WorldWideScience

Sample records for mode processing black

  1. Quasinormal modes of extremal BTZ black hole

    Energy Technology Data Exchange (ETDEWEB)

    Crisostomo, Juan; Lepe, Samuel; Saavedra, Joel [Instituto de FIsica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de ValparaIso, Avenida Brasil 2950, ValparaIso (Chile)

    2004-06-21

    Motivated by several pieces of evidence, in order to show that extremal black holes cannot be obtained as limits of non-extremal black holes, in this paper we calculate explicitly quasinormal modes for the Banados, Teitelboim and Zanelli (BTZ) extremal black hole and show that the imaginary part of the frequency is zero. We obtain exact result for the scalar and fermionic perturbations. We also showed that the frequency is bounded from below for the existence of the normal modes (non-dissipative modes)

  2. Quasinormal Modes of Dirty Black Holes

    CERN Document Server

    Leung, P T; Suen, W M; Tam, C Y; Young, K

    1997-01-01

    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.

  3. Black Hole Spectroscopy with Coherent Mode Stacking.

    Science.gov (United States)

    Yang, Huan; Yagi, Kent; Blackman, Jonathan; Lehner, Luis; Paschalidis, Vasileios; Pretorius, Frans; Yunes, Nicolás

    2017-04-21

    The measurement of multiple ringdown modes in gravitational waves from binary black hole mergers will allow for testing the fundamental properties of black holes in general relativity and to constrain modified theories of gravity. To enhance the ability of Advanced LIGO/Virgo to perform such tasks, we propose a coherent mode stacking method to search for a chosen target mode within a collection of multiple merger events. We first rescale each signal so that the target mode in each of them has the same frequency and then sum the waveforms constructively. A crucial element to realize this coherent superposition is to make use of a priori information extracted from the inspiral-merger phase of each event. To illustrate the method, we perform a study with simulated events targeting the ℓ=m=3 ringdown mode of the remnant black holes. We show that this method can significantly boost the signal-to-noise ratio of the collective target mode compared to that of the single loudest event. Using current estimates of merger rates, we show that it is likely that advanced-era detectors can measure this collective ringdown mode with one year of coincident data gathered at design sensitivity.

  4. Quasinormal modes of black holes and dissipative open systems

    CERN Document Server

    Kim, S P

    2006-01-01

    After explaining the physical origin of quasinormal modes of perturbations in the background geometry of a black hole, I critically review the recent proposal for the quantization of black hole area based on the real part of quasinormal modes. As instantons due to the barrier of black hole potentials lie at the root of the discrete set of complex quasinormal modes frequencies, it is likely that physics of quasinormal modes can be learned from quantum theory. I propose a connection of the system of quasinormal modes of black holes with a dissipative open system, in particular, the Feshbach-Tikochinsky oscillator. This argument is supported in part by the fact that these two systems have the same group structure SU(1,1) and the same group representation of Hamiltonians, and thereby their quantum states exhibit the same behavior.

  5. Quasinormal modes and classical wave propagation in analogue black holes

    CERN Document Server

    Berti, E; Lemos, J P S; Berti, Emanuele; Cardoso, Vitor; Lemos, Jose' P. S.

    2004-01-01

    Many properties of black holes can be studied using acoustic analogues in the laboratory through the propagation of sound waves. We investigate in detail sound wave propagation in a rotating acoustic (2+1)-dimensional black hole, which corresponds to the ``draining bathtub'' fluid flow. We compute the quasinormal mode frequencies of this system and discuss late-time power-law tails. Due to the presence of an ergoregion, waves in a rotating acoustic black hole can be superradiantly amplified. We also compute reflection coefficients and instability timescales for the acoustic black hole bomb, the equivalent of the Press-Teukolsky black hole bomb. Finally we discuss quasinormal modes and late-time tails in a non-rotating canonical acoustic black hole, corresponding to an incompressible, spherically symmetric (3+1)-dimensional fluid flow.

  6. Perturbative Approach to the Quasinormal Modes of Dirty Black Holes

    CERN Document Server

    Leung, P T; Suen, W M; Tam, C Y; Young, K

    1999-01-01

    Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.

  7. Highly damped quasinormal modes of Kerr black holes

    CERN Document Server

    Berti, E; Kokkotas, K D; Onozawa, H; Berti, Emanuele; Cardoso, Vitor; Kokkotas, Kostas D.; Onozawa, Hisashi

    2003-01-01

    Motivated by recent suggestions that highly damped black hole quasinormal modes (QNM's) may provide a link between classical general relativity and quantum gravity, we present an extensive computation of highly damped QNM's of Kerr black holes. We do not limit our attention to gravitational modes, thus filling some gaps in the existing literature. The frequency of gravitational modes with $l=m=2$ tends to $omega_R=2 Omega$, $Omega$ being the angular velocity of the black hole horizon. If Hod's conjecture is valid, this asymptotic behaviour is related to reversible black hole transformations. Other highly damped modes with $m>0$ that we computed do {it not} show a similar behaviour. The real part of modes with $l=2$ and $m0$ is given by $2pi T_H$ ($T_H$ being the black hole temperature). We conjecture that for all values of $l$ and $m>0$ there is an infinity of modes tending to the critical frequency for superradiance ($omega_R=m$) in the extremal limit. Finally, we study in some detail modes branching off the...

  8. Quasinormal Modes of Electromagnetic Perturbation around a Stringy Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; GUI Yuan-Xing; YU Fei; WANG Fu-Jun

    2007-01-01

    We investigate the electromagnetic perturbation around a stringy black hole. A second-order differential equation is obtained for the perturbation. The variation of the effective potential with r is presented. The complex frequencies of the quasinormal modes of electromagnetic perturbation around a stringy black hole are computed by the third Wentzel-Kramers-Brillouin (WKB) approximation. The results show that the parameters resulted from the compactification of higher dimensions can influence the quasinormal complex frequencies, and the Maxwell field around a stringy black hole damps more slowly than that around a Schwarzschild black hole.

  9. Object Picture of Quasinormal Modes for Stringy Black Holes

    Institute of Scientific and Technical Information of China (English)

    XI Ping; LI Xin-Zhou

    2005-01-01

    @@ We study the quasinormal modes (QNMs) for stringy black holes. By using numerical calculation, the relations between the QNMs and the parameters of black holes are minutely shown. For (1+1)-dimensional stringy black hole, the real part of the quasinormal frequency increases and the imaginary part of the quasinormal frequency decreases as the mass of the black hole increases. Furthermore, the dependence of the QNMs on the charge of the black hole and the flatness parameter is also illustrated. For (1+3)-dimensional stringy black hole, increasing either the event horizon or the multipole index, the real part of the quasinormal frequency decreases. The imaginary part of the quasinormal frequency increases no matter whether the event horizon is increased or the multipole index is decreased.

  10. Cognitive Modes in Black Kindergarten Children.

    Science.gov (United States)

    Boone, Sherle; And Others

    This study employs the techniques developed by Wallach and Kogan as creativity instruments in conjunction with the Harris-Goodenough Draw-A-Man test as an I.Q. estimate and the Comtois Early Childhood Rating Scales as an indicator of classroom behavioral characteristics. The sample is a group of 19 black kindergarten children. The…

  11. Quasinormal modes of semiclassical electrically charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Piedra, Owen Pavel [Departamento de Fisica y Quimica, Facultad de Mecanica, Universidad de Cienfuegos, Carretera a Rodas, km 4, Cuatro Caminos, Cienfuegos (Cuba); De Oliveira, Jeferson, E-mail: opavel@ucf.edu.cu, E-mail: jeferson@fma.if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, 05315-970, Sao Paulo (Brazil)

    2011-04-21

    We report the results concerning the influence of vacuum polarization due to quantum massive vector, scalar and spinor fields on the scalar sector of quasinormal modes in spherically symmetric charged black holes. The vacuum polarization from quantized fields produces a shift in the values of the quasinormal frequencies, and correspondingly the semiclassical system becomes a better oscillator with respect to the classical Reissner-Nordstroem black hole.

  12. Quasinormal modes of maximally charged black holes

    CERN Document Server

    Onozawa, H; Okamura, T; Ishihara, H; Onozawa, Hisashi; Mishima, Takashi; Okamura, Takashi; Ishihara, Hideki

    1996-01-01

    A new algorithm for computing the accurate values of quasinormal frequencies of extremal Reissner-Nordstr\\"{o}m black holes is presented. The numerically computed values are consistent with the values earlier obtained by Leaver and those obtained through the WKB method. Our results are more precise than other results known to date. We also find a curious fact that the resonant frequencies of gravitational waves with multi-pole index l coincide with those of electromagnetic waves with multi-pole index l-1 in the extremal limit.

  13. Dirac quasinormal modes for a 4-dimensional Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Catalan, Marcela; Cisternas, Eduardo [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-03-15

    We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in four dimensions with dynamical exponent z and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a less number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method. (orig.)

  14. Quasi-Normal Modes of Stars and Black Holes

    Directory of Open Access Journals (Sweden)

    Kokkotas Kostas

    1999-01-01

    Full Text Available Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman and relativistic stars (non-rotating and slowly-rotating. The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.

  15. On Quasinormal Modes, Black Hole Entropy, and Quantum Geometry

    CERN Document Server

    Corichi, A

    2003-01-01

    Loop quantum gravity can account for the Bekenstein-Hawking entropy of a black hole provided a free parameter is chosen appropriately. Recently it was proposed that a new choice of parameter could predict both black hole entropy and the frequencies of quasinormal modes in the large $n$ limit, but at the price of changing the gauge group of the theory. In this note we use a simple physical argument to support SU(2) as the relevant gauge group. The argument uses strongly the necessity of having fermions satisfying basic conservation principles.

  16. Lichnerowicz modes and black hole families in Ricci quadratic gravity

    Science.gov (United States)

    Lü, Hong; Perkins, A.; Pope, C. N.; Stelle, K. S.

    2017-08-01

    A new branch of black hole solutions occurs along with the standard Schwarzschild branch in n -dimensional extensions of general relativity including terms quadratic in the Ricci tensor. The standard and new branches cross at a point determined by a static negative-eigenvalue eigenfunction of the Lichnerowicz operator, analogous to the Gross-Perry-Yaffe eigenfunction for the Schwarzschild solution in standard n =4 dimensional general relativity. This static eigenfunction has two roles: both as a perturbation away from Schwarzschild along the new black-hole branch and also as a threshold unstable mode lying at the edge of a domain of Gregory-Laflamme-type instability of the Schwarzschild solution for small-radius black holes. A thermodynamic analogy with the Gubser and Mitra conjecture on the relation between quantum thermodynamic and classical dynamical instabilities leads to a suggestion that there may be a switch of stability properties between the old and new black-hole branches for small black holes with radii below the branch crossing point.

  17. Gravitational-wave modes from precessing black-hole binaries

    CERN Document Server

    Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P

    2014-01-01

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...

  18. Quasi-Normal Modes of Black Holes in Lovelock Gravity

    CERN Document Server

    Yoshida, Daiske

    2015-01-01

    We study quasi-normal modes of black holes in Lovelock gravity. We formulate the WKB method adapted to Lovelock gravity for the calculation of quasi-normal frequencies (QNFs). As a demonstration, we calculate various QNFs of Lovelock black holes in seven and eight dimensions. We find that the QNFs show remarkable features depending on the coefficients of the Lovelock terms, the species of perturbations, and spacetime dimensions. In the case of the scalar field, when we increase the coefficient of the third order Lovelock term, the real part of QNFs increases, but the decay rate becomes small irrespective of the mass of the black hole. For small black holes, the decay rate ceases to depend on the Gauss-Bonnet term. In the case of tensor type perturbations of the metric field, the tendency of the real part of QNFs is opposite to that of the scalar field. The QNFs of vector type perturbations of the metric show no particular behavior. The behavior of QNFs of the scalar type perturbations of the metric field is s...

  19. Nonthermal plasmas around black holes, relevant collective modes, new configurations, and magnetic field amplification

    Science.gov (United States)

    Coppi, B.

    2017-03-01

    The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of "thermo-gravitational modes" driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.

  20. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  1. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  2. Dirac quasinormal modes of two-dimensional charged dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-06-15

    We study charged fermionic perturbations in the background of two-dimensional charged dilatonic black holes, and we present the exact Dirac quasinormal modes. Also, we study the stability of these black holes under charged fermionic perturbations. (orig.)

  3. Collision processes at the northern margin of the Black Sea

    Science.gov (United States)

    Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.

    2016-07-01

    Extended along the Crimea-Caucasus coast of the Black Sea, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic processes at the junction of the Scythian Plate and Black Sea Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic process occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black Sea Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this process is complicated by the East Black Sea Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.

  4. Quasinormal Modes of Charged Black Holes Localized in the Randall-Sundrum Brane World

    CERN Document Server

    Soleimani, M J; Radiman, Shahidan; Abdullah, W A T Wan

    2016-01-01

    We study the quasinormal modes of the massless scalar field of charged black holes embedded in the Randal-Sundrum brane world using the third order WKB approximation. We consider the effects of the electromagnetic and tidal charges on quasinormal frequencies spectrum for charged black hole black holes as well as the effect of the thickness of the bulk.

  5. Black holes in massive gravity: quasinormal modes of Dirac field perturbations

    CERN Document Server

    Fernando, Sharmanthie

    2015-01-01

    We have studied quasinormal modes of spinor $\\frac{1}{2}$, massless Dirac field perturbations of a black hole in massive gravity. The parameters of the theory, such as the mass of the black hole, the scalar charge of the black hole, mode number and the multipole number are varied to observe how the corresponding quasinormal frequencies change. We have also used the P$\\ddot{o}$schl-Teller approximation to reach analytical values for the frequencies of quasinormal modes for comparison with the numerically obtained values. Comparisons are done with the frequencies of the Schwarzschild black hole.

  6. Quasi-normal Modes of Rerssner-Nordström Black Hole

    Science.gov (United States)

    Jiang, Ji-Jian; Liu, Jing-Lun; Li, Chuan-An

    2017-07-01

    The minimum interval of event horizon area of Rerssner-Nordström black hole was calculated via using the loop quantum gravity theory. Based on the first law of black hole thermodynamics, the real part of quasi-normal modes frequency of the black hole was calculated. The expression of asymptotically quasi-normal mode frequency of Rerssner-Nordström black hole was deduced strictly. By analyzing the value of the minimum spin j m i n , the two families of quasi-normal mode spectra of the charged black hole were obtained for j m i n = 1/2 and j m i n = 1 respectively. Our conclusion is in complete agreement with the analytical results of Hod. Our results provide the theoretical basis for the source of the real part of the quasi-normal mode frequency of the black hole.

  7. Behavior of Quasinormal Modes and high dimension RN-AdS Black Hole phase transition

    CERN Document Server

    Chabab, M; Iraoui, S; Masmar, K

    2016-01-01

    In this work we use the quasinormal frequencies of a massless scalar perturbation to probe the phase transition of the high dimension charged-AdS black hole. The signature of the critical behavior of this black hole solution is detected in the isobaric as well as in isothermal process. This paper is a natural generalization of \\cite{base} to higher dimensional spacetime. More precisely our study shows a clear signal for any dimension $d$ in the isobaric process. As to the isothermal case, we find out that this signature can be affected by other parameters like the pressure and the horizon radius. We conclude that the quasinormal modes can be an efficient tool to investigate the first order phase transition, but fail to disclose the signature of the second order phase transition.

  8. Fermionic quasinormal modes for two-dimensional Horava-Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Stetsko, M.M. [Ivan Franko National University of Lviv, Department for Theoretical Physics, Lviv (Ukraine)

    2017-06-15

    To obtain fermionic quasinormal modes, the Dirac equation for two types of black holes is investigated. It is shown that two different geometries lead to distinctive types of quasinormal modes, while the boundary conditions imposed on the solutions in both cases are identical. For the first type of black hole, the quasinormal modes have continuous spectrum with negative imaginary part that provides the stability of perturbations. For the second type of the black hole, the quasinormal modes have a discrete spectrum and are completely imaginary. (orig.)

  9. Pulsed combustion process for black liquor gasification

    Energy Technology Data Exchange (ETDEWEB)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  10. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  11. DECOMPOSITION OF BLACK LIQUOR BY ULTRASOUND PROCESS

    Institute of Scientific and Technical Information of China (English)

    WU Xiaohui; ZHOU Shan; LU Xiaohua

    2004-01-01

    Ultrasound (US)-induced cavitation is an effective way in oxidizing organic contaminants in wastewater either as the independent operation unit or in combination with other oxidation methods. In this paper, black liquor and filtrate after acidifying and settling were sonicated. The effect of working parameters on ultrasonic degradation of black liquor, such as different combination methods, frequency, power supply, initial concentration, pH, duration time, ionic strength and catalyst were studied. The results were as follows: (1) At the conditions of 40kHz, 100W, 4h, pH at 6 and temperature 30±2℃, utilizing US/US-H2O2/US-Fenton, weak-orange filtrate turned to colloid with the increase of time and little sediment produced after settling. Especially filtrate came to be milk white collides and upper water approached to nearly achromatic by US-Fenton. Compared with the US, US-H2O2/US-Fenton COD (Chemical oxidation demand) removal ratio can increase 15%, 30% respectively. Because of more hydroxyl radicals produced in the reaction process; (2) At the condition of 100W and 4h, the degradation efficiency of black liquor was better at 40kHz over at 20kHz. Moreover black liquor can be biodegraded easily. Those based on that the big molecule of contaminants in aqueous solution can be changed into the little molecule with ultrasound (3) At the condition of 40kHz and 4h, the COD removal ratio of black liquor was more higher at 60W than at 80W, while the removal ratio of COD at 60W was nearly close to the ratio at 100W; (4) The initial concentration of black liquor influenced the effect of sonochemical degradation; (5) The variation of pH had no effect on degradation; (6) The longer the duration time, the greater the removal ratio of COD. But this ratio increased slowly after 4h; (7) Adding 0.2g/L NaCl to change the ionic strength of the black liquor, the COD removal ratio can increase 10%; (8) The degradation rates increased by the coexistent catalysts of TiO2, Co2+ and Ag+.

  12. Quasinormal modes, Superradiance and Area Spectrum for 2+1 Acoustic Black Holes

    CERN Document Server

    Lepe, S; Lepe, Samuel; Saavedra, Joel

    2005-01-01

    We present an exact expression for the quasinormal modes of acoustic disturbances in a rotating 2+1 dimensional sonic black hole (draining bathtub fluid flow) in the low frequency limit and evaluate the adiabatic invariant proposed by Kunstatter. We also compute,via Bohr-Sommerfeld quantization rule the equivalent area spectrum for this acoustic black hole, and we compute the superradiance phenomena for pure spinning 2+1 black holes.

  13. Is there a mode stability paradox for neutrino perturbations of Kerr black holes?

    Science.gov (United States)

    Düztaş, Koray

    2016-08-01

    Adopting the notation of Teukolsky and Press, we derive the connection relation for asymptotic solutions of the massless Dirac equation on a Kerr background. We show that, unlike bosonic fields, the connection relation for massless Dirac fields (neutrino) provides a rigorous proof of mode stability. The same relation also implies that every incoming mode can be absorbed by the black hole or there is no superradiance. Recent works on overspinning black holes have shown that this can lead to the formation of naked singularities. We argue that the fact that both the mode stability of the black hole under neutrino perturbations and the instability of the event horizon (therefore the instability of the black hole) can be derived from the same connection relation leads to a paradox. In other words mode, stability implies event horizon instability as far as neutrino perturbations are concerned.

  14. Scalar waves in regular Bardeen black holes: Scattering, absorption and quasinormal modes

    CERN Document Server

    Macedo, Caio F B; de Oliveira, Ednilton S

    2016-01-01

    We discuss the phenomenology of massless scalar fields around a regular Bardeen black hole, namely absorption cross section, scattering cross section and quasinormal modes. We compare the Bardeen and Reissner-Nordstr\\"om black holes, showing limiting cases for which their properties are similar.

  15. Dirac quasinormal modes of new type black holes in new massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-07-15

    We study a new type of black holes in three-dimensional new massive gravity and we calculate analytically the quasinormal modes for fermionic perturbations for some special cases. Then we show that for these cases black holes of the new type are stable under fermionic field perturbations. (orig.)

  16. Quasinormal modes of four-dimensional topological nonlinear charged Lifshitz black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Cato lica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2016-02-15

    We study scalar perturbations of four- dimensional topological nonlinear charged Lifshitz black holes with spherical and plane transverse sections, and we find numerically the quasinormal modes for scalar fields. Then we study the stability of these black holes under massive and massless scalar field perturbations. We focus our study on the dependence of the dynamical exponent, the nonlinear exponent, the angular momentum, and the mass of the scalar field in the modes. It is found that the modes are overdamped, depending strongly on the dynamical exponent and the angular momentum of the scalar field for a spherical transverse section. In contrast, for plane transverse sections the modes are always overdamped. (orig.)

  17. Black Hole Ringing, Quasinormal Modes, and Light Rings

    CERN Document Server

    Khanna, Gaurav

    2016-01-01

    Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.

  18. Quasinormal modes of a four-dimensional Lifshitz Black Hole in Conformal Gravity

    CERN Document Server

    Catalan, Marcela; Gonzalez, P A; Vasquez, Yerko

    2014-01-01

    We study the quasinormal modes of scalar perturbations for a four-dimensional asymptotically Lifshitz black hole in conformal gravity with dynamical exponent $z=0$ and spherical topology for the transverse section, and we find analytically the quasinormal modes for scalar fields for some special cases that depend of $Q$, where $Q=r_+^2/r_-^2$. One of them are the quasinormal modes for massive scalar fields for the mode with lowest angular momentum $(\\kappa=0)$, where we show that the Klein-Gordon equation can be written as a Riemann differential equation, and the quasinormal frequencies associated guarantees the stability of these black holes under scalar field perturbations for $Q>1$. Other case correspond to $Q=\\pm\\infty$, where the quasinormal frequencies guarantees the unstability of these black holes under scalar field perturbations. Finally, for the extremal case, that is $Q=1$, we show the absence of the quasinormal modes.

  19. Corotational Damping of Diskoseismic C-modes in Black Hole Accretion Discs

    CERN Document Server

    Tsang, David

    2008-01-01

    Diskoseismic c-modes in accretion discs have been invoked to explain low-frequency variabilities observed in black-hole X-ray binaries. These modes are trapped in the inner-most region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c-modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c-modes using the WKB approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10% of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable.

  20. Quasinormal Modes of Charged Dilaton Black Holes and Their Entropy Spectra

    Science.gov (United States)

    Sakalli, I.

    2013-08-01

    In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ɛ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.

  1. Quasinormal modes, stability analysis and absorption cross section for 4-dimensional topological Lifshitz black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)

    2012-12-15

    We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)

  2. Gravitational axial perturbations and quasinormal modes of loop quantum black holes

    CERN Document Server

    Cruz, M B; Brito, F A

    2015-01-01

    Gravitational waves can be used as a way to investigate the structure of spacetime. Loop Quantum Gravity is a theory that propose a way to model the behavior of spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black hole's singularity. A recent prediction of loop quantum gravity is the existence of sub-Planckian black holes called loop quantum black holes (LQBH) or self-dual black holes which correspond to a quantized version of Schwarzschild black hole. In this work, we study the gravitational waves spectrum emitted by a LQBH through the analysis of its the quasinormal modes. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.

  3. Computing black hole partition functions from quasinormal modes

    CERN Document Server

    Arnold, Peter; Vaman, Diana

    2016-01-01

    We propose a method of computing one-loop determinants in black hole spacetimes (with emphasis on asymptotically anti-de Sitter black holes) that may be used for numerics when completely-analytic results are unattainable. The method utilizes the expression for one-loop determinants in terms of quasinormal frequencies determined by Denef, Hartnoll and Sachdev in [1]. A necessary ingredient is a refined regularization scheme to regulate the contributions of individual fixed-momentum sectors to the partition function. To this end, we formulate an effective two-dimensional problem in which a natural refinement of standard heat kernel techniques can be used to account for contributions to the partition function at fixed momentum. We test our method in a concrete case by reproducing the scalar one-loop determinant in the BTZ black hole background. We then discuss the application of such techniques to more complicated spacetimes.

  4. Nonegocentrism and Communication Mode Switching in Black Preschool Children

    Science.gov (United States)

    Meissner, Judith A.; Apthorp, Helen

    1976-01-01

    Thirty-nine 4- and 5-year-old lower socioeconomic status black children were administered a simple communication task in which the experimenter was either blindfolded or could see the array of toy referents. The results indicated that the majority of subjects gave appropriate responses in both the blindfolded and nonblindfolded conditions. (JMB)

  5. Primordial Black Holes and r -Process Nucleosynthesis

    Science.gov (United States)

    Fuller, George M.; Kusenko, Alexander; Takhistov, Volodymyr

    2017-08-01

    We show that some or all of the inventory of r -process nucleosynthesis can be produced in interactions of primordial black holes (PBHs) with neutron stars (NSs) if PBHs with masses 10-14 M⊙process and the accompanying decompression and decay of nuclear matter can produce electromagnetic transients, such as a kilonova-type afterglow and fast radio bursts. These transients are not accompanied by significant gravitational radiation or neutrinos, allowing such events to be differentiated from compact object mergers occurring within the distance sensitivity limits of gravitational-wave observatories. The PBH-NS destruction scenario is consistent with pulsar and NS statistics, the dark-matter content, and spatial distributions in the Galaxy and ultrafaint dwarfs, as well as with the r -process content and evolution histories in these sites. Ejected matter is heated by beta decay, which leads to emission of positrons in an amount consistent with the observed 511-keV line from the Galactic center.

  6. Ultrafast erbium-doped fiber laser mode-locked with a black phosphorus saturable absorber

    Science.gov (United States)

    Ahmed, M. H. M.; Latiff, A. A.; Arof, H.; Harun, S. W.

    2016-09-01

    We experimentally demonstrate a passive mode-locked erbium-doped fiber laser (EDFL) using a multi-layer black phosphorus saturable absorber (BPSA). The BPSA is fabricated by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto scotch tape. A small piece of the tape is then placed between two ferrules and integrated into an EDFL cavity to achieve a self-started soliton mode-locked pulse operation at 1560.7 nm wavelength. The 3 dB bandwidth, pulse width, and repetition rate of the laser are 6.4 nm, 570 fs, and 6.88 MHz, respectively. The average output power is 5.1 mW at pump power of 140 mW and thus, the pulse energy and peak power are estimated at 0.74 nJ and 1.22 kW, respectively. The BPSA was constructed in a simple fabrication process and has a modulation depth of 7% to successfully produce the stable mode-locked fiber laser.

  7. Quasinormal modes of BTZ black hole and Hawking-like radiation in graphene

    CERN Document Server

    Kandemir, B S

    2016-01-01

    The Ba\\~{n}ados-Teitelboim-Zanelli (BTZ) black hole model corresponds to a solution of (2+1)-dimensional Einstein gravity with negative cosmological constant, and by a conformal rescaling its metric can be mapped onto the hyperbolic pseudosphere surface (Beltrami trumpet) with negative curvature. Beltrami trumpet shaped graphene sheets have been predicted to emit Hawking radiation that is experimentally detectable by a scanning tunnelling microscope. Here, for the first time we present an analytical algorithm that allows variational solutions to the Dirac Hamiltonian of graphene pseudoparticles in BTZ black hole gravitational field by using an approach based on the formalism of pseudo-Hermitian Hamiltonians within a discrete-basis-set method. We show that our model not only reproduces the exact results for the real part of quasinormal mode frequencies of (2+1)-dimensional spinless BTZ black hole, but also provides analytical results for the real part of quasinormal modes of spinning BTZ black hole, and also o...

  8. From bricks to quasinormal modes: A new perspective on black hole entropy

    CERN Document Server

    Arzano, Michele; Dreyer, Olaf

    2013-01-01

    Calculations of black hole entropy based on the counting of modes of a quantum field propagating in a Schwarzschild background need to be regularized in the vicinity of the horizon. To obtain the Bekenstein-Hawking result the short distance cut-off needs to be fixed by hand. In this note we give an argument for obtaining this cut-off in a natural fashion. We do this by modelling the black hole by its set of quasinormal modes. The horizon then becomes a extended region: the quantum ergosphere. The interaction of the quantum ergosphere and the quantum field provides a natural regularization mechanism. The width of the quantum ergosphere provides the right cut-off for the entropy calculation. We arrive at a dual picture of black hole entropy. The entropy of the black hole is given both by the entropy of the quantum field in the bulk and the dynamical degrees of freedom on the horizon.

  9. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics

    CERN Document Server

    Breton, N

    2016-01-01

    The expressions for the quasinormal modes (QNMs) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNMs of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNMs of four nonlinear electromagnetic black holes, two singular and two regular, namely from Euler-Heisenberg and Born-Infeld theories, for singular, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparison is shown with the QNMs of the linear electromagnetic counterpart, their Reissner-Nordstr\\"{o}m black hole.

  10. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics

    Science.gov (United States)

    Bretón, Nora; López, L. A.

    2016-11-01

    The expressions for the quasinormal modes (QNM) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNM of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNM of four nonlinear electromagnetic black holes, two singular and two regular, namely, from Euler-Heisenberg and Born-Infeld theories, for singular ones, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparing with the QNM of the linear electromagnetic counterpart, their Reissner-Nordström black hole is done.

  11. The effects of juice processing on black mulberry antioxidants

    NARCIS (Netherlands)

    Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.D.; Beekwilder, M.J.; Capanoglu, E.

    2015-01-01

    Black mulberry fruit is processed to juice at significant scale in Turkey. The effect of industrial-scale juice production on black mulberry antioxidants was evaluated using samples collected from the main steps of processing; including the selection of fruits, washing, mechanical milling, mashing,

  12. The effects of juice processing on black mulberry antioxidants

    NARCIS (Netherlands)

    Tomas, M.; Toydemir, G.; Boyacioglu, D.; Hall, R.D.; Beekwilder, M.J.; Capanoglu, E.

    2015-01-01

    Black mulberry fruit is processed to juice at significant scale in Turkey. The effect of industrial-scale juice production on black mulberry antioxidants was evaluated using samples collected from the main steps of processing; including the selection of fruits, washing, mechanical milling, mashing,

  13. Quasinormal modes and stability of the rotating acoustic black hole: numerical analysis

    CERN Document Server

    Cardoso, V; Yoshida, S; Cardoso, Vitor; Lemos, Jose' P. S.; Yoshida, Shijun

    2004-01-01

    The study of the quasinormal modes (QNMs) of the 2+1 dimensional rotating draining bathtub acoustic black hole, the closest analogue found so far to the Kerr black hole, is performed. Both the real and imaginary parts of the quasinormal (QN) frequencies as a function of the rotation parameter B are found through a full non-linear numerical analysis. Since there is no change in sign in the imaginary part of the frequency as B is increased we conclude that the 2+1 dimensional rotating draining bathtub acoustic black hole is stable against small perturbations.

  14. Quasinormal modes of a quantum-corrected Schwarzschild black hole: gravitational and Dirac perturbations

    Science.gov (United States)

    Saleh, Mahamat; Bouetou, Bouetou Thomas; Kofane, Timoleon Crepin

    2016-04-01

    In this work, quasinormal modes (QNMs) of the Schwarzschild black hole are investigated by taking into account the quantum fluctuations. Gravitational and Dirac perturbations were considered for this case. The Regge-Wheeler gauge and the Dirac equation were used to derive the perturbation equations of the gravitational and Dirac fields respectively and the third order Wentzel-Kramers-Brillouin (WKB) approximation method is used for the computing of the quasinormal frequencies. The results show that due to the quantum fluctuations in the background of the Schwarzschild black hole, the QNMs of the black hole damp more slowly when increasing the quantum correction factor (a), and oscillate more slowly.

  15. Geometric finiteness, holography and quasinormal modes for the warped AdS{sub 3} black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Kumar S [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Harikumar, E; Sivakumar, M [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Sen, Siddhartha, E-mail: kumars.gupta@saha.ac.i, E-mail: harisp@uohyd.ernet.i, E-mail: sen@maths.ucd.i, E-mail: mssp@uohyd.ernet.i [School of Mathematical Sciences, UCD, Belfield, Dublin 4 (Ireland)

    2010-08-21

    We show that there exists a precise kinematical notion of holography for the Euclidean warped AdS{sub 3} black hole. This follows from the fact that the Euclidean warped AdS{sub 3} black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped AdS{sub 3} black hole.

  16. Geometric Finiteness, Holography and Quasinormal Modes for the Warped AdS_3 Black Hole

    CERN Document Server

    Gupta, Kumar S; Sen, Siddhartha; Sivakumar, M

    2009-01-01

    We show that there exists a precise kinematical notion of holography for the Euclidean warped $AdS_3$ black hole. This follows from the fact that the Euclidean warped $AdS_3$ black hole spacetime is a geometrically finite hyperbolic manifold. For such manifolds a theorem of Sullivan provides a one-to-one correspondence between the hyperbolic structure in the bulk and the conformal structure of its boundary. Using this theorem we obtain the holographic quasinormal modes for the warped $AdS_3$ black hole.

  17. Quasinormal modes of a quantum-corrected Schwarzschild black hole: gravitational and Dirac perturbations

    CERN Document Server

    Saleh, Mahamat; Crépin, Kofané Timoléon

    2016-01-01

    In this work, quasinormal modes (QNMs) of the Schwarzschild black hole are investigated by taking into account the quantum fluctuations. Gravitational and Dirac perturbations were considered for this case. The Regge-Wheeler gauge and the Dirac equation were used to derive the perturbation equations of the gravitational and Dirac fields respectively and the third order Wentzel-Kramers-Brillouin (WKB) approximation method is used for the computing of the quasinormal frequencies. The results show that due to the quantum fluctuations in the background of the Schwarzschild black hole, the QNMs of the black hole damp more slowly when increasing the quantum correction factor (a), and oscillate more slowly.

  18. Quasinormal modes of charged dilaton black holes and their entropy spectra

    CERN Document Server

    Sakalli, I

    2013-01-01

    In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter "a", it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNM) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNMs in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these BHs. Although the QNM frequencies are tuned by "a", we show that the quantum spectra do not depend on "a", and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant {\\epsilon} is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.

  19. Quasinormal modes of Reissner-Nordstrom black holes

    Science.gov (United States)

    Leaver, Edward W.

    1990-01-01

    A matrix-eigenvalue algorithm is presented for accurately computing the quasi-normal frequencies and modes of charged static blackholes. The method is then refined through the introduction of a continued-fraction step. The approach should generalize to a variety of nonseparable wave equations, including the Kerr-Newman case of charged rotating blackholes.

  20. Regular black holes in de Sitter universe: scalar field perturbations and quasinormal modes

    CERN Document Server

    Fernando, Sharmanthie

    2015-01-01

    The purpose of this paper is to study quasinormal modes (QNM) of a regular black hole with a cosmological constant due to scalar perturbations. A detailed study of the QNM frequencies for the massless scalar field were done by varying the parameters of the theory such as the mass, magnetic charge, cosmological constant, and the spherical harmonic index. We have employed the sixth order WKB approximation to compute the QNM frequencies. We have also proved analytically that the $l=0$ mode for the massless field reach a constant value at late times. We have approximated the near-extreme regular-de Sitter black hole potential with the P$\\ddot{o}$schl-Teller potential to obtain exact frequencies. The null geodesics of the regular-de Sitter black hole is employed to describe the QNM frequencies at the eikonal limit ($ l >>1$).

  1. Logarithmic quasinormal modes of a spin-3 field around the BTZ black hole

    CERN Document Server

    Kim, Yong-Wan; Park, Young-Jai

    2012-01-01

    Using the operator approach, we obtain logarithmic quasinormal modes and frequencies of a traceless spin-3 field around the BTZ black hole at the critical point of the spin-3 topologically massive gravity. The logarithmic quasinormal frequencies are also confirmed by considering logarithmic conformal field theory.

  2. Analytical Study of Two-Mode Thermal Squeezed States and Black Holes

    Science.gov (United States)

    Venkataratnam, K. K.

    2017-02-01

    We study the two-mode thermal squeezed states formalism to examine the particle creation by black holes.We also study the entropy generation and derive an equation for Hawking temperature in terms of squeezed parameter and an associated temperature dependent parameters.

  3. Nonlinear and Perturbative Evolution of Distorted Black Holes; 2, Odd-parity Modes

    CERN Document Server

    Baker, J; Campanelli, M; Loustó, C O; Seidel, E; Takahashi, R

    2000-01-01

    We compare the fully nonlinear and perturbative evolution of nonrotating black holes with odd-parity distortions utilizing the perturbative results to interpret the nonlinear results. This introduction of the second polarization (odd-parity) mode of the system, and the systematic use of combined techniques brings us closer to the goal of studying more complicated systems like distorted, rotating black holes, such as those formed in the final inspiral stage of two black holes. The nonlinear evolutions are performed with the 3D parallel code for Numerical Relativity, {Cactus}, and an independent axisymmetric code, {Magor}. The linearized calculation is performed in two ways: (a) We treat the system as a metric perturbation on Schwarzschild, using the Regge-Wheeler equation to obtain the waveforms produced. (b) We treat the system as a curvature perturbation of a Kerr black hole (but here restricted to the case of vanishing rotation parameter a) and evolve it with the Teukolsky equation The comparisons of the wa...

  4. Chaotic Information Processing by Extremal Black Holes

    CERN Document Server

    Axenides, Minos; Nicolis, Stam

    2015-01-01

    We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.

  5. Entropy/Area spectra of the charged black hole from quasinormal modes

    CERN Document Server

    Wei, Shao-Wen; Yang, Ke; Zhong, Yuan

    2010-01-01

    With the new physical interpretation of quasinormal modes proposed by Maggiore, the quantum area spectra of black holes have been investigated recently. It is shown that, the area spectrum for a non-rotating black hole with no charge is equidistant. While, for a rotating black hole, it is non-equidistant and depends on the angle momentum $J$. So, it is worth to investigate the area spectrum for a charged black hole. Following the Kunstatter's method, we obtain the area spectrum and entropy spectrum of the charged Garfinkle-Horowitz-Strominger black hole, originated from the effective action that emerges in the low-energy of string theory. Both the area spectrum and entropy spectrum are found to be equally spaced and do not depend on the charge $q$, which is different from that of the rotating black hole. Combing with possible observational data from gravity waves, we hope our results can give us answers to the open questions such as the black hole entropy.

  6. Electromagnetic quasinormal modes of rotating black strings and the AdS/CFT correspondence

    CERN Document Server

    Morgan, Jaqueline; Zanchin, Vilson T

    2013-01-01

    We investigate the quasinormal spectrum of electromagnetic perturbations of rotating black strings. Among the solutions of Einstein equations in the presence of a negative cosmological constant there are asymptotically anti-de Sitter (AdS) black holes whose horizons have the topology of a cylinder. The stationary version of these AdS black holes represents rotating black strings. The conformal field theory (CFT) dual of a black string lives in a Minkowski space with a compact dimension. On the basis of the AdS/CFT duality, we interpret a CFT plasma moving with respect to the preferred rest frame introduced by the topology as the holographic dual to a rotating black string. We explore the consequences of this correspondence by investigating the electromagnetic perturbations of a black string for different rotation parameter values. As usual the electromagnetic quasinormal modes (QNM) correspond to the poles of retarded Green's functions of $R$-symmetry currents in the boundary field theory. The hydrodynamic re...

  7. Damped and zero-damped quasinormal modes of charged, nearly-extremal black holes

    CERN Document Server

    Zimmerman, Aaron

    2015-01-01

    Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly-extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the non-rotating limit, we argue that gravito-electromagnetic perturbations of nearly-extremal Reissner-Nordstr\\"{o}m black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequenci...

  8. Quasinormal modes of non-Abelian hyperscaling violating Lifshitz black holes

    Science.gov (United States)

    Bécar, Ramón; González, P. A.; Vásquez, Yerko

    2017-02-01

    We study the quasinormal modes of scalar field perturbations in the background of non-Abelian hyperscaling violating Lifshitz black holes. We find that the quasinormal frequencies have no real part so there is no oscillatory behavior in the perturbations, only exponential decay, that is, the system is always overdamped, which guarantees the mode stability of non-Abelian hyperscaling violating Lifshitz black holes. We determine analytically the quasinormal modes for massless scalar fields for a dynamical exponent z=2 and hyperscaling violating exponent tilde{θ }>-2. Also, we obtain numerically the quasinormal frequencies for different values of the dynamical exponent and the hyperscaling violating exponent by using the improved asymptotic iteration method.

  9. Model for Quasinormal Mode Excitation by a Particle Plunging into a Black Hole

    Science.gov (United States)

    Mark, Zachary; Zimmerman, Aaron; Yang, Huan; Chen, Yanbei

    2016-03-01

    It is known that the late time gravitational waveform produced by a particle plunging into a Kerr black hole is well described by a sum of quasinormal modes. However it is not yet understood how the early part of the waveform gives way to the quasinormal mode description, which diverges at early times, nor how the inhomogenous part of the waveform contributes. Motivated by, we offer a model for quasinormal mode excitation by a particle plunging into a Schwarzschild black hole. To develop our model we study approximations to the Regge-Wheeler equation that allow for a closed-form expression for the frequency-domain Green's function, which we use to isolate the component of the waveform that should be identified with quasinormal ringing. Our description of quasinormal ringing does not diverge at early times and reveals that quasinormal ringing should be understood in analogy with a damped harmonic oscillator experiencing a transient driving source.

  10. Quasinormal modes of gravitational field perturbation of regular phantom black holes

    CERN Document Server

    Li, Jin; Wen, Hao

    2016-01-01

    We study the gravitational quasi-normal modes (QNMs) for a kind of regular black hole named as phantom black hole (BH), which is a solution of a self-gravitating minimally coupled scalar field with an arbitrary potential.The parameter conditions of such BH are investigated in asymptotically flat, de sitter (dS), and anti de sitter (AdS) spacetimes separately. Considering the standard odd parity and even parity of gravitational perturbation, the corresponding master equations are derived and quasi-normal perturbation are discussed in asymptotically flat and dS spacetimes. The dynamic evolution of the perturbation field indicates the stability of gravitational perturbation directly. On the whole in asymptotically flat and dS spacetimes, the gravitational perturbations have the similar characteristics for odd and even parities. The decay speed of perturbation is strongly dependent on the scale $b$. Furthermore through the analysis of Hawking radiation, the thermodynamics of such regular phantom black hole is als...

  11. Measurement of Quasi Normal Modes for a population of Binary Black Hole Mergers

    Science.gov (United States)

    da Silva Costa, Carlos Filipe; Klimenko, Sergey; Tiwari, Shubhanshu

    2017-01-01

    Perturbed solutions of the Kerr Black Hole (BH) are superimposition of damped sinusoids, named Quasi Normal Modes (QNM). These modes are completely defined by the final black hole parameters, mass and spin. Numerical simulations support that Binary BHs (BBH), after merging, produce a final BH emitting gravitational waves as described by the QNMs. This signal is very weak and hence the extraction of a QNM is quite challenging for the current generation of the ground based detectors. I will present a method for extraction of superimposed QNMs from future multiple observations of BBH merger signals in the advanced interferometers. We show that we can coherently sum up QNMs from the different signals and measure QNM parameters to prove the Kerr nature of a detected BHs population. NSF grant PHY 1505308.

  12. Safeguards Approaches for Black Box Processes or Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  13. Quasinormal modes of BTZ black hole and Hawking-like radiation in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B.S.; Ertem, Uemit [Department of Physics, Ankara University, Faculty of Sciences, 06100, Tandogan-Ankara (Turkey)

    2017-04-15

    The Banados-Teitelboim-Zanelli (BTZ) black hole model corresponds to a solution of (2+1)-dimensional Einstein gravity with negative cosmological constant, and by a conformal rescaling its metric can be mapped onto the hyperbolic pseudosphere surface (Beltrami trumpet) with negative curvature. Beltrami trumpet shaped graphene sheets have been predicted to emit Hawking radiation that is experimentally detectable by a scanning tunnelling microscope. Here, for the first time we present an analytical algorithm that allows variational solutions to the Dirac Hamiltonian of graphene pseudoparticles in BTZ black hole gravitational field by using an approach based on the formalism of pseudo-Hermitian Hamiltonians within a discrete-basis-set method. We show that our model not only reproduces the exact results for the real part of quasinormal mode frequencies of (2+1)-dimensional spinless BTZ black hole, but also provides analytical results for the real part of quasinormal modes of spinning BTZ black hole, and also offers some predictions for the observable effects with a view to gravity-like phenomena in a curved graphene sheet. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A matrix method for quasinormal modes: Kerr and Kerr-Sen black holes

    Science.gov (United States)

    Lin, Kai; Qian, Wei-Liang; Pavan, Alan B.; Abdalla, Elcio

    2017-08-01

    In this paper, a matrix method is employed to study the scalar quasinormal modes of Kerr as well as Kerr-Sen black holes. Discretization is applied to transfer the scalar perturbation equation into a matrix form eigenvalue problem, where the resulting radial and angular equations are derived by the method of separation of variables. The eigenvalues, quasinormal frequencies ω and angular quantum numbers λ, are then obtained by numerically solving the resultant homogeneous matrix equation. This work shows that the present approach is an accurate, as well as efficient method for investigating quasinormal modes.

  15. Quasinormal Modes and Thermodynamics of Linearly Charged BTZ Black holes in Massive Gravity in (Anti)de Sitter Space Time

    CERN Document Server

    Prasia, P

    2016-01-01

    In this work we study the Quasi Normal Modes(QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter((A)dS) space time. It is found that the behavior of QNMs changes with the massive parameter and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter and also on the charge of the black hole.

  16. Black Boles in the 3D Higher Spin Theory and Their Quasi Normal Modes

    CERN Document Server

    Cabo-Bizet, Alejandro; Giraldo-Rivera, V I; Narain, K S

    2014-01-01

    We present a class of 3D Black Holes based on flat connections which are polynomials in the BTZ $hs(\\lambda)\\times hs(\\lambda)$-valued connection. We solve analytically the fluctuation equations of matter in their background and find the spectrum of their Quasi Normal Modes. We analyze the bulk to boundary two-point functions. We also relate our results and those arising in other backgrounds discussed recently in the literature on the subject.

  17. The dS/CFT correspondence and quasinormal modes of black holes

    Science.gov (United States)

    Ness, Scott Henry

    In this thesis we discuss two aspects of quantum gravity and break it up in the following way. In part I, we discuss a scalar field theory living in de Sitter space-time. We may describe the infinite past or future as being boundaries of this space-time and, on these boundaries we construct a field theory. It has been shown by Strominger that there exists a correspondence between the bulk de Sitter space-time and the field theory living in the infinite past. This may be described as a holographic principle; where information in the bulk de Sitter space-time corresponds to information contained in the boundary field theory. We discuss the correspondence in two dimensions where the field theory is represented by a quantum mechanical model with conformal symmetry. We build up the quantum mechanical model and construct its Hamiltonian along with its energy eigenstates. Next, we study the correspondence for a three dimensional asymptotic de Sitter space. By approaching the boundary of the space-time the symmetry is enhanced for the corresponding field theory. These symmetries are generated by charges dictated by Noether's theorem. We explicitly calculate the generators of these symmetries and show they satisfy the Virasoro algebra with a central extension which helps to create a full picture of the correspondence. In part II, we focus on the ramifications of perturbed black holes in asymptotically anti-de Sitter space-tune. By perturbing a black hole, it vibrates in characteristic modes much like the ringing of a bell. These modes are known as quasi-normal modes. We will show that by applying the appropriate boundary conditions; the quasi-normal frequencies are quantized. We calculate the quasi-normal frequencies in four and five dimensions perturbatively for various types of perturbations. Understanding these modes may help in understanding the holographic principle, and can give insight into the intrinsic; parameters of the black holes. It is important to understand

  18. Quasi-normal modes of Schwarzschild-de Sitter black holes

    CERN Document Server

    Zhidenko, A

    2004-01-01

    The low-laying frequencies of characteristic quasi-normal modes (QNM) of Schwarzschild-de Sitter (SdS) black holes have been calculated for fields of different spin using the 6th-order WKB approximation and the approximation by the P"{o}shl-Teller potential. The well-known asymptotic formula for large $l$ is generalized here on a case of the Schwarzchild-de Sitter black hole. In the limit of the near extreme $L$ term the results given by both methods are in a very good agreement, and in this limit fields of different spin decay with the same rate. In addition, the fact that the spectrum of massless Dirac quasi-normal frequencies is the same for opposite chyrality has been numerically proved for SdS background.

  19. Possible Discovery of Nonlinear Tail and Quasinormal Modes in Black Hole Ringdown

    CERN Document Server

    Okuzumi, Satoshi; Sakagami, Masa-aki

    2008-01-01

    We investigate the nonlinear evolution of black hole ringdown in the framework of higher-order metric perturbation theory. By solving the initial-value problem of a simplified nonlinear field model analytically as well as numerically, we find that (i) second-order quasinormal modes (QNMs) are indeed excited at frequencies different from those of first-order QNMs, as predicted recently. We also find serendipitously that (ii) late-time evolution is dominated by a new type of power-law tail. This ``second-order power-law tail'' decays more slowly than any late-time tails known in the first-order (i.e., linear) perturbation theory, and is generated at the wavefront of the first-order perturbation by an essentially nonlinear mechanism. These nonlinear components should be particularly significant for binary black hole coalescences, and could open a new precision science in gravitational wave studies.

  20. Simulations of Overstable Inertial-acoustic Modes in Black-Hole Accretion Discs

    CERN Document Server

    Fu, Wen

    2012-01-01

    We present two-dimensional inviscid hydrodynamic simulations of overstable inertial-acoustic oscillation modes (p-modes) in black-hole accretion discs. These global spiral waves are trapped in the inner-most region of the disc, and are driven overstable by wave absorption at the corotation resonance ($r_c$) when the gradient of the background disc vortensity (vorticity divided by surface density) at $r_c$ is positive and the disc inner boundary is sufficiently reflective. Previous linear calculations have shown that the growth rates of these modes can be as high as 10% of the rotation frequency at the disc inner edge. We confirm these linear growth rates and the primary disc oscillation frequencies in our simulations when the mode amplitude undergoes exponential growth. We show that the mode growth saturates when the radial velocity perturbation becomes comparable to the disc sound speed. During the saturation stage, the primary disc oscillation frequency differs only slightly (by less than a few percent) fro...

  1. Application of the confluent Heun functions for finding the quasinormal modes of nonrotating black holes

    Science.gov (United States)

    Fiziev, Plamen; Staicova, Denitsa

    2011-12-01

    Although finding numerically the quasinormal modes of a nonrotating black hole is a well-studied question, the physics of the problem is often hidden behind complicated numerical procedures aimed at avoiding the direct solution of the spectral system in this case. In this article, we use the exact analytical solutions of the Regge-Wheeler equation and the Teukolsky radial equation, written in terms of confluent Heun functions. In both cases, we obtain the quasinormal modes numerically from spectral condition written in terms of the Heun functions. The frequencies are compared with ones already published by Andersson and other authors. A new method of studying the branch cuts in the solutions is presented—the epsilon method. In particular, we prove that the mode n=8 is not algebraically special and find its value with more than 6 firm figures of precision for the first time. The stability of that mode is explored using the ɛ method, and the results show that this new method provides a natural way of studying the behavior of the modes around the branch cut points.

  2. Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes

    CERN Document Server

    Varma, Vijay; Husa, Sascha; Bustillo, Juan Calderon; Hannam, Mark; Puerrer, Michael

    2014-01-01

    We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses $20 M_\\odot \\leq M \\leq 250 M_\\odot$ and mass ratios $1 \\leq q \\leq 18$. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate $< 10\\%$) for the detection of GWs with mass ratios $q\\leq4$ using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systemat...

  3. Modes of sedimentary basin formation in the north-eastern Black Sea

    Science.gov (United States)

    Stephenson, Randell; Starostenko, Vitaly; Sydorenko, Grygoriy; Yegorova, Tamara

    2016-04-01

    The Greater Caucasus and Black Sea sedimentary basins developed in a Mesozoic back-arc setting, the former older than the latter (Jurassic v. Cretaceous). Compressional shortening of the former and accompanying ongoing development of marginal basin depocentres in the north-eastern Black Sea - which is closely tied to the formation of the Crimea-Greater Caucasus orogen - is a Cenozoic phenomenon, starting in the Eocene and proceeding until the present day. Recently, the sedimentary basin/crust/lithosphere geometry of the study area has been characterised across a range of scales using regional seismic reflection profiling, long-offset refraction/wide-angle reflection profiling and local earthquake tomography. These provide a new integrated image of the present-day crustal structure and sedimentary basin architecture of the northern margin of the eastern Black Sea, north across the Azov Sea and provide evidence of the deeper expression of sedimentary basins and the processes controlling the geometry of their inversion during the Cenozoic. It is inferred that the Greater Caucasus paleo-Basin, lying stratigraphically below the Black Sea and younger sedimentary successions, extends further to the west than previously known. This basin has significant thickness in the area between the Azov and Black seas and probably forms the deeper core of the Crimea-Caucasus inversion zone. The Crimea-Greater Caucasus orogenic belt is the expression of "basin inversion" of the Jurassic Greater Caucasus paleo-Basin, the degree of inversion of which varies along strike. The Greater Caucasus foredeep basins - Indolo-Kuban and Sorokin-Tuapse troughs -represent syn-inversional marginal troughs to the main inversion zone. The Shatsky Ridge - the northern flank of the main East Black Sea Basin - may also be mainly a syn-inversional structure, underlain by a blind thrust zone expressed as a northward dipping zone of seismicity on the northern margin of the eastern Black Sea.

  4. Quasinormal modes of BTZ black hole in spin-3 topologically massive gravity

    CERN Document Server

    Myung, Yun Soo; Park, Young-Jai

    2012-01-01

    Using the operator approach, we obtain quasinormal modes (QNMs) of BTZ black hole in spin-3 topologically massive gravity by solving the first-order equation of motion with the transverse-traceless condition. It seems that these are different from those obtained when solving the second-order differential equation for the third-rank tensor of spin-3 field, which are imposed by the boundary conditions and have the sign ambiguity of mass. However, it is shown clearly that two approaches to the left-moving QNMs are identical, while the right-moving QNMs of solving the second-order equation are given by descendants of the operator approach.

  5. High frequency quasi-normal modes for black-holes with generic singularities

    OpenAIRE

    Das, Saurya; Shankaranarayanan, S.

    2004-01-01

    We compute the high frequency quasi-normal modes (QNM) for scalar perturbations of spherically symmetric single horizon black-holes in $(D+2)$-space-time dimensions with generic curvature singularities and having metrics of the form $ds^2 = \\eta x^p (dy^2-dx^2) + x^q d\\O_D^2$ near the singularity $x=0$. The real part of the QN frequencies is shown to be proportional to $\\log \\le[ 1 + 2\\cos \\le(\\p \\le[ qD -2 \\ri]/2 \\ri) \\ri]$ where the constant of proportionality is equal to the Hawking temper...

  6. Asymptotic Quasinormal Modes of the Garfinkle-Horowitz-Strominger Dilaton Black Hole

    Institute of Scientific and Technical Information of China (English)

    CHEN Song-Bai; JING Ji-Liang

    2004-01-01

    @@ Using the monodromy technique proposed by Motl and Neitzke (Adv. Theor. Math. Phys. 7 (2003)307), we investigate the analytic forms of the asymptotic quasinormal frequencies for the massless scalar perturbation in the Garfinkle-Horowitz-Strominger dilaton spacetime. We find that the real parts of the quasinormal frequencies are TH ln 3. This agrees with that of the quasinormal modes in the Schwarzschild spacetime. Our result implies that Hod's conjecture about ln3 is still valid for the black hole spacetime in the string theory.

  7. Geometric Finiteness and Non-quasinormal Modes of the BTZ Black Hole

    CERN Document Server

    Sen-Gupta, K; Gupta, Kumar S.; Sen, Siddhartha

    2005-01-01

    The BTZ black hole is geometrically finite. This means that its three dimensional hyperbolic structure as encoded in its metric is in 1-1 correspondence with the Teichmuller space of its boundary, which is a two torus. The equivalence of different Teichmuller parameters related by the action of the modular group therefore requires the invariance of the monodromies of the solutions of the wave equation around the inner and outer horizons in the BTZ background. We show that this invariance condition leads to the non-quasinormal mode frequencies discussed by Birmingham and Carlip.

  8. Nonthermal plasmas around black holes, relevant collective modes, new configurations, and magnetic field amplification

    Energy Technology Data Exchange (ETDEWEB)

    Coppi, B., E-mail: coppi@mit.edu [Massachusetts Institute of Technology (United States)

    2017-03-15

    The radiation emission from Shining Black Holes is most frequently observed to have nonthermal features. It is therefore appropriate to consider relevant collective processes in plasmas surrounding black holes that contain high energy particles with nonthermal distributions in momentum space. A fluid description with significant temperature anisotropies is the simplest relevant approach. These anisotropies are shown to have a critical influence on: (a) the existence and characteristics of stationary plasma and field ring configurations, (b) the excitation of “thermo-gravitational modes” driven by temperature anisotropies and gradients that involve gravity and rotation, (c) the generation of magnetic fields over macroscopic scale distances, and (d) the transport of angular momentum.

  9. Quasi-normal modes for de Sitter-Reissner-Nordstr\\"om Black Holes

    CERN Document Server

    Iantchenko, Alexei

    2014-01-01

    The quasi-normal modes for black holes are the resonances for the scattering of incoming waves by black holes. Here we consider scattering of massless charged Dirac fields propagating in the outer region of de Sitter-Reissner-Nordstr{\\"o}m Black Holes, which is spherically symmetric charged exact solution of the Einstein-Maxwell equations. Using the spherical symmetry of the equation and restricting to a fixed harmonic the problem is reduced to a scattering problem for the 1D massless Dirac operator on the line. The resonances for the problem are related to the resonances for a certain semi-classical Schr{\\"o}dinger operators with exponentially decreasing positive potentials. The asymptotic distribution of the resonances are close to the lattice of quasi-poles associated to the non-degenerate maxima of the potentials. Using the techniques of semi-classical Birkhoff normal form we give the complete asymptotic formulas for the resonances. In particular, we calculate the first three leading terms in the expansio...

  10. Scalar gravitational perturbations and quasinormal modes in the five dimensional Schwarzschild black hole

    CERN Document Server

    Cardoso, V; Yoshida, S; Cardoso, Vitor; Lemos, Jose' P.S.; Yoshida, Shijun

    2003-01-01

    We calculate the quasinormal modes (QNMs) for gravitational perturbations of the Schwarzschild black hole in the five dimensional (5D) spacetime with a continued fraction method. As shown by Kodama and Ishibashi, the gravitational perturbations of higher-dimensional (higher-D) Schwarzschild black holes can be divided into three decoupled classes, namely scalar-gravitational, vector-gravitational, and tensor-gravitational perturbations. In order to examine the QNMs, we make use of Schr\\"odinger-type wave equations for determining the dynamics of the gravitational perturbations. We apply the continued fraction method and expand the eigenfunctions around the black hole horizon in terms of Fr\\"obenius series. It is found that the resulting recurrence relations become an eight-term relation for the scalar-gravitational perturbations and four-term relations for the vector-gravitational and tensor-gravitational perturbations. For all the types of perturbations, the QNMs associated with $l=2$, $l=3$, and $l=4$ are ca...

  11. Black hole quasi-normal modes: the "electrons" of quantum gravity? Implications for the black hole information puzzle

    CERN Document Server

    Corda, Christian

    2015-01-01

    Some recent important results on black hole (BH) quantum physics concerning the BH effective state and the natural correspondence between Hawking radiation and BH quasi-normal modes (QNMs) are reviewed, clarified and refined. Such a correspondence permits to naturally interpret QNMs as quantum levels in a semi-classical model. This is a model of BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. In a certain sense, QNMs represent the "electron" which jumps from a level to another one and the absolute values of the QNMs frequencies "triggered" by emissions (Hawking radiation) and absorption of particles represent the energy "shells" of the "gravitational hydrogen atom". Important consequences on the BH information puzzle are discussed. In fact, it is shown that the time evolution of this "Bohr-like BH model" obeys to a time dependent Schr\\"odinger equation which permits the final BH state to be a pure quantum state instead of a mixed one. ...

  12. Extracting black-hole's rotational energy: the generalized Penrose process

    CERN Document Server

    Lasota, J -P; Abramowicz, M; Tchekhovskoy, A; Narayan, R

    2014-01-01

    In the case involving particles the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor and show that the necessary and sufficient condition for extraction of black-hole's rotational energy is analogous to that in mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past-directed (timelike or null) on some part of the horizon. In the particle case our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks" we show that...

  13. Black phosphorus mode-locked Er-doped ZBLAN fiber laser at 2.8 um wavelength

    CERN Document Server

    Qin, Zhipeng; Zhao, Chujun; Wen, Shuangchun; Yuan, Peng; Qian, Liejia

    2015-01-01

    Mid-infrared saturable absorber mirror is successfully fabricated by transferring the mechanically exfoliated black phosphorus onto the gold-coated mirror. With the as-prepared black phosphorus saturable absorber mirror, a continuous-wave passively mode-locked Er:ZBLAN fiber laser is demonstrated at the wavelength of 2.8 um, which delivers a maximum average output power of 613 mW, a repetition rate of 24 MHz and a pulse duration of 42 ps. To the best of our knowledge, it is the first time to demonstrate black phosphorus mode-locked laser at 2.8 um wavelength. Our results demonstrate the feasibility of black phosphorus flake as a new two-dimensional material for application in mid-infrared ultrafast photonics.

  14. Process for Operating a Dual-Mode Combustor

    Science.gov (United States)

    Trefny, Charles J. (Inventor); Dippold, Vance F. (Inventor)

    2017-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  15. Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence

    CERN Document Server

    Linkmann, Moritz F; McKay, Mairi E; Jäger, Julia

    2015-01-01

    Spectral transfer processes in magnetohydrodynamic (MHD) turbulence are investigated analytically by decomposition of the velocity and magnetic fields in Fourier space into helical modes. Steady solutions of the dynamical system which governs the evolution of the helical modes are determined, and a stability analysis of these solutions is carried out. The interpretation of the analysis is that unstable solutions lead to energy transfer between the interacting modes while stable solutions do not. From this, a dependence of possible interscale energy and helicity transfers on the helicities of the interacting modes is derived. As expected from the inverse cascade of magnetic helicity in 3D MHD turbulence, mode interactions with like helicities lead to transfer of energy and magnetic helicity to smaller wavenumbers. However, some interactions of modes with unlike helicities also contribute to an inverse energy transfer. As such, an inverse energy cascade for nonhelical magnetic fields is shown to be possible. Fu...

  16. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-01-15

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)

  17. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Lee, Young Tack; Choi, Won-Kook; Song, Yong-Won [Center for Opto-electronic Materials and Devices, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Junsu; Lee, Ju Han [School of Electrical and Computer Engineering, University of Seoul (Korea, Republic of)

    2015-12-15

    Black phosphorus, or BP, has found a lot of applications in recent years including photonics. The most recent studies have shown that the material has an excellent optical nonlinearity useful in many areas, one of which is in saturable absorption for passive mode-locking. A direct interaction scheme for mode-locking, however, has a potential to optically cause permanent damage to the already delicate material. Evanescent field interaction scheme has already been proven to be a useful method to prevent such danger for other 2-dimensional nanomaterials. In this report, we have utilized the evanescent field interaction to demonstrate that the optical nonlinear characteristics of BP is sufficiently strong to use in such an indirect interaction method. The successful demonstration of the passive mode-locking operation has generated pulses with the pulse duration, repetition rate, and time bandwidth product of 2.18 ps, 15.59 MHz, and 0.336, respectively. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Deep Water Ambient Noise and Mode Processing

    Science.gov (United States)

    2014-09-30

    to this award. The Code 321 project is titled Random Matrix Theory ( RMT ) for Adaptive Beamforming (N00014-12-1-0048). The RMT project is using some...of the Philippine Sea data for testing adaptive beamformers. The RMT analysis focuses on sonar signal processing issues, rather than propagation...ambient noise, or tomography. The project described in this report may benefit from the results of the RMT project, but there is no direct overlap in

  19. New results for electromagnetic quasinormal and quasibound modes of Kerr black holes

    CERN Document Server

    Staicova, Denitsa

    2014-01-01

    The perturbations of Kerr metric and the miracle of their exact solutions play a critical role in the comparison of predictions of GR with astrophysics of compact objects, see the recent review article by Teukolsky [1]. The differential equations governing the late-time ring-down of the perturbations of the Kerr metric, the Teukolsky Angular Equation and the Teukolsky Radial Equation, can be solved analytically in terms of confluent Heun functions. In this article, we use those exact solutions to obtain the electromagnetic (EM) quasinormal and quasibound spectra of the Kerr black hole. This is done by imposing the appropriate boundary conditions on the solutions and solving numerically the so obtained two-dimensional transcendental system. The EM quasinormal modes (QNM) spectra are found to match the already published results. Additionally, one obtains a symmetric with respect to the real axis spectrum corresponding to quasibound boundary conditions and also a spurious spectrum which can be shown to be numeri...

  20. Strong gravitational lensing and black hole quasinormal modes: towards a semiclassical unified description

    Science.gov (United States)

    Raffaelli, Bernard

    2016-02-01

    We examine in a semiclassical framework the deflection function of strong gravitational lensing, for static and spherically symmetric black holes, endowed with a photon sphere. From a first-order WKB analysis near the maximum of the Regge-Wheeler potential, we extract the real phase shifts from the S-matrix elements and then we derive the associated semiclassical deflection function, characterized by a logarithmic divergent behavior. More precisely, using the complex angular momentum techniques, we show that the Regge poles and the associated greybody factor residues, for a massless scalar field theory, from which one can recover the black hole quasinormal complex frequencies as well as the fluctuations of the high energy absorption cross section, play naturally the role of critical parameters in the divergent behavior of the semiclassical deflection function. For very high frequencies, we finally recover the logarithmic part of the classical strong deflection limit, which clarifies analytically the fundamental link between quasinormal modes and strong gravitational lensing, suggested in recent works.

  1. Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin [Chongqing University, Department of Physics, Chongqing (China); Lin, Kai [Universidade de Sao Paulo, Instituto de Fisica, CP 66318, Sao Paulo (Brazil); Yang, Nan [Huazhong University of Science and Technology, Department of Physics, Wuhan (China)

    2015-03-01

    Based on a regular exact black hole (BH) from nonlinear electrodynamics (NLED) coupled to general relativity, we investigate the stability of such BH through the Quasinormal Modes (QNMs) of electromagnetic (EM) field perturbations and its thermodynamics through Hawking radiation. In perturbation theory, we can deduce the effective potential from a nonlinear EM field. The comparison of the potential function between regular and RN BHs could predict similar QNMs. The QNM frequencies tell us the effect of the magnetic charge q, the overtone n, and the angular momentum number l on the dynamic evolution of NLED EM field. Furthermore we also discuss the cases of near-extreme conditions of such a magnetically charged regular BH. The corresponding QNM spectrum illuminates some special properties in the near-extreme cases. For the thermodynamics, we employ the Hamilton-Jacobi method to calculate the near-horizon Hawking temperature of the regular BH and reveal the relationship between the classical parameters of the black hole and its quantum effects. (orig.)

  2. Buoyancy and Penrose Process Produce Jets from Rotating Black Holes

    CERN Document Server

    Semenov, V S; Heyn, M F

    2014-01-01

    The exact mechanism by which astrophysical jets are formed is still unknown. It is believed that necessary elements are a rotating (Kerr) black hole and a magnetised accreting plasma. We model the accreting plasma as a collection of magnetic flux tubes/strings. If such a tube falls into a Kerr black hole, then the leading portion loses angular momentum and energy as the string brakes, and to compensate for this loss, momentum and energy is redistributed to the trailing portion of the tube.} {We found that buoyancy creates a pronounced helical magnetic field structure aligned with the spin axis. Along the field lines, the plasma is centrifugally accelerated close to the speed of light. This process leads to unlimited stretching of the flux tube since one part of the tube continues to fall into the black hole and simultaneously the other part of the string is pushed outward. Eventually, reconnection cuts the tube, the inner part is filled with new material and the outer part forms a collimated bubble-structured...

  3. Magnetosphere of a Kerr black hole immersed in magnetized plasma and its perturbative mode structure

    CERN Document Server

    Yang, Huan; Lehner, Luis

    2015-01-01

    This work studies jet-like electromagnetic configurations surrounding a slowly-spinning black-hole immersed in a uniformly magnetized force-free plasma. In the first part of this work, we present a family of stationary solutions that are jet-capable. While these solutions all satisfy the force-free equations and the appropriate boundary conditions, our numerical experiments show a unique relaxed state starting from different initial data, and so one member of the family is likely preferred over the others. In the second part of this work, we analyze the perturbations of this family of jet-like solutions, and show that the perturbative modes exhibit a similar split into the trapped and traveling categories previously found for perturbed Blandford-Znajek solutions. In the eikonal limit, the trapped modes can be identified with the fast magnetosonic waves in the force-free plasma and the traveling waves are essentially the Alfven waves. Moreover, within the scope of our analysis, we have not seen signs of unstab...

  4. High Overtone Quasinormal Modes of Analog Black Holes and the Small Scale Structure of the Background Fluid

    CERN Document Server

    Daghigh, Ramin G

    2014-01-01

    The goal of this paper is to build a foundation for, and explore the possibility of, using high overtone quasinormal modes of analog black holes to probe the small scale (microscopic) structure of a background fluid in which an analog black hole is formed. This may provide a tool to study the small scale structure of some interesting quantum systems such as Bose-Einstein condensates. In order to build this foundation, we first look into the hydrodynamic case where we calculate the high overtone quasinormal mode frequencies of a 3+1 dimensional canonical non-rotating acoustic black hole. The leading order calculations have been done earlier in the literature. Here, we obtain the first order correction. We then analyze the high overtone quasinormal modes of acoustic black holes in a Bose-Einstein condensate using the linearized Gross-Pitaevskii equation. We point out that at the high overtone quasinormal mode limit, the only term that is important in the linearized Gross-Pitaevskii equation is the quantum poten...

  5. Corotational Instability of Inertial-Acoustic Modes in Black Hole Accretion Discs and Quasi-Periodic Oscillations

    CERN Document Server

    Lai, Dong

    2008-01-01

    We study the global stability of non-axisymmetric p-modes (also called inertial-acoustic modes) trapped in the inner-most regions of accretion discs around black holes. We show that the lowest-order (highest-frequency) p-modes, with frequencies $\\omega=(0.5-0.7) m\\Omega_{\\rm ISCO}$, can be overstable due to general relativistic effects, according to which the radial epicyclic frequency is a non-monotonic function of radius near the black hole. The mode is trapped inside the corotation resonance radius and carries a negative energy. The mode growth arises primarily from wave absorption at the corotation resonance, and the sign of the wave absorption depends on the gradient of the disc vortensity. When the mode frequency is sufficiently high, such that the slope of the vortensity is positive at corotation positive wave energy is absorbed at the resonance, leading to the growth of mode amplitude. We also study how the rapid radial inflow at the inner edge of the disc affects the mode trapping and growth. Our ana...

  6. Vector soliton fiber laser passively mode locked by few layer black phosphorus-based optical saturable absorber.

    Science.gov (United States)

    Song, Yufeng; Chen, Si; Zhang, Qian; Li, Lei; Zhao, Luming; Zhang, Han; Tang, Dingyuan

    2016-11-14

    We report on the optical saturable absorption of few-layer black phosphorus nanoflakes and demonstrate its application for the generation of vector solitons in an erbium-doped fiber laser. By incorporating the black phosphorus nanoflakes-based saturable absorber (SA) into an all-fiber erbium-doped fiber laser cavity, we are able to obtain passive mode-locking operation with soliton pulses down to ~670 fs. The properties and dynamics of the as-generated vector solitons are experimentally investigated. Our results show that BP nanoflakes could be developed as an effective SA for ultrashort pulse fiber lasers, particularly for the generation of vector soliton pulses in fiber lasers.

  7. Study of pulse mode of processing of the thermoplastic target

    Directory of Open Access Journals (Sweden)

    M. V. Derenovskii

    1983-12-01

    Full Text Available The temperature characteristics and parameters of the relief formation process of thermoplastic target in pulse mode of treatment of target. It was demonstrated the effect on the light transmission characteristics of the material amount of post-erase cycles.

  8. Memory Systems, Processing Modes, and Components: Functional Neuroimaging Evidence

    Science.gov (United States)

    Cabeza, Roberto; Moscovitch, Morris

    2013-01-01

    In the 1980s and 1990s, there was a major theoretical debate in the memory domain regarding the multiple memory systems and processing modes frameworks. The components of processing framework argued for a middle ground: Instead of neatly divided memory systems or processing modes, this framework proposed the existence of numerous processing components that are recruited in different combinations by memory tasks and yield complex patterns of associations and dissociations. Because behavioral evidence was not sufficient to decide among these three frameworks, the debate was largely abandoned. However, functional neuroimaging evidence accumulated during the last two decades resolves the stalemate, because this evidence is more consistent with the components framework than with the other two frameworks. For example, functional neuroimaging evidence shows that brain regions attributed to one memory system can contribute to tasks associated with other memory systems and that brain regions attributed to the same processing mode (perceptual or conceptual) can be dissociated from each other. Functional neuroimaging evidence suggests that memory processes are supported by transient interactions between a few regions called process-specific alliances. These conceptual developments are an example of how functional neuroimaging can contribute to theoretical debates in cognitive psychology. PMID:24163702

  9. Virtual processes and superradiance in spin-boson modes

    Energy Technology Data Exchange (ETDEWEB)

    Alcalde, M. Aparicio; Kullock, R.; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: aparicio@cbpf.br; rkullock@cbpf.br; nfuxsvai@cbpf.br

    2008-07-01

    We consider spin-boson models composed by a single bosonic mode and an ensemble of N identical two-level atoms. The situation where the coupling between the bosonic mode and the atoms generates real and virtual processes is studied, where the whole system is in thermal equilibrium with a reservoir at temperature {beta}{sup -1}. Phase transitions from ordinary fluorescence to super radiant phase in three different models is investigated. First a model where the coupling between the bosonic mode and the j - th atom is via the pseudo-spin operator {sigma}{sub (j)}{sup z} is studied. Second, we investigate the generalized Dicke model, introducing different coupling constants between the single mode bosonic field and the environment, g{sub 1} and g{sub 2} for rotating and counter-rotating terms, respectively. Finally it is considered a modified version of the generalized Dicke model with intensity-dependent coupling in the rotating terms. In the first model the zero mode contributes to render the canonical entropy a negative quantity for low temperatures. The last two models presents phase transitions, even when only Hamiltonian terms which generates virtual processes are considered. (author)

  10. Best Approximation to a Reversible Process in Black-Hole Physics and the Area Spectrum of Spherical Black Holes

    CERN Document Server

    Hod, S

    1999-01-01

    The assimilation of a quantum (finite size) particle by a Reissner-Nordström black hole inevitably involves an increase in the black-hole surface area. It is shown that this increase can be minimized if one considers the capture of the lightest charged particle in nature. The unavoidable area increase is attributed to two physical reasons: the Heisenberg quantum uncertainty principle and a Schwinger-type charge emission (vacuum polarization). The fundamental lower bound on the area increase is $4 \\hbar$, which is smaller than the value given by Bekenstein for neutral particles. Thus, this process is a better approximation to a reversible process in black-hole physics. The universality of the minimal area increase is a further evidence in favor of a uniformly spaced area spectrum for spherical quantum black holes. Moreover, this universal value is in excellent agreement with the area spacing predicted by Mukhanov and Bekenstein and independently by Hod.

  11. [Effects of tillage mode on black soil's penetration resistance and bulk density].

    Science.gov (United States)

    Chen, Xue-Wen; Zhang, Xiao-Ping; Liang, Ai-Zhen; Jia, Shu-Xia; Shi, Xiu-Huan; Fan, Ru-Qin; Wei, Shou-Cai

    2012-02-01

    Taking an eight-year field experiment site in Dehui County of Jilin Province, Northeast China as test object, this paper studied the effects of different tillage modes (no tillage and ploughing in autumn) on the penetration resistance and bulk density of black soil. No tillage increased the soil penetration resistance, especially at the soil depth of 2.5-17.5 cm. In the continuous cropping of maize and the rotation of maize-soybean, the maximum soil penetration resistance at planting zone under no tillage and ploughing in autumn was 2816 and 1931 kPa, and 2660 and 2051 kPa, respectively, which had no restriction on the crop growth. The curve of soil penetration resistance under ploughing in autumn changed with ridge shape, while that under no tillage changed less. Comparing with ploughing in autumn, no tillage increased the bulk density of 5-20 cm soil layer significantly. Under no tillage, the bulk density of 5-30 cm soil layer changed little, but under ploughing in autumn, soil bulk density increased gradually with increasing soil depth. There was no significant correlation between soil bulk density and soil penetration resistance.

  12. Second Order Quasi-Normal Mode of the Schwarzschild Black Hole

    CERN Document Server

    Nakano, Hiroyuki

    2007-01-01

    We formulate and calculate the second order quasi-normal modes (QNMs) of a Schwarzschild black hole (BH). Gravitational wave (GW) from a distorted BH, so called ringdown, is well understood as QNMs in general relativity. Since QNMs from binary BH mergers will be detected with high signal-to-noise ratio by GW detectors, it is also possible to detect the second perturbative order of QNMs, generated by nonlinear gravitational interaction near the BH. In the BH perturbation approach, we derive the master Zerilli equation for the metric perturbation to second order and explicitly regularize it at the horizon and spatial infinity. We numerically solve the second order Zerilli equation by implementing the modified Leaver's continued fraction method. The second order QNM frequencies are found to be twice the first order ones, and the GW amplitude is up to $\\sim 10%$ that of the first order for the binary BH mergers. Since the second order QNMs always exist, we can use their detections (i) to test the nonlinearity of ...

  13. Mixing of spherical and spheroidal modes in perturbed Kerr black holes

    CERN Document Server

    Berti, Emanuele

    2014-01-01

    The angular dependence of the gravitational radiation emitted in compact binary mergers and gravitational collapse is usually separated using spin-weighted spherical harmonics ${}_sY_{\\ell m}$ of spin weight $s$, that reduce to the ordinary spherical harmonics $Y_{\\ell m}$ when $s=0$. Teukolsky first showed that the perturbations of the Kerr black hole that may be produced as a result of these events are separable in terms of a different set of angular functions: the spin-weighted spheroidal harmonics ${}_sS_{\\ell m n}$, where $n$ denotes the "overtone index" of the corresponding Kerr quasinormal mode frequency $\\omega_{\\ell m n}$. In this paper we compute the complex-valued scalar products of the ${}_sS_{\\ell m n}$'s with the ${}_sY_{\\ell m}$'s ("spherical-spheroidal mixing coefficients") and with themselves ("spheroidal-spheroidal mixing coefficients") as functions of the dimensionless Kerr parameter $j$. Tables of these coefficients and analytical fits of their dependence on $j$ are available online for us...

  14. A Prescription for List-Mode Data Processing Conventions

    Energy Technology Data Exchange (ETDEWEB)

    Beddingfield, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huszti, Jozsef [Hungarian Academy of Sciences (Hungary). Centre For Energy Research; Newell, Matthew R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-08

    There are a variety of algorithmic approaches available to process list-mode pulse streams to produce multiplicity histograms for subsequent analysis. In the development of the INCC v6.0 code to include the processing of this data format, we have noted inconsistencies in the “processed time” between the various approaches. The processed time, tp, is the time interval over which the recorded pulses are analyzed to construct multiplicity histograms. This is the time interval that is used to convert measured counts into count rates. The observed inconsistencies in tp impact the reported count rate information and the determination of the error-values associated with the derived singles, doubles, and triples counting rates. This issue is particularly important in low count-rate environments. In this report we will present a prescription for the processing of list-mode counting data that produces values that are both correct and consistent with traditional shift-register technologies. It is our objective to define conventions for list mode data processing to ensure that the results are physically valid and numerically aligned with the results from shift-register electronics.

  15. Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole

    CERN Document Server

    Lemos, José P S

    2013-01-01

    The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.

  16. Identification of Distillation Process Dynamics Comparing Process Knowledge and Black Box Based Approaches

    DEFF Research Database (Denmark)

    Rasmussen, Knud H; Nielsen, C. S.; Jørgensen, Sten Bay

    1990-01-01

    A distillation plant equipped with a heat pump separates a mixture of isopropanol and methanol. The mixture contains some water as impurity. The model development aims at dual composition control design, where top and bottom compositions should follow the setpoints, and disturbances should...... be rejected. Disturbances may occur in feed low rate and feed composition. Identification is performed using multivariable linear discrete time model structure development tools: a process knowledge based and a black box approach. In the process knowledge based approach, the model structure is developed from...... qualitative process knowledge which presently may require modification to guarantee identifiability. The black box approach is based on pseudocanonical MFD model representation, where the model stracture is determined by a set of structure indices. The identifications are performed on experimental data...

  17. FUZZY STABILITY ANALYSIS OF MODE COUPLING CHATTER ON CUTTING PROCESS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of fuzzy uncertainty factors is considered on the analysis of chatter occurring during machine tool cutting process. Using fuzzy mathematics analysis methods, a detailed discussion over fuzzy stability analysis problems is presented related to the mode coupling chatter with respect to intrinsic structure fuzzy factors, and the possibility distribution of the fuzzy stability cutting range and the confidence level expressions of the fuzzy stability cutting width are given.

  18. Segregation and Rationality in Black Status Aspiration Processes.

    Science.gov (United States)

    Hoelter, Jon W.

    1982-01-01

    Tests the hypothesis that school racial segregation affects the ability of Black students to set reasonable occupational goals. Questionnaire data collected from male high school seniors suggest that Whites develop the most rational occupational goals, and segregated Blacks the least. Desegregated education leads to increasingly rational…

  19. On Quasinormal Modes for Scalar Perturbations of Static Spherically Symmetric Black Holes in Nash Embedding Framework

    CERN Document Server

    Ulhoa, S C; Capistrano, Abraão J S

    2016-01-01

    In this paper we investigate scalar perturbations of black holes embedded in a five dimensional bulk space. It is calculated the quasinormal frequencies of a such black holes using the third order of Wentzel, Kramers, Brillouin (WKB) approximation for scalar perturbations. The results are presented in tables along the text.

  20. Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes

    CERN Document Server

    Liu, Yunqi; Wang, Bin

    2014-01-01

    We calculate the quasinormal modes of massless scalar perturbations around small and large four-dimensional Reissner-Nordstrom-Anti de Sitter (RN-AdS) black holes. We find a dramatic change in the slopes of quasinormal frequencies in small and large black holes near the critical point where the Van der Waals like thermodynamic phase transition happens. This further supports that the quasinormal mode can be a dynamic probe of the thermodynamic phase transition.

  1. Gravitational wave luminosity and net momentum flux in head-on mergers of black holes: Radiative patterns and mode mixing

    Science.gov (United States)

    Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino

    2016-09-01

    We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α 0

  2. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  3. Modelling of deposited black carbon with the Lagrangian particle dispersion model FLEXPART in backward mode

    Science.gov (United States)

    Eckhardt, Sabine; Cassiani, Massimo; Sollum, Espen; Evangeliou, Nikolaos; Stohl, Andreas

    2017-04-01

    Lagrangian particle dispersion models are popular tools to simulate the dispersion of trace gases, aerosols or radionuclides in the atmosphere. If they consider only linear processes, they are self-adjoint, i.e., they can be run forward and backward in time without changes to the source code. Backward simulations are very efficient if the number of receptors is smaller than the number of sources, and they are well suited to establish source-receptor (s-r) relationships for measurements of various trace substances in air. However, not only the air concentrations are of interest, but also the s-r relationships for deposition are important for interpreting measurement data. E.g., deposition of dust is measured regularly in ice cores, partly also as a proxy to understand changes in aridity in dust source regions. Contamination of snow by black carbon (BC) aerosols has recently become a hot topic because of the potential impact of BC on the snow albedo. To interpret such deposition measurements and study the sources of the deposited substance, it would be convenient to have a model that is capable of efficient s-r relationship calculations for such types of measurements. We present here the implementation of such an algorithm into the Lagrangian particle dispersion model FLEXPART, and test the new scheme by comparisons with results from forward simulations as well as comparisons with measurements. As an application, we analyse source regions for elemental carbon (EC) measured in snow over the years 2014-2016 in the Russian Arctic. Simulations using an annual constant black carbon inventory based on ECLIPSE V5 and GFED (Global Fire Emission Database), have been performed. The meteorological data used in the simulation are 3 hourly operational data from the European Centre of Medium Range Weather Forecast (ECMWF) on a 1 degree grid resolution and 138 vertical levels. The model is able to capture very well the measured concentrations. Gas flaring and residential

  4. Static and non-static black holes with the Liouville mode

    Science.gov (United States)

    Moskalets, T. M.; Nurmagambetov, A. J.

    2017-03-01

    We present a new class of static and non-static quasi-spherical black hole solutions in four-dimensional Minkowski and Anti-de Sitter spaces and briefly discuss its employing in the Gauge/Gravity duality.

  5. The Hawking evaporation process of rapidly-rotating black holes: an almost continuous cascade of gravitons

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emek Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-07-15

    It is shown that rapidly-rotating Kerr black holes are characterized by the dimensionless ratio τ{sub gap}/τ{sub emission} = O(1), where τ{sub gap} is the average time gap between the emissions of successive Hawking quanta and τ{sub emission} is the characteristic timescale required for an individual Hawking quantum to be emitted from the black hole. This relation implies that the Hawking cascade from rapidly-rotating black holes has an almost continuous character. Our results correct some inaccurate claims that recently appeared in the literature regarding the nature of the Hawking black-hole evaporation process. (orig.)

  6. Processing black mulberry into jam: Effects on antioxidant potential and in vitro bioaccessibility

    NARCIS (Netherlands)

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, R.D.; Beekwilder, M.J.; Capanoglu, Esra

    2017-01-01

    Black mulberries (Morus nigra) were processed into jam on an industrialized scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurization. Qualitative and

  7. Cognitive and emotional demands of black humour processing: the role of intelligence, aggressiveness and mood.

    Science.gov (United States)

    Willinger, Ulrike; Hergovich, Andreas; Schmoeger, Michaela; Deckert, Matthias; Stoettner, Susanne; Bunda, Iris; Witting, Andrea; Seidler, Melanie; Moser, Reinhilde; Kacena, Stefanie; Jaeckle, David; Loader, Benjamin; Mueller, Christian; Auff, Eduard

    2017-05-01

    Humour processing is a complex information-processing task that is dependent on cognitive and emotional aspects which presumably influence frame-shifting and conceptual blending, mental operations that underlie humour processing. The aim of the current study was to find distinctive groups of subjects with respect to black humour processing, intellectual capacities, mood disturbance and aggressiveness. A total of 156 adults rated black humour cartoons and conducted measurements of verbal and nonverbal intelligence, mood disturbance and aggressiveness. Cluster analysis yields three groups comprising following properties: (1) moderate black humour preference and moderate comprehension; average nonverbal and verbal intelligence; low mood disturbance and moderate aggressiveness; (2) low black humour preference and moderate comprehension; average nonverbal and verbal intelligence, high mood disturbance and high aggressiveness; and (3) high black humour preference and high comprehension; high nonverbal and verbal intelligence; no mood disturbance and low aggressiveness. Age and gender do not differ significantly, differences in education level can be found. Black humour preference and comprehension are positively associated with higher verbal and nonverbal intelligence as well as higher levels of education. Emotional instability and higher aggressiveness apparently lead to decreased levels of pleasure when dealing with black humour. These results support the hypothesis that humour processing involves cognitive as well as affective components and suggest that these variables influence the execution of frame-shifting and conceptual blending in the course of humour processing.

  8. The quasi-normal modes of charged scalar fields in Kerr-Newman black hole and its geometric interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Peng [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Yu [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xiaoning [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Mathematics, Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Zhao-Yong [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2015-11-24

    It is well-known that there is a geometric correspondence between high-frequency quasi-normal modes (QNMs) and null geodesics (spherical photon orbits). In this paper, we generalize such correspondence to charged scalar field in Kerr-Newman space-time. In our case, the particle and black hole are all charged, so one should consider non-geodesic orbits. Using the WKB approximation, we find that the real part of quasi-normal frequency corresponds to the orbits frequency, the imaginary part of the frequency corresponds to the Lyapunov exponent of these orbits and the eigenvalue of angular equation corresponds to carter constant. From the properties of the imaginary part of quasi-normal frequency of charged massless scalar field, we can still find that the QNMs of charged massless scalar field possess the zero damping modes in extreme Kerr-Newman spacetime under certain condition which has been fixed in this paper.

  9. Penrose process in a charged axion-dilaton coupled black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Chandrima [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Cambridge (United Kingdom); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2016-04-15

    Using the Newman-Janis method to construct the axion-dilaton coupled charged rotating black holes, we show that the energy extraction from such black holes via the Penrose process takes place from the axion/Kalb-Ramond field energy responsible for rendering the angular momentum to the black hole. Determining the explicit form for the Kalb-Ramond field strength, which is argued to be equivalent to spacetime torsion, we demonstrate that at the end of the energy extraction process, the spacetime becomes torsion free with a spherically symmetric non-rotating black hole remnant. In this context, applications to physical phenomena, such as the emission of neutral particles in astrophysical jets, are also discussed. It is seen that the infalling matter gains energy from the rotation of the black hole, or equivalently from the axion field, and that it is ejected as a highly collimated astrophysical jet. (orig.)

  10. Engineering functionality gradients by dip coating process in acceleration mode.

    Science.gov (United States)

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  11. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    CERN Document Server

    Bustillo, Juan Calderón; Sintes, Alicia M; Püerrer, Michael

    2015-01-01

    Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(\\ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than $10\\%$ of events occur for mass ratio $q\\geq6$ and $M \\geq...

  12. When black holes collide: Probing the interior composition by the spectrum of ringdown modes and emitted gravitational waves

    Science.gov (United States)

    Brustein, Ram; Medved, A. J. M.; Yagi, K.

    2017-09-01

    The merger of colliding black holes (BHs) should lead to the production of ringdown or quasinormal modes (QNMs), which may very well be sensitive to the state of the interior. We put this idea to the test with a recent proposal that the interior of a BH consists of a bound state of highly excited, long, closed, interacting strings; figuratively, a collapsed polymer. We show, using scalar perturbations for simplicity, that such BHs do indeed have a distinct signature in their QNM spectrum: A new class of modes whose frequencies are parametrically lower than the lowest-frequency mode of a classical BH and whose damping times are parametrically longer. The reason for the appearance of the new modes is that our model contains another scale, the string length, which is parametrically larger than the Planck length. This distinction between the collapsed-polymer model and general-relativistic BHs could be made with gravitational-wave observations and offers a means for potentially measuring the strength of the coupling in string theory. For example, GW150914 already allows us to probe the strength of the string coupling near the regime which is predicted by the unification of the gravitational and gauge-theory couplings. We also derive bounds on the amplitude of the collapsed-polymer QNMs that can be placed by current and future gravitational-wave observations.

  13. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    National Research Council Canada - National Science Library

    Browse, J; Carslaw, K. S; Arnold, S. R; Pringle, K; Boucher, O

    2012-01-01

    .... Here, we use a global aerosol microphysics model (GLOMAP) and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC...

  14. Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes

    Science.gov (United States)

    Calderón Bustillo, Juan; Husa, Sascha; Sintes, Alicia M.; Pürrer, Michael

    2016-04-01

    Current template-based gravitational wave searches for compact binary coalescences use waveform models that omit the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (ℓ,|m |)=(2 ,2 ) modes. We study the effect of such omission for the case of aligned-spin compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of AdvLIGO for mass ratio q ≥6 and total mass M ≥100 M⊙ due to the omission of higher modes, this region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO, this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO.

  15. Predictability of the Dynamic Mode Decomposition in Coastal Processes

    Science.gov (United States)

    Wang, Ruo-Qian; Herdman, Liv; Stacey, Mark; Barnard, Patrick

    2016-11-01

    Dynamic Mode Decomposition (DMD) is a model order reduction technique that helps reduce the complexity of computational models. DMD is frequently easier to interpret physically than the Proper Orthogonal Decomposition. The DMD can also produce the eigenvalues of each mode to show the trend of the mode, establishing the rate of growth or decay, but the original DMD cannot produce the contributing weights of the modes. The challenge is selecting the important modes to build a reduced order model. DMD variants have been developed to estimate the weights of each mode. One of the popular methods is called Optimal Mode Decomposition (OMD). This method decomposes the data matrix into a product of the DMD modes, the diagonal weight matrix, and the Vandermonde matrix. The weight matrix can be used to rank the importance of the mode contributions and ultimately leads to the reduced order model for prediction and controlling purpose. We are currently applying DMD to a numerical simulation of the San Francisco Bay, which features complicated coastal geometry, multiple frequency components, and high periodicity. Since DMD defines modes with specific frequencies, we expect DMD would produce a good approximation, but the preliminary results show that the predictability of the DMD is poor if unimportant modes are dropped according to the OMD. We are currently testing other DMD variants and will report our findings in the presentation.

  16. Expanding plasmas and quasinormal modes of anti-de Sitter black holes

    CERN Document Server

    Friess, J J; Michalogiorgakis, G; Pufu, S S; Friess, Joshua J.; Gubser, Steven S.; Michalogiorgakis, Georgios; Pufu, Silviu S.

    2007-01-01

    We compute the gravitational quasinormal modes of the global AdS_5-Schwarzschild solution. We show how to use the holographic dual of these modes to describe a thermal plasma of finite extent expanding in a slightly anisotropic fashion. We compare these flows with the behavior of quark-gluon plasmas produced in relativistic heavy ion collisions by estimating the elliptic flow coefficient and the thermalization time.

  17. Quasi Normal Modes and P-V Criticallity for scalar perturbations in a class of dRGT massive gravity around Black Holes

    CERN Document Server

    Prasia, P

    2016-01-01

    We investigate black holes in a class of dRGT massive gravity for their quasi normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iteration Method (Improved AIM) and their thermodynamic behavior. The QNMs are studied for different values of the massive parameter m_g for both neutral and charged dRGT black holes under a massless scalar perturbation. As m_g increases, the magnitude of the quasi normal frequencies are found to be increasing. The results are also compared with the Schwarzchild de Sitter (SdS) case. P-V criticallity of the aforesaid black hoels under massles scalar perturbation in the de Sitter space are also studied in this paper. It is found that the thermodynamic behavior of a neutral black hole shows no physically feasible phase transition while a charged black hole shows a definite phase transition.

  18. Quasi normal modes and P-V criticallity for scalar perturbations in a class of dRGT massive gravity around black holes

    Science.gov (United States)

    Prasia, P.; Kuriakose, V. C.

    2016-07-01

    We investigate black holes in a class of dRGT massive gravity for their quasi normal modes (QNMs) for neutral and charged ones using Improved Asymptotic Iteration Method and their thermodynamic behavior. The QNMs are studied for different values of the massive parameter m_g for both neutral and charged dRGT black holes under a massless scalar perturbation. As m_g increases, the magnitude of the quasi normal frequencies are found to be increasing. The results are also compared with the Schwarzchild de Sitter case. P-V criticallity of the aforesaid black hoels under massles scalar perturbation in the de Sitter space are also studied in this paper. It is found that the thermodynamic behavior of a neutral black hole shows no physically feasible phase transition while a charged black hole shows a definite phase transition.

  19. Back-reaction due to quantum tunneling and modification to black hole evaporation process

    CERN Document Server

    Modak, Sujoy K

    2014-01-01

    We study the effect of back-reaction on the evaporation of quantum black holes. The method used is based on quantum tunneling formalism as proposed in [4]. We give a more realistic picture by considering the fact that a black hole looses its energy while modes are tunneled outside the event horizon. It is shown how the tunneling quantum field modes affect the geometry and how this change in geometry is arrested in the quantum field. Exploiting this we calculate the modified (nonthermal) radiation spectrum, associating energy fluxes and discuss various issues related with these. The results obtained here are often expected on physical grounds, but, importantly we find them in a quantitative manner.

  20. Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence

    CERN Document Server

    Ma, C; Wang, F; Wang, W; Gui, Yuanxing; Ma, Chunrui; Wang, Fujun; Wang, Wei

    2006-01-01

    We present the quasinormal frequencies of the massive scalar field in the background of a Schwarzchild black hole surrounded by quintessence with the third-order WKB method. The mass of the scalar field $u$ plays an important role in studying the quasinormal frequencies, the real part of the frequencies increases linearly as mass $u$ increases, while the imaginary part in absolute value decreases linearly which leads to damping more slowly and the frequencies having a limited value. Moreover, owing to the presence of the quintessence, the massive scalar field damps more slowly.

  1. Degradation of black liquor from bioethanol process using coagulation and Fenton-like methods

    Science.gov (United States)

    Muryanto, Muryanto; Sari, Ajeng Arum; Abimanyu, Haznan

    2017-01-01

    Black liquor is one of the main by-products of the pretreatment process in bioethanol production from oil palm empty fruit bunches. Black liquor wastewater releases black coloured effluent with high chemical oxygen demand (COD) and low dissolved oxygen (DO). It had a distinctive dark coloration, high alkalinity (pH=13), high organic content (COD > 50,000 ppm) and a high solid content (TSS > 5,000 ppm). Lignin destruction can be done by using high oxidation from OH radical system such as advanced oxidation processes (AOPs). Thereafter, the high concentration of COD, color, and TSS can be removed. The general aim of the present investigation was to determine degradation of black liquor wastewater by using a combined coagulation and Fenton-like methods. In this research, we use Poly Aluminum Chloride (PAC) as a coagulant and FeCl3.6H2O and H2O2 for Fenton-like's reagent. The process was conducted in jar test at 200 rpm for 30 minutes and after that slowly mixed for 2 hours and left for sedimentation 24 hours. 50 ml black liquor was added with variation dose of 1-5% PAC, and 10 % Fenton-like reagent. Hydroxyl radical was generated by the Fenton-like's reagent (ratio FeCl3.6H2O : H2O2 was varied). The highest decolorization of black liquor 70 % was obtained under 5% PAC coagulant. The pH of the wastewater was reduced from 13.00 to 8.07 after the addition of the coagulant. The decolorization of original black liquor was approximately 58% through the Fenton-like process. The combination of PAC and Fenton-like reagent has able to enhance the decolorization of black liquor up to 97%.

  2. Thermodynamic optimization of a Penrose process: an engineers' approach to black hole thermodynamics

    CERN Document Server

    Bravetti, Alessandro; Lopez-Monsalvo, Cesar S

    2015-01-01

    In this work we present a new view on the thermodynamics of black holes introducing effects of irreversibility by employing thermodynamic optimization and finite-time thermodynamics. These questions are of importance both in physics and in engineering, combining standard thermodynamics with optimal control theory in order to find optimal protocols and bounds for realistic processes without assuming anything about the microphysics involved. We find general bounds on the maximum work and the efficiency of thermodynamic processes involving black holes that can be derived exclusively from the knowledge of thermodynamic relations at equilibrium. Since these new bounds consider the finite duration of the processes, they are more realistic and stringent than their reversible counterparts. To illustrate our arguments, we consider in detail the thermodynamic optimization of a Penrose process, i.e. the problem of finding the least dissipative process extracting all the angular momentum from a Kerr black hole in finite ...

  3. A Metrix Method for Quasinormal Modes: Schwarzschild Black Holes in Asymptotically Flat and (Anti-) de Sitter Spacetimes

    CERN Document Server

    Lin, Kai

    2016-01-01

    In this work, we study the quasinormal modes of Schwarzschild and Schwarzschild (Anti-) de Sitter black holes by a matrix method. The proposed method involves discretizing the master field equation and expressing it in form of a homogeneous system of linear algebraic equations. The resulting homogeneous matrix equation furnishes a non-standard eigenvalue problem, which can then be solved numerically to obtain the quasinormal frequencies. A key feature of the present approach is that the discretization of the wave function and its derivatives is made to be independent of any specific metric through coordinate transformation. In most cases, it can be carried out beforehand which in turn improves the efficiency and facilitates the numerical implementation. We also analyze the precision and efficiency of the present method as well as compare the results to those obtained by different approaches.

  4. Initiating the effective unification of black hole horizon area and entropy quantization with quasi-normal modes

    CERN Document Server

    Corda, C; Katebi, R; Schmidt, N O

    2014-01-01

    Black hole (BH) quantization may be the key to unlocking a unifying theory of quantum gravity (QG). Surmounting evidence in the field of BH research continues to support a horizon (surface) area with a discrete and uniformly spaced spectrum, but there is still no general agreement on the level spacing. In this specialized and important BH case study, our objective is to report and examine the pertinent groundbreaking work of the strictly thermal and non-strictly thermal spectrum level spacing of the BH horizon area quantization with included entropy calculations, which aims to tackle this gigantic problem. In particular, this work exemplifies a series of imperative corrections that eventually permits a BH's horizon area spectrum to be generalized from strictly thermal to non-strictly thermal with entropy results, thereby capturing multiple preceding developments by launching an effective unification between them. Moreover, the identified results are significant because quasi-normal modes (QNM) and "effective ...

  5. Bar-mode instability of rapidly spinning black hole in higher dimensions: Numerical simulation in general relativity

    CERN Document Server

    Shibata, Masaru

    2010-01-01

    Numerical-relativity simulation is performed for rapidly spinning black holes (BHs) in a higher-dimensional spacetime of special symmetries for the dimensionality $6 \\leq d \\leq 8$. We find that higher-dimensional BHs, spinning rapidly enough, are dynamically unstable against nonaxisymmetric bar-mode deformation and spontaneously emit gravitational waves, irrespective of $d$ as in the case $d=5$ \\cite{SY09}. The critical values of a nondimensional spin parameter for the onset of the instability are $q:=a/\\mu^{1/(d-3)} \\approx 0.74$ for $d=6$, $\\approx 0.73$ for $d=7$, and $\\approx 0.77$ for $d=8$ where $\\mu$ and $a$ are mass and spin parameters. Black holes with a spin smaller than these critical values ($q_{\\rm crit}$) appear to be dynamically stable for any perturbation. Longterm simulations for the unstable BHs are also performed for $d=6$ and 7. We find that they spin down as a result of gravitational-wave emission and subsequently settle to a stable stationary BH of a spin smaller than $q_{\\rm crit}$. Fo...

  6. Influence of vibration mode on the screening process

    Institute of Scientific and Technical Information of China (English)

    Dong Hailin; Liu Chusheng; Zhao Yuemin; Zhao Lala

    2013-01-01

    The screening of particles with different vibration modes was simulated by means of a 3D discrete element method (3D-DEM).The motion and penetration of the particles on the screen deck were analyzed for linear,circular and elliptical vibration of the screen.The results show that the travel velocity of the particles is the fastest,but the screening efficiency is the lowest,for the linear vibration mode.The circular motion resulted in the highest screening efficiency,but the lowest particle travel velocity.In the steady state the screening efficiency for each mode is seen to increase gradually along the longitudinal direction of the deck.The screening efficiency increment of the circular mode is the largest while the linear mode shows the smallest increment.The volume fraction of near-mesh size particles at the underside is larger than that of small size particles all along the screen deck.Linear screening mode has more nearmesh and small size particles on the first three deck sections,and fewer on the last two sections,compared to the circular or elliptical modes.

  7. Quasi-Normal Modes: The “Electrons” of Black Holes as “Gravitational Atoms”? Implications for the Black Hole Information Puzzle

    Directory of Open Access Journals (Sweden)

    Christian Corda

    2015-01-01

    Full Text Available Some recent important results on black hole (BH quantum physics concerning the BH effective state and the natural correspondence between Hawking radiation and BH quasi-normal modes (QNMs are reviewed, clarified, and refined. Such a correspondence permits one to naturally interpret QNMs as quantum levels in a semiclassical model. This is a model of BH somewhat similar to the historical semiclassical model of the structure of a hydrogen atom introduced by Bohr in 1913. In a certain sense, QNMs represent the “electron” which jumps from a level to another one and the absolute values of the QNMs frequencies, “triggered” by emissions (Hawking radiation and absorption of particles, represent the energy “shells” of the “gravitational hydrogen atom.” Important consequences on the BH information puzzle are discussed. In fact, it is shown that the time evolution of this “Bohr-like BH model” obeys a time dependent Schrödinger equation which permits the final BH state to be a pure quantum state instead of a mixed one. Thus, information comes out in BH evaporation in agreement with the assumption by ’t Hooft that Schröedinger equations can be used universally for all dynamics in the universe. We also show that, in addition, our approach solves the entanglement problem connected with the information paradox.

  8. Vertical diffusion processes in the Eastern Mediterranean - Black Sea System

    Science.gov (United States)

    Kioroglou, Sotiris; Tragou, Elina; Zervakis, Vassilis; Georgopoulos, Dimitris; Herut, Barak; Gertman, Isaak; Kovacevic, Vedrana; Özsoy, Emin; Tutsak, Ersin

    2014-07-01

    The identification and examination of ‘complete' potential density overturns in CTD profiles, within the framework of SESAME project, are employed to assess vertical eddy diffusivities, mostly in the top 100 m of the water column, for a broad area covering the East Mediterranean, the Turkish Straits and the Black Sea. The implementation of this method shows that, mixing induced by mechanical turbulence is enhanced in frontal areas, in the proximity of straits and inside anticyclones; furthermore, that mechanical turbulence is insignificant, down to the scale of CTD resolution, within areas of double diffusive staircases, encountered in deep layers of the water column. Consequently, only laminar theories about double diffusion are applied for assessing diffusivities therein. Susceptibility to different types of double diffusion seems to be related to the interaction of different types of water masses.

  9. Black Dross: Processing Salt Removal from Black Dross by Thermal Treatment

    Science.gov (United States)

    Beheshti, Reza; Moosberg-Bustnes, John; Akhtar, Shahid; Aune, Ragnhild E.

    2014-11-01

    The salt removal from black dross by thermal treatment has experimentally been studied under different conditions in both a stationary resistance furnace and in a laboratory scale rotary furnace. The experiments were designed based on partial pressure calculations using the Thermo-Calc software (Thermo-Calc Software, Stockholm, Sweden). The salt removal efficiency was evaluated by scanning electron microscope (SEM) energy-dispersive x-ray spectroscopy and x-ray diffraction analyses, and the optimum conditions for treatment established, i.e., temperature, gas flow rate, holding time, rotation rate, and sample size. The overall degree of chloride removal was established to increase as a function of time and temperature, as well as by reduced pressure. Under atmospheric pressure, the highest degree of chloride removal from a 20 g sample was obtained after 10 h at 1523 K resulting in a 98% removal and a final chloride content of 0.3 wt.% in the residue. Under reduced pressure, the chloride concentrate was lowered to 0.2 wt.% after thermal treatment of a 20 g sample at 1473 K for 8 h. In the case of 200 g samples treated in a rotary furnace, the chloride concentrate was 2.5 wt.% after 14 h at 1523 K, representing a removal of 87%. Below 0.3 wt.% chloride content, the material is deemed a nonhazardous waste.

  10. A fourth-order indirect integration method for black hole perturbations: even modes

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Patxi; Spallicci, Alessandro D A M [Universite d' Orleans, Observatoire des Sciences de l' Univers en region Centre, LPC2E Campus CNRS, 3A Av. Recherche Scientifique, 45071 Orleans (France); Aoudia, Sofiane [Max Planck Institut fuer Gravitationphysik, A Einstein, Am Muehlenberg 1, 14476 Potsdam (Germany); Cordier, Stephane, E-mail: spallicci@cnrs-orleans.fr [Universite d' Orleans, Laboratoire de Mathematiques-Analyse, Probabilites, Modelisation-Orleans, MAPMO, Rue de Chartres, 45067 Orleans (France)

    2011-07-07

    On the basis of a recently proposed strategy of finite element integration in time domain for partial differential equations with a singular source term, we present a fourth-order algorithm for non-rotating black hole perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations induced by a particle plunging in. The forward time value at the upper node of the (r*, t) grid cell is obtained by an algebraic sum of (i) the preceding node values of the same cell, (ii) analytic expressions, related to the jump conditions on the wavefunction and its derivatives and (iii) the values of the wavefunction at adjacent cells. In this approach, the numerical integration does not deal with the source and potential terms directly, for cells crossed by the particle world line. This scheme has also been applied to circular and eccentric orbits and it will be the object of a forthcoming publication.

  11. Bioaccessibility of Polyphenols from Plant-Processing Byproducts of Black Carrot (Daucus carota L.).

    Science.gov (United States)

    Kamiloglu, Senem; Capanoglu, Esra; Bilen, Fatma Damla; Gonzales, Gerard Bryan; Grootaert, Charlotte; Van de Wiele, Tom; Van Camp, John

    2016-03-30

    Plant-processing byproducts of black carrot represent an important disposal problem for the industry; however, they are also promising sources of polyphenols, especially anthocyanins. The present study focused on the changes in polyphenols from black carrot, peel, and pomace during in vitro gastrointestinal digestion. Total phenolic content (TPC), total monomeric anthocyanin content (TMAC), and total antioxidant capacity (TAC) were determined using spectrophotometric methods, whereas identification and quantification of polyphenols were carried out using UPLC-ESI-MS(E) and HPLC-DAD, respectively. TPC, TMAC, and TAC significantly decreased (23-82%) as a result of in vitro gastrointestinal digestion. Nevertheless, the amount of pomace anthocyanins released at all stages of in vitro gastrointestinal digestion was higher than black carrot anthocyanins, suggesting that pomace may be a better source of bioaccessible anthocyanins. Overall, the current study highlighted black carrot byproducts as substantial sources of polyphenols, which may be used to enrich food products.

  12. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    CERN Document Server

    Saida, H

    2007-01-01

    When a black hole evaporates, there arises a net energy flow from black hole into its outside environment (heat bath). The existence of energy flow means that the thermodynamic state of the whole system, which consists of the black hole and the heat bath, is in a nonequilibrium state. Therefore, in order to study the detail of evaporation process, the nonequilibrium effects of the energy flow should be taken into account. Using the nonequilibrium thermodynamics which has been formulated recently, this paper shows the following: (1) Time scale of black hole evaporation in a heat bath becomes shorter than that of the evaporation in an empty space (a situation without heat bath), because a nonequilibrium effect of temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. (2) Consequently a huge energy burst (stronger than that of the evaporation in an empty space) arises at the end of semi-classical stage of evaporation. (3) It is sugg...

  13. Processing black mulberry into jam: effects on antioxidant potential and in vitro bioaccessibility.

    Science.gov (United States)

    Tomas, Merve; Toydemir, Gamze; Boyacioglu, Dilek; Hall, Robert D; Beekwilder, Jules; Capanoglu, Esra

    2017-08-01

    Black mulberries (Morus nigra) were processed into jam on an industrialised scale, including the major steps of: selection of frozen black mulberries, adding glucose-fructose syrup and water, cooking, adding citric acid and apple pectin, removing seeds, and pasteurisation. Qualitative and quantitative determinations of antioxidants in black mulberry samples were performed using spectrophotometric methods, as well as HPLC- and LC-QTOF-MS-based measurements. These analyses included the determination of total polyphenolic content, % polymeric colour, total and individual anthocyanin contents, antioxidant capacity, and in vitro bioaccessibility in processing samples. Jam processing led to a significant reduction in total phenolics (88%), total flavonoids (89%), anthocyanins (97%), and antioxidant capacity (88-93%) (P < 0.05). Individual anthocyanin contents, determined using HPLC analysis, also showed a significant decrease (∼99% loss). In contrast, % recovery of bioaccessible total phenolics, anthocyanins, and antioxidant capacity (ABTS assay) increased after jam processing (16%, 12%, and 37%, respectively). Fruit processing resulted in losses of polyphenols, anthocyanins, and antioxidant capacity of black mulberry jam. Optimisation of food processing could help to protect the phenolic compounds in fruits which might be helpful for the food industry to minimise the antioxidant loss and improve the final product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. A Comprehensive Utilization Process for Black Manganese-silver Ores by Pyrite Reducing Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On a 5 kg bench scale, the separating of Mn-Ag from black manganese-silver ores by pyrite reducing was investigated. Leached Mn content of 98.3% (mass fraction) along with silver loss of 1.5% is achieved. The purification of solution by the precipitation method was effectively used. Chemical grade -MnO2 with TMn content of 60.13% (mass fraction) and MnO2 content of 92.28% (mass fraction) is obtained. Mn recovery efficiency is 94.04%. The residues from leaching Mn process of black Mn-Ag ores was employed for silver extraction by cyanidation with leached silver content of 92.17% (mass fraction), displacement ratio of 99.5%, recovery efficiency of 90.79%. Therefore, the present study provides a feasible process for making full use of black manganese-silver ore resources.

  15. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn

    2016-08-10

    Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  16. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Directory of Open Access Journals (Sweden)

    Hao-Peng Yan

    2016-08-01

    Full Text Available Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  17. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    Science.gov (United States)

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  18. Regular admissible wealth processes are necessarily of Black-Scholes type

    Directory of Open Access Journals (Sweden)

    David Grow

    2014-10-01

    Full Text Available We show that for a complete market where the stock price uncertainty is driven by a Brownian motion, there exists only one admissible wealth process which is a regular deterministic function of the time and the stock price. In particular, if the stock price is modeled by geometric Brownian motion then the Black-Scholes process is the only regular admissible wealth process.

  19. The r-Process in Metal Poor Stars and Black Hole Formation

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, R N; Famiano, M A; Meyer, B S; Motizuki, Y; Kajino, T; Roederer, I U

    2011-11-30

    Nucleosynthesis of heavy nuclei in metal-poor stars is generally ascribed to the r-process, as the abundance pattern in many such stars agrees with the inferred Solar r-process abundances. Nonetheless, a significant number of these stars do not share this r-process template. they suggest that many such stars have begun an r-process, but it was prevented from running to completion in more massive stars by collapse to black holes, creating a 'truncated r-process,' or 'tr-process'. The observed fraction of tr-process stars is found to be consistent with expectations from the initial mass function (IMF), and they suggest that an apparent sharp truncation observed at around mass 160 could result from a combination of collapses to black holes and the difficulty of observing the higher mass rare earths. They test the tr-process hypothesis with calculations that are terminated before all r-process trajectories have been ejected. These produce qualitative agreement with observation when both black hole collapse and observational realities are taken into account.

  20. Denying Diversity: Perceptions of Beauty and Social Comparison Processes among Latina, Black, and White Women.

    Science.gov (United States)

    Poran, Maya A.

    2002-01-01

    Investigated Hispanic, black, and white women's conceptions of beauty and perceptions of cultural standards of beauty, noting whether they were engaged in similar social comparison processes (denial of personal disadvantage). Surveys of female college students highlighted major differences in the women's relationships with their bodies and their…

  1. Negotiating Race and Sexual Orientation in the College Choice Process of Black Gay Males

    Science.gov (United States)

    Squire, Dian D.; Mobley, Steve D., Jr.

    2015-01-01

    This study explores the college choice process for Black gay males and what factors played significant roles in why they chose to attend either HBCUs or PWIs. Findings revealed that these students considered race and sexual orientation in different ways when deciding to attend either an HBCU or PWI. Implications for high school counselors and…

  2. Unraveling the Black Box of New Venture Team Processes

    DEFF Research Database (Denmark)

    Bjørnåli, Ekaterina S.; Knockaert, Mirjam; Foss, Nicolai Juul

    2017-01-01

    of Entrepreneurial Theorizing, the chapter argues how and when specific theories such as faultline theory, creativity and imagination, and organizational and team justice may be instructive in studying NVT processes at the prefounding phase, and particularly the (self)-selection of individuals into (out of) the NVT...

  3. Preparation of selective surfaces of black cobalt by the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, E.C.; Viveros, T.G.; Morales, U. [Universidad Nacional Autonoma de Mexico, Iztapalapa (Mexico)

    1996-09-01

    Black cobalt, Co{sub 3}O{sub 4}, thin solid coatings on stainless steel and glass substrates have been prepared by the dip coating technique via the sol-gel route using a CoCl{sub 2} precursor. The coatings produced on substrates exhibit a blue to black colours as a function of the film thickness. Sols have been made from a cobalt acetate precursor 0.1 M, and for such conditions, the dip coating process gives 0.08-0.25 {mu}m thick uniform films per dipping, depending on the viscocity of the sol. (Author)

  4. Hawking radiation screening and Penrose process shielding in the Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Mc Caughey, Eamon [Dublin Institute of Technology, School of Mathematical Sciences, Dublin 8 (Ireland)

    2016-04-15

    The radial motion of massive particles in the equatorial plane of a Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both inside and outside the ergosphere) and their effect on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient determined. (orig.)

  5. Hawking radiation screening and Penrose process shielding in the Kerr black hole

    CERN Document Server

    Caughey, Eamon Mc

    2016-01-01

    The radial motion of massive particles in the equatorial plane of the Kerr black hole is considered. Screening of the Hawking radiation and shielding of the Penrose process are examined (both insides and outside the ergosphere) and their effects on the evaporation of the black hole is studied. In particular, the locus and width of a classically forbidden region and their dependence on the particle's angular momentum and energy is analysed. Tunneling of particles between the boundaries of this region is considered and the transmission coefficient is determined.

  6. Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and Mode-locking laser operation.

    Science.gov (United States)

    Chen, Yu; Jiang, Guobao; Chen, Shuqing; Guo, Zhinan; Yu, Xuefeng; Zhao, Chujun; Zhang, Han; Bao, Qiaoliang; Wen, Shuangchun; Tang, Dingyuan; Fan, Dianyuan

    2015-05-18

    Black phosphorus (BP), an emerging narrow direct band-gap two-dimensional (2D) layered material that can fill the gap between the semi-metallic graphene and the wide-bandgap transition metal dichalcogenides (TMDs), had been experimentally found to exhibit the saturation of optical absorption if under strong light illumination. By taking advantage of this saturable absorption property, we could fabricate a new type of optical saturable absorber (SA) based on mechanically exfoliated BPs, and further demonstrate the applications for ultra-fast laser photonics. Based on the balanced synchronous twin-detector measurement method, we have characterized the saturable absorption property of the fabricated BP-SAs at the telecommunication band. By incorporating the BP-based SAs device into the all-fiber Erbium-doped fiber laser cavities, we are able to obtain either the passive Q-switching (with maximum pulse energy of 94.3 nJ) or the passive mode-locking operation (with pulse duration down to 946 fs). Our results show that BP could also be developed as an effective SA for pulsed fiber or solid-state lasers.

  7. Partitioning of Black Carbon between ultrafine and fine particle modes in an urban airport vs. urban background environment

    Science.gov (United States)

    Costabile, F.; Angelini, F.; Barnaba, F.; Gobbi, G. P.

    2015-02-01

    In this work, we characterize the Black Carbon (BC) aerosol in an urban airport vs. urban background environment with the objective to evaluate when and how the ultrafine BC dominates the bulk aerosol. Aerosol optical and microphysical properties were measured in a Mediterranean urban area (Rome) at sites impacted by BC sources including fossil fuels (FF), and biomass burning (BB). Experimental BC data were interpreted through measurement-constrained simulations of BC microphysics and optical properties. A "scheme" to separate the ultrafine BC was experimented on the basis of the relation found between changes in the BC partitioning between Aitken and accumulation mode particles, and relevant changes in particle size distribution and optical properties of the bulk aerosol. This separation scheme, applied to experimental data, proved useful to reveal the impact of airport and road traffic emissions. Findings may have important atmospheric implications. The experimented scheme can help separating different BC sources (FF, BB, "aged" BC) when BC size distributions may be very difficult to obtain (satellite, columnar observations, routine monitoring). Indeed, separating the ultrafine BC from the fine BC may provide significant benefits in addressing BC impact on air quality and climate.

  8. The classical essence of black hole radiation

    CERN Document Server

    Nouri-Zonoz, M

    1998-01-01

    We show that the mathematics of Hawking process can be interpreted classically as the Fourier analysis of an exponentially redshifted wave mode which scatters off the black hole and travels to infinity at late times. We use this method to derive the Planckian power spectrum for Schwarzchild, Reissner-Nordstrom and Kerr black holes.

  9. Sliding Mode Control of a Thermal Mixing Process

    Science.gov (United States)

    Richter, Hanz; Figueroa, Fernando

    2004-01-01

    In this paper we consider the robust control of a thermal mixer using multivariable Sliding Mode Control (SMC). The mixer consists of a mixing chamber, hot and cold fluid valves, and an exit valve. The commanded positions of the three valves are the available control inputs, while the controlled variables are total mass flow rate, chamber pressure and the density of the mixture inside the chamber. Unsteady thermodynamics and linear valve models are used in deriving a 5th order nonlinear system with three inputs and three outputs, An SMC controller is designed to achieve robust output tracking in the presence of unknown energy losses between the chamber and the environment. The usefulness of the technique is illustrated with a simulation.

  10. Complex variational mode decomposition for signal processing applications

    Science.gov (United States)

    Wang, Yanxue; Liu, Fuyun; Jiang, Zhansi; He, Shuilong; Mo, Qiuyun

    2017-03-01

    Complex-valued signals occur in many areas of science and engineering and are thus of fundamental interest. The complex variational mode decomposition (CVMD) is proposed as a natural and a generic extension of the original VMD algorithm for the analysis of complex-valued data in this work. Moreover, the equivalent filter bank structure of the CVMD in the presence of white noise, and the effects of initialization of center frequency on the filter bank property are both investigated via numerical experiments. Benefiting from the advantages of CVMD algorithm, its bi-directional Hilbert time-frequency spectrum is developed as well, in which the positive and negative frequency components are formulated on the positive and negative frequency planes separately. Several applications in the real-world complex-valued signals support the analysis.

  11. Subnanosecond current mode detectors for prompt physical process diagnosis

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    For prompt physical diagnosis, several types of subnanosecond current mode detectors have been developed,including scintillator detectors with large linear output current,GaAs:Cr and InP:Fe photoconductor detectors(PCD), and X-ray diodes(XRD), etc. The characteristic of scintillation light of BaF2 crystal doped with La and of plastic scintillator ST1422 with slow component quencher are described. As for the photoconductor detectors, the main performance of neutron damaged GaAs:Cr and InP:Fe were studied. In addition, the spectral response of an XRD with coaxial leading-out end was also studied. These detectors have been successfully applied to nuclear test diagnosis and ICF research.

  12. Collisional Penrose process near the horizon of extreme Kerr black holes.

    Science.gov (United States)

    Bejger, Michał; Piran, Tsvi; Abramowicz, Marek; Håkanson, Frida

    2012-09-21

    Collisions of particles in black hole ergospheres may result in an arbitrarily large center-of-mass energy. This led recently to the suggestion [M. Bañados, J. Silk, and S. M. West, Phys. Rev. Lett. 103, 111102 (2009)] that black holes can act as ultimate particle accelerators. If the energy of an outgoing particle is larger than the total energy of the infalling particles, the energy excess must come from the rotational energy of the black hole and hence, a Penrose process is involved. However, while the center-of-mass energy diverges, the position of the collision makes it impossible for energetic particles to escape to infinity. Following an earlier work on collisional Penrose processes [T. Piran and J. Shaham, Phys. Rev. D 16, 1615 (1977)], we show that even under the most favorable idealized conditions the maximal energy of an escaping particle is only a modest factor above the total initial energy of the colliding particles. This implies that one should not expect collisions around a black hole to act as spectacular cosmic accelerators.

  13. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    Reconstruction of salinity in the Holocene Black Sea has been an ongoing debate over the past four decades. Here we calibrate summer surface water salinity in the Black Sea, Sea of Azov and Caspian Sea with the process length of the dinoflagellate cyst Lingulodinium machaerophorum. We then apply...... this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ∼14...... ± 0.91 psu around 9.9 cal ka BP to a minimum ∼12.3 ± 0.91 psu around 8.5 cal ka BP, reaching current salinities of ∼17.1 ± 0.91 psu around 4.1 cal ka BP. The resolution of our sampling is about 250 years, and it fails to reveal a catastrophic salinization event at ∼9.14 cal ka BP advocated by other...

  14. Black and solder joint fracture failure mode of ENIG PCB%黑盘与化镍金PCB焊点失效模式

    Institute of Scientific and Technical Information of China (English)

    李伏; 李斌

    2013-01-01

      文章通过多个化镍金PCB焊接失效案例,探讨了黑盘与化镍金PCB焊点失效模式之间的关系。%This article explores the relationship between the black pad with Electroless Nickel Immersion Gold PCB solder joint failure mode through multiple nickel gold PCB soldering failure cases.

  15. Applying Business Process Mode ling Techniques : Case Study

    Directory of Open Access Journals (Sweden)

    Bartosz Marcinkowski

    2010-12-01

    Full Text Available Selection and proper application of business process modeling methods and techniques have a significant impact on organizational improvement capabilities as well as proper understanding of functionality of information systems that shall support activity of the organization. A number of business process modeling notations were implemented in practice in recent decades. Most significant of the notations include ARIS, Business Process Modeling Notation (OMG BPMN and several Unified Modeling Language (OMG UML extensions. In this paper, the assessment whether one of the most flexible and strictly standardized contempo-rary bus iness process modeling notations, i.e. Rational UML Profile for Business Modeling, enable business analysts to prepare business models that are all-embracing and understandable by all the stakeholders. After the introduction, me-thodology of res earch is discussed. The following section presents selected case study results. The paper is concluded with a summary

  16. A social-level macro-governance mode for collaborative manufacturing processes

    Science.gov (United States)

    Gao, Ji; Lv, Hexin; Jin, Zhiyong; Xu, Ping

    2017-08-01

    This paper proposes the social-level macro-governance mode for innovating the popular centralized control for CoM (Collaborative Manufacturing) processes, and makes this mode depend on the support from three aspects of technologies standalone and complementary: social–level CoM process norms, CoM process supervision system, and rational agents as the brokers of enterprises. It is the close coupling of those technologies that redounds to removing effectively the uncontrollability obstacle confronted with by cross-management-domain CoM processes. As a result, this mode enables CoM applications to be implemented by uniting the centralized control of CoM partners for respective CoM activities, and therefore provides a new distributed CoM process control mode to push forward the convenient development and large-scale deployment of SME-oriented CoM applications.

  17. Influence of California-style black ripe olive processing on the formation of acrylamide.

    Science.gov (United States)

    Charoenprasert, Suthawan; Mitchell, Alyson

    2014-08-27

    Methods used in processing California-style black ripe olives generate acrylamide. California-style black ripe olives contain higher levels of acrylamide (409.67 ± 42.60-511.91 ± 34.08 μg kg(-1)) as compared to California-style green ripe olives (44.02 ± 3.55-105.79 ± 22.01 μg kg(-1)), Greek olives (acrylamide formation. Preprocessing brine storage influenced the formation of acrylamide in a time-dependent manner. Acrylamide increased during the first 30 days of storage. Longer brine storage times (>30 days) result in lower acrylamide levels in the finished product. The presence of calcium ions in the preprocessing brining solution results in higher levels of acrylamide in finished products. Air oxidation during lye processing and the neutralization of olives prior to sterilization significantly increase the formation of acrylamide in the finished products. Conversely, lye-processing decreases the levels of acrylamide in the final product. These results indicate that specific steps in the California-style black ripe olive processing may be manipulated to mitigate the formation of acrylamide in finished products.

  18. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    Science.gov (United States)

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode.

  19. Effect of Vibrational Modes on Sand Pressure and Pattern Deformation in the EPC Process

    Institute of Scientific and Technical Information of China (English)

    A.Ikenaga; G.S.Cho; K.H.Choe; K.W.Lee

    2004-01-01

    During the EPC (expendable pattern casting) process, one of the essential requirements is to prevent pattern distortion during sand filling and compaction. A new method which vibrates the system in a two-dimensional circular mode has been applied to the EPC process. The molding properties of unbonded sand obtained by this new vibration mode are investigated and compared with those in the one-dimensional vertical mode. For adequate compaction of sand, the circular vibration mode is more effective than the vertical mode. Sand became more fluidized by the circular vibration and the particle pressure coefficient was close to unity. The particle pressure coefficient, which is defined as the ratio of horizontal to vertical sand pressure, is responsible for the effectiveness of sand filling.

  20. Multi-mode of Four and Six Wave Parametric Amplified Process

    Science.gov (United States)

    Zhu, Dayu; Yang, Yiheng; Zhang, Da; Liu, Ruizhou; Ma, Danmeng; Li, Changbiao; Zhang, Yanpeng

    2017-03-01

    Multiple quantum modes in correlated fields are essential for future quantum information processing and quantum computing. Here we report the generation of multi-mode phenomenon through parametric amplified four- and six-wave mixing processes in a rubidium atomic ensemble. The multi-mode properties in both frequency and spatial domains are studied. On one hand, the multi-mode behavior is dominantly controlled by the intensity of external dressing effect, or nonlinear phase shift through internal dressing effect, in frequency domain; on the other hand, the multi-mode behavior is visually demonstrated from the images of the biphoton fields directly, in spatial domain. Besides, the correlation of the two output fields is also demonstrated in both domains. Our approach supports efficient applications for scalable quantum correlated imaging.

  1. Supernova Neutrino-Effects on R-Process Nucleosynthesis in Black Hole Formation

    CERN Document Server

    Sasaqui, T; Balantekin, A B

    2005-01-01

    Stars with a wide range of masses provide a variety of production sites for intermediate-to-heavy mass elements. Very massive stars with mass $\\geq 8 M_{\\odot}$ culminate their evolution by supernova explosions which are presumed to be the most viable candidate astrophysical sites of r-process nucleosynthesis. If the models for the supernova r-process are correct, then nucleosynthesis results could also pose a significant constraint on the remnant of supernova explosions, $i.e.$ neutron star or black hole. In the case of very massive core collapse, a remnant stellar black hole is thought to be formed. Intense neutrino flux from the neutronized core and the neutrino sphere might suddenly cease during the Kelvin-Helmholtz cooling phase because of the black hole formation. It is interesting to explore observable consequences of such a neutrino flux truncation. Arguments have recently been given in the literature that even the neutrino mass may be determined from the time delay of deformed neutrino energy spectru...

  2. The r-process in the neutrino-driven wind from a black-hole torus

    CERN Document Server

    Wanajo, Shinya

    2011-01-01

    We examine r-process nucleosynthesis in the neutrino-driven wind from the thick accretion disk (or "torus") around a black hole. Such systems are expected as emnants of binary neutron star or neutron star -- black hole mergers. We consider a simplified, analytic, time-dependent evolution model of a 3M_sun central black hole surrounded by a neutrino emitting accretion torus with 90km radius, which serves as basis for computing spherically symmetric neutrino-driven wind solutions. We find that ejecta with modest entropies (~30 per nucleon in units of the Boltzmann constant) and moderate expansion timescales (~100ms) dominate in the mass outflow. The mass-integrated nucleosynthetic abundances are in good agreement with the solar system r-process abundance distribution if a minimal value of the electron fraction at the charged-particle freezeout, Ye,min~0.2, is achieved. In the case of Ye,min~0.3, the production of r-elements beyond A~130 does not reach to the third peak but could be still important for an explan...

  3. Effects of Forming Process on Composite mode I Interlaminar Fracture Toughness

    Directory of Open Access Journals (Sweden)

    CHEN Xingyi

    2016-10-01

    Full Text Available In order to compare and analyse the effect of two different kinds of forming process on composite mode I interlaminar fracture toughness, the DCB specimens were tested by using hypothesis inspeetion method.A finite element model was also used to simulate the crack propagation process.The results demonstrate that the average of mode I interlaminar fracture toughness from silicon rubber flexible mold forming is a bit higher than that from metal rigid mold forming.Howevers the variance of mode I interlaminar fracture toughness from the two groups shows no significant difference.The crack propagation process of the two forming process is similar. The established finite element model, which is identical to the test results, can predict the process of the crack expansion effectively.

  4. Simulation of mode conversion process from upper-hybrid waves to LO-mode waves in the vicinity of the plasmapause

    Directory of Open Access Journals (Sweden)

    M. J. Kalaee

    2010-06-01

    Full Text Available In order to clarify the role of the mode conversion process in the generation mechanism of LO-mode waves in the equatorial region of the plasmasphere, we have investigated the linear mode conversion process among upper-hybrid-resonance (UHR-mode, Z-mode and LO-mode waves by a numerical simulation solving Maxwell's equations and the equation of motion of a cold electron fluid. The wave coupling process occurring in the cold magnetized plasma are examined in detail. In order to give a realistic initial plasma condition in the numerical experiments, we use initial parameters inferred from observation data obtained around the generation region of LO-mode waves obtained by the Akebono satellite. A density gradient is estimated from the observed UHR frequency, and wave normal angles are estimated from the dispersion relation of cold plasma by comparing observed wave electric fields. Then, we perform numerical experiments of mode conversion processes using the density gradient of background plasma and the wave normal angle of incident upper hybrid mode waves determined from the observation results. We found that the characteristics of reproduced LO-mode waves in each simulation run are consistent with observations.

  5. Structural damage localization by outlier analysis of signal-processed mode shapes - Analytical and experimental validation

    Science.gov (United States)

    Ulriksen, M. D.; Damkilde, L.

    2016-02-01

    Contrary to global modal parameters such as eigenfrequencies, mode shapes inherently provide structural information on a local level. Therefore, this particular modal parameter and its derivatives are utilized extensively for damage identification. Typically, more or less advanced mathematical methods are employed to identify damage-induced discontinuities in the spatial mode shape signals, hereby, potentially, facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise. In the present paper, a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise is proposed. The method is based on signal processing of a spatial mode shape by means of continuous wavelet transformation (CWT) and subsequent application of a generalized discrete Teager-Kaiser energy operator (GDTKEO) to identify damage-induced mode shape discontinuities. In order to evaluate whether the identified discontinuities are in fact damage-induced, outlier analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically and benchmarked with other mode shape-based damage localization approaches on the basis of a free-vibrating beam and validated experimentally in the context of a residential-sized wind turbine blade subjected to an impulse load.

  6. Damage localization by statistical evaluation of signal-processed mode shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2015-01-01

    in the spatial mode shape signals, hereby potentially facilitating damage detection and/or localization. However, by being based on distinguishing damage-induced discontinuities from other signal irregularities, an intrinsic deficiency in these methods is the high sensitivity towards measurement noise....... The present article introduces a damage localization method which, compared to the conventional mode shape-based methods, has greatly enhanced robustness towards measurement noise. The method is based on signal processing of spatial mode shapes by means of continuous wavelet transformation (CWT...

  7. Exact Eigenstates for a Class of Model Describing Interactions Among Five Bosonic Modes with Multiphoton Process

    Institute of Scientific and Technical Information of China (English)

    YANGWen-Xing; LIJia-Hua; LIWei-Bin; LUOJin-Ming; XIEXiao-Tao; WEIHua

    2004-01-01

    We present an efficient approach to studying the spectra and eigenstates for the model describing interactions among five bosonic modes without using the assumption of the Bethe ansatz. The exact analytical results of all the eigenstates and eigenvalues are in terms of a parameter A for a class of models describing five-mode multiphoton process. The parameter is determined by the roots of a polynomial and is solvable analytically or numerically.

  8. Consistent approximations and variational description of some classes of sliding mode control processes

    OpenAIRE

    Azhmyakov, Vadim; Polyakov, Andrey; Poznyak, Alexander

    2013-01-01

    International audience; This paper is devoted to constructive approximations and an alternative theoretic characterization of some classes of sliding mode control processes. We construct the consistent approximations of the differential inclusions associated with the 1rst order variable structures dynamics and also propose a variational description of the sliding mode control in the framework of an auxiliary Hamiltonian based formalism. A trajectory of the closed-loop systems can be then cons...

  9. The Role of Cognitive Ability and Preferred Mode of Processing in Students' Calculus Performance

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk

    2015-01-01

    The present study sought to design calculus tasks to determine students' preference for visual or analytic processing as well as examine the role of preferred mode of processing in calculus performance and its relationship to spatial ability and verbal-logical reasoning ability. Data were collected from 150 high school students who were enrolled…

  10. The Role of Cognitive Ability and Preferred Mode of Processing in Students' Calculus Performance

    Science.gov (United States)

    Haciomeroglu, Erhan Selcuk

    2015-01-01

    The present study sought to design calculus tasks to determine students' preference for visual or analytic processing as well as examine the role of preferred mode of processing in calculus performance and its relationship to spatial ability and verbal-logical reasoning ability. Data were collected from 150 high school students who were enrolled…

  11. [Failure modes and effects analysis in the prescription, validation and dispensing process].

    Science.gov (United States)

    Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T

    2012-01-01

    To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  12. Modelling the coastal processes at the mouths of the Danube River in the Black Sea

    Science.gov (United States)

    Rusu, Eugen; Zanopol, Andrei

    2014-05-01

    The mouths of the Danube River in the Black Sea represent the main southern entrance in the seventh Pan European transportation corridor that links the Black and the Northern seas and is the most important inland navigable waterway in Europe. For this reason the coastal area close to the Danube Delta is subjected to high navigation traffic, which is crucially affected by the strong processes mainly induced by the interactions between the waves and the currents generated by the Danube River outflow. From this perspective, the objective of the present work is to develop a computational framework based on numerical models able to evaluate properly the effects of these interactions and to provide reliable predictions concerning the wave and current conditions corresponding to various environmental patterns. Following this target, a wave modelling system, SWAN based, was implemented in the entire basin of the Black Sea and focused on the coastal sector at the entrance of the Danube Delta. As a next step of the modelling process, SWAN simulations were performed at two different computational levels, considering in parallel the situations without and with the current fields for the main environmental conditions characteristic to the target area. The first level covers the entire coastal area at the mouths of the Danube River and has a resolution in the geographical space of 500m. The second is a computational domain with the resolution of 50m that is focused on the Sulina channel, which is the main navigation gate at the mouths of the Danube River. The results show that the presence of the currents induces relevant enhancements in terms of significant wave heights. Additionally, the Benjamin Feir index (BFI) was also evaluated. This is a spectral shape parameter that is related to the kurtosis of the distribution and indicates the risk of the freak wave occurrence. The enhanced values for BFI in the case when the current fields are considered in the modelling process

  13. Non-extremal Reissner-Nordstrom black hole: Do asymptotic quasi-normal modes carry information about the quantum properties of the black hole?

    CERN Document Server

    Skakala, Jozef

    2011-01-01

    We analyze the largely accepted formulas for the asymptotic quasi-normal frequencies of the non-extremal Reissner-Nordstrom black hole [13,14], (for the electromagnetic-gravitational/scalar perturbations). We focus on the question of whether the gap in the spacing in the imaginary part of the QNM frequencies has a well defined limit as n goes to infinity and if so, what is the value of the limit. The existence and the value of this limit has a crucial importance from the point of view of the currently popular Maggiore's conjecture, which represents a way of connecting the asymptotic behavior of the quasi-normal frequencies to the black hole thermodynamics. With the help of previous results and insights from the paper [16] we will prove that the gap between the imaginary parts of the frequencies does not converge to any limit, unless one puts specific constraints on the ratio of the two surface gravities related to the two spacetime horizons. Specifically the constraints are that the ratio of the surface gravi...

  14. THE BUD BREAK PROCESS AND ITS VARIATION AMONG LOCAL POPULATIONS OF BOREAL BLACK SPRUCE

    Directory of Open Access Journals (Sweden)

    Sergio eRossi

    2014-10-01

    Full Text Available Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analysed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill. BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points towards a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions.

  15. The bud break process and its variation among local populations of boreal black spruce

    Science.gov (United States)

    Rossi, Sergio; Bousquet, Jean

    2014-01-01

    Phenology of local populations can exhibit adaptations to the current environmental conditions resulting from a close interaction between climate and genotype. The bud break process and its variations among populations were analyzed in greenhouse by monitoring the growth resumption in black spruce [Picea mariana (Mill.) BSP] seedlings originating from seeds of five stands across the closed boreal forest in Quebec, Canada. Bud break lasted 15 days and occurred earlier and quicker in northern provenances. Provenance explained between 10.2 and 32.3% of the variance in bud break, while the families accounted for a smaller but still significant part of the variance. The late occurrence of one phenological phase corresponded to a delayed occurrence of the others according to linear relationships. A causal model was proposed in the form of a chain of events with each phase of bud break being related to the previous and successive one, while no link was observed between non-adjacent phases. The adaptation of black spruce populations along the latitudinal gradient points toward a strategy based on rapid physiological processes triggered by temperature increase inducing high metabolic activity. The variation observed in bud break reflects an evolutionary trade-off between maximization of security and taking advantage of the short growing season. This work provides evidence of the phenological adaptations of black spruce to its local environmental conditions while retaining sizeable genetic diversity within populations. Because of the multigenic nature of phenology, this diversity should provide some raw material for adaptation to changing local environmental conditions. PMID:25389430

  16. A Fast Method to Predict Distributions of Binary Black Hole Masses Based on Gaussian Process Regression

    Science.gov (United States)

    Yun, Yuqi; Zevin, Michael; Sampson, Laura; Kalogera, Vassiliki

    2017-01-01

    With more observations from LIGO in the upcoming years, we will be able to construct an observed mass distribution of black holes to compare with binary evolution simulations. This will allow us to investigate the physics of binary evolution such as the effects of common envelope efficiency and wind strength, or the properties of the population such as the initial mass function.However, binary evolution codes become computationally expensive when running large populations of binaries over a multi-dimensional grid of input parameters, and may simulate accurately only for a limited combination of input parameter values. Therefore we developed a fast machine-learning method that utilizes Gaussian Mixture Model (GMM) and Gaussian Process (GP) regression, which together can predict distributions over the entire parameter space based on a limited number of simulated models. Furthermore, Gaussian Process regression naturally provides interpolation errors in addition to interpolation means, which could provide a means of targeting the most uncertain regions of parameter space for running further simulations.We also present a case study on applying this new method to predicting chirp mass distributions for binary black hole systems (BBHs) in Milky-way like galaxies of different metallicities.

  17. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    Science.gov (United States)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  18. Investigation of physical processes limiting plasma density in H-mode on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, R.; Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Jernigan, T.C. [Oak Ridge National Lab., TN (United States)] [and others

    1996-12-01

    A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmas was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.

  19. 47 CFR 22.921 - 911 call processing procedures; 911-only calling mode.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false 911 call processing procedures; 911-only calling mode. 22.921 Section 22.921 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.921 911 call...

  20. Structural Damage Localization by Outlier Analysis of Signal-processed Mode Shapes

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    analysis is conducted by applying the Mahalanobis metric to major principal scores of the sensor-located bands of the signal-processed mode shape. The method is tested analytically on the basis of a free-vibrating beam and experimentally in the context of a residential-sized wind turbine blade subjected...

  1. Circuits and systems based on delta modulation linear, nonlinear and mixed mode processing

    CERN Document Server

    Zrilic, Djuro G

    2005-01-01

    This book is intended for students and professionals who are interested in the field of digital signal processing of delta-sigma modulated sequences. The overall focus is on the development of algorithms and circuits for linear, non-linear, and mixed mode processing of delta-sigma modulated pulse streams. The material presented here is directly relevant to applications in digital communication, DSP, instrumentation, and control.

  2. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    Science.gov (United States)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  3. Radiative processes of two entangled atoms outside a Schwarzschild black hole

    CERN Document Server

    Menezes, G

    2015-01-01

    We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and interacting with quantum electromagnetic fluctuations in the Boulware, Unruh and Hartle-Hawking vacuum states. We study the structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the contributions of vacuum fluctuations and radiation reaction to the entanglement generation between the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms. We show...

  4. Opening up the Black Box of Sensor Processing Algorithms through New Visualizations

    Directory of Open Access Journals (Sweden)

    Alexander M. Morison

    2016-09-01

    Full Text Available Vehicles and platforms with multiple sensors connect people in multiple roles with different responsibilities to scenes of interest. For many of these human–sensor systems there are a variety of algorithms that transform, select, and filter the sensor data prior to human intervention. Emergency response, precision agriculture, and intelligence, surveillance and reconnaissance (ISR are examples of these human–computation–sensor systems. The authors examined a case of the latter to understand how people in various roles utilize the algorithms output to identify meaningful properties in data streams given uncertainty. The investigations revealed: (a that increasingly complex interactions occur across agents in the human–computation–sensor system; and (b analysts struggling to interpret the output of “black box” algorithms given uncertainty and change in the scenes of interest. The paper presents a new interactive visualization concept designed to “open up the black box” of sensor processing algorithms to support human analysts as they look for meaning in feeds from sensors.

  5. Radiative processes of two entangled atoms outside a Schwarzschild black hole

    Science.gov (United States)

    Menezes, G.

    2016-11-01

    We consider radiative processes of a quantum system composed by two identical two-level atoms in a black-hole background. We assume that these identical two-level atoms are placed at fixed radial distances outside a Schwarzschild black hole and interacting with a quantum electromagnetic field prepared in one of the usual vacuum states, namely, the Boulware, Unruh, or Hartle-Hawking vacuum states. We study the structure of the rate of variation of the atomic energy. The intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation reaction to the entanglement generation between the atoms as well as the degradation of entangled states in the presence of an event horizon. We find that for a finite observation time the atoms can become entangled for the case of the field in the Boulware vacuum state, even if they are initially prepared in a separable state. In addition, the rate of variation of atomic energy is not well behaved at the event horizon due to the behavior of the proper accelerations of the atoms. We show that the thermal nature of the Hartle-Hawking and Unruh vacuum state allows the atoms to get entangled even if they were initially prepared in the separable ground state.

  6. Inter-annual variability of exchange processes at the outer Black Sea shelf

    Science.gov (United States)

    Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng

    2014-05-01

    The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black Sea, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the sea in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the sea, the transport of cold waters from the northwest Black Sea shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the exchanges between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal exchange within the CIL is strongly inhibited, so that CIL waters formed in the deep sea (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open sea and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black Sea (NEMO-SHELF-BLS) to quantify the exchange of CIL waters between the open sea and the outer northwest Black Sea shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid

  7. A sequence of calculation of the modes of dimensional combined processing by an electrode brush

    Science.gov (United States)

    Ryazantsev, A. Yu; Kirillov, O. N.; Smolentsev, V. P.; Totay, A. V.

    2016-04-01

    In the article the way of calculation of the modes of dimensional processing by an electrode brush is considered. The choice of a liquid working environment is presented. A calculation of tension in electrodes and forces of the technological current realized during processing is given. A choice of a clip of wire bunches in a processing zone, feeding an electrode brush to a non-rigid work piece. The recommended technological indicators of the process of the finishing combined treatment by an electrode brush are presented.

  8. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  9. Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs

    Science.gov (United States)

    Ban, Masashi

    2016-11-01

    Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.

  10. Low-SWaP coincidence processing for Geiger-mode LIDAR video

    Science.gov (United States)

    Schultz, Steven E.; Cervino, Noel P.; Kurtz, Zachary D.; Brown, Myron Z.

    2015-05-01

    Photon-counting Geiger-mode lidar detector arrays provide a promising approach for producing three-dimensional (3D) video at full motion video (FMV) data rates, resolution, and image size from long ranges. However, coincidence processing required to filter raw photon counts is computationally expensive, generally requiring significant size, weight, and power (SWaP) and also time. In this paper, we describe a laboratory test-bed developed to assess the feasibility of low-SWaP, real-time processing for 3D FMV based on Geiger-mode lidar. First, we examine a design based on field programmable gate arrays (FPGA) and demonstrate proof-of-concept results. Then we examine a design based on a first-of-its-kind embedded graphical processing unit (GPU) and compare performance with the FPGA. Results indicate feasibility of real-time Geiger-mode lidar processing for 3D FMV and also suggest utility for real-time onboard processing for mapping lidar systems.

  11. Black holes by analytic continuation

    CERN Document Server

    Amati, Daniele

    1997-01-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation --accessible in the 1+1 gravity theory considered-- is implicit in an S matrix approach and provides in this way a possible solution to the problem of information loss.

  12. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed black raspberry products.

    Science.gov (United States)

    Hager, A; Howard, L R; Prior, R L; Brownmiller, C

    2008-08-01

    This study evaluated the effects of processing and 6 mo of storage on total monomeric anthocyanins, percent polymeric color, and antioxidant capacity of black raspberries that were individually quick-frozen (IQF), canned-in-syrup, canned-in-water, pureed, and juiced (clarified and nonclarified). Total monomeric anthocyanins, percent polymeric color, and ORAC(FL) were determined 1 d postprocessing and after 1, 3, and 6 mo of storage. Thermal processing resulted in marked losses in total anthocyanins ranging from 37% in puree to 69% to 73% in nonclarified and clarified juices, respectively, but only the juices showed substantial losses (38% to 41%) in ORAC(FL). Storage at 25 degrees C of all thermally processed products resulted in dramatic losses in total anthocyanins ranging from 49% in canned-in-syrup to 75% in clarified juices. This coincided with marked increases in percent polymeric color values of these products over the 6-mo storage. ORAC(FL) values showed little change during storage, indicating that the formation of polymers compensated for the loss of antioxidant capacity due to anthocyanin degradation. Total anthocyanins and ORACFL of IQF berries were well retained during long-term storage at -20 degrees C.

  13. Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis

    Science.gov (United States)

    Markiewicz, P. J.; Thielemans, K.; Schott, J. M.; Atkinson, D.; Arridge, S. R.; Hutton, B. F.; Ourselin, S.

    2016-07-01

    In this technical note we propose a rapid and scalable software solution for the processing of PET list-mode data, which allows the efficient integration of list mode data processing into the workflow of image reconstruction and analysis. All processing is performed on the graphics processing unit (GPU), making use of streamed and concurrent kernel execution together with data transfers between disk and CPU memory as well as CPU and GPU memory. This approach leads to fast generation of multiple bootstrap realisations, and when combined with fast image reconstruction and analysis, it enables assessment of uncertainties of any image statistic and of any component of the image generation process (e.g. random correction, image processing) within reasonable time frames (e.g. within five minutes per realisation). This is of particular value when handling complex chains of image generation and processing. The software outputs the following: (1) estimate of expected random event data for noise reduction; (2) dynamic prompt and random sinograms of span-1 and span-11 and (3) variance estimates based on multiple bootstrap realisations of (1) and (2) assuming reasonable count levels for acceptable accuracy. In addition, the software produces statistics and visualisations for immediate quality control and crude motion detection, such as: (1) count rate curves; (2) centre of mass plots of the radiodistribution for motion detection; (3) video of dynamic projection views for fast visual list-mode skimming and inspection; (4) full normalisation factor sinograms. To demonstrate the software, we present an example of the above processing for fast uncertainty estimation of regional SUVR (standard uptake value ratio) calculation for a single PET scan of 18F-florbetapir using the Siemens Biograph mMR scanner.

  14. Use of failure mode effect analysis (FMEA) to improve medication management process.

    Science.gov (United States)

    Jain, Khushboo

    2017-03-13

    Purpose Medication management is a complex process, at high risk of error with life threatening consequences. The focus should be on devising strategies to avoid errors and make the process self-reliable by ensuring prevention of errors and/or error detection at subsequent stages. The purpose of this paper is to use failure mode effect analysis (FMEA), a systematic proactive tool, to identify the likelihood and the causes for the process to fail at various steps and prioritise them to devise risk reduction strategies to improve patient safety. Design/methodology/approach The study was designed as an observational analytical study of medication management process in the inpatient area of a multi-speciality hospital in Gurgaon, Haryana, India. A team was made to study the complex process of medication management in the hospital. FMEA tool was used. Corrective actions were developed based on the prioritised failure modes which were implemented and monitored. Findings The percentage distribution of medication errors as per the observation made by the team was found to be maximum of transcription errors (37 per cent) followed by administration errors (29 per cent) indicating the need to identify the causes and effects of their occurrence. In all, 11 failure modes were identified out of which major five were prioritised based on the risk priority number (RPN). The process was repeated after corrective actions were taken which resulted in about 40 per cent (average) and around 60 per cent reduction in the RPN of prioritised failure modes. Research limitations/implications FMEA is a time consuming process and requires a multidisciplinary team which has good understanding of the process being analysed. FMEA only helps in identifying the possibilities of a process to fail, it does not eliminate them, additional efforts are required to develop action plans and implement them. Frank discussion and agreement among the team members is required not only for successfully conducing

  15. A Mixed-Mode Signal Processing Architecture for Radix-2 DHT

    Directory of Open Access Journals (Sweden)

    Gautam A. Shah,

    2011-06-01

    Full Text Available This paper proposes a mixed-mode signal processing architecture for radix-2 DHT. In the known algorithms, the stage structures perform all the additions and multiplications. The proposed algorithm introduces multiplying structures which perform all the multiplications with the cosine coefficients and their related additions. This leads to i simplification of the stage structures which now perform only the additions, and ii a reduction in the number of multiplications without affecting the number of additions. A mixed-mode signal processing architecture to implement the algorithm utilizing an N-bit ring counter, sample-and-hold array and analog block structure is proposed. The validity of this design has been tested by simulating it with the help of Orcad PSpice.

  16. INTEGRATION OF POKA YOKE INTO PROCESS FAILURE MODE AND EFFECT ANALYSIS: A CASE STUDY

    OpenAIRE

    A. P. Puvanasvaran; N. Jamibollah; N. Norazlin

    2014-01-01

    The Failure Mode and Effect Analysis (FMEA) is a one of the requirements which was required by the Automotive Industries Action Group (AIAG) to all the automotive suppliers and manufacturers worldwide through the TS16949 Quality System. There were a lot of dicrepencies detected on implementing the FMEA which directly related to the user experinces and knowledge. The descrepencies cause the FMEA not meeting the objectives of it. Conceptually, Poka Yoke is able to fit into the Process FMEA. Fai...

  17. Fringe trees, Crump-Mode-Jagers branching processes and $m$-ary search trees

    OpenAIRE

    Holmgren, Cecilia; Janson, Svante

    2016-01-01

    This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) $m$-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). T...

  18. Utilization of the Net Heat Process Tail Gases in the Reactor for the Production of Oil-Furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2011-02-01

    Full Text Available Tail gases of low calorific value, which are the by-product of oil-furnace carbon black industrial production, can be efficiently used as energy before their final release into the atmosphere. Apart from being used mainly for heating dryers, production of steam, electricity, or flared, they can also be used as a substitute for fuel in the reactor for the production of oil-furnace carbon blacks, thus increasing the efficiency of the hydrocarbon raw feedstock.This technical paper represents the technical-technological solution for applying the waste heat of the low calorific tail gases in the reactor for the production of "hard" grade oil-furnace carbon blacks with savings of the hydrocarbon raw feedstock.The introduction of the preheated low calorific tail gases in the reactor for the production of "hard" grade oil-furnace carbon blacks is achieved by serial cascading of four fans. The system consists of fans designed to pneumatically transport the mixture of process tail gases and oil-furnace carbon black dust particles. This ensures a stable technological process for the introduction of the low calorific process tail gases into the reaction zone where the natural gas and preheated air are combusted.In the production of oil-furnace carbon black N220, it is shown that by using low calorific process tail gases in the amount from 1000 to 2000 m3 h–1 per reactor, savings from 10 to 20 % of natural gas and simultaneously 7 to 9 % of the hydrocarbon raw feedstoks were achieved.

  19. Postharvest Processing and Benefits of Black Pepper, Coriander, Cinnamon, Fenugreek, and Turmeric Spices.

    Science.gov (United States)

    Balasubramanian, S; Roselin, P; Singh, K K; Zachariah, John; Saxena, S N

    2016-07-26

    Spices are prime source for flavor, aroma, and taste in cuisines and play an active role as medicines due to their high antioxidant properties. As medicine or food, the importance of spices cannot be overemphasized. The medicinal values of spices are very well established in treating various ailments like cancer, fever, malaria, stomach offset, nausea, and many more. A spice may be available in several forms: fresh, whole dried, or pre-ground dried which requires further processing to be utilized in the form of value-added product. This review paper deals with the cultivation, postharvesting, chemical composition, uses, health, and medicinal benefits of the selected spice viz., black pepper, coriander, cinnamon, fenugreek, turmeric, and technological advances in processing of spices viz., super critical fluid extraction, cryogenic grinding, and microencapsulation etc. This paper also focuses on issues related to utilization of spices toward its high end-product development and characterization in pharmaceuticals and other medicinal purposes. The availability of different spices and their varietal differences and location have their pertinent characters, which are much demanding to refine postharvest and processing to assure its quality in the international market.

  20. Black Tea Processing Technology%红茶加工工艺探讨

    Institute of Scientific and Technical Information of China (English)

    康孟利; 凌建刚; 林旭东; 俞静芬; 陈曙颖; 葛能培

    2015-01-01

    以宁波中小叶红茶叶为试材,研究揉捻、发酵对中小叶红茶品质的影响研究。结果显示,随着揉捻时间的延长,从轻揉5 min—重揉5 min—轻揉5 min至轻揉10 min—重揉10 min—轻揉10 min ,条形紧缩,红汤加深;发酵时间越长,由发酵2~4 h,颜色加深,以发酵6 h为佳。总体评价,轻揉10 min—重揉10 min—轻揉10 min,发酵4h为最佳工艺,含水量差异不显著。%Taking Ningbo small leaf black tea as raw material, studied the kneading and rolling effect on quality of black tea. Results show that as the rolling time longer, lighter knead knead 5 min—5 min—knead gently massage for 5 min to 10 min—heavy knead gently knead 10 min—10 min, bar austerity, deep red soup; The longer the fermentation time, 2~4 h by fermentation, color deepened, for 6 h fermentation is preferred. Overall evaluation, massage for 10 min—heavy knead gently knead 10 min—10 min, 4 h as the best fermentation process, the water content of significant difference.

  1. Information Management Processes for Extraction of Student Dropout Indicators in Courses in Distance Mode

    Directory of Open Access Journals (Sweden)

    Renata Maria Abrantes Baracho

    2016-04-01

    Full Text Available This research addresses the use of information management processes in order to extract student dropout indicators in distance mode courses. Distance education in Brazil aims to facilitate access to information. The MEC (Ministry of Education announced, in the second semester of 2013, that the main obstacles faced by institutions offering courses in this mode were students dropping out and the resistance of both educators and students to this mode. The research used a mixed methodology, qualitative and quantitative, to obtain student dropout indicators. The factors found and validated in this research were: the lack of interest from students, insufficient training in the use of the virtual learning environment for students, structural problems in the schools that were chosen to offer the course, students without e-mail, incoherent answers to activities to the course, lack of knowledge on the part of the student when using the computer tool. The scenario considered was a course offered in distance mode called Aluno Integrado (Integrated Student

  2. Risk assessment of the emergency processes: Healthcare failure mode and effect analysis

    Science.gov (United States)

    Taleghani, Yasamin Molavi; Rezaei, Fatemeh; Sheikhbardsiri, Hojat

    2016-01-01

    BACKGROUND: Ensuring about the patient’s safety is the first vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care. METHODS: In this study, in combination (qualitative action research and quantitative cross-sectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis (HFMEA). To classify the failure modes from the “nursing errors in clinical management model (NECM)”, the classification of the effective causes of error from “Eindhoven model” and determination of the strategies to improve from the “theory of solving problem by an inventive method” were used. To analyze the quantitative data of descriptive statistics (total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used. RESULTS: In 5 selected processes by “voting method using rating”, 23 steps, 61 sub-processes and 217 potential failure modes were identified by HFMEA. 25 (11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors (54.7%) and knowledge and skill (9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy. CONCLUSION: “Revision and re-engineering of processes”, “continuous monitoring of the works”, “preparation and revision of operating procedures and policies”, “developing the criteria for evaluating the performance of the personnel”, “designing a suitable educational content for needs of employee”,

  3. The Vainshtein mechanism as a duality of the particle creation process of black-holes

    CERN Document Server

    Arraut, Ivan

    2014-01-01

    I explain the origin of the Vainshtein mechanism in terms of the "gauge" transformation function $T_0(r,t)$ for the stationary spherically-symmetric solutions obtained in {\\it Prog. Theor. Exp. Phys. 023E02, (2014)}, where the extra degrees of freedom enter through the spatial dependence of the gauge transformation function $T_0(r,t)\\backsim t+A(r)$. Written in this form, the Vainshtein mechanism is a way to recover the Birkhoff theorem for scales near the source and the Cosmic no-hair conjecture for scales near the cosmological horizon. Additionally, the Vainshtein mechanism is the dual version of the particle creation process in a black-Hole (radiation). Then if we want to analyze the Hawking radiation inside dRGT, we have to be careful when some apparent extra contribution appears. This extra contribution comes from the dual version of the Vainshtein mechanism, behaving as a particle creation process from the point of view of an observer located at scales $r>>r_V$, with $r_V$ being the Vainshtein scale.

  4. Influence of processing conditions on acrylamide content in black ripe olives.

    Science.gov (United States)

    Casado, Francisco J; Montaño, Alfredo

    2008-03-26

    The presence of acrylamide was investigated in different presentations of commercial black ripe olives, a well-known sterilized alkali-treated product. The analysis was performed by gas chromatography-mass spectrometry (GC-MS) after bromination of acrylamide, using (13C3)acrylamide as internal standard. In-house validation data for commercial ripe olives showed good precision and accuracy of the method, with repeatability below 3% and recoveries between 94 and 105%. Acrylamide was detected in all samples, but its concentration varied significantly from 176 to 1578 microg/kg of pulp. The effects of different processing conditions (two preservation methods and three darkening methods), cultivar (Hojiblanca or Manzanilla), and presentation form (pitted or sliced olives) on acrylamide content were evaluated in experiments performed in an olive-processing plant. All canned samples were sterilized at 121 degrees C for 30 min. Statistical analysis of the data indicated that the effects of darkening method and olive cultivar were the most pronounced. Acrylamide contents did not significantly differ after 6 months of storage. The small amounts of free amino acids and reducing sugars found in olives before sterilization did not significantly correlate with the acrylamide formed.

  5. APNEA list mode data acquisition and real-time event processing

    Energy Technology Data Exchange (ETDEWEB)

    Hogle, R.A.; Miller, P. [GE Corporate Research & Development Center, Schenectady, NY (United States); Bramblett, R.L. [Lockheed Martin Specialty Components, Largo, FL (United States)

    1997-11-01

    The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins for TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.

  6. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process

    Institute of Scientific and Technical Information of China (English)

    Tang Yehua; Fei Jianming; Cao Hongbin; Zhou Chunlan; Wang Wenjing; Zhou Su; Zhao Yan; Zhao Lei; Li Hailing; Yan Baojun; Chen Jingwei

    2012-01-01

    A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100).The average reflectivity from 300 to 1200 nm was less than 1.5%.Black Si solar cells were then fabricated using a conventional production process.The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles.Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics.The efficiency at the optimized etching time and dopant profile was 12.17%.However,surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

  7. Performance of Three Mode-Meter Block-Processing Algorithms for Automated Dynamic Stability Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Trudnowski, Daniel J.; Pierre, John W.; Zhou, Ning; Hauer, John F.; Parashar, Manu

    2008-05-31

    The frequency and damping of electromechanical modes offer considerable insight into the dynamic stability properties of a power system. The performance properties of three block-processing algorithms from the perspective of near real-time automated stability assessment are demonstrated and examined. The algorithms are: the extended modified Yule Walker (YW); extended modified Yule Walker with Spectral analysis (YWS); and numerical state-space subspace system identification(N4SID) algorithm. The YW and N4SID have been introduced in previous publications while the YWS is introduced here. Issues addressed include: stability assessment requirements; automated subset selecting identified modes; using algorithms in an automated format; data assumptions and quality; and expected algorithm estimation performance.

  8. Production of all $r$-process nuclides by black hole accretion disk outflows from neutron star mergers

    CERN Document Server

    Wu, Meng-Ru; Martínez-Pinedo, Gabriel; Metzger, Brian D

    2016-01-01

    We consider $r$-process nucleosynthesis in outflows from black hole accretion disks formed in double neutron star and neutron star - black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important -- and in some cases dominant -- contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disk outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second $r$-process peak (mass number $A \\sim 130$), independent of model parameters, with significant production of $A < 130$ nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of $r$-process elements in metal poor stars. Disk outflows reach the third peak ($ A \\sim 195$) in most of our simulations, although the amounts produced depend sensitively on the ...

  9. Nonthermal correction to black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics and Center for High Energy Physics, Chung Li (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China)

    2015-02-01

    Area spectrum of black holes has been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have a negative specific heat and therefore tend to stay away from thermal equilibrium. Even for black holes with a positive specific heat, the temperature may still not be well defined in the process of radiation, due to the back reaction of a decreasing mass. With respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect. (orig.)

  10. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing.

    Science.gov (United States)

    Bonatsou, S; Benítez, A; Rodríguez-Gómez, F; Panagou, E Z; Arroyo-López, F N

    2015-04-01

    Yeasts are unicellular eukaryotic microorganisms with a great importance in the elaboration on many foods and beverages. In the last years, researches have focused their attention to determine the favourable effects that these microorganisms could provide to table olive processing. In this context, the present study assesses, at laboratory scale, the potential technological (resistance to salt, lipase, esterase and β-glucosidase activities) and probiotic (phytase activity, survival to gastric and pancreatic digestions) features of 12 yeast strains originally isolated from Greek natural black table olive fermentations. The multivariate classification analysis carried out with all information obtained (a total of 336 quantitative input data), revealed that the most promising strains (clearly discriminated from the rest of isolates) were Pichia guilliermondii Y16 (which showed overall the highest resistance to salt and simulated digestions) and Wickerhamomyces anomalus Y18 (with the overall highest technological enzymatic activities), while the rest of strains were grouped together in two clearly differentiated clusters. Thus, this work opens the possibility for the evaluation of these two selected yeasts as multifunctional starters, alone or in combination with lactic acid bacteria, in real table olive fermentations.

  11. RESEARCH ON GEAR SHIFTING PROCESS IN COMMAND MODE OF VEHICLE POWERTRAIN CONTROL

    Directory of Open Access Journals (Sweden)

    V. A. Kusyak

    2014-01-01

    Full Text Available The paper presents a schematic diagram of the powertrain automated control system based on dry friction clutch and manual gearbox. Mechatronic system has a modular configuration and allows to make the vehicle starting-up, low speed maneuvering and command or automatic gearshifting. Diesel engine, clutch and 10-step gearbox control is carried out at all movement modes by electronic modules when affected on mode selector, accelerator pedal and, if necessary, on brake pedal. Data exchange between electronic units is carried by SAE-J1939 protocol with a transmission rate of 250 kbit/s. Change in diesel fuel supply, clutch engagement and gearshifting take place automatically as a result of pneumatic power actuator operation by a signal from the controller to the corresponding solenoid valve or a combination thereof.Presents the results of semi-natural experiment on research of gear shifting process in the command mode of powertrain control. Transient gearshift oscillograms with various control algorithm structure have been given in the paper. The paper contains a ^iT^rative analysis of the oscillograma and a conclusion on expediency of gear shifting automation. A graphic representation of the semi-natural experiment results has been performed with the help of CoDeSys V2.3-visualization facilities.

  12. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    Science.gov (United States)

    Chandler, Faith T. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Relvini, Kristine M. (Inventor); Bessette, Colette I. (Inventor); Shedd, Nathaneal P. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  13. Analysis and Study of Parallel Processing Mode in VLDB Decision Support System

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nowadays, many kinds of computer network data management systems have been built widely in China. People have realized widely that management information system (MIS) has brought a revolution to the management mechanism. Moreover, the managers of company need wide-range and comprehensive decision information more and more urgently which is the character of information explosion era. The needs of users become harsher and harsher in the design of MIS, and these needs have brought new problems to the general designers of MIS. Furthermore, the current method of traditional database development can't solve so big and complex problems of wide-range and comprehensive information processing. This paper proposes the adoption of parallel processing mode, the built of new decision support system (DSS) is to discuss and analyze the problems of information collection, processing and the acquirement of full-merit information with cross-domain and cross-VLDB (very-large database).

  14. INTEGRATION OF POKA YOKE INTO PROCESS FAILURE MODE AND EFFECT ANALYSIS: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    A. P. Puvanasvaran

    2014-01-01

    Full Text Available The Failure Mode and Effect Analysis (FMEA is a one of the requirements which was required by the Automotive Industries Action Group (AIAG to all the automotive suppliers and manufacturers worldwide through the TS16949 Quality System. There were a lot of dicrepencies detected on implementing the FMEA which directly related to the user experinces and knowledge. The descrepencies cause the FMEA not meeting the objectives of it. Conceptually, Poka Yoke is able to fit into the Process FMEA. Failure Mode and Effect Analysis (FMEA helps predict and prevent problems through proper control or detection methods. Mistake proofing emphasizes detection and correction of mistakes before they become defects. Poka Yoke helps people and processes work correctly the first time. It refers to techniques that make mistakes impossible to commit. These techniques eliminate defects from products and processes as well as substantially improve their quality and reliability. Poka Yoke can be considered an extension of FMEA. The use of simple Poka Yoke ideas and methods in product and process design eliminates both human and mechanical errors. Ultimately, both FMEA and Poka Yoke methodologies result in zero defects and benefit either the end or the next-in-line customer. The first concept of Poka Yoke emphasizes elimination of the cause or occurrence of the error that creates the defects by concentrating on the cause of the error in the process. The defect is prevented by stopping the line or the machine when the root cause of the defect is triggered or detected. The second concept of Poka Yoke focuses on the effectiveness of the detection system. The foolproof detection system eliminates the defect or detects the error that causes defects. The implementation of the Poka Yoke concept in a foolproof detection system eliminates the possibility that error or defects will slip through the process and reach the customer.

  15. Promoting-mode free formalism for excited state radiationless decay process with Duschinsky rotation effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the present work, through the path integral of Gaussian type correlation function, a new formalism based on Fermi-Golden Rule for calculating the rate constant of nonradiative decay process with Duschinsky rotation effect in polyatomic molecules is developed. The advantage of the present path-integral formalism is promoting-mode free. In order to get the rate constant, a "transition rate matrix" needs to be calculated. The rate constant calculated previously is only an approximation of diagonal elements of our "transition rate matrix " . The total rate should be the summation over all the matrix elements.

  16. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    Science.gov (United States)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  17. [Research on mineralization process of organic phosphorus in black soil in Northeast China].

    Science.gov (United States)

    Zhao, Shaohua; Yu, Wantai; Zhang, Lu; Shen, Shanmin

    2005-10-01

    Buried bag and incubation experiments were conducted to study mineralization process of organic phosphorus in black soil in Northeast China under different time sequences. The results showed that both the content and mineralized velocity of organic P decreased gradually as time went on, the cumulative mineralized rate increased step by step, whether it was used by the method of incubation or buried bag. Under incubation, two treatments' mineralized velocity reached the maximum at first month (31.67, 38.75 mg x kg(-1) x month(-1), respectively), and their cumulative mineralized rate and mineralized velocity at six months were 7.94%, 13.26 mg x kg(-1) x month(-1) and 9.24%, 17.99 mg x kg(-1) x month(-1), respectively. Under buried bag, the mineralized velocity of five treatments all reached the maximum at first year (55.67, 55.65, 49.60, 19.71, 22.52 mg x kg(-1) month(-1), respectively), and the cumulative mineralized rate and mineralized velocity of maize root and wheat root treatments at three years both were approximately 50% and 35 mg x kg(-1) x month(-1), which were higher than those under soybean root andgrass root treatments. From two methods of studies on the mineralization process of organic P, it could be seen that the original content of organic P influenced its mineralized rate and mineralized velocity: the higher of the original content of organic P, the higher of its mineralized rate and mineralized velocity.

  18. Current-mode implementation of processing modules in ART-based neural networks

    Science.gov (United States)

    Lopez-Alcantud, Jose-Alejandro; Hauer, Hans; Diaz-Madrid, Jose-Angel; Ruiz-Merino, Ramon

    2003-04-01

    This paper describes implementation of neural network processing layers using basic current-mode operating modules. The research work has been focused on the implementation of neural networks based on the Adaptive Resonance Theory, developed by S. Grossberg and G.A. Carpenter. The ART-based neural network whose operating modules have been choosen for development is the one called MART, proposed by F. Delgado, because of its complex architecture, auto--adaptive self-learning process, able to discard unmeaningful cathegories. Our presentation starts introducing the behaviour of MART with an analysis of its structure. The development described by this research work is focused on the monochannel block included in the main signal processing part of the MART neural network. The description of the computing algorithm of the layers inside a monochannel block are also provided in order to show what operational current-mode modules are needed (multiplier, divider, square-rooter, adder, substractor, absolute value, maximum and minimum evaluator...). Descriptions at schematic and layout levels of all the processing layers are given. All of them have been designed using AMS 0.35 micron technology with a supply voltage of 3.3 volts. The modules are designed to deal with input currents in the range of 20 to 50 microamps, showing a lineal behaviour and an output error of less than 10%, which is good enough for neural signal processing systems. The maximum frecuency of operation is around 200 kHz. Simulation results are included to show that the operation performed by the hardware designed matches the behaviour described by the MART neural network. For testing purposes we show the design of a monochannel block hardware implementation restricted to five inputs and three cathegories.

  19. Black-hole masses, accretion rates and hot- and cold-mode accretion in radio galaxies at z~1

    CERN Document Server

    Fernandes, Cristina A C; Martínez-Sansigre, Alejo; Rawlings, Steve; Afonso, José; Hardcastle, Martin J; Lacy, Mark; Stevens, Jason A; Vardoulaki, Eleni

    2014-01-01

    Understanding the evolution of accretion activity is fundamental to our understanding of how galaxies form and evolve over the history of the Universe. We analyse a complete sample of 27 radio galaxies which includes both high-excitation (HEGs) and low excitation galaxies (LEGs), spanning a narrow redshift range of 0.9 < z < 1.1 and covering a factor of ~1000 in radio luminosity. Using data from the Spitzer Space Telescope combined with ground-based optical and near-infrared imaging, we show that the host galaxies have masses in the range of 10.7 < log (M /M_sun) < 12.0 with HEGs and LEGs exhibiting no difference in their mass distributions. We also find that HEGs accrete at significantly higher rates than LEGs, with the HEG/LEG division lying at an Eddington ratio of ~0.04, which is in excellent agreement with theoretical predictions of where the accretion rate becomes radiatively inefficient, thus supporting the idea of HEGs and LEGs being powered by different modes of accretion. Our study also ...

  20. [Aging Process of Puer Black Tea Studied by FTIR Spectroscopy Combined with Curve-Fitting Analysis].

    Science.gov (United States)

    Li, Dong-yu; Shi, You-ming; Yi, Shi Lai

    2015-07-01

    For better determination of the chemical components in the Puer black tea, Fourier transform infrared spectroscopy was used for obtaining vibrational spectra of Puer black tea at different aging time. Fourier transform infrared (FTIR) spectra indicated that the chemical components had change in Puer black tea at different aging time. The leaf of Puer black tea was a complex system, its Fourier transform infrared spectrum showed a total overlap of each absorption spectrum of various components. Each band represented an overall overlap of some characteristic absorption peaks of functional groups in the Puer black tea. In order to explore the change of characteristic absorption peaks of functional groups with aging time, the prediction positions and the number of second peaks in the range of 1900-900 cm(-1) were determined by Fourier self-deconvolution at first, and later the curve fitting analysis was performed in this overlap band. At different aging time of Puer black tea, the wave number of second peaks of amide II, tea polyphenol, pectin and polysaccharides at overlap band were assigned by curve fitting analysis. The second peak at 1520 cm(-1) was characteristic absorption band of amide II, the second peaks of tea polyphenol and pectin appeared at 1278 and 1103 cm(-1) respectively. Two second peaks at 1063 and 1037 cm(-1), corresponds mainly to glucomannan and arabinan. The relative area of these second peaks could be indicated the content of protein, tea polyphenol, pectin and polysaccharides in the Puer black tea. The results of curve fitting analysis showed that the relative area of amide II was increasing first and then decreasing, it indicated the change of protein in Puer black tea. At the same time, the content of tea polyphenol and pectin were decreased with the increase of aging time, but the glucomannan and arabinan were increased in reverse. It explained that the bitter taste was become weak and a sweet taste appeared in the tea with the increase of

  1. Performance of completely autotrophic nitrogen removal over nitrite process under different aeration modes and dissolved oxygen

    Institute of Scientific and Technical Information of China (English)

    Jinsong GUO; Guohong YANG; Fang FANG; Yu QIN

    2008-01-01

    In this study, three sequential batch biofilm reactors (SBBRs) were operated for 155 days to evaluate the performance of completely autotrophic nitrogen removal over nitrite (CANON) process under different aeration modes and dissolved oxygen (DO). Synthetic wastewater with 160-mg NH4+-N/L was fed into the reac-tors. In the continuously-aerated reactor, the efficiency of the ammonium nitrogen conversion and total nitrogen (TN) removal reached 80% and 70%, respectively, with DO between 0.8-1.0 mg/L. Whereas in the intermit-tently-aerated reactor, at the aeration/non-aeration ratio of 1.0, ammonium was always under the detection limit and 86% of TN was removed with DO between 2.0 2.5 mg/L during the aeration time. Results show that CANON could be achieved in both continuous and inter-mittent aeration pattern. However, to achieve the same nitrogen removal efficiency, the DO needed in the inter-mittently-aerated sequential batch biofilm reactor (SBBR) during the aeration period was higher than that in the continuously-aerated SBBR. In addition, the DO in the CANON system should be adjusted to the aeration mode, and low DO was not a prerequisite to CANON process.

  2. Current mode ADC design in a 0.5-μm CMOS process

    Institute of Scientific and Technical Information of China (English)

    Sun Yong; Lai Fengchang; Ye Yizheng

    2009-01-01

    This paper presents a pipelined current mode analog to digital converter (ADC) designed in a 0.5-μm CMOS process. Adopting the global and local bias scheme, the number of interconnect signal lines is reduced numerously, and the ADC exhibits the advantages of scalability and portability. Without using linear capacitance,this ADC can be implemented in a standard digital CMOS process; thus, it is suitable for applications in the system on one chip (SoC) design as an analogue IP. Simulations show that the proposed current mode ADC can operate in a wide supply range from 3 to 7 V and a wide quantization range from ±64 to ±256μA. Adopting the histogram testing method, the ADC was tested in a 3.3 V supply voltage/±64μA quantization range and a 5 V supply voltage/±256μA quantization range, respectively. The results reveal that this ADC achieves a spurious free dynamic range of 61.46dB, DNL/INL are -0.005 to +0.027 LSB/-0.1 to +0.2 LSB, respectively, under a 5 V supply voltage with a digital error correction technique.

  3. Extreme-Point Symmetric Mode Decomposition Method for Nonlinear and Non-Stationary Signal Processing

    CERN Document Server

    Wang, Jin-Liang

    2013-01-01

    To process nonlinear and non-stationary signals, an extreme-point symmetric mode decomposition (ESMD) method is developed. It can be seen as a new alternate of the well-known Hilbert-Huang transform (HHT) method which is widely used nowadays. There are two parts for it. The first part is the decomposition approach which yields a series of intrinsic mode functions (IMFs) together with an optimal adaptive global mean (AGM) curve, the second part is the direct interpolating (DI) approach which yields instantaneous amplitudes and frequencies for the IMFs together with a time-varying energy. Relative to the HHT method it has five characteristics as follows: (1) Different from constructing 2 outer envelopes, its sifting process is implemented by the aid of 1, 2 or 3 inner interpolating curves; (2) It does not decompose the signal to the last trend curve with at most one extreme point, it optimizes the residual component to be an optimal AGM curve which possesses a certain number of extreme points; (3) Its symmetry ...

  4. Empirical mode decomposition as a time-varying multirate signal processing system

    Science.gov (United States)

    Yang, Yanli

    2016-08-01

    Empirical mode decomposition (EMD) can adaptively split composite signals into narrow subbands termed intrinsic mode functions (IMFs). Although an analytical expression of IMFs extracted by EMD from signals is introduced in Yang et al. (2013) [1], it is only used for the case of extrema spaced uniformly. In this paper, the EMD algorithm is analyzed from digital signal processing perspective for the case of extrema spaced nonuniformly. Firstly, the extrema extraction is represented by a time-varying extrema decimator. The nonuniform extrema extraction is analyzed through modeling the time-varying extrema decimation at a fixed time point as a time-invariant decimation. Secondly, by using the impulse/summation approach, spline interpolation for knots spaced nonuniformly is shown as two basic operations, time-varying interpolation and filtering by a time-varying spline filter. Thirdly, envelopes of signals are written as the output of the time-varying spline filter. An expression of envelopes of signals in both time and frequency domain is presented. The EMD algorithm is then described as a time-varying multirate signal processing system. Finally, an equation to model IMFs is derived by using a matrix formulation in time domain for the general case of extrema spaced nonuniformly.

  5. The Training of Qualified Specialists in the Countries of the Black Sea Region in the Context of Globalization Education Processes

    Directory of Open Access Journals (Sweden)

    Sheludko Inna

    2017-06-01

    Full Text Available The article presents the trends in higher education development in the countries of the Black Sea region, namely, historical, methodological, methodical and technological, which determine the objective and subjective connections and relationships that are common to the system of higher pedagogical education of the countries under study and define persistent pursuit of modernization and transformation of the nature, content, structure, functions, ways of management approaches to the education process, forms, methods, tools and techniques of teaching students. The trends in the public-authoritarian model of higher education have been revealed. It has been found out that the leading trend in Ukraine and other countries of the Black Sea is the governance and financing of future teachers with appropriate management functions and control that significantly affects the organizational structure of higher education. The features of a modern system of higher pedagogical education in the Black Sea region are the system of higher education institutions; main directions of modern reforms in higher education; functioning of leading universities that prepare teachers, their types, characteristics of structural units, students. According to the areas in development of higher pedagogical education in the Black Sea region, we have divided the trends into four groups: historical, methodological, methodical, technological, that are top priority for education systems.

  6. The Influence of Neutrinos on r-Process Nucleosynthesis in the Ejecta of Black Hole-Neutron Star Mergers

    CERN Document Server

    Roberts, Luke F; Duez, Matthew D; Faber, Joshua A; Foucart, Francois; Lombardi, James C; Ning, Sandra; Ott, Christian D; Ponce, Marcelo

    2016-01-01

    During the merger of a black hole and a neutron star, baryonic mass can become unbound from the system. Because the ejected material is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. In this work, we map general relativistic models of black hole-neutron star (BHNS) mergers into a Newtonian smoothed particle hydrodynamics (SPH) code and follow the evolution of the thermodynamics and morphology of the ejecta until the outflows become homologous. We investigate how the subsequent evolution depends on our mapping procedure and find that the results are robust. Using thermodynamic histories from the SPH particles, we then calculate the expected nucleosynthesis in these outflows while varying the level of neutrino irradiation coming from the postmerger accretion disk. We find that the ejected material robustly produces r-process nucleosynthesis even for unrealistically high neutrino luminosities, due to the rapid velocities of the outflow. Nonetheless, we...

  7. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models

    Science.gov (United States)

    Mahmood, Rashed; Salzen, Knut; Flanner, Mark; Sand, Maria; Langner, Joakim; Wang, Hailong; Huang, Lin

    2016-06-01

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region. Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with Canadian Atmospheric Global Climate Model (CanAM) (Norwegian Earth System Model, NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by Swedish Meteorological and Hydrological Institute Multiscale Atmospheric Transport and Chemistry model, Community Earth System Model, and NorESM. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that convective scavenging outside the Arctic reduces the mean altitude of BC residing in the Arctic, making it more susceptible to scavenging by stratiform (layer) clouds in the Arctic. Consequently, scavenging of BC in convective clouds outside the Arctic acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform clouds, whereas lower tropospheric concentrations are highly sensitive.

  8. Portraying the unique contribution of the default mode network to internally driven mnemonic processes.

    Science.gov (United States)

    Shapira-Lichter, Irit; Oren, Noga; Jacob, Yael; Gruberger, Michal; Hendler, Talma

    2013-03-26

    Numerous neuroimaging studies have implicated default mode network (DMN) involvement in both internally driven processes and memory. Nevertheless, it is unclear whether memory operations reflect a particular case of internally driven processing or alternatively involve the DMN in a distinct manner, possibly depending on memory type. This question is critical for refining neurocognitive memory theorem in the context of other endogenic processes and elucidating the functional significance of this key network. We used functional MRI to examine DMN activity and connectivity patterns while participants overtly generated words according to nonmnemonic (phonemic) or mnemonic (semantic or episodic) cues. Overall, mnemonic word fluency was found to elicit greater DMN activity and stronger within-network functional connectivity compared with nonmnemonic fluency. Furthermore, two levels of functional organization of memory retrieval were shown. First, across both mnemonic tasks, activity was greater mainly in the posterior cingulate cortex, implying selective contribution to generic aspects of memory beyond its general involvement in endogenous processes. Second, parts of the DMN showed distinct selectivity for each of the mnemonic conditions; greater recruitment of the anterior prefrontal cortex, retroesplenial cortex, and hippocampi and elevated connectivity between anterior and posterior medial DMN nodes characterized the semantic condition, whereas increased recruitment of posterior DMN components and elevated connectivity between them characterized the episodic condition. This finding emphasizes the involvement of DMN elements in discrete aspects of memory retrieval. Altogether, our results show a specific contribution of the DMN to memory processes, corresponding to the specific type of memory retrieval.

  9. Blue-Black or White-Gold? Early Stage Processing and the Color of 'The Dress'

    Science.gov (United States)

    Rabin, Jeff

    2016-01-01

    Purpose In Feb 2015 an image of a dress posted on Tumblr triggered an internet phenomenon: Is the Dress blue and black (BB) or white and gold (WG)? Many claim BB and others insist WG while the true colors are BB. The prevailing theory is that assumptions about the illuminant govern perception of the Dress with WG due to bluish lighting and BB due to yellowish. Our purpose was to determine if early stage optical, retinal and/or neural factors also impact perception of the Dress. Methods Thirty-nine subjects were categorized as BB or WG based on their initial perception of the Dress and their perception reported when viewing the Dress on iPhone 5, iPad, and 22” LCD displays. Macular pigment optical density (MPOD) measured with the QuantifEye™ MPS II and visual brainwaves (VEPs) in response to brief presentations of a transparency of the Dress illuminated by a flashing light were measured on each subject and compared between BB and WG groups. Additionally, CIE chromaticity (color) and luminance (brightness) were measured from multiple areas of the Dress image to determine cone stimulation and contrast. Results Mean MPOD was higher in the WG group (0.49) vs. the BB (0.41, p = 0.04) and median values were higher as well (WG = 0.46, BB = 0.36, p = 0.03). There was no difference in VEP amplitude between groups (p > 0.85) but mean VEP latency was longer in WG (130 msec.) vs. the BB group (107 msec., p = 0.0005). Colorimetry of the Dress showed significantly greater stimulation of blue cones (contrast = 73%) vs. red and green sensitive cones (contrast = 13%). Conclusions Our findings indicate that observers with denser MPOD may be predisposed to perceive the Dress as WG due to great absorption of blue light by the macular pigment. Moreover, the novel, substantial stimulation of blue cones by the Dress may contribute to ambiguity and dichotomous perception since the blue cones are so sparse in the retina. Finally, the delayed WG VEPs indicate distinct neural processing

  10. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    Directory of Open Access Journals (Sweden)

    J. Browse

    2012-08-01

    Full Text Available The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model (GLOMAP and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC and sulphate aerosol. We show that the transition from high wintertime concentrations to low concentrations in the summer is controlled by the transition from ice-phase cloud scavenging to the much more efficient warm cloud scavenging in the late spring troposphere. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in the late spring and summer boundary layer. Implementing these processes in GLOMAP greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R increases from: −0.33 to 0.71 at Alert (82.5° N, from −0.16 to 0.70 at Point Barrow (71.0° N and from −0.42 to 0.40 at Zeppelin Mountain (78° N. The BC model-observation correlation coefficient increases from −0.68 to 0.72 at Alert and from −0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal change in the frequency of ice clouds compared to higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  11. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    Directory of Open Access Journals (Sweden)

    J. Browse

    2012-01-01

    Full Text Available The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC and sulphate aerosol concentrations. We show that the transition from high wintertime to low summertime Arctic aerosol concentrations is caused by the change from inefficient scavenging in ice clouds to the much more efficient scavenging in warm liquid clouds. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in late spring and summer at a time when aerosol transport shifts mainly to low levels. Implementing these processes in a model greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R increases from: −0.33 to 0.71 at Alert (82.5° N, from −0.16 to 0.70 at Point Barrow (71.0° N and from −0.42 to 0.40 at Zeppelin Mountain (78° N while, the BC model-observation correlation coefficient increases from −0.68 to 0.72 at Alert and from −0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal changes in ice clouds compared to the higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  12. Technoeconomical evaluation of black liquor gasification processes; Teknisk ekonomisk utvaerdering av svartlutfoergasningsprocesser

    Energy Technology Data Exchange (ETDEWEB)

    Warnqvist, Bjoern; Delin, Lennart [AaF-IPK AB, Stockholm (Sweden); Theliander, Hans; Nohlgren, Ingrid [Luleaa Tekniska Universitet (Sweden). Chemical Engineering Design

    2000-06-01

    Black liquor gasification processes have been studied as an alternative to conventional chemical recovery with recovery boiler/steam turbine. Energy balances and investment costs have been calculated/estimated for four gasification processes in a model mill for 1000 ADt/d bleached kraft market pulp (according to the KAM-Mistra program, i.e. a mill with the best available technology). The original four alternatives studied were: (1) Pressurised entrained-flow high temperature gasifier (950 deg C) with smelt formation. Quencher and gas/liquor production (cf. Chemrec) with high temperature gas turbine, waste heat boiler and steam turbine; (2) Ditto with combined cycle with pressurised steam boiler and gas turbine (moderate gas turbine temperature); (3) Pressurised gasification in a fluidised bed (700 deg C) in a combined cycle with pressurised steam boiler and gas turbine; (4) Pressurised gasification in a fluidised bed with titanate for direct causticising (850-900 deg C) in a combined cycle with pressurised steam boiler and gas turbine. All systems have a bark boiler (falling bark) and steam central. All but the last system also have conventional causticising and lime kiln. All systems also have a condensing turbine to absorb the net surplus of steam that both the conventional recovery and the gasification systems produce. After the completion of the original study, a more detailed description of the Chemrec concept has been made available to us. An alternative that more closely resembles the Chemrec process has therefore been added. A more detailed description of the ABB system has not been available, but this system has also been recalculated for the same type of gas turbine that is used in the Chemrec case. We have also added the alternative that the biomass fuel is gasified and used in a combined cycle. We have furthermore added calculations with the new alternatives implemented in a hypothetical integrated mill with a need for external fuel. The development of

  13. Constraining the initial conditions and final outcomes of accretion processes around young stars and supermassive black holes

    Science.gov (United States)

    Stone, Jordan M.

    In this thesis I discuss probes of small spatial scales around young stars and protostars and around the supermassive black hole at the galactic center. I begin by describing adaptive optics-fed infrared spectroscopic studies of nascent and newborn binary systems. Binary star formation is a significant mode of star formation that could be responsible for the production of a majority of the galactic stellar population. Better characterization of the binary formation mechanism is important for better understanding many facets of astronomy, from proper estimates of the content of unresolved populations, to stellar evolution and feedback, to planet formation. My work revealed episodic accretion onto the more massive component of the pre-main sequence binary system UY Aur. I also showed changes in the accretion onto the less massive component, revealing contradictory indications of the change in accretion rate when considering disk-based and shock-based tracers. I suggested two scenarios to explain the inconsistency. First, increased accretion should alter the disk structure, puffing it up. This change could obscure the accretion shock onto the central star if the disk is highly inclined. Second, if accretion through the disk is impeded before it makes it all the way onto the central star, then increased disk tracers of accretion would not be accompanied by increased shock tracers. In this case mass must be piling up at some radius in the disk, possibly supplying the material for planet formation or a future burst of accretion. My next project focused on characterizing the atmospheres of very low-mass companions to nearby young stars. Whether these objects form in an extension of the binary-star formation mechanism to very low masses or they form via a different process is an open question. Different accretion histories should result in different atmospheric composition, which can be constrained with spectroscopy. I showed that 3--4mum spectra of a sample of these

  14. Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation.

    Science.gov (United States)

    Yu, Yang; Lo, Ing W; Liao, Ping H; Lo, Kwang V

    2010-11-01

    The microwave enhanced advanced oxidation process (MW/H(2)O(2)-AOP) was used to treat dairy manure for solubilization of nutrients and organic matters. This study investigated the effectiveness of the MW/H(2)O(2)-AOP under a continuous mode of operation, and compared the results to those of batch operations. The main factors affecting solubilization by the MW/H(2)O(2)-AOP were heating temperature and hydrogen peroxide dosage. Soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) increased with an increase of microwave (MW) heating temperature; very high concentrations were obtained at 90°C. Insignificant amounts of ammonia and reducing sugars were released in all runs. An acidic pH condition was required for phosphorus solubilisation from dairy manure. The best yield was obtained at 90°C with an acid dosage of 1.0 %; about 92 % of total phosphorus and 90 % of total chemical oxygen demand were in the soluble forms. The MW/H(2)O(2)-AOP operated in a continuous operation mode showed pronounced synergistic effects between hydrogen peroxide and microwave irradiation when compared to a batch system under similar operating conditions, resulting in much better yields.

  15. Intrinsic default mode network connectivity predicts spontaneous verbal descriptions of autobiographical memories during social processing

    Directory of Open Access Journals (Sweden)

    Xiao-Fei eYang

    2013-01-01

    Full Text Available Neural systems activated in a coordinated way during rest, known as the default mode network (DMN, also support autobiographical memory (AM retrieval and social processing/mentalizing. However, little is known about how individual variability in reliance on personal memories during social processing relates to individual differences in DMN functioning during rest (intrinsic functional connectivity. Here we examined 18 participants’ spontaneous descriptions of autobiographical memories during a two-hour, private, open-ended interview in which they reacted to a series of true stories about real people’s social situations and responded to the prompt, how does this person’s story make you feel? We classified these descriptions as either containing factual information (semantic AMs or more elaborate descriptions of emotionally meaningful events (episodic AMs. We also collected resting state fMRI scans from the participants and related individual differences in frequency of described AMs to participants’ intrinsic functional connectivity within regions of the DMN. We found that producing more descriptions of either memory type correlated with stronger intrinsic connectivity in the parahippocampal and middle temporal gyri. Additionally, episodic AM descriptions correlated with connectivity in the bilateral hippocampi and medial prefrontal cortex, and semantic memory descriptions correlated with connectivity in right inferior lateral parietal cortex. These findings suggest that in individuals who naturally invoke more memories during social processing, brain regions involved in memory retrieval and self/social processing are more strongly coupled to the DMN during rest.

  16. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  17. The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers

    Science.gov (United States)

    Roberts, Luke F.; Lippuner, Jonas; Duez, Matthew D.; Faber, Joshua A.; Foucart, Francois; Lombardi, James C., Jr.; Ning, Sandra; Ott, Christian D.; Ponce, Marcelo

    2017-02-01

    During the merger of a black hole and a neutron star, baryonic mass can become unbound from the system. Because the ejected material is extremely neutron-rich, the r-process rapidly synthesizes heavy nuclides as the material expands and cools. In this work, we map general relativistic models of black hole-neutron star mergers into a Newtonian smoothed particle hydrodynamics (SPH) code and follow the evolution of the thermodynamics and morphology of the ejecta until the outflows become homologous. We investigate how the subsequent evolution depends on our mapping procedure and find that the results are robust. Using thermodynamic histories from the SPH particles, we then calculate the expected nucleosynthesis in these outflows while varying the level of neutrino irradiation coming from the post-merger accretion disc. We find that the ejected material robustly produces r-process nucleosynthesis even for unrealistically high neutrino luminosities, due to the rapid velocities of the outflow. None the less, we find that neutrinos can have an impact on the detailed pattern of the r-process nucleosynthesis. Electron neutrinos are captured by neutrons to produce protons while neutron capture is occurring. The produced protons rapidly form low-mass seed nuclei for the r-process. These low-mass seeds are eventually incorporated into the first r-process peak at A ˜ 78. We consider the mechanism of this process in detail and discuss if it can impact galactic chemical evolution of the first peak r-process nuclei.

  18. Modes in the size distributions and neutralization extent of fog-processed ammonium salt aerosols observed at Canadian rural locations

    Directory of Open Access Journals (Sweden)

    X. H. Yao

    2012-02-01

    Full Text Available Among the 192 samples of size-segregated water-soluble inorganic ions collected using a Micro-Orifice Uniform Deposit Impactor (MOUDI at eight rural locations in Canada, ten samples were identified to have gone through fog processing. The supermicron particle modes of ammonium salt aerosols were found to be the fingerprint of fog processed aerosols. However, the patterns and the sizes of the supermicron modes varied with ambient temperature (T and particle acidity and also differed between inland and coastal locations. Under T > 0 °C condition, fog-processed ammonium salt aerosols were completely neutralized and had a dominant mode at 1–2 μm and a minor mode at 5–10 μm if particles were in neutral condition, and ammonium sulfate was incompletely neutralized and only had a 1–2 μm mode if particles were in acidic conditions. Under T < 0 °C at the coastal site, fog-processed aerosols exhibited a bi-modal size distribution with a dominant mode of incompletely-neutralized ammonium sulfate at about 3 μm and a minor mode of completely-neutralized ammonium sulfate at 8–9 μm. Under T < 0 °C condition at the inland sites, fog-processed ammonium salt aerosols were sometimes completely neutralized and sometimes incompletely neutralized, and the size of the supermicron mode was in the range from 1 to 5 μm. Overall, fog-processed ammonium salt aerosols under T < 0 °C condition were generally distributed at larger size (e.g., 2–5 μm than those under T > 0 °C condition (e.g., 1–2 μm.

  19. Development of an Ideal Observer that Incorporates Nuisance Parameters and Processes List-Mode Data

    CERN Document Server

    MacGahan, Christopher J; Hilton, Nathan R; Brubaker, Erik M; Johnson, William C

    2016-01-01

    Observer models were developed to process data in list-mode format in order to perform binary discrimination tasks for use in an arms-control-treaty context. Data used in this study was generated using GEANT4 Monte Carlo simulations for photons using custom models of plutonium inspection objects and a radiation imaging system. Observer model performance was evaluated and presented using the area under the receiver operating characteristic curve. The ideal observer was studied under both signal-known-exactly conditions and in the presence of unknowns such as object orientation and absolute count-rate variability; when these additional sources of randomness were present, their incorporation into the observer yielded superior performance.

  20. Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability

    Directory of Open Access Journals (Sweden)

    Zuhaida Mohd-Zaki

    2016-01-01

    Full Text Available Mixed culture anaerobic fermentation generates a wide range of products from simple sugars, and is potentially an effective process for producing renewable commodity chemicals. However it is difficult to predict product spectrum, and to control the process. One of the key control handles is pH, but the response is commonly dependent on culture history. In this work, we assess the impact of pH regulation mode on the product spectrum. Two regulation modes were applied: in the first, pH was adjusted from 4.5 to 8.5 in progressive steps of 0.5 and in the second, covered the same pH range, but the pH was reset to 5.5 before each change. Acetate, butyrate, and ethanol were produced throughout all pH ranges, but there was a shift from butyrate at pH < 6.5 to ethanol at pH > 6.5, as well as a strong and consistent shift from hydrogen to formate as pH increased. Microbial analysis indicated that progressive pH resulted in dominance by Klebsiella, while reset pH resulted in a bias towards Clostridium spp., particularly at low pH, with higher variance in community between different pH levels. Reset pH was more responsive to changes in pH, and analysis of Gibbs free energy indicated that the reset pH experiments operated closer to thermodynamic equilibrium, particularly with respect to the formate/hydrogen balance. This may indicate that periodically resetting pH conforms better to thermodynamic expectations.

  1. Optimization of Processing Technology of Black Rice Wine%黑米酒酿造工艺的优化

    Institute of Scientific and Technical Information of China (English)

    林良魁; 权美平

    2011-01-01

    The processing technology of black rice wine was optimized by using orthogonal experimental design to provide data support and theoretical basis for industrial prodution of black rice wine. The results show that the degree of factors affecting processing technology was fermentation temperature>fermentation time>yeast concentration. The optimum technological conditions were 28℃,48 h and 4% yeast. The black rice wine made under the optimum technological conditions has peculiar aroma, mellow taste and high quality.%为给黑米酒的工业化生产提供数据支持和理论依据,采用正交试验设计对黑米酒酿造工艺进行优化.结果表明,各因素对黑米酒酿造的影响程度为发酵温度>发酵时间>酒曲浓度.最佳工艺条件为发酵温度28℃、发酵时间48h、酒曲浓度4%.在此工艺条件下,酿造出的黑米酒有黑米特有的香气,且酒质醇和、品质良好.

  2. Same but different: Comparative modes of information processing are implicated in the construction of perceptions of autonomy support.

    Science.gov (United States)

    Lee, Rebecca Rachael; Chatzisarantis, Nikos L D

    2017-01-11

    An implicit assumption behind tenets of self-determination theory is that perceptions of autonomy support are a function of absolute modes of information processing. In this study, we examined whether comparative modes of information processing were implicated in the construction of perceptions of autonomy support. In an experimental study, we demonstrated that participants employed comparative modes of information processing in evaluating receipt of small, but not large, amounts of autonomy support. In addition, we found that social comparison processes influenced a number of outcomes that are empirically related to perceived autonomy support such as sense of autonomy, positive affect, perceived usefulness, and effort. Findings shed new light upon the processes underpinning construction of perceptions related to autonomy support and yield new insights into how to increase the predictive validity of models that use autonomy support as a determinant of motivation and psychological well-being.

  3. A Comparison of the Processes of Earning Achievement of Black and White Married Females.

    Science.gov (United States)

    Christenson, Bruce A.

    A socioeconomic life cycle model consisting of six temporally-ordered stages is used to compare the impact of family background, educational achievement, early occupational achievement, and current family and work role variables on the 1966 earning achievement of a nationally representative sample of black and white married women, ages 30 to 44. A…

  4. Evaluation of thermal processing variables for reducing acrylamide in canned black ripe olives

    Science.gov (United States)

    Acrylamide formed in plant foods at elevated cooking temperatures has been identified as a probable carcinogen. A wide variation and high acrylamide concentration in commercial canned black ripe olives has been reported. The objective of this study was to determine if different safe sterilization co...

  5. When black sheep make us think: information processing and devaluation of in- and outgroup norm deviants

    NARCIS (Netherlands)

    Reese, G.; Steffens, M.C.; Jonas, K.J.

    2013-01-01

    Since group membership is central for a person's identity, providing norms, values, and beliefs, people devalue ingroup deviants more than outgroup deviants. This so-called black-sheep effect (BSE) seems primarily driven by group-based motivational concerns. Given prior evidence that information abo

  6. Black Holes Categorization, along with the Space(s) they inhabit, to explain the Astro-Geophysical Processes

    Science.gov (United States)

    Cimorelli, S. A.; Samuels, C.

    2012-04-01

    We define and categorize black holes (BH) and the space they inhabit. We describe mechanisms for their formation and mechanisms of black hole collisions and explosions/bursts, inside of the universe. These are linked to the formation of galaxies, stars, planets and planetary processes. Insight is gained regarding the formation and evolution of galaxies and the matter contained therein. Space itself must be categorized as to its purpose and properties as it relates to the various categories of black holes and processes ongoing within the space in which the processes occur. What we herein refer to as category-1 (c-1) black hole, formed the universe, by generating catagory-2 (c-2) black holes, say about 10% of which formed galaxies and 90% remain as dark matter in the form of c-2 BHs that are still evolving. C-1 BHs can explode/burst by collision or on their own, and give off great numbers (e.g., trillions) of c-2 BHs inside the universe, in c-2 space, which can become galaxies and which is the start of the universe. C-2 BHs can explode/burst and form a galaxy, containing c-3 space, filled with c-3 BHs. C-3 BHs are somewhat more modified and expanded than c-2 BHs and are formed from exploded/burst c-2 BHs on their own due to instabilities or by colliding with another c-2 BH and exploding/bursting to form gas and dust clouds peppered with c-3 BHs. Additionally, remnants from the exploded c-2 BH may include a range of sizes from minute particles that would contribute to the formation of massive gas and dust clouds peppered with the c-3 BHs; to about 10 to 20 solar masses that form large stars; and others, much smaller (tiny) stars that eventually become planets and moons. Some, eventually explode/burst inside the galaxy to produce the gas and dust clouds that we see inside the galaxy. These gas and dust clouds are peppered with c-4 BHs that eventually are seen as new stars forming in the dust clouds (described below). We envision three mechanisms (a,b,&c) for stellar

  7. Multidisciplinary experiment on studying short-period variability of the sedimentary process in the northeastern part of the Black Sea

    Science.gov (United States)

    Klyuvitkin, A. A.; Ostrovskii, A. G.; Novigatskii, A. N.; Lisitzin, A. P.

    2016-07-01

    The principal aim of this work is to reveal the regularities of short-period synoptic variability of vertical flows and the composition of settling sedimentary material, to obtain information on the quantitative characteristics of the processes that influence sound-scattering layers in the water layer above the continental slope behind the shelf edge in the northeastern part of the Black Sea. The results were obtained due to improvement of the equipment and the procedures for performing sea experiments on studying physicogeological, biological, and hydrophysical processes in the upper illuminated layer of phytoplankton development.

  8. Numerical modelling of the CHEMREC black liquor gasification process. Conceptual design study of the burner in a pilot gasification reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marklund, Magnus

    2001-02-01

    The work presented in this report is done in order to develop a simplified CFD model for Chemrec's pressurised black liquor gasification process. This process is presently under development and will have a number of advantages compared to conventional processes for black liquor recovery. The main goal with this work has been to get qualitative information on influence of burner design for the gas flow in the gasification reactor. Gasification of black liquor is a very complex process. The liquor is composed of a number of different substances and the composition may vary considerably between liquors originating from different mills and even for black liquor from a single process. When a black liquor droplet is gasified it loses its organic material to produce combustible gases by three stages of conversion: Drying, pyrolysis and char gasification. In the end of the conversion only an inorganic smelt remains (ideally). The aim is to get this smelt to form a protective layer, against corrosion and heat, on the reactor walls. Due to the complexity of gasification of black liquor some simplifications had to be made in order to develop a CFD model for the preliminary design of the gasification reactor. Instead of modelling droplets in detail, generating gas by gasification, sources were placed in a prescribed volume where gasification (mainly drying and pyrolysis) of the black liquor droplets was assumed to occur. Source terms for the energy and momentum equations, consistent with the mass source distribution, were derived from the corresponding control volume equations by assuming a symmetric outflow of gas from the droplets and a uniform degree of conversion of reactive components in the droplets. A particle transport model was also used in order to study trajectories from droplets entering the reactor. The resulting model has been implemented in a commercial finite volume code (AEA-CFX) through customised Fortran subroutines. The advantages with this simple

  9. Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description

    Institute of Scientific and Technical Information of China (English)

    赵付洲; 宋冰; 侍洪波

    2016-01-01

    There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization (WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description (SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method’s validity, it is applied to a numerical example and a Tennessee Eastman (TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy (LNS-PCA) in multi-mode process monitoring.

  10. Perturbing supersymmetric black hole

    CERN Document Server

    Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki

    1996-01-01

    An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.

  11. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  12. The Deep Processing Technology of Black Fungus%黑木耳深加工技术方案

    Institute of Scientific and Technical Information of China (English)

    张猛

    2014-01-01

    Black fungus is one of the main products of edible fungus in china. The protein content of black fungus in the equivalent of meat, and contains 8 kinds of amino acids necessary for the human body, iron content reached 18.5mg/kg, more than 20 times higher iron containing the highest celery leaf vegetables, than animal foods containing iron highest liver high 7 times, for a variety of foods containing iron crown. The black fungus industry after 30 years of rapid development, produ ction has reached about 1700000 tons. Looking at the current market status of black fungus can be seen, the whole market is strong demand, prices rising trend. The program is based on domestic mature technology as the foundation, the northeast region of China high quality black fungus black fungus as raw materials, products through scientific processing is beneficial to human body health, product appearance is unique, the market prospect is very considerable.%黑木耳是我国人民食用的主要菌类产品之一。黑木耳中蛋白质的含量相当于肉类,并含有人体所必须的8种氨基酸,含铁量达到18.5mg/kg,比叶类蔬菜中含铁最高的芹菜还要高出20倍,比动物性食品中含铁最高的猪肝高7倍,为各种食品含铁之冠。我国黑木耳产业经过30多年的迅猛发展,产量已达到170多万吨。纵观目前黑木耳市场状况可以看出,整个市场处于需求旺盛、价位不断攀升的态势。本方案是以国内成熟技术为基础,采用我国东北地区优质黑木耳为原料,经科学加工制成有益于人体健康的黑木耳制品,产品外形独特,市场前景非常可观。

  13. Use of LC-HRMS in full scan-XIC mode for multi-analyte urine drug testing - a step towards a 'black-box' solution?

    Science.gov (United States)

    Stephanson, N N; Signell, P; Helander, A; Beck, O

    2017-08-01

    The influx of new psychoactive substances (NPS) has created a need for improved methods for drug testing in toxicology laboratories. The aim of this work was to design, validate and apply a multi-analyte liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for screening of 148 target analytes belonging to the NPS class, plant alkaloids and new psychoactive therapeutic drugs. The analytical method used a fivefold dilution of urine with nine deuterated internal standards and injection of 2 μl. The LC system involved a 2.0 μm 100 × 2.0 mm YMC-UltraHT Hydrosphere-C18 column and gradient elution with a flow rate of 0.5 ml/min and a total analysis time of 6.0 min. Solvent A consisted of 10 mmol/l ammonium formate and 0.005% formic acid, pH 4.8, and Solvent B was methanol with 10 mmol/l ammonium formate and 0.005% formic acid. The HRMS (Q Exactive, Thermo Scientific) used a heated electrospray interface and was operated in positive mode with 70 000 resolution. The scan range was 100-650 Da, and data for extracted ion chromatograms used ± 10 ppm tolerance. Product ion monitoring was applied for confirmation analysis and for some selected analytes also for screening. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (typically 0.1-1.0 μg/ml) and acceptable imprecision in quantification (CV drug testing of 17 936 unknown samples, of which 2715 (15%) contained 52 of the 148 analytes. It is concluded that the method design based on simple dilution of urine and using LC-HRMS in extracted ion chromatogram mode may offer an analytical system for urine drug testing that fulfils the requirement of a 'black box' solution and can replace immunochemical screening applied on autoanalyzers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode.

    Science.gov (United States)

    Qi, Hong; Sun, De-Zhi; Chi, Guo-Qing

    2007-01-01

    The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode. The effects of humidity, initial formaldehyde concentration, residence time and ozone adding amount on degradation of formaldehyde gas were investigated. The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action, e.g., it could considerably increase decomposing of formaldehyde. The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84-24 mg/m3 by O3/TiO2/UV process. The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m3. Furthermore, the kinetics of formaldehyde degradation reaction could be described by Langmuir-Hinshelwood model. The rate constant k of 46.72 mg/(m3 x min) and Langmuir adsorption coefficient K of 0.0268 m3/mg were obtained.

  15. The role of the default mode network in component processes underlying the wandering mind.

    Science.gov (United States)

    Poerio, Giulia L; Sormaz, Mladen; Wang, Hao-Ting; Margulies, Daniel; Jefferies, Elizabeth; Smallwood, Jonathan

    2017-03-21

    Experiences such as mind-wandering illustrate that cognition is not always tethered to events in the here-and-now. Although converging evidence emphasises the default mode network (DMN) in mind-wandering, its precise contribution remains unclear. The DMN comprises cortical regions that are maximally distant from primary sensory and motor cortex, a topological location that may support the stimulus-independence of mind-wandering. The DMN is functionally heterogeneous, comprising regions engaged by memory, social cognition, and planning; processes relevant to mind-wandering content. Our study examined the relationships between: (i) individual differences in resting-state DMN connectivity, (ii) performance on memory, social, and planning tasks and (iii) variability in spontaneous thought, to investigate whether the DMN is critical to mind-wandering because it supports stimulus-independent cognition, memory retrieval, or both. Individual variation in task performance modulated the functional organisation of the DMN: poor external engagement was linked to stronger coupling between medial and dorsal subsystems, while decoupling of the core from the cerebellum predicted reports of detailed memory retrieval. Both patterns predicted off-task future thoughts. Consistent with predictions from component process accounts of mind-wandering, our study suggests a two-fold involvement of the DMN: (i) it supports experiences that are unrelated to the environment through strong coupling between its sub-systems; (ii) it allows memory representations to form the basis of conscious experience. © The Author (2017). Published by Oxford University Press.

  16. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The degradation of formaldehyde gas was studied using UV/TiO2/O3 process under the condition of continuous flow mode.The effects of humidity,initial formaldehyde concentration,residence time and ozone adding amount on degradation of formaldehyde gas were investigated.The experimental results indicated that the combination of ozonation with photocatalytic oxidation on the degradation of formaldehyde showed a synergetic action,e.g.,it could considerably increase decomposing of formaldehyde.The degradation efficiency of formaldehyde was between 73.6% and 79.4% while the initial concentration in the range of 1.84-24 mg/m3 by O3/TiO2/UV process.The optimal humidity was about 50% in UV/TiO2/O3 processs and degradation of formaldehyde increases from 39.0% to 94.1% when the ozone content increased from 0 to 141 mg/m3.Furthermore.the kinetics of formaldehyde degradation coefficient K of 0.0268 m3/mg were obtained.

  17. Development of Signal Processing Circuit for Side-absorber of Dual-mode Compton Camera

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Hoon; Kim, Young Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Ju Hahn; Lee, Chun Sik [Dept. of Physics, Chung-Ang University, Seoul (Korea, Republic of)

    2012-03-15

    In the present study, a gamma-ray detector and associated signal processing circuit was developed for a side-absorber of a dual-mode Compton camera. The gamma-ray detector was made by optically coupling a CsI(Tl) scintillation crystal to a silicon photodiode. The developed signal processing circuit consists of two parts, i.e., the slow part for energy measurement and the fast part for timing measurement. In the fast part, there are three components: (1) fast shaper, (2) leading-edge discriminator, and (3) TTL-to-NIM logic converter. AC coupling configuration between the detector and front-end electronics (FEE) was used. Because the noise properties of FEE can significantly affect the overall performance of the detection system, some design criteria were presented. The performance of the developed system was evaluated in terms of energy and timing resolutions. The evaluated energy resolution was 12.0% and 15.6% FWHM for 662 and 511 keV peaks, respectively. The evaluated timing resolution was 59.0 ns. In the conclusion, the methods to improve the performance were discussed because the developed gamma-ray detection system showed the performance that could be applicable but not satisfactory in Compton camera application.

  18. High multiplicity processes at NLO with BlackHat and Sherpa

    CERN Document Server

    Bern, Zvi; Dixon, Lance J; Hoeche, Stefan; Cordero, Fernando Febres; Ita, Harald; Kosower, David; Maître, Daniel

    2012-01-01

    In this contribution we review recent progress with fixed-order QCD predictions for the production of a vector boson in association with jets at hadron colliders, using the programs BlackHat and SHERPA. We review general features of next-to-leading-order (NLO) predictions for the production of a massive vector boson in association with four jets. We also discuss how precise descriptions of vector-boson production can be applied to the determination of backgrounds to new physics signals. Here we focus on data-driven backgrounds to a missing-energy-plus-jets search performed by CMS. Finally, we review recent progress in developing theoretical tools for high-multiplicity loop-computation within the BlackHat-library. In particular, we discuss methods for handling the color degrees of freedom in multi-jet predictions at NLO.

  19. Gravitational Wave Recoil and Kick Processes in the Merger of Two Colliding Black Holes: The Non Head-on Case

    CERN Document Server

    Aranha, R F; Tonini, E V

    2012-01-01

    We examine numerically the process of gravitational wave recoil in the merger of two black holes in non head-on collision, in the realm of Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed, and the evolution covers the post-merger phase up to the final configuration of the remnant black hole. The net momentum flux carried out by gravitational waves and the associated impulses are evaluated. Our analysis is based on the Bondi-Sachs conservation laws for the energy momentum of the system. The net kick velocity $V_{k}$ imparted to the merged system by the total gravitational wave impulse is also evaluated. Typically for a non head-on collision the net momentum flux carried out by gravitational waves is nonzero for equal-mass colliding black holes. The distribution of $V_{k}$ as a function of the symmetric mass ratio $\\eta$ is well fitted by a modified Fitchett $\\eta$-scaling law, the additional parameter modifying the law being a measure of the nonzero gravitational wave mo...

  20. Maritime delimitation in the Black Sea: Romania – Ukraine Hague process – Romanian arguments

    Directory of Open Access Journals (Sweden)

    Dorina Bucur

    2014-06-01

    Full Text Available This paper aims to present the Romanian arguments during Hague dispute between Romania and Ukraine, regarding the delimitation of the maritime territory from the Black Sea. Romania and U.R.S.S. / Russia and, at the end, Romania and Ukraine had many rounds of negotiation in order to delimitate this territory, without any result. Hague International Court of Justice was the institution that resolved the bilateral dispute by offering an equitable solution.

  1. Oligosaccharins of black gram (Vigna mungo L.) as affected by processing methods.

    Science.gov (United States)

    Girigowda, K; Prashanth, S J; Mulimani, V H

    2005-12-01

    The oligosaccharide content was determined in 12 different cultivars of black gram. The effect of various treatments such as soaking, cooking, and enzyme treatment on the raffinose family oligosaccharides of dry seeds and flour was studied. Ajugose, a higher oligosaccharide (DP 6) found in trace quantities in seeds, was shown in black gram by HPLC. The percent reduction of raffinose, stachyose, verbascose, and ajugose after soaking for 16 hr was 41.66%, 47.61%, 28.48%, and 26.82%, respectively in Local-I variety and 43.75%, 20.58%, 23.60%, and 15.88%, respectively in Local-II variety. Cooking for 60 min resulted in decrease of 100% for raffinose, 76.19% for stachyose, 36.39% for verbascose, and 60.97% for ajugose in Local-I variety and 100% for raffinose, 55.88% for stachyose, 48.52% for verbascose, and 56.07% for ajugose in Local-II variety. Thin layer chromatographic analysis of 3 hr enzyme-treated samples revealed almost complete hydrolysis of raffinose family of oligosaccharides. Among the different methods employed, enzyme treatment was found to be the most effective for removing alpha-galactosides in black gram.

  2. [Rapid and Dynamic Determination Models of Amino Acids and Catechins Concentrations during the Processing Procedures of Keemun Black Tea].

    Science.gov (United States)

    Ning, Jing-ming; Yan, Ling; Zhang, Zheng-zhu; Wei, Ling-dong; Li, Lu-qing; Fang, Jun-ting; Huang, Cai-wang

    2015-12-01

    Tea is one of the most popular beverages in the world. For the contribution to the taste and healthy functions of tea, amino acids and catechins are important components. Among different kinds of black teas in the world, Keemun black tea has the famous and specific fragrance, "Keemun aroma". During the processing procedure of Keemun black tea, the contents of amino acids and catechins changed greatly, and the differences of these concentrations during processing varied significantly. However, a rapid and dynamic determination method during the processing procedure was not existed up to now. In order to find out a rapid determination method for the contents of amino acids and catechins during the processing procedure of Keemun black tea, the materials of fresh leaves, withered leaves, twisted leaves, fermented leaves, and crude tea (after drying) were selected to acquire their corresponding near infrared spectroscopy and obtain their contents of amino acids and catechins by chemical analysis method. The original spectra data were preprocessed by the Standard Normal Variate Transformation (SNVT) method. And the model of Near Infrared (NIR) spectroscopy with the contents of amino acids and catechins combined with Synergy Interval Partial Least squares (Si-PLS) was established in this study. The correlation coefficients and the cross validation root mean square error are treated as the efficient indexes for evaluating models. The results showed that the optimal prediction model of amino acids by Si-PLS contained 20 spectral intervals combined with 4 subintervals and 9 principal component factors. The correlation coefficient and the root mean square error of the calibration set were 0. 955 8 and 1. 768, respectively; the correlation coefficient and the root mean square error of the prediction set were 0. 949 5 and 2. 16, respectively. And the optimal prediction model of catechins by Si-PLS contained 20 spectral intervals combined with 3 subintervals and 10 principal

  3. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Jens, E-mail: J.Hirsch@emw.hs-anhalt.de [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany); Gaudig, Maria; Bernhard, Norbert [Anhalt University of Applied Sciences, Faculty EMW, Bernburger Str. 55, DE-06366 Köthen (Germany); Lausch, Dominik [Fraunhofer Center for Silicon Photovoltaics CSP, Otto-Eißfeldt-Str. 12, DE-06120 Halle (Saale) (Germany)

    2016-06-30

    Highlights: • Fabrication of black silicon through inductively coupled plasma (ICP) processing. • Suppressed formation a self-bias and therefore a reduced ion bombardment of the silicon sample. • Reduction of the average hemispherical reflection between 300 and 1120 nm up to 8% within 5 min ICP process time. • Reflection is almost independent of the angle of incidence up to 60°. • 2.5 ms effective lifetime at 10{sup 15} cm{sup −3} MCD after ALD Al{sub 2}O{sub 3} surface passivation. - Abstract: The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF{sub 6} and O{sub 2} are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 10{sup 15} cm{sup −3} minority carrier density (MCD) after an atomic layer deposition (ALD) with Al{sub 2}O{sub 3}. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique

  4. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea

    DEFF Research Database (Denmark)

    Neretin, LN; Bottcher, ME; Jørgensen, BB

    2004-01-01

    Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above...... and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur...... and polysulfides, formed from H,S by a reductive dissolution of Fe(Ill)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a "direct" pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate...

  5. Design of high-brightness TEM00-mode solar-pumped laser for renewable material processing

    Science.gov (United States)

    Liang, D.; Almeida, J.

    2014-08-01

    The conversion of sunlight into laser light by direct solar pumping is of ever-increasing importance because broadband, temporally constant, sunlight is converted into laser light, which can be a source of narrowband, collimated, rapidly pulsed, radiation with the possibility of obtaining extremely high brightness and intensity. Nonlinear processes, such as harmonic generation, might be used to obtain broad wavelength coverage, including the ultraviolet wavelengths, where the solar flux is very weak. The direct excitation of large lasers by sunlight offers the prospect of a drastic reduction in the cost of coherent optical radiation for high average power materials processing. This renewable laser has a large potential for many applications such as high-temperature materials processing, renewable magnesium-hydrogen energy cycle and so on. We propose here a scalable TEM00 mode solar laser pumping scheme, which is composed of four firststage 1.13 m diameter Fresnel lenses with its respective folding mirrors mounted on a two-axis automatic solar tracker. Concentrated solar power at the four focal spots of these Fresnel lenses are focused individually along a common 3.5 mm diameter, 70 mm length Nd:YAG rod via four pairs of second-stage fused-silica spherical lenses and third-stage 2D-CPCs (Compound Parabolic Concentrator), sitting just above the laser rod which is also double-pass pumped by four V-shaped pumping cavities. Distilled water cools both the rod and the concentrators. 15.4 W TEM00 solar laser power is numerically calculated, corresponding to 6.7 times enhancement in laser beam brightness.

  6. Activity pattern of the orphaned Asiatic Black Bear Ursus thibetanus (Mammalia: Carnivora: Ursidae cubs during rehabilitation processes.

    Directory of Open Access Journals (Sweden)

    S. Dasgupta

    2014-09-01

    Full Text Available Five Asiatic Black Bear Ursus thibetanus cubs aged between 6.5-15 months were studied for five months using instantaneous scan sampling (n=3049 scans while they were undergoing acclimatization in the rehabilitation areas in Pakke Tiger Reserve, Arunachal Pradesh, India. During the course of the study, feeding, moving, climbing, resting and playing activities were recorded in three consecutive time periods, representing three phases of acclimatization. The frequency of climbing and moving increased considerably towards the third phase, while feeding decreased. These changes can be attributed to a learning process during acclimatization. Time spent on moving and playing differed significantly among the bears, but not climbing or feeding.

  7. The (Quasi)Normal Natural Mode description of the scattering process by dispersive photonic crystals

    NARCIS (Netherlands)

    Hoenders, Bernhard J.; Bertolotti, Mario; DeLaRue, RM; Viktorovitch, P; Lopez, C; Midrio, M

    2006-01-01

    A scattering theory for finite photonic crystals in terms of the natural modes of the scatterer is developed. This theory generalizes the classical Hilbert-Schmidt type of bilinear expansions of the propagator to a bilinear expansion into natural modes. It is shown that the Sturm-Liouville type of

  8. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  9. Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    CERN Document Server

    Llopart Cudie, Xavier; Campbell, M

    2007-01-01

    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each...

  10. Refractive beam shapers for material processing with high power single mode and multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2013-02-01

    The high power multimode fiber-coupled laser sources, like solid state lasers or laser diodes as well as single mode and multimode fiber lasers, are now widely used in various industrial laser material processing technologies like metal or plastics welding, cladding, hardening, brazing, annealing. Performance of these technologies can be essentially improved by varying the irradiance profile of a laser beam with using beam shaping optics, for example, the field mapping refractive beam shapers like piShaper. Operational principle of these devices presumes transformation of laser beam irradiance distribution from Gaussian to flattop, super-Gauss, or inverse-Gauss profile with high flatness of output wave front, conserving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field. Important feature of piShaper is in capability to operate with TEM00 and multimode lasers, the beam shapers can be implemented not only as telescopic optics but also as collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation. This paper will describe some features of beam shaping of high-power laser sources, including multimode fiber coupled lasers, and ways of adaptation of beam shaping optical systems design to meet requirements of modern laser technologies. Examples of real implementations will be presented as well.

  11. Optical signal processing and tracking of whispering gallery modes in real-time for sensing applications

    Science.gov (United States)

    Ali, Amir R.; Afifi, Amr N.; Taha, Hazem

    2017-05-01

    A novel approach for tracking of whispering gallery modes (WGM) in real-time for dielectric cavities used in sensing application is presented in this paper. Real-time tracking for the shifts of the WGM can be used to measure the physical quantity of interest precisely, under high repetition rates. The tracking algorithm is based on cross-correlation signal processing technique which has been proved to be accurate in WGM shifts detection. In order to achieve portability, the aforementioned real-time algorithm is implemented using a single-board re-configurable input-output hardware. The hardware platform used combines a real-time processor and a field programmable gate array (FPGA), it also allows for data exchange between them. The tracking algorithm's accuracy and real-time behavior is verified by preforming simulations based on experiments conducted on the dielectric cavity, where the cavity is used as a force sensor measuring mechanical compression. The light from a laser diode is tuned with rates up to 10 kHz and then tangentially coupled into the cavity to excite the WGM. Results show that shifts of the WGM are tracked by the algorithm providing real-time force readings.

  12. Interplay of nonclassicality and entanglement of two-mode Gaussian fields generated in optical parametric processes

    Science.gov (United States)

    Arkhipov, Ievgen I.; Peřina, Jan; Peřina, Jan; Miranowicz, Adam

    2016-07-01

    The behavior of general nonclassical two-mode Gaussian states at a beam splitter is investigated. Single-mode nonclassicality as well as two-mode entanglement of both input and output states are analyzed suggesting their suitable quantifiers. These quantifiers are derived from local and global invariants of linear unitary two-mode transformations such that the sum of input (or output) local nonclassicality measures and entanglement measure gives a global invariant. This invariant quantifies the global nonclassicality resource. Mutual transformations of local nonclassicalities and entanglement induced by the beam splitter are analyzed considering incident noisy twin beams, single-mode noisy squeezed vacuum states, and states encompassing both squeezed states and twin beams. A rich tapestry of interesting nonclassical output states is predicted.

  13. Performance analysis of low-complexity adaptive frequency-domain equalization and MIMO signal processing for compensation of differential mode group delay in mode-division multiplexing communication systems using few-mode fibers

    Science.gov (United States)

    Weng, Yi; He, Xuan; Pan, Zhongqi

    2016-02-01

    Mode-division multiplexing (MDM) transmission systems utilizing few-mode fibers (FMF) have been intensively explored to sustain continuous traffic growth. The key challenges of MDM systems are inter-modal crosstalk due to random mode coupling (RMC), and largely-accumulated differential mode group delay (DMGD), whilst hinders mode-demultiplexer implementation. The adaptive multi-input multi-output (MIMO) frequency-domain equalization (FDE) can dynamically compensate DMGD using digital signal processing (DSP) algorithms. The frequency-domain least-mean squares (FD-LMS) algorithm has been universally adopted for high-speed MDM communications, mainly for its relatively low computational complexity. However, longer training sequence is appended for FD-LMS to achieve faster convergence, which incurs prohibitively higher system overhead and reduces overall throughput. In this paper, we propose a fast-convergent single-stage adaptive frequency-domain recursive least-squares (FD-RLS) algorithm with reduced complexity for DMGD compensation at MDM coherent receivers. The performance and complexity comparison of FD-RLS, with signal-PSD-dependent FD-LMS method and conventional FD-LMS approach, are performed in a 3000 km six-mode transmission system with 65 ps/km DMGD. We explore the convergence speed of three adaptive algorithms, including the normalized mean-square-error (NMSE) per fast Fourier transform (FFT) block at 14-30 dB OSNR. The fast convergence of FD-RLS is exploited at the expense of slightly-increased necessary tap numbers for MIMO equalizers, and it can partially save the overhead of training sequence. Furthermore, we demonstrate adaptive FD-RLS can also be used for chromatic dispersion (CD) compensation without increasing the filter tap length, thus prominently reducing the DSP implementation complexity for MDM systems.

  14. Petit suisse from black soybean: bioactive compounds and antioxidant properties during development process.

    Science.gov (United States)

    de Moraes Filho, Marsilvio Lima; Hirozawa, Sabrina Satie; Prudencio, Sandra Helena; Ida, Elza Iouko; Garcia, Sandra

    2014-06-01

    This study aimed to evaluate the antioxidant properties, bioactive compounds and other physico-chemical parameters from black soybean and its derivatives over 30 days under refrigeration at 4 °C and develop a probiotic petit suisse produced from black soybean. The soymilk showed the highest levels of isoflavones (109 mg/100 g), total phenolics (600 mg/100 g) and total anthocyanins (388 mg/100 g) with the highest response in the tests with DPPH• and ABTS+• on a dry basis. There was a significant increase (p ≤ 0.05) in antioxidant activity during storage due to the hydrolysis of isoflavone glycosides to aglycones in soymilk sample, having a strong linear correlation between the concentration of isoflavone aglycones and the antioxidant activity for ABTS+• (R = 0.9437, 0.9624 and 0.9992) and DPPH• (R = 0.9865, 0.9978 and 0.9911), respectively, for soymilk, quark and petit suisse. The conversion of isoflavone was influenced directly by the characteristics of each sample, inhibiting or promoting the action of the enzyme. The petit suisse developed is an alternative for consumers, providing isoflavones and anthocyanins, possessing probiotic average counts (10⁸ CFU g⁻¹) during storage.

  15. Magnetic Reconnection Processes Involving Modes Propagating in the Ion Diamagnetic Velocity Direction

    Science.gov (United States)

    Buratti, P.; Coppi, B.; Pucella, G.; Zhou, T.

    2013-10-01

    Experiments in weakly collisional plasma regimes, (e.g. neutral beam heated plasmas in the H-regime), measuring the Doppler shift associated with the plasma local rotation, have shown that the toroidal mode phase velocity vph in the frame with Er = 0 is in the direction of the ion diamagnetic velocity. For ohmically heated plasmas, with higher collisionalities, vph in the laboratory frame is in the direction of the electron diamagnetic velocity, but plasma rotation is reversed as well, and vph, in the Er = 0 frame, is in the ion diamagnetic velocity direction. Theoretically, two classes of reconnecting modes should emerge: drift-tearing modes and ``inductive modes'' that depend on the effects of a finite plasma inductivity. The former modes, with vph in the direction of the electron diamagnetic velocity, require the pre-excitation of a different kind of mode in order to become unstable in weakly collisional regimes. The second kind of modes has a growth rate associated with the relevant finite ion viscosity. A comprehensive theory is presented. Sponsored in part by the US DOE.

  16. Research on Fermented Black Tea Beverage Processing Technology%发酵型红茶饮料加工工艺的研究

    Institute of Scientific and Technical Information of China (English)

    闫刚; 熊昌云

    2014-01-01

    以云南CTC红茶为主要原料,经乳酸菌、酵母菌共生发酵,研究发酵型红茶饮料的加工工艺。%Taking Yunnan CTC black tea as the main raw material, after symbiotic fermentation of lactic acid bacteria and yeast, this paper studied the fermented black tea beverage process.

  17. The Black Ring is Unstable

    CERN Document Server

    Santos, Jorge E

    2015-01-01

    We study non-axisymmetric linearised gravitational perturbations of the Emparan-Reall black ring using numerical methods. We find an unstable mode whose onset lies within the "fat" branch of the black ring and continues into the "thin" branch. Together with previous results using Penrose inequalities that fat black rings are unstable, this provides numerical evidence that the entire black ring family is unstable.

  18. Black Hole Thermodynamics

    Science.gov (United States)

    Israel, Werner

    This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.

  19. Design and simulation of non-resonant 1-DOF drive mode and anchored 2-DOF sense mode gyroscope for implementation using UV-LIGA process

    Science.gov (United States)

    Verma, Payal; Gopal, Ram; Butt, M. A.; Khonina, Svetlana N.; Skidanov, Roman V.

    2016-03-01

    This paper presents the design and simulation of a 3-DOF (degree-of-freedom) MEMS gyroscope structure with 1-DOF drive mode and anchored 2-DOF sense mode, based on UV-LIGA technology. The 3-DOF system has the drive resonance located in the flat zone between the two sense resonances. It is an inherently robust structure and offers a high sense frequency band width and high gain without much scaling down the mass on which the sensing comb fingers are attached and it is also immune to process imperfections and environmental conditions. The design is optimized to be compatible with the UV-LIGA process, having 9 μm thick nickel as structural layer. The electrostatic gap between the drive comb fingers is 4 μm and sense comb fingers gap are 4 μm/12 μm. The damping effect is considered by assuming the flexures and the proof mass suspended about 6 μm over the substrate. Accordingly, mask is designed in L-Edit software.

  20. Parafoveal Processing in Silent and Oral Reading: Reading Mode Influences the Relative Weighting of Phonological and Semantic Information in Chinese

    Science.gov (United States)

    Pan, Jinger; Laubrock, Jochen; Yan, Ming

    2016-01-01

    We examined how reading mode (i.e., silent vs. oral reading) influences parafoveal semantic and phonological processing during the reading of Chinese sentences, using the gaze-contingent boundary paradigm. In silent reading, we found in 2 experiments that reading times on target words were shortened with semantic previews in early and late…

  1. Maggot therapy´s modes of action : effect of maggot secretions on microbiological, haematological and immunological processes

    NARCIS (Netherlands)

    Plas, Maartje Jeriena Adriana van der

    2009-01-01

    The work described in this thesis focussed on the modes of action of maggot therapy in chronic wounds, especially related to the inflammatory phase of wound healing. For this purpose, the effect of maggot excretions and/or secretions on microbiological, haematological and immunological processes was

  2. INTRODUCTION SCADA-SYSTEM TRACE MODE IN THE MANUFACTURING PROCESSES BASED ON THE BULK STORAGE OF FLOUR

    Directory of Open Access Journals (Sweden)

    M. M. Blagoveshchenskaya

    2015-01-01

    Full Text Available The article presents a model of quality management processes, including milling enterprises using SCADA-systems. It is shown that the flour production in Russia is an important part of agriculture, because it ensures the production of staple food of people flour. Storing flour is an integral and important part of the overall process of making bread and bakery products. If stored properly the processes occurring at the same time in the flour, to a certain extent generally improve its quality. Ultimately, however, depending on the storage conditions for each meal reacts to different binning and consequently the quality of the finished product. In this regard, in the article the importance and necessity of the use of modern information technology in the production process. Presents the architecture of SCADA-system Trace Mode 5.0, internal and external software interfaces for data exchange, the editors for the implementation of individual controls, the functionality of the system to solve strategic problems in the milling, features Trace Mode 5.0 from other popular SCADA-systems. Developed software and hardware system based on SCADA-system Trace Mode 5 to process bulk storage of flour, to choose the best programming languages controllers and interfaces in the system. The basic levels of the control system for controlling the bulk storage of flour. It has been shown that quality management in the company provides collection, processing and analysis of information on the state of material flows and processes at all their stages.

  3. Numerical Simulation and Experimental Validation of the Vibration Modes for a Processing Reciprocating Compressor

    Directory of Open Access Journals (Sweden)

    Ying Zhao

    2017-01-01

    Full Text Available The low-order vibration modes of a reciprocating compressor were studied by means of numerical simulation and experimental validation. A shell element model, a beam element model, and two solid element models were established to investigate the effects of bolted joints and element types on low-order vibration modes of the compressor. Three typical cases were compared to check the effect of locations of moving parts on the vibration modes of the compressor. A forced modal test with the MRIT (Multiple References Impact Test technique was conducted to validate the simulation results. Among four numerical models, the solid element model with the bolt-pretension method showed the best accuracy compared with experimental data but the worst computational efficiency. The shell element model is recommended to predict the low-order vibration modes of the compressor with regard to effectiveness and usefulness. The sparsely distributed bolted joints with a small bonded region on the contact surface were key bolted joints that had greater impacts on the low-order vibration modes of the compressor than the densely distributed bolted joints. The positions of the moving parts had little effect on the low-order vibration modes of the compressor.

  4. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocene.According to spatial-temporal compensation,the present thermal state discrepancy of permafrost in different areas on the QTP may correspond with their degradation stages.On the QTP,permafrost in the high and middle mountains belongs to temperature rising stage,the permafrost thermal state is transiting from late rising temperature stage to zero geothermal gradient stage that is distributed in the middle-low-mountains.Permafrost that is in a zero gradient stage mainly appears in the high plateau and valley,whereas the transition from zero gradient stage to talic layers stage of permafrost is located in the vicinity of the lower limit of permafrost,and permafrost is disappearing from margin of perennially frozen ground.There are two modes of perennially frozen ground thawing,thawing from top to bottom and thawing from bottom to top respectively.During the temperature rising stage,when the heat flux in the perennially frozen soil layer is less than that in the unfrozen soil underlying frozen soil layer,the geothermal flux is partly used to thaw the base of permafrost,and permafrost thaws from bottom to top.With the decrease of thermal gradient in the perennially frozen ground,the heat that is used to thaw permafrost base increases,and geothermal heat will be entirely consumed to thaw the base of permafrost until the temperature gradient reaches zero thermal gradient state.On the other hand,the disappearance of permafrost may be delayed by "thermal offset" and

  5. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil.

    Science.gov (United States)

    Wang, Yifan; Zhang, Xinyuan; Zhang, Xing; Meng, Qingjuan; Gao, Fengjie; Zhang, Ying

    2017-08-01

    This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg(-1), separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R(2) > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses. Copyright © 2017. Published by Elsevier Ltd.

  6. Impact of major and minor mode on EEG frequency range activities of music processing as a function of expertise.

    Science.gov (United States)

    Jenni, Raoul; Oechslin, Mathias S; James, Clara E

    2017-03-18

    Processing western tonal music may yield distinct brain responses depending on the mode of the musical compositions. Although subjective feelings in response to major and minor mode are well described, the underlying brain mechanisms and their development with increasing expertise have not been thoroughly examined. Using high-density electroencephalography, the present study investigated neuronal activities in the frequency domain in response to polyphone musical compositions in major and minor mode in non-musicians, amateurs and experts. During active listening decrease of theta- and gamma-frequency range activities occurred with increasing expertise in right posterior regions, possibly reflecting enhanced processing efficiency. Moreover, minor and major compositions distinctively modulated synchronization of neuronal activities in high frequency ranges (beta and gamma) in frontal regions, with increased activity in response to minor compositions in musicians and in experts in particular. These results suggest that high-frequency electroencephalographic (EEG) activities carry information about musical mode, showing gradual increase of processing efficiency and sensitivity with musical expertise.

  7. Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

    Science.gov (United States)

    Alsaffar, Fadhel; Alodan, Sarah; Alrasheed, Abdul; Alhussain, Abdulrahman; Alrubaiq, Noura; Abbas, Ahmad; Amer, Moh. R.

    2017-01-01

    Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods. PMID:28317834

  8. Self-Tuning Sliding Mode Controller—Program Control for Process and Mechanical System—

    Science.gov (United States)

    Sakamoto, Noriaki; Komiyama, Daigo; Kubota, Masakazu

    Sliding mode control is a well-known technique to guarantee robustness in the presence of uncertainties of modeling, parameter variations, and external disturbances. The sliding mode control law is based on the knowledge of controlled system and the norm (or maximum value, etc.) of uncertainties. However, the modeling work is difficult, and the cost of it is expensive. So, this paper proposes the self-tuning sliding mode controller that calculates the control input (manipulated variable) only by using the desired value and the state variable without requiring the system parameter, the input parameter and the size of the disturbance. Various experiments, which are the temperature control of aluminum and wood-ceramics, the level control of the water tank, and the position control of the shape memory alloy in the program control (time-scheduled control), show the validity and utility of the proposed controller.

  9. Design, simulation and fabrication of a MEMS accelerometer by using sequential and pulsed-mode DRIE processes

    Science.gov (United States)

    Gholamzadeh, R.; Jafari, K.; Gharooni, M.

    2017-01-01

    A sensitive half-bridge MEMS accelerometer fabricated by sequential and pulsed-mode processes is presented in this paper. The proposed accelerometer is analyzed by using conventional equations and the finite element method. The micromachining technology used in this work relies on two processes: sequential and pulsed-mode. In the sequential deep reactive ion etching process, a mixture of hydrogen and oxygen with a trace value of SF6 is used instead of polymeric material in the passivation step. The pulsed-mode process employs periodic hydrogen pulses in continuous fluorine plasma. Because of the continuous nature of this process, plus the in situ passivation caused by the hydrogen pulses, scallop-free sidewalls are achieved and the etch rate is also relatively high. Furthermore, the functional characteristics of the fabricated accelerometer sensor are measured and reported. Measurement results, which are in good agreement with simulations, show that the functional characteristics of the fabricated sensor are as follows: resonance frequency of about 2 kHz, sensitivity of 76 mV g-1 and Brownian noise equivalent acceleration of 4.74~μ g {{\\sqrt{\\text{Hz}}}-1} .

  10. Calculation of Covariance Matrix for Multi-mode Gaussian States in Decoherence Processes

    Institute of Scientific and Technical Information of China (English)

    XIANG Shao-Hua; SHAO Bin; SONG Ke-Hui

    2009-01-01

    We investigate the dynamics of n single-mode continuous variable systems in a generic Gaussian state under the influence of the independent and correlated noises making use of the characteristic function method.In two models the bath is assumed to be a squeezed thermal one.We derive an explicit input-output expression between the initial and final covariance matrices.As an example,we study the evolution of entanglement of three-mode Gaussian state embedded in two noisy models.

  11. Unraveling the microbial processes of black band disease in corals through integrated genomics

    Science.gov (United States)

    Sato, Yui; Ling, Edmund Y. S.; Turaev, Dmitrij; Laffy, Patrick; Weynberg, Karen D.; Rattei, Thomas; Willis, Bette L.; Bourne, David G.

    2017-01-01

    Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.

  12. Optimisation of Reactive Black 5 dye removal by electrocoagulation process using response surface methodology.

    Science.gov (United States)

    Mook, W T; Aroua, M K; Szlachta, M; Lee, C S

    2017-02-01

    In this work, a regression model obtained from response surface methodology (RSM) was proposed for the electrocoagulation (EC) treatment of textile wastewater. The Reactive Black 5 dye (RB5) was used as a model dye to evaluate the performance of the model design. The effect of initial solution pH, applied current and treatment time on RB5 removal was investigated. The total number of experiments designed by RSM amounted to 27 runs, including three repeated experimental runs at the central point. The accuracy of the model was evaluated by the F-test, coefficient of determination (R(2)), adjusted R(2) and standard deviation. The optimum conditions for RB5 removal were as follows: initial pH of 6.63, current of 0.075 A, electrolyte dose of 0.11 g/L and EC time of 50.3 min. The predicted RB5 removal was 83.3% and the percentage error between experimental and predicted results was only 3-5%. The obtained data confirm that the proposed model can be used for accurate prediction of RB5 removal. The value of the zeta potential increased with treatment time, and the X-ray diffraction pattern shows that iron complexes were found in the sludge.

  13. Failure mode and effect analysis in asset maintenance : a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, Jan; Klingenberg, W.; Veldman, J.

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design. Lit

  14. Failure mode and effect analysis in asset maintenance: a multiple case study in the process industry

    NARCIS (Netherlands)

    Braaksma, A.J.J.; Klingenberg, W.; Veldman, J.

    2013-01-01

    Failure mode and effect analysis (FMEA) is an important method for designing and prioritising preventive maintenance activities and is often used as the basis for preventive maintenance planning. Although FMEA was studied extensively, most of the published work so far covers FMEA concept design. Lit

  15. 遂昌细嫩红茶加工技术%Processing Technology of Suichang Black Tea

    Institute of Scientific and Technical Information of China (English)

    翁伟忠

    2015-01-01

    Suichang tea industry is one of the pillar industries of agriculture in Lishui, which makes it one of the eight major Mee Tea export counties in the country. The development of Black Tea processing technology can optimize the tea area structure, improve the market competitiveness of tea products and increase the economic benefits of tea production. The main processing technology of Suichang Black Tea was withering-rolling-fermentation-drying-fragrance treatment. After hot air withering for 8~12 h in the withering trough tunnels with the temperature of 33~34 ℃, the leaves were rolled in order of light-heavy-light for about 2~4 h. Fermentation was in a basket for 2.5~3 h, turning once. Then the leaves were dried with hot air ( 110~120 ℃) for 1.5 h. At last, dried with the temperature 80~90 ℃ for 8~9 h as a fragrance treatment. The final product should be curl, black bloom, highly flavored, orange red liquid color with soft, fine and tender securinega.%遂昌是全国八大眉茶出口县之一,茶产业是丽水的农业支柱产业之一. 细嫩红茶加工技术的研制是优化地区茶类结构,提高茶产品市场竞争力的有效手段,有助于提高茶叶生产的经济效益. 其主要工艺技术为萎凋,把鲜叶放在热风萎凋槽,33~34 ℃热鼓风萎凋8~12 h;揉捻,掌握轻重轻原则,切勿重压,时间控制在2~4 h;发酵,发酵篮发酵2.5~3 h,中间翻动一次;毛火干燥,热风温度110~120 ℃,时间1.5 h;提香,80~90 ℃慢烘8~9h. 制得细嫩红茶紧细乌润、香高味醇,回甘持久,汤色橙红明亮、叶底细而柔软.

  16. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    Science.gov (United States)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  17. Polycyclic aromatic hydrocarbon (PAH) sorption process to the "black carbon" (BC) component in river sediments

    Science.gov (United States)

    Zhang, Jing; Séquaris, Jean-Marie; Narres, Hans-Dieter; Vereecken, Harry; Klumpp, Erwin

    2010-05-01

    The importance of BC for the long term sequestration of organic carbon is actually discussed for mitigating climate change. In this context, the role of BC as a filter or source of nutrients or toxic chemicals is questioned. The fate of polycyclic aromatic hydrocarbons (PAHs) is especially concerned. In this study, we have investigated the binding of PAH compounds, pyrene and phenanthrene, to Yangtze River sediments. For this purpose, the PAHs sorption to pristine and preheated sediments at 375°C was studied, which allow discriminating the contributions of amorphous organic carbon (AOC) and black carbon (BC) fractions to the PAH sorption extent. An analytical procedure for the determination of PAHs in the solution phase of the batch experiments has been developed with fluorescence spectroscopy. The PAHs sorption isotherms to pristine sediments were fitted by Freundlich and composite models as linear Langmuir model (LLM) and linear Polanyi-Dubinin-Manes model (LPDMM). The sequential application of composite models LLM and LPDMM to the sorption isotherms allows assessing the partition of PAHs into AOC and its nonlinear adsorption in the porous structure of BC. The modelling results indicate that the PAHs sorption to minor BC component of sediments (molecular sieving plays an important role in the competitive PAHs sorption in a multi-solute system. J. Zhang, Ph.D. Dissertation, RWTH Aachen, Germany, 2010 J. Zhang et al., Effects of organic carbon and clay fractions on the pyrene sorption and distribution in Yangtze River sediments (submitted). J. Zhang et al., Pyrene and phenanthrene sorptions to Yangtze River sediments and their components in single and binary solute systems (submitted)

  18. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    Directory of Open Access Journals (Sweden)

    K. Hara

    2008-05-01

    Full Text Available Measurement of black carbon (BC was carried out at Syowa station Antarctica (69° S, 39° E from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m−3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast. During the summer (November–February, the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz and the continental station (Amundsen-Scott, the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard conditions. The seasonal variation of BC transport flux increased by 290 mg m−2 month−1 in winter–spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m−2 month−1 in the summer with infrequent blizzards.

  19. Optical black hole lasers

    CERN Document Server

    Faccio, Daniele; Lamperti, Marco; Leonhardt, Ulf

    2012-01-01

    Using numerical simulations we show how to realise an optical black hole laser, i.e. an amplifier formed by travelling refractive index perturbations arranged so as to trap light between a white and a black hole horizon. The simulations highlight the main features of these lasers: the growth inside the cavity of positive and negative frequency modes accompanied by a weaker emission of modes that occurs in periodic bursts corresponding to the cavity round trips of the trapped modes. We then highlight a new regime in which the trapped mode spectra broaden until the zero-frequency points on the dispersion curve are reached. Amplification at the horizon is highest for zero-frequencies, therefore leading to a strong modification of the structure of the trapped light. For sufficiently long propagation times, lasing ensues only at the zero-frequency modes.

  20. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  1. The Mind is Not a Black Box: Children's Ideas about the Writing Process

    Science.gov (United States)

    Scheuer, Nora; de la Cruz, Montserrat; Pozo, Juan Ignacio; Huarte, Maria Faustina; Sola, Graciela

    2006-01-01

    We studied children's conceptions of the writing process while the complex cognitive activity of writing is carried out through a pictorial representation of the writing process. Sixty children attending Kindergarten, first grade and fourth grade in Bariloche, Argentina, were presented individually with a sequence of four questions about the…

  2. Application of ISO22000 and Failure Mode and Effect Analysis (fmea) for Industrial Processing of Poultry Products

    Science.gov (United States)

    Varzakas, Theodoros H.; Arvanitoyannis, Ioannis S.

    Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of poultry slaughtering and manufacturing. In this work comparison of ISO22000 analysis with HACCP is carried out over poultry slaughtering, processing and packaging. Critical Control points and Prerequisite programs (PrPs) have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram).

  3. Use of healthcare failure mode and effect analysis (HFMEA) to quantify risks of the human milk feeding process.

    Science.gov (United States)

    Zhang, Beilei Belinda; LaFleur, Elizabeth A; Ballweg, Diane D; Mulholland, Kristi L; Wild, Jodi A; Shedenhelm, Heidi J; Stirn, Susan L; Gannon, Janet L; Fjerstad, Kelly A; Morgenthaler, Timothy I

    2014-01-01

    The complexity of the expressed breast milk feeding process in the neonatal intensive care unit was not fully appreciated until we used a healthcare failure mode and effect analysis. This approach identified latent risks and provided semiquantitative estimates of the effectiveness of recommendations. Findings demonstrated nursing interruptions and multitasking requirements contributed to risk, emphasizing the need for focused and isolated expressed breast milk handling to improve patient safety and outcomes.

  4. A Case Study on Improving Intensive Care Unit (ICU) Services Reliability: By Using Process Failure Mode and Effects Analysis (PFMEA)

    Science.gov (United States)

    Yousefinezhadi, Taraneh; Jannesar Nobari, Farnaz Attar; Goodari, Faranak Behzadi; Arab, Mohammad

    2016-01-01

    Introduction: In any complex human system, human error is inevitable and shows that can’t be eliminated by blaming wrong doers. So with the aim of improving Intensive Care Units (ICU) reliability in hospitals, this research tries to identify and analyze ICU’s process failure modes at the point of systematic approach to errors. Methods: In this descriptive research, data was gathered qualitatively by observations, document reviews, and Focus Group Discussions (FGDs) with the process owners in two selected ICUs in Tehran in 2014. But, data analysis was quantitative, based on failures’ Risk Priority Number (RPN) at the base of Failure Modes and Effects Analysis (FMEA) method used. Besides, some causes of failures were analyzed by qualitative Eindhoven Classification Model (ECM). Results: Through FMEA methodology, 378 potential failure modes from 180 ICU activities in hospital A and 184 potential failures from 99 ICU activities in hospital B were identified and evaluated. Then with 90% reliability (RPN≥100), totally 18 failures in hospital A and 42 ones in hospital B were identified as non-acceptable risks and then their causes were analyzed by ECM. Conclusions: Applying of modified PFMEA for improving two selected ICUs’ processes reliability in two different kinds of hospitals shows that this method empowers staff to identify, evaluate, prioritize and analyze all potential failure modes and also make them eager to identify their causes, recommend corrective actions and even participate in improving process without feeling blamed by top management. Moreover, by combining FMEA and ECM, team members can easily identify failure causes at the point of health care perspectives. PMID:27157162

  5. Full-Wave Calculations of the O-X Mode Conversion Process

    DEFF Research Database (Denmark)

    Hansen, F.R.; Lynov, Jens-Peter; Maroli, C.

    1988-01-01

    A two-point boundary-value problem has been formulated that describes the conversion between ordinary (O) and extraordinary (X) wave modes in a cold inhomogeneous plasma. Numerical solutions to this problem have been obtained for various values of the WKB parameter k0L; where k0 is the vacuum...... wavenumber and L the density-gradient scale length. The results are compared with three different theoretical expressions for the O-X mode conversion efficiency derived by others in the WKB limit of k0 L >> l. Most of the results presented in this paper are obtained for a collisionless plasma with finite...... density near the plasma cut-off density. However, some examples are also given of wave propagation from vacuum. In these examples, collision effects are added to the equations in order to remove the singularity otherwise present at the position of the upper hybrid resonance layer....

  6. Effect of set size, age, and mode of stimulus presentation on information-processing speed.

    Science.gov (United States)

    Norton, J. C.

    1972-01-01

    First, second, and third grade pupils served as subjects in an experiment designed to show the effect of age, mode of stimulus presentation, and information value on recognition time. Stimuli were presented in picture and printed word form and in groups of 2, 4, and 8. The results of the study indicate that first graders are slower than second and third graders who are nearly equal. There is a gross shift in reaction time as a function of mode of stimulus presentation with increase in age. The first graders take much longer to identify words than pictures, while the reverse is true of the older groups. With regard to set size, a slope appears in the pictures condition in the older groups, while for first graders, a large slope occurs in the words condition and only a much smaller one for pictures.

  7. Quantum information processing in localized modes of light within a photonic band-gap material

    CERN Document Server

    Vats, N; John, S; Vats, Nipun; Rudolph, Terry; John, Sajeev

    1999-01-01

    The single photon occupation of a localized field mode within an engineered network of defects in a photonic band-gap (PBG) material is proposed as a unit of quantum information (qubit). Qubit operations are mediated by optically-excited atoms interacting with these localized states of light as the atoms traverse the connected void network of the PBG structure. We describe conditions under which this system can have independent qubits with controllable interactions and very low decoherence, as required for quantum computation.

  8. Optimisation of the slag mode in the ladle during the steel processing of secondary metallurgy

    OpenAIRE

    Socha, Ladislav; Bažan, Jiří; Gryc, Karel; Morávka, Jan; Styrnal, Petr; Pilka, Václav; Piegza, Zbygněv

    2013-01-01

    Optimisation of the slag mode in the ladle with the help of briquetted fluxing agents, based on Al2O3 under various technological conditions is the object of this paper. The aim of the industrial experiments was to assess the possibility of achieving the optimum chemical composition of the slag that would improve the kinetic conditions of the refining ladle slag during the treatment in secondary metallurgy units. Industrial experiments were focused on comparing the influences of d...

  9. Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization.

    Science.gov (United States)

    Smith, Donald F; Schulz, Carl; Konijnenburg, Marco; Kilic, Mehmet; Heeren, Ron M A

    2015-03-01

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data ("big data") that must be processed efficiently and rapidly. This can be compounded by large-area imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode "Mosaic Datacube" approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, but requires additional processing as compared to feature-based processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.

  10. Distributed computing strategies for processing of FT-ICR MS imaging datasets for continuous mode data visualization

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco; Kilic, Mehmet; Heeren, Ronald M.

    2015-03-01

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, but requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.

  11. Research Advances of Processing Technology of Congou Black Tea%工夫红茶加工新工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    常笑君; 周子维; 朱晨; 王仲; 赵姗姗; 郭玉琼

    2016-01-01

    With the continuous innovation of processing technology of Congou black tea, the quality of Congou black tea has been improved, which gives more flavor choices for consumers.In this research, we summarized and discussed the process crafts and their impacts on the qual-ity of Congou black tea, and described the emerging on the production means of Congou black tea.This article aimed to providing a theoretical basis and reference for technology advances and researches on quality of Congou black tea.%工夫红茶加工工艺不断创新,品质不断提高,给消费者带来更多风味品质的选择。就工夫红茶的加工工艺及其对品质的影响展开归纳和探讨,并阐述了工夫红茶生产上的新兴技术手段,旨在为工夫红茶工艺进展和品质研究提供理论依据和参考。

  12. A Low Noise Planar-Type Avalanche Photodiode using a Single-Diffusion Process in Geiger-Mode Operation

    Science.gov (United States)

    Lee, Kiwon; Lee, Byoungwook; Yoon, Sunwoong; Hong, Jung-ho; Yang, Kyounghoon

    2013-07-01

    We report the performances of a planar-type Geiger-mode InGaAs/InP avalanche photodiode (APD) using a single-diffusion process based on a single wet recess-etching technique at a wavelength of 1.55 µm. The recess-etched window region is found to have a smoothly etched sidewall with a large slope width of 0.9 µm. The Geiger-mode characteristics have been measured at 240-280 K for a 20 µm diameter device. The fabricated Geiger-mode APD shows a low dark count probability (DCP) per gate pulse of 2.8×10-3, a high photon detection efficiency (PDE) of 17.4%, and a low noise equivalent power (NEP) of 1.74×10-16 W/Hz1/2 at 240 K. The results are the first demonstration of a planar-type single-diffused Geiger-mode APD using a single wet recess-etching.

  13. Opening the black box: a study of the process of NICE guidelines implementation.

    Science.gov (United States)

    Spyridonidis, Dimitrios; Calnan, Michael

    2011-10-01

    This study informs 'evidence-based' implementation by using an innovative methodology to provide further understanding of the implementation process in the English NHS using two distinctly different NICE clinical guidelines as exemplars. The implementation process was tracked retrospectively and prospectively using a comparative case-study and longitudinal design. 74 unstructured interviews were carried out with 48 key informants (managers and clinicians) between 2007 and 2009. This study has shown that the NICE guidelines implementation process has both planned and emergent components, which was well illustrated by the use of the prospective longitudinal design in this study. The implementation process might be characterised as strategic and planned to begin with but became uncontrolled and subject to negotiation as it moved from the planning phase to adoption in everyday practice. The variations in the implementation process could be best accounted for in terms of differences in the structure and nature of the local organisational context. The latter pointed to the importance of managers as well as clinicians in decision-making about implementation. While national priorities determine the context for implementation the shape of the process is influenced by the interactions between doctors and managers, which influence the way they respond to external policy initiatives such as NICE guidelines. NICE and other national health policy-makers need to recognise that the introduction of planned change 'initiatives' in clinical practice are subject to social and political influences at the micro level as well as the macro level. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Response mode, compatibility, and dual-processes in the evaluation of simple gambles: An eye-tracking investigation

    Directory of Open Access Journals (Sweden)

    Paul Slovic

    2012-07-01

    Full Text Available We employed simple gambles to investigate information processing in relation to the compatibility effect. Subjects should be more likely to engage in a deliberative thinking strategy when completing a pricing task rather than a rating task. We used eye-tracking methodology to measure information acquisition and processing in order to test the above hypothesis as well as to show that losses and alternatives with uncertain outcomes are more likely than gains and alternatives with sure outcomes to be processed through a deliberative thinking process. Results showed that pupil dilations, fixation duration and number of fixations increased when subjects evaluated the gambles with a pricing task. Additionally, the number of fixations increased as the gamble outcome became increasingly negative and when the outcome was uncertain (vs. sure. Fixations were also predictive of subjects' final evaluations of the gambles. We discuss our results in light of the cognitive processes underlying different response modes in economic preferences.

  15. Soft sensors with white- and black-box approaches for a wastewater treatment process

    Directory of Open Access Journals (Sweden)

    D. Zyngier

    2000-12-01

    Full Text Available The increasing degradation of water resources makes it necessary to monitor and control process variables that may disturb the environment, but which may be very difficult to measure directly, either because there are no physical sensors available, or because these are too expensive. In this work, two soft sensors are proposed for monitoring concentrations of nitrate (NO and ammonium (NH ions, and of carbonaceous matter (CM during nitrification of wastewater. One of them is based on reintegration of a process model to estimate NO and NH and on a feedforward neural network to estimate CM. The other estimator is based on Stacked Neural Networks (SNN, an approach that provides the predictor with robustness. After simulation, both soft sensors were implemented in an experimental unit using FIX MMI (Intellution, Inc automation software as an interface between the process and MATLAB 5.1 (The Mathworks Inc. software.

  16. Release modes and processes relevant to source-term calculations at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Apted, M.J. [Intera Information Technologies, Denver (United States)

    1994-12-31

    The feasibility of permanent disposal of radioactive high-level waste (HLW) in repositories located in deep geologic formations is being studied world-wide. The most credible release pathway is interaction between groundwater and nuclear waste forms, followed by migration of radionuclide-bearing groundwater to the accessible environment. Under hydrologically unsaturated conditions, vapor transport of volatile radionuclides is also possible. The near-field encompasses the waste packages composed of engineered barriers, while the far-field includes the natural barriers. Taken together, these two subsystems define a series of multiple, redundant barriers that act to assure the safe isolation of nuclear waste. In the U.S., the Department of energy (DOE) is investigating the feasibility of safe, long-term disposal of high-level nuclear waste at the Yucca Mountain site in Nevada. The proposed repository horizon is located in non-welded tuffs within the unsaturated zone (i.e. above the water table) at Yucca Mountain. The purpose of this paper is to describe the source-term models for radionuclide release from waste packages at Yucca Mountain site. The first section describes the conceptual release modes that are relevant for this site and waste package design, based on a consideration of the performance of currently proposed engineered barriers under expected and unexpected conditions. No attempt is made to asses the reasonableness nor probability of occurrence for any specific release mode. The following section reviews the waste-form characteristics that are required to model and constrain the release of radionuclides from the waste package. The next section present mathematical models for the conceptual release modes, selected from those that have been implemented into a probabilistic total system assessment code developed for the Electric Power Research Institute (EPRI). (author) 4 figs., 35 refs.

  17. Cretaceous black shale and the oceanic red beds:Process and mechanisms of oceanic anoxic events and oxic environment

    Institute of Scientific and Technical Information of China (English)

    Zhenguo ZHANG; Nianqiao FANG; Lianfeng GAO; Baoling GUI; Muhua CUI

    2008-01-01

    The Cretaceous is an important period in which many geological events occurred,especially the OAEs (oceanic anoxic events) which are characterized by black shale,and the oxic process characterized by CORBs (Cretaceous oceanic red beds).In this paper,the causative mechanism behind the formation of black shale and the oceanic red beds are described in detail.This may explain how the oceanic environment changed from anoxic to oxic in the Cretaceous period.It is suggested that these two different events happened because of the same cause.On the one hand,the large-scale magma activities in Cretaceous caused the concentration of CO2,the release of the inner energy of the earth,superficial change in the ocean-land,and finally,the increase of atmospheric temperature.These changes implied the same tendency as the oceanic water temperature show,and caused the decrease in O2 concentration in the Cretaceous ocean,and finally resulted in the occurrence of the OAEs.On the other hand,violent and frequent volcanic eruptions in the Cretaceous produced plenty of Fe-enriched lava on the seafloor.When the seawater reacted with the lava,the element Fe became dissolved in seawater.Iron,which could help phytoplankton grow rapidly,is a micronutrient essential to the synthesis of enzymes required for photosynthesis in the oceanic environment.Phytoplankton,which grows in much of the oceans around the world,can consume carbon dioxide in the air and the ocean.Meanwhile,an equal quantity of oxygen can be produced by the phytoplankton during its growth.Finally,the oxic environment characterized by red sediment rich in Fe3+appeared.The anoxic and oxic conditions in the Cretaceous ocean were caused by volcanic activities,but they stemmed from different causative mechanisms.The former was based on physical and chemical processes,while the latter involved more complicated bio-oceanic-geochemical processes.

  18. Opening the Black Box and Searching for Smoking Guns: Process Causality in Qualitative Research

    Science.gov (United States)

    Bennett, Elisabeth E.; McWhorter, Rochell R.

    2016-01-01

    Purpose: The purpose of this paper is to explore the role of qualitative research in causality, with particular emphasis on process causality. In one paper, it is not possible to discuss all the issues of causality, but the aim is to provide useful ways of thinking about causality and qualitative research. Specifically, a brief overview of the…

  19. Process Evaluation of HIV Prevention Peer Groups in Malawi: A Look inside the Black Box

    Science.gov (United States)

    McCreary, Linda L.; Kaponda, Chrissie P. N.; Kafulafula, Ursula K.; Ngalande, Rebecca C.; Kumbani, Lily C.; Jere, Diana L. N.; Norr, James L.; Norr, Kathleen F.

    2010-01-01

    This paper reports the process evaluation of a peer group intervention for human immunodeficiency virus (HIV) prevention which had positive outcomes for three target groups in Malawi: rural adults, adolescents and urban hospital workers. The six-session intervention was delivered to small groups of 10-12 participants by 85 trained volunteer peer…

  20. Opening the Black Box and Searching for Smoking Guns: Process Causality in Qualitative Research

    Science.gov (United States)

    Bennett, Elisabeth E.; McWhorter, Rochell R.

    2016-01-01

    Purpose: The purpose of this paper is to explore the role of qualitative research in causality, with particular emphasis on process causality. In one paper, it is not possible to discuss all the issues of causality, but the aim is to provide useful ways of thinking about causality and qualitative research. Specifically, a brief overview of the…

  1. The mind is not a black box: children’s ideas about the writing process

    OpenAIRE

    Scheuer,Nora; Cruz, Montserrat de la; Pozo, Juan Ignacio; Huarte, María Faustina; Sola, Graciela

    2006-01-01

    This is the pre-peer reviewed version of a work that was accepted for publication in Learning and Instruction. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Learning and Instruction 16,1, (2006) http://dx.doi.org/10.1016/j....

  2. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing

    OpenAIRE

    Bonatsou, S.; Benítez-Cabello, Antonio; Francisco J. Rodríguez-Gómez; Efstathios Z Panagou; Arroyo López, Francisco Noé

    2015-01-01

    Yeasts are unicellular eukaryotic microorganisms with a great importance in the elaboration on many foods and beverages. In the last years, researches have focused their attention to determine the favourable effects that these microorganisms could provide to table olive processing. In this context, the present study assesses, at laboratory scale, the potential technological (resistance to salt, lipase, esterase and β-glucosidase activities) and probiotic (phytase activity, survival to gastric...

  3. Process evaluation of HIV prevention peer groups in Malawi: a look inside the black box.

    Science.gov (United States)

    McCreary, Linda L; Kaponda, Chrissie P N; Kafulafula, Ursula K; Ngalande, Rebecca C; Kumbani, Lily C; Jere, Diana L N; Norr, James L; Norr, Kathleen F

    2010-12-01

    This paper reports the process evaluation of a peer group intervention for human immunodeficiency virus (HIV) prevention which had positive outcomes for three target groups in Malawi: rural adults, adolescents and urban hospital workers. The six-session intervention was delivered to small groups of 10-12 participants by 85 trained volunteer peer leaders working in pairs. A descriptive, observational mixed methods design was used with a convenience sample of 294 intervention sessions. Using project records and a conceptually based observation guide, we examined five aspects of the implementation process. The context was favorable, but privacy to discuss sensitive issues was a concern for some groups. In study communities, program reach was 58% of rural adults, 70% of adolescents and nearly all hospital workers. Session records confirmed that all peer groups received the intended six sessions (dose delivered). The dose received was high, as evidenced by high participant engagement in peer group activities. Peer leaders were rated above the median for three indicators of peer group content and process fidelity: session management skills, interpersonal facilitation skills and whether more like a peer group than classroom. Documenting that this HIV prevention peer group intervention was delivered as intended by trained peer volunteers supports widespread dissemination of the intervention.

  4. Research Progress of High Aroma Black Tea Processing%高香红茶加工技术研究进展

    Institute of Scientific and Technical Information of China (English)

    银霞; 郑红发; 黄怀生; 赵熙; 粟本文

    2012-01-01

    Most of Chinese Black teas' aroma is not high, which influences their competitiveness in international market. This article summarized the processing technologies and research progress of China black tea in recent 15 years and provided theoretical instruction for the producing of high aroma black tea.%我国大部分红茶香气品质不高,影响产品的市场竞争力。本文总结了近15年来红茶加工技术与香气品质关系的研究进展,为生产高香红茶提供理论依据。

  5. The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes

    Science.gov (United States)

    Bouchaud, Jean-Philippe; Sornette, Didier

    1994-06-01

    The ability to price risks and devise optimal investment strategies in thé présence of an uncertain "random" market is thé cornerstone of modern finance theory. We first consider thé simplest such problem of a so-called "European call option" initially solved by Black and Scholes using Ito stochastic calculus for markets modelled by a log-Brownien stochastic process. A simple and powerful formalism is presented which allows us to generalize thé analysis to a large class of stochastic processes, such as ARCH, jump or Lévy processes. We also address thé case of correlated Gaussian processes, which is shown to be a good description of three différent market indices (MATIF, CAC40, FTSE100). Our main result is thé introduction of thé concept of an optimal strategy in the sense of (functional) minimization of the risk with respect to the portfolio. If the risk may be made to vanish for particular continuous uncorrelated 'quasiGaussian' stochastic processes (including Black and Scholes model), this is no longer the case for more general stochastic processes. The value of the residual risk is obtained and suggests the concept of risk-corrected option prices. In the presence of very large deviations such as in Lévy processes, new criteria for rational fixing of the option prices are discussed. We also apply our method to other types of options, `Asian', `American', and discuss new possibilities (`doubledecker'...). The inclusion of transaction costs leads to the appearance of a natural characteristic trading time scale. L'aptitude à quantifier le coût du risque et à définir une stratégie optimale de gestion de portefeuille dans un marché aléatoire constitue la base de la théorie moderne de la finance. Nous considérons d'abord le problème le plus simple de ce type, à savoir celui de l'option d'achat `européenne', qui a été résolu par Black et Scholes à l'aide du calcul stochastique d'Ito appliqué aux marchés modélisés par un processus Log

  6. Evaluation of Fenton Oxidation Process Coupled with Biological Treatment for the Removal of Reactive Black 5 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Pegah Bahmani

    2013-06-01

    Full Text Available Biodegradation of azo dyes is difficult due to their complex structures and low BOD to COD ratios. In the present study, the efficiency of using Fenton’s reagent (H2O2 + Fe2+ as a pretreatment process to enhance microbial transformation of reactive black 5 (RB5 in an aqueous system was evaluated. The RB5 with an initial concentration of 250 mg/L was decolorized up to 90% in 60 h by using a bacterial consortium. Fenton’s reagent at a Fe2+ concentration of 0.5 mM and H2O2 concentration of 2.9 mM (molar ratio, 1:5.8 was most effective for decolorization at pH = 3.0. The extent of RB5 removal by the combined Fenton–biotreatment was about 2 times higher than that of biotreatment alone. The production of some aromatic amines intermediates implied partial mineralization of the RB5 in Fenton treatment alone; in addition, decreasing of GC-MS peaks suggested that dearomatization occurred in Fenton-biological process. Fenton pretreatment seems to be a cost–effective option for the biotreatment of azo dyes, due mainly to the lower doses of chemicals, lower sludge generation, and saving of time. Our results demonstrated positive effects of inoculating bacterial consortium which was capable of dye biodegradation with a Fenton’s pretreatment step as well as the benefits of low time required for the biological process. In addition, the potential of field performance of Fenton-biological process because of using bacterial consortium is an other positive effect of it.

  7. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    Directory of Open Access Journals (Sweden)

    Inês R Violante

    Full Text Available Neurofibromatosis type 1 (NF1 is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M and parvocellular (P pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  8. Physics of black holes

    OpenAIRE

    Thorne, Kip S.

    1982-01-01

    The activity at the galactic center might be fuelled by energy release near a large black hole. In this talk I describe some relativistic effects which may be relevant to this process. I use Newtonian language so far as possible and illustrate the effects with simple  analogies. Specifically, I describe the gravitational field near a black hole, Lens‐Thirring and geodetic precession, electro‐magnetic energy extraction of the spin energy of a black hole and the structure of accretion tori arou...

  9. Reflections on a Black Mirror

    CERN Document Server

    Good, Michael R R

    2016-01-01

    A black mirror is an accelerated boundary that produces particles in an exact correspondence to an evaporating black hole. We investigate the spectral dynamics of the particle creation during the formation process.

  10. Researching the black box of wrItIng processes in higher education

    DEFF Research Database (Denmark)

    Smedegaard Ernst Bengtsen, Søren; Jensen, Gry Sandholm

    feedback on student texts in higher education is traditionally understood as an evaluation of prod- ucts. However, there is a lack of knowledge about the ways students work with and reshape their material be- tween supervision meetings. A key problem is that the literature focuses either on student......, we wish to render visible such student thinking and writing processes. Drawing on phenomenological and linguistic research methods (Manen 2002; Manen 1997; Johnstone 1996) we argue that a new vocabulary for supervision on student texts must be developed for supervisors to more fully grasp...

  11. Fusion of product and process data: Batch-mode and real-time streaming

    Energy Technology Data Exchange (ETDEWEB)

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  12. DEVELOPMENT OF MATHEMATICAL MODEL OF BLACK CURRANT BERRIES DRYING PROCESS IN VACUUM DEVICE WITH THE MICROWAVE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. The mathematical model of black currant berries drying process in vacuum device with the microwave power supply, differing in high space and temporary specification is developed, the structure of separate berries and a layer of berries is considered, heat- and physical parameters depend on coordinate and time as well as in the accounting of berries form change and a berries layer structure in the dehydration process. We used the particles dynamics method for modeling of mechanical behavior of berries which is increasingly being used now in different branches of science and technology. To give the model the high space specification the modeled berries layer consists of 20–50 separate berries, each berry depending on diameter being broken into approximately 100 separate elements. Berries elements are divided into 3 types depending on the physical properties (peel, pulp, seeds. Therefore, in general, from the point of space detail, a layer of berries consists of 2000- 5000 elements. Modeling is carried out in two-dimensional Cartesian space X–Z. The condition of each element of circle is set by four variables: Cartesian coordinates of its center and two components of speed. Mechanical interaction of elements among themselves is accepted to be viscous and elastic that allows to consider the main mechanical properties of berries – the elasticity module, internal friction index. Within the developed model it is considered that between the neighbor elements there can be pushing away forces (at the introduction of elements into each other, or attractions (at a distance of the linked elements from each other. The description of the processes of warm and moisture exchange between the elements as well as between the elements and environment is based upon the standard equations of drying. In model it is considered that the microwave power brought is redistributed in the heated volume in proportion to elements moisture.

  13. Inferring ice formation processes from global-scale black carbon profiles observed in the remote atmosphere and model simulations

    Science.gov (United States)

    Fan, S.-M.; Schwarz, J. P.; Liu, J.; Fahey, D. W.; Ginoux, P.; Horowitz, L. W.; Levy, H., II; Ming, Y.; Spackman, J. R.

    2012-12-01

    Black carbon (BC) aerosol absorbs solar radiation and can act as cloud condensation nucleus and ice formation nucleus. The current generation of climate models have difficulty in accurately predicting global-scale BC concentrations. Previously, an ensemble of such models was compared to measurements, revealing model biases in the tropical troposphere and in the polar troposphere. Here global aerosol distributions are simulated using different parameterizations of wet removal, and model results are compared to BC profiles observed in the remote atmosphere to explore the possible sources of these biases. The model-data comparison suggests a slow removal of BC aerosol during transport to the Arctic in winter and spring, because ice crystal growth causes evaporation of liquid cloud via the Bergeron process and, hence, release of BC aerosol back to ambient air. By contrast, more efficient model wet removal is needed in the cold upper troposphere over the tropical Pacific. Parcel model simulations with detailed droplet and ice nucleation and growth processes suggest that ice formation in this region may be suppressed due to a lack of ice nuclei (mainly insoluble dust particles) in the remote atmosphere, allowing liquid and mixed-phase clouds to persist under freezing temperatures, and forming liquid precipitation capable of removing aerosol incorporated in cloud water. Falling ice crystals can scavenge droplets in lower clouds, which also results in efficient removal of cloud condensation nuclei. The combination of models with global-scale BC measurements in this study has provided new, latitude-dependent information on ice formation processes in the atmosphere, and highlights the importance of a consistent treatment of aerosol and moist physics in climate models.

  14. DEVELOPMENT OF MATHEMATICAL MODEL OF PROCESS OF BLACK CURRANT BERRIES DRYING IN VACUUMDEVICE WITH THE MICROWAVE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. The mathematical model allowed to reproduce and study at qualitative level the change of berries form and the structure of the berries layer in the course of drying. The separate berry in the course of drying loses gradually its elasticity, decreases in volume, the peel gathers in folds, there appear internal emptiness. In the course of drying the berries layer decreases in thickness, contacting berries stick strongly with each other due to the coordinated folds of peel appearing, the layer is condensed due to penetration of the berries which have lost elasticity into emptiness between them. The model with high specification describes black currant drying process and therefore has a large number of the parameters available to change. Among them three most important technological parameters, influencing productivity and the drying quality are chosen: the power of microwave radiation P, thickness of the berries layer h, environmental pressure p. From output indicators of the model the most important are three functions from time: dependence of average humidity of the layer on time Wcp (t, dependence of the speed of change of average humidity on time dWcp (t/dt, dependence of the layer average temperature on time Tср (t. On the standard models classification the offered model is algorithmic, but not analytical. It means that output characteristics of model are calculated with the entrance ones, not by analytical transformations (it is impossible principally for the modeled process, but by means of spatial and temporary sampling and the corresponding calculation algorithm. Detailed research of the microwave drying process by means of the model allows to allocate the following stages: fast heating, the fast dehydration, the slowed-down dehydration, consolidation of a layer of a product, final drying, heating after dehydration.

  15. Identifying low-dimensional dynamics in Type-I edge-localised-mode processes in JET plasmas

    CERN Document Server

    Calderon, F A; Chapman, S C; Webster, A J; Alper, B; Nicol, R M; Contributors, JET EFDA

    2013-01-01

    Edge localised mode (ELM) measurements from reproducibly similar plasmas in the Joint European Torus (JET) tokamak, which differ only in their gas puffing rate, are analysed in terms of the pattern in the sequence of inter-ELM time intervals. It is found that the category of ELM defined empirically as Type I - typically more regular, less frequent, and having larger amplitude than other ELM types - embraces substantially different ELMing processes. By quantifying the structure in the sequence of inter-ELM time intervals using delay time plots, we reveal transitions between distinct phase space dynamics, implying transitions between distinct underlying physical processes. The control parameter for these transitions between these different ELMing processes is the gas puffing rate.

  16. Application of ISO 22000 and Failure Mode and Effect Analysis (FMEA) for industrial processing of salmon: a case study.

    Science.gov (United States)

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2008-05-01

    The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.

  17. Effect of drying, chemical and natural processing methods on black Biancolilla olives

    Directory of Open Access Journals (Sweden)

    Poiana, M.

    2012-06-01

    Full Text Available In the present work, the effects of different drying and brining treatments on pigmented Biancolilla olives were evaluated. The olive cultivar considered is typical of Sicily and was harvested at pigmented state. The carpological data revealed its good quality as table olives. A preliminary fermentation in brine was applied to the samples. Half of the samples were dried whereas the remaining olives were subjected to three different lye treatments and oxidation steps. After washing, the olives were stored according to a natural fermentation or drying process with or without a pretreatment of iron gluconate. The fermentation and oxidation steps conditioned the hygienic characteristics of the final product affecting the pH value of the brine. The use of iron salt for improving the darkening rate of processed olives influenced the color parameters as expected. The oxidation and the addition of iron salt affected the texture of dried olives making them softer than those directly dried. The results suggest that the Biancolilla cultivar is suitable for fermentation in brine without any previous treatment such as oxidation.En el presente trabajo se han evaluado los efectos de los diferentes tratamientos de secado y salado para aceitunas pigmentadas Biancolilla. La variedad de aceituna seleccionada es considerada la típica de Sicilia y fue cosechada en el estadío de pigmentación. Los datos morfolóficos revelan su buena calidad como aceituna de mesa. Se ha aplicado a las muestras una fermentación preliminar. La mitad de ellas se secaron, mientras que las restantes fueron sometidas a tres tratamientos diferentes con lejía y procesos oxidantes. Después del lavado, las aceitunas se almacenan mediante una fermentación natural o proceso de secado, con o sin un pretratamiento de gluconato de hierro. Los pasos de fermentación y oxidación condicionan las características higiénicas del producto final afectando al valor del pH de la salmuera. El uso de

  18. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  19. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process.

    Science.gov (United States)

    Chang, Shih-Hsien; Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan; Su, Yu-Chun; Chang, Chih-Yuan

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L(-1) sorbed 82% of RB5 (100 mg L(-1)) within 4h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH(0) of 7, current density of 277 A m(-2), and NaCl of 1 g L(-1). However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L(-1) effectively removed COD and toxicity of electrocoagulation-treated solution within 4h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30s at power of 800 W, GAC/water ratio of 20 g L(-1), and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A(265) (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  20. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38-Elimination and degradation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, Ticiane Pokrywiecki [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: sauer@enq.ufsc.br; Casaril, Leonardo [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: leonardocasaril@ufsc.grad.br; Oberziner, Andre Luiz Bertoldi [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: andreoberzine@hotmail.com; Jose, Humberto Jorge [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: humberto@enq.ufsc.br; Moreira, Regina de Fatima Peralta Muniz [Department of Chemical and Food Engineering, Federal University of Santa Catarina, Campus Universitario-Trindade, P.O. Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)]. E-mail: regina@enq.ufsc.br

    2006-07-31

    The application of advanced oxidation processes (H{sub 2}O{sub 2}/UV, TiO{sub 2}/H{sub 2}O{sub 2}/UV and TiO{sub 2}/UV) to treat tannery wastewater was investigated. The experiments were performed in batch and continuous UV reactors, using TiO{sub 2} as a catalyst. The effect of the hydrogen peroxide concentration on the degradation kinetics was evaluated in the concentration range 0-1800 mg L{sup -1}. We observed that the degradation rate increased as the hydrogen peroxide increased, but excessive H{sub 2}O{sub 2} concentration was detrimental because it acted as a hydroxyl radical scavenger since it can compete for the active sites of the TiO{sub 2}. In the H{sub 2}O{sub 2}/UV treatment, the COD removal reached around 60% in 4 h of reaction, indicating that the principal pollutants were chemically degraded as demonstrated by the results for BOD, COD, nitrate, ammonium and analysis of the absorbance at 254 nm. Artemia salina toxicity testing performed in parallel showed an increase in toxicity after AOP treatment of the tannery wastewater.

  1. Effect of process control mode on weld quality of friction stir welded plates

    Energy Technology Data Exchange (ETDEWEB)

    Shazly, Mostafa; Sorour, Sherif; Alian, Ahmed R. [Faculty of Engineering, The British University in Egypt, Cairo (Egypt)

    2016-01-15

    Friction stir welding (FSW) is a solid state welding process which requires no filler material where the heat input is generated by frictional energy between the tool and workpiece. The objective of the present work is to conduct a fully coupled thermomechanical finite element analysis based on Arbitrary Lagrangian Eulerian (ALE) formulation for both 'Force-Controlled' and 'Displacement-Controlled' FSW process to provide more detailed insight of their effect on the resulting joint quality. The developed finite element models use Johnson- Cook material model and temperature dependent physical properties for the welded plates. Efforts on proper modeling of the underlying process physics are done focusing on the heat generation of the tool/workpiece interface to overcome the shortcomings of previous investigations. Finite elements results show that 'Force-Controlled' FSW process provides better joint quality especially at higher traveling speed of the tool which comes to an agreement with published experimental results.

  2. Few-mode fibers for mode division multiplexing transmission

    Science.gov (United States)

    Kubota, Hirokazu; Morioka, Toshio

    2012-01-01

    A study is presented of the fiber properties needed to achieve 10-mode multiplexing transmission. A combination of MIMO processing with optical LP mode separation is proposed to prevent the need for massive MIMO computation. The impact of mode crosstalk, differential mode delay, and the mode dependent loss of the few-mode fibers on mode multiplexing are discussed.

  3. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  4. Black holes as critical point of quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); CERN, Theory Department, Geneva 23 (Switzerland); New York University, Department of Physics, Center for Cosmology and Particle Physics, New York, NY (United States); Gomez, Cesar [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Muenchen (Germany); Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM-CSIC, C-XVI, Madrid (Spain)

    2014-02-15

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs. (orig.)

  5. Black Holes as Critical Point of Quantum Phase Transition

    CERN Document Server

    Dvali, Gia

    2014-01-01

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  6. Black holes as critical point of quantum phase transition

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    2014-02-01

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  7. Study of Accretion processes Around Black Holes becomes Science: Tell Tale Observational Signatures of Two Component Advective Flows

    CERN Document Server

    Chakrabarti, Sandip K

    2016-01-01

    An accretion flow around a black hole has a saddle type sonic point just outside the event horizon to guarantee that the flow enters the black hole supersonically. This feature exclusively present in strong gravity limit makes its marks in every observation of black hole candidates. Another physical sonic point is present (as in a Bondi flow) even in weak gravity. Every aspect of spectral or temporal properties of every black hole can be understood using this transonic or advective flow having more than one saddle type points. This most well known and generalized solution with viscosity and radiative transfer has been verified by numerical simulations also. Spectra, computed for various combinations of the standard Keplerian, and advective sub-Keplerian components match accurately with those from satellite observations. Standing, oscillating and propagatory oscillating shocks are produced due to centrifugal barrier of the advective component. The post-shock region acts as the Compton cloud producing the power...

  8. Correlation of Fracture Mode Transition of Ceramic Particle with Critical Velocity for Successful Deposition in Vacuum Kinetic Spraying Process

    Science.gov (United States)

    Park, Hyungkwon; Kim, Jinyoung; Lee, Sung Bo; Lee, Changhee

    2016-12-01

    Vacuum kinetic spraying (VKS) is a promising room-temperature process to fabricate dense ceramic films. However, unfortunately, the deposition mechanism is still not clearly understood. In this respect, the critical conditions for successful deposition were investigated. Based on simulation and microstructural analysis, it was found that as the particle velocity increased, fracture mode transition from tensile fracture to shear fracture occurred and particle did not bounce off anymore above a certain velocity. Simultaneously, particle underwent shock-induced plasticity and dynamic fragmentation. The plasticity assisted to prevent the fragments from rebounding by spending the excessive kinetic energy and fragmentation is essential for fragment bonding and film growth considering that the deposition rate increased as the fraction of fragmentation increased. Accordingly, plasticity and fragmentation take a crucial role for particle deposition. In this respect, the velocity that fracture mode transition occurs is newly defined as critical velocity. Consequently, for successful deposition, the particle should at least exceed the critical velocity and thus it is very crucial for film fabrication in VKS process at room temperature.

  9. Oral processing assessed by M-mode ultrasound imaging varies with food attribute

    NARCIS (Netherlands)

    Wijk, de R.A.; Wulfert, F.; Prinz, J.F.

    2006-01-01

    Ultrasonic imaging was used to quantify oral movements made during the oral processing of foods while subjects assessed the intensity of the sensory attributes, thick, creamy, sweet and bitter. A series of four stimuli were prepared with high and low viscosities and high and low sweetness. Over five

  10. A Simple Reduction Process for the Normal Vibrational Modes Occurring in Linear Molecules

    Science.gov (United States)

    McInerny, William

    2005-01-01

    The students in molecular spectroscopy courses are often required to determine the permitted normal vibrations for linear molecules that belong to particular groups. The reducible group representations generated by the use of Cartesian coordinates can be reduced by the use of a simple algebraic process applied to the group representations. The…

  11. Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process.

    Science.gov (United States)

    Roy, Prasanta; Roy, Binoy Krishna

    2016-07-01

    The Quadruple Tank Process (QTP) is a well-known benchmark of a nonlinear coupled complex MIMO process having both minimum and nonminimum phase characteristics. This paper presents a novel self tuning type Dual Mode Adaptive Fractional Order PI controller along with an Adaptive Feedforward controller for the QTP. The controllers are designed based on a novel Variable Parameter Transfer Function model. The effectiveness of the proposed model and controllers is tested through numerical simulation and experimentation. Results reveal that the proposed controllers work successfully to track the reference signals in all ranges of output. A brief comparison with some of the earlier reported similar works is presented to show that the proposed control scheme has some advantages and better performances than several other similar works.

  12. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).

    Science.gov (United States)

    Muñoz, C; Young, H; Antileo, C; Bornhardt, C

    2009-01-01

    This paper presents a sliding mode controller (SMC) for dissolved oxygen (DO) in an integrated nitrogen removal process carried out in a suspended biomass sequencing batch reactor (SBR). The SMC performance was compared against an auto-tuning PI controller with parameters adjusted at the beginning of the batch cycle. A method for cancelling the slow DO sensor dynamics was implemented by using a first order model of the sensor. Tests in a lab-scale reactor showed that the SMC offers a better disturbance rejection capability than the auto-tuning PI controller, furthermore providing reasonable performance in a wide range of operation. Thus, SMC becomes an effective robust nonlinear tool to the DO control in this process, being also simple from a computational point of view, allowing its implementation in devices such as industrial programmable logic controllers (PLCs).

  13. A refined sub-grid model for black hole accretion and AGN feedback in large cosmological simulations

    CERN Document Server

    Bachmann, Lisa K; Hirschmann, Michaela; Prieto, M Almudena; Remus, Rhea-Silvia

    2014-01-01

    In large scale cosmological hydrodynamic simulations simplified sub-grid models for gas accretion onto black holes and AGN feedback are commonly used. Such models typically depend on various free parameters, which are not well constrained. We present a new advanced model containing a more detailed description of AGN feedback, where those parameters reflect the results of recent observations. The model takes the dependency of these parameters on the black hole properties into account and describes a continuous transition between the feedback processes acting in the so-called radio-mode and quasar-mode. In addition, we implement a more detailed description of the accretion of gas onto black holes by distinguishing between hot and cold gas accretion. Our new implementations prevent black holes from gaining too much mass, particularly at low redshifts so that our simulations are now very successful in reproducing the observed present-day black hole mass function. Our new model also suppresses star formation in ma...

  14. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    Science.gov (United States)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  15. Measuring Student Understanding of the Process of Scientific Research through Three Modes of Assessment

    Science.gov (United States)

    Krok, Michelle; Rector, T.; Young, M. J.

    2012-01-01

    We have continued to develop "Research-Based Science Education" (RBSE) curriculum and assessment for a semester-long program in which undergraduate non-science majors participate in authentic research. The instruction is mainly astronomy-based, but can be used in any introductory science course. Currently, the curriculum is being used by five universities over an assortment of introductory science and astronomy classrooms. The primary goal of the RBSE curriculum is to develop a student's understanding of the nature and process of scientific research. We will present trends and misconceptions discovered based upon our analysis of Fall 2011 semester student responses to several types of assessments including weekly assigned reflective journal questions on the nature of science and pre/post semester concept maps. Additionally, gains observed from a pre/post semester survey of participatory students’ confidence on their science process skills abilities will be discussed.

  16. Experimental Study on Dimethyl Ether Combustion Process in Homogeneous Charge Compression Ignition Mode

    Institute of Scientific and Technical Information of China (English)

    郑尊清; 史春涛; 尧命发

    2004-01-01

    Experimental study on homogeneous charge compression ignition (HCCI) combustion process was carried out on a single-cylinder direct injection diesel engine fueled with dimethyl ether(DME). The influence of inert gas CO2 on the ignition and combustion process was investigated. The research results indicate that because of the high cetane number of DME, the stable HCCI operating range is quite narrow while the engine has a high compression ratio. The HCCI operating range can be largely extended when the inert gas is inducted into the charging air. HCCI combustion of DME presents remarkable characteristic of two-stage combustion process. As the concentration of inert gas increases, the ignition timing of the first combustion stage delays, the peak heat release rate decreases, and the combustion duration extends. Inducting inert gas into charging air cannot make the combustion and heat release of DME occur at a perfect crank angle position. Therefore,to obtain HCCI operation for the fuel with high cetane number,other methods such as reducing engine compression ratio should be adopted. Emission results show that under HCCI operation, a nearly zero NOx emission can be obtained with no smoke emissions. But the HC and CO emissions are high, and both rise with the increase of the concentration of inert gases.

  17. The representation of negative numbers: exploring the effects of mode of processing and notation.

    Science.gov (United States)

    Tzelgov, Joseph; Ganor-Stern, Dana; Maymon-Schreiber, Keren

    2009-03-01

    The representation of negative numbers was explored during intentional processing (i.e., when participants performed a numerical comparison task) and during automatic processing (i.e., when participants performed a physical comparison task). Performance in both cases suggested that negative numbers were not represented as a whole but rather their polarity and numerical magnitudes were represented separately. To explore whether this was due to the fact that polarity and magnitude are marked by two spatially separated symbols, participants were trained to mark polarity by colour. In this case there was still evidence for a separate representation of polarity and magnitude. However, when a different set of stimuli was used to refer to positive and negative numbers, and polarity was not marked separately, participants were able to represent polarity and magnitude together when numerical processing was performed intentionally but not when it was conducted automatically. These results suggest that notation is only partly responsible for the components representation of negative numbers and that the concept of negative numbers can be grasped only through that of positive numbers.

  18. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing

    Directory of Open Access Journals (Sweden)

    Jian eXu

    2014-02-01

    Full Text Available Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala. In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest.

  19. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing.

    Science.gov (United States)

    Xu, Jian; Vik, Alexandra; Groote, Inge R; Lagopoulos, Jim; Holen, Are; Ellingsen, Oyvind; Håberg, Asta K; Davanger, Svend

    2014-01-01

    Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest.

  20. Supermassive black holes do not correlate with galaxy disks or pseudobulges.

    Science.gov (United States)

    Kormendy, John; Bender, R; Cornell, M E

    2011-01-20

    The masses of supermassive black holes are known to correlate with the properties of the bulge components of their host galaxies. In contrast, they seem not to correlate with galaxy disks. Disk-grown 'pseudobulges' are intermediate in properties between bulges and disks; it has been unclear whether they do or do not correlate with black holes in the same way that bulges do. At stake in this issue are conclusions about which parts of galaxies coevolve with black holes, possibly by being regulated by energy feedback from black holes. Here we report pseudobulge classifications for galaxies with dynamically detected black holes and combine them with recent measurements of velocity dispersions in the biggest bulgeless galaxies. These data confirm that black holes do not correlate with disks and show that they correlate little or not at all with pseudobulges. We suggest that there are two different modes of black-hole feeding. Black holes in bulges grow rapidly to high masses when mergers drive gas infall that feeds quasar-like events. In contrast, small black holes in bulgeless galaxies and in galaxies with pseudobulges grow as low-level Seyfert galaxies. Growth of the former is driven by global processes, so the biggest black holes coevolve with bulges, but growth of the latter is driven locally and stochastically, and they do not coevolve with disks and pseudobulges.

  1. Manganese extraction from high-iron-content manganese oxide ores by selective reduction roasting-acid leaching process using black charcoal as reductant

    Institute of Scientific and Technical Information of China (English)

    张元波; 赵熠; 游志雄; 段道显; 李光辉; 姜涛

    2015-01-01

    Reduction roasting-acid leaching process was utilized to process high-iron-content manganese oxide ore using black charcoal as reductant. The results indicate that, compared with the traditional reductant of anthracite, higher manganese extraction efficiency is achieved at lower roasting temperature and shorter residence time. The effects of roasting parameters on the leaching efficiency of Mn and Fe were studied, and the optimal parameters are determined as follows: roasting temperature is 650 °C, residence time is 40 min, and black charcoal dosage is 10% (mass fraction). Under these conditions, the leaching efficiency of Mn reaches 82.37% while that of Fe is controlled below 7%. XRD results show that a majority of MnO2 and Fe2O3in the raw ore are reduced to MnO and Fe3O4, respectively.

  2. Analyses of Composition and Structure on the Ancient Bronze Black Mirror“Hei-Qi-Gu”and Search Into the Treating Process of Its Surface Layer

    Institute of Scientific and Technical Information of China (English)

    范崇正; Suzuki Minoru; Inoue Miyoshi; Abe Tadahiro; Muraua Mitsuo; Asashi Ishikawa; 吴佑实; 李志超

    1994-01-01

    The Chinese ancient bronze black mirror"Hei-Qi-Gu"is famous for its black colour,brightsurface and anti-corroding property.In the present work,methods of SEM,IR,EPMA,Memhrane-XRD,and AFM were employed to detect the composition and structure of several pieces of Hei-Qi-Gu fragments.Itwas found that after casting,the surface of the bronze mirror was treated by a special process,and most ofCu was moved away while Sn and Si were rich in the surface layer.The oxides SnO2 and SiO2 on the surfacein a very small particle size are particularly stable and they protect the bronze alloy successfully.The surface layer and the transition layer have been dissected mainly,and some important informa-tion has been obtained.The special treating process of the mirror surface is searched and discussed.

  3. Improving Processes of Mechanized Pulsed Arc Welding of Low-Frequency Range Variation of Mode Parameters

    Science.gov (United States)

    Saraev, Yu N.; Solodskiy, S. A.; Ulyanova, O. V.

    2016-04-01

    A new technology of low-frequency modulation of the arc current in MAG and MIG welding is presented. The technology provides control of thermal and crystallization processes, stabilizes the time of formation and crystallization of the weld pool. Conducting theoretical studies allowed formulating the basic criteria for obtaining strong permanent joints for high-duty structures, providing conditions for more equilibrium structure of the deposited metal and the smaller width of the HAZ. The stabilization of time of the formation and crystallization of the weld pool improves the formation of the weld and increases productivity in welding thin sheet metal.

  4. The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations.

    Science.gov (United States)

    Fonseca, Rodrigo Borges; Fernandes-Neto, Alfredo Julio; Correr-Sobrinho, Lourenco; Soares, Carlos Jose

    2007-10-01

    Removal of large amounts of sound tooth structure may result in a weakened restored tooth. Nevertheless, removal of tooth structure for cuspal coverage has been recommended to protect teeth restored with laboratory-processed composite resin (LPCR) from fracture. The purpose of this study was to evaluate the influence of different cavity preparation designs on fracture strength and modes of fracture of teeth restored with LPCR. Ninety anatomically similar human third mandibular molars were selected. There were 2 experimental factors, occlusal isthmus width (narrow versus wide) and cuspal coverage (inlay, 1-cusp onlay, 2-cusp onlay, and all-cusp onlay), and 1 control group that received no treatment, resulting in 9 groups (n=10). Indirect composite resin (SR Adoro) restorations were manufactured and adhesively cemented with Adper Single Bond 2 and Rely-X ARC. A compressive loading test (0.5 mm/min) was performed. The modes of fracture were classified according to 4 categories. One-way and 2-way ANOVA followed by Tukey-HSD test were used to statistically analyze the fracture load data (alpha =.05). The statistical analysis failed to show significant differences among restored groups but showed differences between these groups and the control group (P = .001). Two-way ANOVA failed to show any difference when considering the occlusal isthmus width alone (P = .98), cuspal coverage (P = .273), or the interaction between these factors (P = .972). Several teeth had fractures affecting a great amount of both restoration and tooth structure. This in vitro study showed restored teeth having similar fracture strength and fracture modes, suggesting that with the tested preparation designs, there is no advantage of cuspal coverage to protect LPCR restored teeth from fracture.

  5. The generalised second law and the black hole evaporation in an empty space as a nonequilibrium process

    CERN Document Server

    Saida, H

    2006-01-01

    When a black hole is in an empty space on which there is no matter field except that of the Hawking radiation (Hawking field), then the black hole evaporates and the entropy of the black hole decreases. The generalised second law guarantees the increase of the total entropy of the whole system which consists of the black hole and the Hawking field. That is, the increase of the entropy of the Hawking field is faster than the decrease of the black hole entropy. In naive sense, one may expect that the entropy increase of the Hawking field is due to the self-interaction among the composite particles of the Hawking field, and that the {\\it self}-relaxation of the Hawking field results in the entropy increase. Then, when one consider a non-self-interacting matter field as the Hawking field, it is obvious that the self-relaxation does not take place, and one may think that the total entropy does not increase. However, using nonequilibrium thermodynamics which has been developed recently, we find for the non-self-int...

  6. What is under the hump? Mass spectrometry based analysis of complex mixtures in processed food--lessons from the characterisation of black tea thearubigins, coffee melanoidines and caramel.

    Science.gov (United States)

    Kuhnert, Nikolai; Dairpoosh, Farnoosh; Yassin, Ghada; Golon, Agnieszka; Jaiswal, Rakesh

    2013-08-01

    In this contribution we review our work on the characterisation of processed food. We review novel methods and analysis strategies developed to account for the composition of extraordinarily complex materials such as black tea thearubigins, coffee melanoidines and thermally treated carbohydrates. Our methods are mainly based on modern mass spectrometry and are introduced and critically discussed. A series of novel previously unpublished data interpretation strategies are presented as well. Finally an evaluation of the insight obtained in the composition of selected processed foods is given discussing potential consequences for assessing beneficial and adverse health effects of processed food.

  7. Black Droplets

    CERN Document Server

    Santos, Jorge E

    2014-01-01

    Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.

  8. P-Code-Enhanced Encryption-Mode Processing of GPS Signals

    Science.gov (United States)

    Young, Lawrence; Meehan, Thomas; Thomas, Jess B.

    2003-01-01

    A method of processing signals in a Global Positioning System (GPS) receiver has been invented to enable the receiver to recover some of the information that is otherwise lost when GPS signals are encrypted at the transmitters. The need for this method arises because, at the option of the military, precision GPS code (P-code) is sometimes encrypted by a secret binary code, denoted the A code. Authorized users can recover the full signal with knowledge of the A-code. However, even in the absence of knowledge of the A-code, one can track the encrypted signal by use of an estimate of the A-code. The present invention is a method of making and using such an estimate. In comparison with prior such methods, this method makes it possible to recover more of the lost information and obtain greater accuracy.

  9. Designing a safer process to prevent retained surgical sponges: a healthcare failure mode and effect analysis.

    Science.gov (United States)

    Steelman, Victoria M; Cullen, Joseph J

    2011-08-01

    A retained surgical sponge is a sentinel event that can result in serious negative outcomes for the patient. Current standards rely on manual counting, the accuracy of which may be suspect, yet little is known about why counting fails to prevent retained sponges. The objectives of this project were to describe perioperative processes to prevent retained sponges after elective abdominal surgery; to identify potential failures; and to rate the causes, probability, and severity of these failures. A total of 57 potential failures were identified, associated with room preparation, the initial count, adding sponges, removing sponges, the first closing count, and the final closing count. The most frequently identified causes of failures included distraction, multitasking, not following procedure, and time pressure. Most of the failures are not likely to be affected by an educational intervention, so additional technological controls should be considered in efforts to improve safety.

  10. Distinctive arsenic(V) trapping modes by magnetite nanoparticles induced by different sorption processes.

    Science.gov (United States)

    Wang, Yuheng; Morin, Guillaume; Ona-Nguema, Georges; Juillot, Farid; Calas, Georges; Brown, Gordon E

    2011-09-01

    Arsenic sorption onto iron oxide spinels such as magnetite may contribute to arsenic immobilization at redox fronts in soils, sediments, and aquifers, as well as in putative remediation and water treatment technologies. We have investigated As(V) speciation resulting from different sorption processes on magnetite nanoparticles, including both adsorption and precipitation, using X-ray absorption fine structure (XAFS) spectroscopy and transmission electron microscopy (TEM). XAFS results suggest that AsO(4) tetrahedra form predominantly inner-sphere bidentate corner-sharing ((2)C) complexes and outer-sphere complexes on magnetite in the adsorption experiments. In the precipitation experiments, an increasing fraction of AsO(4) tetrahedra appears to be incorporated in clusters having a magnetite-like local structure with increasing As loading, the remaining fraction of As being adsorbed at the surface of magnetite particles. In the sample with the highest As loading (15.7 μmol/m(2)) XAFS data indicate that As(V) is fully incorporated in such clusters. Such processes help to explain the significantly higher arsenic uptake in precipitation samples compared to those generated in adsorption experiments. In addition, for the precipitation samples, TEM observations indicate the formation of amorphous coatings and small (~3 nm) nanoparticles associated with larger (~20-40 nm) magnetite nanoparticles, which are absent in the adsorption samples. These results suggest that As(V) could form complexes at the surfaces of the small nanoparticles and could be progressively incorporated in their structure with increasing As loading. These results provide some of the fundamental knowledge about As(V)-magnetite interactions that is essential for developing effective water treatment technologies for arsenic.

  11. Image processing using proper orthogonal and dynamic mode decompositions for the study of cavitation developing on a NACA0015 foil

    Science.gov (United States)

    Prothin, Sebastien; Billard, Jean-Yves; Djeridi, Henda

    2016-10-01

    The purpose of the present study is to get a better understanding of the hydrodynamic instabilities of sheet cavities which develop along solid walls. The main objective is to highlight the spatial and temporal behavior of such a cavity when it develops on a NACA0015 foil at high Reynolds number. Experimental results show a quasi-steady, periodic, bifurcation domain, with aperiodic cavity behavior corresponding to σ/2 α values of 5.75, 5, 4.3 and 3.58. Robust mathematical methods of signal postprocessing (proper orthogonal decomposition and dynamic mode decomposition) were applied in order to emphasize the spatio-temporal nature of the flow. These new techniques put in evidence the 3D effects due to the reentrant jet instabilities or due to propagating shock wave mechanism at the origin of the shedding process of the cavitation cloud.

  12. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases.

    Science.gov (United States)

    Lončar, Nikola; Šokarda Slavić, Marinela; Vujčić, Zoran; Božić, Nataša

    2015-10-23

    Bacillus licheniformis 9945a α-amylase is known as a potent enzyme for raw starch hydrolysis. In this paper, a mixed mode Nuvia cPrime™ resin is examined with the aim to improve the downstream processing of raw starch digesting amylases and exploit the hydrophobic patches on their surface. This resin combines hydrophobic interactions with cation exchange groups and as such the presence of salt facilitates hydrophobic interactions while the ion-exchange groups enable proper selectivity. α-Amylase was produced using an optimized fed-batch approach in a defined media and significant overexpression of 1.2 g L(-1) was achieved. This single step procedure enables simultaneous concentration, pigment removal as well as purification of amylase with yields of 96% directly from the fermentation broth.

  13. Black psyllium

    Science.gov (United States)

    Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...

  14. Biological treatment of high-pH and high-concentration black liquor of cotton pulp by an immediate aerobic-anaerobic-aerobic process.

    Science.gov (United States)

    Lihong, Miao; Furong, Li; Jinli, Wen

    2009-01-01

    In this study, an immediate aerobic-anaerobic-aerobic (O/A/O) biological process was established for the treatment of black liquor of cotton pulp and was tested by both laboratory-scale batch experiment and pilot-scale continuous experiment. The effects of the hydraulic retention time (HRT) were studied, as were the alkaliphilic bacteria number, the culturing temperature and the concentration of black liquor on COD (chemical oxygen demand) removal. The total COD (COD(tot)) removal rate of the novel O/A/O process, for a black liquor with influent COD(tot) over 8,000 mg/L and pH above 12.8, was 68.7+/-4% which is similar with that of the traditional acidic-anaerobic-aerobic process (64.9+/-3%). The first aerobic stage based on alkaliphilic bacteria was the crucial part of the process, which was responsible for decreasing the influent pH from above 12 to an acceptable level for the following treatment unit. The average generation time of the alkaliphilic bacteria in the black liquor was about 36 minutes at 40 degrees C in a batch aerobic activated sludge system. The efficiency of the first aerobic stage was affected greatly by the temperature. The COD(tot) removal at 55 degrees C was much lower in comparison with the COD(tot) removal at 45 degrees C or 50 degrees C. Both the laboratory-scale batch experiments and the pilot-scale continuous experiment showed that the COD(tot) removal rate could reach about 65% for original black liquor with a pH of about 13.0 and a COD of 18,000-22,000 mg/L by the immediate O/A/O process. The first aerobic stage gave an average COD(tot) removal of 45.5% at 35 degrees C (HRT = 72 h) at a volume loading rate of 3.4 kg COD m(-3) d(-1).

  15. Desert Pavement Process and Form: Modes and Scales of Landscape Stability and Instability in Arid Regions

    Science.gov (United States)

    Wells, Stephen G.; McFadden, Leslie D.; McDonald, Eric V.; Eppes, Martha C.; Young, Michael H.; Wood, Yvonne A.

    2014-05-01

    Desert pavements are recognized in arid landscapes around the world, developing via diminution of constructional/depositional landform relief and creating a 1-2 stone thick armor over a "stone free" layer. Surface exposure dating demonstrates that clasts forming the desert pavements are maintained at the land surface over hundreds of thousands of years, as aeolian fines are deposited on the land surface, transported into the underlying parent material and incorporated into accretionary soil horizons (e.g., the stone free or vesicular [Av] horizon). This surface armor provides long-term stability over extensive regions of the landscape. Over shorter time periods and at the landform-element scale, dynamic surficial processes (i.e., weathering, runoff) continue to modify the pavement form. Clast size reduction in comparison to underlying parent material, along with armoring and packing of clasts in pavements contribute to their persistence, and studies of crack orientations in pavement clasts indicate physical weathering and diminution of particle size are driven by diurnal solar insolation. Over geologic time, cracks form and propagate from tensile stresses related to temporal and spatial gradients in temperature that evolve and rotate in alignment with the sun's rays. Observed multimodal nature of crack orientations appear related to seasonally varying, latitude-dependent temperature fields resulting from solar angle and weather conditions. Surface properties and their underlying soil profiles vary across pavement surfaces, forming a landscape mosaic and controlling surface hydrology, ecosystem function and the ultimate life-cycle of arid landscapes. In areas of well-developed pavements, surface infiltration and soluble salt concentrations indicate that saturated hydraulic conductivity of Av horizons decline on progressively older alluvial fan surfaces. Field observations and measurements from well-developed desert pavement surfaces landforms also yield

  16. Evaluation of Energy Saving Operational Modes for Industrial Fracture Connected Processes on the Basis of Incubation Time Fracture Criterion

    Institute of Scientific and Technical Information of China (English)

    Bratov Vladimir; Petrov Yuri

    2008-01-01

    A problem for a central crack in a plate subjected to plane strain conditions is investigated.Mode Ⅰ crack loading is created by a dynamic pressure pulse applied at a large distance from the crack.It was found that for a certain combination of amplitude and duration of the pulse applied,the energy transmitted to the sample has a strongly marked minimum,meaning that with the pulse amplitude or duration moving away from the optimal values,minimum energy required for initiation of crack growth increases rapidly.The results obtained indicate a possibility to optimise energy consumption of different industrial processes connected with fracture.Much could be gained in,for example,drilling or rock pounding where energy input accounts for the largest part of the process cost.Presumably further investigation of the effect observed can make it possible to predict optimal energy saving parameters,i.e.frequency and amplitude of impacts,for industrial devices,e.g.bores,grinding machines,and hence significantly reduce the process cost.The prediction can be given based on the parameters of the media fractured (material parameters,prevalent crack length and orientation,etc.).

  17. Optimization the soda-AQ process for cellulose pulp production and energy content of black liquor from L. leucocephala K360.

    Science.gov (United States)

    Feria, M J; García, J C; Díaz, M J; Garrote, G; López, F

    2012-09-01

    A commercial variety of Leucaena leucocephala K360 was used for pulp production and papermaking employing the soda-anthraquinone process. Also, the chemical and energy contents of the resultant black liquors were determined to simultaneously optimize: pulp and paper production and energy generation. A process temperature of (185°C), an operating time of (120 min) and an active alkali concentration of (21%) provided sheets of paper with good strength (tensile index of 12.12 Nm/g, burst index of 0.38 kPa m(2)/g, tear index of 1.29 mN m(2)/g and a Kappa number of 20.5) and black liquor with a greater calorific value (14.1 MJ/kg) than that obtained with higher active alkali concentrations. However, reducing the active alkali concentration to a level in the low operation range led to less marked degradation of cellulose and allowed paper sheets with good properties to be obtained and energy to be optimally produced from the black liquor.

  18. 黑豆酸奶工艺条件的研究%Processing technology of black soybean yogurt

    Institute of Scientific and Technical Information of China (English)

    吴素萍

    2011-01-01

    Using milk and black soybean as raw material, the optimum technological parameters of black soybean yogurt were determined through single factor experiment and orthogonal experiment, which were as follows: ratio of milk to black soybean milk 7- 3, black soybean milk concentration 10%, sucrose addition 80g/L, compound stabilizer addition 1.5g/L, inoculum of mixed strains 50g/L and fermentation temperature 46CC. Under these conditions, the black soybeans yogurt had pure flavor of lactic acid, fine and smooth texture, no bubbles, appropriate hardness, few whey separation, and with bean fragrance.%以牛奶、黑豆为主要原料,通过单因素试验和正交试验,确定了黑豆酸奶的最佳工艺参数,即牛奶、豆汁比7:3,黑豆汁浓度10%,蔗糖添加量80g/L,复合稳定剂添加量1.5g/L,混合菌种接种量50g/L,发酵温度46℃.此条件下发酵的黑豆酸奶具有清香纯净的乳酸味,组织状态细腻,质地均匀,无气泡,硬度适中,少量乳清析出,具有黑豆特有的豆香味且酸甜适口.

  19. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  20. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  1. Decolorization of black liquor from bioethanol G2 production using iron oxide coating sands

    Science.gov (United States)

    Barlianti, Vera; Triwahyuni, Eka; Waluyo, Joko; Sari, Ajeng Arum

    2017-01-01

    Bioethanol G2 production using oil palm empty fruit bunch as raw material consists of four steps, namely pretreatment, hydrolysis, fermentation, and purification process. Pretreatment process generates black liquor that causes serious environmental pollution if it is released to the environment. The objective of this research is studying the ability of iron oxide coating sands to adsorb the color of black liquor. The iron oxide coating sands were synthesized from FeCl3.6H2O with quartz sands as support material. This research was conducted on batch mode using black liquor in various pH values. Result obtained that kind of iron oxide on quartz sands's surface was goethite. The result also indicated decreasing of color intensity of black liquor after adsorption process. This research supports local material utilization in environmental technology development to solve some environmental problems.

  2. Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  3. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  4. Angular Momentum Transport in Protoplanetary and Black Hole Accretion Disks: The Role of Parasitic Modes in the Saturation of MHD Turbulence

    DEFF Research Database (Denmark)

    Pessah, Martin Elias

    2010-01-01

    The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions i...

  5. Development of rubber mixing process mathematical model and synthesis of control correction algorithm by process temperature mode using an artificial neural network

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The article is devoted to the development of a correction control algorithm by temperature mode of a periodic rubber mixing process for JSC "Voronezh tire plant". The algorithm is designed to perform in the main controller a section of rubber mixing Siemens S7 CPU319F-3 PN/DP, which forms tasks for the local temperature controllers HESCH HE086 and Jumo dTRON304, operating by tempering stations. To compile the algorithm was performed a systematic analysis of rubber mixing process as an object of control and was developed a mathematical model of the process based on the heat balance equations describing the processes of heat transfer through the walls of technological devices, the change of coolant temperature and the temperature of the rubber compound mixing until discharge from the mixer chamber. Due to the complexity and nonlinearity of the control object – Rubber mixers and the availability of methods and a wide experience of this device control in an industrial environment, a correction algorithm is implemented on the basis of an artificial single-layer neural network and it provides the correction of tasks for local controllers on the cooling water temperature and air temperature in the workshop, which may vary considerably depending on the time of the year, and during prolonged operation of the equipment or its downtime. Tempering stations control is carried out by changing the flow of cold water from the cooler and on/off control of the heating elements. The analysis of the model experiments results and practical research at the main controller programming in the STEP 7 environment at the enterprise showed a decrease in the mixing time for different types of rubbers by reducing of heat transfer process control error.

  6. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  7. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  8. RISIKO RANTAI PASOK KAKAO DI INDONESIA DENGAN METODE ANALYTIC NETWORK PROCESS DAN FAILURE MODE EFFECT ANALYSIS TERINTEGRASI

    Directory of Open Access Journals (Sweden)

    Harumi Aini

    2015-03-01

    Full Text Available Cocoa is one of the plantation commodities whose role is quite important for the national economy of Indonesia. However, the cocoa industry faces several problems including the various risks involved in the cocoa supply chain. The aim of this study were: 1 Identify the various risks involved in the cocoa supply chain, 2 analyze and evaluate the supply chain actors members with the highest risk in the cocoa supply chain management, and 3 understand how to evaluate and mitigate the highest risk in the cocoa supply chain effectively and efficiently. An Integrated Analytic Network Process (ANP and Weighted Failure Mode Effect Analysis (WFMEA method will be used to determine and analyze the highest risk in the cocoa supply chain. The results of the priority of the members of the value chain in the cocoa supply chain risk management are the farmer (0.408 with the risk of having the greatest priority is production risk (0.221. Risk control could be done by improving the productivity and competitiveness of cocoa.Keywords: ANP, FMEA, cocoa, risk management, supply chainABSTRAKKakao merupakan salah satu komoditas perkebunan yang peranannya cukup penting bagi perekonomian Indonesia. Industri kakao menghadapi beberapa masalah termasuk berbagai risiko yang timbul dalam rantai pasokan kakao. Tujuan penelitian ini adalah 1 mengidentifikasi macam-macam risiko pada rantai pasok kakao, 2 menganalisis dan mengevaluasi anggota pelaku rantai pasok dengan risiko tertinggi dalam manajemen rantai pasok kakao, dan 3 mengetahui cara mengevaluasi dan memitigasi risiko tertinggi pada rantai pasok kakao dengan efektif dan efisien. Metode Analytic Network Process (ANP dan Weighted Failure Mode Effect Analysis (WFMEA terintegrasi digunakan untuk mengetahui dan menganalisis risiko tertinggi dalam rantai pasokan kakao. Hasil prioritas anggota pelaku rantai pasok dalam manajemen risiko rantai pasokan kakao petani (0,408 dengan risiko yang memiliki prioritas terbesar adalah

  9. Processes of microstructural evolution during high-energy mechanical treatment of ZnO and black NiO powder mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kakazey, M., E-mail: kakazey@hotmail.com [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Vlasova, M. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Vorobiev, Y. [Unidad Querétaro del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Querétaro (Mexico); Leon, I. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Cabecera Gonzalez, M. [Facultad de Ciencias Químicas e Ingeniería, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Chávez Urbiola, Edgar Arturo [Unidad Querétaro del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Querétaro (Mexico)

    2014-11-15

    Kinetics of microstructural evolution in ZnO and NiO black powder mixture during prolonged high-energy mechanical ball milling were investigated by Scanning Electron Microscopy, Laser Particle Sizer, X-ray diffraction, Electron Paramagnetic Resonance, Fourier Transform Infrared Spectroscopy and UV–vis Diffuse Reflection methods. The use of these methods allows us to control the macrostructural processes (ZnO particles and NiO granules grinding, the deagglomeration and “secondary agglomeration”), the microstructural processes (formation and annealing of different native defects in ZnO [V{sub Zn}{sup −}:Zn{sub i}{sup 0} (I), V{sub Zn}{sup −} (II), and (V{sub Zn}{sup −}){sub 2}{sup −} (III) centers] and NiO black) and the mechanothermal processes in samples. This allows to establish the relationship between microstructural evolution and the properties of the samples depending on the duration of the mechanical processing.

  10. Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes

    Science.gov (United States)

    Qian, Xi-Yuan; Gu, Gao-Feng; Zhou, Wei-Xing

    2011-11-01

    Detrended fluctuation analysis (DFA) is a simple but very efficient method for investigating the power-law long-term correlations of non-stationary time series, in which a detrending step is necessary to obtain the local fluctuations at different timescales. We propose to determine the local trends through empirical mode decomposition (EMD) and perform the detrending operation by removing the EMD-based local trends, which gives an EMD-based DFA method. Similarly, we also propose a modified multifractal DFA algorithm, called an EMD-based MFDFA. The performance of the EMD-based DFA and MFDFA methods is assessed with extensive numerical experiments based on fractional Brownian motion and multiplicative cascading process. We find that the EMD-based DFA method performs better than the classic DFA method in the determination of the Hurst index when the time series is strongly anticorrelated and the EMD-based MFDFA method outperforms the traditional MFDFA method when the moment order q of the detrended fluctuations is positive. We apply the EMD-based MFDFA to the 1 min data of Shanghai Stock Exchange Composite index, and the presence of multifractality is confirmed. We also analyze the daily Austrian electricity prices and confirm its anti-persistence.

  11. Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways

    Institute of Scientific and Technical Information of China (English)

    Meng Qingbin; Han Lijun; Xiao Yu; Li Hao; Wen Shengyong; Zhang Jian

    2016-01-01

    Based on the safety coefficient method, which assigns rock failure criteria to calculate the rock mass unit, the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the frac-tured zone in the roadway. This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway. Using the single factor and multi-factor orthogonal test method, the evolution law of roadway surrounding rock displacements, plastic zone and stress distribution under different conditions is studied. It reveals the roadway surrounding rock burst evolution process, and obtains five kinds of failure modes in deep soft rock roadway. Using the fuzzy mathematics clustering analysis method, the deep soft surrounding rock failure model in Zhujixi mine can be classified and pat-terns recognized. Compared to the identification results and the results detected by geological radar of surrounding rock loose circle, the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways.

  12. The development of processing technology for black tea-salty sweet-biscuits%红茶咸香饼干加工工艺的研制

    Institute of Scientific and Technical Information of China (English)

    谢朝敏; 温立香; 王淋靓; 任二芳; 罗小杰; 艾静汶; 叶雪英

    2015-01-01

    研究红茶咸香饼干加工工艺。分别通过单因素实验确定了红茶的制备工艺和红茶的冲泡工艺,红茶制备采用鲜叶→萎凋(室温)→机械揉捻→轻发酵(35℃×3h,湿度90%)→烘干的制备工艺方案;红茶的冲泡采用洗茶→纯水仪过滤水冲泡(95℃×5min)→茶叶与茶汤分离→出茶的冲泡方案。利用正交实验确定了红茶咸香饼干的最佳配方为:低筋面粉180g、盐2g、泡打粉1.5g、黄油45g、红茶汤45g、全蛋液30g。%We researched the processing technology of black tea-salty sweet-biscuits.The preparation and brewing process of black tea were determined by single factor experiment and the preparation process program was that, fresh leaves→withering (room temperature)→mechanical rolling→light fermentation (35℃×3h,humidity 90%)→drying.The brewing process was that washing tea→brewed by filtered water of pure water meter(95℃×5min)→separating the tea and tea soup.And then,the best formula of black tea-salty sweet-biscuits was confirmed by an orthogonal experiment, the best technical skill was that low-gluten flour 180g, salt 2g, baking powder 1.5g, butter 45g,black tea soup 45g, whole egg 30g.

  13. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    Science.gov (United States)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  14. Anticipatory processes in brain state switching - evidence from a novel cued-switching task implicating default mode and salience networks.

    Science.gov (United States)

    Sidlauskaite, Justina; Wiersema, Jan R; Roeyers, Herbert; Krebs, Ruth M; Vassena, Eliana; Fias, Wim; Brass, Marcel; Achten, Eric; Sonuga-Barke, Edmund

    2014-09-01

    The default mode network (DMN) is the core brain system supporting internally oriented cognition. The ability to attenuate the DMN when switching to externally oriented processing is a prerequisite for effective performance and adaptive self-regulation. Right anterior insula (rAI), a core hub of the salience network (SN), has been proposed to control the switching from DMN to task-relevant brain networks. Little is currently known about the extent of anticipatory processes subserved by DMN and SN during switching. We investigated anticipatory DMN and SN modulation using a novel cued-switching task of between-state (rest-to-task/task-to-rest) and within-state (task-to-task) transitions. Twenty healthy adults performed the task implemented in an event-related functional magnetic resonance imaging (fMRI) design. Increases in activity were observed in the DMN regions in response to cues signalling upcoming rest. DMN attenuation was observed for rest-to-task switch cues. Obversely, DMN was up-regulated by task-to-rest cues. The strongest rAI response was observed to rest-to-task switch cues. Task-to-task switch cues elicited smaller rAI activation, whereas no significant rAI activation occurred for task-to-rest switches. Our data provide the first evidence that DMN modulation occurs rapidly and can be elicited by short duration cues signalling rest- and task-related state switches. The role of rAI appears to be limited to certain switch types - those implicating transition from a resting state and to tasks involving active cognitive engagement.

  15. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life.

  16. Philosophical Issues of Black Holes

    CERN Document Server

    Romero, Gustavo E

    2014-01-01

    Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.

  17. How to tell a gravastar from a black hole

    CERN Document Server

    Chirenti, Cecilia B M H

    2007-01-01

    Gravastars have been recently proposed as potential alternatives to explain the astrophysical phenomenology traditionally associated to black holes, raising the question of whether the two objects can be distinguished at all. Leaving aside the debate about the processes that would lead to the formation of a gravastar and the astronomical evidence in their support, we here address two basic questions: Is a gravastar stable against generic perturbations? If stable, can an observer distinguish it from a black hole of the same mass? To answer these questions we construct a general class of gravastars and determine the conditions they must satisfy in order to exist as equilibrium solutions of the Einstein equations. For such models we perform a systematic stability analysis against axial-perturbations, computing the real and imaginary parts of the eigenfrequencies. Overall, we find that gravastars are stable to axial perturbations, but also that their quasi-normal modes differ from those of a black hole of the sam...

  18. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  19. Can Black Hole Relax Unitarily?

    OpenAIRE

    Solodukhin, Sergey N.

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the...

  20. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  1. The AMÉLIE project: failure mode, effects and criticality analysis: a model to evaluate the nurse medication administration process on the floor.

    Science.gov (United States)

    Nguyen, Christina; Côté, Justine; Lebel, Denis; Caron, Elaine; Genest, Christine; Mallet, Monia; Phan, Véronique; Bussières, Jean-François

    2013-02-01

    The objective of this article was to critically evaluate the causes of adverse drug events during the nurse medication administration process in paediatric care units in order to identify and prioritize interventions that need to be implemented. This is a failure mode, effects and criticality analysis (FMECA) study. A multidisciplinary committee composed of nurses, pharmacists, physicians and risk managers evaluated through consensus the process of administering medications at the Centre hospitalier universitaire de Sainte-Justine. By mapping the process, all the failure modes were identified and associated with at least one cause each. Using a summary grid, each failure mode was evaluated by rating frequency (from 1 to 9), likelihood of failure detection (from 0 to 100%) and severity (from 1 to 9) using adapted versions of already published scales. A 10-member committee was set up, and it met eight times between January and April 2010. In the two specialized paediatric units selected (n = 38 beds), an average number of approximately 20 000 drug doses was administered monthly from about 400 non-proprietary names. Through consensus, the committee identified 16 processes and 53 failure modes. While frequency and severity were based on perceptions that could be objectivized with local data and scientific documentation, the likelihood of detection was mainly based on individual perception. FMECA is a useful approach to improve the medication process. © 2011 Blackwell Publishing Ltd.

  2. The Potentials for Integration of Black Liquor Gasification with Gas Fired Paper Drying Processes - A Study from the Energy Cost Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, Kristian; Stenstroem, Stig [Lund Univ. (Sweden). Dept. of Chemical Engineering

    2006-09-15

    To improve the process economics for gas fired paper drying processes, such as the air impingement dryer or the Yankee dryer, alternative gaseous fuels to replace natural gas and propane should be considered. This gaseous fuel should preferably be renewable and suitable to fire a gas turbine cycle for combined heat and power generation. One such fuel could be the product gas from black liquor gasification. In this work the possibilities for integration of the black liquor gasification process with the paper drying process were assessed based on overall energy costs for an integrated pulp and paper model mill, using computer modelling. The model mill included both the pulp and paper producing processes, and the paper mill included two paper machines; one conventional multicylinder dryer producing fine paper and one gas fired Yankee dryer producing tissue. Three different configurations of the combined heat and power plant were evaluated at a fixed pulp and paper production rate. The study was performed by computer modelling, using a modular simulation tool developed for energy use and cost analysis for the pulp and paper industry in the software entitled Extend. From this study it can be concluded that the product gas from black liquor gasification is a possible fuel to be used in gas fired paper drying processes, such as the Yankee dryer. The thermodynamic properties of the syngas from oxygen-blown, high-temperature gasifiers are very similar to those of natural gas and propane. In addition to being a renewable fuel, the use of syngas instead of fossil fuels would lead to reduced energy costs for the mill. In the case of installing a small gasification plant for production of enough syngas to replace the natural gas in the Yankee dryer hood the total energy costs would be reduced by approximately 10 MSEK/year. This would probably not be sufficient to justify the investment cost for the gasification process, insofar as the installation not simultaneously increases

  3. Numerical investigations with a hybrid isentropic-sigma model. I - Normal-mode characteristics. II - The inclusion of moist processes

    Science.gov (United States)

    Pierce, R. B.; Johnson, Donald R.; Reames, Fred M.; Zapotocny, Tom H.; Wolf, Bart J.

    1991-01-01

    The normal-mode characteristics of baroclinically amplifying disturbances were numerically investigated in a series of adiabatic simulations by a hybrid isentropic-sigma model, demonstrating the effect of coupling an isentropic-coordinate free atmospheric domain with a sigma-coordinate PBL on the normal-mode characteristics. Next, the normal-mode model was modified by including a transport equation for water vapor and adiabatic heating by condensation. Simulations with and without a hydrological component showed that the overall effect of latent heat release is to markedly enhance cyclogenesis and frontogenesis.

  4. Polarization Behavior Across Profile Modes For B0329+54: What Consistent Non-RVM Polarization Tells About the Emission Processes

    Science.gov (United States)

    Brinkman-Traverse, Casey; Rankin, Joanna M.; Mitra, Dipanjan

    2017-01-01

    In this paper, we analyze the quirky polarization behavior across different profile modes for the pulsar B0329+54. We have multi-frequency observations in both the normal and abnormal profile modes, and have identified a non-RVM polarization kink in the core component of the emission. Mitra et al initially identified this kink in the normal profile mode of the pulsar in 2007, and a mirror analysis has been done here for abnormal profile modes at three different frequencies. This kink is intensity dependent, showing up only in the abberated/retarded high intensity pulses, and is frequency independent. This parallel between profile modes shows that the same geometric phenomenon—a height dependent amplifier—is responsible for the non-RVM polarization behavior in each. The question then arises: what can be the source of the profile change, which does not change the polarization characteristics of the pulsar. This pulsar gives us a unique opportunity to study the process of pulsar emission by showing what cannot be responsible for switches in profile mode, and thus profile shape.

  5. Ethno-Demographic Processes in the North-East Black Sea Area in the 19th – Early 21th Centuries (through the Example of Greater Sochi

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Cherkasov

    2015-06-01

    Full Text Available This article examines ethno-demographic processes in the north-east Black Sea area, more specifically the territory of Greater Sochi, in the 19th – early 21th centuries. In writing the article, the authors have relied on archive materials from the archives department of the administration of the city of Novorossiysk and the archives department of the administration of the city of Sochi. The authors have consulted reference pre-revolution literature, Soviet-era and present-day population censuses, as well as the findings of present-day research studies. The methodological basis of this study are the principles of historicism, objectivity, and systemicity, which helps to get an insight into the general patterns and regional peculiarities in the demographic development of the major ethnicities in the north-east Black Sea area in the 19th-20th centuries. The authors touch upon the process of colonization of the territory and its ethnic composition. In the end, the authors come to the conclusion that the ethno-demographic picture of Greater Sochi had been forming in a complicated fashion. As a consequence, in the second half of the 19th century, following the Caucasian War, the territory had to be repopulated. Resettlement flows from different locations in the Russian Empire and overseas had formed by 1917 an ethno-picture that featured Russians and Armenians as two principal ethnicities. The authors note that this picture has not changed in a major way to this day.

  6. Develop a Framework of Creative Thinking Teaching Mode for RN-BSN Students on the Basis of the Creative Process of Clinical Nurses in Taiwan

    Science.gov (United States)

    Ku, Ya-Lie; Kuo, Chien-Lin

    2016-01-01

    The purpose of this study was to develop a framework of creative thinking teaching mode for RN-BSN students on the basis of the creative process of clinical nurses in Taiwan. Purposive samples have earned creativity awards recruited from the medical, surgical, maternity, paediatric, community and psychiatric departments in Taiwan. Semi-structured…

  7. Develop a Framework of Creative Thinking Teaching Mode for RN-BSN Students on the Basis of the Creative Process of Clinical Nurses in Taiwan

    Science.gov (United States)

    Ku, Ya-Lie; Kuo, Chien-Lin

    2016-01-01

    The purpose of this study was to develop a framework of creative thinking teaching mode for RN-BSN students on the basis of the creative process of clinical nurses in Taiwan. Purposive samples have earned creativity awards recruited from the medical, surgical, maternity, paediatric, community and psychiatric departments in Taiwan. Semi-structured…

  8. The Impact of Using Representation Modes within Writing to Learn Activities on the Scientific Process Skills of the Fifth Grade Students

    Science.gov (United States)

    Memis, Esra Kabatas; Öz, Muhittin

    2017-01-01

    The purpose of this research is to determine the impact of using multimodal representation modes in the writing practices done by the fifth grade students on their scientific process skills. A combined research method which had both quantitative and qualitative characteristics was used in the research and the groups were chosen as control and…

  9. Quasi-Normal Modes and Gravitational Wave Astronomy

    CERN Document Server

    Ferrari, V

    2007-01-01

    We review the main results obtained in the literature on quasi-normal modes of compact stars and black holes, in the light of recent exciting developments of gravitational wave detectors. Quasi-normal modes are a fundamental feature of the gravitational signal emitted by compact objects in many astrophysical processes; we will show that their eigenfrequencies encode interesting information on the nature and on the inner structure of the emitting source and we will discuss whether we are ready for a gravitational wave asteroseismology.

  10. Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing

    OpenAIRE

    2012-01-01

    The distinction between convergent and divergent cognitive processes given by Guilford (1956) had a strong influence on the empirical research on creative thinking. Neuroscientific studies typically find higher event-related synchronization in the EEG alpha rhythm for individuals engaged in creative ideation tasks compared to intelligence-related tasks. This study examined, whether these neurophysiological effects can also be found when both cognitive processing modes (convergent vs. divergen...

  11. Superradiance by mini black holes with mirror

    OpenAIRE

    Lee, Jong-Phil

    2011-01-01

    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...

  12. Quasi-Normal Modes from Non-Commutative Matrix Dynamics

    CERN Document Server

    Aprile, Francesco

    2016-01-01

    We explore the connection between the process of relaxation in the BMN matrix model and the physics of black holes in AdS/CFT. Focusing on Dyson-fluid solutions of the matrix model, we perform numerical simulations of the real time dynamics of the system. By quenching the equilibrium distribution we study the quasi-normal oscillations of scalar single trace observables, we isolate the lowest quasi-normal mode, and we determine its frequencies as function of the energy. Considering the BMN matrix model as a truncation of $\\mathcal{N}=4$ SYM, we also compute the frequencies of the quasi-normal modes of the dual scalar fields in the AdS$_5$-Schwarzschild background. We compare the results of the black hole and the classical Dyson fluid, and we point out a correspondence between the two descriptions.

  13. Novel process of fermenting black soybean [Glycine max (L.) Merrill] yogurt with dramatically reduced flatulence-causing oligosaccharides but enriched soy phytoalexins.

    Science.gov (United States)

    Feng, Shengbao; Saw, Chin Lee; Lee, Yuan Kun; Huang, Dejian

    2008-11-12

    Black soybeans [Glycine max (L.) Merrill] were germinated under fungal stress with food grade R. oligosporus for 3 days and were homogenized and fermented with lactic acid bacteria (LAB) to produce soy yogurt. Fungal stress led to the generation of oxylipins [oxooctadecadienoic acids (KODES) isomers and their respective glyceryl esters] and glyceollins--a type of phytoalexins unique to soybeans. In soy yogurt, the concentrations of total KODES and total glyceollins were 0.678 mg/g (dry matter) and 0.953 mg/g, respectively. The concentrations of other isoflavones (mainly genistein and daidzein and their derivatives) in soy yogurt remained largely unchanged after the processes compared with the control soy yogurt. Germination of black soybean under fungal stress for 3 days was sufficient to reduce stachyose and raffinose (which cause flatulence) by 92 and 80%, respectively. With a pH value of 4.42, a lactic acid content of 0.262%, and a maximum viable cell count of 2.1 x 10 (8) CFU/mL in the final soy yogurt, soy milk from germinated soybeans under fungal stress was concluded to be a suitable medium for yogurt-making. The resulting soy yogurt had significantly altered micronutrient profiles with significantly reduced oligosaccharides and enriched glyceollins.

  14. Linear dilaton black holes

    CERN Document Server

    Clément, G; Leygnac, C; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric

    2003-01-01

    We present new solutions to Einstein-Maxwell-dilaton-axion (EMDA) gravity in four dimensions describing black holes which asymptote to the linear dilaton background. In the non-rotating case they can be obtained as the limiting geometry of dilaton black holes. The rotating solutions (possibly endowed with a NUT parameter) are constructed using a generating technique based on the Sp(4,R) duality of the EMDA system. In a certain limit (with no event horizon present) our rotating solutions coincide with supersymmetric Israel-Wilson-Perjes type dilaton-axion solutions. In presence of an event horizon supersymmetry is broken. The temperature of the static black holes is constant, and their mass does not depend on it, so the heat capacity is zero. We investigate geodesics and wave propagation in these spacetimes and find superradiance in the rotating case. Because of the non-asymptotically flat nature of the geometry, certain modes are reflected from infinity, in particular, all superradiant modes are confined. Thi...

  15. Black hole's quantum levels

    CERN Document Server

    Corda, Christian

    2012-01-01

    By introducing a black hole's effective temperature, which takes into account both of the non-strictly thermal and non-strictly continuous characters of Hawking radiation, we recently re-analyzed black hole's quasi-normal modes and interpreted them naturally in terms of quantum levels for emissions of particles. After a careful review of previous results, in this work we improve such an analysis by removing an approximation that we implicitly used in our previous work and by obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its sub-leading corrections and the number of micro-states, i.e. quantities which are fundamental to realize unitary quantum gravity theory, like functions of the quantum overtone number e (emission) and, in turn,of the black hole's quantum excited level. Another approximation concerning the maximum value of e is also corrected. We also consider quasi-normal modes in terms ...

  16. Black holes and gravitational waves in models of minicharged dark matter

    CERN Document Server

    Cardoso, Vitor; Pani, Paolo; Ferrari, Valeria

    2016-01-01

    In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden $U(1)$ symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole's charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the final black hole's charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burs...

  17. Black tea

    Science.gov (United States)

    ... combination.Talk with your health provider.Birth control pills (Contraceptive drugs)Black tea contains caffeine. The body breaks down caffeine to get rid of it. Birth control pills can decrease how quickly the body breaks down ...

  18. Edge phonons in black phosphorus

    Science.gov (United States)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  19. Video signal processing system uses gated current mode switches to perform high speed multiplication and digital-to-analog conversion

    Science.gov (United States)

    Gilliland, M. G.; Rougelot, R. S.; Schumaker, R. A.

    1966-01-01

    Video signal processor uses special-purpose integrated circuits with nonsaturating current mode switching to accept texture and color information from a digital computer in a visual spaceflight simulator and to combine these, for display on color CRT with analog information concerning fading.

  20. Avoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs.

    Directory of Open Access Journals (Sweden)

    Christian Jungreuthmayer

    Full Text Available Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation dramatically reduces the solution space and allows the presented algorithm to constantly eliminate biologically infeasible modes at an early stage of the computation procedure. Thereby, computational costs, such as runtime, memory usage, and disk space, are extremely reduced. Moreover, we show that the application of transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the presented algorithm pushes the size of metabolic networks that can be studied by elementary flux modes to new and much higher limits without the loss of predictive quality. This makes unbiased, system-wide predictions in large scale metabolic networks possible without resorting to any optimization principle.

  1. Persistent Operational Synchrony within Brain Default-Mode Network and Self-Processing Operations in Healthy Subjects

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.

    2011-01-01

    Based on the theoretical analysis of self-consciousness concepts, we hypothesized that the spatio-temporal pattern of functional connectivity within the default-mode network (DMN) should persist unchanged across a variety of different cognitive tasks or acts, thus being task-unrelated. This supposition is in contrast with current understanding…

  2. Thermal BEC black holes

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2015-01-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...

  3. Application of ISO22000, failure mode, and effect analysis (FMEA) cause and effect diagrams and pareto in conjunction with HACCP and risk assessment for processing of pastry products.

    Science.gov (United States)

    Varzakas, Theodoros H

    2011-09-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative.

  4. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  5. Processing of laser Doppler flowmetry signals from healthy subjects and patients with varicose veins: Information categorisation approach based on intrinsic mode functions and entropy computation.

    Science.gov (United States)

    Humeau-Heurtier, Anne; Klonizakis, Markos

    2015-06-01

    The diagnosis of pathologies from signal processing approaches has shown to be of importance. This can provide noninvasive information at the earliest stage. In this work, the problem of categorising - in a quantifiable manner - information content of microvascular blood flow signals recorded in healthy participants and patients with varicose veins is addressed. For this purpose, laser Doppler flowmetry (LDF) signals - that reflect microvascular blood flow - recorded both at rest and after acetylcholine (ACh) stimulation (an endothelial-dependent vasodilator) are analyzed. Each signal is processed with the empirical mode decomposition (EMD) to obtain its intrinsic mode functions (IMFs). An entropy measure of each IMFs is then computed. The results show that IMFs of LDF signals have different complexity for different physiologic/pathological states. This is true both at rest and after ACh stimulation. Thus, the proposed framework (EMD + entropy computation) may be used to gain a noninvasive understanding of LDF signals in patients with microvascular dysfunctions.

  6. The detection of Quasinormal Mode of Pop III Binary Black Hole merger with final $M \\sim 60M_\\odot$ and $a/M \\sim 0.7$ would confirm the strong gravity space-time around $\\sim 2M$ which is only $\\sim 1.17$ times the event horizon radius

    CERN Document Server

    Nakamura, Takashi; Tanaka, Takahiro

    2016-01-01

    Recent population synthesis simulations of Pop III stars suggest that the event rate of coalescence of $\\sim 30M_\\odot$--$30M_\\odot$ binary black holes can be high enough for the detection by the second generation gravitational wave detectors. The frequencies of chirp signal as well as quasinormal modes are near the best sensitivity of these detectors so that it would be possible to confirm Einstein's general relativity. Using the WKB method, we suggest that for the typical value of spin parameter $a/M\\sim 0.7$ from numerical relativity results of the coalescence of binary black holes, the strong gravity of the black hole space-time at around the radius $2M$, which is just $\\sim 1.17$ times the event horizon radius, would be confirmed as predicted by general relativity. The expected event rate with the signal-to-noise ratio $> 35$ needed for the determination of the quasinormal mode frequency with the meaningful accuracy is $0.17$--$7.2$~${\\rm events~yr^{-1}~(SFR_p/(10^{-2.5}~M_\\odot~yr^{-1}~Mpc^{-3}))} \\cdot...

  7. TECHNOLOGIСAL MODES OF LASER PROCESSING AND THEIR INFLUENCE ON PHYSICAL AND MECHANICAL PROPERTIES OF Fe–Cr–B–Si COATINGS

    Directory of Open Access Journals (Sweden)

    O. V. Diachenko

    2014-01-01

    Full Text Available The paper investigates an influence of laser processing modes pertaining to gas-thermal coatings of iron- based powders after melting with modifying coatings on their micro-hardness, microstructure and porosity. Conditions for obtaining of coatings with the most uniform distribution of alloying substances have been revealed in the paper. The paper considers characteristics of porosity changes in Fe-Cr-B-Si coatings due to speed of movement, diameter and temperature of a laser beam spot.

  8. Black hole collapse and democratic models

    Science.gov (United States)

    Jansen, Aron; Magán, Javier M.

    2016-11-01

    We study the evolution of black hole entropy and temperature in collapse scenarios in asymptotically anti-de Sitter spacetime, finding three generic lessons. First, entropy evolution is extensive. Second, at large times, entropy and temperature ring with twice the frequency of the lowest quasinormal mode. Third, the entropy oscillations saturate black hole area theorems in general relativity. The first two features are characteristic of entanglement dynamics in "democratic" models. Solely based on general relativity and the Bekenstein-Hawking entropy formula, our results point to democratic models as microscopic theories of black holes. The third feature can be taken as a prediction for microscopic models of black hole physics.

  9. Assessment of the Effects of Azimuthal Mode Number Perturbations upon the Implosion Processes of Fluids in Cylinders

    CERN Document Server

    Lindstrom, Michael

    2016-01-01

    Fluid instabilities arise in a variety of contexts and are often unwanted results of engineering imperfections. In one particular model for a magnetized target fusion reactor, a pressure wave is propagated in a cylindrical annulus comprised of a dense fluid before impinging upon a plasma and imploding it. Part of the success of the apparatus is a function of how axially-symmetric the final pressure pulse is upon impacting the plasma. We study a simple model for the implosion of the system to study how imperfections in the pressure imparted on the outer circumference grow due to geometric focusing. Our methodology entails linearizing the compressible Euler equations for mass and momentum conservation about a cylindrically symmetric problem and analyzing the perturbed profiles at different mode numbers. The linearized system gives rise to singular shocks and through analyzing the perturbation profiles at various times, we infer that high mode numbers are dampened through the propagation. We also study the Linea...

  10. Shear Fracture of Dual Phase AHSS in the Process of Stamping: Macroscopic Failure Mode and Micro-level Metallographical Observation

    Science.gov (United States)

    Wang, Wurong; Wei, Xicheng; Yang, Jun; Shi, Gang

    2011-08-01

    Due to its excellent strength and formability combinations, dual phase (DP) steels offer the potential to improve the vehicle crashworthiness performance without increasing car body weight and have been increasingly used into new vehicles. However, a new type of crack mode termed as shear fracture is accompanied with the application of these high strength DP steel sheets. With the cup drawing experiment to identify the limit drawing ratio (LDR) of three DP AHSS with strength level from 600 MPa to 1000 MPa, the study compared and categorized the macroscopic failure mode of these three types of materials. The metallographical observation along the direction of crack was conducted for the DP steels to discover the micro-level propagation mechanism of the fracture.

  11. Dumb holes: analogues for black holes.

    Science.gov (United States)

    Unruh, W G

    2008-08-28

    The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.

  12. Resource Letter BH-1: Black Holes.

    Science.gov (United States)

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  13. The yeast telomerase RNA, TLC1, participates in two distinct modes of TLC1-TLC1 association processes in vivo

    OpenAIRE

    Tet Matsuguchi; Elizabeth Blackburn

    2016-01-01

    Telomerase core enzyme minimally consists of the telomerase reverse transcriptase domain-containing protein (Est2 in budding yeast S. cerevisiae) and telomerase RNA, which contains the template specifying the telomeric repeat sequence synthesized. Here we report that in vivo, a fraction of S. cerevisiae telomerase RNA (TLC1) molecules form complexes containing at least two molecules of TLC1, via two separable modes: one requiring a sequence in the 3′ region of the immature TLC1 precursor and ...

  14. Application of Failure Mode and Effect Analysis (FMEA) and cause and effect analysis in conjunction with ISO 22000 to a snails (Helix aspersa) processing plant; A case study.

    Science.gov (United States)

    Arvanitoyannis, Ioannis S; Varzakas, Theodoros H

    2009-08-01

    Failure Mode and Effect Analysis (FMEA) has been applied for the risk assessment of snails manufacturing. A tentative approach of FMEA application to the snails industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (snails processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over snails processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Sterilization of tins, bioaccumulation of heavy metals, packaging of shells and poisonous mushrooms, were the processes identified as the ones with the highest RPN (280, 240, 147, 144, respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a snails processing industry is considered imperative.

  15. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  16. Integration of Value Stream Map and Healthcare Failure Mode and Effect Analysis into Six Sigma Methodology to Improve Process of Surgical Specimen Handling

    Directory of Open Access Journals (Sweden)

    Sheng-Hui Hung

    2015-01-01

    Full Text Available Specimen handling is a critical patient safety issue. Problematic handling process, such as misidentification (of patients, surgical site, and specimen counts, specimen loss, or improper specimen preparation can lead to serious patient harms and lawsuits. Value stream map (VSM is a tool used to find out non-value-added works, enhance the quality, and reduce the cost of the studied process. On the other hand, healthcare failure mode and effect analysis (HFMEA is now frequently employed to avoid possible medication errors in healthcare process. Both of them have a goal similar to Six Sigma methodology for process improvement. This study proposes a model that integrates VSM and HFMEA into the framework, which mainly consists of define, measure, analyze, improve, and control (DMAIC, of Six Sigma. A Six Sigma project for improving the process of surgical specimen handling in a hospital was conducted to demonstrate the effectiveness of the proposed model.

  17. Integration of Value Stream Map and Healthcare Failure Mode and Effect Analysis into Six Sigma Methodology to Improve Process of Surgical Specimen Handling.

    Science.gov (United States)

    Hung, Sheng-Hui; Wang, Pa-Chun; Lin, Hung-Chun; Chen, Hung-Ying; Su, Chao-Ton

    2015-01-01

    Specimen handling is a critical patient safety issue. Problematic handling process, such as misidentification (of patients, surgical site, and specimen counts), specimen loss, or improper specimen preparation can lead to serious patient harms and lawsuits. Value stream map (VSM) is a tool used to find out non-value-added works, enhance the quality, and reduce the cost of the studied process. On the other hand, healthcare failure mode and effect analysis (HFMEA) is now frequently employed to avoid possible medication errors in healthcare process. Both of them have a goal similar to Six Sigma methodology for process improvement. This study proposes a model that integrates VSM and HFMEA into the framework, which mainly consists of define, measure, analyze, improve, and control (DMAIC), of Six Sigma. A Six Sigma project for improving the process of surgical specimen handling in a hospital was conducted to demonstrate the effectiveness of the proposed model.

  18. Loop quantum gravity and black hole entropy quantization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity,the minimum horizon area gap is obtained.Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization.The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.

  19. Loop quantum gravity and black hole entropy quantization

    Institute of Scientific and Technical Information of China (English)

    LI ChuanAn; JIANG JiJian; SU JiuQing

    2009-01-01

    Using the spin networks and the asymptotic quasinormal mode frequencies of black holes given by loop quantum gravity, the minimum horizon area gap is obtained. Then the quantum area spectrum of black holes is derived and the black hole entropy is a realized quantization. The results show that the black hole entropy given by loop quantum gravity is in full accord with the Bekenstein-Hawking entropy with a suitable Immirzi.

  20. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  1. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  2. Black Hole Formation at the Correspondence Point

    CERN Document Server

    Iizuka, Norihiro; Roy, Shubho; Sarkar, Debajyoti

    2013-01-01

    We study the process of bound state formation in a D-brane collision. We consider two mechanisms for bound state formation. The first, operative at weak coupling in the worldvolume gauge theory, is pair creation of W-bosons. The second, operative at strong coupling, corresponds to formation of a large black hole in the dual supergravity. These two processes agree qualitatively at intermediate coupling, in accord with the correspondence principle of Horowitz and Polchinski. We show that the size of the bound state and timescale for formation of a bound state agree at the correspondence point. The timescale involves matching a parametric resonance in the gauge theory to a quasinormal mode in supergravity.

  3. Modes of the Kerr geometry with purely imaginary frequencies

    CERN Document Server

    Cook, Gregory B

    2016-01-01

    In this paper, we examine the behavior of modes of the Kerr geometry when the mode's frequency is purely imaginary. We demonstrate that quasinormal modes must be polynomial in nature if their frequency is purely imaginary, and present a method for computing such modes. The nature of these modes, however, is not always easy to determine. Some of the polynomial modes we compute are quasinormal modes. However, some are simultaneously quasinormal modes and total transmission modes, while others fail to satisfy the requisite boundary conditions for either. This analysis is, in part, an extension of the results known for Schwarzschild black holes, but clarifies misconceptions for the behavior of modes when the black hole has angular momentum. We also show that the algebraically special modes of Kerr with m=0 have an additional branch of solutions not seen before in the literature. All of these results are in precise agreement with new numerical solutions for sequences of gravitational quasinormal modes of Kerr. How...

  4. Aerosol size distribution modeling with the Community Multiscale Air Quality modeling system in the Pacific Northwest: 2. Parameterizations for ternary nucleation and nucleation mode processes

    Science.gov (United States)

    Elleman, Robert A.; Covert, David S.

    2009-06-01

    In order to test Community Multiscale Air Quality (CMAQ) model performance for ultrafine particle concentrations in the Pacific Northwest, CMAQ v4.4 was modified for ternary NH3-H2SO4-H2O nucleation and for atmospheric processing of ultrafine particles. Sulfuric acid from sulfur dioxide oxidation is iteratively partitioned into gaseous sulfuric acid, newly condensed aerosol sulfate, and aerosol sulfuric acid contained in new 1 nm particles. Freshly nucleated particles are either coagulated to larger particles or grown by sulfuric acid condensation to 10 nm at which point they are included in CMAQ's existing Aitken mode. Multiple nucleation parameterizations were implemented into CMAQ, and one other was investigated in a sensitivity analysis. For a case study in the Pacific Northwest where aerosol number concentration and size distributions were measured, standard binary nucleation in CMAQ produces nearly no particles for this case study. Ternary nucleation can produce millions of 1 nm particles per cm3, but few of these particles survive coagulation loss and grow to 10 nm and into the Aitken mode. There are occasions when the additions to CMAQ increase the number of particles to within an order of magnitude of observations, but it is more common for number concentrations to remain underpredicted by, on average, one order of magnitude. Significant particle nucleation in CMAQ successfully produces a distinct Aitken and accumulation mode and an Aitken mode that is more prominent than the accumulation mode, although errors in the size distribution remain. A more recent ternary nucleation scheme including ammonium bisulfate clusters does not nucleate an appreciable number of particles.

  5. A note on black hole spectroscopy in the tunneling mechanism

    CERN Document Server

    Jiang, Qing-Quan

    2012-01-01

    There is a long-standing belief that a black hole horizon should be endowed with a quantum area spectrum given by $A_n=\\gamma l_p^2 n$. In recent work, it has been claimed, in the tunneling mechanism, the area spacing parameter is given by $\\gamma=4$. This spacing level is encouraging, since it is not only in full agreement with the Hod's result, but more importantly, is smaller than that given by Bekenstein as well as the one obtained in the context of black hole quasinormal modes. Unfortunately, the Bohr-Sommerfeld quantization rule used in these work is somewhat misleading, so its resulting area spacing seems unconvincing. In this paper, we associate a tunneling process with a large $n$ transition of a quantum black hole to straighten this misunderstanding out. Then, under the new interpretation for a tunneling process, we refine the Hod's idea and Kunstatter's treatment to revisit the black hole spectroscopy in the tunneling mechanism. It is finally found that, in the tunneling mechanism, the area spacing...

  6. Improvement of the safety of a clinical process using failure mode and effects analysis: Prevention of venous thromboembolic disease in critical patients.

    Science.gov (United States)

    Viejo Moreno, R; Sánchez-Izquierdo Riera, J Á; Molano Álvarez, E; Barea Mendoza, J A; Temprano Vázquez, S; Díaz Castellano, L; Montejo González, J C

    2016-11-01

    To improve critical patient safety in the prevention of venous thromboembolic disease, using failure mode and effects analysis as safety tool. A contemporaneous cohort study covering the period January 2014-March 2015 was made in 4 phases: phase 1) prior to failure mode and effects analysis; phase 2) conduction of mode analysis and implementation of the detected improvements; phase 3) evaluation of outcomes, and phase 4) (post-checklist introduction impact. Patients admitted to the adult polyvalent ICU of a third-level hospital center. A total of 196 patients, older than 18 years, without thromboembolic disease upon admission to the ICU and with no prior anticoagulant treatment. A series of interventions were implemented following mode analysis: training, and introduction of a protocol and checklist to increase preventive measures in relation to thromboembolic disease. Indication and prescription of venous thrombosis prevention measures before and after introduction of the measures derived from the failure mode and effects analysis. A total of 59, 97 and 40 patients were included in phase 1, 3 and 4, respectively, with an analysis of the percentage of subjects who received thromboprophylaxis. The failure mode and effects analysis was used to detect potential errors associated to a lack of training and protocols referred to thromboembolic disease. An awareness-enhancing campaign was developed, with staff training and the adoption of a protocol for the prevention of venous thromboembolic disease. The prescription of preventive measures increased in the phase 3 group (91.7 vs. 71.2%, P=.001). In the post-checklist group, prophylaxis was prescribed in 97.5% of the patients, with an increase in the indication of dual prophylactic measures (4.7, 6.7 and 41%; P<.05). There were no differences in complications rate associated to the increase in prophylactic measures. The failure mode and effects analysis allowed us to identify improvements in the prevention of

  7. The Automation and Apparatus for the Key Processing Stages for Keemun Black Tea%祁门红茶自动化加工关键技术与装备研究

    Institute of Scientific and Technical Information of China (English)

    黄建琴; 丁勇; 王昶

    2012-01-01

    通过对祁门红茶自动化加工关键技术与装备的研究,开发了自动萎凋机和发酵机等祁门红茶初制关键设备,并解决了生产线联接、自动控制等关键技术难题,建立起国内首条工夫红茶初制自动化生产线.使祁门红茶实现自动化、清洁化生产,提升了祁门红茶的品质与卫生质量安全。%The key techniques and equipments of automatic processing for Keemun black tea were studied. Automatic withering machine and fermenting machine were developed, and the key technical problems such as production line connection and automatic control were solved. The first domestic automatic processing line for Congou black tea was established. The automatic processing line could realize automatic and clean processing of Keemun black tea, and improve the quality and health safety of Keemun black tea.

  8. Document Image Processing: Going beyond the Black-and-White Barrier. Progress, Issues and Options with Greyscale and Colour Image Processing.

    Science.gov (United States)

    Hendley, Tom

    1995-01-01

    Discussion of digital document image processing focuses on issues and options associated with greyscale and color image processing. Topics include speed; size of original document; scanning resolution; markets for different categories of scanners, including photographic libraries, publishing, and office applications; hybrid systems; data…

  9. Study on processing technology of lueyang black-bone chicken sausage%略阳乌鸡肉肠的加工工艺

    Institute of Scientific and Technical Information of China (English)

    陈锐

    2015-01-01

    The processing of chicken sausages prepared by Lueyang black-bone chicken meat was studied.By single factor and orthogonal test method,the sausages processing formula are optimum.The results showed that the pig fat and chicken meat proportion were 20∶ 80(g∶ g),starch 4%,salt 3%,composite spices 2%.Under the above conditions,the product sensory quality was the best.The pig fat and starch improved the quality,and the amount of salt and composite spices significantly improved the flavor.This process of black-bone chicken sausages has a bright color,compact homogenous texture,neatly slices,delicious taste and the very good nutritional value.%以略阳乌鸡肉为主要原料,研究了肉肠的加工工艺.通过单因素试验和正交试验对其肉肠的加工配方进行了探讨,确定了肉肠的最佳工艺及技术参数.结果表明:猪肥膘与略阳乌鸡肉比例20∶ 80(g∶ g)、淀粉添加量4%、食盐添加量3%、复合香辛料添加量2%时,产品感官品质达到最佳.猪肥膘和淀粉的添加使肉肠质地的改善起到了明显的效果,食盐和复合香辛料添加量的控制显著改善了肉肠的风味.通过此工艺加工的乌鸡肉肠色泽鲜亮,组织紧致均匀,切片整齐,口感细腻,滋味鲜美,具有很好的营养价值.

  10. ‘桃源大叶’高香红茶应用加工技术研究%Application and processing techniques of high aroma black tea ‘Taoyuandaye’

    Institute of Scientific and Technical Information of China (English)

    龚华春; 覃金保; 周艮平

    2015-01-01

    介绍‘桃源大叶’制作高香红茶的加工工艺技术,并与‘槠叶齐’、‘福鼎大白’进行对比,用‘桃源大叶’制作的高香红茶的品质特征优异。%In the paper, the processing techniques of high aroma black tea were introduced with ‘Taoyuandaye’ as the material. By contrast with ‘Zhuyeqi’ and ‘Fudingbaihao’, high aroma black tea ‘Taoyuandaye’ had superior quality.

  11. Geochemical characterisation and of black shales from the Tarfaya-Layoune Basin (SW Morocco) : Implications for palaeoenvironmental controls on sulfurisation process of the organic matter

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kolonic, S.; Wagner, T.; Kuypers, M.M.M.; Botcher, M.; Kuhn, W.; Whener, H.

    2002-01-01

    Organic geochemical and petrological investigations were carried out on Cenomanian/Turonian black shales from three sample sites in the Tarfaya Basin (SW Morocco) to characterize the sedimentary organic matter. These black shales have a variable bulk and molecular geochemical composition reflecting

  12. The Pairing of Accreting Massive Black Holes in Multiphase Circumnuclear Disks: the Interplay between Radiative Cooling, Star Formation, and Feedback Processes

    CERN Document Server

    Lima, Rafael Souza; Capelo, Pedro R; Bellovary, Jillian M

    2016-01-01

    We study the orbital decay of a pair of massive black holes (BHs), in the mass range 5 * 10^5 - 10^7 Msun, using a large set of hydrodynamical simulations of circumnuclear disks (CNDs) with varying prescriptions for the sub-grid physics of the interstellar medium, from star formation and supernova feedback to BH accretion and its feedback. In the absence of any of such processes, the orbit of the secondary BH in an adiabatic flow decays over timescales of a few Myr to the center of the CND, where the primary BH resides. As soon as strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds occurs, causing stochastic torques as well as direct hits that eject the secondary BH out of the disk plane. Once outside the plane, the low-density medium provides only weak drag, and the return to the CND plane is governed by inefficient dynamical friction in a stellar bulge. Ejections are seen to occur in nearly all of runs with cooling, irrespective of which other processes...

  13. Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction.

    Science.gov (United States)

    Vagiri, Michael; Jensen, Martin

    2017-02-15

    Aronia melanocarpa berries are a rich source of anthocyanins and its pomace, a by-product of juice processing, could be efficiently used for extraction of natural colours for the food industry. This study evaluated the influence blanching, freezing, maceration temperatures (2°C, 50°C) and enzyme treatments before juice pressing on the yield and anthocyanin composition of both juice and pomace. Total anthocyanin levels in pomace were affected mostly by enzyme treatment followed by maceration temperature. The pre-heating of the mash prior to processing increased juice yield and retention of anthocyanins in the pomace. Cold maceration of frozen berries without enzyme addition gave the highest concentrations of anthocyanins in the pomace, and both cold and hot maceration of fresh unblanched berries with enzyme the lowest. The results support future exploitation of natural colours from pomace side streams of Aronia, thus increasing competitiveness of Aronia berry production.

  14. Moniliella carnis sp. nov. and Moniliella dehoogii sp. nov., two novel species of black yeasts isolated from meat processing environments.

    Science.gov (United States)

    Thanh, Vu Nguyen; Hai, Dao Anh; Hien, Dinh Duc; Takashima, Masako; Lachance, Marc-André

    2012-12-01

    Thirteen strains of yeasts typical of the genus Moniliella were isolated from fermenting meat and meat processing tools in Vietnam. PCR fingerprints generated by primer (GAC)(5) subdivided the strains into two distinctive genetic groups. In a phylogenetic tree based on D1/D2 large subunit rRNA gene sequences, the strains formed a well-supported clade with Moniliella spathulata and Moniliella suaveolens but represented two new lineages. The names Moniliella carnis sp. nov. and Moniliella dehoogii sp. nov. are proposed. The two novel species can be distinguished from each other and from known species of Moniliella based on phenotypic characteristics. It is assumed that the yeasts were associated with fatty substances that contaminated the meat processing tools. The type strain of Moniliella carnis is KFP 246(T) ( = CBS 126447(T) = NRRL Y-48681(T)) and the type strain of Moniliella dehoogii is KFP 211(T) ( = CBS 126564(T) = NRRL Y-48682(T)).

  15. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  16. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  17. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    Science.gov (United States)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  18. The numerical calculation of hydrological processes in the coastal zone of the Black Sea region in the city of Poti

    Science.gov (United States)

    Saghinadze, Ivane; Pkhakadze, Manana

    2016-04-01

    (The article was published with support of the Sh. Rustaveli National Science Foundation) The serious environmental problems started in Poti after transfer of the main flow of the river Rioni to the north. As a result the flooding of the city stopped, but the reduction of water consumption in the city channel, caused a decrease of the sediments carried away by the river, what leads to coastal erosion. The coast changes are connected with the movement of the waves and currents in the coastal part of the sea. In the paper, the three-dimensional mathematical model of sediment transport and coastal zone lithodynamics is developed. The finite element formulations for the problems of wave modes, coastal currents, sediment transport and evolution of the coastal zone of the sea, are given. The numerical algorithms, implemented in the form of software. Programs are allowing to bring the solutions of the tasks to numerical results. The numerical modeling was developed in three stages. In the first stage the topography of the coast and the initial geometry of the structures are considered as an input parameters. Then, coastal wave field is calculated for the conditions prescribed in the initial wave. In the second stage, the calculated wave field is used to estimate the spatial distribution of the radiation stresses near-bottom orbital velocity. In the third stage the coastal wave fields and flow fields are used in the sub-models of sediment transport and changes in the topography of the coast. In the numerical solution of basic equations of motion of the waves, coastal currents and changes in sea bottom topography we use: finite element, finite difference methods and the method of upper relaxation, Crank-Nicolson scheme. As an example, we are giving the results of research of the wave regime in the coastal area of the city of Poti (700X600m) adjacent to the port of Poti. The bottom profile, in this area is rather complicated. During the calculations of the average rise of

  19. Degradation of Reactive Black 5 dye by CWPO using Fe/mining sand under photo-Fenton process

    Science.gov (United States)

    Amri, Nurulhuda; Nasuha, Norhaslinda; Halim, Siti Fatimah Abdul; Ngah, Khairuddin

    2015-05-01

    This present study was conducted to investigate the effectiveness of catalytic wet peroxide oxidation (CWPO) process using photo-Fenton method and the used of mining sand as support catalyst as well as to determine the optimum parameters and effect of catalyst wt%, pH, H2O2 concentration, initial dye concentration and catalyst dosage on RB 5 degradation. The Fe/mining sand was prepared by impregnation technique and a solar degradation of RB 5 carried out by mean photo-Fenton reaction promoted by solar energy. The dye degradation was monitored during the experimental runs through UV/Vis spectrophotometer. In this process, the reaction condition were optimized at 0.4 of catalyst wt%, pH 2, 4 mM of H2O2 concentration and 0.5 g of catalyst dosage which achieved degradation efficiency at 100% for the three experiments except catalyst dosage which achieved 97.54% respectively within 180 min. The degradation of RB 5 also decreased with the increasing of dye concentration with 10 mg/L achieved the optimum degradation of 99.93%. The results demonstrated that photo-Fenton method could effectively degrade RB 5 and reduce the operating cost by conducting the experiment at optimum conditions.

  20. Simulation of Matched Field Processing Localization Based on Empirical Mode Decomposition and Karhunen-Loève Expansion in Underwater Waveguide Environment

    Directory of Open Access Journals (Sweden)

    Qin Jiang

    2010-01-01

    Full Text Available Mismatch problem has been one of important issues of matched field processing for underwater source detection. Experimental use of MFP has shown that robust range and depth localization is difficult to achieve. In many cases this is due to uncertainty in the environmental inputs required by acoustic propagation models. The paper presents that EMD (Empirical mode decomposition processing underwater acoustic signals is motivated because it is well suited for removing specific unwanted signal components that may vary spectrally. And the Karhunen-Loève expansion is applied on sample covariance matrix to gain a relatively uncorrupted signal. The EMD denoising scheme is combined with Karhunen-Loève expansion to improve underwater target localization performance of matched field processing (MFP. The robustness and effectiveness of the proposed method is tested by the benchmark cases numerical simulation when there had large environmental parameter uncertainties of the acoustic waveguide.

  1. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  2. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode.

    Science.gov (United States)

    Huang, Genmao; Duan, Lian; Dong, Guifang; Zhang, Deqiang; Qiu, Yong

    2014-12-10

    Solution-processed metal oxide thin-film transistors (TFTs) operating in enhancement mode are promising for the next-generation flat panel displays. In this work, we report high-mobility TFTs based on SnO2 active layer derived from a soluble tin(II) 2-ethylhexanoate precursor. Densely packed polycrystalline SnO2 thin films with moderate oxygen vacancies and only a few hydroxides are obtained via systemically optimizing precursor concentrations and processing conditions. The utilization of a solution-processed high-κ Al2O3 insulating layer could generate a coherent dielectric/semiconductor interface, hence further improving the device performance. TFT devices with an average field-effect mobility of 96.4 cm(2) V(-1) s(-1), a current on/off ratio of 2.2 × 10(6), a threshold voltage of 1.72 V, and a subthreshold swing of 0.26 V dec(-1) have been achieved, and the driving capability is demonstrated by implementing a single SnO2 TFT device to tune the brightness of an organic light-emitting diode. It is worth noting that these TFTs work in enhancement mode at low voltages less than 4 V, which sheds light on their potential application to the next-generation low-cost active matrix flat panel displays.

  3. Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    Science.gov (United States)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we

  4. 移动学习模式及过程研究%Research on the Mode and Process of Mobile Learning

    Institute of Scientific and Technical Information of China (English)

    苏炜

    2015-01-01

    基于移动学习的开放教育教学方式改革策略研究的核心就是移动学习模式及过程研究。移动学习模式打破了前几代开放教育教学模式,改变过去的网络学习惯例。构建起了一种适应移动教学技术水平的集教学设计、教师自主、资源开发、云技术管理、自我升级更新的移动教学运行格局。移动学习使学习资源微型化、碎片化、多媒体化,泛在学习实现最大限度共享,保证移动学习质量观的全面革新。%The core of the research on the reform of the teaching mode of open education based on mobile learning is the study of mobile learning mode and process.The mode of mobile learning has broken the previous open education teaching mode, changed the past practice of network learning, and constructed an operating pattern of mobile teach-ing which adapts to the teaching design of a set of mobile technical level, teacher s’ interaction, resource develop-ment, cloud technology management, and self upgrading.Mobile learning makes learning resources miniaturization, fragmentation, and multimedia, and makes extensive learning achieve maximum sharing, and ensure the comprehen-sive reform of the mobile learning quality.

  5. The Processing of Somatosensory Information shifts from an early parallel into a serial processing mode: a combined fMRI/MEG study.

    Directory of Open Access Journals (Sweden)

    Carsten Michael Klingner

    2016-12-01

    Full Text Available The question regarding whether somatosensory inputs are processed in parallel or in series has not been clearly answered. Several studies that have applied dynamic causal modeling (DCM to fMRI data have arrived at seemingly divergent conclusions. However, these divergent results could be explained by the hypothesis that the processing route of somatosensory information changes with time. Specifically, we suggest that somatosensory stimuli are processed in parallel only during the early stage, whereas the processing is later dominated by serial processing. This hypothesis was revisited in the present study based on fMRI analyses of tactile stimuli and the application of DCM to magnetoencephalographic (MEG data collected during sustained (260 ms tactile stimulation. Bayesian model comparisons were used to infer the processing stream. We demonstrated that the favored processing stream changes over time. We found that the neural activity elicited in the first 100 ms following somatosensory stimuli is best explained by models that support a parallel processing route, whereas a serial processing route is subsequently favored. These results suggest that the secondary somatosensory area (SII receives information regarding a new stimulus in parallel with the primary somatosensory area (SI, whereas later processing in the SII is dominated by the preprocessed input from the SI.

  6. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    Science.gov (United States)

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration

  7. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    KAUST Repository

    Hussain, Syed Tajammul

    2013-02-01

    An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated. © 2012 Elsevier Ltd.

  8. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  9. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  10. Formation of sub-horizon black holes from preheating

    CERN Document Server

    Torres-Lomas, E; Malik, Karim A; Ureña-López, L Arturo

    2014-01-01

    We study the production of primordial black holes (PBHs) during the preheating stage that follows a chaotic inflationary phase. The scalar fields present in the process are evolved numerically using a modified version of the HLATTICE code. From the output of the numerical simulation we compute the probability distribution of curvature fluctuations paying particular attention to sub-horizon scales. We find that in some specific models these modes grow to large amplitudes developing highly non-Gaussian probability distributions. We then calculate PBH abundances using the standard Press-Schechter criterion and find that overproduction of PBHs is likely in some regions of the chaotic preheating parameter-space.

  11. Black holes with vector hair

    Science.gov (United States)

    Fan, Zhong-Ying

    2016-09-01

    In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.

  12. Rotating regular black holes

    CERN Document Server

    Bambi, Cosimo

    2013-01-01

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...

  13. Rotating regular black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn

    2013-04-25

    The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.

  14. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  15. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  16. 星系内黑洞形成过程的熵演化%The Evolution of Entropy in the Process of Black Hole Formation in Nebulae/Galaxies

    Institute of Scientific and Technical Information of China (English)

    邓昭镜; 陈华林

    2012-01-01

    In this paper, the process of black hole formation in nebulae is divided into two stages (phases), one is called "arrangement process" and the other is called "impact radiation process". A detailed analysis is given of the evolution of the entropy of nebula (or the broad-sense entropy of black hole) at the two phases from the respect of the thermodynamics, the gravitational field and the quantum radiation. It is concluded that the process of the formation of any black hole in the nebula is an entropy-decrease process.%将星系中黑洞的形成过程分为两个阶段:第一个阶段是有序化的“整肃”阶段,第二个阶段是无序化的“撞击”阶段.从热力学角度和引力场论、量子辐射的角度详细地分析了这两个阶段中星系系统熵(黑洞广义熵)的演化,得出星系中黑洞的形成过程是一个熵减少过程的结论.

  17. Cryo-Etched Black Silicon for Use as Optical Black

    Science.gov (United States)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  18. Black Sea coastal forecasting system

    Directory of Open Access Journals (Sweden)

    A. I. Kubryakov

    2012-03-01

    Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.

  19. How Black women make sense of 'White' and 'Black' fashion magazines: a qualitative think aloud study.

    Science.gov (United States)

    Ogden, Jane; Russell, Sheriden

    2013-12-01

    This qualitative think aloud study explored how Black women (n = 32) processed information from a White or Black fashion magazine. Comments to the 'White' magazine were characterised by rejection, being critical of the media and ambivalence, whereas they responded to the 'Black' magazine with celebration, identification and a search for depth. Transcending these themes was their self-identity of being a Black woman that was brought to the fore either by a sense of exclusion (White magazine) or engagement (Black magazine). Such an identity provides resilience against the media's thin ideals by minimising the processes of social comparison and internalisation.

  20. Nonlinear dynamics of near-extremal black holes

    Science.gov (United States)

    Green, Stephen; Gralla, Samuel; Zimmerman, Peter

    2017-01-01

    Near-extremal black holes possess a family of long lived quasinormal modes associated to the near-horizon throat geometry. For long lived modes, nonlinear interactions between the modes can potentially dominate over dissipation. We develop a framework for treating these interactions, and we study their dynamics.