren; Sandberg, Rasmus Kousholt; Svendsen, Winnie Edith

    2005-01-01

    By positioning a single gold-particle at different locations along the length axis on a cantilever based mass sensor, we have investigated the effect of mass position on the mass responsivity and compared the results to simulations. A significant improvement in quality factor and responsivity was...... was achieved by operating the cantilever in the 4th bending mode, thereby increasing the intrinsic sensitivity. It is shown that the use of higher bending modes grants a spatial resolution and thereby enhances the functionality of the cantilever based mass sensor....

  13. Analysis of current-bidirectional buck-boost based switch-mode audio amplifier

    DEFF Research Database (Denmark)

    Bolten Maizonave, Gert; Andersen, Michael A. E.; Kjærgaard, Claus

    2011-01-01

    The following studdy was carried out in order to assses quantitatively the performannce of the buck--boost converter whhen used as swiitch-mode audio amplifier. It comprises of, to beggin with, the de limitation of design criteria bassed on the state of-the-art solution, which is based in a diffe......The following studdy was carried out in order to assses quantitatively the performannce of the buck--boost converter whhen used as swiitch-mode audio amplifier. It comprises of, to beggin with, the de limitation of design criteria bassed on the state of-the-art solution, which is based...... in such configuration when applied for audio....

  14. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor

    Science.gov (United States)

    Zhao, Liyuan; Wang, Yan; Yuan, Yonggui; Liu, Yongjun; Liu, Shuangqiang; Sun, Weimin; Yang, Jun; Li, Hanyang

    2017-11-01

    We developed a tunable whispering gallery mode (WGM) microlaser based on dye-doped cholesteric liquid crystal (CLC) microdroplets with controllable size in an aqueous environment. An individual dye-doped CLC microdroplet confined at the tip of a microcapillary was optically pumped via a tapered optical fiber tip positioned within its vicinity. Numerical simulations and various spectral characteristics verify the WGM resonance of the lasing in microdroplets. Thermal tuning of the lasing modes is realized due to the thermo-optic effect of CLC. The proposed CLC microdroplet-based WGM resonator was applied as a temperature sensor and exhibited maximum temperature sensitivity up to 0.96 nm/°C.

  15. Efficient and spurious-free integral-equation-based optical waveguide mode solver.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2007-10-29

    Modal analysis of waveguides and resonators by integra-lequation formulations can be hindered by the existence of spurious solutions. In this paper, spurious solutions are shown to be eliminated by introduction of a Rayleigh-quotient based matrix singularity measure. Once the spurious solutions are eliminated, the true modes may be determined efficiently and reliably, even in the presence of degeneracy, by an adaptive search algorithm. Analysis examples that demonstrate the efficacy of the method include an elliptical dielectric waveguide, two unequal touching dielectric cylinders, a plasmonic waveguide, and a realistic micro-structured optical fiber. A freely downloadable version of an optical waveguide mode solver based on this article is available.

  16. Identifying Different Transportation Modes from Trajectory Data Using Tree-Based Ensemble Classifiers

    Directory of Open Access Journals (Sweden)

    Zhibin Xiao

    2017-02-01

    Full Text Available Recognition of transportation modes can be used in different applications including human behavior research, transport management and traffic control. Previous work on transportation mode recognition has often relied on using multiple sensors or matching Geographic Information System (GIS information, which is not possible in many cases. In this paper, an approach based on ensemble learning is proposed to infer hybrid transportation modes using only Global Position System (GPS data. First, in order to distinguish between different transportation modes, we used a statistical method to generate global features and extract several local features from sub-trajectories after trajectory segmentation, before these features were combined in the classification stage. Second, to obtain a better performance, we used tree-based ensemble models (Random Forest, Gradient Boosting Decision Tree, and XGBoost instead of traditional methods (K-Nearest Neighbor, Decision Tree, and Support Vector Machines to classify the different transportation modes. The experiment results on the later have shown the efficacy of our proposed approach. Among them, the XGBoost model produced the best performance with a classification accuracy of 90.77% obtained on the GEOLIFE dataset, and we used a tree-based ensemble method to ensure accurate feature selection to reduce the model complexity.

  17. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  18. Space-based pseudo-fixed latitude observation mode based on the characteristics of geosynchronous orbit belt

    Science.gov (United States)

    Hu, Yun-peng; Chen, Lei; Huang, Jian-yu

    2017-08-01

    The US Lincoln Laboratory proved that space-based visible (SBV) observation is efficient to observe space objects, especially Geosynchronous Orbit (GEO) objects. After that, SBV observation plays an important role in the space surveillance. In this paper, a novel space-based observation mode is designed to observe all the GEO objects in a relatively short time. A low earth orbit (LEO) satellite, especially a dawn-dusk sun-synchronous orbit satellite, is useful for space-based observation. Thus, the observation mode for GEO objects is based on a dawn-dusk sun-synchronous orbit satellite. It is found that the Pinch Point (PP) regions proposed by the US Lincoln Laboratory are spreading based on the analysis of the evolution principles of GEO objects. As the PP regions becoming more and more widely in the future, many strategies based on it may not be efficient any more. Hence, the key point of the space-based observation strategy design for GEO objects should be emphasized on the whole GEO belt as far as possible. The pseudo-fixed latitude observation mode is proposed in this paper based on the characteristics of GEO belt. Unlike classical space-based observation modes, pseudo-fixed latitude observation mode makes use of the one-dimensional attitude adjustment of the observation satellite. The pseudo-fixed latitude observation mode is more reliable and simple in engineering, compared with the gazing observation mode which needs to adjust the attitude from the two dimensions. It includes two types of attitude adjustment, i.e. daily and continuous attitude adjustment. Therefore, the pseudo-fixed latitude observation mode has two characteristics. In a day, the latitude of the observation region is fixed and the scanning region is about a rectangle, while the latitude of the observation region centre changes each day in a long term based on a daily strategy. The capabilities of a pseudo-fixed latitude observation instrument with a 98° dawn-dusk sun-synchronous orbit are

  19. Design of Tank Velocity Based on Multi-Mode Natural Frequencies for Suppression of Sloshing

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Taegwon; Kim, Dongjoo [Kumoh Nat’l Institute of Technology, Gumi (Korea, Republic of)

    2017-05-15

    Suppression of sloshing is essential to achieve fast transportation and stable maneuvering of tanks partially filled with liquid. In this study, numerical simulations are performed to investigate the effects of the acceleration magnitude and the acceleration duration of triangular velocity profiles on sloshing when a rectangular tank moves horizontally. We previously reported, based on only the first natural mode, that sloshing is significantly suppressed when the acceleration duration equals the first natural period of sloshing. On the other hand, the present CFD simulations find the best acceleration duration for minimum sloshing and explains the results considering higher modes as well as the first mode. We also perform the analysis using an equivalent model based on masses and springs, and evaluate its accuracy by comparing it with the CFD simulation results.

  20. Automated mode shape estimation in agent-based wireless sensor networks

    Science.gov (United States)

    Zimmerman, Andrew T.; Lynch, Jerome P.

    2010-04-01

    Recent advances in wireless sensing technology have made it possible to deploy dense networks of sensing transducers within large structural systems. Because these networks leverage the embedded computing power and agent-based abilities integral to many wireless sensing devices, it is possible to analyze sensor data autonomously and in-network. In this study, market-based techniques are used to autonomously estimate mode shapes within a network of agent-based wireless sensors. Specifically, recent work in both decentralized Frequency Domain Decomposition and market-based resource allocation is leveraged to create a mode shape estimation algorithm derived from free-market principles. This algorithm allows an agent-based wireless sensor network to autonomously shift emphasis between improving mode shape accuracy and limiting the consumption of certain scarce network resources: processing time, storage capacity, and power consumption. The developed algorithm is validated by successfully estimating mode shapes using a network of wireless sensor prototypes deployed on the mezzanine balcony of Hill Auditorium, located on the University of Michigan campus.

  1. All-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers

    OpenAIRE

    Wienhold, T.; Kraemmer, S.; Wondimu, S.F.; Siegle, T.; Bog, U.; Weinzierl, U.; Schmidt, S.; Becker, H.; Kalt, H.; Mappes, T.; Koeber, S.; Koos, C.

    2015-01-01

    We present an all-polymer photonic sensing platform based on whispering-gallery mode microgoblet lasers integrated into a microfluidic chip. The chip is entirely made from polymers, enabling the use of the devices as low-cost disposables. The microgoblet cavities feature quality factors exceeding 105 and are fabricated from poly(methyl methacrylate) (PMMA) using spin-coating, mask-based optical lithography, wet chemical etching, and thermal reflow. In contrast to silica-based microtoroid reso...

  2. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images.

    Science.gov (United States)

    Kim, Sohyun; Jang, Gwang-Il; Kim, Sungho; Kim, Junmo

    2018-03-27

    This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

  3. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images

    Directory of Open Access Journals (Sweden)

    Sohyun Kim

    2018-03-01

    Full Text Available This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS and airborne EO/IR system.

  4. A new approach for crude oil price analysis based on empirical mode decomposition

    International Nuclear Information System (INIS)

    The importance of understanding the underlying characteristics of international crude oil price movements attracts much attention from academic researchers and business practitioners. Due to the intrinsic complexity of the oil market, however, most of them fail to produce consistently good results. Empirical Mode Decomposition (EMD), recently proposed by Huang et al., appears to be a novel data analysis method for nonlinear and non-stationary time series. By decomposing a time series into a small number of independent and concretely implicational intrinsic modes based on scale separation, EMD explains the generation of time series data from a novel perspective. Ensemble EMD (EEMD) is a substantial improvement of EMD which can better separate the scales naturally by adding white noise series to the original time series and then treating the ensemble averages as the true intrinsic modes. In this paper, we extend EEMD to crude oil price analysis. First, three crude oil price series with different time ranges and frequencies are decomposed into several independent intrinsic modes, from high to low frequency. Second, the intrinsic modes are composed into a fluctuating process, a slowly varying part and a trend based on fine-to-coarse reconstruction. The economic meanings of the three components are identified as short term fluctuations caused by normal supply-demand disequilibrium or some other market activities, the effect of a shock of a significant event, and a long term trend. Finally, the EEMD is shown to be a vital technique for crude oil price analysis. (author)

  5. Mode Switching for the Multi-Antenna Broadcast Channel Based on Delay and Channel Quantization

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2009-01-01

    Full Text Available Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO communications; its effects on single-user (SU and multiuser (MU MIMO transmissions are quite different. In particular, MU-MIMO suffers from residual interuser interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU-MIMO in the broadcast channel due to delay and channel quantization. Accurate closed-form approximations are derived for achievable rates for both SU and MU-MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU-MIMO with zero-forcing precoding loses its spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed, which switches between SU and MU-MIMO modes to improve the spectral efficiency based on average signal-to-noise ratio (SNR, normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, and they can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small, and the codebook size is large.

  6. Transportation Mode Detection Based on Permutation Entropy and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2015-01-01

    Full Text Available With the increasing prevalence of GPS devices and mobile phones, transportation mode detection based on GPS data has been a hot topic in GPS trajectory data analysis. Transportation modes such as walking, driving, bus, and taxi denote an important characteristic of the mobile user. Longitude, latitude, speed, acceleration, and direction are usually used as features in transportation mode detection. In this paper, first, we explore the possibility of using Permutation Entropy (PE of speed, a measure of complexity and uncertainty of GPS trajectory segment, as a feature for transportation mode detection. Second, we employ Extreme Learning Machine (ELM to distinguish GPS trajectory segments of different transportation. Finally, to evaluate the performance of the proposed method, we make experiments on GeoLife dataset. Experiments results show that we can get more than 50% accuracy when only using PE as a feature to characterize trajectory sequence. PE can indeed be effectively used to detect transportation mode from GPS trajectory. The proposed method has much better accuracy and faster running time than the methods based on the other features and SVM classifier.

  7. Optical flip-flop: Based on two-coupled mode-locked ring lasers

    NARCIS (Netherlands)

    Tangdiongga, E.; Yang, X.X.; Li, Z.; Liu, Y.S.; Lenstra, D.; Khoe, G.D.; Dorren, H.J.S.

    2005-01-01

    We report an all-optical flip-flop that is based on two coupled actively mode-locked fiber ring lasers. The lasers are coupled so that when one of the lasers lases, it quenches lasing in the other laser. The state of the flip-flop is determined by the wavelength of the laser that is currently

  8. Innovative mode of action based in vitro assays for detection of marine neurotoxins

    NARCIS (Netherlands)

    Nicolas, J.A.Y.

    2015-01-01

    Innovative mode of action based in vitro assays for detection of marine neurotoxins

    J. Nicolas, P.J.M. Hendriksen, T.F.H. Bovee, I.M.C.M. Rietjens

    Marine biotoxins are naturally occurring compounds produced by particular phytoplankton species. These toxins often accumulate in

  9. Sliding Mode Control of PMSG Wind Turbine Based on Enhanced Exponential Reaching Law

    DEFF Research Database (Denmark)

    Mozayan, Seyed Mehdi; Saad, Maarouf; Vahedi, Hani

    2016-01-01

    This paper proposes a Sliding Mode Control (SMC) based scheme for a variable speed, direct-driven Wind Energy Conversion Systems (WECS) equipped with Permanent Magnet Synchronous Generator (PMSG) connected to the grid. In this work, diode rectifier, boost converter, Neutral Point Clamped (NPC) in...

  10. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  11. Chattering Suppression for DSP Based Sliding Mode Current Control of PM DC Drives

    DEFF Research Database (Denmark)

    Dal, Mehmet; Teodorescu, Remus

    2009-01-01

    This paper investigates several chattering suppression methods for DSP based implementation of sliding mode control (SMC). It concentrates on the ‘equivalent-control-dependent' and ‘state-dependent' gain adjustment methods proposed in recent theoretical studies, and tests the effectiveness...... (LPF). Experimental results demonstrating the effectiveness of each method as well as a combined chattering elimination method are presented and discussed....

  12. Failure-mode transition in transient polymer networks with particle-based simulations

    NARCIS (Netherlands)

    Sprakel, J.H.B.; Spruijt, E.; Padding, J.T.; Briels, W.J.

    2009-01-01

    Transient polymer networks are known to undergo a wide variety of viscoelastic flow instabilities. In this paper we investigate two of these flow failure modes: shear banding and melt fracture. Using particle-based simulations we reveal a transition from gradient banding to fracture in transient

  13. Current Mode Full-Wave Rectifier Based on a Single MZC-CDTA

    Directory of Open Access Journals (Sweden)

    Neeta Pandey

    2013-01-01

    Full Text Available This paper presents a current mode full-wave rectifier based on single modified Z copy current difference transconductance amplifier (MZC-CDTA and two switches. The circuit is simple and is suitable for IC implementation. The functionality of the circuit is verified with SPICE simulation using 0.35 μm TSMC CMOS technology parameters.

  14. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  15. ECG baseline wander correction based on mean-median filter and empirical mode decomposition.

    Science.gov (United States)

    Xin, Yi; Chen, Yu; Hao, Wei Tuo

    2014-01-01

    A novel approach of ECG baseline wander correction based on mean-median filter and empirical mode decomposition is presented in this paper. The low frequency parts of the original signals were removed by the mean median filter in a nonlinear way to obtain the baseline wander estimation, then its series of IMFs were sifted by t-test after empirical mode decomposition. The proposed method, tested by the ECG signals in MIT-BIH Arrhythmia database and European ST_T database, is more effective compared with other baseline wander removal methods.

  16. Exploring in teaching mode of Optical Fiber Sensing Technology outcomes-based education (OBE)

    Science.gov (United States)

    Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Bi, Weihong

    2017-08-01

    Combining with the characteristics of disciplines and OBE mode, also aiming at the phenomena of low learning enthusiasm for the major required courses for senior students, the course of optical fiber sensing was chosen as the demonstration for the teaching mode reform. In the light of "theory as the base, focus on the application, highlighting the practice" principle, we emphasis on the introduction of the latest scientific research achievements and current development trends, highlight the practicability and practicality. By observation learning and course project, enables students to carry out innovative project design and implementation means related to the practical problems in science and engineering of this course.

  17. Projective synchronization of uncertain scale-free network based on modified sliding mode control technique

    Science.gov (United States)

    Li, Chengren; Lü, Ling; Zhao, Guannan; Li, Gang; Tian, Jing; Gu, Jiajia; Wang, Zhouyang

    2017-05-01

    We modify sliding mode control technique from the synchronization of a single dynamic system to the synchronization of complex network. Projective synchronization of uncertain scale-free network is investigated based on modified sliding mode control technique. Further, the sliding surfaces, the identification laws of uncertain parameters and the control inputs are designed, and the condition of realizing projective synchronization of uncertain scale-free network is obtained. Finally, the Logistic systems with chaotic behavior are taken as nodes to constitute the scale-free network and the synchronization target. The simulation results show that the synchronization mechanism is effective.

  18. [Design of traditional Chinese medicines with antihypertensive components based on medicinal property combination modes].

    Science.gov (United States)

    Liao, Su-Fen; Yan, Su-Rong; Guo, Wei-Jia; Luo, Ji; Sun, Jing; Dong, Fang; Wang, Yun; Qiao, Yan-Jiang

    2014-07-01

    Multi-component traditional Chinese medicines are an innovative research mode for traditional Chinese medicines. Currently, there are many design methods for developing multi-component traditional Chinese medicines, but their common feature is the lack of effective connection of the traditional Chinese medicine theory. In this paper, the authors discussed the multi-component traditional Chinese medicine design methods based on medicinal property combination modes, provided the combination methods with the characteristics of traditional Chinese medicine for the prescription combinations, and proved its feasibly with hypertension cases.

  19. Teaching practice of the course of Laser Principle and Application based on PBL mode

    Science.gov (United States)

    Li, Yongliang; Lv, Beibei; Wang, Siqi

    2017-08-01

    The primary task of university education is to stimulate students' autonomic learning and cultivate students' creative thinking. This paper put to use problem based learning (PBL) teaching mode, to enable students master flexible knowledge as the goal, and a detailed analysis of the implementation method and concrete measures of PBL teaching reform in the course of Laser Principle and Application, then compared with the former teaching methods. From the feedback of students and teaching experience, we get good teaching effect and prove the feasibility of PBL teaching mode in practice.

  20. PSO based neuro fuzzy sliding mode control for a robot manipulator

    Directory of Open Access Journals (Sweden)

    M. Vijay

    2017-05-01

    Full Text Available This paper presents the control strategy of two degrees of freedom (2DOF rigid robot manipulator based on the coupling of artificial neuro fuzzy inference system (ANFIS with sliding mode control (SMC. Initially SMC with proportional integral derivative (PID sliding surface is adapted to control the robot manipulator. The parameters of the sliding surface are obtained by minimizing a quadratic performance indices using particle swarm optimization (PSO. Variations of SMC i.e. boundary sliding mode control (BSMC and boundary sliding mode control with PID sliding surface (PIDBSMC are developed for optimized performance index. Finally an ANFIS adaptive controller is proposed to generate the adaptive control signal and found to be more robust with regard to disturbances in input torque.

  1. Oscillation mode analysis considering the interaction between a DFIG-based wind turbine and the grid

    Science.gov (United States)

    Wu, Wangping; Xie, Da; Lu, Yupu; Zhao, Zuyi; Yu, Songtao

    2017-01-01

    Sub-synchronous interactions between wind farms and transmission networks with series compensation have drawn great attention. As most large wind farms in Europe and Asia employ doubly fed induction generator turbines, there has recently been a growing interest in studying this phenomenon. To study the stability of wind turbine with doubly fed induction generator after a small disturbance, a complete small signal system is built in this paper. By using eigenvalue and participation factor analysis, the relation between the modes and state variables can be discovered. Thereafter, the oscillation modes are classified into electrical resonance, sub-synchronous resonance, sub-synchronous oscillation, sub-synchronous control interaction, and low frequency oscillation. To verify the oscillation frequency of each oscillation mode, time-domain simulation based on MATLAB/Simulink is presented. The simulation results justify the effectiveness of the small-signal models.

  2. Discussion on the teaching mode of higher vocational nursing specialty based on CDIO model

    Directory of Open Access Journals (Sweden)

    Xiu-fang CAI

    2013-11-01

    Full Text Available Discussion on the teaching mode of higher vocational nursing specialty based on CDIO model is the core of this study. CDIO is the latest achievement in the reform of the international higher education of engineering and has been thrived since 2000. There are some inevitable problems when domestic universities introduced and innovated the CDIO mode. Therefore the CDIO model is a bold attempt for the institutions of higher education, especially higher vocational college teachers. The CDIO mode drives teachers to reflect on the existed teaching philosophy, and therefore enables them to change teaching methods in the teaching process and improve their teaching capacity tremendously. Meanwhile, it also encourages students to learn automatically and cultivate their comprehensive abilities such as professional capability, development capability, interpersonal skills, innovation ability, etc.

  3. Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems

    Science.gov (United States)

    Ginoya, Divyesh; Shendge, P. D.; Phadke, S. B.

    2015-09-01

    This paper presents a new design of multiple-surface sliding mode control for a class of nonlinear uncertain systems with mismatched uncertainties and disturbances. In the method of multiple-surface sliding mode control, it is required to compensate for the derivatives of the virtual inputs which gives rise to the so-called problem of 'explosion of terms'. In this paper a disturbance observer based multiple-surface sliding mode control is proposed to estimate the uncertainties as well as the derivative of the virtual inputs to overcome this problem. The practical stability of the overall system is proved. The effectiveness of the proposed control strategy is illustrated via simulation of a benchmark problem and comparison with other control strategies. The proposed scheme is validated by implementing it on a serial flexible joint manipulator in the laboratory.

  4. Comprehensive Deployment Method for Technical Characteristics Base on Multi-failure Modes Correlation Analysis

    Science.gov (United States)

    Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.

    2017-12-01

    This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.

  5. Rock Fracture Toughness Under Mode II Loading: A Theoretical Model Based on Local Strain Energy Density

    Science.gov (United States)

    Rashidi Moghaddam, M.; Ayatollahi, M. R.; Berto, F.

    2018-01-01

    The values of mode II fracture toughness reported in the literature for several rocks are studied theoretically by using a modified criterion based on strain energy density averaged over a control volume around the crack tip. The modified criterion takes into account the effect of T-stress in addition to the singular terms of stresses/strains. The experimental results are related to mode II fracture tests performed on the semicircular bend and Brazilian disk specimens. There are good agreements between theoretical predictions using the generalized averaged strain energy density criterion and the experimental results. The theoretical results reveal that the value of mode II fracture toughness is affected by the size of control volume around the crack tip and also the magnitude and sign of T-stress.

  6. Frequency-shaped and observer-based discrete-time sliding mode control

    CERN Document Server

    Mehta, Axaykumar

    2015-01-01

    It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...

  7. Sliding mode disturbance observer-based control of a twin rotor MIMO system.

    Science.gov (United States)

    Rashad, Ramy; El-Badawy, Ayman; Aboudonia, Ahmed

    2017-07-01

    This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Novel Trajectory Control for Human Cooperation Robot Based on Behavior Mode Switching

    Science.gov (United States)

    Seki, Hirokazu; Takahashi, Kazuki; Tadakuma, Susumu

    This paper describes a novel trajectory control system for human cooperation robots based on behavior mode switching. Human cooperation robots have the great possibility to serve as useful support systems for elderly people and physically handicapped people and it is expected to realize the smooth and human-friendly support movements. This study defines three behavior modes in human cooperation motion and their respective trajectory control system are designed. In the trajectory design, minimum jerk model is introduced to realize the smooth and human-friendly cooperation movements. In addition, the initial value compensation at the mode switching is also developed. Some experiments on two-axis plane robot and performance evaluation by trial subjects show the effectiveness of the proposed trajectory control system.

  9. Fatigue Evaluation of Recycled Asphalt Mixture Based on Energy-Controlled Mode

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-01-01

    Full Text Available The fatigue properties of asphalt mixtures are important inputs for mechanistic-empirical pavement design. To understand the fatigue properties of asphalt mixtures better and to predict the fatigue life of asphalt mixtures more precisely, the energy-controlled test mode was introduced. Based on the implementation theory, the laboratory practice for the energy-controlled mode was realized using a four-point-bending fatigue test with multiple-step loading. In this mode, the fatigue performance of typical AC-20 asphalt specimens with various reclaimed asphalt pavement (RAP contents was tested and evaluated. Results show that the variation regulation of the dissipated energy and accumulative energy is compatible with the loading control principle, which proves the feasibility of the method. In addition, the fatigue life of the asphalt mixture in the energy-controlled mode was between that for the stress-controlled and strain-controlled modes. The specimen with a higher RAP content has a longer fatigue life and better fatigue performance.

  10. Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.

  11. Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Naveed ur Rehman

    2015-05-01

    Full Text Available A novel scheme to perform the fusion of multiple images using the multivariate empirical mode decomposition (MEMD algorithm is proposed. Standard multi-scale fusion techniques make a priori assumptions regarding input data, whereas standard univariate empirical mode decomposition (EMD-based fusion techniques suffer from inherent mode mixing and mode misalignment issues, characterized respectively by either a single intrinsic mode function (IMF containing multiple scales or the same indexed IMFs corresponding to multiple input images carrying different frequency information. We show that MEMD overcomes these problems by being fully data adaptive and by aligning common frequency scales from multiple channels, thus enabling their comparison at a pixel level and subsequent fusion at multiple data scales. We then demonstrate the potential of the proposed scheme on a large dataset of real-world multi-exposure and multi-focus images and compare the results against those obtained from standard fusion algorithms, including the principal component analysis (PCA, discrete wavelet transform (DWT and non-subsampled contourlet transform (NCT. A variety of image fusion quality measures are employed for the objective evaluation of the proposed method. We also report the results of a hypothesis testing approach on our large image dataset to identify statistically-significant performance differences.

  12. The study of RMB exchange rate complex networks based on fluctuation mode

    Science.gov (United States)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  13. The Orbital Angular Momentum Modes Supporting Fibers Based on the Photonic Crystal Fiber Structure

    Directory of Open Access Journals (Sweden)

    Hu Zhang

    2017-10-01

    Full Text Available The orbital angular momentum (OAM of light can be another physical dimension that we exploit to make multiplexing in the spatial domain. The design of the OAM mode supporting fiber attracts many attentions in the field of the space division multiplexing (SDM system. This paper reviews the recent progresses in photonic crystal fiber (PCF supporting OAM modes, and summarizes why a PCF structure can be used to support stable OAM transmission modes. The emphasis is on the circular PCFs, which possess many excellent features of transmission performance, such as good-quality OAM modes, enough separation of the effective indices, low confinement loss, flat dispersion, a large effective area, and a low nonlinear coefficient. We also compare the transmission properties between the circular PCF and the ring core fiber, as well as the properties between the OAM EDFA based on circular PCF and the OAM EDFA based on the ring core fiber. At last, the challenges and prospects of OAM fibers based on the PCF structure are also discussed.

  14. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul [Stanford University, Stanford, California 94394 (United States); Varian Medical Systems, Palo Alto, California 94304 (United States); Stanford University, Stanford, California 94394 (United States)

    2010-12-15

    Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN{>=}125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be {approx}193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was {approx}35 min, while that taken for comprehensive testing was {approx}3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures

  15. Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems.

    Science.gov (United States)

    Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul

    2010-12-01

    To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Failures modes with RPN > or = 125 were recommended to be tested monthly. Failure modes with RPN < 125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software/hardware upgrades. System latency was determined to be approximately 193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%-3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was approximately 35 min, while that taken for comprehensive testing was approximately 3.5 h. FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation

  16. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  17. A comparison of web-based and paper-based survey methods: testing assumptions of survey mode and response cost.

    Science.gov (United States)

    Greenlaw, Corey; Brown-Welty, Sharon

    2009-10-01

    Web-based surveys have become more prevalent in areas such as evaluation, research, and marketing research to name a few. The proliferation of these online surveys raises the question, how do response rates compare with traditional surveys and at what cost? This research explored response rates and costs for Web-based surveys, paper surveys, and mixed-mode surveys. The participants included evaluators from the American Evaluation Association (AEA). Results included that mixed-mode, while more expensive, had higher response rates.

  18. Forward Conduction Mode Controlled Piezoelectric Transformer-Based PFC LED Drive

    DEFF Research Database (Denmark)

    Roedgaard, M. S.; Weirich, M.; Andersen, M. A. E.

    2013-01-01

    priced market. In this paper, a new forward conduction mode (FCM) control method for piezoelectric transformer (PT)-based power converters is proposed. A PT-based LED drive facilitating passive PFC is developed, utilizing and validating the FCM control method. The drive utilizes an inductorless half...... LED drive has been developed, supplied from 230-V 50-Hz ac mains, achieving a power factor of 0.96....

  19. Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy

    Science.gov (United States)

    Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei

    2018-02-01

    This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.

  20. A new maximum power point method based on a sliding mode approach for solar energy harvesting

    International Nuclear Information System (INIS)

    Farhat, Maissa; Barambones, Oscar; Sbita, Lassaad

    2017-01-01

    Highlights: • Create a simple, easy of implement and accurate V MPP estimator. • Stability analysis of the proposed system based on the Lyapunov’s theory. • A comparative study versus P&O, highlight SMC good performances. • Construct a new PS-SMC algorithm to include the partial shadow case. • Experimental validation of the SMC MPP tracker. - Abstract: This paper presents a photovoltaic (PV) system with a maximum power point tracking (MPPT) facility. The goal of this work is to maximize power extraction from the photovoltaic generator (PVG). This goal is achieved using a sliding mode controller (SMC) that drives a boost converter connected between the PVG and the load. The system is modeled and tested under MATLAB/SIMULINK environment. In simulation, the sliding mode controller offers fast and accurate convergence to the maximum power operating point that outperforms the well-known perturbation and observation method (P&O). The sliding mode controller performance is evaluated during steady-state, against load varying and panel partial shadow (PS) disturbances. To confirm the above conclusion, a practical implementation of the maximum power point tracker based sliding mode controller on a hardware setup is performed on a dSPACE real time digital control platform. The data acquisition and the control system are conducted all around dSPACE 1104 controller board and its RTI environment. The experimental results demonstrate the validity of the proposed control scheme over a stand-alone real photovoltaic system.

  1. Effects of speech- and text-based interaction modes in natural language human-computer dialogue.

    Science.gov (United States)

    Le Bigot, Ludovic; Rouet, Jean-François; Jamet, Eric

    2007-12-01

    This study examined the effects of user production (speaking and typing) and user reception (listening and reading) modes on natural language human-computer dialogue. Text-based dialogue is often more efficient than speech-based dialogue, but the latter is more dynamic and more suitable for mobile environments and hands-busy situations. The respective contributions of user production and reception modes have not previously been assessed. Eighteen participants performed several information search tasks using a natural language information system in four experimental conditions: phone (speaking and listening), Web (typing and reading), and mixed (speaking and reading or typing and listening). Mental workload was greater and participants' repetitions of commands were more frequent when speech (speaking or listening) was used for both the user production and reception modes rather than text (typing or reading). Completion times were longer for listening than for reading. Satisfaction was lower, utterances were longer, and the interaction error rate was higher for speaking than typing. The production and reception modes both contribute to dialogue and mental workload. They have distinct contributions to performance, satisfaction, and the form of the discourse. The most efficient configuration for interacting in natural language would appear to be speech for production and system prompts in text, as this combination decreases the time on task while improving dialogue involvement.

  2. Carrier-Based Common Mode Voltage Control Techniques in Three-Level Diode-Clamped Inverter

    Directory of Open Access Journals (Sweden)

    Pradyumn Chaturvedi

    2012-01-01

    Full Text Available Switching converters are used in electric drive applications to produce variable voltage, variable frequency supply which generates harmful large dv/dt and high-frequency common mode voltages (CMV. Multilevel inverters generate lower CMV as compared to conventional two-level inverters. This paper presents simple carrier-based technique to control the common mode voltages in multilevel inverters using different structures of sine-triangle comparison method such as phase disposition (PD, phase opposition disposition (POD by adding common mode voltage offset signal to actual reference voltage signal. This paper also presented the method to optimize the magnitude of this offset signal to reduce CMV and total harmonic distortion in inverter output voltage. The presented techniques give comparable performance as obtained in complex space vector-based control strategy, in terms of number of commutations, magnitude, and rate of change of CMV and harmonic profile of inverter output voltage. Simulation and experimental results presented confirm the effectiveness of the proposed techniques to control the common mode voltages.

  3. Switching PD-based sliding mode control for hovering of a tilting-thruster underwater robot.

    Science.gov (United States)

    Jin, Sangrok; Bak, Jeongae; Kim, Jongwon; Seo, TaeWon; Kim, Hwa Soo

    2018-01-01

    This paper presents a switching PD-based sliding mode control (PD-SMC) method for the 6-degree-of-freedom (DOF) hovering motion of the underwater robot with tilting thrusters. Four thrusters of robot can be tilted simultaneously in the horizontal and vertical directions, and the 6-DOF motion is achieved by switching between two thruster configurations. Therefore, the tilting speed of thruster becomes the most essential parameter to determine the stability of hovering motion. Even though the previous PD control ensures stable hovering motion within a certain ranges of tilting speed, a PD-SMC is suggested in this paper by combining PD control with sliding mode control in order to achieve acceptable hovering performance even at the much lower tilting speeds. Also, the sign function in the sliding mode control is replaced by a sigmoid function to reduce undesired chattering. Simulations show that while PD control is effective only for tilting duration of 600 ms, the PD-based sliding mode control can guarantee the stable hovering motion of underwater robot even for the tilting duration of up to 1500 ms. Extensive experimental results confirm the hovering performance of the proposed PD-SMC method is much superior to that of PD method for much larger tilting durations.

  4. Hemagglutination detection for blood typing based on waveguide-mode sensors

    Directory of Open Access Journals (Sweden)

    Hiroki Ashiba

    2015-03-01

    Full Text Available ABO and Rh(D blood typing is one of the most important tests performed prior to blood transfusion. Although on-site blood testing is desirable for expedient blood transfusion procedure, most conventional methods and instruments lack the required usability or portability. Here, we describe a novel method, based on the detection of hemagglutination using an optical waveguide-mode sensor, for on-site use. The reflectance spectrum of blood alone and that of blood mixed with antibody reagents was measured using the waveguide-mode sensor. Differences in reflectance by agglutinated and non-agglutinated blood samples were observed at the bottom of the spectral dips; due to differences in the manner in which red blood cells interacted with the surface of the sensor chip. Following the addition of the antibody, blood types A, B, O, and AB were clearly distinguishable and Rh(D typing was also possible using the waveguide-mode sensor. Furthermore, the waveguide-mode-based measurement exhibited the potential to detect weak agglutination, which is difficult for human eyes to distinguish. Thus, this method holds great promise for application in novel on-site test instruments.

  5. Edge-preserving Intra mode for efficient depth map coding based on H.264/AVC

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    2014-01-01

    Depth-image-based-rendering (DIBR) algorithms for 3D video communication systems based on the “multi-view video plus depth” format are very sensitive to the accuracy of depth information. Specifically, edge regions in the depth data should be preserved in the coding/decoding process to ensure good...... view synthesis performance, which directly affects the overall system performance. This paper proposes a novel scheme for edge-aware Intra depth compression based on the H.264/AVC framework enabled on both Intra (I) and Inter (P) slices. The proposed scheme includes a new Intra mode specifically...... targeted to depth macroblocks with arbitrarily shaped edges, which are typically not predicted well by the standard Intra modes of H.264/AVC and result in high rate–distortion costs. The proposed algorithm segments edge macroblocks into two regions each approximated by a flat surface. A binary mask...

  6. Adaptive Terminal Sliding Mode NDO-Based Control of Underactuated AUV in Vertical Plane

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-01-01

    Full Text Available The depth tracking issue of underactuated autonomous underwater vehicle (AUV in vertical plane is addressed in this paper. Considering the complicated dynamics and kinematics model for underactuated AUV, a more simplified model is obtained based on assumptions. Then a nonlinear disturbance observer (NDO is presented to estimate the external disturbance acting on AUV, and an adaptive terminal sliding mode control (ATSMC based on NDO is applied to enhance the depth tracking performance of underactuated AUV considering both internal and external disturbance. Compared with the traditional sliding mode controller, the static error and chattering problem of the depth tracking process have been clearly improved by adopting NDO-based ATSMC. The stability of control system is proven to be guaranteed according to Lyapunov theory. In the end, simulation results imply that the proposed controller owns strong robustness and satisfied control effectiveness in comparison with the traditional controller.

  7. State-of-the-art piezoelectric transformer-based switch mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    rmers due to their smaller size, lighter weight, lower electromagn etic interference, higher power density, higher efficiency, and lower cost. Moreover, PTs allow converters to operate in high switching frequencies and by obtaining soft switching condition, switchin g losses will decrease. This paper...... discusses power supplies with the trend evaluation of piezoelectric transformer-based converter topologies and control methods. The challenges of piezoelectric transformers regarding soft switching capability and nonlinearity are addressed. This paper can be used as a guideline f or choosing a proper......Inductorless switch mode power supplies based on piezoelectric transformers are used to replace conventional transformers in high power density switch mode power supplies. Even though piezoelectric-based converters exhibit a high d egree of nonlinearity, it is desirable to use piezoelectric transfo...

  8. Energy-Efficient Next-Generation Passive Optical Networks Based on Sleep Mode and Heuristic Optimization

    Science.gov (United States)

    Zulai, Luis G. T.; Durand, Fábio R.; Abrão, Taufik

    2015-05-01

    In this article, an energy-efficiency mechanism for next-generation passive optical networks is investigated through heuristic particle swarm optimization. Ten-gigabit Ethernet-wavelength division multiplexing optical code division multiplexing-passive optical network next-generation passive optical networks are based on the use of a legacy 10-gigabit Ethernet-passive optical network with the advantage of using only an en/decoder pair of optical code division multiplexing technology, thus eliminating the en/decoder at each optical network unit. The proposed joint mechanism is based on the sleep-mode power-saving scheme for a 10-gigabit Ethernet-passive optical network, combined with a power control procedure aiming to adjust the transmitted power of the active optical network units while maximizing the overall energy-efficiency network. The particle swarm optimization based power control algorithm establishes the optimal transmitted power in each optical network unit according to the network pre-defined quality of service requirements. The objective is controlling the power consumption of the optical network unit according to the traffic demand by adjusting its transmitter power in an attempt to maximize the number of transmitted bits with minimum energy consumption, achieving maximal system energy efficiency. Numerical results have revealed that it is possible to save 75% of energy consumption with the proposed particle swarm optimization based sleep-mode energy-efficiency mechanism compared to 55% energy savings when just a sleeping-mode-based mechanism is deployed.

  9. The interaction between gambling activities and modes of access: a comparison of Internet-only, land-based only, and mixed-mode gamblers.

    Science.gov (United States)

    Gainsbury, Sally M; Russell, Alex; Blaszczynski, Alex; Hing, Nerilee

    2015-02-01

    Research suggests that Internet-based gambling includes risk factors that may increase gambling problems. The current study aimed to investigate subgroups of gamblers to identify the potential harms associated with various forms and modes of gambling. An online survey was completed by 4,594 respondents identified as Internet-only (IG), land-based only (LBGs), or mixed-mode (MMG) gamblers based on self-reported gambling behaviour in the last 12months. Results showed significant socio-demographic differences between groups, with the LBGs being the oldest and MMGs the youngest. MMGs engaged in the greatest variety of gambling forms, had the highest average problem gambling severity scores, and were more likely to attribute problems to sports betting than the other groups. IGs were involved in the lowest number of divergent gambling activities, most likely to gamble frequently on sports and races, and attribute problems to these forms. Compared to the other groups, LBs had a higher proportion of problem gamblers than IGs and were most likely to play electronic gaming machines weekly, with this form of gambling contributing to problems at a substantially greater rate. This study confirms the importance of considering gambling involvement across subgroups of Internet or land-based gamblers. There is a need to consider the interaction between forms and modes of gambling to advance our understanding of the potential risk of mode of gambling to contribute to problems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    Directory of Open Access Journals (Sweden)

    He Zhang

    2014-01-01

    Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.

  11. “Wheelchair slow transit” system-based elderly auxiliary travel mode

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2015-09-01

    Full Text Available Based on research of the current situation and analysis result of a case study in the Nanjing region, this paper proposes a “wheelchair slow transit”(WST system-based elderly auxiliary travel mode. The system involves three fundamental composition frames, namely, support, transit components, and connection components. Each component is designed as an armrest, ground track, or vertical type to respond to actual demands. Thus, this system may be adaptable to diverse conditions. Taking Xiangpuying community as a case study, the author examined the application of the WST auxiliary mode in particular communities. The WST system helps to increase the accessibility of existing public areas, creates a safe community traffic environment, improves municipal facilities, and strengthens universal design. The study intends to provide a reference to obtain a complete aged care design and to build a comfortable and livable aged care community environment.

  12. A comprehensive review of lossy mode resonance-based fiber optic sensors

    Science.gov (United States)

    Wang, Qi; Zhao, Wan-Ming

    2018-01-01

    This review paper presents the achievements and present developments in lossy mode resonances-based optical fiber sensors in different sensing field, such as physical, chemical and biological, and briefly look forward to its future development trend in the eyes of the author. Lossy mode resonances (LMR) is a relatively new physical optics phenomenon put forward in recent years. Fiber sensors utilizing LMR offered a new way to improve the sensing capability. LMR fiber sensors have diverse structures such as D-shaped, cladding-off, fiber tip, U-shaped and tapered fiber structures. Major applications of LMR sensors include refraction sensors and biosensors. LMR-based fiber sensors have attracted considerable research and development interest, because of their distinct advantages such as high sensitivity and label-free measurement. This kind of sensor is also of academic interest and many novel and great ideas are continuously developed.

  13. Extended observer based on adaptive second order sliding mode control for a fixed wing UAV.

    Science.gov (United States)

    Castañeda, Herman; Salas-Peña, Oscar S; León-Morales, Jesús de

    2017-01-01

    This paper addresses the design of attitude and airspeed controllers for a fixed wing unmanned aerial vehicle. An adaptive second order sliding mode control is proposed for improving performance under different operating conditions and is robust in presence of external disturbances. Moreover, this control does not require the knowledge of disturbance bounds and avoids overestimation of the control gains. Furthermore, in order to implement this controller, an extended observer is designed to estimate unmeasurable states as well as external disturbances. Additionally, sufficient conditions are given to guarantee the closed-loop stability of the observer based control. Finally, using a full 6 degree of freedom model, simulation results are obtained where the performance of the proposed method is compared against active disturbance rejection based on sliding mode control. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. A Fault Diagnosis Scheme for Rolling Bearing Based on Particle Swarm Optimization in Variational Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Cancan Yi

    2016-01-01

    Full Text Available Variational mode decomposition (VMD is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.

  15. Multi-mode dynamics of optical oscillators based on intracavity nonlinear frequency down-conversion

    Science.gov (United States)

    Morozov, Yuri A.

    2018-01-01

    The transient power characteristics of two optical oscillators—a difference frequency generator (ICDFG) and a singly resonant optical parametric oscillator (ICSRO)—based on intracavity nonlinear optical frequency conversion, are described. The simulation has been performed via the rate-equation mathematical model, which features a multi-mode behavior of all optical fields. The reason for unattainability of single-mode emission in these devices without an additional frequency-selective element (e.g., a Fabry-Perot etalon) is clarified. It is shown that the dynamics of a short-wavelength emission (pump) results mainly from the nonlinear optical interaction, while that of the longer-wavelength optical fields (signal and idler) depends on selectivity of the etalon. With the suitable etalons inserted in their cavities, both devices are shown to operate dynamically single-mode under conventional experimental conditions. The nonlinear interaction makes the pump emission collapse to the single-mode operation very fast (it takes no more than a few tens of the photon lifetimes). To overcome the threshold of parametric generation, the intracavity pump power in the ICSRO has to exceed ˜ 100 W, while the ICDFG is essentially a "thresholdless" device.

  16. Three-dimensional graphene based passively mode-locked fiber laser.

    Science.gov (United States)

    Yang, Y; Loeblein, M; Tsang, S H; Chow, K K; Teo, E H T

    2014-12-15

    We present an all-fiber passively mode-locked fiber laser incorporating three-dimensional (3D) graphene as a saturable absorber (SA) for the first time to the best of our knowledge. The 3D graphene is synthesized by template-directed chemical vapor deposition (CVD). The SA is then simply formed by sandwiching the freestanding 3D graphene between two conventional fiber connectors without any deposition process. It is demonstrated that such 3D graphene based SA is capable to produce high quality mode-locked pulses. A passively mode-locked fiber laser is constructed and stable output pulses with a fundamental repetition rate of ~9.9 MHz and a pulse width of ~1 ps are generated from the fiber laser. The average output power of the laser is ~10.5 mW while the output pulse is operating at single pulse region. The results imply that the freestanding 3D graphene can be applied as an effective saturable absorption material for passively mode-locked lasers.

  17. Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

    Directory of Open Access Journals (Sweden)

    Merheb Abdel-Razzak

    2015-09-01

    Full Text Available Abstract In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity system. Tuning the controllers to find the optimal values of the sliding mode controller gains is made using the ecological systems algorithm (ESA, a biologically inspired stochastic search algorithm based on the natural equilibrium of animal species. The controllers are tested using SIMULINK in the presence of two different types of actuator faults, partial loss of motor power affecting all the motors at once, and partial loss of motor speed. Results of the quadrotor following a continuous path demonstrated the effectiveness of the controllers, which are able to tolerate a significant number of actuator faults despite the lack of hardware redundancy in the quadrotor system. Tuning the controller using a faulty system improves further its ability to afford more severe faults. Simulation results show that passive schemes reserve their important role in fault tolerant control and are complementary to active techniques

  18. Agent-Based Simulation of Children’s School Travel Mode with Parental Escort Decisions

    Directory of Open Access Journals (Sweden)

    Peng Jing

    2018-02-01

    Full Text Available In the last few years, the number of private cars has expanding quickly in China, more and more parents use cars to escort their children to school, thus cause serious traffic congestions near school in many cities. In this paper, we developed an agent-based model (ABM of the parents’ choice of escort mode. The core of this model is an escort mode choice motivation adjustment function that combines distance, traffic safety and social influence. We also used ABM to exhibit the emergent decoy effect phenomenon, which is a dynamic phenomenon that the introduction of a decoy to the choice-set could increase the share of other alternatives. The model reveals the parents’ inner psychological mechanism when facing competing escort mode choice in transportation system. The simulation results show that the proportion of parents to choose bus escort was 62.45% without the decoy effect was introduced, while the proportion of parents to choose bus escort increased to 74.29% with the decoy effect was entry. The use of the ABM method gives the potential to cope with the dynamic changes in studying parent escort mode choice behavior.

  19. CLUSTERING CATEGORICAL DATA USING k-MODES BASED ON CUCKOO SEARCH OPTIMIZATION ALGORITHM

    Directory of Open Access Journals (Sweden)

    Lakshmi K

    2017-10-01

    Full Text Available Cluster analysis is the unsupervised learning technique that finds the interesting patterns in the data objects without knowing class labels. Most of the real world dataset consists of categorical data. For example, social media analysis may have the categorical data like the gender as male or female. The k-modes clustering algorithm is the most widely used to group the categorical data, because it is easy to implement and efficient to handle the large amount of data. However, due to its random selection of initial centroids, it provides the local optimum solution. There are number of optimization algorithms are developed to obtain global optimum solution. Cuckoo Search algorithm is the population based metaheuristic optimization algorithms to provide the global optimum solution. Methods: In this paper, k-modes clustering algorithm is combined with Cuckoo Search algorithm to obtain the global optimum solution. Results: Experiments are conducted with benchmark datasets and the results are compared with k-modes and Particle Swarm Optimization with k-modes to prove the efficiency of the proposed algorithm.

  20. Synchronizing Spatiotemporal Chaos via a Composite Disturbance Observer-Based Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Congyan Chen

    2014-01-01

    Full Text Available The sliding mode control schemes are investigated to synchronize two spatiotemporal chaotic systems, which are two arrays of a large number of coupled chaotic oscillators. Firstly, sliding mode manifolds with the desired performance are designed. The asymptotic convergence to the origin of the synchronization errors is also proved. However, the terms from parameter fluctuations in equivalent controls are usually impossible to be measured directly. So we regard them as lumped disturbances, but, for practical application, it is difficult to obtain the upper bound of lumped disturbances in advance which often results in a conservative sliding mode control law with large control effort, causing a large amount of chattering. To reduce the chattering and improve the performance of the system, a disturbance observer is designed to estimate the lumped disturbances. A composite synchronization controller that consists of a sliding mode feedback part and a feedforward compensation part based on disturbance observer is developed. The numerical simulation results are presented to show the effectiveness of the proposed methods.

  1. A Novel Control Approach Based on Second Order Sliding Modes & Its Application to Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2013-01-01

    accuracy to be reached. In this paper a novel control approach based on second order sliding modes utilizing the idea of the power rate reaching law is introduced. Dependent on parameters the proposed controller may preserve the main features of sliding controls, while at the same time avoiding control...... chattering. Simulation studies confirm the announced properties when applied to a hydraulic drive model subjected to strong variations in supply pressure and friction....

  2. Design of Power System Stabilizer Based on Sliding Mode Control Theory for Multi- Machine Power System

    OpenAIRE

    Hossein Shahinzadeh; Ladan Darougaran; Ebrahim Jalili Sani; Hamed Yavari; Mahdi Mozaffari Legha

    2012-01-01

    This paper present a new method for design of power system stabilizer (PSS) based on sliding mode control (SMC) technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in reference mechanic...

  3. Control and fault diagnosis based sliding mode observer of a multicellular converter: Hybrid approach

    KAUST Repository

    Benzineb, Omar

    2013-01-01

    In this article, the diagnosis of a three cell converter is developed. The hybrid nature of the system represented by the presence of continuous and discrete dynamics is taken into account in the control design. The idea is based on using a hybrid control and an observer-type sliding mode to generate residuals from the observation errors of the system. The simulation results are presented at the end to illustrate the performance of the proposed approach. © 2013 FEI STU.

  4. A single-spatial-mode semiconductor laser based on InAs/InGaAs quantum dots with a diffraction filter of optical modes

    International Nuclear Information System (INIS)

    Gordeev, N. Yu.; Novikov, I. I.; Kuznetsov, A. M.; Shernyakov, Yu. M.; Maximov, M. V.; Zhukov, A. E.; Chunareva, A. V.; Payusov, A. S.; Livshits, D. A.; Kovsh, A. R.

    2010-01-01

    The concept of a diffraction optical filter is used for prevention of high-order mode oscillation in a design of stripe laser diodes with an active region based on InAs/InGaAs quantum dots emitting in the 1.3-μm wavelength range grown on GaAs substrates. Incorporation of such a filter made it possible to increase the width of the stripe and obtain an output power as high as 700 mW with retention of a single-spatial-mode character of lasing.

  5. Fuzzy Sliding Mode Lateral Control of Intelligent Vehicle Based on Vision

    Directory of Open Access Journals (Sweden)

    Linhui Li

    2013-01-01

    Full Text Available The lateral control of intelligent vehicle is studied in this paper, with the intelligent vehicle DLUIV-1 based on visual navigation as the object of research. Firstly, the lateral control model based on visual preview is established. The kinematics model based on visual preview, including speed and other factors, is used to calculate the lateral error and direction error. Secondly, according to the characteristics of lateral control, an efficient strategy of intelligent vehicle lateral mode is proposed. The integration of the vehicle current lateral error and direction error is chosen as the parameter of the sliding mode switching function to design the sliding surface. The control variables are adjusted according to the fuzzy control rules to ensure that they meet the existence and reaching condition. The sliding mode switching function is regarded as the control objective, to ensure the stability of the steering wheel rotation. Simulation results show that the lateral controller can guarantee high path-tracking accuracy and strong robustness for the change of model parameters.

  6. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  7. A Novel Triple-Mode Bandpass Filter Based on a Dual-Mode Defected Ground Structure Resonator and a Microstrip Resonator

    Directory of Open Access Journals (Sweden)

    Xuehui Guan

    2013-01-01

    Full Text Available A novel triple-mode bandpass filter (BPF using a dual-mode defected ground structure (DGS resonator and a microstrip resonator is proposed in this paper. The dual-mode characteristic is achieved by loading a defected T-shaped stub to a uniform impedance DGS resonator. A uniform impedance microstrip resonator is designed on the top layer of the DGS resonator and a compact bandpass filter with three resonant modes in the passband can be achieved. A coupling scheme for the structure is given and the coupling matrix is synthesized. Based on the structure, a triple-mode BPF with central frequency of 2.57 GHz and equal ripple bandwidth of 15% is designed for the Wireless Local Area Network. Three transmission zeros are achieved at 1.48 GHz, 2.17 GHz, and 4.18 GHz, respectively, which improve the stopband characteristics of the filter. The proposed filter is fabricated and measured. Good agreements between measured results and simulated results verify the proposed structure well.

  8. Tablet-Based Functional MRI of the Trail Making Test: Effect of Tablet Interaction Mode

    Directory of Open Access Journals (Sweden)

    Mahta Karimpoor

    2017-10-01

    Full Text Available The Trail Making Test (TMT is widely used for assessing executive function, frontal lobe abilities, and visual motor skills. Part A of this pen-and-paper test (TMT-A involves linking numbers randomly distributed in space, in ascending order. Part B (TMT-B alternates between linking numbers and letters. TMT-B is more demanding than TMT-A, but the mental processing that supports the performance of this test remains incompletely understood. Functional MRI (fMRI may help to clarify the relationship between TMT performance and brain activity, but providing an environment that supports real-world pen-and-paper interactions during fMRI is challenging. Previously, an fMRI-compatible tablet system was developed for writing and drawing with two modes of interaction: the original cursor-based, proprioceptive approach, and a new mode involving augmented reality to provide visual feedback of hand position (VFHP for enhanced user interaction. This study characterizes the use of the tablet during fMRI of young healthy adults (n = 22, with half of the subjects performing TMT with VFHP and the other half performing TMT without VFHP. Activation maps for both TMT-A and TMT-B performance showed considerable overlap between the two tablet modes, and no statistically differences in brain activity were detected when contrasting TMT-B vs. TMT-A for the two tablet modes. Behavioral results also showed no statistically different interaction effects for TMT-B vs. TMT-A for the two tablet modes. Tablet-based TMT scores showed reasonable convergent validity with those obtained by administering the standard pen-and-paper TMT to the same subjects. Overall, the results suggest that despite the slightly different mechanisms involved for the two modes of tablet interaction, both are suitable for use in fMRI studies involving TMT performance. This study provides information for using tablet-based TMT methods appropriately in future fMRI studies involving patients and healthy

  9. GaSb-based single-mode distributed feedback lasers for sensing (Conference Presentation)

    Science.gov (United States)

    Gupta, James A.; Bezinger, Andrew; Lapointe, Jean; Poitras, Daniel; Aers, Geof C.

    2017-02-01

    GaSb-based tunable single-mode diode lasers can enable rapid, highly-selective and highly-sensitive absorption spectroscopy systems for gas sensing. In this work, single-mode distributed feedback (DFB) laser diodes were developed for the detection of various trace gases in the 2-3.3um range, including CO2, CO, HF, H2S, H2O and CH4. The lasers were fabricated using an index-coupled grating process without epitaxial regrowth, making the process significantly less expensive than conventional DFB fabrication. The devices are based on InGaAsSb/AlGaAsSb separate confinement heterostructures grown on GaSb by molecular beam epitaxy. DFB lasers were produced using a two step etch process. Narrow ridge waveguides were first defined by optical lithography and etched into the semiconductor. Lateral gratings were then defined on both sides of the ridge using electron-beam lithography and etched to produce the index-grating. Effective index modeling was used to optimize the ridge width, etch depths and the grating pitch to ensure single-lateral-mode operation and adequate coupling strength. The effective index method was further used to simulate the DFB laser emission spectrum, based on a transfer matrix model for light transmission through the periodic structure. The fabricated lasers exhibit single-mode operation which is tunable through the absorption features of the various target gases by adjustment of the drive current. In addition to the established open-path sensing applications, these devices have great potential for optoelectronic integrated gas sensors, making use of integrated photodetectors and possibly on-chip Si photonics waveguide structures.

  10. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei

    2016-09-02

    Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.

  11. Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems.

    Science.gov (United States)

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui

    2015-05-11

    This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method.

  12. Operation mode switchable charge-trap memory based on few-layer MoS2

    Science.gov (United States)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  13. Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

    Directory of Open Access Journals (Sweden)

    Taochang Li

    2014-01-01

    Full Text Available Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

  14. Integral sliding mode-based formation control of multiple unertain robots via nonlinear disturbane observer

    Directory of Open Access Journals (Sweden)

    Dianwei Qian

    2016-11-01

    Full Text Available This article proposes a control scheme for formation of maneuvers of a team of mobile robots. The control scheme integrates the integral sliding mode control method with the nonlinear disturbance observer technique. The leader–follower formation dynamics suffer from uncertainties originated from the individual robots. The uncertainties challenge the formation control of such robots. Assuming that the uncertainties are unknown but bounded, an nonlinear disturbance observer-based observer is utilized to approximate them. The observer outputs feed on an integral sliding mode control-based controller. The controller and observer are integrated into the control scheme to realize formation maneuvers despite uncertainties. The formation stability is analyzed by means of the Lyapunov’s theorem. In the sense of Lyapunov, not only the convergence of the approximation errors is guaranteed but also such a control scheme can asymptotically stabilize the formation system. Compared to the results by the sole integral sliding mode control, some simulations are presented to demonstrate the feasibility and performance of the control scheme.

  15. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  16. Web-Based Versus Traditional Paper Questionnaires: A Mixed-Mode Survey With a Nordic Perspective

    Science.gov (United States)

    Lyshol, Heidi; Gissler, Mika; Jonsson, Stefan Hrafn; Petzold, Max; Obel, Carsten

    2013-01-01

    Background Survey response rates have been declining over the past decade. The more widespread use of the Internet and Web-based technologies among potential health survey participants suggests that Web-based questionnaires may be an alternative to paper questionnaires in future epidemiological studies. Objective To compare response rates in a population of parents by using 4 different modes of data collection for a questionnaire survey of which 1 involved a nonmonetary incentive. Methods A random sample of 3148 parents of Danish children aged 2-17 years were invited to participate in the Danish part of the NordChild 2011 survey on their children’s health and welfare. NordChild was conducted in 1984 and 1996 in collaboration with Finland, Iceland, Norway, and Sweden using mailed paper questionnaires only. In 2011, all countries used conventional paper versions only except Denmark where the parents were randomized into 4 groups: (1) 789 received a paper questionnaire only (paper), (2) 786 received the paper questionnaire and a log-in code to the Web-based questionnaire (paper/Web), (3) 787 received a log-in code to the Web-based questionnaire (Web), and (4) 786 received log-in details to the Web-based questionnaire and were given an incentive consisting of a chance to win a tablet computer (Web/tablet). In connection with the first reminder, the nonresponders in the paper, paper/Web, and Web groups were also present with the opportunity to win a tablet computer as a means of motivation. Descriptive analysis was performed using chi-square tests. Odds ratios were used to estimate differences in response rates between the 4 modes. Results In 2011, 1704 of 3148 (54.13%) respondents answered the Danish questionnaire. The highest response rate was with the paper mode (n=443, 56.2%). The other groups had similar response rates: paper/Web (n=422, 53.7%), Web (n=420, 53.4%), and Web/tablet (n=419, 53.3%) modes. Compared to the paper mode, the odds for response rate in the

  17. Transverse mode tailoring in diode lasers based on coupled large optical cavities

    Science.gov (United States)

    Gordeev, N. Yu; Maximov, M. V.; E Zhukov, A.

    2017-08-01

    The key principles of transverse mode engineering in edge-emitting lasers with broadened waveguides based on coupled large optical cavity (CLOC) structures are presented. The CLOC laser design is shown to be an effective approach for reducing the optical loss, broadening the waveguide, and lowering the beam divergence. Having simulated the sensitivity of the CLOC design to variations in layer thicknesses and compositions we have shown its high robustness. Advanced versions of the CLOC laser structures having two extra passive waveguides have been treated and shown to effectively eliminate several transverse modes. We have considered an application of the CLOC concept for waveguides with shifted active regions aimed at reducing laser thermal and electric resistances.

  18. Parameter Identification and Synchronization of Uncertain Chaotic Systems Based on Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Li-lian Huang

    2013-01-01

    Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.

  19. Implementation of fuzzy-sliding mode based control of a grid connected photovoltaic system.

    Science.gov (United States)

    Menadi, Abdelkrim; Abdeddaim, Sabrina; Ghamri, Ahmed; Betka, Achour

    2015-09-01

    The present work describes an optimal operation of a small scale photovoltaic system connected to a micro-grid, based on both sliding mode and fuzzy logic control. Real time implementation is done through a dSPACE 1104 single board, controlling a boost chopper on the PV array side and a voltage source inverter (VSI) on the grid side. The sliding mode controller tracks permanently the maximum power of the PV array regardless of atmospheric condition variations, while The fuzzy logic controller (FLC) regulates the DC-link voltage, and ensures via current control of the VSI a quasi-total transit of the extracted PV power to the grid under a unity power factor operation. Simulation results, carried out via Matlab-Simulink package were approved through experiment, showing the effectiveness of the proposed control techniques. Copyright © 2015. Published by Elsevier Ltd.

  20. Casing Vibration Fault Diagnosis Based on Variational Mode Decomposition, Local Linear Embedding, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yizhou Yang

    2017-01-01

    Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.

  1. Fringe-projection profilometry based on two-dimensional empirical mode decomposition.

    Science.gov (United States)

    Zheng, Suzhen; Cao, Yiping

    2013-11-01

    In 3D shape measurement, because deformed fringes often contain low-frequency information degraded with random noise and background intensity information, a new fringe-projection profilometry is proposed based on 2D empirical mode decomposition (2D-EMD). The fringe pattern is first decomposed into numbers of intrinsic mode functions by 2D-EMD. Because the method has partial noise reduction, the background components can be removed to obtain the fundamental components needed to perform Hilbert transformation to retrieve the phase information. The 2D-EMD can effectively extract the modulation phase of a single direction fringe and an inclined fringe pattern because it is a full 2D analysis method and considers the relationship between adjacent lines of a fringe patterns. In addition, as the method does not add noise repeatedly, as does ensemble EMD, the data processing time is shortened. Computer simulations and experiments prove the feasibility of this method.

  2. Tunable Balanced Bandpass Filter with High Common-mode Suppression Based on SLSRs

    Science.gov (United States)

    Wei, Feng; Wang, Xin Yi; Liao, Dun Wei; Shi, Xiao Wei

    2017-10-01

    A tunable balanced bandpass filter (BPF) with a good common-mode (CM) suppression based on slotline resonators is proposed in this letter. Two novel stub-loaded slotline resonators (SLSRs) terminated with varactors are designed to obtain tunable differential-mode (DM) responses. It is found that a high and wideband CM suppression can be achieved by employing balanced stepped-impedance microstrip-slotline transition structures. Moreover, the DM passbands are independent from the CM ones, which can significantly simplify the design procedure. To validate the design theory, a compact tunable balanced BPF with an operating frequency band ranging from 3.09 GHz to 3.6 GHz is designed and fabricated. The measured results are found to agree well with the simulated ones.

  3. Design of Power System Stabilizer based on Sliding Mode Control Theory for Multi- Machine Power System

    Directory of Open Access Journals (Sweden)

    Ghazanfar Shahgholian

    2010-01-01

    Full Text Available This paper presents a new method for designing of power system stabilizer (PSS based on sliding mode control (SMC technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. The mathematical model of the synchronous generator is first transformed into a form that facilitates the design of nonlinear control schemes. Then, a sliding mode controller is proposed. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in the parameters of the system and to the disturbances. For comparison, simulation of a conventional control PSS (lead-lag compensation type will be carried out. The main approach is to focus on the control performance which later is proven to have the degree of shorter reaching time and lower spike.

  4. Breech at term--mode of delivery? A register-based study

    DEFF Research Database (Denmark)

    Krebs, L; Langhoff-Roos, J; Weber, Tom

    1995-01-01

    ) when compared to those delivered by elective cesarean section. In vaginal deliveries, parity was not correlated with outcome, but infants with a birth weight above 4000 grams had significantly higher rates of low Apgar scores. CONCLUSIONS. Register data on singleton term breech deliveries imply......BACKGROUND. The present study was designed to determine neonatal mortality and morbidity in non-malformed singleton term infants delivered in breech presentation and identify a possible correlation between outcome on the one hand and mode of delivery, parity and birth weight on the other. METHODS....... Register-based cohort study of all (n = 15718) singleton term breech deliveries of non-malformed infants in Denmark 1982-1990. Process and outcome measures: mode of delivery, gestational age, birth weight, congenital malformations, intrapartum death, Apgar scores and early neonatal death. RESULTS. A total...

  5. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  6. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  7. Mode-dependent templates and scan order for H.264/AVC-based intra lossless coding.

    Science.gov (United States)

    Gu, Zhouye; Lin, Weisi; Lee, Bu-Sung; Lau, Chiew Tong; Sun, Ming-Ting

    2012-09-01

    In H.264/advanced video coding (AVC), lossless coding and lossy coding share the same entropy coding module. However, the entropy coders in the H.264/AVC standard were original designed for lossy video coding and do not yield adequate performance for lossless video coding. In this paper, we analyze the problem with the current lossless coding scheme and propose a mode-dependent template (MD-template) based method for intra lossless coding. By exploring the statistical redundancy of the prediction residual in the H.264/AVC intra prediction modes, more zero coefficients are generated. By designing a new scan order for each MD-template, the scanned coefficients sequence fits the H.264/AVC entropy coders better. A fast implementation algorithm is also designed. With little computation increase, experimental results confirm that the proposed fast algorithm achieves about 7.2% bit saving compared with the current H.264/AVC fidelity range extensions high profile.

  8. A Deep Learning Prediction Model Based on Extreme-Point Symmetric Mode Decomposition and Cluster Analysis

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2017-01-01

    Full Text Available Aiming at the irregularity of nonlinear signal and its predicting difficulty, a deep learning prediction model based on extreme-point symmetric mode decomposition (ESMD and clustering analysis is proposed. Firstly, the original data is decomposed by ESMD to obtain the finite number of intrinsic mode functions (IMFs and residuals. Secondly, the fuzzy c-means is used to cluster the decomposed components, and then the deep belief network (DBN is used to predict it. Finally, the reconstructed IMFs and residuals are the final prediction results. Six kinds of prediction models are compared, which are DBN prediction model, EMD-DBN prediction model, EEMD-DBN prediction model, CEEMD-DBN prediction model, ESMD-DBN prediction model, and the proposed model in this paper. The same sunspots time series are predicted with six kinds of prediction models. The experimental results show that the proposed model has better prediction accuracy and smaller error.

  9. Dynamic Mode Decomposition based on Bootstrapping Extended Kalman Filter Application to Noisy data

    Science.gov (United States)

    Nonomura, Taku; Shibata, Hisaichi; Takaki, Ryoji

    2017-11-01

    In this study, dynamic mode decomposition (DMD) based on bootstrapping extended Kalman filter is proposed for time-series data. In this framework, state variables (x and y) are filtered as well as the parameter estimation (aij) which is conducted in the conventional DMD and the standard Kalman-filter-based DMD. The filtering process of state variables enables us to obtain highly accurate eigenvalue of the system with strong noise. In the presentation, formulation, advantages and disadvantages are discussed. This research is partially supported by Presto, JST (JPMJPR1678).

  10. Characteristics and Help-Seeking Behaviors of Internet Gamblers Based on Most Problematic Mode of Gambling

    Science.gov (United States)

    2015-01-01

    Background Previous studies of problem Internet gamblers have failed to distinguish whether their problem gambling relates to Internet or land-based gambling modes. Therefore, characteristics and help-seeking behaviors of people whose gambling problems relate specifically to Internet gambling are unknown, but could inform the optimal alignment of treatment and support services with the needs and preferences of problem gamblers. Objective This study aimed to compare (1) characteristics of problem Internet gamblers and problem land-based gamblers and (2) uptake of different types and modes of help between problem Internet gamblers and problem land-based gamblers. Hypothesis 1 was that problem Internet gamblers are less likely to seek help. Hypothesis 2 was that problem Internet gamblers are more likely to use online modes of help. Methods A sample of 620 respondents meeting criteria for problem gambling was drawn from an online survey of 4594 Australian gamblers. Respondents were recruited through advertisements on gambling and gambling help websites, Facebook, and Google. Measures consisted of gambling participation; proportion of gambling on the Internet; most problematic mode of gambling; help seeking from 11 different sources of formal help, informal help, and self-help for gambling problems; psychological distress (Kessler 6); problem gambling severity (Problem Gambling Severity Index, PGSI); and demographics. Results Problem Internet gamblers were significantly more likely than problem land-based gamblers to be male (χ2 1=28.3, Pgambling helplines, online groups, self-exclusion from land-based venues, family or friends, and self-help strategies. Both problem Internet and problem land-based gamblers had similarly low use of online help. However, problem land-based gamblers (37.6%, 126/335) were significantly more likely to have sought land-based formal help compared to problem Internet gamblers (23.5%, 67/285; χ2 1=14.3, Pgambling help by problem Internet

  11. Mixing modes in a population-based interview survey: comparison of a sequential and a concurrent mixed-mode design for public health research.

    Science.gov (United States)

    Mauz, Elvira; von der Lippe, Elena; Allen, Jennifer; Schilling, Ralph; Müters, Stephan; Hoebel, Jens; Schmich, Patrick; Wetzstein, Matthias; Kamtsiuris, Panagiotis; Lange, Cornelia

    2018-01-01

    Population-based surveys currently face the problem of decreasing response rates. Mixed-mode designs are now being implemented more often to account for this, to improve sample composition and to reduce overall costs. This study examines whether a concurrent or sequential mixed-mode design achieves better results on a number of indicators of survey quality. Data were obtained from a population-based health interview survey of adults in Germany that was conducted as a methodological pilot study as part of the German Health Update (GEDA). Participants were randomly allocated to one of two surveys; each of the surveys had a different design. In the concurrent mixed-mode design ( n  = 617) two types of self-administered questionnaires (SAQ-Web and SAQ-Paper) and computer-assisted telephone interviewing were offered simultaneously to the respondents along with the invitation to participate. In the sequential mixed-mode design ( n  = 561), SAQ-Web was initially provided, followed by SAQ-Paper, with an option for a telephone interview being sent out together with the reminders at a later date. Finally, this study compared the response rates, sample composition, health indicators, item non-response, the scope of fieldwork and the costs of both designs. No systematic differences were identified between the two mixed-mode designs in terms of response rates, the socio-demographic characteristics of the achieved samples, or the prevalence rates of the health indicators under study. The sequential design gained a higher rate of online respondents. Very few telephone interviews were conducted for either design. With regard to data quality, the sequential design (which had more online respondents) showed less item non-response. There were minor differences between the designs in terms of their costs. Postage and printing costs were lower in the concurrent design, but labour costs were lower in the sequential design. No differences in health indicators were found between

  12. Electrochemical DNA biosensor based on grafting-to mode of terminal deoxynucleoside transferase-mediated extension.

    Science.gov (United States)

    Chen, Jinyuan; Liu, Zhoujie; Peng, Huaping; Zheng, Yanjie; Lin, Zhen; Liu, Ailin; Chen, Wei; Lin, Xinhua

    2017-12-15

    Previously reported electrochemical DNA biosensors based on in-situ polymerization approach reveal that terminal deoxynucleoside transferase (TdTase) has good amplifying performance and promising application in the design of electrochemical DNA biosensor. However, this method, in which the background is significantly affected by the amount of TdTase, suffers from being easy to produce false positive result and poor stability. Herein, we firstly present a novel electrochemical DNA biosensor based on grafting-to mode of TdTase-mediated extension, in which DNA targets are polymerized in homogeneous solution and then hybridized with DNA probes on BSA-based DNA carrier platform. It is surprising to find that the background in the grafting-to mode of TdTase-based electrochemical DNA biosensor have little interference from the employed TdTase. Most importantly, the proposed electrochemical DNA biosensor shows greatly improved detection performance over the in-situ polymerization approach-based electrochemical DNA biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Comparison of Solitary and Collaborative Modes of Game-Based Learning on Students' Science Learning and Motivation

    Science.gov (United States)

    Chen, Ching-Huei; Wang, Kuan-Chieh; Lin, Yu-Hsuan

    2015-01-01

    In this study, we investigated and compared solitary and collaborative modes of game-based learning in promoting students' science learning and motivation. A total of fifty seventh grade students participated in this study. The results showed that students who played in a solitary or collaborative mode demonstrated improvement in learning…

  14. Microgrid energy management in grid-connected and islanding modes based on SVC

    International Nuclear Information System (INIS)

    Gabbar, Hossam A.; Abdelsalam, Abdelazeem A.

    2014-01-01

    Highlights: • SVC is used to enhance the performance of a microgrid (MG). • MG performance is measured by some key performance indicators (KPIs). • KPIs comprise power loss, voltage deviation, power factor, THD and v/f deviation. • The microgrid is simulated in grid-connected and islanded modes. • Results show SVC stabilizes voltage, reduce losses and THD and enhance power factor. - Abstract: Microgrids are small scale energy grids that can provide adequate energy supply to cover regional demand by integrating renewable energy generation and storage technologies. This paper develops a high performance dynamic model of a microgrid system comprising a wind turbine, a PV, a fuel cell, a micro gas turbine generator, an energy storage, electric loads with variable load profile and flexible AC transmission system (FACTS) devices. The FACTS devices based on static VAR compensators have been employed as a supervisory controller. Key performance indicators such as microgrid power losses, buses voltage deviations, buses power factor, buses voltage total harmonic distortion and voltage-frequency deviation are used to evaluate the performance of this microgrid in grid-connected and islanding modes. The results obtained from the Matlab/Simulink environment show that the proposed microgrid design with SVC has the ability to meet its special requirements such as bus voltages stabilization, reduction of feeder losses, power factor enhancement and mitigation of total harmonic distortion using SVC in grid-connected and islanding modes

  15. A hybrid biology course: Implications of merging Internet-enhanced and campus-based instructional modes

    Science.gov (United States)

    Clark, Sharron Ann

    This is possibly the first study of a hybrid online biology course where WebCT internet-enhanced modes of instruction replaced conventional face-to-face (F2F) lecture materials, merging with collaborative inquiry-based on-campus laboratory instructional modes. Although not a true experiment, the design of this study included three independent cohorts, a pretest and three posttests, as described by Gay and Airasian (2000). This study reported differences in age, gender, number of prior online courses and pretest scores. Over time, persistence, achievement and computer self-efficacy differed in one hybrid online section (N = 31) and two F2F cohorts (N = 29 and 30). One F2F cohort used written test materials and the other used intranet-delivered materials to examine possible differences in groups using electronic assessment modes. In this study, community college students self-selecting into online hybrid and traditional versions of the same biology course did not have the same number of prior online courses, achievement or persistence rates as those self-selecting into F2F sections of the same course with the same laboratories and instructor. This study includes twenty pretest items selected from Instructor's Manual and Test Item File to Accompany: Inquiry into Life, 9th Edition (Schrock, 2000). This study produced 63 tables, 13 figures and 173 references.

  16. Quantitative analysis of multiple components based on liquid chromatography with mass spectrometry in full scan mode.

    Science.gov (United States)

    Xu, Min Li; Li, Bao Qiong; Wang, Xue; Chen, Jing; Zhai, Hong Lin

    2016-08-01

    Although liquid chromatography with mass spectrometry in full scan mode can obtain all the signals simultaneously in a large range and low cost, it is rarely used in quantitative analysis due to several problems such as chromatographic drifts and peak overlap. In this paper, we propose a Tchebichef moment method for the simultaneous quantitative analysis of three active compounds in Qingrejiedu oral liquid based on three-dimensional spectra in full scan mode of liquid chromatography with mass spectrometry. After the Tchebichef moments were calculated directly from the spectra, the quantitative linear models for three active compounds were established by stepwise regression. All the correlation coefficients were more than 0.9978. The limits of detection and limits of quantitation were less than 0.11 and 0.49 μg/mL, respectively. The intra- and interday precisions were less than 6.54 and 9.47%, while the recovery ranged from 102.56 to 112.15%. Owing to the advantages of multi-resolution and inherent invariance properties, Tchebichef moments could provide favorable results even in the situation of peaks shifting and overlapping, unknown interferences and noise signals, so it could be applied to the analysis of three-dimensional spectra in full scan mode of liquid chromatography with mass spectrometry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Online Adaptive Error Compensation SVM-Based Sliding Mode Control of an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Kaijia Xue

    2016-01-01

    Full Text Available Unmanned Aerial Vehicle (UAV is a nonlinear dynamic system with uncertainties and noises. Therefore, an appropriate control system has an obligation to ensure the stabilization and navigation of UAV. This paper mainly discusses the control problem of quad-rotor UAV system, which is influenced by unknown parameters and noises. Besides, a sliding mode control based on online adaptive error compensation support vector machine (SVM is proposed for stabilizing quad-rotor UAV system. Sliding mode controller is established through analyzing quad-rotor dynamics model in which the unknown parameters are computed by offline SVM. During this process, the online adaptive error compensation SVM method is applied in this paper. As modeling errors and noises both exist in the process of flight, the offline SVM one-time mode cannot predict the uncertainties and noises accurately. The control law is adjusted in real-time by introducing new training sample data to online adaptive SVM in the control process, so that the stability and robustness of flight are ensured. It can be demonstrated through the simulation experiments that the UAV that joined online adaptive SVM can track the changing path faster according to its dynamic model. Consequently, the proposed method that is proved has the better control effect in the UAV system.

  18. Boron ion source based on planar magnetron discharge in self-sputtering mode.

    Science.gov (United States)

    Gushenets, V I; Hershcovitch, A; Kulevoy, T V; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2010-02-01

    An ion source based on a planar magnetron sputtering device with thermally isolated target has been designed and demonstrated. For a boron sputtering target, high target temperature is required because boron has low electrical conductivity at room temperature, increasing with temperature. The target is well-insulated thermally and can be heated by an initial low-current, high-voltage discharge mode. A discharge power of 16 W was adequate to attain the required surface temperature (400 degrees C), followed by transition of the discharge to a high-current, low-voltage mode for which the magnetron enters a self-sputtering operational mode. Beam analysis was performed with a time-of-flight system; the maximum boron ion fraction in the beam is greater than 99%, and the mean boron ion fraction, time-integrated over the whole pulse length, is about 95%. We have plans to make the ion source steady state and test with a bending magnet. This kind of boron ion source could be competitive to conventional boron ion sources that utilize compounds such as BF(3), and could be useful for semiconductor industry application.

  19. Definition, analysis and experimental investigation of operation modes in hydrogen-renewable-based power plants incorporating hybrid energy storage

    International Nuclear Information System (INIS)

    Valverde, L.; Pino, F.J.; Guerra, J.; Rosa, F.

    2016-01-01

    Highlights: • A conceptual analysis of operation modes in energy storage plants is presented. • Key Performance Indicators to select operation modes are provided. • The approach has been applied to a laboratory hybrid power plant. • The methodology provides guidance for the operation of hybrid power plants. - Abstract: This paper is concerned with Operating Modes in hybrid renewable energy-based power plants with hydrogen as the intermediate energy storage medium. Six operation modes are defined according to plant topology and the possibility of operating electrolyzer and fuel cell at steady-power or partial load. A methodology for the evaluation of plant performance is presented throughout this paper. The approach includes a set of simulations over a fully validated model, which are run in order to compare the proposed operation modes in various weather conditions. Conclusions are drawn from the simulation stage using a set of Key Performance Indicators defined in this paper. This analysis yields the conclusion that certain modes are more appropriate from technical and practical standpoints when they are implemented in a real plant. From the results of the simulation assessment, selected operating modes are applied to an experimental hydrogen-based pilot plant to illustrate and validate the performance of the proposed operation modes. Experimental results confirmed the simulation study, pointing out the advantages and disadvantages of each operation mode in terms of performance and equipment durability.

  20. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide

    DEFF Research Database (Denmark)

    Ding, Yunhong; Xu, Jing; Ou, Haiyan

    2014-01-01

    We propose and demonstrate all-optical mode-selective wavelength conversion in a silicon waveguide. The mode-selective wavelength conversion relies on strong four-wave mixing when pump and signal light are on the same spatial mode, while weak four-wave mixing is obtained between different modes due...

  1. Plasma-implantation-based surface modification of metals with single-implantation mode

    Science.gov (United States)

    Tian, X. B.; Cui, J. T.; Yang, S. Q.; Fu, Ricky K. Y.; Chu, Paul K.

    2004-12-01

    Plasma ion implantation has proven to be an effective surface modification technique. Its biggest advantage is the capability to treat the objects with irregular shapes without complex manipulation of target holder. Many metal materials such as aluminum, stainless steel, tool steel, titanium, magnesium etc, has been treated using this technique to improve their wear-resistance, corrosion-resistance, fatigue-resistance, oxidation-resistance, bio-compatiblity etc. However in order to achieve thicker modified layers, hybrid processes combining plasma ion implantation with other techniques have been frequently employed. In this paper plasma implantation based surface modification of metals using single-implantation mode is reviewed.

  2. Whispering Gallery Mode Based Optical Fiber Sensor for Measuring Concentration of Salt Solution

    Directory of Open Access Journals (Sweden)

    Chia-Chin Chiang

    2013-01-01

    Full Text Available An optical fiber solution-concentration sensor based on whispering gallery mode (WGM is proposed in this paper. The WGM solution-concentration sensors were used to measure salt solutions, in which the concentrations ranged from 1% to 25% and the wavelength drifted from the left to the right. The experimental results showed an average sensitivity of approximately 0.372 nm/% and an R2 linearity of 0.8835. The proposed WGM sensors are of low cost, feasible for mass production, and durable for solution-concentration sensing.

  3. Accessibility of islands: towards a new geography based on transportation modes and choices

    Directory of Open Access Journals (Sweden)

    Sofia Karampela

    2014-11-01

    Full Text Available Accessibility is a multifaceted concept that expresses the case of access between two points in space. For islands, accessibility is a key quality, since isolation and small size considered as inherent characteristics of “islandness”. In this paper, we discuss differences between geographical distance and accessibility potential in the Greek Aegean, combining different transportation modal choice (ferries and airplanes with the use of an accessibility index that incorporates modes and frequency of connection and data of actual usage. The findings indicate that geographical distance is not determining accessibility and new geographies emerge based more on the availability of transport modal choices.

  4. Modeling of PV Systems Based on Inflection Points Technique Considering Reverse Mode

    Directory of Open Access Journals (Sweden)

    Bonie J. Restrepo-Cuestas

    2013-11-01

    Full Text Available This paper proposes a methodology for photovoltaic (PV systems modeling, considering their behavior in both direct and reverse operating mode and considering mismatching conditions. The proposed methodology is based on the inflection points technique with a linear approximation to model the bypass diode and a simplified PV model. The proposed mathematical model allows to evaluate the energetic performance of a PV system, exhibiting short simulation times in large PV systems. In addition, this methodology allows to estimate the condition of the modules affected by the partial shading since it is possible to know the power dissipated due to its operation at the second quadrant.

  5. Efficient Compression of Far Field Matrices in Multipole Algorithms based on Spherical Harmonics and Radiating Modes

    Directory of Open Access Journals (Sweden)

    A. Schroeder

    2012-09-01

    Full Text Available This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.

  6. Model-based Sliding Mode Controller of Anti-lock Braking System

    Science.gov (United States)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  7. Dynamic optimum dead time in piezoelectric transformer-based switch-mode power supplies

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Andersen, Michael A. E.

    2016-01-01

    Soft switching is required to attain high efficiency in high-frequency power converters. Piezoelectric transformerbased converters can benefit from soft switching in terms of significantly diminished switching losses and stresses. Adequate dead time is needed in order to deliver sufficient energy...... to charge and discharge the input capacitance of piezoelectric transformers in order to achieve zero-voltage switching. This paper proposes a method for detecting the optimum dead time in piezoelectric transformer-based switch-mode power supplies. The provision of sufficient dead time in every cycle...

  8. Ultrabright femtosecond source of biphotons based on a spatial mode inverter.

    Science.gov (United States)

    Jarutis, Vygandas; Juodkazis, Saulius; Mizeikis, Vygantas; Sasaki, Keiji; Misawa, Hiroaki

    2005-02-01

    A method of enhancing the efficiency of entangled biphoton sources based on a type II femtosecond spontaneous parametric downconversion (SPDC) process is proposed and implemented experimentally. Enhancement is obtained by mode inversion of one of the SPDC output beams, which allows the beams to overlap completely, thus maximizing the number of SPDC photon pairs with optimum spatiotemporal overlap. By use of this method, biphoton count rates as high as 16 kHz from a single 0.5-mm-long beta-barium borate crystal pumped by second-harmonic radiation from a Ti:sapphire laser were obtained.

  9. A simulation-based dynamic traffic assignment model with combined modes

    Directory of Open Access Journals (Sweden)

    Meng Meng

    2014-02-01

    Full Text Available This paper presents a dynamic traffic assignment (DTA model for urban multi-modal transportation network by con­structing a mesoscopic simulation model. Several traffic means such as private car, subway, bus and bicycle are con­sidered in the network. The mesoscopic simulator consists of a mesoscopic supply simulator based on MesoTS model and a time-dependent demand simulator. The mode choice is si­multaneously considered with the route choice based on the improved C-Logit model. The traffic assignment procedure is implemented by a time-dependent shortest path (TDSP al­gorithm in which travellers choose their modes and routes based on a range of choice criteria. The model is particularly suited for appraising a variety of transportation management measures, especially for the application of Intelligent Trans­port Systems (ITS. Five example cases including OD demand level, bus frequency, parking fee, information supply and car ownership rate are designed to test the proposed simulation model through a medium-scale case study in Beijing Chaoy­ang District in China. Computational results illustrate excel­lent performance and the application of the model to analy­sis of urban multi-modal transportation networks.

  10. Forecasting Electricity Market Risk Using Empirical Mode Decomposition (EMD—Based Multiscale Methodology

    Directory of Open Access Journals (Sweden)

    Kaijian He

    2016-11-01

    Full Text Available The electricity market has experienced an increasing level of deregulation and reform over the years. There is an increasing level of electricity price fluctuation, uncertainty, and risk exposure in the marketplace. Traditional risk measurement models based on the homogeneous and efficient market assumption no longer suffice, facing the increasing level of accuracy and reliability requirements. In this paper, we propose a new Empirical Mode Decomposition (EMD-based Value at Risk (VaR model to estimate the downside risk measure in the electricity market. The proposed model investigates and models the inherent multiscale market risk structure. The EMD model is introduced to decompose the electricity time series into several Intrinsic Mode Functions (IMF with distinct multiscale characteristics. The Exponential Weighted Moving Average (EWMA model is used to model the individual risk factors across different scales. Experimental results using different models in the Australian electricity markets show that EMD-EWMA models based on Student’s t distribution achieves the best performance, and outperforms the benchmark EWMA model significantly in terms of model reliability and predictive accuracy.

  11. Adaptive PI-Based Sliding Mode Control for Nanopositioning of Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Jin Li

    2014-01-01

    Full Text Available This paper proposes an adaptive proportion-integral (PI-based sliding mode control design (APISMC used for nanopositioning of piezoelectric actuators (PEAs. Nonlinearities, mainly hysteresis, can drastically degrade the system performance. As well as the model imperfection, hysteresis can be treated as uncertainties of the system. These uncertainties can be addressed by sliding mode control (SMC since SMC is promising for positioning and tracking control. To further improve the response speed, suppress chattering, and reduce the steady-state error, the adaptive PI-based SMC is employed to replace the discontinuous control. Actually, the adaptive PI-based SMC offers a fast convergence of the sliding surface. Further, another advantage of the proposed controller lies in that its implementation only requires the online tuning PI parameters without acquiring the knowledge of bounds on system uncertainties. A linear second-order system is utilized as the estimated model to compensate for the process nonlinearity and estimate the control gain. The robust stability of the APISMC is proved through a Lyapunov stability analysis. Simulation results demonstrate that the modified SMC is superior to the original one for both positioning and tracking applications. Compared with the original, the proposed controller provides better performance—less chattering, faster response, and higher precision.

  12. Application of case-based learning combined with problem-based learning teaching mode in the clinical teaching of ophthalmology

    Directory of Open Access Journals (Sweden)

    Yi-Jin Tao

    2016-06-01

    Full Text Available AIM: To improve the efficiency and quality of teaching, and to cultivate students' ability to analyze and solve clinical problems, the case-based learning(CBLcombined with problem-based learning(PBLteaching mode is introduced into the clinical teaching of ophthalmology.METHODS:Two classes(total 131 studentsof 2013 grade major in clinical medicine, Kunming Medical University, were randomly selected as experimental group using CBL combined with PBL teaching mode, and control group using traditional teaching mode. The part of acute angle-closure glaucoma was taught. The scores of the experimental group were compared with that of control group at the end of term. RESULTS: The mean scores of CBL combined with PBL teaching group were significantly higher than that of traditional teaching group.CONCLUSION: The application of CBL combined with PBL in the clinical teaching of ophthalmology has obvious advantages in improving the learning interests and promoting students' self-learning ability. It is helpful in improving the students' ability of independent-thinking, analyzing and solving problem.

  13. Multi-Functional Magnetic Photoluminescent Photocatalytic Polystyrene-Based Micro- and Nano-Fibers Obtained by Electrospinning

    Directory of Open Access Journals (Sweden)

    Michel Schaer

    2014-02-01

    Full Text Available This work reports on the implementation of electrospinning (ES as a facile route to encapsulate nano-engineered materials in a polystyrene (PS matrix. We applied ES to co-encapsulate two kinds of nanoparticles, i.e., upconversion nanophosphors (UCNPs and superparamagnetic iron oxide nanoparticles (SPIONs, in polystyrene (PS-based micro- and nano-fibers (PSFs. This approach made it possible to integrate near-infrared (NIR light-sensitive 500-nm β-NaYF4:Yb, Er UCNPs with 10-nm γ-Fe2O3 SPIONs in PS fibers. During the ES process, PSFs were additionally loaded with a well-established singlet oxygen (1∆g photosensitizer, rose bengal (RB. The thus obtained PSFs revealed the promising features of prospective multi-functional magnetic photoluminescent photocatalytic nano-constructs.

  14. Intelligent wear mode identification system for marine diesel engines based on multi-level belief rule base methodology

    Science.gov (United States)

    Yan, Xinping; Xu, Xiaojian; Sheng, Chenxing; Yuan, Chengqing; Li, Zhixiong

    2018-01-01

    Wear faults are among the chief causes of main-engine damage, significantly influencing the secure and economical operation of ships. It is difficult for engineers to utilize multi-source information to identify wear modes, so an intelligent wear mode identification model needs to be developed to assist engineers in diagnosing wear faults in diesel engines. For this purpose, a multi-level belief rule base (BBRB) system is proposed in this paper. The BBRB system consists of two-level belief rule bases, and the 2D and 3D characteristics of wear particles are used as antecedent attributes on each level. Quantitative and qualitative wear information with uncertainties can be processed simultaneously by the BBRB system. In order to enhance the efficiency of the BBRB, the silhouette value is adopted to determine referential points and the fuzzy c-means clustering algorithm is used to transform input wear information into belief degrees. In addition, the initial parameters of the BBRB system are constructed on the basis of expert-domain knowledge and then optimized by the genetic algorithm to ensure the robustness of the system. To verify the validity of the BBRB system, experimental data acquired from real-world diesel engines are analyzed. Five-fold cross-validation is conducted on the experimental data and the BBRB is compared with the other four models in the cross-validation. In addition, a verification dataset containing different wear particles is used to highlight the effectiveness of the BBRB system in wear mode identification. The verification results demonstrate that the proposed BBRB is effective and efficient for wear mode identification with better performance and stability than competing systems.

  15. Enhancement of lung sounds based on empirical mode decomposition and Fourier transform algorithm.

    Science.gov (United States)

    Mondal, Ashok; Banerjee, Poulami; Somkuwar, Ajay

    2017-02-01

    There is always heart sound (HS) signal interfering during the recording of lung sound (LS) signals. This obscures the features of LS signals and creates confusion on pathological states, if any, of the lungs. In this work, a new method is proposed for reduction of heart sound interference which is based on empirical mode decomposition (EMD) technique and prediction algorithm. In this approach, first the mixed signal is split into several components in terms of intrinsic mode functions (IMFs). Thereafter, HS-included segments are localized and removed from them. The missing values of the gap thus produced, is predicted by a new Fast Fourier Transform (FFT) based prediction algorithm and the time domain LS signal is reconstructed by taking an inverse FFT of the estimated missing values. The experiments have been conducted on simulated and recorded HS corrupted LS signals at three different flow rates and various SNR levels. The performance of the proposed method is evaluated by qualitative and quantitative analysis of the results. It is found that the proposed method is superior to the baseline method in terms of quantitative and qualitative measurement. The developed method gives better results compared to baseline method for different SNR levels. Our method gives cross correlation index (CCI) of 0.9488, signal to deviation ratio (SDR) of 9.8262, and normalized maximum amplitude error (NMAE) of 26.94 for 0 dB SNR value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Design of LPV-Based Sliding Mode Controller with Finite Time Convergence for a Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Nuan Wen

    2017-01-01

    Full Text Available This paper proposes a finite time convergence sliding mode control (FSMC strategy based on linear parameter-varying (LPV methodology for the stability control of a morphing aircraft subject to parameter uncertainties and external disturbances. Based on the Kane method, a longitudinal dynamic model of the morphing aircraft is built. Furthermore, the linearized LPV model of the aircraft in the wing transition process is obtained, whose scheduling parameters are wing sweep angle and wingspan. The FSMC scheme is developed into LPV systems by applying the previous results for linear time-invariant (LTI systems. The sufficient condition in form of linear matrix inequality (LMI constraints is derived for the existence of a reduced-order sliding mode, in which the dynamics can be ensured to keep robust stability and L2 gain performance. The tensor-product (TP model transformation approach can be directly applied to solve infinite LMIs belonging to the polynomial parameter-dependent LPV system. Then, by the parameter-dependent Lyapunov function stability analysis, the synthesized FSMC is proved to drive the LPV system trajectories toward the predefined switching surface with a finite time arrival. Comparative simulation results in the nonlinear model demonstrate the robustness and effectiveness of this approach.

  17. Modes of Visual Recognition and Perceptually Relevant Sketch-based Coding for Images

    Science.gov (United States)

    Jobson, Daniel J.

    1991-01-01

    A review of visual recognition studies is used to define two levels of information requirements. These two levels are related to two primary subdivisions of the spatial frequency domain of images and reflect two distinct different physical properties of arbitrary scenes. In particular, pathologies in recognition due to cerebral dysfunction point to a more complete split into two major types of processing: high spatial frequency edge based recognition vs. low spatial frequency lightness (and color) based recognition. The former is more central and general while the latter is more specific and is necessary for certain special tasks. The two modes of recognition can also be distinguished on the basis of physical scene properties: the highly localized edges associated with reflectance and sharp topographic transitions vs. smooth topographic undulation. The extreme case of heavily abstracted images is pursued to gain an understanding of the minimal information required to support both modes of recognition. Here the intention is to define the semantic core of transmission. This central core of processing can then be fleshed out with additional image information and coding and rendering techniques.

  18. Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Rabe

    2017-04-01

    Full Text Available Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species.

  19. A new standing-wave-type linear ultrasonic motor based on in-plane modes.

    Science.gov (United States)

    Shi, Yunlai; Zhao, Chunsheng

    2011-05-01

    This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Characteristics and help-seeking behaviors of Internet gamblers based on most problematic mode of gambling.

    Science.gov (United States)

    Hing, Nerilee; Russell, Alex Myles Thomas; Gainsbury, Sally Melissa; Blaszczynski, Alex

    2015-01-07

    Previous studies of problem Internet gamblers have failed to distinguish whether their problem gambling relates to Internet or land-based gambling modes. Therefore, characteristics and help-seeking behaviors of people whose gambling problems relate specifically to Internet gambling are unknown, but could inform the optimal alignment of treatment and support services with the needs and preferences of problem gamblers. This study aimed to compare (1) characteristics of problem Internet gamblers and problem land-based gamblers and (2) uptake of different types and modes of help between problem Internet gamblers and problem land-based gamblers. Hypothesis 1 was that problem Internet gamblers are less likely to seek help. Hypothesis 2 was that problem Internet gamblers are more likely to use online modes of help. A sample of 620 respondents meeting criteria for problem gambling was drawn from an online survey of 4594 Australian gamblers. Respondents were recruited through advertisements on gambling and gambling help websites, Facebook, and Google. Measures consisted of gambling participation; proportion of gambling on the Internet; most problematic mode of gambling; help seeking from 11 different sources of formal help, informal help, and self-help for gambling problems; psychological distress (Kessler 6); problem gambling severity (Problem Gambling Severity Index, PGSI); and demographics. Problem Internet gamblers were significantly more likely than problem land-based gamblers to be male (χ(2) 1=28.3, P<.001, φ=0.21), younger (t616.33=4.62, P<.001, d=0.37), have lower psychological distress (χ(2) 1=5.4, P=.02, φ=0.09), and experience problems with sports and race wagering (χ(2) 4=228.5, P<.001, φ=0.61). Uptake of help was significantly lower among problem Internet compared to problem land-based gamblers (χ(2) 1=6.9, P<.001, φ=0.11), including from face-to-face services, gambling helplines, online groups, self-exclusion from land-based venues, family or friends

  1. Graphene Oxide in Lossy Mode Resonance-Based Optical Fiber Sensors for Ethanol Detection.

    Science.gov (United States)

    Hernaez, Miguel; Mayes, Andrew G; Melendi-Espina, Sonia

    2017-12-27

    The influence of graphene oxide (GO) over the features of an optical fiber ethanol sensor based on lossy mode resonances (LMR) has been studied in this work. Four different sensors were built with this aim, each comprising a multimode optical fiber core fragment coated with a SnO₂ thin film. Layer by layer (LbL) coatings made of 1, 2 and 4 bilayers of polyethyleneimine (PEI) and graphene oxide were deposited onto three of these devices and their behavior as aqueous ethanol sensors was characterized and compared with the sensor without GO. The sensors with GO showed much better performance with a maximum sensitivity enhancement of 176% with respect to the sensor without GO. To our knowledge, this is the first time that GO has been used to make an optical fiber sensor based on LMR.

  2. Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings.

    Science.gov (United States)

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A

    2014-12-15

    A one-dimensional dielectric grating, based on a simple geometry, is proposed and investigated to enhance light absorption in a monolayer graphene exploiting guided mode resonances. Numerical findings reveal that the optimized configuration is able to absorb up to 60% of the impinging light at normal incidence for both TE and TM polarizations resulting in a theoretical enhancement factor of about 26 with respect to the monolayer graphene absorption (≈2.3%). Experimental results confirm this behavior showing CVD graphene absorbance peaks up to about 40% over narrow bands of a few nanometers. The simple and flexible design points to a way to realize innovative, scalable and easy-to-fabricate graphene-based optical absorbers.

  3. Robust image watermarking based on multiband wavelets and empirical mode decomposition.

    Science.gov (United States)

    Bi, Ning; Sun, Qiyu; Huang, Daren; Yang, Zhihua; Huang, Jiwu

    2007-08-01

    In this paper, we propose a blind image watermarking algorithm based on the multiband wavelet transformation and the empirical mode decomposition. Unlike the watermark algorithms based on the traditional two-band wavelet transform, where the watermark bits are embedded directly on the wavelet coefficients, in the proposed scheme, we embed the watermark bits in the mean trend of some middle-frequency subimages in the wavelet domain. We further select appropriate dilation factor and filters in the multiband wavelet transform to achieve better performance in terms of perceptually invisibility and the robustness of the watermark. The experimental results show that the proposed blind watermarking scheme is robust against JPEG compression, Gaussian noise, salt and pepper noise, median filtering, and ConvFilter attacks. The comparison analysis demonstrate that our scheme has better performance than the watermarking schemes reported recently.

  4. The study of antilock braking system based on sliding mode variable structure control

    Science.gov (United States)

    Liu, GuoFu; Zhang, Qi; Wang, Yueke; Liu, Bo

    2006-11-01

    The friction characteristic between road surface and tire makes the anti-lock braking system (ABS) take on the properties of nonlinearity, time variation and uncertainties. The sliding mode variable structure controller (SMVSC) has strong robust ability in dealing with uncertainties including the model error and unknown interference, so SMVSC is used in ABS extensively. In order to achieve expected performance, SMVSC has to identify the road characteristics in real time. The mathematical model of ABS is established, and the application of SMVSC in ABS is realized. One kind of estimation algorithm of optimal slip ratio based on the shape of μ-λ curve is proposed. By computer simulation, the feasibility and validity of SMVSC based on optimal slip ratio is verified.

  5. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments.

    Science.gov (United States)

    Qiu, Huaxin; Duan, Haibin

    2017-11-01

    Unmanned aerial vehicle (UAV) flocking control is a serious and challenging problem due to local interactions and changing environments. In this paper, a pigeon flocking model and a pigeon coordinated obstacle-avoiding model are proposed based on a behavior that pigeon flocks will switch between hierarchical and egalitarian interaction mode at different flight phases. Owning to the similarity between bird flocks and UAV swarms in essence, a distributed flocking control algorithm based on the proposed pigeon flocking and coordinated obstacle-avoiding models is designed to coordinate a heterogeneous UAV swarm to fly though obstacle environments with few informed individuals. The comparative simulation results are elaborated to show the feasibility, validity and superiority of our proposed algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. A Novel Segment-Based Approach for Improving Classification Performance of Transport Mode Detection.

    Science.gov (United States)

    Guvensan, M Amac; Dusun, Burak; Can, Baris; Turkmen, H Irem

    2017-12-30

    Transportation planning and solutions have an enormous impact on city life. To minimize the transport duration, urban planners should understand and elaborate the mobility of a city. Thus, researchers look toward monitoring people's daily activities including transportation types and duration by taking advantage of individual's smartphones. This paper introduces a novel segment-based transport mode detection architecture in order to improve the results of traditional classification algorithms in the literature. The proposed post-processing algorithm, namely the Healing algorithm, aims to correct the misclassification results of machine learning-based solutions. Our real-life test results show that the Healing algorithm could achieve up to 40% improvement of the classification results. As a result, the implemented mobile application could predict eight classes including stationary, walking, car, bus, tram, train, metro and ferry with a success rate of 95% thanks to the proposed multi-tier architecture and Healing algorithm.

  7. Mode of delivery and the probability of subsequent childbearing: a population-based register study.

    Science.gov (United States)

    Elvander, C; Dahlberg, J; Andersson, G; Cnattingius, S

    2015-11-01

    To investigate the relationship between mode of first delivery and probability of subsequent childbearing. Population-based study. Nationwide study in Sweden. A cohort of 771 690 women who delivered their first singleton infant in Sweden between 1992 and 2010. Using Cox's proportional-hazards regression models, risks of subsequent childbearing were compared across four modes of delivery. Hazard ratios (HRs) were calculated, using 95% confidence intervals (95% CIs). Probability of having a second and third child; interpregnancy interval. Compared with women who had a spontaneous vaginal first delivery, women who delivered by vacuum extraction were less likely to have a second pregnancy (HR 0.96, 95% CI 0.95-0.97), and the probabilities of a second childbirth were substantially lower among women with a previous emergency caesarean section (HR 0.85, 95% CI 0.84-0.86) or an elective caesarean section (HR 0.82, 95% CI 0.80-0.83). There were no clinically important differences in the median time between first and second pregnancy by mode of first delivery. Compared with women younger than 30 years of age, older women were more negatively affected by a vacuum extraction with respect to the probability of having a second child. A primary vacuum extraction decreased the probability of having a third child by 4%, but having two consecutive vacuum extraction deliveries did not further alter the probability. A first delivery by vacuum extraction does not reduce the probability of subsequent childbearing to the same extent as a first delivery by emergency or elective caesarean section. © 2014 Royal College of Obstetricians and Gynaecologists.

  8. Benefit Assessment for Urban Rainwater Measure Configuration Mode in Beijing Based on PROMETHEE Method

    Science.gov (United States)

    Tian, L.; Shu, A. P.; Huang, L.

    2017-12-01

    Along with accelerating in Chinese urbanization, a increasing number of urban construction projects have been built, which cause the growth of impervious surface ratio in cities. Large areas of impervious surface hinders city normal natural water cycles, increases surface runoff coefficient, brings flood peak forward, and increases risk of flooding . Therefore, with the view of reducing risk of urban waterlogging disaster, improving water resource cyclic utilization, and maximizing recovery of urban eco-hydrological process, China begins to promote Sponge city construction using LID as core idea. The paper take five kinds of collecting and utilization rainwater measure as research example, analysis their characteristic ,take investment cost, economic benefit and enviromental benefit as principle of assessment. The weight of the evaluation criterion are gained by entropy method. The final evaluation of urban stormwater measures configuration mode based on the low impact development with PROMETHEE method . The sensitivity of evaluation criterion are analysised by GAIA. Finally, the examples are given to explain the feasibility . The result shows that comprehensive benefit of the mode containing green roof, permeable pavement, Sunken green space and rainwater harvesting tank is the highest. It turn out that reasonable and various types rainwater measures and high land utilization is significant for increasing the its comprehensive efficiency. Besides, the environmental benefit of urban rainwater measures is significantly greater than the economic benefit. There is a positive correlation between plant significantly greater than the economic benefit. There is a positive correlation between plant shallow groove, sunken green space and comprehensive benefit of rainwater measure. Because they can effectively removes water pollutants in stormwater. The studies not only have a great significance in optimizing configuration mode of urban rainwater measures, but also push

  9. Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets

    Science.gov (United States)

    Kaishan, Liu; Huimin, Li

    2017-12-01

    The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.

  10. Robust motion control of oscillatory-base manipulators h∞-control and sliding-mode-control-based approaches

    CERN Document Server

    Toda, Masayoshi

    2016-01-01

    This book provides readers with alternative robust approaches to control design for an important class of systems characteristically associated with ocean-going vessels and structures. These systems, which include crane vessels, on-board cranes, radar gimbals, and a conductivity temperature and depth winch, are modelled as manipulators with oscillating bases. One design approach is based on the H-infinity control framework exploiting an effective combination of PD control, an extended matrix polytope and a robust stability analysis method with a state-dependent coefficient form. The other is based on sliding-mode control using some novel nonlinear sliding surfaces. The model demonstrates how successful motion control can be achieved by suppressing base oscillations and in the presence of uncertainties. This is important not only for ocean engineering systems in which the problems addressed here originate but more generally as a benchmark platform for robust motion control with disturbance rejection. Researche...

  11. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates

    Science.gov (United States)

    Barrese, James C.; Rao, Naveen; Paroo, Kaivon; Triebwasser, Corey; Vargas-Irwin, Carlos; Franquemont, Lachlan; Donoghue, John P.

    2013-12-01

    Objective. Brain-computer interfaces (BCIs) using chronically implanted intracortical microelectrode arrays (MEAs) have the potential to restore lost function to people with disabilities if they work reliably for years. Current sensors fail to provide reliably useful signals over extended periods of time for reasons that are not clear. This study reports a comprehensive retrospective analysis from a large set of implants of a single type of intracortical MEA in a single species, with a common set of measures in order to evaluate failure modes. Approach. Since 1996, 78 silicon MEAs were implanted in 27 monkeys (Macaca mulatta). We used two approaches to find reasons for sensor failure. First, we classified the time course leading up to complete recording failure as acute (abrupt) or chronic (progressive). Second, we evaluated the quality of electrode recordings over time based on signal features and electrode impedance. Failure modes were divided into four categories: biological, material, mechanical, and unknown. Main results. Recording duration ranged from 0 to 2104 days (5.75 years), with a mean of 387 days and a median of 182 days (n = 78). Sixty-two arrays failed completely with a mean time to failure of 332 days (median = 133 days) while nine array experiments were electively terminated for experimental reasons (mean = 486 days). Seven remained active at the close of this study (mean = 753 days). Most failures (56%) occurred within a year of implantation, with acute mechanical failures the most common class (48%), largely because of connector issues (83%). Among grossly observable biological failures (24%), a progressive meningeal reaction that separated the array from the parenchyma was most prevalent (14.5%). In the absence of acute interruptions, electrode recordings showed a slow progressive decline in spike amplitude, noise amplitude, and number of viable channels that predicts complete signal loss by about eight years. Impedance measurements showed

  12. [Denoising of Fetal Heart Sound Based on Empirical Mode Decomposition Method].

    Science.gov (United States)

    Liu, Qiaoqiao; Tan, Zhixiang; Zhang, Yi; Wang, Hua

    2015-08-01

    Fetal heart sound is nonlinear and non-stationary, which contains a lot of noise when it is colleced, so the denoising method is important. We proposed a new denoising method in our study. Firstly, we chose the preprocessing of low-pass filter with a cutoff frequency of 200 Hz and the resampling. Secondly, we decomposed the signal based on empirical mode decomposition method (EMD) of Hilbert-Huang transform, then denoised some selected target components with wavelet soft threshold adaptive noise cancellation algorithm. Finally we got the clean fetal heart sound by combining the target components. In the EMD, we used a mask signal to eliminate the mode mixing problem, used mirroring extension method to eliminate the end effect, and referenced the stopping rule from the research of Rilling. This method eliminated the baseline drift and noise at once. To compare with wavelet transform (WT), mathematical morphology (MM) and the Fourier transform (FT), the SNR was improved obviously, and the RMSE was the minimum, which could satisfy the need of the practical application.

  13. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists.

    Directory of Open Access Journals (Sweden)

    Sehan Lee

    Full Text Available The flexible hydrophobic ligand binding pocket (LBP of estrogen receptor α (ERα allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors.

  14. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis

    Science.gov (United States)

    E, Jianwei; Bao, Yanling; Ye, Jimin

    2017-10-01

    As one of the most vital energy resources in the world, crude oil plays a significant role in international economic market. The fluctuation of crude oil price has attracted academic and commercial attention. There exist many methods in forecasting the trend of crude oil price. However, traditional models failed in predicting accurately. Based on this, a hybrid method will be proposed in this paper, which combines variational mode decomposition (VMD), independent component analysis (ICA) and autoregressive integrated moving average (ARIMA), called VMD-ICA-ARIMA. The purpose of this study is to analyze the influence factors of crude oil price and predict the future crude oil price. Major steps can be concluded as follows: Firstly, applying the VMD model on the original signal (crude oil price), the modes function can be decomposed adaptively. Secondly, independent components are separated by the ICA, and how the independent components affect the crude oil price is analyzed. Finally, forecasting the price of crude oil price by the ARIMA model, the forecasting trend demonstrates that crude oil price declines periodically. Comparing with benchmark ARIMA and EEMD-ICA-ARIMA, VMD-ICA-ARIMA can forecast the crude oil price more accurately.

  15. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    Directory of Open Access Journals (Sweden)

    Thorsten Hellert

    2017-12-01

    Full Text Available At the Free-Electron Laser in Hamburg (FLASH and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  16. Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH

    Science.gov (United States)

    Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang

    2017-12-01

    At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.

  17. A Lightweight RFID Grouping-Proof Protocol Based on Parallel Mode and DHCP Mechanism

    Directory of Open Access Journals (Sweden)

    Zhicai Shi

    2017-07-01

    Full Text Available A Radio Frequency Identification (RFID grouping-proof protocol is to generate an evidence of the simultaneous existence of a group of tags and it has been applied to many different fields. For current grouping-proof protocols, there still exist some flaws such as low grouping-proof efficiency, being vulnerable to trace attack and information leakage. To improve the secure performance and efficiency, we propose a lightweight RFID grouping-proof protocol based on parallel mode and DHCP (Dynamic Host Configuration Protocol mechanism. Our protocol involves multiple readers and multiple tag groups. During the grouping-proof period, one reader and one tag group are chosen by the verifier by means of DHCP mechanism. When only a part of the tags of the chosen group exist, the protocol can also give the evidence of their co-existence. Our protocol utilizes parallel communication mode between reader and tags so as to ensure its grouping-proof efficiency. It only uses Hash function to complete the mutual authentication among verifier, readers and tags. It can preserve the privacy of the RFID system and resist the attacks such as eavesdropping, replay, trace and impersonation. Therefore the protocol is secure, flexible and efficient. It only uses some lightweight operations such as Hash function and a pseudorandom number generator. Therefore it is very suitable to some low-cost RFID systems.

  18. A Gyro Signal Characteristics Analysis Method Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Qinghua Zeng

    2016-01-01

    Full Text Available It is difficult to analyze the nonstationary gyro signal in detail for the Allan variance (AV analysis method. A novel approach in the time-frequency domain for gyro signal characteristics analysis is proposed based on the empirical mode decomposition and Allan variance (EMDAV. The output signal of gyro is decomposed by empirical mode decomposition (EMD first, and then the decomposed signal is analyzed by AV algorithm. Consequently, the gyro noise characteristics are demonstrated in the time-frequency domain with a three-dimensional (3D manner. Practical data of fiber optic gyro (FOG and MEMS gyro are processed by the AV method and the EMDAV algorithm separately. The results indicate that the details of gyro signal characteristics in different frequency bands can be described with the help of EMDAV, and the analysis dimensions are extended compared with the common AV. The proposed EMDAV, as a complementary tool of the AV, which provides a theoretical reference for the gyro signal preprocessing, is a general approach for the analysis and evaluation of gyro performance.

  19. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  20. Carotid artery B-mode ultrasound image segmentation based on morphology, geometry and gradient direction

    Science.gov (United States)

    Sunarya, I. Made Gede; Yuniarno, Eko Mulyanto; Purnomo, Mauridhi Hery; Sardjono, Tri Arief; Sunu, Ismoyo; Purnama, I. Ketut Eddy

    2017-06-01

    Carotid Artery (CA) is one of the vital organs in the human body. CA features that can be used are position, size and volume. Position feature can used to determine the preliminary initialization of the tracking. Examination of the CA features can use Ultrasound. Ultrasound imaging can be operated dependently by an skilled operator, hence there could be some differences in the images result obtained by two or more different operators. This can affect the process of determining of CA. To reduce the level of subjectivity among operators, it can determine the position of the CA automatically. In this study, the proposed method is to segment CA in B-Mode Ultrasound Image based on morphology, geometry and gradient direction. This study consists of three steps, the data collection, preprocessing and artery segmentation. The data used in this study were taken directly by the researchers and taken from the Brno university's signal processing lab database. Each data set contains 100 carotid artery B-Mode ultrasound image. Artery is modeled using ellipse with center c, major axis a and minor axis b. The proposed method has a high value on each data set, 97% (data set 1), 73 % (data set 2), 87% (data set 3). This segmentation results will then be used in the process of tracking the CA.

  1. On Position Sensorless Control for Permanent Magnet Synchronous Motor Based on a New Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2014-10-01

    Full Text Available For the problems of buffeting and phase delay in traditional rotor detection in sensorless vector control of permanent magnet synchronous motor (PMSM, the Sigmoid function is proposed to replace sign function and the approach of piecewise linearization is proposed to compensate phase delay. To the problem that the output of traditional low pass filter contains high- order harmonic, two-stage filter including traditional low-pass filter and Kalman filter is proposed in this paper. Based on the output of traditional first-order low-pass filter, the Kalman filter is used to get modified back-EMF. The phase-locked loop control of rotor position is adopted to estimate motor position and speed. A Matlab/Simulink simulation model of PMSM position servo control system is established. The simulation analysis of the new sliding mode observer’s back-EMF detection, position and speed estimation, load disturbance and dynamic process are carried out respectively. Simulation results verify feasibility of the new sliding mode observer algorithm.

  2. Investigation of KDP crystal surface based on an improved bidimensional empirical mode decomposition method

    Science.gov (United States)

    Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi

    2018-03-01

    This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.

  3. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    Science.gov (United States)

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  4. Integral equation based stability analysis of short wavelength drift modes in tokamaks

    International Nuclear Information System (INIS)

    Hirose, A.; Elia, M.

    2003-01-01

    Linear stability of electron skin-size drift modes in collisionless tokamak discharges has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic shear and strongly stabilized for negative shear. The corresponding mixing length anomalous thermal diffusivity exhibits favourable isotope dependence. (author)

  5. Sliding Mode Tracking Control of Manipulator Based on the Improved Reaching Law

    Directory of Open Access Journals (Sweden)

    Wei-Na ZHAI

    2013-04-01

    Full Text Available Due to the mechanical hand often have serious uncertainty, as the state in which the different and external changes, also its parameters are changing, this is very adverse to achieve precise control. In this paper, the traditional sliding mode variable structure was improved, the sign function is replaced by saturated function based on the double power reaching law, by adjusting the values of e1, e2, a, b, g and k to effectively improve the manipulator joint reaching speed, track expected trajectory fast and shorten the system response time. Finally, the method is used for simulation of manipulator trajectory tracking, compared to two reaching law control algorithms. The simulation results show that the control algorithm has good dynamic performance, which can effectively restrain the chattering and quickly track the desired trajectory. Therefore, the improved reaching law can effectively improve the performance of robotic manipulator.

  6. Sliding Mode Based Self-Tuning PID Controller for Second Order Systems

    Directory of Open Access Journals (Sweden)

    Alper BAYRAK

    2017-11-01

    Full Text Available In this paper, a sliding mode based self-tuning PID controller is proposed for uncertain second order systems. While developing the controller, it is assumed that the system model has a part which contains nonlinear terms similar to PID structure which is a new approach in the literature. The controller and update rules for controller parameters are obtained from Lyapunov stability analysis. The proposed controller with update rule is experienced on an experimental 2-DOF helicopter which is also known as Twin-Rotor Multi-Input Multi-Output System (TRMS. From experiments, it was seen that the PID parameter update rules run satisfactorily and, in parallel with this, the controller achieved the control objective by providing the system track the desired trajectory.

  7. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft.

    Science.gov (United States)

    Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel

    2015-11-01

    In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Breech at term--mode of delivery? A register-based study

    DEFF Research Database (Denmark)

    Krebs, L; Langhoff-Roos, J; Weber, Tom

    1995-01-01

    . Register-based cohort study of all (n = 15718) singleton term breech deliveries of non-malformed infants in Denmark 1982-1990. Process and outcome measures: mode of delivery, gestational age, birth weight, congenital malformations, intrapartum death, Apgar scores and early neonatal death. RESULTS. A total...... of 3247 (20.7%) term infants were delivered vaginally, 7106 (45.3%) by elective and 5356 (34.1%) by emergency cesarean section. Infants delivered vaginally and by emergency cesarean section had significantly higher rates of mortality (intrapartum and early neonatal death) and morbidity (low Apgar scores......) when compared to those delivered by elective cesarean section. In vaginal deliveries, parity was not correlated with outcome, but infants with a birth weight above 4000 grams had significantly higher rates of low Apgar scores. CONCLUSIONS. Register data on singleton term breech deliveries imply...

  9. Impedance Control of the Rehabilitation Robot Based on Sliding Mode Control

    Science.gov (United States)

    Zhou, Jiawang; Zhou, Zude; Ai, Qingsong

    As an auxiliary treatment, the 6-DOF parallel robot plays an important role in lower limb rehabilitation. In order to improve the efficiency and flexibility of the lower limb rehabilitation training, this paper studies the impedance controller based on the position control. A nonsingular terminal sliding mode control is developed to ensure the trajectory tracking precision and in contrast to traditional PID control strategy in the inner position loop, the system will be more stable. The stability of the system is proved by Lyapunov function to guarantee the convergence of the control errors. Simulation results validate the effectiveness of the target impedance model and show that the parallel robot can adjust gait trajectory online according to the human-machine interaction force to meet the gait request of patients, and changing the impedance parameters can meet the demands of different stages of rehabilitation training.

  10. Nonlinear control system for optical interferometry based on variable structure control and sliding modes.

    Science.gov (United States)

    Martin, Roberta I; Sakamoto, João M S; Teixeira, Marcelo C M; Martinez, Guilherme A; Pereira, Fernando C; Kitano, Cláudio

    2017-03-20

    This work presents a novel nonlinear control system designed for interferometry based on variable structure control and sliding modes. This approach can fully compensate the nonlinear behavior of the interferometer and lead to high accuracy control for large disturbances, featuring low cost, ease of implementation and high robustness, without a reset circuit (when compared with a linear control system). A deep stability analysis was accomplished and the global asymptotic stability of the system was proved. The results showed that the nonlinear control is able to keep the interferometer in the quadrature point and suppress signal fading for arbitrary signals, sinusoidal signals, or zero input signal, even under strong external disturbances. The system showed itself suitable to characterize a multi-axis piezoelectric flextentional actuator, which displacements that are much smaller than half wavelength. The high robustness allows the system to be embedded and to operate in harsh environments as factories, bringing the interferometry outside the laboratory.

  11. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    Science.gov (United States)

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  12. Integrated optics nano-opto-fluidic sensor based on whispering gallery modes for picoliter volume refractometry

    International Nuclear Information System (INIS)

    Gilardi, Giovanni; Beccherelli, Romeo

    2013-01-01

    We propose and numerically investigate an integrated optics refractometric nano-opto-fluidic sensor based on whispering gallery modes in sapphire microspheres. A measurand fluid is injected in a micromachined reservoir defined in between the microsphere and an optical waveguide. The wavelength shift due to changes in the refractive index of the measurand fluid are studied for a set of different configurations by the finite element method and a high sensitivity versus fluid volume is found. The proposed device can be tailored to work with a minimum fluid volume of 1 pl and a sensitivity up of 2000 nm/(RIU·nl). We introduce a figure of merit which quantifies the amplifying effect on the sensitivity of high quality factor resonators and allows us to compare different devices. (paper)

  13. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    Science.gov (United States)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  14. Adsorption detection for polylysine biomolecules based on high-Q silica capillary whispering gallery mode microresonator

    Science.gov (United States)

    Wu, Jixuan; Liu, Bo; Zhang, Hao; Song, Binbin

    2017-11-01

    A silica-capillary-based whispering gallery mode (WGM) microresonator has been proposed and experimentally demonstrated for the real-time monitoring of the polylysine adsorption process. The spectral characteristics of the WGM resonance dips with high quality factor and good wavelength selectivity have been investigated to evaluate the dynamic process for the binding of polylysine with a capillary surface. The WGM transmission spectrum shows a regular shift with increments of observation time, which could be exploited for the analysis of the polylysine adsorption process. The proposed WGM microresonator system possesses desirable qualities such as high sensitivity, fast response, label-free method, high detection resolution and compactness, which could find promising applications in histology and related bioengineering areas.

  15. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  16. Optimal control of transverse mode coupling instability based on the two particle model

    International Nuclear Information System (INIS)

    Ogata, Atsushi

    1985-01-01

    The optimal regulator design technique is applied to asymptotically stabilize the transverse mode coupling instability of a storage ring. The state equations are based on the two particle model. These are a pair of equation sets, one for the first and one for the second half of the synchrotron phase. Each set consists of first-order difference equations in vector-matrix form, with time step equal to the revolution time of the ring. Solution of the discrete Riccati equation gives the optimal gain matrix of the transverse feedback. Computer simulations are carried out to verify its effectiveness. Some modifications necessary to apply it to the real accelerator operation are made. The old methods, the classical output feedback and the reactive feedback, are interpreted from the viewpoint of the optimal control. (orig.)

  17. Study on HOPE Management Mode of Coal Enterprises Based on Systematic Thinking

    Science.gov (United States)

    Zhaoran, Zhang; Tianzhu, Zhang; Wenjing, Tong

    2018-02-01

    The extensive management mode of coal enterprises is no longer applicable to the demand of enterprise development under the new economic situation. Combined with the characteristics of coal mine production, based on the system of thinking, integration of lean, people, comprehensive, job management theory, formed HOPE management model, including a core system and three support systems and 18 elements. There are three stages in the development and implementation of this model. To 6S site management for the initial stage to job process reengineering for the intermediate stage to post value process control for the advanced stage. The successful implementation of HOPE model in coal enterprises needs comprehensive control from five aspects: lean culture construction, flattening organizational structure, cost control system, performance appraisal system and lean information management platform. HOPE model can be implemented smoothly and make “win-win” between enterprises and employees.

  18. A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals

    Science.gov (United States)

    Guo, Wei; Tse, Peter W.

    2013-01-01

    Today, remote machine condition monitoring is popular due to the continuous advancement in wireless communication. Bearing is the most frequently and easily failed component in many rotating machines. To accurately identify the type of bearing fault, large amounts of vibration data need to be collected. However, the volume of transmitted data cannot be too high because the bandwidth of wireless communication is limited. To solve this problem, the data are usually compressed before transmitting to a remote maintenance center. This paper proposes a novel signal compression method that can substantially reduce the amount of data that need to be transmitted without sacrificing the accuracy of fault identification. The proposed signal compression method is based on ensemble empirical mode decomposition (EEMD), which is an effective method for adaptively decomposing the vibration signal into different bands of signal components, termed intrinsic mode functions (IMFs). An optimization method was designed to automatically select appropriate EEMD parameters for the analyzed signal, and in particular to select the appropriate level of the added white noise in the EEMD method. An index termed the relative root-mean-square error was used to evaluate the decomposition performances under different noise levels to find the optimal level. After applying the optimal EEMD method to a vibration signal, the IMF relating to the bearing fault can be extracted from the original vibration signal. Compressing this signal component obtains a much smaller proportion of data samples to be retained for transmission and further reconstruction. The proposed compression method were also compared with the popular wavelet compression method. Experimental results demonstrate that the optimization of EEMD parameters can automatically find appropriate EEMD parameters for the analyzed signals, and the IMF-based compression method provides a higher compression ratio, while retaining the bearing defect

  19. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  20. The shareholding similarity of the shareholders of the worldwide listed energy companies based on a two-mode primitive network and a one-mode derivative holding-based network

    Science.gov (United States)

    Li, Huajiao; Fang, Wei; An, Haizhong; Yan, LiLi

    2014-12-01

    Two-mode and multi-mode networks represent new directions of simulating a complex network that can simulate the relationships among the entities more precisely. In this paper, we constructed two different levels of networks: one is the two-mode primitive networks of the energy listed companies and their shareholders on the basis of the two-mode method of complex theory, and the other is the derivative one-mode holding-based network based on the equivalence network theory. We calculated two different topological characteristics of the two networks, that is, the out-degree of the actor nodes of the two-mode network (9003 nodes) and the weights of the edges of the one-mode network (619,766 edges), and we analyzed the distribution features of both of the two topological characteristics. In this paper, we define both the weighted and un-weighted Shareholding Similarity Coefficient, and using the data of the worldwide listed energy companies and their shareholders as empirical study subjects, we calculated and compared both the weighted and un-weighted shareholding similarity coefficient of the worldwide listed energy companies. The result of the analysis indicates that (1) both the out-degree of the actor nodes of the two-mode network and the weights of the edges of the one-mode network follow a power-law distribution; (2) there are significant differences between the weighted and un-weighted shareholding similarity coefficient of the worldwide listed energy companies, and the weighted shareholding similarity coefficient is of greater regularity than the un-weighted one; (3) there are a vast majority of shareholders who hold stock in only one or a few of the listed energy companies; and (4) the shareholders hold stock in the same listed energy companies when the value of the un-weighted shareholding similarity coefficient is between 0.4 and 0.8. The study will be a helpful tool to analyze the relationships of the nodes of the one-mode network, which is constructed based

  1. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    Science.gov (United States)

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among

  2. Dual-mode optical fiber-based tweezers for robust trapping and manipulation of absorbing particles in air

    Science.gov (United States)

    Sil, Souvik; Kanti Saha, Tushar; Kumar, Avinash; Bera, Sudipta K.; Banerjee, Ayan

    2017-12-01

    We develop an optical tweezers system using a single dual-mode optical fiber where mesoscopic absorbing particles can be trapped in three dimensions and manipulated employing photophoretic forces. We generate a superposition of fundamental and first order Hermite-Gaussian beam modes by the simple innovation of coupling a laser into a commercial optical fiber designed to be single mode for a wavelength higher than that of the laser. We achieve robust trapping of the absorbing particles for hours using both the pure fundamental and superposition mode beams and attain large manipulation velocities of ˜5 mm s-1 in the axial direction and ˜0.75 mm s-1 in the radial direction. We then demonstrate that the superposition mode is more effective in trapping and manipulation compared to the fundamental mode by around 80%, which may be increased several times by the use of a pure first order Hermite-Gaussian mode. The work has promising implications for trapping and spectroscopy of aerosols in air using simple optical fiber-based traps.

  3. Modeling Mode Choice Behavior Incorporating Household and Individual Sociodemographics and Travel Attributes Based on Rough Sets Theory

    Directory of Open Access Journals (Sweden)

    Long Cheng

    2014-01-01

    Full Text Available Most traditional mode choice models are based on the principle of random utility maximization derived from econometric theory. Alternatively, mode choice modeling can be regarded as a pattern recognition problem reflected from the explanatory variables of determining the choices between alternatives. The paper applies the knowledge discovery technique of rough sets theory to model travel mode choices incorporating household and individual sociodemographics and travel information, and to identify the significance of each attribute. The study uses the detailed travel diary survey data of Changxing county which contains information on both household and individual travel behaviors for model estimation and evaluation. The knowledge is presented in the form of easily understood IF-THEN statements or rules which reveal how each attribute influences mode choice behavior. These rules are then used to predict travel mode choices from information held about previously unseen individuals and the classification performance is assessed. The rough sets model shows high robustness and good predictive ability. The most significant condition attributes identified to determine travel mode choices are gender, distance, household annual income, and occupation. Comparative evaluation with the MNL model also proves that the rough sets model gives superior prediction accuracy and coverage on travel mode choice modeling.

  4. Investigation of microwave photonic filter based on multiple longitudinal modes fiber laser source

    Science.gov (United States)

    Cao, Yuan; Li, Feng; Feng, Xinhuan; Lu, Chao; Guan, Bai-ou; Wai, P. K. A.

    2015-06-01

    We theoretically study the transfer function of a finite impulse response microwave photonic filter (FIR-MPF) system using a multi-wavelength fiber laser source by considering multiple longitudinal modes in each wavelength. The full response function with the response from longitudinal mode taps is obtained. We also discussed the influence of the longitudinal mode envelope and mode spacing on the performance of FIR-MPF. The response function of the longitudinal mode taps is fully discussed and the contribution is compared with the response of the carrier suppression factor for double sideband (DSB) modulation. The multiple longitudinal modes structure in the wavelength taps can be utilized to engineer the response of the FIR-MPF such that desirable features such as high side lode suppression ratio can be realized. The analysis provides a guideline for designing incoherent FIR-MPF systems.

  5. A Novel Electricity Transaction Mode of Microgrids Based on Blockchain and Continuous Double Auction

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2017-11-01

    Full Text Available The installed capacity of distributed generation (DG based on renewable energy sources has increased continuously in power systems, and its market-oriented transaction is imperative. However, traditional transaction management based on centralized organizations has many disadvantages, such as high operation cost, low transparency, and potential risk of transaction data modification. Therefore, a decentralized electricity transaction mode for microgrids is proposed in this study based on blockchain and continuous double auction (CDA mechanism. A buyer and seller initially complete the transaction matching in the CDA market. In view of the frequent price fluctuation in the CDA market, an adaptive aggressiveness strategy is used to adjust the quotation timely according to market changes. DG and consumer exchange digital certificate of power and expenditure on the blockchain system and the interests of consumers are then guaranteed by multi-signature when DG cannot generate power due to failure or other reasons. The digital certification of electricity assets is replaced by the sequence number with specific tags in the transaction script, and the size of digital certification can be adjusted according to transaction energy quantity. Finally, the feasibility of market mechanism through specific microgrid case and settlement process is also provided.

  6. Individuals’ Acceptance to Free-Floating Electric Carsharing Mode: A Web-Based Survey in China

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-05-01

    Full Text Available Carsharing is growing rapidly in popularity worldwide. When the vehicles involved are Battery Electric Vehicles (BEV, carsharing has been proven to remarkably contribute to easing energy and environment crises. In this study, individuals’ acceptance to carsharing in China was measured from three aspects: carsharing mode choice behavior, highest acceptable price to use carsharing, and willingness to forgo car purchases. The data were collected by a web-based survey. The hierarchical tree-based regression (HTBR method was applied to explore the effects of potential influencing factors on individuals’ acceptance, and some interesting findings were obtained: participants who know about carsharing were more likely to use carsharing, pay higher prices and forgo car purchases; the most competitive trip purpose and trip distance for choosing carsharing were, respectively, business activities and 11–20 km; most participants (47.1% were willing to pay 1–2 Yuan per minute to use carsharing, and males or participants with higher income-level could accept higher price; and when car purchase restrain policy (CPRP was carried out in a city or the urban public transport service level (UPTSL was high, participants were more willing to forgo car purchases. Based on the above findings, corresponding policies were proposed to provide guidance for successful establishment of carsharing in China.

  7. Individuals’ Acceptance to Free-Floating Electric Carsharing Mode: A Web-Based Survey in China

    Science.gov (United States)

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Xue, Qingwan; Sun, Li

    2017-01-01

    Carsharing is growing rapidly in popularity worldwide. When the vehicles involved are Battery Electric Vehicles (BEV), carsharing has been proven to remarkably contribute to easing energy and environment crises. In this study, individuals’ acceptance to carsharing in China was measured from three aspects: carsharing mode choice behavior, highest acceptable price to use carsharing, and willingness to forgo car purchases. The data were collected by a web-based survey. The hierarchical tree-based regression (HTBR) method was applied to explore the effects of potential influencing factors on individuals’ acceptance, and some interesting findings were obtained: participants who know about carsharing were more likely to use carsharing, pay higher prices and forgo car purchases; the most competitive trip purpose and trip distance for choosing carsharing were, respectively, business activities and 11–20 km; most participants (47.1%) were willing to pay 1–2 Yuan per minute to use carsharing, and males or participants with higher income-level could accept higher price; and when car purchase restrain policy (CPRP) was carried out in a city or the urban public transport service level (UPTSL) was high, participants were more willing to forgo car purchases. Based on the above findings, corresponding policies were proposed to provide guidance for successful establishment of carsharing in China. PMID:28468318

  8. Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.

    Science.gov (United States)

    Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko

    2017-07-01

    Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.

  9. Individuals' Acceptance to Free-Floating Electric Carsharing Mode: A Web-Based Survey in China.

    Science.gov (United States)

    Wang, Yun; Yan, Xuedong; Zhou, Yu; Xue, Qingwan; Sun, Li

    2017-05-02

    Carsharing is growing rapidly in popularity worldwide. When the vehicles involved are Battery Electric Vehicles (BEV), carsharing has been proven to remarkably contribute to easing energy and environment crises. In this study, individuals' acceptance to carsharing in China was measured from three aspects: carsharing mode choice behavior, highest acceptable price to use carsharing, and willingness to forgo car purchases. The data were collected by a web-based survey. The hierarchical tree-based regression (HTBR) method was applied to explore the effects of potential influencing factors on individuals' acceptance, and some interesting findings were obtained: participants who know about carsharing were more likely to use carsharing, pay higher prices and forgo car purchases; the most competitive trip purpose and trip distance for choosing carsharing were, respectively, business activities and 11-20 km; most participants (47.1%) were willing to pay 1-2 Yuan per minute to use carsharing, and males or participants with higher income-level could accept higher price; and when car purchase restrain policy (CPRP) was carried out in a city or the urban public transport service level (UPTSL) was high, participants were more willing to forgo car purchases. Based on the above findings, corresponding policies were proposed to provide guidance for successful establishment of carsharing in China.

  10. Investigating properties of the cardiovascular system using innovative analysis algorithms based on ensemble empirical mode decomposition.

    Science.gov (United States)

    Yeh, Jia-Rong; Lin, Tzu-Yu; Chen, Yun; Sun, Wei-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2012-01-01

    Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the properties of arterial stiffness and systemic resistance for a pig's cardiovascular system via ECG and blood pressure (BP). This experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the merits of the EEMD for signal analysis.

  11. Empirical Mode Decomposition-Based Analysis of Heart Rate Signal Affected by Iranian Music

    Directory of Open Access Journals (Sweden)

    Soheila HAJIZADEH

    2015-09-01

    Full Text Available Purpose: Several studies have been done measuring the effects of music on various vital signs more frequently on the electrocardiogram (ECG and consequently the heart rate (HR. This study has been conducted to address the effects of Iranian music on cardiac functioning by thoroughly examining the extracted HR from ECG signals. A strong mathematical method is needed to extract signal features. One of the adaptive mathematical analyses is empirical mode decomposition (EMD, which is implemented to analyze the nonlinear and non-stationary data. This method can decompose any complicated signal into a group of intrinsic mode functions (IMFs through a sifting process. Basic methods: In this paper the EMD-based feature extraction algorithm of HR signal which does not require a priori functional basis will be described. Fast Fourier transforms (FFT are used to identify the peaks in the signal. Then maximum amplitude (MaxFFT and maximum frequency (MaxFreq using FFT and sample entropy (SampEn for each extracted IMF and their combinations are calculated. SampEn algorithm is applied to calculate the complexity of each IMF and their combinations. Paired sample t-test was also conducted to assess if there were any significant differences between MaxFFT, SampEn and MaxFreq values of the IMFs. Main results: Considering the high frequency IMFs, results indicate that the MaxFFT values are decreased, but the SampEn and MaxFreq values are increased during listening to Iranian music. Conclusion: Experimental results from 62 subjects showed that the proposed methodology can be useful to show the differences between pre-music and during-music stages.

  12. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein.

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    Full Text Available A variety of approaches have been employed to generate binding proteins from non-antibody scaffolds. Utilizing a beta-sheet of the human ubiquitin for paratope creation we obtained binding proteins against tumor necrosis factor (TNF-alpha. The bioactive form of this validated pharmacological target protein is a non-covalently linked homo-trimer. This structural feature leads to the observation of a certain heterogeneity concerning the binding mode of TNF-alpha binding molecules, for instance in terms of monomer/trimer specificity. We analyzed a ubiquitin-based TNF-alpha binder, selected by ribosome display, with a particular focus on its mode of interaction. Using enzyme-linked immunosorbent assays, specific binding to TNF-alpha with nanomolar affinity was observed. In isothermal titration calorimetry we obtained comparable results regarding the affinity and detected an exothermic reaction with one ubiquitin-derived binding molecule binding one TNF-alpha trimer. Using NMR spectroscopy and other analytical methods the 1:3 stoichiometry could be confirmed. Detailed binding analysis showed that the interaction is affected by the detergent Tween-20. Previously, this phenomenon was reported only for one other type of alternative scaffold-derived binding proteins--designed ankyrin repeat proteins--without further investigation. As demonstrated by size exclusion chromatography and NMR spectroscopy, the presence of the detergent increases the association rate significantly. Since the special architecture of TNF-alpha is known to be modulated by detergents, the access to the recognized epitope is indicated to be restricted by conformational transitions within the target protein. Our results suggest that the ubiquitin-derived binding protein targets a new epitope on TNF-alpha, which differs from the epitopes recognized by TNF-alpha neutralizing antibodies.

  13. Method for Adapting to Rough Terrain Based on Environmental Modes for Biped Robots

    Science.gov (United States)

    Ohashi, Eijiro; Sato, Tomoya; Ohnishi, Kouhei

    This paper describes a method for adapting to rough terrain for biped robots. The robots obtain information of reaction force from the ground by sensors located at each corner of rectangular soles. From the sensor information, environmental modes are extracted. The environmental modes consist of four modes: heaving, rolling, pitching, and twisting, which represent contact states between the ground and the soles. On the basis of the twisting mode, the robot detects the unevenness of the ground, makes contact with the uneven ground stably with three corners of the sole, and modifies the trajectory to continue stable walking. The validity of the proposed method is confirmed by experimental results.

  14. Game-Theory Based Research on Oil-Spill Prevention and Control Modes in Three Gorges Reservoir Area

    Science.gov (United States)

    Yin, Jie; Xiong, Ting

    2018-01-01

    Aiming at solving the existing oil pollution in the Three Gorges reservoir, this paper makes research on oil-spill prevention and control mode based on game theory. Regarding the built modes and comparative indicator system, overall efficiency indicator functions are used to compare general effect, overall cost, and overall efficiency, which concludes that the mode combining government and enterprise has the highest overall efficiency in preventing and controlling ship oil spills. The suggested mode together its correspondingly designed management system, has been applied to practice for a year in Three Gorges Reservoir Area and has made evident improvements to the existing oil pollution, meanwhile proved to be quite helpful to the pollution prevention and control in the lower reaches of Yangtze River.

  15. Damage detection based on mode shapes of a girder bridge constructed from responses of a moving vehicle under impact excitation

    Science.gov (United States)

    Qi, Zhongqiang; Au, Francis T. K.

    2016-04-01

    The vibration mode shapes are often used to identify damage of bridges because the mode shapes are not only important modal properties but also sensitive to damage. However, the key issue is how to conveniently obtain the mode shapes of a bridge in service. Traditional methods invariably require installation of instruments on the bridge for collection of dynamic responses for constructing mode shapes, which are both costly and inconvenient. Therefore a method is developed to construct the mode shapes of simply supported bridges based on Hilbert Transform using only vehicle acceleration response for identification of the location of damage. Firstly, an algorithm is devised to construct the mode shapes by using the dynamic responses extracted from a moving vehicle under impact excitation. Then, based on these intermediate results, the coordinate modal assurance criterion in conjunction with suitable wavelets is used to identify the location of damage. Compared with the traditional methods, the proposed method uses only the information from the moving vehicle. Moreover, additional impact excitation on the vehicle helps to excite the bridge. This helps to improve the accuracy by overcoming the adverse effects of measurement noise and road surface roughness, which leads to high accuracy of damage detection. To verify the feasibility of the proposed method, some numerical studies have been carried out to investigate the effects of measurement noise, road surface roughness and multiple locations of damage on the accuracy of results.

  16. Robust equivalent consumption-based controllers for a dual-mode diesel parallel HEV

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio; Venditti, Mattia

    2016-01-01

    Highlights: • Non-plug-in dual-mode parallel hybrid architecture. • Cross-validation machine-learning for robust equivalent consumption-based controllers. • Optimal control strategy based on fuel consumption, NOx and battery aging. • Impact of different equivalent consumption definitions on HEV performance. • Correlation between vehicle braking energy and SOC variation in the traction stages. - Abstract: New equivalent consumption minimization strategy (ECMS) tools have been developed and applied to identify the optimal control strategy of a dual-mode parallel hybrid electric vehicle equipped with a compression-ignition engine. In this architecture, the electric machine is coupled to the engine through either a single-speed gearbox (torque-coupling) or a planetary gear set (speed-coupling). One of the main novelties of the present study concerns the definition of the instantaneous equivalent consumption (EC) function, which takes into account not only fuel consumption (FC) and the energy flow through the electric components, but also NO x emissions, battery aging, and the battery SOC. The EC function has been trained using a cross-validation machine-learning technique, based on a genetic algorithm, where the training data set has been selected in order to maximize performances over a testing data set. The adoption of this technique, in conjunction with the new definition of EC, have led to the identification of very robust controllers, which provide an accurate control for different driving scenarios, even when the EC function is not specifically trained on the same missions over which it is tested. To this aim, a data set of fifty driving cycles and six user-defined missions, which cover a total distance of 70–100 km, has been considered as a training driving set. The ECMS controllers can be implemented in a vehicle control unit, and their performance has resulted to be close to that of a dynamic programming tool, which has here been used as benchmark

  17. Sliding mode based trajectory linearization control for hypersonic reentry vehicle via extended disturbance observer.

    Science.gov (United States)

    Xingling, Shao; Honglun, Wang

    2014-11-01

    This paper proposes a novel hybrid control framework by combing observer-based sliding mode control (SMC) with trajectory linearization control (TLC) for hypersonic reentry vehicle (HRV) attitude tracking problem. First, fewer control consumption is achieved using nonlinear tracking differentiator (TD) in the attitude loop. Second, a novel SMC that employs extended disturbance observer (EDO) to counteract the effect of uncertainties using a new sliding surface which includes the estimation error is integrated to address the tracking error stabilization issues in the attitude and angular rate loop, respectively. In addition, new results associated with EDO are examined in terms of dynamic response and noise-tolerant performance, as well as estimation accuracy. The key feature of the proposed compound control approach is that chattering free tracking performance with high accuracy can be ensured for HRV in the presence of multiple uncertainties under control constraints. Based on finite time convergence stability theory, the stability of the resulting closed-loop system is well established. Also, comparisons and extensive simulation results are presented to demonstrate the effectiveness of the control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Strain-induced phase transformation in a cobalt-based superalloy during different loading modes

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Michael L. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Liaw, Peter K., E-mail: pliaw@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Choo, Hahn [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brown, Donald W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Daymond, Mark R. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON K7N3L6 (Canada); Klarstrom, Dwaine L. [Hayne' s International, Inc., Kokomo, IN 46904 (United States)

    2011-07-15

    Highlights: {yields} The strain-induced FCC {yields} HCP phase transformation in a cobalt-based superalloy was investigated with neutron-diffraction experiments and with in-situ loading {yields} The transformation onset and the accumulation rate for each loading case were quantified for monotonic tension, monotonic compression, high-cycle fatigue, and low-cycle fatigue, respectively {yields} The dissipation of the hysteresis energy by microstructural changes may not always be negligible for modeling the temperature evolution during mechanical deformation - Abstract: The strain-induced face-centered cubic (FCC) {yields} hexagonal-close packed (HCP) phase transformation in a cobalt-based superalloy was investigated with four in situ loading neutron-diffraction experiments: monotonic tension, monotonic compression, high-cycle fatigue, and low-cycle fatigue. The transformation onsets for the four respective cases were 685 MPa, 698 MPa, 1 cycle, and 3 cycles, respectively. The HCP phase accumulated at rates of 0.1 wt.%-MPa{sup -1} and 0.05 wt.%-MPa{sup -1} for the tension and compression cases, respectively. For the cyclic-loading cases, the accumulation rates were found to be inversely proportional to the number of fatigue cycles. The results under the different loading modes suggest that the phase transformation occurs according to a tensile plastic-work criterion.

  19. Electrocardiogram signal denoising based on empirical mode decomposition technique: an overview

    Science.gov (United States)

    Han, G.; Lin, B.; Xu, Z.

    2017-03-01

    Electrocardiogram (ECG) signal is nonlinear and non-stationary weak signal which reflects whether the heart is functioning normally or abnormally. ECG signal is susceptible to various kinds of noises such as high/low frequency noises, powerline interference and baseline wander. Hence, the removal of noises from ECG signal becomes a vital link in the ECG signal processing and plays a significant role in the detection and diagnosis of heart diseases. The review will describe the recent developments of ECG signal denoising based on Empirical Mode Decomposition (EMD) technique including high frequency noise removal, powerline interference separation, baseline wander correction, the combining of EMD and Other Methods, EEMD technique. EMD technique is a quite potential and prospective but not perfect method in the application of processing nonlinear and non-stationary signal like ECG signal. The EMD combined with other algorithms is a good solution to improve the performance of noise cancellation. The pros and cons of EMD technique in ECG signal denoising are discussed in detail. Finally, the future work and challenges in ECG signal denoising based on EMD technique are clarified.

  20. Effective connectivity analysis of default mode network based on the Bayesian network learning approach

    Science.gov (United States)

    Li, Rui; Chen, Kewei; Zhang, Nan; Fleisher, Adam S.; Li, Yao; Wu, Xia

    2009-02-01

    This work proposed to use the linear Gaussian Bayesian network (BN) to construct the effective connectivity model of the brain's default mode network (DMN), a set of regions characterized by more increased neural activity during rest-state than most goal-oriented tasks. In a complete unsupervised data-driven manner, Bayesian information criterion (BIC) based learning approach was utilized to identify a highest scored network whose nodes (brain regions) were selected based on the result from the group independent component analysis (Group ICA) examining the DMN. We put forward to adopt the statistical significance testing method for regression coefficients used in stepwise regression analysis to further refine the network identified by BIC. The final established BN, learned from the functional magnetic resonance imaging (fMRI) data acquired from 12 healthy young subjects during rest-state, revealed that the hippocampus (HC) was the most influential brain region that affected activities in all other regions included in the BN. In contrast, the posterior cingulate cortex (PCC) was influenced by other regions, but had no reciprocal effects on any other region. Overall, the configuration of our BN illustrated that a prominent connection from HC to PCC existed in the DMN.

  1. IPMSM velocity and current control using MTPA based adaptive fractional order sliding mode controller

    Directory of Open Access Journals (Sweden)

    Sayed Hamed Hosseini

    2017-06-01

    Full Text Available This paper presents a two-loop approach for velocity and stator currents control of an Interior-type Permanent Magnet Synchronous Motor (IPMSM. In the outer loop, the reference torque obtained from a conventional PI controller gives two-axis stator reference currents based on Maximum-Torque per Ampere (MTPA strategy. In the inner loop, an adaptive fractional order sliding mode controller is designed to reach the two-axis stator currents to their reference values obtained from the MTPA method. To achieve this idea, fractional order sliding surfaces and an adaptive controller with adjustable parameters are employed. The adaptive controller is designed to increase the robustness of the proposed method against the uncertainties in stator resistance and inductances. A Lyapunov based adaptation mechanism is proposed for adjustment of the controller parameters. The optimal value of the fractional orders are obtained by optimization of an integral time absolute error performance index. The simulation results show the robustness of the proposed method against the uncertainties in stator resistance and stator inductances.

  2. Mode-locked Tm-doped fiber laser based on iron-doped carbon nitride nanosheets

    Science.gov (United States)

    Luo, Yongfeng; Zhou, Yan; Tang, Yulong; Xu, Jianqiu; Hu, Chenxia; Gao, Linfeng; Zhang, Haoli; Wang, Qiang

    2017-11-01

    Solution based nanosheets of iron-doped graphitic carbon nitrides (Fe-g-CN) have been prepared and their optical properties (both linear and nonlinear) are studied. These two-dimensional (2D) nanosheets show an absorption spectrum extending to over 2 µm, and in particular they possess strong nonlinear (saturable) absorption in the 2 µm spectral region. A saturable absorber (SA) manufactured from 2D Fe-g-CN nanosheets gives a modulation depth and saturation intensity of 12.9% and 8.9 MW cm‑2, respectively. This SA is further used to mode-lock thulium-doped fiber lasers, producing 2 µm laser pulses with a duration of 16.6 ps (dechirped to 2.2 ps), an average power of 96.4 mW, a pulse energy of 6.3 nJ, and a repetition rate of 15.3 MHz. As a new type of 2D nonlinear material with strong modulation capabilities, solution-based Fe-g-CN nanosheets can be potentially integrated into photonic and optoelectrionic devices, particuarly in the 2 µm spectral region.

  3. Development of distributed temperature sensor based on single-mode fiber

    Science.gov (United States)

    Jiang, Mingshun; Wang, Jing; Feng, Dejun; Sui, Qingmei

    2008-12-01

    The distributed optical fiber temperature measurement system (DTS) is a kind of sensing system, which is applied to the real-time measurement of the temperature field in space. It is widely used in monitoring of production process: fire alarm of coal mine and fuel depots, heat detection and temperature monitor of underground cable, seepage and leakage of dam. Through analyzing temperature effect of optical fiber Raman backscattering theoretically, a distributed temperature sensor based on single-mode fiber was designed, which overcame the inadequacies of multimode fiber. The narrow pulse width laser, excellent InGaAS PIN, low noise precision difet operational amplifier and high speed data acquisition card in order to improve the stability of this system were selected. The demodulation method based on ratio of Anti-Stokes and Stokes Raman backscattering intensity was adopted. Both hardware composition and software implementation of the system were introduced in detail. It is proved that its distinguishing ability of temperature and space are 1 m and 2 m, respectively. The system response time is about 180 s, with a sensing range of 5 km and the temperature measurement range 0~100 °C.

  4. Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality

    Science.gov (United States)

    Zulfatman; Marzuki, Mohammad; Alif Mardiyah, Nur

    2017-04-01

    Two-link flexible manipulator is a manipulator robot which at least one of its arms is made of lightweight material and not rigid. Flexible robot manipulator has some advantages over the rigid robot manipulator, such as lighter, requires less power and costs, and to result greater payload. However, suitable control algorithm to maintain the two-link flexible robot manipulator in accurate positioning is very challenging. In this study, sliding mode control (SMC) was employed as robust control algorithm due to its insensitivity on the system parameter variations and the presence of disturbances when the system states are sliding on a sliding surface. SMC algorithm was combined with linear matrix inequality (LMI), which aims to reduce the effects of chattering coming from the oscillation of the state during sliding on the sliding surface. Stability of the control algorithm is guaranteed by Lyapunov function candidate. Based on simulation works, SMC based LMI resulted in better performance improvements despite the disturbances with significant chattering reduction. This was evident from the decline of the sum of squared tracking error (SSTE) and the sum of squared of control input (SSCI) indexes respectively 25.4% and 19.4%.

  5. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects...

  6. Amorphous SiC/c-ZnO-Based Quasi-Lamb Mode Sensor for Liquid Environments

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2017-05-01

    Full Text Available The propagation of the quasi-Lamb modes along a-SiC/ZnO thin composite plates was modeled and analysed with the aim to design a sensor able to detect the changes in parameters of a liquid environment, such as added mass and viscosity changes. The modes propagation was modeled by numerically solving the system of coupled electro-mechanical field equations in three media. The mode shape, the power flow, the phase velocity, and the electroacoustic coupling efficiency (K2 of the modes were calculated, specifically addressing the design of enhanced-coupling, microwave frequency sensors for applications in probing the solid/liquid interface. Three modes were identified that have predominant longitudinal polarization, high phase velocity, and quite good K2: the fundamental quasi symmetric mode (qS0 and two higher order quasi-longitudinal modes (qL1 and qL2 with a dominantly longitudinal displacement component in one plate side. The velocity and attenuation of these modes were calculated for different liquid viscosities and added mass, and the gravimetric and viscosity sensitivities of both the phase velocity and attenuation were theoretically calculated. The present study highlights the feasibility of the a-SiC/ZnO acoustic waveguides for the development of high-frequency, integrated-circuit compatible electroacoustic devices suitable for working in a liquid environment.

  7. Analysis of entropies based on empirical mode decomposition in amnesic mild cognitive impairment of diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Dong Cui

    2015-09-01

    Full Text Available EEG characteristics that correlate with the cognitive functions are important in detecting mild cognitive impairment (MCI in T2DM. To investigate the complexity between aMCI group and age-matched non-aMCI control group in T2DM, six entropies combining empirical mode decomposition (EMD, including Approximate entropy (ApEn, Sample entropy (SaEn, Fuzzy entropy (FEn, Permutation entropy (PEn, Power spectrum entropy (PsEn and Wavelet entropy (WEn were used in the study. A feature extraction technique based on maximization of the area under the curve (AUC and a support vector machine (SVM were subsequently used to for features selection and classification. Finally, Pearson's linear correlation was employed to study associations between these entropies and cognitive functions. Compared to other entropies, FEn had a higher classification accuracy, sensitivity and specificity of 68%, 67.1% and 71.9%, respectively. Top 43 salient features achieved classification accuracy, sensitivity and specificity of 73.8%, 72.3% and 77.9%, respectively. P4, T4 and C4 were the highest ranking salient electrodes. Correlation analysis showed that FEn based on EMD was positively correlated to memory at electrodes F7, F8 and P4, and PsEn based on EMD was positively correlated to Montreal cognitive assessment (MoCA and memory at electrode T4. In sum, FEn based on EMD in right-temporal and occipital regions may be more suitable for early diagnosis of the MCI with T2DM.

  8. Numerical simulation of passively mode-locked fiber laser based on semiconductor optical amplifier

    Science.gov (United States)

    Yang, Jingwen; Jia, Dongfang; Zhang, Zhongyuan; Chen, Jiong; Liu, Tonghui; Wang, Zhaoying; Yang, Tianxin

    2013-03-01

    Passively mode-locked fiber laser (MLFL) has been widely used in many applications, such as optical communication system, industrial production, information processing, laser weapons and medical equipment. And many efforts have been done for obtaining lasers with small size, simple structure and shorter pulses. In recent years, nonlinear polarization rotation (NPR) in semiconductor optical amplifier (SOA) has been studied and applied as a mode-locking mechanism. This kind of passively MLFL has faster operating speed and makes it easier to realize all-optical integration. In this paper, we had a thorough analysis of NPR effect in SOA. And we explained the principle of mode-locking by SOA and set up a numerical model for this mode-locking process. Besides we conducted a Matlab simulation of the mode-locking mechanism. We also analyzed results under different working conditions and several features of this mode-locking process are presented. Our simulation shows that: Firstly, initial pulse with the peak power exceeding certain threshold may be amplified and compressed, and stable mode-locking may be established. After about 25 round-trips, stable mode-locked pulse can be obtained which has peak power of 850mW and pulse-width of 780fs.Secondly, when the initial pulse-width is greater, narrowing process of pulse is sharper and it needs more round-trips to be stable. Lastly, the bias currents of SOA affect obviously the shape of mode-locked pulse and the mode-locked pulse with high peak power and narrow width can be obtained through adjusting reasonably the bias currents of SOA.

  9. Stabilization of Multiple Unstable Modes for Small-Scale Inverter-Based Power Systems with Impedance-Based Stability Analysis

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    This paper investigates the harmonic stability of small-scale inverter-based power systems. A holistic procedure to assess the contribution of each inverter to the system stability is proposed by means of using the impedancebased stability criterion. Multiple unstable modes can be identified step......-by-step coming from the interactions among inverters and passive networks. Compared to the conventional system stability analysis, the approach is easy to implement and avoids the effect of potential unstable system dynamics on the impedance ratio derived for the stability analysis. PSCAD/ EMTDC simulations...... of a Cigre LV network Benchmark system with multiple renewable energy sources are carried out. The results confirm the validity of the proposed approach....

  10. Computational Fluid Dynamics (CFD) Simulation of Hypersonic Turbine-Based Combined-Cycle (TBCC) Inlet Mode Transition

    Science.gov (United States)

    Slater, John W.; Saunders, John D.

    2010-01-01

    Methods of computational fluid dynamics were applied to simulate the aerodynamics within the turbine flowpath of a turbine-based combined-cycle propulsion system during inlet mode transition at Mach 4. Inlet mode transition involved the rotation of a splitter cowl to close the turbine flowpath to allow the full operation of a parallel dual-mode ramjet/scramjet flowpath. Steady-state simulations were performed at splitter cowl positions of 0deg, -2deg, -4deg, and -5.7deg, at which the turbine flowpath was closed half way. The simulations satisfied one objective of providing a greater understanding of the flow during inlet mode transition. Comparisons of the simulation results with wind-tunnel test data addressed another objective of assessing the applicability of the simulation methods for simulating inlet mode transition. The simulations showed that inlet mode transition could occur in a stable manner and that accurate modeling of the interactions among the shock waves, boundary layers, and porous bleed regions was critical for evaluating the inlet static and total pressures, bleed flow rates, and bleed plenum pressures. The simulations compared well with some of the wind-tunnel data, but uncertainties in both the windtunnel data and simulations prevented a formal evaluation of the accuracy of the simulation methods.

  11. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    Science.gov (United States)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  12. Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement.

    Science.gov (United States)

    Benbouzid, Mohamed; Beltran, Brice; Amirat, Yassine; Yao, Gang; Han, Jingang; Mangel, Hervé

    2014-05-01

    This paper deals with the fault ride-through capability assessment of a doubly fed induction generator-based wind turbine using a high-order sliding mode control. Indeed, it has been recently suggested that sliding mode control is a solution of choice to the fault ride-through problem. In this context, this paper proposes a second-order sliding mode as an improved solution that handle the classical sliding mode chattering problem. Indeed, the main and attractive features of high-order sliding modes are robustness against external disturbances, the grids faults in particular, and chattering-free behavior (no extra mechanical stress on the wind turbine drive train). Simulations using the NREL FAST code on a 1.5-MW wind turbine are carried out to evaluate ride-through performance of the proposed high-order sliding mode control strategy in case of grid frequency variations and unbalanced voltage sags. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Multiresolution transmission of the correlation modes between bivariate time series based on complex network theory

    Science.gov (United States)

    Huang, Xuan; An, Haizhong; Gao, Xiangyun; Hao, Xiaoqing; Liu, Pengpeng

    2015-06-01

    This study introduces an approach to study the multiscale transmission characteristics of the correlation modes between bivariate time series. The correlation between the bivariate time series fluctuates over time. The transmission among the correlation modes exhibits a multiscale phenomenon, which provides richer information. To investigate the multiscale transmission of the correlation modes, this paper describes a hybrid model integrating wavelet analysis and complex network theory to decompose and reconstruct the original bivariate time series into sequences in a joint time-frequency domain and defined the correlation modes at each time-frequency domain. We chose the crude oil spot and futures prices as the sample data. The empirical results indicate that the main duration of volatility (32-64 days) for the strongly positive correlation between the crude oil spot price and the futures price provides more useful information for investors. Moreover, the weighted degree, weighted indegree and weighted outdegree of the correlation modes follow power-law distributions. The correlation fluctuation strengthens the extent of persistence over the long term, whereas persistence weakens over the short and medium term. The primary correlation modes dominating the transmission process and the major intermediary modes in the transmission process are clustered both in the short and long term.

  14. A novel squeeze mode based magnetorheological valve: design, test and evaluation

    Science.gov (United States)

    Li, Zhihua; Zhang, Xinjie; Guo, Konghui; Ahmadian, Mehdi; Liu, Yang

    2016-12-01

    Magnetorheological (MR) devices have been investigated intensively nowadays, of which MR valve is an important and hot application with the challenges of acquiring high pressure drop within compact configurations. Hence, a novel squeeze mode based MR valve (SMRV) is proposed in this paper, with highlights of high pressure drop and low power consumption within a compact and transplantable structure. SMRV’s characteristics are studied and its core parts are designed including the initial gaps, magnetic circuit and returning spring. The uniform-saturation magnetic intensity principle is proposed and a co-simulation optimal platform is developed to optimize magnetic intensity of the SMRV dimensions. Then, a prototype is developed and its steady-state performance is evaluated. The test results demonstrate that a pressure drop of 10.8 MPa and a controllable ratio of 5 at 1.0 A applied current are achieved within a transplantable configuration. Meanwhile, SMRV only consumes 1/400 W control power to dissipate 1 W fluid power and its power-volume consumption rate, P C · V/P D, is 3.3 × 102 mm3, which has a brilliant application prospect in hydraulic or mechatronic systems.

  15. Photoelectric diagnostics of InGaN-based LEDs in static and dynamic modes

    Science.gov (United States)

    Radaev, O. A.; Frolov, I. V.; Sergeev, V. A.

    2017-11-01

    The method and measuring installation for diagnostics of light-emitting heterostructures (HS) with the quantum well (QW) by registration of the photocurrent arising in case of radiation of HS the narrow-band optical radiation of different wavelength in the static and dynamic modes are described. On the example of commercial InGaN-based LEDs it is shown that offset of a maximum of photocurrent spectrum concerning a maximum of electroluminescence spectrum is defined by QW depth. The steepness of photocurrent spectrum on the section corresponding to absorption in QW is defined by structural perfection of heteroboundaries. In case of harmonic modulation of a luminous flux on all probed wave-lengths amplitude of a photocurrent of blue LEDs monotonically falls down with growth of modulation frequency with the steepness 0,2 dB for a decade, and at green LEDs to the frequency of 200 kHz the plateau and then recession with the steepness 8 dB for a decade is watched.

  16. Artificially controlled backscattering in single mode fibers based on femtosecond laser fabricated reflectors

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; Wu, Qiong

    2018-04-01

    A novel method to artificially control the backscattering of the single-mode fiber (SMF) is proposed and investigated for the first time. This method can help to fabricate a high backscattering fiber (HBSF), such as by fabricating reflectors in every one meter interval of an SMF based on the exposure of the femtosecond laser beam. The artificially controlled backscattering (ACBS) can be much higher than the natural Rayleigh backscattering (RB) of the SMF. The RB power and ACBS power in the unit length fiber are derived according to the theory of the RBS. The total relative power and the relative back power reflected in the unit length of the HBSF have been simulated and presented. The simulated results show that the HBSF has the characteristics of both low optical attenuation and high backscattering. The relative back power reflected in the unit length of the HBSF is 25dB larger than the RB power of the SMF when the refractive index modulation quantity of the reflectors is 0.009. Some preliminary experiments also indicate that the method fabricating reflectors to increase the backscattering power of the SMF is practical and promising.

  17. Investigation of thyristor-based switches triggered in impact-ionization wave mode

    Science.gov (United States)

    Gusev, A. I.; Lyubutin, S. K.; Rukin, S. N.; Slovikovsky, B. G.; Tsyranov, S. N.

    2017-05-01

    An operation of the thyristor-based switches triggered in impact-ionization wave mode has been investigated. The thyristor switch contained two series connected tablet thyristors having a silicon wafer of 56 mm diameter. Applying across the switch a triggering pulse with a voltage rise rate dU/dt of over 1 kV/ns, the thyristors transition time to a conductive state was reduced to shorter than 1 ns. It is shown that the maximum amplitude of a no-failure current is increased with increasing dU/dt at the triggering stage. A possible mechanism of the dU/dt value effect on the thyristors breakdown current is discussed. Under a safety operation regime at dU/dt = 6 kV/ns (3 kV/ns per a single thyristor), the switch discharged 1-mF capacitor, which was charged to a voltage of 5 kV, to a resistive load of 18 mΩ. The following results were obtained: a peak current was 200 kA, an initial dI/dt was 58 kA/µs, a FWHM was 25 µs, and a switching efficiency was 0.97. It is shown also that a temperature of the silicon wafer is one of the main factors that affects on the thyristor switching process.

  18. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  19. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Nava, Enzo; Stucchi, Emanuele; Trespidi, Franco; Mariottini, Cristina; Wazen, Paul; Falletto, Nicolas; Fruit, Michel

    2017-11-01

    This paper describes the laser transmitter assembly used in the ALADIN instrument currently in C/D development phase for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The Laser Transmitter Assembly (TXA), based on a diode pumped tripled Nd:YAG laser, is used to generate tunable laser pulses of 150 mJ at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz. The TXA is composed of the following units: a diodepumped CW Nd:YAG Laser named Reference Laser Head (RLH), used to inject a diode-pumped, Q-switched, amplified and frequency tripled Nd:YAG Laser working in the third harmonic referred as Power Laser Head (PLH) and a Transmitter Laser Electronics (TLE) containing all the control and power electronics needed for PLH and RLH operation. The TXA is made by an European consortium under the leadership of Galileo Avionica (It), and including CESI (It), Quantel (Fr), TESAT (Ge) and Thales (Fr).

  20. Operating modes of a hydrogen ion source based on a hollow-cathode pulsed Penning discharge.

    Science.gov (United States)

    Oks, E M; Shandrikov, M V; Vizir, A V

    2016-02-01

    An ion source based on a hollow-cathode Penning discharge was switched to a high-current pulsed mode (tens of amperes and tens of microseconds) to produce an intense hydrogen ion beam. With molecular hydrogen (H2), the ion beam contained three species: H(+), H2(+), and H3(+). For all experimental conditions, the fraction of H2 (+) ions in the beam was about 10 ÷ 15% of the total ion beam current and varied little with ion source parameters. At the same time, the ratio of H(+) and H3(+) depended strongly on the discharge current, particularly on its distribution in the gap between the hollow and planar cathodes. Increasing the discharge current increased the H(+) fraction in ion beam. The maximum fraction of H(+) reached 80% of the total ion beam current. Forced redistribution of the discharge current in the cathode gap for increasing the hollow cathode current could greatly increase the H3(+) fraction in the beam. At optimum parameters, the fraction of H3(+) ions reached 60% of the total ion beam current.

  1. State observer-based sliding mode control for semi-active hydro-pneumatic suspension

    Science.gov (United States)

    Ren, Hongbin; Chen, Sizhong; Zhao, Yuzhuang; Liu, Gang; Yang, Lin

    2016-02-01

    This paper proposes an improved virtual reference model for semi-active suspension to coordinate the vehicle ride comfort and handling stability. The reference model combines the virtues of sky-hook with ground-hook control logic, and the hybrid coefficient is tuned according to the longitudinal and lateral acceleration so as to improve the vehicle stability especially in high-speed condition. Suspension state observer based on unscented Kalman filter is designed. A sliding mode controller (SMC) is developed to track the states of the reference model. The stability of the SMC strategy is proven by means of Lyapunov function taking into account the nonlinear damper characteristics and sprung mass variation of the vehicle. Finally, the performance of the controller is demonstrated under three typical working conditions: the random road excitation, speed bump road and sharp acceleration and braking. The simulation results indicated that, compared with the traditional passive suspension, the proposed control algorithm can offer a better coordination between vehicle ride comfort and handling stability. This approach provides a viable alternative to costlier active suspension control systems for commercial vehicles.

  2. Novel Applicators for Local Microwave Hyperthermia Based on Zeroth-Order Mode Resonator Metamaterial

    Directory of Open Access Journals (Sweden)

    David Vrba

    2014-01-01

    Full Text Available It is demonstrated that a theory of zero-order mode resonator (ZOR metamaterial (MTM structure can be used for the development of a novel class of applicators for microwave thermotherapy, for example, for hyperthermia in cancer treatment or for physiotherapy. The main idea of creating such an applicator is to generate and radiate a plane electromagnetic (EM wave into the treated biological tissue, at least in a certain extent. The main aim of this paper is to investigate whether an EM wave generated by ZOR MTM structure and emitted into the biological tissue can produce a homogeneous SAR distribution in the planes parallel to the applicator aperture and achieve a penetration depth approaching the theoretical limit represented by SAR distribution and penetration depth of an ideal EM plane wave. EM field distribution inside a virtual phantom of the treated region generated by the applicator that is based on the proposed ZOR MTM principle is investigated using a well-proven full-wave commercial simulation tool. The proposed applicator type shows both a low unwanted leaked electromagnetic field and a fairly homogeneous electric field in its aperture as well as in the virtual phantom of the treated region.

  3. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.

    Science.gov (United States)

    Niu, Jie; Yang, Qianqian; Chen, Guangtao; Song, Rong

    2017-07-01

    This paper introduces a cable-driven robot for upper-limb rehabilitation. Kinematic and dynamic of this rehabilitation robot is analyzed. A sliding mode controller combined with a nonlinear disturbance observer is proposed to control this robot in the presence of disturbances. Simulation is carried out to prove the effectiveness of the proposed control scheme, and the results of the proposed controller is compared with a PID controller and a traditional sliding mode controller. Results show that the proposed controller can effectively improve the tracking performance as compared with the other two controllers and cause lower chattering as compared with a traditional sliding mode controller.

  4. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Podoskin, A. A., E-mail: podoskin@mail.ioffe.ru; Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  5. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    Science.gov (United States)

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  6. Quantifying The External And Internal Loads Of Professional Rugby League Training Modes: Consideration For Concurrent Field-Based Training Prescription.

    Science.gov (United States)

    Weaving, Dan; Jones, Ben; Till, Kevin; Marshall, Phil; Earle, Keith; Abt, Grant

    2017-09-11

    Practitioners prescribe numerous training modes to develop the varied physical qualities professional rugby league players must express during competition. The aim of the current study was to determine how the magnitude of external and internal training load per minute of time differs between modes in professional rugby league players. This data were collected from 17 players across 716 individual sessions (mean (SD) sessions: 42 (13) per player) which were categorised by mode (conditioning, small sided games, skills and sprint training). Derived from global positioning systems (5Hz with 15Hz interpolation), the distances covered within arbitrary speed- and metabolic-power-thresholds were determined to represent the external load. Session rating of perceived exertion (sRPE) and individualised training impulse (iTRIMP) represented the internal load. All data were made relative to session duration. The differences in time-relative load methods between each mode were assessed using magnitude based inferences. Small-sided-games and conditioning very likely to almost certainly produced the greatest relative internal and external loads. Sprint training provided players with the greatest sprinting and maximal-power distances without a concomitant increase in internal load. The metabolic-power method complements speed-based quantification of the external load, particularly during smallsided-games and skills training. In practice, establishing normative loads per minute of time for each mode can be useful to plan future training by multiplying this value by the planned session duration.

  7. Life cycle energy efficiency and environmental impact assessment of bioethanol production from sweet potato based on different production modes.

    Science.gov (United States)

    Zhang, Jun; Jia, Chunrong; Wu, Yi; Xia, Xunfeng; Xi, Beidou; Wang, Lijun; Zhai, Youlong

    2017-01-01

    The bioethanol is playing an increasingly important role in renewable energy in China. Based on the theory of circular economy, integration of different resources by polygeneration is one of the solutions to improve energy efficiency and to reduce environmental impact. In this study, three modes of bioethanol production were selected to evaluate the life cycle energy efficiency and environmental impact of sweet potato-based bioethanol. The results showed that, the net energy ratio was greater than 1 and the value of net energy gain was positive in the three production modes, in which the maximum value appeared in the circular economy mode (CEM). The environment emission mainly occurred to bioethanol conversion unit in the conventional production mode (CPM) and the cogeneration mode (CGM), and eutrophication potential (EP) and global warming potential (GWP) were the most significant environmental impact category. While compared with CPM and CGM, the environmental impact of CEM significantly declined due to increasing recycling, and plant cultivation unit mainly contributed to EP and GWP. And the comprehensive evaluation score of environmental impact decreased by 73.46% and 23.36%. This study showed that CEM was effective in improving energy efficiency, especially in reducing the environmental impact, and it provides a new method for bioethanol production.

  8. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    Science.gov (United States)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  9. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    Science.gov (United States)

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. High Performance Spatial Filter Array Based on Signal Mode Fiber Bundle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Loveraging on Agiltron's experience in optical fiber components, Agiltron proposed a coherent single-mode fiber (SMF) spatial filter array (SFA) with a gradient...

  11. A novel vibration mode testing method for cylindrical resonators based on microphones.

    Science.gov (United States)

    Zhang, Yongmeng; Wu, Yulie; Wu, Xuezhong; Xi, Xiang; Wang, Jianqiu

    2015-01-16

    Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  12. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  13. Development Mode of Mid-small Cities in Northern Jiangsu Based on the Growth Pole Theory

    OpenAIRE

    He, Wei; Tang, Bu-long

    2012-01-01

    The development mode of mid-small cities in northern Jiangsu is analyzed on the Growth Pole theory. Depending on scales, endowment of resources, geographical positions, and industrial advantages of mil-small cities, we can divide the development mode of those mid-small cities within this context into five types: development through integration into big cities; independent development; resource-dependent development; single industry development; and mixed industry development.

  14. The Fault Diagnosis of Rolling Bearing Based on Ensemble Empirical Mode Decomposition and Random Forest

    OpenAIRE

    Qin, Xiwen; Li, Qiaoling; Dong, Xiaogang; Lv, Siqi

    2017-01-01

    Accurate diagnosis of rolling bearing fault on the normal operation of machinery and equipment has a very important significance. A method combining Ensemble Empirical Mode Decomposition (EEMD) and Random Forest (RF) is proposed. Firstly, the original signal is decomposed into several intrinsic mode functions (IMFs) by EEMD, and the effective IMFs are selected. Then their energy entropy is calculated as the feature. Finally, the classification is performed by RF. In addition, the wavelet meth...

  15. Control of equipment isolation system using wavelet-based hybrid sliding mode control

    Science.gov (United States)

    Huang, Shieh-Kung; Loh, Chin-Hsiung

    2017-04-01

    Critical non-structural equipment, including life-saving equipment in hospitals, circuit breakers, computers, high technology instrumentations, etc., is vulnerable to strong earthquakes, and on top of that, the failure of the vibration-sensitive equipment will cause severe economic loss. In order to protect vibration-sensitive equipment or machinery against strong earthquakes, various innovative control algorithms are developed to compensate the internal forces that to be applied. These new or improved control strategies, such as the control algorithms based on optimal control theory and sliding mode control (SMC), are also developed for structures engineering as a key element in smart structure technology. The optimal control theory, one of the most common methodologies in feedback control, finds control forces through achieving a certain optimal criterion by minimizing a cost function. For example, the linear-quadratic regulator (LQR) was the most popular control algorithm over the past three decades, and a number of modifications have been proposed to increase the efficiency of classical LQR algorithm. However, except to the advantage of simplicity and ease of implementation, LQR are susceptible to parameter uncertainty and modeling error due to complex nature of civil structures. Different from LQR control, a robust and easy to be implemented control algorithm, SMC has also been studied. SMC is a nonlinear control methodology that forces the structural system to slide along surfaces or boundaries; hence this control algorithm is naturally robust with respect to parametric uncertainties of a structure. Early attempts at protecting vibration-sensitive equipment were based on the use of existing control algorithms as described above. However, in recent years, researchers have tried to renew the existing control algorithms or developing a new control algorithm to adapt the complex nature of civil structures which include the control of both structures and non

  16. Estimation of aerosol complex refractive indices for both fine and coarse modes simultaneously based on AERONET remote sensing products

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-09-01

    Full Text Available Climate change assessment, especially model evaluation, requires a better understanding of complex refractive indices (CRIs of atmospheric aerosols – separately for both fine and coarse modes. However, the widely used aerosol CRI obtained by the global Aerosol Robotic Network (AERONET corresponds to total-column aerosol particles without separation for fine and coarse modes. This paper establishes a method to separate CRIs of fine and coarse particles based on AERONET volume particle size distribution (VPSD, aerosol optical depth (AOD and absorbing AOD (AAOD. The method consists of two steps. First a multimodal log-normal distribution that best approximates the AERONET VPSD is found. Then the fine and coarse mode CRIs are found by iterative fitting of AERONET AODs to Mie calculations. The numerical experiment shows good performance for typical water-soluble, biomass burning and dust aerosol types, and the estimated uncertainties on the retrieved sub-mode CRIs are about 0.11 (real part and 78 % (imaginary part. The 1-year measurements at the AERONET Beijing site are processed, and we obtain CRIs of 1.48–0.010i (imaginary part at 440 nm is 0.012 for fine mode particles and 1.49–0.004i (imaginary part at 440 nm is 0.007 for coarse mode particles, for the period of 2014–2015. Our results also suggest that both fine and coarse aerosol mode CRIs have distinct seasonal characteristics; in particular, CRIs of fine particles in winter season are significantly higher than summer due to possible anthropogenic influences.

  17. Adaptive extraction method for trend term of machinery signal based on extreme-point symmetric mode decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yong; Jiang, Wan-lu; Kong, Xiang-dong [Yanshan University, Hebei (China)

    2017-02-15

    In mechanical fault diagnosis and condition monitoring, extracting and eliminating the trend term of machinery signal are necessary. In this paper, an adaptive extraction method for trend term of machinery signal based on Extreme-point symmetric mode decomposition (ESMD) was proposed. This method fully utilized ESMD, including the self-adaptive decomposition feature and optimal fitting strategy. The effectiveness and practicability of this method are tested through simulation analysis and measured data validation. Results indicate that this method can adaptively extract various trend terms hidden in machinery signal, and has commendable self-adaptability. Moreover, the extraction results are better than those of empirical mode decomposition.

  18. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    Science.gov (United States)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  19. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  20. Observations of the singlets of higher modes based on the OSE

    Science.gov (United States)

    Zeng, Shiyu; Shen, Wen-Bin

    2016-04-01

    In this study, we select 18 SG (superconducting gravimeter) records from 15 GGP stations (http://www.eas.slu.edu/GGP/ggphome.html) and 99 radial, 69 transverse components of IRIS broadband seismograms (http://ds.iris.edu/ds/nodes/dmc/) during 2004 Sumatra Earthquake to detect the splitting of higher Earth's free oscillations modes (0S4, 0S7~0S10, 2S4, 1S5, 2S5, 1S6) and 13 inner-core sensitive modes (25S2, 27S2, 6S3, 9S3, 13S3, 15S3, 11S4, 18S4, 8S5, 11S5, 23S5, 16S6, 21S6) by using OSE (optimal sequence estimation) method. Results indicate that OSE can completely isolate singlets of high-degree modes in time-domain, and significantly reduce the possibility of mode mixing and end effect, so that OSE could improve some signals' SNR (signal-to-noise ratio). We also compare the results of SG records with seismic data sets, and it shows that the number of SG records is limited to observe all of the singlets of higher modes. Hence we mainly select seismograms of IRIS to observe the mutiplets of higher modes. This study demonstrates that OSE is effective in isolating singlets of Earth's free oscillations modes. We estimate frequencies of the singlets using AR method (Chao & Gilbert, 1980) and following Häfner & Widmer-Schnidrig (2013) we obtain the error bars through the bootstrap method (Efron & Tibshirani, 1986). Finally we compared the observations with the predictions of PREM model (Dziewonski & Anderson, 1981) and 1066A model (Dahlen & Sailor, 1979). Our experimental results may provide constraints to the construction of 3D Earth model. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  1. [Study on medical service supply public-private partnership mode: based on the view of public economics].

    Science.gov (United States)

    Dai, Yue; Sun, Hong; Zhou, Li

    2015-02-01

    Due to the quasi-public attributes of medical service, the supply mode and system could influence equity and fairness of general people's health. Based on the view of public economics, the purpose of this paper was to explain the economic nature of medical service supply. By analyzing the practice of public-private partnership (PPP) mode in medical care supply and the related public economic issues, we summarized the feasibility and risks of PPP model in Chinese medical care supply market. Finally, we discussed the innovative medical service system provided by government, public hospitals, and social capitals together. Therefore, to guarantee further development of this new medical service supply--PPP mode, we should pay attention to some practical problems, such as the share of cooperation cost and the balance between the benefit and risk among all partners.

  2. A Novel Method for Mechanical Fault Diagnosis Based on Variational Mode Decomposition and Multikernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhongliang Lv

    2016-01-01

    Full Text Available A novel fault diagnosis method based on variational mode decomposition (VMD and multikernel support vector machine (MKSVM optimized by Immune Genetic Algorithm (IGA is proposed to accurately and adaptively diagnose mechanical faults. First, mechanical fault vibration signals are decomposed into multiple Intrinsic Mode Functions (IMFs by VMD. Then the features in time-frequency domain are extracted from IMFs to construct the feature sets of mixed domain. Next, Semisupervised Locally Linear Embedding (SS-LLE is adopted for fusion and dimension reduction. The feature sets with reduced dimension are inputted to the IGA optimized MKSVM for failure mode identification. Theoretical analysis demonstrates that MKSVM can approximate any multivariable function. The global optimal parameter vector of MKSVM can be rapidly identified by IGA parameter optimization. The experiments of mechanical faults show that, compared to traditional fault diagnosis models, the proposed method significantly increases the diagnosis accuracy of mechanical faults and enhances the generalization of its application.

  3. Fast mode decision based on human noticeable luminance difference and rate distortion cost for H.264/AVC

    Science.gov (United States)

    Li, Mian-Shiuan; Chen, Mei-Juan; Tai, Kuang-Han; Sue, Kuen-Liang

    2013-12-01

    This article proposes a fast mode decision algorithm based on the correlation of the just-noticeable-difference (JND) and the rate distortion cost (RD cost) to reduce the computational complexity of H.264/AVC. First, the relationship between the average RD cost and the number of JND pixels is established by Gaussian distributions. Thus, the RD cost of the Inter 16 × 16 mode is compared with the predicted thresholds from these models for fast mode selection. In addition, we use the image content, the residual data, and JND visual model for horizontal/vertical detection, and then utilize the result to predict the partition in a macroblock. From the experimental results, a greater time saving can be achieved while the proposed algorithm also maintains performance and quality effectively.

  4. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  5. Bio-optical sensor for brain activity measurement based on whispering gallery modes

    Science.gov (United States)

    Ali, Amir R.; Massoud, Yasmin M.

    2017-05-01

    In this paper, a high-resolution bio-optical sensor is developed for brain activity measurement. The aim is to develop an optical sensor with enough sensitivity to detect small electric field perturbations caused by neuronal action potential. The sensing element is a polymeric dielectric micro-resonator fabricated in a spherical shape with a few hundred microns in diameter. They are made of optical quality polymers that are soft which make them mechanically compatible with tissue. The sensors are attached to or embedded in optical fibers which serve as input/output conduits for the sensors. Hundreds or even thousands of spheres can be attached to a single fiber to detect and transmit signals at different locations. The high quality factor for the optical resonator makes it significantly used in such bio-medical applications. The sensing phenomenon is based on whispering gallery modes (WGM) shifts of the optical sensor. To mimic the brain signals, the spherical resonator is immersed in a homogeneous electrical field that is created by applying potential difference across two metallic plates. One of the plates has a variable voltage while the volt on the other plate kept fixed. Any small perturbations of the potential difference (voltage) lead to change in the electric field intensity. In turn the sensor morphology will be affected due to the change in the electrostriction force acting on it causing change in its WGM. By tracking these WGM shift on the transmission spectrum, the induced potential difference (voltage change) could be measured. Results of a mathematical model simulation agree well with the preliminary experiments. Also, the results show that the brain activity could be measured using this principle.

  6. Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects

    Science.gov (United States)

    Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt

    2018-02-01

    A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.

  7. Cross-Mode Comparability of Computer-Based Testing (CBT) versus Paper-Pencil Based Testing (PPT): An Investigation of Testing Administration Mode among Iranian Intermediate EFL Learners

    Science.gov (United States)

    Khoshsima, Hooshang; Hosseini, Monirosadat; Toroujeni, Seyyed Morteza Hashemi

    2017-01-01

    Advent of technology has caused growing interest in using computers to convert conventional paper and pencil-based testing (Henceforth PPT) into Computer-based testing (Henceforth CBT) in the field of education during last decades. This constant promulgation of computers to reshape the conventional tests into computerized format permeated the…

  8. Locational Determinants and Equity-Based Entry Mode Choice in the Forest Sector: the Case of China

    OpenAIRE

    Luo, Wen

    2014-01-01

    The main purpose of this Master’s thesis was to examine the impacts of distance factors on the equity-based entry mode choice of forest multinational companies (MNCs) by testing the distances (both in cultural and geographical terms) combined with corporate and local factors. China was chosen as the case host country in this study, and the collected data followed the top global forest MNCs that made investments in China at the subsidiary level. Based on a series of internationalization theori...

  9. Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Naibao He

    2015-01-01

    Full Text Available A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces.

  10. Efficient narrowband interference suppression method for synthetic aperture radar-based on variational mode decomposition

    Science.gov (United States)

    Lu, Xingyu; Su, Weimin; Yang, Jianchao; Gu, Hong

    2017-10-01

    The narrowband interference (NBI) can degrade the synthetic aperture radar (SAR) imaging quality severely. This paper proposes an NBI mitigation method using the variational mode decomposition (VMD). The coarse estimation of NBI is obtained by decomposing the real part and imaginary part of the complex-valued raw echoes into a number of modes by VMD independently. Next, modes that correspond to NBI are refined by the mask technique in the frequency domain. Then the interference is mitigated by subtracting the refined estimated NBI components from the echoes, and a well-focused SAR image is obtained by conventional imaging schemes. The proposed method outperforms other time-varying NBI mitigation methods with smaller effective data loss and less impact on the focusing performance of images. Results of simulated and measured data prove the validity of the proposed method.

  11. New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states

    Science.gov (United States)

    Zhou, Nan-Run; Li, Jian-Fu; Yu, Zhen-Bo; Gong, Li-Hua; Farouk, Ahmed

    2017-01-01

    A new quantum dialogue protocol is designed by using the continuous-variable two-mode squeezed vacuum states due to its entanglement property. The two communication parties encode their own secret information into the entangled optical modes with the translation operations. Each communication party could deduce the secret information of their counterparts with the help of his or her secret information and the Bell-basis measurement results. The security of the proposed quantum dialogue protocol is guaranteed by the correlation between two-mode squeezed vacuum states and the decoy states performed with translation operations in randomly selected time slots. Compared with the discrete variable quantum dialogue protocols, the proposed continuous-variable quantum dialogue protocol is easy to realize with perfect utilization of quantum bits.

  12. Harmonic Mode-Locked Fiber Laser based on Photonic Crystal Fiber Filled with Topological Insulator Solution

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-04-01

    Full Text Available We reported that the photonic crystal fiber (PCF filled with TI:Bi2Te3 nanosheets solution could act as an effective saturable absorber (SA. Employing this TI-PCF SA device; we constructed an ytterbium-doped all-fiber laser oscillator and achieved the evanescent wave mode-locking operation. Due to the large cavity dispersion; the fundamental mode-locking pulse had the large full width at half maximum (FWHM of 2.33 ns with the repetition rate of ~1.11 MHz; and the radio frequency (RF spectrum with signal-to-noise ratio (SNR of 61 dB. In addition; the transition dynamics from a bunched state of pulses to harmonic mode-locking (HML was also observed; which was up to 26th order.

  13. D33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity

    KAUST Repository

    Shen, Zhiyuan

    2013-01-01

    This paper presents the design, fabrication, and characterization of an acoustic transducer using a piezoelectric freestanding bulk diaphragm as the sensing element. The diaphragm bearing the spiral electrode operates in d 33 mode, which allows the in-plane deformation of the diaphragm to be converted to the out-of-plane deformation and generates an acoustic wave in the same direction. A finite element code is developed to reorient the material polarization distribution according to the poling field calculated. The first four resonance modes have been simulated and verified by impedance and velocity spectra. The sensitivity and the sound pressure level of the transducer were characterized. The realized sensitivity of 126.21 μV/Pa at 1 kHz is nearly twenty times of the sensitivity of a sandwich d31 mode transducer. © 2012 Elsevier B.V.

  14. Mode of Managing Nutrient Solution Based on N Use Efficiency for Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Chabite, Ibraimo Teleha; Lei, Zhang; Ningning, Yao; Qiang, Fu; Haiye, Yu

    2017-01-01

    In aeroponic cultivation the nutrient solution is an essential component to achieve good production results. And nitrogen is the main constituent element of the nutrient solution and essential element in plant nutrition. Therefore, the management and monitoring nutrient solution and existing nitrogen is fundamental. The experiment shows that three modes of replacing the nutrient solution and three initial pH values and their interaction significantly influenced the fresh weight and dry matter of lettuce. The highest values of fresh and dry weight were recorded in the fifth treatment where there is an interaction between pH 6 and the mode of replacing half of the nutrient solution. The consumption rate of nitrate nitrogen (NO 3 -N), ammonium nitrogen (NH 4 -N) and gross nitrogen (GN) was higher during stage 1 (10 days after transplanting), especially for the mode of complete replacing nutrient solution.

  15. Investigations on Shaped Mirror Systems in Quasi-Optical Mode Converters Based on Irradiance Moments Method

    Directory of Open Access Journals (Sweden)

    Hai Wang

    2016-01-01

    Full Text Available A method of transforming high-order Gaussian beams (GBs mode into circular symmetry fundamental Gaussian beam (FGB mode with arbitrary waist size is presented using irradiance moments method in quasi-optical (QO mode converters. The double shaped mirrors correcting amplitude and phase simultaneously are generated by a single incidence irradiance sampling data and known ideal output FGB taking advantage of linear moment matching technique and Fresnel diffraction theory, which can be applied to a wide frequency range especially significant for terahertz band. The numerical coding procedure of creating double correcting mirrors and its fast convergence speed are discussed at 325 GHz. Numerical and experimental comparisons reveal the conclusion that enhancing surface precision and increasing moments order can improve main lobe levels.

  16. Multi-functional Chassis-based Antennas Using Characteristic Mode Theory

    Science.gov (United States)

    Kishor, Krishna Kumar

    Designing antennas for handheld devices is quite challenging primarily due to the limited real-estate available, and the fact that internal antennas occupy a large volume. With the need to support a variety of radio systems such as GSM, LTE and WiFi that operate in a wide range of frequency bands, multi-band, wideband and frequency reconfigurable antenna designs have been explored in the literature. Moreover, to support higher data rates, the Long Term Evolution Advanced (LTE-A) standard has been introduced, which requires supporting multiple input multiple output (MIMO) antenna technology and carrier aggregation (CA) on a handheld device. Both of these benefit from the use of multiple antennas or multi-port antennas, but with the limited space available, adding more internal antennas may not be easily possible. Additionally, to realize the benefits of these technologies the multiple antenna ports have to be well isolated from each other. This thesis explores the utilization of the ground plane (or chassis) of a handheld device as an antenna to meet some of these challenges. To achieve this, the theory of characteristic modes (TCM) for conducting bodies is relied upon, to determine the eigen-currents supported on the chassis. The orthogonality properties of these eigencurrents, and their corresponding far-field eigenfields (electric and magnetic) makes TCM a good tool to design multiple antennas with high isolation. This is demonstrated in this thesis via the design of four chassis-based antennas that have different functionalities. The first design is a two port MIMO antenna utilizing a combination of eigenmodes to achieve port isolation. The second design is a pattern reconfigurable MIMO antenna that can operate in two states at 2.28 GHz. The third design is a four port antenna that operates in three frequency bands, with two bands below 1 GHz for CA and the remaining two ports for MIMO communication. The final design is a five port antenna that supports MIMO

  17. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones.

    Science.gov (United States)

    Lu, Dang-Nhac; Nguyen, Duc-Nhan; Nguyen, Thi-Hau; Nguyen, Ha-Nam

    2018-03-29

    In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS), that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers' vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features) as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine) contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97.33% that is

  18. Vehicle Mode and Driving Activity Detection Based on Analyzing Sensor Data of Smartphones

    Directory of Open Access Journals (Sweden)

    Dang-Nhac Lu

    2018-03-01

    Full Text Available In this paper, we present a flexible combined system, namely the Vehicle mode-driving Activity Detection System (VADS, that is capable of detecting either the current vehicle mode or the current driving activity of travelers. Our proposed system is designed to be lightweight in computation and very fast in response to the changes of travelers’ vehicle modes or driving events. The vehicle mode detection module is responsible for recognizing both motorized vehicles, such as cars, buses, and motorbikes, and non-motorized ones, for instance, walking, and bikes. It relies only on accelerometer data in order to minimize the energy consumption of smartphones. By contrast, the driving activity detection module uses the data collected from the accelerometer, gyroscope, and magnetometer of a smartphone to detect various driving activities, i.e., stopping, going straight, turning left, and turning right. Furthermore, we propose a method to compute the optimized data window size and the optimized overlapping ratio for each vehicle mode and each driving event from the training datasets. The experimental results show that this strategy significantly increases the overall prediction accuracy. Additionally, numerous experiments are carried out to compare the impact of different feature sets (time domain features, frequency domain features, Hjorth features as well as the impact of various classification algorithms (Random Forest, Naïve Bayes, Decision tree J48, K Nearest Neighbor, Support Vector Machine contributing to the prediction accuracy. Our system achieves an average accuracy of 98.33% in detecting the vehicle modes and an average accuracy of 98.95% in recognizing the driving events of motorcyclists when using the Random Forest classifier and a feature set containing time domain features, frequency domain features, and Hjorth features. Moreover, on a public dataset of HTC company in New Taipei, Taiwan, our framework obtains the overall accuracy of 97

  19. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.

    Science.gov (United States)

    Cui, Jing-Yu; Pratx, Guillem; Prevrhal, Sven; Levin, Craig S

    2011-12-01

    -generated images for all cases. A list-mode ToF OSEM library was developed on the GPU-CUDA platform. Our studies show that the GPU reformulation is considerably faster than a single-threaded reference CPU method especially for ToF processing, while producing virtually identical images. This new method can be easily adapted to enable more advanced algorithms for high resolution PET reconstruction based on additional information such as depth of interaction (DoI), photon energy, and point spread functions (PSFs).

  20. Sliding mode control for a two-joint coupling nonlinear system based on extended state observer.

    Science.gov (United States)

    Zhao, Ling; Cheng, Haiyan; Wang, Tao

    2018-02-01

    A two-joint coupling nonlinear system driven by pneumatic artificial muscles is introduced in this paper. A sliding mode controller with extended state observer is proposed to cope with nonlinearities and disturbances for the two-joint coupling nonlinear system. In addition, convergence of the extended state observer is presented and stability analysis of the closed-loop system is also demonstrated with the sliding mode controller. Lastly, some experiments are carried out to show the reality effectiveness of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Research on consumable distribution mode of shipbuilder’s shop based on vehicle routing problem

    Directory of Open Access Journals (Sweden)

    Xiang Su

    2017-02-01

    Full Text Available A distribution vehicle optimization is established with considerations for the problem of long period of requisition and high shop costs due to the existing consumable requisition mode in shipbuilder’s shops for the requirements of shops for consumables. The shortest traveling distance of distribution vehicles are calculated with the genetic algorithm (GA. Explorations are made into a shop consumable distribution mode for shipbuilders to help them to effectively save their production logistics costs, enhance their internal material management level and provide reference for shipbuilder’s change in traditional ways and realization of just-in-time (JIT production.

  2. Minimal-Learning-Parameter Technique Based Adaptive Neural Sliding Mode Control of MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Bin Xu

    2017-01-01

    Full Text Available This paper investigates an adaptive neural sliding mode controller for MEMS gyroscopes with minimal-learning-parameter technique. Considering the system uncertainty in dynamics, neural network is employed for approximation. Minimal-learning-parameter technique is constructed to decrease the number of update parameters, and in this way the computation burden is greatly reduced. Sliding mode control is designed to cancel the effect of time-varying disturbance. The closed-loop stability analysis is established via Lyapunov approach. Simulation results are presented to demonstrate the effectiveness of the method.

  3. Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    Directory of Open Access Journals (Sweden)

    Thevenin Mathieu

    2016-01-01

    Full Text Available This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs. Entire fully functional small-footprint design (about 1714 LUTs is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring.

  4. The Fault Diagnosis of Rolling Bearing Based on Ensemble Empirical Mode Decomposition and Random Forest

    Directory of Open Access Journals (Sweden)

    Xiwen Qin

    2017-01-01

    Full Text Available Accurate diagnosis of rolling bearing fault on the normal operation of machinery and equipment has a very important significance. A method combining Ensemble Empirical Mode Decomposition (EEMD and Random Forest (RF is proposed. Firstly, the original signal is decomposed into several intrinsic mode functions (IMFs by EEMD, and the effective IMFs are selected. Then their energy entropy is calculated as the feature. Finally, the classification is performed by RF. In addition, the wavelet method is also used in the proposed process, the same as EEMD. The results of the comparison show that the EEMD method is more accurate than the wavelet method.

  5. Pulse mode actuation-readout system based on MEMS resonator for liquid sensing

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Davis, Zachary James

    2014-01-01

    A MEMS (Micro-Electro-Mechanical Systems) bulk disk resonator is applied for mass sensing under its dynamic mode. The classical readout circuitry involves sophisticated feedback loop and feedthrough compensation. We propose a simple straightforward non-loop pulse mode actuation and capacitive...... readout scheme. In order to verify its feasibility in liquid bio-chemical sensing environment, an experimental measurement is conducted with humidity sensing application. The measured resonant frequency changes 60kHz of 67.7MHz with a humidity change of 0~80%....

  6. Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch

    Science.gov (United States)

    Safa, Khari; Zahra, Rahmani; Behrooz, Rezaie

    2016-05-01

    An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system. In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov’s stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response, and robustness against uncertainties.

  7. ‘Function-first’ Lead Discovery: Mode of Action Profiling of Natural Product Libraries Using Image-Based Screening

    Science.gov (United States)

    Schulze, Christopher J.; Bray, Walter M.; Woerhmann, Marcos H.; Stuart, Joshua; Lokey, R. Scott; Linington, Roger G.

    2013-01-01

    Summary Cytological profiling is a high-content image-based screening technology that provides insight into the mode of action (MOA) for test compounds by directly measuring hundreds of phenotypic cellular features. We have extended this recently reported technology to the mechanistic characterization of unknown natural products libraries for the direct prediction of compound MOAs at the primary screening stage. By analyzing a training set of commercial compounds of known mechanism and comparing these profiles to those obtained from natural product library members, we have successfully annotated extracts based on mode of action, dereplicated known compounds based on biological similarity to the training set, and identified and predicted the MOA of a family of new iron siderophores. Coupled with traditional analytical techniques, cytological profiling provides a new avenue for the creation of ‘function-first’ platforms for natural products discovery. PMID:23438757

  8. Single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser.

    Science.gov (United States)

    Peng, Di; Zhang, Zhiyao; Zeng, Zhen; Zhang, Lingjie; Lyu, Yanjia; Liu, Yong; Xie, Kang

    2018-03-19

    We demonstrate a single-shot photonic time-stretch digitizer using a dissipative soliton-based passively mode-locked fiber laser. The theoretical analysis and simulation results indicate that the dissipative soliton-based optical source with a flat spectrum relieves the envelope-induced signal distortion, and its high energy spectral density helps to improve the signal-to-noise ratio, both of which are favorable for simplifying the optical front-end architecture of a photonic time-stretch digitizer. By employing a homemade dissipative soliton-based passively mode-locked erbium-doped fiber laser in a single-shot photonic time-stretch digitizer, an effective number of bits of 4.11 bits under an effective sampling rate of 100 GS/s is experimentally obtained without optical amplification in the link and pulse envelope removing process.

  9. Highlights from a Mach 4 Experimental Demonstration of Inlet Mode Transition for Turbine-Based Combined Cycle Hypersonic Propulsion

    Science.gov (United States)

    Foster, Lancert E.; Saunders, John D., Jr.; Sanders, Bobby W.; Weir, Lois J.

    2012-01-01

    NASA is focused on technologies for combined cycle, air-breathing propulsion systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments along with improved safety. Among the most critical TBCC enabling technologies are: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development and 3) innovative turbine based combined cycle integration. To address these challenges, NASA initiated an experimental mode transition task including analytical methods to assess the state-of-the-art of propulsion system performance and design codes. One effort has been the Combined-Cycle Engine Large Scale Inlet Mode Transition Experiment (CCE-LIMX) which is a fully integrated TBCC propulsion system with flowpath sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment was tested in the NASA GRC 10 by 10-Foot Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle engine issues including: (1) dual integrated inlet operability and performance issues-unstart constraints, distortion constraints, bleed requirements, and controls, (2) mode-transition sequence elements caused by switching between the turbine and the ramjet/scramjet flowpaths (imposed variable geometry requirements), and (3) turbine engine transients (and associated time scales) during transition. Testing of the initial inlet and dynamic characterization phases were completed and smooth mode transition was demonstrated. A database focused on a Mach 4 transition speed with limited off-design elements was developed and will serve to guide future TBCC system studies and to validate higher level analyses.

  10. An evaluation of transport mode shift policies on transport-related physical activity through simulations based on random forests.

    Science.gov (United States)

    Brondeel, Ruben; Kestens, Yan; Chaix, Basile

    2017-10-23

    Physical inactivity is widely recognized as one of the leading causes of mortality, and transport accounts for a large part of people's daily physical activity. This study develops a simulation approach to evaluate the impact of the Ile-de-France Urban Mobility Plan (2010-2020) on physical activity, under the hypothesis that the intended transport mode shifts are realized. Based on the Global Transport Survey (2010, n = 21,332) and on the RECORD GPS Study (2012-2013, n = 229) from the French capital region of Paris (Ile-de-France), a simulation method was designed and tested. The simulation method used accelerometer data and random forest models to predict the impact of the transport mode shifts anticipated in the Mobility Plan on transport-related moderate-to-vigorous physical activity (T-MVPA). The transport mode shifts include less private motorized trips in favor of more public transport, walking, and biking trips. The simulation model indicated a mean predicted increase of 2 min per day of T-MVPA, in case the intended transport mode shifts in the Ile-de-France Urban Mobility Plan were realized. The positive effect of the transport mode shifts on T-MVPA would, however, be larger for people with a higher level of education. This heterogeneity in the positive effect would further increase the existing inequality in transport-related physical activity by educational level. The method presented in this paper showed a significant increase in transport-related physical activity in case the intended mode shifts in the Ile-de-France Urban Mobility Plan were realized. This simulation method could be applied on other important health outcomes, such as exposure to noise or air pollution, making it a useful tool to anticipate the health impact of transport interventions or policies.

  11. A versatile stereo photogrammetry based technique for measuring fracture mode displacements in structures

    DEFF Research Database (Denmark)

    Alvarado, Jonathan Shmueli; Eder, Martin Alexander; Tesauro, Angelo

    2015-01-01

    The measurement of fracture mode displacements in structures which are susceptible to cracking such as adhesive joints in composite components – is becoming increasingly important. Such measurements are essential for the understanding of the root causes for specific fracture damage types. Further...

  12. A Robust Control Concept for Hydraulic Drives Based on Second Order Sliding Mode Disturbance Compensation

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.; Johansen, Per

    2017-01-01

    chattering, which on the other hand compromises the robustness properties. This may also be the case when discontinuities are only present in the control derivative. This fact suggests that sliding mode algorithms may be more appropriate for assisting the control, i.e. for state observation, disturbance...

  13. Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode.

    Science.gov (United States)

    Li, Zhi-Zhou; Liao, Liang-Sheng; Wang, Xue-Dong

    2018-01-01

    Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow-emissive α phase organic microcrystals with rectangular morphology and green-emissive β phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J-aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α-doped β phase and the β-doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min -1 . The findings can contribute to the future development of organic optoelectronics at the microscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...

  15. Greeting You Online: Selecting Web-Based Conferencing Tools for Instruction in E-Learning Mode

    Science.gov (United States)

    Li, Judy

    2014-01-01

    Academic distance learning programs have gained popularity and added to the demand for online library services. Librarians are now conducting instruction for distance learning students beyond their traditional work. Technology advancements have enhanced the delivery mode in distance learning across academic disciplines. Online conference tools…

  16. Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory

    NARCIS (Netherlands)

    Bastians, M.W.J.M.

    1986-01-01

    In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation

  17. Fast evaluation of complete synthetic SH seismograms based on asymptotic mode theory

    NARCIS (Netherlands)

    Bastians, M.W.J.M.

    1986-01-01

    In this thesis we have developed an asymptotic mode theory with the following features. 1) Complete synthetic SH seismograms can be evaluated for both realistic models of Earth and crust. 2) The method is of practical value and can be used even on small computers wi th reasonable computation times

  18. Exploring Learner Perception and Use of Task-Based Interactional Feedback in FTF and CMC Modes

    Science.gov (United States)

    Gurzynski-Weiss, Laura; Baralt, Melissa

    2014-01-01

    Theoretical claims about the benefits of corrective feedback have been largely premised on learners' noticing of feedback (e.g., Gass & Mackey, 2006; Long, 1996; Schmidt, 1990, 1995; Swain, 1995), and findings have demonstrated that both the feedback target (Mackey, Gass, & McDonough, 2000) and the mode of provision (Lai & Zhao,…

  19. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    Science.gov (United States)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  20. All-fiber Ho-doped mode-locked oscillator based on a graphene saturable absorber

    Czech Academy of Sciences Publication Activity Database

    Sotor, J.; Pawliszewska, M.; Sobon, G.; Kaczmarek, P.; Przewolka, A.; Pasternak, I.; Cajzl, Jakub; Peterka, Pavel; Honzátko, Pavel; Kašík, Ivan; Strupinski, W.; Abramski, K.

    2016-01-01

    Roč. 41, č. 11 (2016), s. 2592-2595 ISSN 0146-9592 R&D Projects: GA ČR GA14-35256S; GA MŠk(CZ) LD15122 Institutional support: RVO:67985882 Keywords : Fiber lasers * Graphene * Mode-locked oscillators Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.416, year: 2016

  1. Sliding Mode Control for Bearingless Induction Motor Based on a Novel Load Torque Observer

    Directory of Open Access Journals (Sweden)

    Zebin Yang

    2016-01-01

    Full Text Available For the problem of low control performance of Bearingless Induction Motor (BIM control system in the presence of large load disturbance, a novel load torque sliding mode observer is proposed on the basis of establishing sliding mode speed control system. The load observer chooses the speed and load torque of the BIM control system as the observed objects, uses the speed error to design the integral sliding mode surface, and adds the low-pass filter to reduce the torque observation error. Meanwhile, the output of the load torque is used as the feedforward compensation for the control system, which can provide the required current for load changes and reduce the adverse influence of disturbance on system performance. Besides, considering that the load changes lead to the varying rotational inertia, the integral identification method is adopted to identify the rotational inertia of BIM, and the rotational inertia can be updated to the load observer in real time. The simulation and experiment results all show that the proposed method can track load torque accurately, improve the ability to resist disturbances, and ameliorate the operation quality of BIM control system. The chattering of sliding mode also is suppressed effectively.

  2. Sliding Mode Control of Cable-Driven Redundancy Parallel Robot with 6 DOF Based on Cable-Length Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Wei Lv

    2017-01-01

    Full Text Available The sliding mode control of the cable-driven redundancy parallel robot with six degrees of freedom is studied based on the cable-length sensor feedback. Under the control scheme of task space coordinates, the cable length obtained by the cable-length sensor is used to solve the forward kinematics of the cable-driven redundancy parallel robot in real-time, which is treated as the feedback for the control system. First, the method of forward kinematics of the cable-driven redundancy parallel robot is proposed based on the tetrahedron method and Levenberg-Marquardt method. Then, an iterative initial value estimation method for the Levenberg-Marquardt method is proposed. Second, the sliding mode control method based on the exponential approach law is used to control the effector of the robot, and the influence of the sliding mode parameters on control performance is simulated. Finally, a six-degree-of-freedom position tracking experiment is carried out on the principle prototype of the cable-driven redundancy parallel robot. The experimental results show that the robot can accurately track the desired position in six directions, which indicates that the control method based on the cable-length sensor feedback for the cable-driven redundancy parallel robot is effective and feasible.

  3. [Removal Algorithm of Power Line Interference in Electrocardiogram Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition].

    Science.gov (United States)

    Zhao, Wei; Xiao, Shixiao; Zhang, Baocan; Huang, Xiaojing; You, Rongyi

    2015-12-01

    Electrocardiogram (ECG) signals are susceptible to be disturbed by 50 Hz power line interference (PLI) in the process of acquisition and conversion. This paper, therefore, proposes a novel PLI removal algorithm based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD). Firstly, according to the morphological differences in ECG waveform characteristics, the noisy ECG signal was decomposed into the mutated component, the smooth component and the residual component by MCA. Secondly, intrinsic mode functions (IMF) of PLI was filtered. The noise suppression rate (NSR) and the signal distortion ratio (SDR) were used to evaluate the effect of de-noising algorithm. Finally, the ECG signals were re-constructed. Based on the experimental comparison, it was concluded that the proposed algorithm had better filtering functions than the improved Levkov algorithm, because it could not only effectively filter the PLI, but also have smaller SDR value.

  4. ESO-Based Fuzzy Sliding-Mode Control for a 3-DOF Serial-Parallel Hybrid Humanoid Arm

    Directory of Open Access Journals (Sweden)

    Yueling Wang

    2014-01-01

    Full Text Available This paper presents a unique ESO-based fuzzy sliding-mode controller (FSMC-ESO for a 3-DOF serial-parallel hybrid humanoid arm (HHA for the trajectory tracking control problem. The dynamic model of the HHA is obtained by Lagrange method and is nonlinear in dynamics with inertia uncertainty and external disturbance. The FSMC-ESO is based on the combination of the sliding-mode control (SMC, extended state observer (ESO theory, and fuzzy control (FC. The SMC is insensitive to both internal parameter uncertainties and external disturbances. The motivation for using ESO is to estimate the disturbance in real-time. The fuzzy parameter self-tuning strategy is proposed to adjust the switching gain on line according to the running state of the system. The stability of the system is guaranteed in the sense of the Lyapunov stability theorem. The effectiveness and robustness of the designed FSMC-ESO are illustrated by simulations.

  5. An approach based on tool mode control for surface roughness reduction in high-frequency vibration cutting

    Science.gov (United States)

    Ostasevicius, V.; Gaidys, R.; Rimkeviciene, J.; Dauksevicius, R.

    2010-11-01

    The presented research work, aimed at deeper understanding of vibrational process during high-frequency vibration cutting, is accomplished by treating cutting tool as an elastic structure which is characterized by several modes of natural vibrations. An approach for surface quality improvement is proposed in this paper by taking into account that quality of machined surface is related to the intensity of tool-tip (cutting edge) vibrations. It is based on the excitation of a particular higher vibration mode of a turning tool, which leads to the reduction of deleterious vibrations in the machine-tool-workpiece system through intensification of internal energy dissipation in the tool material. The combined application of numerical analysis with accurate finite element model as well as different experimental methods during investigation of the vibration turning process allowed to determine that the most favorable is the second flexural vibration mode of the tool in the direction of vertical cutting force component. This mode is excited by means of piezoelectric transducer vibrating in axial tool direction at the corresponding natural frequency, thereby enabling minimization of surface roughness and tool wear.

  6. Least square based sliding mode control for a quad-rotor helicopter and energy saving by chattering reduction

    Science.gov (United States)

    Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori

    2016-01-01

    In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.

  7. Bidirectional single-longitudinal mode SOA-fiber ring laser based on optical filter assisted gain starvation

    Science.gov (United States)

    Khalil, Kamal; Al-Arifi, Fares; Al-Otaibi, Mohammed; Sabry, Yasser M.; Khalil, Diaa

    2015-03-01

    Generation of a single-longitudinal mode (SLM) in bidirectional ring lasers has direct impact on the laser linewidth and dynamic range of operation, when used in rotation sensing applications. Besides, operating at a specific wavelength helps in optimizing the performance of the system components. In this work, we report a novel method for generating SLM in bidirectional SOA-fiber ring laser using mechanically tunable Fabry-Perot filter with 1-nm bandwidth. The method is based on gain starvation by tuning the central wavelength of the filter in the blue edge of the gain-wavelength response. By adjusting the SOA driving current, the oscillation condition is satisfied mainly for single mode and bidirectional operation can be achieved simultaneously. The SLM operation is verified by monitoring the beating signal between the modes on an RF spectrum analyzer. Using an SOA with a small-signal gain of 20 dB at 300 mA pumping current and a gain bandwidth of 100 nm centered around 1490 nm; the central wavelength of the ring laser could be tuned from 1440 nm to 1480 nm with a side-mode suppression ratio of 25 dB.

  8. Slow light modes for optical delay lines: 2D photonic crystal-based design structures, performances and challenges

    International Nuclear Information System (INIS)

    Talneau, A

    2010-01-01

    This paper presents an overview of 2D photonic crystal-based structures designed to display low group velocity as well as reduced group velocity dispersions. Their main envisioned applications are optical delay lines for telecom transmissions at 1.55 µm. Optical mechanisms responsible for slowing down the optical modes and encountered in the slow light regime serve as a guideline for this paper. (review article)

  9. A Comparative Analysis between GaN-Based Current and Voltage Mode Class-D and E PAs for Communications

    Science.gov (United States)

    2017-03-01

    amplifier (PA) topologies, namely inverse class - D (CMCD), push-pull class -E, and inverse push- pull class - E, in a GaN-on-Si process for medium...push-pull class -E architecture gives highest output power and efficiency for discrete GaN-based power amplifiers , and a voltage-mode class D PA...37.7dBm output power in the 880MHz band. Keywords: transmitters, power amplifiers , class E, class D , RFPWM Introduction With

  10. Design of Second-Order Sliding Mode Guidance Law Based on the Nonhomogeneous Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Huibo Zhou

    2014-01-01

    Full Text Available Considering the guidance problem of relative motion of missile target without the dynamic characteristics of missile autopilot in the interception planar, non-homogeneous disturbance observer is applied for finite-time estimation with respect to the target maneuvering affecting the guidance performance. Two guidance laws with finite-time convergence are designed by using a fast power rate reaching law and the prescribed sliding variable dynamics. The nonsingular terminal sliding mode surface is selected to improve dynamic characteristics of missile autopilot. Furthermore, the finite-time guidance law with dynamic delay characteristics is designed for the target maneuvering through adopting variable structure dynamic compensation. The simulation results demonstrate that, for different target maneuvering, the proposed guidance laws can restrain the sliding mode chattering problem effectively and make the missile hit the maneuvering target quickly and accurately with condition of corresponding assumptions.

  11. Research of Modulation of Bilateral Frequency Difference Based on Load Mode

    Science.gov (United States)

    Lin, Shenghong; Mao, Chizu; Zhu, Jianquan; Lu, Junyu

    2017-05-01

    Owning to high reliability, simple operation and easy acquirement of signals, modulation of bilateral frequency difference (MBFD) in HVDC is worthy for application in practical engineering. With the example of an AC/DC hybrid network and the software PSD-BPA, this paper analyses the effect of MBFD to DC block. The modulators parameters are setting by means of simulation. Two types of loads modes are considered to research the impact of them on simulation. The results indicate that in cooperation with operation modes adjusting at AC system, MBFD will effectively release the impact from DC block and shortage of reactive power caused by rapid variation of DC power owning to modulation. To achieve the best effect, only modulators of some HVDC systems instead of all of them are opened.

  12. High-frequency Born synthetic seismograms based on coupled normal modes

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  13. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  14. Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling

    Science.gov (United States)

    Yang, Xiao-Dong; Wu, Hang; Qian, Ying-Jing; Zhang, Wei; Lim, C. W.

    2017-04-01

    A novel idea that applies the multiple scale analysis to a discretized decoupled system of gyroscopic continua is introduced and an axial moving string is treated as an example. First, the invariant manifold method is applied to the discretized ordinary differential equations of the axially moving string. Complex gyroscopic mode functions that agree well with true analytical results are obtained. The gyroscopic modes are subsequently used for the discretized ordinary differential equations with gyroscopic and nonlinear coupling terms that yield a gyroscopically decoupled system. Further the method of multiple scales is used to obtain the equations at a slow scale. This novel procedure is compared to solutions obtained by directly applying the classical multiple scale analysis to the gyroscopically coupled system without decoupling. The modal decoupled system analysis yields better frequency with comparing to the classic method. The proposed methodology provides a novel alternative for nonlinear dynamic analysis of gyroscopic continua.

  15. Fault Tolerant Flight Control Using Sliding Modes and Subspace Identification-Based Predictive Control

    KAUST Repository

    Siddiqui, Bilal A.

    2016-07-26

    In this work, a cascade structure of a time-scale separated integral sliding mode and model predictive control is proposed as a viable alternative for fault-tolerant control. A multi-variable sliding mode control law is designed as the inner loop of the flight control system. Subspace identification is carried out on the aircraft in closed loop. The identified plant is then used for model predictive controllers in the outer loop. The overall control law demonstrates improved robustness to measurement noise, modeling uncertainties, multiple faults and severe wind turbulence and gusts. In addition, the flight control system employs filters and dead-zone nonlinear elements to reduce chattering and improve handling quality. Simulation results demonstrate the efficiency of the proposed controller using conventional fighter aircraft without control redundancy.

  16. Refractive index sensing based on higher-order mode reflection of a microfiber Bragg grating.

    Science.gov (United States)

    Zhang, Yu; Lin, Bo; Tjin, Swee Chuan; Zhang, Han; Wang, Guanghui; Shum, Ping; Zhang, Xinliang

    2010-12-06

    A fiber Bragg grating written in a photosensitive microfiber using KrF excimer laser via a uniform phase mask is demonstrated. We have successfully fabricated two Bragg gratings in microfibers having different diameters. In the reflection spectrum of a microfiber Bragg grating (MFBG), we observed two reflection peaks,which agrees with our numerical simulation results. Compared with the fundamental mode reflection, the higher-order reflection mode is more sensitive to the refractive index (RI) variation of the surrounding fluid due to its larger evanescent field. The measured maximum sensitivity is ~102 nm/RIU (RI unit) at an RI value of 1.378 in an MFBG with a diameter of 6 μm.

  17. Research and Design on Information Service and Management Platform based on Work Integrated Learning Mode

    Directory of Open Access Journals (Sweden)

    Gao Qi Yuan

    2016-01-01

    Full Text Available The work integrated learning mode is the world’s more advanced kind of teaching mode, which in many countries have achieved success, but also the rapid development in China. This paper is conscientiously sum of basic school vocational college engineering student management, aimed at the exchange of services and management schools as well as schools, businesses, students communicate among emerging issues were discussed ,proposed information technology services and management, consciously to promote student learning through the application, to improve learning efficiency, can strong the service awareness of schools, businesses for the students , promote school students and the school’s teaching, management form a whole, to facilitate the strengthening of students management and strengthen the contact of schools, businesses, students.

  18. Whispering-gallery-mode microlaser based on self-assembled organic single-crystalline hexagonal microdisks.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Kong, Qinghua; Zhang, Yi; Xu, Zhenzhen; Lu, Xiaomei; Fu, Hongbing

    2014-06-02

    Whispering-gallery-mode (WGM) resonators of semiconductor microdisks have been applied for achieving low-threshold and narrow-linewidth microlasers, but require sophisticated top-down processing technology. Organic single-crystalline hexagonal microdisks (HMDs) of p-distyrylbenzene (DSB) self-assembled from solution can function as WGM microresonators with a cavity quality factor (Q) of 210. Both multiple- and single-mode lasing had been achieved using DSB HMDs with an edge length of 4.3 and 1.2 μm, respectively. These organic microdisks fabricated by bottom-up self-assembly approach may offer potential applications as low-threshold microlaser sources for photonic circuit integration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Path following of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-06-01

    Full Text Available This paper addresses the path following problem of an underactuated autonomous underwater vehicle (AUV with the aim of dealing with parameter uncertainties and current disturbances. An adaptive robust control system was proposed by employing fuzzy logic, backstepping and sliding mode control theory. Fuzzy logic theory is adopted to approximate unknown system function, and the controller was designed by combining sliding mode control with backstepping thought. Firstly, the longitudinal speed was controlled, then the yaw angle was made as input of path following error to design the calm function and the change rate of path parameters. The controller stability was proved by Lyapunov stable theory. Simulation and outfield tests were conducted and the results showed that the controller is of excellent adaptability and robustness in the presence of parameter uncertainties and external disturbances. It is also shown to be able to avoid the chattering of AUV actuators.

  20. Microstructurally Based Prediction of High Strain Failure Modes in Crystalline Solids

    Science.gov (United States)

    2016-07-05

    Plasticity, (01 2014): 0. doi: 10.1016/j.ijplas.2013.06.011 Shoayb Ziaei, Qifeng Wu , Mohammed A. Zikry. Orientation relationships between coherent...Orlando, FL, March, 2015 3. Dynamic Fracture Modes in Crystalline Materials, World Computational Mechanics Congress, Barcelona, Spain July, 2014 4...Behavior of H.C.P. Materials, Metallurgical and Materials Transactions A, in press. S. Ziaei, Q. Wu , and M.A. Zikry (2015), Orientation

  1. Economic Development Mode and Countermeasure Research on the Nansi Lake Drainage Area Based on Circular Economy

    OpenAIRE

    Jia, Yong-fei; Peng, Li-min

    2011-01-01

    Firstly, it is pointed out that circular economy should be vigorously developed in the Nansi Lake Drainage Area, and the connotation of circular economy is expounded. Then, problems in developing circular economy in Nansi Lake Drainage Area are analyzed from the aspects of agriculture, industrial enterprises, and waste utilization. Finally, combining with the four modes of peasant household, enterprise, region and society in the development of circular economy, corresponding countermeasures a...

  2. Circuits and systems based on delta modulation linear, nonlinear and mixed mode processing

    CERN Document Server

    Zrilic, Djuro G

    2005-01-01

    This book is intended for students and professionals who are interested in the field of digital signal processing of delta-sigma modulated sequences. The overall focus is on the development of algorithms and circuits for linear, non-linear, and mixed mode processing of delta-sigma modulated pulse streams. The material presented here is directly relevant to applications in digital communication, DSP, instrumentation, and control.

  3. Accessibility of islands: towards a new geography based on transportation modes and choices

    OpenAIRE

    Sofia Karampela; Thanasis Kizos; Ioannis Spilanis

    2014-01-01

    Accessibility is a multifaceted concept that expresses the case of access between two points in space. For islands, accessibility is a key quality, since isolation and small size considered as inherent characteristics of “islandness”. In this paper, we discuss differences between geographical distance and accessibility potential in the Greek Aegean, combining different transportation modal choice (ferries and airplanes) with the use of an accessibility index that incorporates modes and freque...

  4. Proof mass effects on spiral electrode d33 mode piezoelectric diaphragm-based energy harvester

    KAUST Repository

    Shen, Zhiyuan

    2013-01-01

    This paper presents the characterization of an energy harvester using a piezoelectric diaphragm as the vibration energy conversion microstructure. The diaphragm containing the spiral electrode operates in the d33 mode. The energy harvesting performance of the diaphragm was characterized. The optimal resistance load and the working frequency were characterized. The resonance tuning and the energy harvesting enhancement due to a proof mass were verified. © 2013 IEEE.

  5. Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

    OpenAIRE

    P. Silapan; C. Chanapromma; T. Worachak

    2011-01-01

    This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. Th...

  6. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  7. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    Science.gov (United States)

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  8. Dynamic formant extraction of wa language based on adaptive variational mode decomposition

    Science.gov (United States)

    Fu, Meijun; Dong, Huazhen; Pan, Wenlin

    2017-08-01

    Wa language is one of Chinese minority languages spoken by the Wa nationality who lives in Yunnan Province, China. Until now, it has not been studied from the perspective of Engineering Phonetics. In this paper, for the above reason, by the adaptive variational mode decomposition (AVMD) we have investigated the dynamic formant characteristics of Wa language. Firstly, more precisely, use the synthetic dimension to split Wa language isolated words into voiceless and voiced segment, initials and finals. Secondly, use Linear Prediction Coding to estimate the first three formant frequencies and their bandwidths roughly. Thirdly, select the appropriate equilibrium constraint parameter and the number of decomposed layers so that Adaptive Variational Mode Decomposition (AVMD) can decompose the signal into some intrinsic mode functions (IMFs) without pattern aliasing. Fourthly, use the estimated formant frequencies and bandwidths to determine precisely the required IMFs. Fifthly, use the Hilbert transform to calculate the instantaneous frequency of the above determinate IMFs. Further, we implement the weight average operation on instantaneous frequencies to obtain the first three formant frequencies for each frame. Finally, comparing the first three formant frequencies obtained by the adaptive variance modal decomposition and by Praat software respectively, so we have drawn the conclusion that the relative correct rate of the former to the latter can reach 86% averagely in terms of the selected isolated words, which has shown that our method is effective on Wa language.

  9. Variational mode decomposition based approach for accurate classification of color fundus images with hemorrhages

    Science.gov (United States)

    Lahmiri, Salim; Shmuel, Amir

    2017-11-01

    Diabetic retinopathy is a disease that can cause a loss of vision. An early and accurate diagnosis helps to improve treatment of the disease and prognosis. One of the earliest characteristics of diabetic retinopathy is the appearance of retinal hemorrhages. The purpose of this study is to design a fully automated system for the detection of hemorrhages in a retinal image. In the first stage of our proposed system, a retinal image is processed with variational mode decomposition (VMD) to obtain the first variational mode, which captures the high frequency components of the original image. In the second stage, four texture descriptors are extracted from the first variational mode. Finally, a classifier trained with all computed texture descriptors is used to distinguish between images of healthy and unhealthy retinas with hemorrhages. Experimental results showed evidence of the effectiveness of the proposed system for detection of hemorrhages in the retina, since a perfect detection rate was achieved. Our proposed system for detecting diabetic retinopathy is simple and easy to implement. It requires only short processing time, and it yields higher accuracy in comparison with previously proposed methods for detecting diabetic retinopathy.

  10. Analysis of nonreciprocal noise based on mode splitting in a high-Q optical microresonator

    Science.gov (United States)

    Yang, Zhaohua; Xiao, Yarong; Huo, Jiayan; Shao, Hui

    2018-01-01

    The whispering gallery mode optical microresonator offers a high quality factor, which enables it to act as the core component of a high sensitivity resonator optic gyro; however, nonreciprocal noise limits its precision. Considering the Sagnac effect, i.e. mode splitting in high-quality optical micro-resonators, we derive the explicit expression for the angular velocity versus the splitting amount, and verify the sensing mechanism by simulation using finite element method. Remarkably, the accuracy of the angular velocity measurement in the whispering gallery mode optical microresonator with a quality factor of 108 is 106 °/s. We obtain the optimal coupling position of the novel angular velocity sensing system by detecting the output transmittance spectra of different vertical coupling distances and axial coupling positions. In addition, the reason for the nonreciprocal phenomenon is determined by theoretical analysis of the evanescent distribution of a tapered fiber. These results will provide an effective method and a theoretical basis for suppression of the nonreciprocal noise.

  11. Near-field thermophotovoltaic system design and calculation based on coupled-mode analysis

    Science.gov (United States)

    Wang, Bingnan; Lin, Chungwei; Teo, Koon Hoo

    2017-10-01

    The coupling of resonant modes between two surfaces is important in near-field heat transfer and near-field thermophotovoltaic (TPV) systems. Recently, coupled-mode theory (CMT) has been developed for the analysis and optimal design of TPV systems. We use CMT to analyze the "emitter-vacuum-PV cell" configuration and quantitatively show how the emitter of a nanostructure can drastically improve the near-field TPV device performance. The key feature of the nanostructure is the additional geometry-induced resonant mode, whose energy is lower than the original surface plasmon polariton resonant frequency and much closer to the bandgap of the PV cell. Specifically, we show that, with a simple grating structure, the generated power density of a TPV cell is increased from 13 to 34 W/cm2 when the PV cell is fixed at 300 K and the emitter is at 1000 K. The increase is over 20 times higher when both planar and grating emitters are at a lower temperature of 500 K.

  12. High frequency mode shapes characterisation using Digital Image Correlation and phase-based motion magnification

    Science.gov (United States)

    Molina-Viedma, A. J.; Felipe-Sesé, L.; López-Alba, E.; Díaz, F.

    2018-03-01

    High speed video cameras provide valuable information in dynamic events. Mechanical characterisation has been improved by the interpretation of the behaviour in slow-motion visualisations. In modal analysis, videos contribute to the evaluation of mode shapes but, generally, the motion is too subtle to be interpreted. In latest years, image treatment algorithms have been developed to generate a magnified version of the motion that could be interpreted by naked eye. Nevertheless, optical techniques such as Digital Image Correlation (DIC) are able to provide quantitative information of the motion with higher sensitivity than naked eye. For vibration analysis, mode shapes characterisation is one of the most interesting DIC performances. Full-field measurements provide higher spatial density than classical instrumentations or Scanning Laser Doppler Vibrometry. However, the accurateness of DIC is reduced at high frequencies as a consequence of the low displacements and hence it is habitually employed in low frequency spectra. In the current work, the combination of DIC and motion magnification is explored in order to provide numerical information in magnified videos and perform DIC mode shapes characterisation at unprecedented high frequencies through increasing the amplitude of displacements.

  13. The Optimization of Passengers’ Travel Time under Express-Slow Mode Based on Suburban Line

    Directory of Open Access Journals (Sweden)

    Xiaobing Ding

    2016-01-01

    Full Text Available The suburban line connects the suburbs and the city centre; it is of huge advantage to attempt the express-slow mode. The passengers’ average travel time is the key factor to reflect the level of rail transport services, especially under the express-slow mode. So it is important to study the passengers’ average travel time under express-slow, which can get benefit on the optimization of operation scheme. First analyze the main factor that affects passengers’ travel time and then mine the dynamic interactive relationship among the factors. Second, a new passengers’ travel time evolution algorithm is proposed after studying the stop schedule and the proportion of express/slow train, and then membrane computing theory algorithm is introduced to solve the model. Finally, Shanghai Metro Line 22 is set as an example to apply the optimization model to calculate the total passengers’ travel time; the result shows that the total average travel time under the express-slow mode can save 1 minute and 38 seconds; the social influence and value of it are very huge. The proposed calculation model is of great help for the decision of stop schedule and provides theoretical and methodological support to determine the proportion of express/slow trains, improves the service level, and enriches and complements the rail transit operation scheme optimization theory system.

  14. Developing predictive models for toxicity of organic chemicals to green algae based on mode of action.

    Science.gov (United States)

    Bakire, Serge; Yang, Xinya; Ma, Guangcai; Wei, Xiaoxuan; Yu, Haiying; Chen, Jianrong; Lin, Hongjun

    2018-01-01

    Organic chemicals in the aquatic ecosystem may inhibit algae growth and subsequently lead to the decline of primary productivity. Growth inhibition tests are required for ecotoxicological assessments for regulatory purposes. In silico study is playing an important role in replacing or reducing animal tests and decreasing experimental expense due to its efficiency. In this work, a series of theoretical models was developed for predicting algal growth inhibition (log EC 50 ) after 72 h exposure to diverse chemicals. In total 348 organic compounds were classified into five modes of toxic action using the Verhaar Scheme. Each model was established by using molecular descriptors that characterize electronic and structural properties. The external validation and leave-one-out cross validation proved the statistical robustness of the derived models. Thus they can be used to predict log EC 50 values of chemicals that lack authorized algal growth inhibition values (72 h). This work systematically studied algal growth inhibition according to toxic modes and the developed model suite covers all five toxic modes. The outcome of this research will promote toxic mechanism analysis and be made applicable to structural diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A model-based examination of multivariate physical modes in the Gulf of Alaska

    Science.gov (United States)

    Hermann, A. J.; Ladd, C.; Cheng, W.; Curchitser, E. N.; Hedstrom, K.

    2016-10-01

    We use multivariate output from a hydrodynamic model of the Gulf of Alaska (GOA) to explore the covariance among its physical state and air/sea fluxes. We attempt to summarize this coupled variability using a limited set of patterns, and examine their correlation to three large-scale climate indices relevant to the Northeast Pacific. This analysis is focused on perturbations from monthly climatology of the following attributes of the GOA: sea surface temperature, sea surface height, mixed layer depth, sea surface salinity, latent heat flux, sensible heat flux, shortwave irradiance, net long wave irradiance, currents at 40 m depth, and wind stress. We identified two multivariate modes, both substantially correlated with the Pacific Decadal Oscillation (PDO) and Multivariate El Nino (MEI) indices on interannual timescales, which together account for 30% of the total normalized variance of the perturbation time series. These two modes indicate the following covarying events during periods of positive PDO/MEI: (1) anomalously warm, wet and windy conditions (typically in winter), with elevated coastal SSH, followed 2-5 months later by (2) reduced cloud cover, with emerging shelf-break eddies. Similar modes are found when the analysis is performed separately on the eastern and western GOA; in general, modal amplitudes appear stronger in the western GOA.

  16. High energy radiation precursors to the collapse of black holes binaries based on resonating plasma modes

    Science.gov (United States)

    Coppi, B.

    2018-05-01

    The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.

  17. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Science.gov (United States)

    Farka, Zdeněk; Kovář, David; Skládal, Petr

    2015-01-01

    Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter) and passive (impedance analyzer) modes of quartz crystal microbalance (QCM) were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‐SMCC was most effective achieving the limit of detection (LOD) 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes. PMID:25545267

  18. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  19. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach.

    Science.gov (United States)

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim I; Arif, Usman

    2017-04-18

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy.

  20. Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure-Part II: Finite element applications

    Science.gov (United States)

    Máirtín, Éamonn Ó.; Parry, Guillaume; Beltz, Glenn E.; McGarry, J. Patrick

    2014-02-01

    This paper, the second of two parts, presents three novel finite element case studies to demonstrate the importance of normal-tangential coupling in cohesive zone models (CZMs) for the prediction of mixed-mode interface debonding. Specifically, four new CZMs proposed in Part I of this study are implemented, namely the potential-based MP model and the non-potential-based NP1, NP2 and SMC models. For comparison, simulations are also performed for the well established potential-based Xu-Needleman (XN) model and the non-potential-based model of van den Bosch, Schreurs and Geers (BSG model). Case study 1: Debonding and rebonding of a biological cell from a cyclically deforming silicone substrate is simulated when the mode II work of separation is higher than the mode I work of separation at the cell-substrate interface. An active formulation for the contractility and remodelling of the cell cytoskeleton is implemented. It is demonstrated that when the XN potential function is used at the cell-substrate interface repulsive normal tractions are computed, preventing rebonding of significant regions of the cell to the substrate. In contrast, the proposed MP potential function at the cell-substrate interface results in negligible repulsive normal tractions, allowing for the prediction of experimentally observed patterns of cell cytoskeletal remodelling. Case study 2: Buckling of a coating from the compressive surface of a stent is simulated. It is demonstrated that during expansion of the stent the coating is initially compressed into the stent surface, while simultaneously undergoing tangential (shear) tractions at the coating-stent interface. It is demonstrated that when either the proposed NP1 or NP2 model is implemented at the stent-coating interface mixed-mode over-closure is correctly penalised. Further expansion of the stent results in the prediction of significant buckling of the coating from the stent surface, as observed experimentally. In contrast, the BSG model

  1. Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data.

    Science.gov (United States)

    Vera, J Fernando; Macías, Rodrigo

    2017-06-01

    One of the main problems in cluster analysis is that of determining the number of groups in the data. In general, the approach taken depends on the cluster method used. For K-means, some of the most widely employed criteria are formulated in terms of the decomposition of the total point scatter, regarding a two-mode data set of N points in p dimensions, which are optimally arranged into K classes. This paper addresses the formulation of criteria to determine the number of clusters, in the general situation in which the available information for clustering is a one-mode [Formula: see text] dissimilarity matrix describing the objects. In this framework, p and the coordinates of points are usually unknown, and the application of criteria originally formulated for two-mode data sets is dependent on their possible reformulation in the one-mode situation. The decomposition of the variability of the clustered objects is proposed in terms of the corresponding block-shaped partition of the dissimilarity matrix. Within-block and between-block dispersion values for the partitioned dissimilarity matrix are derived, and variance-based criteria are subsequently formulated in order to determine the number of groups in the data. A Monte Carlo experiment was carried out to study the performance of the proposed criteria. For simulated clustered points in p dimensions, greater efficiency in recovering the number of clusters is obtained when the criteria are calculated from the related Euclidean distances instead of the known two-mode data set, in general, for unequal-sized clusters and for low dimensionality situations. For simulated dissimilarity data sets, the proposed criteria always outperform the results obtained when these criteria are calculated from their original formulation, using dissimilarities instead of distances.

  2. Avoidance of Tearing Mode Locking and Disruption with Electro-Magnetic Torque Introduced by Feedback-based Mode Rotation Control in DIII-D and RFX-mod

    Energy Technology Data Exchange (ETDEWEB)

    Okabayashi, M. [PPPL; Zanca, P. [Euratom-ENEA; Strait, E. J. [General Atomics

    2014-09-01

    Disruptions caused by tearing modes (TMs) are considered to be one of the most critical roadblocks to achieving reliable, steady-state operation of tokamak fusion reactors. Here we have demonstrated a very promising scheme to avoid such disruptions by utilizing the electro-magnetic (EM) torque produced with 3D coils that are available in many tokamaks. In this scheme, the EM torque to the modes is created by a toroidal phase shift between the externally-applied field and the excited TM fields, compensating for the mode momentum loss due to the interaction with the resistive wall and uncorrected error fields. Fine control of torque balance is provided by a feedback scheme. We have explored this approach in two vastly different devices and plasma conditions: DIII-D and RFX-mod operated in tokamak mode. In DIII-D, the plasma target was high βN plasmas in a non-circular divertor tokamak. In RFX-mod, the plasma was ohmically-heated plasma with ultralow safety factor in a circular limiter discharge of active feedback coils outside the thick resistive shell. The DIII-D and RFX-mod experiments showed remarkable consistency with theoretical predictions of torque balance. The application to ignition-oriented devices such as International Thermonuclear Experimental Reactor (ITER) would expand the horizon of its operational regime. The internal 3D coil set currently under consideration for edge localized mode suppression in ITER would be well suited to this purpose.

  3. Structural improvement of unliganded simian immunodeficiency virus gp120 core by normal-mode-based X-ray crystallographic refinement

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaorui [Graduate Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030 (United States); Lu, Mingyang [Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030 (United States); Poon, Billy K. [Department of Bioengineering, Rice University, Houston, TX 77005 (United States); Wang, Qinghua [Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030 (United States); Ma, Jianpeng, E-mail: jpma@bcm.tmc.edu [Graduate Program of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030 (United States); Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030 (United States); Department of Bioengineering, Rice University, Houston, TX 77005 (United States)

    2009-04-01

    The structural model of the unliganded and fully glycosylated simian immunodeficiency virus gp120 core determined to 4.0 Å resolution was substantially improved using a recently developed normal-mode-based anisotropic B-factor refinement method. The envelope protein gp120/gp41 of simian and human immunodeficiency viruses plays a critical role in viral entry into host cells. However, the extraordinarily high structural flexibility and heavy glycosylation of the protein have presented enormous difficulties in the pursuit of high-resolution structural investigation of some of its conformational states. An unliganded and fully glycosylated gp120 core structure was recently determined to 4.0 Å resolution. The rather low data-to-parameter ratio limited refinement efforts in the original structure determination. In this work, refinement of this gp120 core structure was carried out using a normal-mode-based refinement method that has been shown in previous studies to be effective in improving models of a supramolecular complex at 3.42 Å resolution and of a membrane protein at 3.2 Å resolution. By using only the first four nonzero lowest-frequency normal modes to construct the anisotropic thermal parameters, combined with manual adjustments and standard positional refinement using REFMAC5, the structural model of the gp120 core was significantly improved in many aspects, including substantial decreases in R factors, better fitting of several flexible regions in electron-density maps, the addition of five new sugar rings at four glycan chains and an excellent correlation of the B-factor distribution with known structural flexibility. These results further underscore the effectiveness of this normal-mode-based method in improving models of protein and nonprotein components in low-resolution X-ray structures.

  4. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures

    Science.gov (United States)

    Shi, Binkai; Qiao, Pizhong

    2018-03-01

    Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.

  5. Structural improvement of unliganded simian immunodeficiency virus gp120 core by normal-mode-based X-ray crystallographic refinement

    International Nuclear Information System (INIS)

    Chen, Xiaorui; Lu, Mingyang; Poon, Billy K.; Wang, Qinghua; Ma, Jianpeng

    2009-01-01

    The structural model of the unliganded and fully glycosylated simian immunodeficiency virus gp120 core determined to 4.0 Å resolution was substantially improved using a recently developed normal-mode-based anisotropic B-factor refinement method. The envelope protein gp120/gp41 of simian and human immunodeficiency viruses plays a critical role in viral entry into host cells. However, the extraordinarily high structural flexibility and heavy glycosylation of the protein have presented enormous difficulties in the pursuit of high-resolution structural investigation of some of its conformational states. An unliganded and fully glycosylated gp120 core structure was recently determined to 4.0 Å resolution. The rather low data-to-parameter ratio limited refinement efforts in the original structure determination. In this work, refinement of this gp120 core structure was carried out using a normal-mode-based refinement method that has been shown in previous studies to be effective in improving models of a supramolecular complex at 3.42 Å resolution and of a membrane protein at 3.2 Å resolution. By using only the first four nonzero lowest-frequency normal modes to construct the anisotropic thermal parameters, combined with manual adjustments and standard positional refinement using REFMAC5, the structural model of the gp120 core was significantly improved in many aspects, including substantial decreases in R factors, better fitting of several flexible regions in electron-density maps, the addition of five new sugar rings at four glycan chains and an excellent correlation of the B-factor distribution with known structural flexibility. These results further underscore the effectiveness of this normal-mode-based method in improving models of protein and nonprotein components in low-resolution X-ray structures

  6. Nonlinear Fractional Sliding Mode Controller Based on Reduced Order FNPK Model for Output Power Control of Nuclear Research Reactors

    Science.gov (United States)

    Davijani, Nafiseh Zare; Jahanfarnia, Gholamreza; Abharian, Amir Esmaeili

    2017-01-01

    One of the most important issues with respect to nuclear reactors is power control. In this study, we designed a fractional-order sliding mode controller based on a nonlinear fractional-order model of the reactor system in order to track the reference power trajectory and overcome uncertainties and external disturbances. Since not all of the variables in an operating reactor are measurable or specified in the control law, we propose a reduced-order fractional neutron point kinetic (ROFNPK) model based on measurable variables. In the design, we assume the differences between the approximated model and the real system is limited. We use the obtained model in the controller design process and use the Lyapunov method to perform a stability analysis of the closed-loop system. We simulate the proposed reduced-order fractional-order sliding mode controller (ROFOSMC) using Matlab/Simulink, and its performance is compared with that of a reduced order integer-order sliding mode controller (ROIOSMC). Our simulation results indicate an acceptable performance of the proposed approach in tracking the reference power trajectory with respect to ROIOSMC because of faster response of control effort signal and the smaller tracking error. Moreover, the results illustrate the capability of the controller in rejection of the disturbance and the noise signals and the robustness of controller against uncertainty.

  7. A Compound fault diagnosis for rolling bearings method based on blind source separation and ensemble empirical mode decomposition.

    Science.gov (United States)

    Wang, Huaqing; Li, Ruitong; Tang, Gang; Yuan, Hongfang; Zhao, Qingliang; Cao, Xi

    2014-01-01

    A Compound fault signal usually contains multiple characteristic signals and strong confusion noise, which makes it difficult to separate week fault signals from them through conventional ways, such as FFT-based envelope detection, wavelet transform or empirical mode decomposition individually. In order to improve the compound faults diagnose of rolling bearings via signals' separation, the present paper proposes a new method to identify compound faults from measured mixed-signals, which is based on ensemble empirical mode decomposition (EEMD) method and independent component analysis (ICA) technique. With the approach, a vibration signal is firstly decomposed into intrinsic mode functions (IMF) by EEMD method to obtain multichannel signals. Then, according to a cross correlation criterion, the corresponding IMF is selected as the input matrix of ICA. Finally, the compound faults can be separated effectively by executing ICA method, which makes the fault features more easily extracted and more clearly identified. Experimental results validate the effectiveness of the proposed method in compound fault separating, which works not only for the outer race defect, but also for the rollers defect and the unbalance fault of the experimental system.

  8. An optimized time varying filtering based empirical mode decomposition method with grey wolf optimizer for machinery fault diagnosis

    Science.gov (United States)

    Zhang, Xin; Liu, Zhiwen; Miao, Qiang; Wang, Lei

    2018-03-01

    A time varying filtering based empirical mode decomposition (EMD) (TVF-EMD) method was proposed recently to solve the mode mixing problem of EMD method. Compared with the classical EMD, TVF-EMD was proven to improve the frequency separation performance and be robust to noise interference. However, the decomposition parameters (i.e., bandwidth threshold and B-spline order) significantly affect the decomposition results of this method. In original TVF-EMD method, the parameter values are assigned in advance, which makes it difficult to achieve satisfactory analysis results. To solve this problem, this paper develops an optimized TVF-EMD method based on grey wolf optimizer (GWO) algorithm for fault diagnosis of rotating machinery. Firstly, a measurement index termed weighted kurtosis index is constructed by using kurtosis index and correlation coefficient. Subsequently, the optimal TVF-EMD parameters that match with the input signal can be obtained by GWO algorithm using the maximum weighted kurtosis index as objective function. Finally, fault features can be extracted by analyzing the sensitive intrinsic mode function (IMF) owning the maximum weighted kurtosis index. Simulations and comparisons highlight the performance of TVF-EMD method for signal decomposition, and meanwhile verify the fact that bandwidth threshold and B-spline order are critical to the decomposition results. Two case studies on rotating machinery fault diagnosis demonstrate the effectiveness and advantages of the proposed method.

  9. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    Science.gov (United States)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  10. Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Ignacio Del Villar

    2015-01-01

    Full Text Available Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF and a single-mode multimode single-mode structure (SMS, are compared in terms of their adequateness for sensing once they are coated with thin-films. The thin-film deposited (TiO2/PSS permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material.

  11. Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems.

    Science.gov (United States)

    Qin, Zengguang; Chen, Hui; Chang, Jun

    2017-08-14

    We propose a novel denoising method based on empirical mode decomposition (EMD) to improve the signal-to-noise ratio (SNR) for vibration sensing in phase-sensitive optical time domain reflectometry (φ-OTDR) systems. Raw Rayleigh backscattering traces are decomposed into a series of intrinsic mode functions (IMFs) and a residual component using an EMD algorithm. High frequency noise is eliminated by removing several IMFs at the position without vibration selected by the Pearson correlation coefficient (PCC). When the pulse width is 50 ns, the SNR of location information for the vibration events of 100 Hz and 1.2 kHz is increased to as high as 42.52 dB and 39.58 dB, respectively, with a 2 km sensing fiber, which demonstrates the excellent performance of this new method.

  12. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  13. Speed sensoless robust control of permanent magnet synchronous motor based on second-order sliding-mode observer

    Directory of Open Access Journals (Sweden)

    Fezzani Amor

    2014-01-01

    Full Text Available This paper is devoted to the study of the performances of a robust speed sensorless nonlinear control of permanent magnet synchronous machine. In the first part, the controllers are designed using two methods: the first one using the input output feedback linearization control and the second is a nonlinear control based on Lyapunov theory combined with sliding mode control. This second solution shows good robustness with respect to parameter variations, measurement errors and noises. In the second part, the high order sliding mode speed observer is used to overcome the occurring chattering phenomena. The super twisting algorithm is modified in order to design a speed and position observer for PMSM. Finally, simulation results are given to demonstrate the effectiveness and the good performance of the proposed control methods.

  14. Electrically tunable whispering gallery mode microresonator based on a grapefruit-microstructured optical fiber infiltrated with nematic liquid crystals.

    Science.gov (United States)

    Yang, Chengkun; Zhang, Hao; Liu, Bo; Lin, Shiwei; Li, Yuetao; Liu, Haifeng

    2017-08-01

    An electrically tunable whispering gallery mode (WGM) microresonator based on an HF-etched microstructured optical fiber (MOF) infiltrated with nematic liquid crystals (NLCs) is proposed and experimentally demonstrated. Experimental results indicate that as the peak-to-peak voltage of the applied AC electric field increases from 160 to 220 V, WGM resonance peaks gradually move toward a shorter wavelength region by 0.527 nm with a wavelength sensitivity up to 0.01  nm/V for a TM1691 mode, and the Q-factor for each WGM resonance peak rapidly decreases with the increment of applied electric voltage. The proposed electrically controlled WGM tuning scheme shows a linear resonance wavelength shift with good spectral reversibility, which makes it a promising candidate to serve as an integrated functional photonic device in practical use and in related fundamental scientific studies.

  15. Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester

    Science.gov (United States)

    Dhote, Sharvari; Yang, Zhengbao; Zu, Jean

    2018-01-01

    This paper presents the modeling and experimental parametric study of a nonlinear multi-frequency broad bandwidth piezoelectric vibration-based energy harvester. The proposed harvester consists of a tri-leg compliant orthoplanar spring (COPS) and multiple masses with piezoelectric plates attached at three different locations. The vibration modes, resonant frequencies, and strain distributions are studied using the finite element analysis. The prototype is manufactured and experimentally investigated to study the effect of single as well as multiple light-weight masses on the bandwidth. The dynamic behavior of the harvester with a mass at the center is modeled numerically and characterized experimentally. The simulation and experimental results are in good agreement. A wide bandwidth with three close nonlinear vibration modes is observed during the experiments when four masses are added to the proposed harvester. The current generator with four masses shows a significant performance improvement with multiple nonlinear peaks under both forward and reverse frequency sweeps.

  16. Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism

    Science.gov (United States)

    Ramos, J. J.; White, R. L.

    2018-03-01

    The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.

  17. Subdiffraction-limited imaging based on longitudinal modes in a spatially dispersive slab

    Science.gov (United States)

    Yanai, Avner; Levy, Uriel

    2014-08-01

    It was proposed that a flat silver layer could be used to form a subdiffraction-limited image when illuminated near its surface plasmon resonance frequency [J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000), 10.1103/PhysRevLett.85.3966]. In this paper, we study the possibility of obtaining sub diffraction resolution using a different mechanism, with no surface plasmons involved. Instead, by taking into account the nonlocal response of a thin silver slab, we show that longitudinal modes contribute to the formation of a subdiffraction-limited image in a frequency regime above the plasma frequency. The differences between these two distinct mechanisms are studied and explained.

  18. Designing Flexible Neuro-Fuzzy System Based on Sliding Mode Controller for Magnetic Levitation Systems

    OpenAIRE

    Zahra Mohammadi; Mohammad Teshnehlab; Mahdi Aliyari Shoorehdeli

    2011-01-01

    This study presents a novel controller of magnetic levitation system by using new neuro-fuzzy structures which called flexible neuro-fuzzy systems. In this type of controller we use sliding mode control with neuro-fuzzy to eliminate the Jacobian of plant. At first, we control magnetic levitation system with Mamdanitype neuro-fuzzy systems and logical-type neuro-fuzzy systems separately and then we use two types of flexible neuro-fuzzy systems as controllers. Basic flexible OR-type neuro-fuzzy...

  19. Adaptive robust PID controller design based on a sliding mode for uncertain chaotic systems

    International Nuclear Information System (INIS)

    Chang Weider; Yan Junjuh

    2005-01-01

    A robust adaptive PID controller design motivated from the sliding mode control is proposed for a class of uncertain chaotic systems in this paper. Three PID control gains, K p , K i , and K d , are adjustable parameters and will be updated online with an adequate adaptation mechanism to minimize a previously designed sliding condition. By introducing a supervisory controller, the stability of the closed-loop PID control system under with the plant uncertainty and external disturbance can be guaranteed. Finally, a well-known Duffing-Holmes chaotic system is used as an illustrative to show the effectiveness of the proposed robust adaptive PID controller

  20. A swarm intelligence-based tuning method for the Sliding Mode Generalized Predictive Control.

    Science.gov (United States)

    Oliveira, J B; Boaventura-Cunha, J; Moura Oliveira, P B; Freire, H

    2014-09-01

    This work presents an automatic tuning method for the discontinuous component of the Sliding Mode Generalized Predictive Controller (SMGPC) subject to constraints. The strategy employs Particle Swarm Optimization (PSO) to minimize a second aggregated cost function. The continuous component is obtained by the standard procedure, by Quadratic Programming (QP), thus yielding an online dual optimization scheme. Simulations and performance indexes for common process models in industry, such as nonminimum phase and time delayed systems, result in a better performance, improving robustness and tracking accuracy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Implementation of Generalized Modes in a 3D Finite Difference Based Seakeeping Model

    DEFF Research Database (Denmark)

    Andersen, Matilde H.; Amini Afshar, Mostafa; Bingham, Harry B.

    This work is an extension of the finite difference potential flow solver OceanWave3D-Seakeepingdeveloped by Afshar (2014) to include generalized modes. The continuity equation is solvedusing a fourth-order centered finite difference scheme which requires that the entire fluid domainis discretized...... to the sparse nature of the coefficient matrix. Thesolver is built using the open source framework Overture which consists of C++ libraries forsolving partial differential equations on overlapping grids and has a built-in overlapping gridgenerator Ogen....

  2. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  3. The Value Creation of B2B2C E-Business Mode based on SaaS

    OpenAIRE

    Li Zhao; Shouting Guo

    2012-01-01

    Due to the disadvantage of enterprise information construction in B2B and B2C business models, companies cannot keep up with immediate information in developing customer service, inventory management, and customer web front-end experience. Based on the SaaS information service concept, this paper solves business problems in information technology for introducing the integrated B2B2C E-business mode. To achieve participants’ utility optimization, the business processes based on value chain h...

  4. Effect of Shade and Light Curing Mode on the Degree of Conversion of Silorane-Based and Methacrylate-Based Resin Composites.

    Science.gov (United States)

    Sm, Mousavinasab; M, Atai; N, Salehi; A, Salehi

    2016-12-01

    The degree of conversion depends on the material composition, light source properties, distance from light source, light intensity, curing time, and other factors such as shade and translucency. In the present study, we evaluated the effects of different light-curing modes and shades of methacrylate and silorane-based resin composites on the degree of conversion of resin composites (DC). The methacrylate-based (Filtek Z250, 3M, ESPE) and low-shrinkage silorane-based (Filtek P90, 3M, ESPE) resin composites were used in three groups as follows: group 1-Filtek Z250 (shade A3), group 2-Filtek Z250 (shade B2), and group 3-Filtek P90 (shade A3). We used a light-emitting diode (LED) curing unit for photopolymerization. 10 samples were prepared in each group to evaluate the degree of conversion; 5 samples were cured using soft-start curing mode, and the other 5 were cured using standard curing mode. The DC of the resin composites was measured using Fourier Transform Infrared Spectroscopy (FTIR). The data were analyzed using Kruskal Wallis and one-way ANOVA statistical tests. The degree of conversion of silorane-based resin composite was 70 - 75.8% and that of methacrylate-based resin composites was 60.2 - 68.2% (p = 0.009). The degree of conversion of the composite with brighter colour (B2) was statistically more than the darker composite (A3). Higher degree of conversion was achieved applying the standard curing mode. The results of the study showed that the colour and type of the resin composite and also the curing mode influence the degree of conversion of resin composites.

  5. Simple immunoglobulin G sensor based on thin core single-mode fiber

    Science.gov (United States)

    Zheng, Yingfang; Lang, Tingting; Shen, Tingting; Shen, Changyu

    2018-03-01

    In this paper, a simple fiber biosensor (FOB) for immunoglobulin G (IgG) detection is designed and experimentally verified. The FOB is constructed by a 20 mm long thin core single-mode fiber (TCSMF) sandwiched between two single-mode optical fibers (SMFs). First, the refractive index (RI) sensitivity of the fiber structures is calculated by the beam propagation method. The refractive index sensing experiment is performed using different concentrations of glycerol solutions, and the experimental results are mostly consistent with the simulation predictions. The experimental RI sensitivity increases with the surrounding RI and reaches 82.7 nm/RIU. Then the surface of the FOB is functionalized by APTES for covalent bonding. The human IgG and goat anti-human IgG are chosen as a bioconjugated pair to examine the bio-sensing effectiveness of this FOB. The sensitivity of IgG detection is determined to be 10.4 nm/(mg/ml). And the serum IgG concentration in normal adults lies within the range of 6-16 mg/ml (Worsfold et al., 1985), so the sensor is applicable to human IgG monitoring. The specificity of the FOB is also verified by a contrast experiment conducted using rabbit immunoglobulin G. The proposed FOB is simple, low loss, cost-effective, and can be used for various biological and chemical applications.

  6. Defects diagnosis in laser brazing using near-infrared signals based on empirical mode decomposition

    Science.gov (United States)

    Cheng, Liyong; Mi, Gaoyang; Li, Shuo; Wang, Chunming; Hu, Xiyuan

    2018-03-01

    Real-time monitoring of laser welding plays a very important role in the modern automated production and online defects diagnosis is necessary to be implemented. In this study, the status of laser brazing was monitored in real time using an infrared photoelectric sensor. Four kinds of braze seams (including healthy weld, unfilled weld, hole weld and rough surface weld) along with corresponding near-infrared signals were obtained. Further, a new method called Empirical Mode Decomposition (EMD) was proposed to analyze the near-infrared signals. The results showed that the EMD method had a good performance in eliminating the noise on the near-infrared signals. And then, the correlation coefficient was developed for selecting the Intrinsic Mode Function (IMF) more sensitive to the weld defects. A more accurate signal was reconstructed with the selected IMF components. Simultaneously, the spectrum of selected IMF components was solved using fast Fourier transform, and the frequency characteristics were clearly revealed. The frequency energy of different frequency bands was computed to diagnose the defects. There was a significant difference in four types of weld defects. This approach has been proved to be an effective and efficient method for monitoring laser brazing defects.

  7. A three-mode microstrip resonator and a miniature ultra-wideband filter based on it

    Science.gov (United States)

    Belyaev, B. A.; Khodenkov, S. A.; Leksikov, An. A.; Shabanov, V. F.

    2017-06-01

    An original microstrip resonator design with a strip conductor split by a slot at one of its ends is investigated. It is demonstrated that at the optimal slot sizes, when the eigenfrequency of the second oscillation mode hits the center between the first and third oscillation modes, the resonator can work as a thirdorder bandpass filter. The structure formed from only two such resonators electromagnetically coupled by split conductor sections is a miniature six-order wideband filter with high selectivity. The test prototype of the filter with a central passband frequency of 1.2 GHz and a passband width of 0.75 GHz fabricated on a substrate (45 × 11 × 1) mm3 in size with a permittivity of 80 is characterized by minimum loss in a passband of 0.5 dB. The parametric synthesis of the filter structure was performed using electrodynamic analysis of the 3D model. The measured characteristics of the test prototype agree well with the calculated data.

  8. Broadband non-polarizing beam splitter based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Ma Jian-Yong; Xu Cheng; Qiang Ying-Huai; Zhu Ya-Bo

    2011-01-01

    A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ∼50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4 μm∼1.7 μm and 1% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Implications of dibenzyl trisulphide for disease treatment based on its mode of action.

    Science.gov (United States)

    Williams, L A D; Barton, E N; Kraus, W; Rösner, H

    2009-11-01

    Studies conducted on the secondary metabolite (natural product), dibenzyl trisulphide (DTS), which was isolated from the sub-tropical shrub Petiveria alliacea (guinea hen weed, anamu) [Phytolaccaceae] have shown tremendous pharmaceutical promise as a drug prototype. This is now reflected in the development of the broad spectrum anti-cancer molecule, fluorapacin (bis(4-fluorobenzyl) trisulphide) which has an excellent safety profile. The mode of action elucidated for DTS is the mitogen activated protein extracellular regulated kinases 1 and 2 (MAPKinases ERK 1 and ERK 2). The MAPKinase signal transduction biochemical pathways are important in the regulation of a wide range of cellular processes which are important in disease establishment. These processes include: cancer cell proliferation, nerve repair, memory enhancement, autoimmune diseases, which are linked to thymic cell involution and bone marrow functions, cerebrovascular and cardiovascular diseases. In addition to the MAPkinase signal transduction mode of action, DTS also prevents the denaturation of serum albumin which is a feature of nonsteroidal anti-inflammatory drugs, thus supporting the molecule's possible role in the treatment of inflammatory ageing diseases.

  10. Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method.

    Science.gov (United States)

    Deng, Xinyang; Jiang, Wen

    2017-09-12

    Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.

  11. A Lorentz force magnetometer based on a piezoelectric-on-silicon square-extensional mode micromechanical resonator

    Science.gov (United States)

    Ghosh, S.; Lee, J. E.-Y.

    2017-06-01

    In this letter, we present a Lorentz force magnetic field sensor based on a thin-film piezoelectric-on-silicon (TPoS) CMOS-compatible resonator for the detection of an out-of-plane (perpendicular to the plane of fabrication) magnetic field. We here exploit the fundamental breathing mode of vibration in a suspended square plate, which is commonly referred to as the square-extensional (SE) mode. The symmetric stress profile of the SE mode avails stresses in the two orthogonal in-plane axes to be effectively coupled into a charge output through the piezoelectric transducers. This in turn enhances the output motional current from the device, which effectively determines the responsivity of the device. In this context, the responsivity has been defined as a ratio of output motional current to the external magnetic field, which has been further normalized against the input reference current of the device. The reported device has recorded a responsivity of 6950 ppm/T (μA/A.T) at a resonant frequency of 5.28 MHz and a reasonable mechanical quality (Q) factor of 1056 in air.

  12. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness.

    Science.gov (United States)

    Lant, Nicholas D; Gonzalez-Lara, Laura E; Owen, Adrian M; Fernández-Espejo, Davinia

    2016-01-01

    The specific neural bases of disorders of consciousness (DOC) are still not well understood. Some studies have suggested that functional and structural impairments in the default mode network may play a role in explaining these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involving striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first report of structural integrity of fiber tracts connecting the nodes of the mesocircuit and the default mode network in 8 patients with DOC. We found evidence of significant damage to subcortico-cortical and cortico-cortical fibers, which were more severe in vegetative state patients and correlated with clinical severity as determined by Coma Recovery Scale-Revised (CRS-R) scores. In contrast, fiber tracts interconnecting subcortical nodes were not significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with cortical and subcortical areas. Our results suggest a strong relationship between the default mode network - and most importantly the precuneus - and the anterior forebrain mesocircuit in the neural basis of the DOC.

  13. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2017-01-01

    Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.

  14. Comparison Study of Electromagnet and Permanent Magnet Systems for an Accelerator Using Cost-Based Failure Modes and Effects Analysis

    International Nuclear Information System (INIS)

    Spencer, C

    2004-01-01

    The next generation of particle accelerators will be one-of-a-kind facilities, and to meet their luminosity goals they must have guaranteed availability over their several decade lifetimes. The Next Linear Collider (NLC) is one viable option for a 1 TeV electron-positron linear collider, it has an 85% overall availability goal. We previously showed how a traditional Failure Modes and Effects Analysis (FMEA) of a SLAC electromagnet leads to reliability-enhancing design changes. Traditional FMEA identifies failure modes with high risk but does not consider the consequences in terms of cost, which could lead to unnecessarily expensive components. We have used a new methodology, ''Life Cost-Based FMEA'', which measures risk of failure in terms of cost, in order to evaluate and compare two different technologies that might be used for the 8653 NLC magnets: electromagnets or permanent magnets. The availabilities for the two different types of magnet systems have been estimated using empirical data from SLAC's accelerator failure database plus expert opinion on permanent magnet failure modes and industry standard failure data. Labor and material costs to repair magnet failures are predicted using a Monte Carlo simulation of all possible magnet failures over a 30-year lifetime. Our goal is to maximize up-time of the NLC through magnet design improvements and the optimal combination of electromagnets and permanent magnets, while reducing magnet system lifecycle costs

  15. High-Order Sliding Mode-Based Synchronous Control of a Novel Stair-Climbing Wheelchair Robot

    Directory of Open Access Journals (Sweden)

    Juanxiu Liu

    2015-01-01

    Full Text Available For the attitude control of a novel stair-climbing wheelchair with inertial uncertainties and external disturbance torques, a new synchronous control method is proposed via combing high-order sliding mode control techniques with cross-coupling techniques. For this purpose, a proper controller is designed, which can improve the performance of the system under conditions of uncertainties and torque perturbations and also can guarantee the synchronization of the system. Firstly, a robust high-order sliding mode control law is designed to track the desired position trajectories effectively. Secondly, considering the coordination of the multiple joints, a high-order sliding mode synchronization controller is designed to reduce the synchronization errors and tracking errors based on the controller designed previously. Stability of the closed-loop system is proved by Lyapunov theory. The simulation is performed by MATLAB to verify the effectiveness of the proposed controller. By comparing the simulation results of two controllers, it is obvious that the proposed scheme has better performance and stronger robustness.

  16. Relationship between the anterior forebrain mesocircuit and the default mode network in the structural bases of disorders of consciousness

    Directory of Open Access Journals (Sweden)

    Nicholas D. Lant

    2016-01-01

    Full Text Available The specific neural bases of disorders of consciousness (DOC are still not well understood. Some studies have suggested that functional and structural impairments in the default mode network may play a role in explaining these disorders. In contrast, others have proposed that dysfunctions in the anterior forebrain mesocircuit involving striatum, globus pallidus, and thalamus may be the main underlying mechanism. Here, we provide the first report of structural integrity of fiber tracts connecting the nodes of the mesocircuit and the default mode network in 8 patients with DOC. We found evidence of significant damage to subcortico-cortical and cortico-cortical fibers, which were more severe in vegetative state patients and correlated with clinical severity as determined by Coma Recovery Scale—Revised (CRS-R scores. In contrast, fiber tracts interconnecting subcortical nodes were not significantly impaired. Lastly, we found significant damage in all fiber tracts connecting the precuneus with cortical and subcortical areas. Our results suggest a strong relationship between the default mode network – and most importantly the precuneus – and the anterior forebrain mesocircuit in the neural basis of the DOC.

  17. Fundamental aspects of closed optical mode formation in Fabry–Perot semiconductor lasers based on AlGaAs/GaAs (905 nm) asymmetric heterostructures

    International Nuclear Information System (INIS)

    Slipchenko, S O; Podoskin, A A; Pikhtin, N A; Tarasov, I S

    2014-01-01

    Experimental static and dynamic electro-optical characteristics of 905 nm high power mesa-stripe semiconductor laser diodes based on an AlGaAs/GaAs asymmetric heterostructure operating under Fabry–Perot cavity mode quenching have been investigated. We have shown that Fabry–Perot cavity mode reversible turn-off is due to the fulfillment of a high-Q closed mode threshold condition. The mode is propagating along both gain and passive areas of the laser diode and characterized by nearly zero output optical losses. We have demonstrated that fundamental reasons of closed mode threshold condition fulfillment are (i) gain spectra shift in the long wavelength region due to band gap shrinkage and thermal heating effects and (ii) the band gap absorption decrease in the passive area. It has been shown that the process of closed mode turn-on consists of two stages. In the first stage, Fabry–Perot cavity modes and closed modes are lasing simultaneously under high residual band gap absorption in the passive area. In the second stage, closed mode optical losses become lower than Fabry–Perot cavity mode optical losses due to a positive feedback between the residual absorption and closed mode photon stimulated generation rate. This results in an accumulation of photogenerated carriers in the quantum well active region of the laser diode passive area. As a result, the threshold concentration in the gain area decreases providing lasing emission switching from the Fabry–Perot cavity mode to the closed mode. (paper)

  18. A mode III moving interfacial crack based on strip magneto-electric polarization saturation model

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Zhong, Zheng

    2015-01-01

    This paper deals with a mode III Yoffe-type interfacial crack propagating subsonically under the moving strip magneto-electric saturation model. Nonlinear effects are characterized by different magnetic and electric saturation strips around the crack tip. Employing the extended Stroh method, we obtain generalized moving interfacial dislocation densities analytically under impermeable magneto-electric crack boundary conditions. The generalized intensity factor and local energy release rate with nonlinear effects are derived as fracture parameters for the moving magneto-electro-elastic (MEE) interfacial crack. Numerical results are presented to show the characteristics of fracture dominant parameters with respect to the loading as well as the propagation velocity. In addition, a dimensionless parameter defined by the ratio of the volume fraction of the composite constituents is proposed to evaluate the influences of the MEE bimaterial properties. This research will give us ideas on material selection for optimizing the fracture toughness of MEE composites. (paper)

  19. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  20. Numerical Modeling of Edge-Localized-Mode Filaments on Divertor Plates Based on Thermoelectric Currents

    International Nuclear Information System (INIS)

    Wingen, A.; Spatschek, K. H.; Evans, T. E.; Lasnier, C. J.

    2010-01-01

    Edge localized modes (ELMs) are qualitatively and quantitatively modeled in tokamaks using current bursts which have been observed in the scrape-off-layer (SOL) during an ELM crash. During the initial phase of an ELM, a heat pulse causes thermoelectric currents. They first flow in short connection length flux tubes which are initially established by error fields or other nonaxisymmetric magnetic perturbations. The currents change the magnetic field topology in such a way that larger areas of short connection length flux tubes emerge. Then currents predominantly flow in short SOL-like flux tubes and scale with the area of the flux tube assuming a constant current density. Quantitative predictions of flux tube patterns for a given current are in excellent agreement with measurements of the heat load and current flow at the DIII-D target plates during an ELM cycle.

  1. Analysis of Urban Car Owners Commute Mode Choice Based on Evolutionary Game Model

    Directory of Open Access Journals (Sweden)

    Huawei Gong

    2015-01-01

    Full Text Available With the aggravation of the traffic congestion in the city, car owners will have to give up commuting with private cars and take the public transportation instead. The paper uses the replication dynamic mechanism to simulate the learning and adjustment mechanism of the automobile owners commuting mode selection. The evolutionary stable strategy is used to describe the long-term evolution of competition game trend. Finally we simulate equilibrium and stability of an evolution of the game under a payoff imbalance situation. The research shows that a certain proportion of car owners will choose public transit under the pressure of public transport development and heavy traffic, and the proportion will be closely related to the initial conditions and urban transportation development policy.

  2. Stability evaluation of short-circuiting gas metal arc welding based on ensemble empirical mode decomposition

    Science.gov (United States)

    Huang, Yong; Wang, Kehong; Zhou, Zhilan; Zhou, Xiaoxiao; Fang, Jimi

    2017-03-01

    The arc of gas metal arc welding (GMAW) contains abundant information about its stability and droplet transition, which can be effectively characterized by extracting the arc electrical signals. In this study, ensemble empirical mode decomposition (EEMD) was used to evaluate the stability of electrical current signals. The welding electrical signals were first decomposed by EEMD, and then transformed to a Hilbert-Huang spectrum and a marginal spectrum. The marginal spectrum is an approximate distribution of amplitude with frequency of signals, and can be described by a marginal index. Analysis of various welding process parameters showed that the marginal index of current signals increased when the welding process was more stable, and vice versa. Thus EEMD combined with the marginal index can effectively uncover the stability and droplet transition of GMAW.

  3. Tilted Bragg grating multipoint sensor based on wavelength-gated cladding-modes coupling.

    Science.gov (United States)

    Caucheteur, Christophe; Mégret, Patrice; Cusano, Andrea

    2009-07-10

    In recent years, tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a promising technological platform for sensing applications such as the measurement of axial strain, bending, vibration, and refractive index. However, complex spectral measurements combined with the difficulty of using TFBGs in a quasi-distributed sensors network limit the practical exploitation of this assessed technology. To address this issue, we propose a hybrid configuration involving uniform and TFBGs working in reflection, which makes the demodulation technique easier and allows multipoint sensing. This configuration provides a narrowband reflection signal that is modulated by the wavelength selective losses associated with some TFBG's cladding-modes resonances. We report here the operating principle of the proposed device. An experimental validation is presented for refractive-index sensing purposes.

  4. An improved sliding mode control method for omnidirectional mobile robots based on motion characteristics

    Science.gov (United States)

    Leng, Chuntao; Cao, Qixin; Lo, Charles

    2010-01-01

    An improved sliding mode control (SMC) method for omni-directional mobile robots (OMRs) is proposed in this paper. Due to the motion characteristics of OMRs, the driving torque acting on each axis while the robot moves in different directions is distinct. Accordingly, a novel concept of anisotropy characteristics for OMRs is proposed here. In order to achieve a coordinated motion in a multi-axis system such as an OMR, the anisotropy characteristics are introduced into SMC system to coordinate the driving torque. The improved motion control method can guarantee that each driving wheel will reach the target speed with proper driving torque. Owing to the advantage of SMC, the control system of OMRs is insensitive to parametric vibration and external disturbances. To validate the performance of the improved motion control method, experiments have been carried out.

  5. Three-Level Inverters with Common-Mode Voltage Cancellation Based on Synchronous Pulsewidth Modulation

    DEFF Research Database (Denmark)

    Oleschuk, Valentin; Blaabjerg, Frede

    2002-01-01

    A novel method of direct synchronous pulse-width modulation (PWM) is disseminated to three-level voltage source inverters with control algorithms with elimination of the common-mode voltages in three-phase drive systems with PWM. It provides smooth pulses-ratio changing and a quarter-wave symmetry...... of the voltage waveforms during the whole control range including overmodulation. Continuous, discontinuous and "direct-direct" schemes of synchronous PWM with both algebraic and trigonometric control functions have been analysed and compared. Simulations give the behaviour of the proposed methods and show some...... advantages of synchronous PWM in comparison with asynchronous at low ratios between the switching frequency and fundamental frequency....

  6. Ensemble Empirical Mode Decomposition based methodology for ultrasonic testing of coarse grain austenitic stainless steels.

    Science.gov (United States)

    Sharma, Govind K; Kumar, Anish; Jayakumar, T; Purnachandra Rao, B; Mariyappa, N

    2015-03-01

    A signal processing methodology is proposed in this paper for effective reconstruction of ultrasonic signals in coarse grained high scattering austenitic stainless steel. The proposed methodology is comprised of the Ensemble Empirical Mode Decomposition (EEMD) processing of ultrasonic signals and application of signal minimisation algorithm on selected Intrinsic Mode Functions (IMFs) obtained by EEMD. The methodology is applied to ultrasonic signals obtained from austenitic stainless steel specimens of different grain size, with and without defects. The influence of probe frequency and data length of a signal on EEMD decomposition is also investigated. For a particular sampling rate and probe frequency, the same range of IMFs can be used to reconstruct the ultrasonic signal, irrespective of the grain size in the range of 30-210 μm investigated in this study. This methodology is successfully employed for detection of defects in a 50mm thick coarse grain austenitic stainless steel specimens. Signal to noise ratio improvement of better than 15 dB is observed for the ultrasonic signal obtained from a 25 mm deep flat bottom hole in 200 μm grain size specimen. For ultrasonic signals obtained from defects at different depths, a minimum of 7 dB extra enhancement in SNR is achieved as compared to the sum of selected IMF approach. The application of minimisation algorithm with EEMD processed signal in the proposed methodology proves to be effective for adaptive signal reconstruction with improved signal to noise ratio. This methodology was further employed for successful imaging of defects in a B-scan. Copyright © 2014. Published by Elsevier B.V.

  7. The Research on the Loan-to-Value of Inventory Pledge Loan Based Upon the Unified Credit Mode

    Science.gov (United States)

    Peng, Yang

    This paper focus on loan limit indicator of seasonal inventory financing in supply chain financial innovation based on the logistics features of unified credit mode. According to the "corporate and debt" method in trade credit, this paper analyzes the cash flow properties of borrowing firm and the profit level of logistics enterprise, then it assumes downside-risk-averse logistics enterprise instead of risk-neutral logistics enterprise and takes the method of VaR to figure out the maximum loan-to-value ratio of inventory which is in accord with the risk tolerance level of logistics enterprise in seasonal inventory impawn financing.

  8. Research on the Operation Mode of Intelligent-town Energy Internet Based on Source-Load Interaction

    Science.gov (United States)

    Li, Hao; Li, Wen; Miao, Bo; Li, Bin; Liu, Chang; Lv, Zhipeng

    2018-01-01

    On the background of the rise of intelligence and the increasing deepening of “Internet +”application, the energy internet has become the focus of the energy research field. This paper, based on the fundamental understanding on the energy internet of the intelligent town, discusses the mode of energy supply in the source-load interactive region, and gives an in-depth study on the output characteristics of the energy supply side and the load characteristics of the demand side, so as to derive the law of energy-load interaction of the intelligent-town energy internet.

  9. Systematic analysis of whistler-mode emissions below the lower hybrid frequency based on the data of the Cluster project.

    Science.gov (United States)

    Nemec, F.; Santolik, O.; Gereova, K.; Macusova, E.; Cornilleau-Wehrlin, N.

    2003-12-01

    We report results of a systematic analysis of equatorial noise below the local lower hybrid frequency. Our analysis is based on the entire data set collected by the STAFF-SA instruments on board the Cluster spacecraft during the first two years of operation (2001 - 2002). We compare intensities of equatorial noise with other whistler-mode emissions, for example with chorus or hiss. The results indicate that these emissions can play a significant role in the dynamics of the inner magnetosphere. Using the multipoint measurement we show considerable spatio-temporal variations of the wave intensity.

  10. Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer

    International Nuclear Information System (INIS)

    Rodriguez, A.; De Leon, J.; Fridman, L.

    2009-01-01

    The reduced-order synchronization problem of two chaotic systems (master-slave) with different dimension and relative degree is considered. A control scheme based on a high-order sliding-mode observer-identifier and a feedback state controller is proposed, where the trajectories of slave can be synchronized with a canonical projection of the master. Thus, the reduced-order synchronization is achieved in spite of master/slave mismatches. Simulation results are provided in order to illustrate the performance of the proposed synchronization scheme.

  11. Switching sliding mode force tracking control of piezoelectric-hydraulic pump-based friction element actuation systems for automotive transmissions

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2009-08-01

    In this study, a nonlinear sliding-mode controller is designed for force tracking of a piezoelectric-hydraulic pump (PHP)-based actuation system, which is developed to replace the current electro-hydraulic actuation systems for automatic transmission (AT) friction elements, such as band brakes or clutches. By utilizing the PHP, one can eliminate the various hydraulic components (oil pump, regulating valve and control valve) in current ATs and achieve a simpler configuration with more efficient operation. With the derived governing equation of motion of the PHP-based actuation system integrated with the friction element (band brake), a switching control law is synthesized based on the sliding-mode theory. To evaluate the effectiveness of the proposed control law, its force tracking performance for the engagement of a friction element during an AT 1\\to 2 up-shift is examined experimentally. It is shown that one can successfully track the desired force trajectory for AT shift control with small tracking error. This study demonstrates the potential of the PHP as a new controllable actuation system for AT friction elements.

  12. Ultra-High-Speed Travelling Wave Protection of Transmission Line Using Polarity Comparison Principle Based on Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available The traditional polarity comparison based travelling wave protection, using the initial wave information, is affected by initial fault angle, bus structure, and external fault. And the relationship between the magnitude and polarity of travelling wave is ignored. Because of the protection tripping and malfunction, the further application of this protection principle is affected. Therefore, this paper presents an ultra-high-speed travelling wave protection using integral based polarity comparison principle. After empirical mode decomposition of the original travelling wave, the first-order intrinsic mode function is used as protection object. Based on the relationship between the magnitude and polarity of travelling wave, this paper demonstrates the feasibility of using travelling wave magnitude which contains polar information as direction criterion. And the paper integrates the direction criterion in a period after fault to avoid wave head detection failure. Through PSCAD simulation with the typical 500 kV transmission system, the reliability and sensitivity of travelling wave protection were verified under different factors’ affection.

  13. Evidence-based modeling of mode-of-action for functional ingredients influencing Alzheimer’s disease through neurotrophin pathway

    Directory of Open Access Journals (Sweden)

    Erfan Younesi

    2014-08-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF is the most widely expressed member of the neurotrophin family in the human brain and is crucially involved in the development of neural circuits, modulation of synaptic plasticity, and regulation of cognitive functions, including learning and memory. Many studies have shown the association of altered BDNF levels with neurodegenerative and neuropsychiatric disorders. However, BDNF is not able to cross the blood-brain barrier and, thus, its delivery to the nervous system is a challenge. Therefore, functional diets with the ability to induce production of BDNF in the brain may offer an alternative route. The objective of this study was three-fold: first, to find out diets that are causally linked to the agonistic activity of BDNF in the neurotrophin signaling pathway; second and mainly, to investigate mode-of-action of these functional diets through systems-based mechanistic modeling in the context of Alzheimer’s disease; and third, to demonstrate the proof-of-concept application of systems biology methods, that are well established in the pharmaceutical sector, to the emerging field of functional food. Methods: In the first step, two cause-and-effect models of BDNF signaling in two states, i.e. normal state and Alzheimer’s disease state, were constructed using published knowledge in scientific literature and pathway databases. A “differential model analysis” between the two states was performed by which mechanistic mode-of-action of BDNF in neurotrophin signaling pathway could be explained with a high molecular resolution in both normal and disease states. The BDNF mode-of-action model was further validated using the “biomarkerguided validation” approach. In the second step, scientific evidence on the effect of various functional diets on BDNF levels and BDNF-related biological processes or outcomes was harvested from biomedical literature using a disease-specific semantic search

  14. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Cherrill M

    2003-06-02

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs.

  15. LQ optimal and reaching law-based sliding modes for inventory management systems

    Science.gov (United States)

    Ignaciuk, Przemysław; Bartoszewicz, Andrzej

    2012-01-01

    In this article, the theory of discrete sliding-mode control is used to design new supply strategies for periodic-review inventory systems. In the considered systems, the stock used to fulfil an unknown, time-varying demand can be replenished from a single supply source or from multiple suppliers procuring orders with different delays. The proposed strategies guarantee that demand is always entirely satisfied from the on-hand stock (yielding the maximum service level), and the warehouse capacity is not exceeded (which eliminates the cost of emergency storage). In contrast to the classical, stochastic approaches, in this article, we focus on optimising the inventory system dynamics. The parameters of the first control strategy are selected by minimising a quadratic cost functional. Next, it is shown how the system dynamical performance can be improved by applying the concept of a reaching law with the appropriately adjusted reaching phase. The stable, nonoscillatory behaviour of the closed-loop system is demonstrated and the properties of the designed controllers are discussed and strictly proved.

  16. Cost Based Failure Modes and Effects Analysis (FMEA) for Systems of Accelerator Magnets

    International Nuclear Information System (INIS)

    Spencer, Cherrill M

    2003-01-01

    The proposed Next Linear Collider (NLC) has a proposed 85% overall availability goal, the availability specifications for all its 7200 magnets and their 6167 power supplies are 97.5% each. Thus all of the electromagnets and their power supplies must be highly reliable or quickly repairable. Improved reliability or repairability comes at a higher cost. We have developed a set of analysis procedures for magnet designers to use as they decide how much effort to exert, i.e. how much money to spend, to improve the reliability of a particular style of magnet. We show these procedures being applied to a standard SLAC electromagnet design in order to make it reliable enough to meet the NLC availability specs. First, empirical data from SLAC's accelerator failure database plus design experience are used to calculate MTBF for failure modes identified through a FMEA. Availability for one particular magnet can be calculated. Next, labor and material costs to repair magnet failures are used in a Monte Carlo simulation to calculate the total cost of all failures over a 30-year lifetime. Opportunity costs are included. Engineers choose from amongst various designs by comparing lifecycle costs

  17. Drag detection and identification by whispering gallery mode optical resonance based sensor

    Science.gov (United States)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2013-06-01

    Experimental data on optical resonance spectra of whispering gallery modes of dielectric microspheres in antibiotic solutions under varied in wide range concentration are represented. Optical resonance was demonstrated could be detected at a laser power of less than 1 microwatt. Several antibiotics of different generations: Amoxicillin, Azithromycin, Cephazolin, Chloramphenicol, Levofloxacin, Lincomicin Benzylpenicillin, Riphampicon both in deionized water and physiological solution had been used for measurements. Both spectral shift and the structure of resonance spectra were of specific interest in this investigation. Drag identification has been performed by developed multilayer perceptron network. The network topology was designed included: a number of the hidden layers of multilayered perceptron, a number of neurons in each of layers, a method of training of a neural network, activation functions of layers, type and size of a deviation of the received values from required values. For a network training the method of the back propagation error in various modifications has been used. Input vectors correspond to 6 classes of biological substances under investigation. The result of classification was considered as positive when each of the region, representing a certain substance in a space: relative spectral shift of an optical resonance maxima - relative efficiency of excitation of WGM, was singly connected. It was demonstrated that the approach described in the paper can be a promising platform for the development of sensitive, lab-on-chip type sensors that can be used as an express diagnostic tools for different drugs and instrumentation for proteomics, genomics, drug discovery, and membrane studies.

  18. Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton.

    Science.gov (United States)

    Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Dong, Wei

    2016-01-01

    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user's intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems.

  19. Is regular work at fixed places fading away? The development of ICT-based and travel-based modes of work in Sweden

    OpenAIRE

    Bertil Vilhelmson; Eva Thulin

    2001-01-01

    Information and communication technologies (ICT) may increase people's freedom to decide when, where, and how they wish to work and travel. With the aid of data from national surveys on the use of ICT by the Swedish population, our objective is to investigate the overall spread of ICT-based modes of work such as telework, mobile work, and teleconferences in an emerging informational society. The concepts of home-based, commuting-based, and mobile work form a starting point. The numbers and pr...

  20. Small ICBM Area Narrowing Report. Volume 1. Hard Mobile Launcher in Random Movement Basing Mode

    Science.gov (United States)

    1986-01-01

    housing, base exchange, commissary, health care facilities, I and administrative support activities. Identificaticn of Candidate Main Operating Bases...Also, a larger base population would be an indicator of a full complement of housing, morale, welfare, recreation, health , and education services...likelihood of induced inmigration . This is especially true of the critical induced demand for construction labor, which can lead to rapid fluctuations in

  1. A dual-mode signaling response of a AuNP-fluorescein based probe for specific detection of thiourea.

    Science.gov (United States)

    Chen, Chuanxia; Zhao, Dan; Sun, Jian; Yang, Xiurong

    2016-04-21

    By employing fluorescein and AuNPs as energy donors and acceptors, respectively, a novel fluorescence resonance energy transfer (FRET)-based dual-mode sensor for selective recognition and quantitative detection of thiourea was designed and constructed in this study for the first time. Herein, it is demonstrated that fluorescein could be adsorbed on the surface of AuNPs and induce fluorescence quenching through the well-known FRET process. The preferential introduction of thiourea would reduce the overall surface negative charges of AuNPs by replacing the original citrate groups, leading to the aggregation of AuNPs. Meanwhile, thiourea could prevent the binding between fluorescein and AuNPs, reduce the as-formed FRET effect, and then lead to fluorescence recovery of the fluorescein. Therefore, a dual-mode sensor with AuNP-related colorimetric and fluorescein-based fluorescence readout was rationally developed. Under the optimum conditions, the detection limits were calculated to be 10 nM and 23 nM for fluorescent and colorimetric sensors, individually, and a limit of 0.4 μM was detected by the naked eye. Finally, such a simple, convenient, cost-effective, highly selective and sensitive sensing assay was successfully applied in the detection of thiourea in tap water and fruit juice samples.

  2. A Cutting Pattern Recognition Method for Shearers Based on Improved Ensemble Empirical Mode Decomposition and a Probabilistic Neural Network

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2015-10-01

    Full Text Available In order to guarantee the stable operation of shearers and promote construction of an automatic coal mining working face, an online cutting pattern recognition method with high accuracy and speed based on Improved Ensemble Empirical Mode Decomposition (IEEMD and Probabilistic Neural Network (PNN is proposed. An industrial microphone is installed on the shearer and the cutting sound is collected as the recognition criterion to overcome the disadvantages of giant size, contact measurement and low identification rate of traditional detectors. To avoid end-point effects and get rid of undesirable intrinsic mode function (IMF components in the initial signal, IEEMD is conducted on the sound. The end-point continuation based on the practical storage data is performed first to overcome the end-point effect. Next the average correlation coefficient, which is calculated by the correlation of the first IMF with others, is introduced to select essential IMFs. Then the energy and standard deviation of the reminder IMFs are extracted as features and PNN is applied to classify the cutting patterns. Finally, a simulation example, with an accuracy of 92.67%, and an industrial application prove the efficiency and correctness of the proposed method.

  3. Multi-mode optical fibers for connecting space-based spectrometers

    Science.gov (United States)

    Roberts, W. T.; Lindenmisth, C. A.; Bender, S.; Miller, E. A.; Motts, E.; Ott, M.; LaRocca, F.; Thomes, J.

    2017-11-01

    significantly smaller, less massive and less robust. Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end. For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it's implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.

  4. Evolved pesticide tolerance in amphibians: Predicting mechanisms based on pesticide novelty and mode of action

    International Nuclear Information System (INIS)

    Hua, Jessica; Jones, Devin K.; Mattes, Brian M.; Cothran, Rickey D.; Relyea, Rick A.; Hoverman, Jason T.

    2015-01-01

    We examined 10 wood frog populations distributed along an agricultural gradient for their tolerance to six pesticides (carbaryl, malathion, cypermethrin, permethrin, imidacloprid, and thiamethoxam) that differed in date of first registration (pesticide novelty) and mode-of-action (MOA). Our goals were to assess whether: 1) tolerance was correlated with distance to agriculture for each pesticide, 2) pesticide novelty predicted the likelihood of evolved tolerance, and 3) populations display cross-tolerance between pesticides that share and differ in MOA. Wood frog populations located close to agriculture were more tolerant to carbaryl and malathion than populations far from agriculture. Moreover, the strength of the relationship between distance to agriculture and tolerance was stronger for older pesticides compared to newer pesticides. Finally, we found evidence for cross-tolerance between carbaryl and malathion (two pesticides that share MOA). This study provides one of the most comprehensive approaches for understanding patterns of evolved tolerance in non-pest species. - Highlights: • We explored patterns of tolerance to six insecticides across 10 wood frog populations. • We found evidence that wood frogs have evolved tolerance to carbaryl and malathion. • The likelihood of evolved tolerance was stronger for older compared to newer pesticides. • We found evidence for cross-tolerance between carbaryl and malathion. • This is one of the most comprehensive approaches studying evolved tolerance in a non-pest species. - Using 10 wood frog populations, we detected evidence for evolved tolerance, found that the evolved tolerance depends on insecticide novelty, and found evidence for cross-tolerance.

  5. Real-time tumor ablation simulation based on the dynamic mode decomposition method

    KAUST Repository

    Bourantas, George C.

    2014-05-01

    Purpose: The dynamic mode decomposition (DMD) method is used to provide a reliable forecasting of tumor ablation treatment simulation in real time, which is quite needed in medical practice. To achieve this, an extended Pennes bioheat model must be employed, taking into account both the water evaporation phenomenon and the tissue damage during tumor ablation. Methods: A meshless point collocation solver is used for the numerical solution of the governing equations. The results obtained are used by the DMD method for forecasting the numerical solution faster than the meshless solver. The procedure is first validated against analytical and numerical predictions for simple problems. The DMD method is then applied to three-dimensional simulations that involve modeling of tumor ablation and account for metabolic heat generation, blood perfusion, and heat ablation using realistic values for the various parameters. Results: The present method offers very fast numerical solution to bioheat transfer, which is of clinical significance in medical practice. It also sidesteps the mathematical treatment of boundaries between tumor and healthy tissue, which is usually a tedious procedure with some inevitable degree of approximation. The DMD method provides excellent predictions of the temperature profile in tumors and in the healthy parts of the tissue, for linear and nonlinear thermal properties of the tissue. Conclusions: The low computational cost renders the use of DMD suitable forin situ real time tumor ablation simulations without sacrificing accuracy. In such a way, the tumor ablation treatment planning is feasible using just a personal computer thanks to the simplicity of the numerical procedure used. The geometrical data can be provided directly by medical image modalities used in everyday practice. © 2014 American Association of Physicists in Medicine.

  6. Long-term degradation of resin-based cements in substances present in the oral environment: influence of activation mode

    Directory of Open Access Journals (Sweden)

    Eduardo Moreira da SILVA

    2013-06-01

    Full Text Available Indirect restorations in contact with free gingival margins or principally within the gingival sulcus, where the presence of organic acids produced by oral biofilm is higher, may present faster degradation of the resin-based cement pellicle. Objectives To investigate the degradation of four resin-based cements: Rely X ARC (R, Variolink II (V, Enforce (E and All Cem (A, after immersion in distilled water (DW, lactic acid (LA and artificial saliva (AS and to analyze the influence of the activation mode on this response. Material and Methods Two activation modes were evaluated: chemical (Ch and dual (D. In the dual activation, a two-millimeter thick ceramic disk (IPS Empress System was interposed between the specimen and light-curing unit tip. Specimens were desiccated, immersed in distilled water, artificial saliva and lactic acid 0.1 M at 37°C for 180 days, weighed daily for the first 7 days, and after 14, 21, 28, 90 and 180 days and were desiccated again. Sorption and solubility (µg/mm 3 were calculated based on ISO 4049. The data were submitted to multifactor analysis of variance (MANOVA and Tukey's HSD test for media comparisons (α=0.05. Results Sorption was higher after immersion in LA (pD (p<0.05. The lowest solubility was presented by R (p<0.05. Conclusions Lactic acid increased the degradation of resin-based cements. Moreover, the physical component of activation, i.e., light-activation, contributed to a low degradation of resin-based cements.

  7. Association Between Obstetric Mode of Delivery and Autism Spectrum Disorder: A Population-Based Sibling Design Study.

    Science.gov (United States)

    Curran, Eileen A; Dalman, Christina; Kearney, Patricia M; Kenny, Louise C; Cryan, John F; Dinan, Timothy G; Khashan, Ali S

    2015-09-01

    Because the rates of cesarean section (CS) are increasing worldwide, it is becoming increasingly important to understand the long-term effects that mode of delivery may have on child development. To investigate the association between obstetric mode of delivery and autism spectrum disorder (ASD). Perinatal factors and ASD diagnoses based on the International Classification of Diseases, Ninth Revision (ICD-9),and the International Statistical Classification of Diseases, 10th Revision (ICD-10),were identified from the Swedish Medical Birth Register and the Swedish National Patient Register. We conducted stratified Cox proportional hazards regression analysis to examine the effect of mode of delivery on ASD. We then used conditional logistic regression to perform a sibling design study, which consisted of sibling pairs discordant on ASD status. Analyses were adjusted for year of birth (ie, partially adjusted) and then fully adjusted for various perinatal and sociodemographic factors. The population-based cohort study consisted of all singleton live births in Sweden from January 1, 1982, through December 31, 2010. Children were followed up until first diagnosis of ASD, death, migration, or December 31, 2011 (end of study period), whichever came first. The full cohort consisted of 2,697,315 children and 28,290 cases of ASD. Sibling control analysis consisted of 13,411 sibling pairs. Obstetric mode of delivery defined as unassisted vaginal delivery (VD), assisted VD, elective CS, and emergency CS (defined by before or after onset of labor). The ASD status as defined using codes from the ICD-9 (code 299) and ICD-10 (code F84). In adjusted Cox proportional hazards regression analysis, elective CS (hazard ratio, 1.21; 95% CI, 1.15-1.27) and emergency CS (hazard ratio, 1.15; 95% CI, 1.10-1.20) were associated with ASD when compared with unassisted VD. In the sibling control analysis, elective CS was not associated with ASD in partially (odds ratio [OR], 0.97; 95% CI, 0

  8. A Simple Differential Mode EMI Suppressor for the LLCL-Filter-Based Single-Phase Grid-Tied Transformerless Inverter

    DEFF Research Database (Denmark)

    Ji, Junhao; Wu, Weimin; He, Yuanbin

    2015-01-01

    The single-phase power converter topologies evolving of photovoltaic applications are still including passive filters, like the LCLor LLCL-filter. Compared with the LCL-filter, the total inductance of the LLCL-filter can be reduced a lot. However, due to the resonant inductor in series...... with the bypass capacitor, the differential mode (DM) electromagnetic interference (EMI) noise attenuation of an LLCL-filter-based grid-tied inverter declines. Conventionally, a capacitor was inserted in parallel with the LC resonant circuit branch of the LLCL-filter to suppress the DM EMI noise. In order...... to achieve a small value of capacitor as well as to minimize the additional reactive power, a novel simple DM EMI suppressor for the LLCL-filter-based system is proposed. The characters of two kinds of DM EMI suppressor are analyzed and compared in detail. Simulations and experiments on a 0.5-kW 110-V/50-Hz...

  9. Real time implementation of adaptive sliding mode observer based speed sensor less vector control of induction motor

    Directory of Open Access Journals (Sweden)

    Negadi Karim

    2010-01-01

    Full Text Available Sensor less induction motor drives are widely used in industry for their reliability and flexibility. However, rotor flux and speed sensors are required for vector control of induction motor. These sensors are sources of trouble, mainly in hostile environments, and their application reduces the drive robustness. The cost of the sensors is not also negligible. All the reasons lead to development of different sensor less methods for rotor flux and mechanical speed estimation in electrical drives. The paper deals with the speed estimators for applications in sensor less induction motor drive with vector control, which are based on application of model adaptive, based sliding mode observer methods. This paper presents the development and DSP implementation of the speed estimators for applications in sensor less drives with induction motor.

  10. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  11. Model-Based Real Time Assessment of Capability Left for Spacecraft Under Failure Mode, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based diagnostics system for spacecraft that will allow real time assessment of its state, while it is impacted...

  12. An Entropy-Based Upper Bound Methodology for Robust Predictive Multi-Mode RCPSP Schedules

    Directory of Open Access Journals (Sweden)

    Angela Hsiang-Ling Chen

    2014-09-01

    Full Text Available Projects are an important part of our activities and regardless of their magnitude, scheduling is at the very core of every project. In an ideal world makespan minimization, which is the most commonly sought objective, would give us an advantage. However, every time we execute a project we have to deal with uncertainty; part of it coming from known sources and part remaining unknown until it affects us. For this reason, it is much more practical to focus on making our schedules robust, capable of handling uncertainty, and even to determine a range in which the project could be completed. In this paper we focus on an approach to determine such a range for the Multi-mode Resource Constrained Project Scheduling Problem (MRCPSP, a widely researched, NP-complete problem, but without adding any subjective considerations to its estimation. We do this by using a concept well known in the domain of thermodynamics, entropy and a three-stage approach. First we use Artificial Bee Colony (ABC—an effective and powerful meta-heuristic—to determine a schedule with minimized makespan which serves as a lower bound. The second stage defines buffer times and creates an upper bound makespan using an entropy function, with the advantage over other methods that it only considers elements which are inherent to the schedule itself and does not introduce any subjectivity to the buffer time generation. In the last stage, we use the ABC algorithm with an objective function that seeks to maximize robustness while staying within the makespan boundaries defined previously and in some cases even below the lower boundary. We evaluate our approach with two different benchmarks sets: when using the PSPLIB for the MRCPSP benchmark set, the computational results indicate that it is possible to generate robust schedules which generally result in an increase of less than 10% of the best known solutions while increasing the robustness in at least 20% for practically every

  13. Satellite-based PM2.5 estimation using fine-mode aerosol optical thickness over China

    Science.gov (United States)

    Yan, Xing; Shi, Wenzhong; Li, Zhanqing; Li, Zhengqiang; Luo, Nana; Zhao, Wenji; Wang, Haofei; Yu, Xue

    2017-12-01

    Accurate estimation of ground-level PM2.5 from satellite-derived aerosol optical thickness (AOT) presents various difficulties. This is because the association between AOT and surface PM2.5 can be affected by many factors, such as the contribution of fine mode AOT (FM-AOT) and the weather conditions. In this study, we compared the total AOT and FM-AOT for surface PM2.5 estimation using ground-based measurements collected in Xingtai, China from May to June 2016. The correlation between PM2.5 and FM-AOT was higher (r = 0.74) than that between PM2.5 and total AOT (r = 0.49). Based on FM-AOT, we developed a ground-level PM2.5 retrieval method that incorporated a Simplified Aerosol Retrieval Algorithm (SARA) AOT, look-up table-spectral deconvolution algorithm (LUT-SDA) fine mode fraction (FMF), and the PM2.5 remote sensing method. Due to the strong diurnal variations displayed by the particle density of PM2.5, we proposed a pseudo-density for PM2.5 retrieval based on real-time visibility data. We applied the proposed method to determine retrieval surface PM2.5 concentrations over Beijing from December 2013 to June 2015 on cloud-free days. Compared with Aerosol Robotic Network (AERONET) data, the LUT-SDA FMF was more easily available than the Moderate Resolution Imaging Spectroradiometer (MODIS) FMF. The derived PM2.5 results were compared with the ground-based monitoring values (30 stations), yielding an R2 of 0.64 and root mean square error (RMSE) = 18.9 μg/m3 (N = 921). This validation demonstrated that the developed method performed well and produced reliable results.

  14. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  15. Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    OpenAIRE

    Barkman, O.; Jerabek, V.; Prajzler, V.

    2013-01-01

    Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+Na+ and K+Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide...

  16. Holding-based network of nations based on listed energy companies: An empirical study on two-mode affiliation network of two sets of actors

    Science.gov (United States)

    Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili

    2016-05-01

    Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.

  17. Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

    Directory of Open Access Journals (Sweden)

    M. M. Namazi Isfahani

    2012-03-01

    Full Text Available Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based adaptive sliding algorithm derived from the view point of energy dissipation, control stability and algorithm robustness. First, a nonlinear dynamic model is developed and decomposed into separate slow and fast passive subsystems which are interconnected by negative feedbacks. Then, an outer loop speed control is employed by adaptive sliding controller to determine the appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor a high-performance passivity-based current controller is proposed. It can overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. The performance of the proposed controller algorithm has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole SRM DSP-based drive system.

  18. Energy-efficient orthogonal frequency division multiplexing-based passive optical network based on adaptive sleep-mode control and dynamic bandwidth allocation

    Science.gov (United States)

    Zhang, Chongfu; Xiao, Nengwu; Chen, Chen; Yuan, Weicheng; Qiu, Kun

    2016-02-01

    We propose an energy-efficient orthogonal frequency division multiplexing-based passive optical network (OFDM-PON) using adaptive sleep-mode control and dynamic bandwidth allocation. In this scheme, a bidirectional-centralized algorithm named the receiver and transmitter accurate sleep control and dynamic bandwidth allocation (RTASC-DBA), which has an overall bandwidth scheduling policy, is employed to enhance the energy efficiency of the OFDM-PON. The RTASC-DBA algorithm is used in an optical line terminal (OLT) to control the sleep mode of an optical network unit (ONU) sleep and guarantee the quality of service of different services of the OFDM-PON. The obtained results show that, by using the proposed scheme, the average power consumption of the ONU is reduced by ˜40% when the normalized ONU load is less than 80%, compared with the average power consumption without using the proposed scheme.

  19. Zonation of shale reservoir stimulation modes: a conceptual model based on hydraulic fracturing data from the Baltic Basin (Poland).

    Science.gov (United States)

    Jarosiński, Marek; Pachytel, Radomir

    2017-04-01

    Depending on the pressure distribution within Stimulated Reservoir Volume (SRV), a different modes of hydraulic fracturing or tectonic fracture reactivation are active. Hydraulic pressure-driven shortening or expansion of reservoir produces changes in stress field that results in decrease of differential stress either by increasing of horizontal stress minimum (Shmin) or/and by decreasing of horizontal stress maximum (SHmax). For further considerations we assume initial strike-slip stress regime which prevails in the Polish part of the Lower Paleozoic Baltic Basin (BB), as well as in majority of the USA shale basins. The data come from vertical and horizontal shale gas exploration wells drilled from one pad located in the middle of the BB. Structural survey of a long core interval combined with stress analysis based on microfrac tests and fracturing tests allow to reconstruct the initial structural and geomechanical state of reservoir. Further geomechanical evolution of the SRV depends on the hydraulic pressure bubble growth, which is in general unknown. However, the state of pressure can be determined close to the injection borehole and in the front of the SRV migrating in time. In our case, we are able to distinguish four stimulation zones characterized by increasingly diverse stimulation modes and successively closer to the borehole injection zone: (1) shear on preexisting fractures generates microseismic events that produce open fractures propped by their natural asperities being impenetrable for proppant grains; (2) above + initial hydraulic opening of natural fractures that are preferentially oriented to the Shmin, which favors microseismic events triggered by secondary shear on bedding planes and produces open spaces supported by natural fracture asperities and fine-grained proppant; (3) above + failure of primary hydraulic fractures, which increases extensional component of the microseismic events and opens space for coarse-grained proppant; (4) above

  20. Versatile Tunable Current-Mode Universal Biquadratic Filter Using MO-DVCCs and MOSFET-Based Electronic Resistors

    Directory of Open Access Journals (Sweden)

    Hua-Pin Chen

    2014-01-01

    Full Text Available This paper presents a versatile tunable current-mode universal biquadratic filter with four-input and three-output employing only two multioutput differential voltage current conveyors (MO-DVCCs, two grounded capacitors, and a well-known method for replacement of three grounded resistors by MOSFET-based electronic resistors. The proposed configuration exhibits high-output impedance which is important for easy cascading in the current-mode operations. The proposed circuit can be used as either a two-input three-output circuit or a three-input single-output circuit. In the operation of two-input three-output circuit, the bandpass, highpass, and bandreject filtering responses can be realized simultaneously while the allpass filtering response can be easily obtained by connecting appropriated output current directly without using additional stages. In the operation of three-input single-output circuit, all five generic filtering functions can be easily realized by selecting different three-input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no inverting-type input current signals are imposed. All the passive and active sensitivities are low. Postlayout simulations were carried out to verify the functionality of the design.