WorldWideScience

Sample records for mode linac cavities

  1. Coupled superconducting resonant cavities for a heavy ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W [Argonne National Lab., IL (United States); Roy, A [Nuclear Science Center, New Delhi (India)

    1992-11-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs.

  2. Coupled superconducting resonant cavities for a heavy ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.

    1992-01-01

    A design for a superconducting niobium slow-wave accelerating structure has been explored that may have performance and cost advantages over existing technology. The option considered is an array of pairs of quarter-wave coaxial-line resonant cavities, the two elements of each pair strongly coupled through a short superconducting transmission line. In the linac formed by such an array, each paired structure is independently phased. A disadvantage of two-gap slow wave structures is that each cavity is relatively short, so that a large number of independently-phased elements is required for a linac. Increasing the number of drift tubes per cavity reduces the number of independently-phased elements but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original, single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss in velocity acceptance. (Author) 2 figs., 8 refs

  3. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Science.gov (United States)

    Lunin, A.; Khabiboulline, T.; Solyak, N.; Sukhanov, A.; Yakovlev, V.

    2018-02-01

    Construction of the Linac Coherent Light Source II (LCLS-II) is underway for the world's first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw) mode. The linac is segmented into four sections named as L 0 , L 1 , L 2 , and L 3 . Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL), will be used in section L 1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs) excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  4. Resonant excitation of high order modes in the 3.9 GHz cavity of the Linac Coherent Light Source

    Directory of Open Access Journals (Sweden)

    A. Lunin

    2018-02-01

    Full Text Available Construction of the Linac Coherent Light Source II (LCLS-II is underway for the world’s first hard x-ray free-electron laser. A central part of the LCLS-II project is a 4 GeV superconducting radio frequency electron linac that will operate in the continuous wave (cw mode. The linac is segmented into four sections named as L0, L1, L2, and L3. Two 3.9 GHz cryomodules, each housing of eight third-harmonic cavities similar to the cavities developed for the European X-ray Free Electron Laser (XFEL, will be used in section L1 of the linac for linearizing the longitudinal beam profile. In this paper, we present a study of trapped high order modes (HOMs excited by a cw electron beam in the third-harmonic cavities of the LCLS-II linac. A detailed comparison of the original XFEL design and the LCLS-II design with a modified end group is performed in order to estimate the effect of a reduced beam pipe aperture on the efficiency of HOM damping. Furthermore, we apply a statistical analysis of the eigenmode spectrum for the estimation of the probability of resonant HOM losses and influence of HOMs on beam dynamics.

  5. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1993-01-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed

  6. Niobium coaxial quarter-wave cavities for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1993-07-01

    This paper reports the design and construction status of a prototype superconducting niobium accelerating structure consisting of a pair of quarter-wave coaxial-line cavities which are strongly coupled with a superconducting loop. Quarter-wave resonators are two-gap accelerating structures and are relatively short, so that a large number of independently-phased cavities is required for a linac. Strongly coupling several cavities can reduce the number of independently-phased elements, but at the cost of reducing the range of useful velocity acceptance for each element. Coupling two cavities splits the accelerating rf eigenmode into two resonant modes each of which covers a portion of the full velocity acceptance range of the original single cavity mode. Using both of these resonant modes makes feasible the use of coupled cavity pairs for a linac with little loss m velocity acceptance. Design details for the niobium cavity pair and the results of preliminary tests of multipacting behavior are discussed.

  7. The split coaxial linac structure and its RF modes

    International Nuclear Information System (INIS)

    Mueller, R.W.

    1989-01-01

    The Split Coaxial Cavity structure has been invented and applied for the first time in the heavy-ion RFQ linac MAXILAC of GSI. It has an ideally flat RF voltage distribution and a good power economy. From another standpoint, it is a member of the small family of linac structures where the two modes, the wanted one and the unflatness mode, are clearly and strictly separable. The unflatness or ''Q Line'' mode is analyzed in more detail in this paper. It is necessary for the understanding of the interaction of the beam with the cavity, possible beam instabilities resulting from it, and for curing these instabilities with the chance of obtaining improved beams. (orig.)

  8. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    Energy Technology Data Exchange (ETDEWEB)

    Khabiboulline, T.N.; Sukhanov, A.AUTHOR = Awida, M.; Gonin, I.; Lunin, A.AUTHOR = Solyak, N.; Yakovlev, V.; /Fermilab

    2012-05-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  9. Resonance Excitation of Longitudinal High Order Modes in Project X Linac

    International Nuclear Information System (INIS)

    Gonin, I.V.; Khabiboulline, T.N.; Lunin, A.; Solyak, N.; Sukhanov, A.I.; Yakovlev, V.P.; Awida, M.H.

    2012-01-01

    Results of simulation of power loss due to excitation of longitudinal high order modes (HOMs) in the accelerating superconducting RF system of CW linac of Project X are presented. Beam structures corresponding to the various modes of Project X operation are considered: CW regime for 3 GeV physics program; pulsed mode for neutrino experiments; and pulsed regime, when Project X linac operates as a driver for Neutrino Factory/Muon Collider. Power loss and associated heat load due to resonance excitation of longitudinal HOMs are shown to be small in all modes of operation. Conclusion is made that HOM couplers can be removed from the design of superconducting RF cavities of Project X linac.

  10. S-band linac-based X-ray source with {pi}/2-mode electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Abhay, E-mail: abhay@post.kek.jp [Department of Accelerator Science, School of High Energy Accelerator Science, Graduate University for Advanced Studies, Shonan International Village, Hayama, Miura, Kanagawa 240-0193 (Japan); Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Araki, Sakae [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Dixit, Tanuja [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Fukuda, Masafumi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Krishnan, R; Pethe, Sanjay [Society for Applied Microwave Electronic Engineering and Research (SAMEER), R and D Laboratory of the Government of India, IIT Campus, Powai, Mumbai 400 076 (India); Sakaue, Kazuyuki [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan); Terunuma, Nobuhiro; Urakawa, Junji [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Washio, Masakazu [Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2011-05-01

    The activities with the compact X-ray source are attracting more attention, particularly for the applications of the source in medical fields. We propose the fabrication of a compact X-ray source using the SAMEER electron linear accelerator and the KEK laser undulator X-ray source (LUCX) technologies. The linac developed at SAMEER is a standing wave side-coupled S-band linac operating in the {pi}/2 mode. In the proposed system, a photocathode RF gun will inject bunches of electrons in the linac to accelerate and achieve a high-energy, low-emittance beam. This beam will then interact with the laser in the laser cavity to produce X-rays of a type well suited for various applications. The side-coupled structure will make the system more compact, and the {pi}/2 mode of operation will enable a high repetition rate operation, which will help to increase the X-ray yield.

  11. Updating the CSNS injector linac to 250 MeV with superconducting double-spoke cavities

    International Nuclear Information System (INIS)

    Li Zhihui; Fu Shinian

    2015-01-01

    In order to update the beam power from 100 kW to 500 kW in the China Spallation neutron source (CSNS) Phase Ⅱ, one of the important measures is to replace the 80 m long beam transport line between the present 80 MeV linac injector and the rapid cycling synchrotron (RCS) to another kind of acceleration structure. In this paper, we proposed a scheme based on 324 MHz double-spoke superconducting cavities. Unlike the superconducting elliptical cavity and normal conducting coupled cavity linac (CCL) structure, the double-spoke cavity belongs to the TE mode structure and has a smaller transverse dimension compared with that of the TH mode one. It can work at base frequency as the drift tube Linac (DTL) section, so that the cost and complexity of the RF system will be much decreased, and the behaviors of the beam dynamics are also improved significantly because of the low charge density and larger longitudinal acceptance. Furthermore, because of the relatively longer interactive length between the charged particle and the electromagnetic field per cell, it needs relatively less cell numbers and it has larger velocity acceptance compared with the double frequency TH structures. The superconducting section consists of 14 periods, each of which includes 3 superconducting cavities encapsulated in one cryomodule and a doublet in room temperate. The general considerations on cavity and beam dynamics design are discussed and the main results are presented. (authors)

  12. Physics design of APT linac with normal conducting rf cavities

    International Nuclear Information System (INIS)

    Nath, S.; Billen, J.H.; Stovall, J.E.; Takeda, Harunori; Young, L.M.

    1996-01-01

    The accelerator based production of tritium calls for a high-power, cw proton linac. Previous designs for such a linac use a radiofrequency quadrupole (RFQ), followed by a drift-tube linac (DTL) to an intermediate energy and a coupled-cavity linc (CCL) to the final energy. The Los Alamos design uses a high-energy (6.7 MeV) RFQ followed by the newly developed coupled-cavity drift-tube linac (CCDTL) and a CCL. This design accommodates external electromagnetic quadrupole lenses which provide a strong uniform focusing lattice from the end of the RFQ to the end of the CCL. The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells symmetric in both the CCDTL and CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. At higher energies, there are some advantages of using superconducting rf cavities. Currently, such schemes are under vigorous study. This paper describes the linac design based on normal conducting cavities and presents simulation results

  13. A novel bridge coupler for SSC coupled cavity linac

    International Nuclear Information System (INIS)

    Yao, C.G.; Chang, C.R.; Funk, W.

    1992-01-01

    A novel magnetically coupled multi-cavity bridge coupler is proposed for SSC Coupled-Cavity-Linac (CCL). The bridge coupler is a five cell disc-loaded waveguide with a small central aperture used for measurement and two large curved coupling slots near the edge on each disc. The two coupling slots on the adjacent disc are rotated 90 degrees in orientation to reduce the direct coupling. This type of structure is capable of producing very large coupling (>10% in our longest bridge coupler). Also because of the small opening on the discs, the high-order-modes are very far (> 300 MHz) above the operating mode. Thus for long bridge couplers, the magnetic coupled structure should provide maximum coupling with minimum mode mixing problems. In this paper both physics and engineering issues of this new bridge coupler are presented. (Author) 5 refs., 2 tabs., 6 figs

  14. High order modes in Project-X linac

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, A., E-mail: ais@fnal.gov; Lunin, A.; Yakovlev, V.; Awida, M.; Champion, M.; Ginsburg, C.; Gonin, I.; Grimm, C.; Khabiboulline, T.; Nicol, T.; Orlov, Yu.; Saini, A.; Sergatskov, D.; Solyak, N.; Vostrikov, A.

    2014-01-11

    Project-X, a multi-MW proton source, is now under development at Fermilab. In this paper we present study of high order modes (HOM) excited in continues-wave (CW) superconducting linac of Project-X. We investigate effects of cryogenic losses caused by HOMs and influence of HOMs on beam dynamics. We find that these effects are small. We conclude that HOM couplers/dampers are not needed in the Project-X SC RF cavities.

  15. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-06-01

    Full Text Available Higher order modes (HOMs may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  16. Comparison of coaxial higher order mode couplers for the CERN Superconducting Proton Linac study

    CERN Document Server

    AUTHOR|(CDS)2085329; Gerigk, Frank; Van Rienen, Ursula

    2017-01-01

    Higher order modes (HOMs) may affect beam stability and refrigeration requirements of superconducting proton linacs such as the Superconducting Proton Linac, which is studied at CERN. Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the superconducting cavities. In order to limit these effects, CERN considers the use of coaxial HOM couplers on the cutoff tubes of the 5-cell superconducting cavities. These couplers consist of resonant antennas shaped as loops or probes, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode. In this paper, the design process is presented and a comparison is made between various designs for the high-beta SPL cavities, which operate at 704.4 MHz. The rf and thermal behavior as well as mechanical aspects are discussed. In order to verify the designs, a rapid prototype for the favored coupler was fabricated and characterized on a low-power test-stand.

  17. Simulation at the SSCL low energy booster and coupled cavity linac

    International Nuclear Information System (INIS)

    Bourianoff, G.

    1991-01-01

    During the past year, the SSC has made significant use of the MFE computer center for simulating the low energy accelerators in the SSC complex. There are two primary supercomputer applications reported here. They are the calculation of emittance growth in the LEB due to space charge effects and simulation of the side coupled cavities used in the linac. The SSC is designed to have a luminosity of 10 33 interactions per second per square centimeter. It directly determines the amount of physics which can be done with the collider and is therefore of critical importance. The luminosity is inversely proportional to the emittance of the two colliding beams. Since emittance increases monotonically through the chain of accelerators, an emittance budget has been set up defining what the allowable emittance increase is in each individual component of the accelerator. The emittance budget for the LEB calls for the emittance to enter the LEB at .4π mm - mrad and leave the LEB at .6π mm -mrad. Therefore, a set of simulations was done to determine the actual emittance growth. The linac is designed to accelerate 25 MA of H - ions from 70 MEV to 600 MEV. There are several possible cavity designs which might be used but the side coupled cavity design operating in the π/2 mode has a number of advantages concerning operating stability and ease of manufacture. It has therefore been chosen for the linac accelerator

  18. Auto-tuning systems for J-PARC LINAC RF cavities

    International Nuclear Information System (INIS)

    Fang, Z.; Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S.; Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E.

    2014-01-01

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  19. Auto-tuning systems for J-PARC LINAC RF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z., E-mail: fang@post.kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Kobayashi, T.; Fukui, Y.; Futatsukawa, K.; Michizono, S.; Yamaguchi, S.; Anami, S. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Suzuki, H.; Sato, F.; Shinozaki, S.; Chishiro, E. [Japan Atomic Energy Agency (JAEA), 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2014-12-11

    The 400-MeV proton linear accelerator (LINAC) at the Japan Proton Accelerator Research Complex (J-PARC) consists of 324-MHz low-β and 972-MHz high-β accelerator sections. From October 2006 to May 2013, only the 324-MHz low-β accelerator section was in operation. From the summer of 2013 the J-PARC LINAC was upgraded by installing the 972-MHz high-β accelerator section, and the proton beam was successfully accelerated to 400 MeV in January 2014. Auto-tuning systems for the J-PARC LINAC RF cavities have been successfully developed. A first generation design, an auto-tuning system using a mechanical tuner controller, was developed and operated for the first 3 years. Then the second-generation auto-tuning system was developed using a new approach to the RF cavity warm-up process, and this was applied to the accelerator operation for the subsequent 4 years. During the RF cavity warm-up process in this system, the mechanical tuner is constantly fixed and the input RF frequency is automatically tuned to the cavity resonance frequency using the FPGA (Field-Programmable Gate Array) of the digital feedback RF control system. After the input power level reaches the required value, input RF frequency tuning is stopped and it is switched to the operation frequency. Then, the mechanical tuner control begins operation. This second-generation auto-tuning system was extremely effective for the 324-MHz cavity operation. However, if we apply this approach to the 972-MHz RF cavities, an interlock due to the RF cavity reflection amplitude occasionally occurs at the end of the warm-up process. In order to solve this problem a third generation novel auto-tuning system was successfully developed in December 2013 and applied to the operation of the J-PARC LINAC, including the 972-MHz ACS RF cavities. During the warm-up process both the mechanical tuner controller and the input RF frequency tuning are in operation, and good matching between the input RF frequency and the RF cavity is

  20. Higher-order-mode (HOM) power in elliptical superconducting cavities for intense pulsed proton accelerators

    CERN Document Server

    Sang Ho Kim; Dong O Jeon; Sundeli, R

    2002-01-01

    In linacs for intense pulsed proton accelerators, the beam has a multiple time-structure, and each beam time-structure generates resonance. When a higher-order mode (HOM) is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power, too. In order to understand the effects of a complex beam time-structure on the mode excitations and the resulting HOM powers in elliptical superconducting cavities, analytic expressions are developed, with which the beam-induced voltage and corresponding power are explored, taking into account the properties of HOM frequency behavior in elliptical superconducting cavities. The results and understandings from this analysis are presented with the beam parameters of the Spallation Neutron Source (SNS) superconducting linac.

  1. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  2. Electromagnetic design issues in elliptic superconducting radio frequency cavity for H- LINAC

    International Nuclear Information System (INIS)

    Kumar, V.; Jana, A.R.; Gaur, R.

    2013-01-01

    Multi-cell elliptic superconducting radiofrequency (SCRF) cavities are used for efficient acceleration of a high power charged particle beam for a wide range of velocities, typically corresponding to β = 0.5 to ∼ 1, where β is the particle speed in unit of speed of light. Electromagnetic design of such cavities involves careful optimization of the cavity geometry with several design constraints. In this paper, we discuss a generalized approach to optimize the design to achieve maximum acceleration gradient and field flatness, while ensuring that the effect due to higher order modes supported by the cavity are within acceptable limits. Study of detuning in the cavity resonance frequency due to mechanical pressure associated with electromagnetic field inside the cavity, known as Lorentz Force Detuning (LFD), plays an important role in optimizing the scheme for stiffening of the cavity. Electromagnetic design calculations performed for SCRF cavities of medium energy section of 1 GeV H - injector linac for the proposed Indian Spallation Neutron Source (ISNS) at Raja Ramanna Centre for Advanced Technology are presented in the paper highlighting all these important design issues. (author)

  3. Failure Modes Analysis for the MSU-RIA Driver Linac

    CERN Document Server

    Wu, Xiaoyu; Gorelov, Dmitry; Grimm, Terry L; Marti, Felix; York, Richard

    2005-01-01

    Previous end-to-end beam dynamics simulation studies* using experimentally-based input beams including alignment and rf errors and variation in charge-stripping foil thickness have indicated that the Rare Isotope Accelerator (RIA) driver linac proposed by MSU has adequate transverse and longitudinal acceptances to accelerate light and heavy ions to final energies of at least 400 MeV/u with beam powers of 100 to 400 kW. During linac operation, equipment loss due to, for example, cavity contamination, availability of cryogens, or failure of rf or power supply systems, will lead to at least a temporary loss of some of the cavities and focusing elements. To achieve high facility availability, each segment of the linac should be capable of adequate performance even with failed elements. Beam dynamics studies were performed to evaluate the linac performance under various scenarios of failed cavities and focusing elements with proper correction schemes, in order to prove the flexibility and robustness of the driver ...

  4. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E.C.; Kewisch, J.; Litvinenko, V.N.; Xu, W.

    2010-01-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R and D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R and D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  5. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Science.gov (United States)

    Hahn, H.; Ben-Zvi, I.; Calaga, R.; Hammons, L.; Johnson, E. C.; Kewisch, J.; Litvinenko, V. N.; Xu, Wencan

    2010-12-01

    Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC) are based on energy recovery linacs (ERLs) with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM) damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC) temperatures in a prototype research and development (R&D) five-cell niobium superconducting rf (SRF) cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  6. Higher-order-mode absorbers for energy recovery linac cryomodules at Brookhaven National Laboratory

    Directory of Open Access Journals (Sweden)

    H. Hahn

    2010-12-01

    Full Text Available Several future accelerator projects at Brookhaven for the Relativistic Heavy Ion Collider (RHIC are based on energy recovery linacs (ERLs with high-charge high-current electron beams. Their stable operation mandates effective higher-order-mode (HOM damping. The development of HOM dampers for these projects is pursued actively at this laboratory. Strong HOM damping was experimentally demonstrated both at room and at superconducting (SC temperatures in a prototype research and development (R&D five-cell niobium superconducting rf (SRF cavity with ferrite dampers. Two room-temperature mock-up five-cell copper cavities were used to study various damper configurations with emphasis on capacitive antenna dampers. An innovative type of ferrite damper over a ceramic break for an R&D SRF electron gun also was developed. For future SRF linacs longer cryomodules comprised of multiple superconducting cavities with reasonably short intercavity transitions are planned. In such a configuration, the dampers, located closer to the cavities, will be at cryogenic temperatures; this will impose additional constraints and complications. This paper presents the results of simulations and measurements of several damper configurations.

  7. Transient behaviour of a ``beam loaded`` prebuncher cavity and linac structure

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Giovanni; Picardi, Luigi; Ronsivalle, Concetta; Vignati, Angelo [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-03-01

    They present the evaluation of the effect of the beam loading on the time response of a 3 GHz prebuncher cavity to the generator and to an input 120 deg chopped electron beam for two different cavity materials. The lumped-element representation of the cavity as a parallel RLC circuit is used which allows to compute also the sensitivity of the prebuncher voltage amplitude and phase with respect to beam current fluctuations. The analysis has been extended to the transient behaviour of a linac positioned after the prebuncher cavity. The consequences of the computation results on the application of a chopper-prebuncher system in a linac devoted to the MUH FEL experiment are discussed.

  8. Design study of an S-band RF cavity of a dual-energy electron LINAC for the CIS

    Science.gov (United States)

    Lee, Byeong-No; Park, Hyungdal; Song, Ki-baek; Li, Yonggui; Lee, Byung Cheol; Cha, Sung-su; Lee, Jong-Chul; Shin, Seung-Wook; Chai, Jong-seo

    2014-01-01

    The design of a resonance frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) has been carried out for the cargo inspection system (CIS). This Standing-wave-type RF cavity is operated at a frequency under the 2856-MHz resonance frequency and generates electron beams of 9 MeV (high mode) and 6 MeV (low mode). The electrons are accelerated from the initial energy of the electron gun to the target energy (9 or 6 MeV) inside the RF cavity by using the RF power transmitted from a 5.5-MW-class klystron. Then, electron beams with a 1-kW average power (both high mode and low mode) bombard an X-ray target a 2-mm spot size. The proposed accelerating gradient was 13 MV/m, and the designed Q value was about 7100. On going research on 15-MeV non-destructive inspections for military or other applications is presented.

  9. Experimental studies of 7-cell dual axis asymmetric cavity for energy recovery linac

    Directory of Open Access Journals (Sweden)

    I. V. Konoplev

    2017-10-01

    Full Text Available High average current, transportable energy recovery linacs (ERLs can be very attractive tools for a number of applications including next generation high-luminosity, compact light sources. Conventional ERLs are based on an electron beam circulating through the same set of rf cavity cells. This leads to an accumulation of high-order modes inside the cavity cells, resulting in the development of a beam breakup (BBU instability, unless the beam current is kept below the BBU start current. This limits the maximum current which can be transported through the ERL and hence the intensity of the photon beam generated. It has recently been proposed that splitting the accelerating and decelerating stages, tuning them separately and coupling them via a resonance coupler can increase the BBU start current. The paper presents the first experimental rf studies of a dual axis 7-cell asymmetric cavity and confirms the properties predicted by the theoretical model. The field structures of the symmetric and asymmetric modes are measured and good agreement with the numerical predictions is demonstrated. The operating mode field flatness was also measured and discussed. A novel approach based on the coupled mode (Fano-like model has been developed for the description of the cavity eigenmode spectrum and good agreement between analytical theory, numerical predictions and experimental data is shown. Numerical and experimental results observed are analyzed, discussed and a good agreement between theory and experiment is demonstrated.

  10. Niobium quarter-wave cavity for the New Delhi booster linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Roy, A.; Potukuchi, P.N.

    1997-01-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time

  11. Niobium quarter-wave cavity for the New Delhi booster linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P.N. [Nuclear Science Centre, New Delhi (India)

    1997-09-01

    This paper reports the completion of development of a 97 Mhz niobium coaxial quarter-wave cavity to be used in a booster linac for the New Delhi 16UD pellatron electrostatic accelerator. A prototype cavity, which incorporates a niobium-bellows tuning device, has been completed and operated at 4.2 K at accelerating gradients above 4 MV/m for extended periods of time.

  12. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Balša Terzić

    2014-10-01

    Full Text Available In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab’s Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  13. Development of niobium spoke cavities for a superconducting light-ion linac

    International Nuclear Information System (INIS)

    Shepard, K.W.; Kedzie, M.; Delayen, J.R.; Piller, C.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  14. Development of niobium spoke cavities for a superconducting light-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K W; Kedzie, M; Delayen, J R; Piller, C

    1998-08-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2 < v/c < 0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of ions, at intensities sufficient for a production beam for a radioactive facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  15. RF cavity evaluation with the code SUPERFISH

    International Nuclear Information System (INIS)

    Hori, T.; Nakanishi, T.; Ueda, N.

    1982-01-01

    The computer code SUPERFISH calculates axisymmetric rf fields and is most applicable to re-entrant cavities of an Alvarez linac. Some sample results are shown for the first Alvarez's in NUMATRON project. On the other hand the code can also be effectivily applied to TE modes excited in an RFQ linac when the cavity is approximately considered as positioning at an infinite distance from the symmetry axis. The evaluation was made for several RFQ cavities, models I, II and a test linac named LITL, and useful results for the resonator design were obtained. (author)

  16. Temperature control feedback loops for the linac upgrade side coupled cavities at Fermilab

    International Nuclear Information System (INIS)

    Crisp, J.

    1990-01-01

    The linac upgrade project at Fermilab will replace the last 4 drift-tube linac tanks with seven side coupled cavity strings. This will increase the beam energy from 200 to 400 MeV at injection into the Booster accelerator. The main objective of the temperature loop is to control the resonant frequency of the cavity strings. A cavity string will constant of 4 sections connected with bridge couplers driven with a 12 MW klystron at 805 MHz. Each section is a side coupled cavity chain consisting of 16 accelerating cells and 15 side coupling cells. For the linac upgrade, 7 full cavity strings will be used. A separate temperature control system is planned for each of the 28 accelerating sections, the two transition sections, and the debuncher section. The cavity strings will be tuned to resonance for full power beam loaded conditions. A separate frequency loop is planned that will sample the phase difference between a monitor placed in the end cell of each section and the rf drive. The frequency loop will control the set point for the temperature loop which will be able to maintain the resonant frequency through periods within beam or rf power. The frequency loop will need the intelligence required to determine under what conditions the phase error information is valid and the temperature set point should be adjusted. This paper will discuss some of the reason for temperature control, the implementation, and some of the problems encountered. An appendix contains some useful constants and descriptions of some of the sensor and control elements used. 13 figs

  17. Multiplacting analysis on 650 MHz, BETA 0.61 superconducting RF LINAC cavity

    International Nuclear Information System (INIS)

    Seth, Sudeshna; Som, Sumit; Mandal, Aditya; Ghosh, Surajit; Saha, S.

    2013-01-01

    Design, analysis and development of high-β multi-cell elliptical shape Superconducting RF linac cavity has been taken up by VECC, Kolkata as a part of IIFC collaboration. The project aims to provide the-art technology achieving very high electric field gradient in superconducting linac cavity, which can be used in high energy high current proton linear accelerator to be built for ADSS/SNS programme in India and in Project-X at Fermilab, USA. The performance of this type of superconducting RF structure can be greatly affected due to multipacting when we feed power to the cavity. Multipacting is a phenomenon of resonant electron multiplication in which a large number of electrons build up an electron Avalanche which absorbs RF Energy leading to remarkable power losses and heating of the walls, making it impossible to raise the electric field by increasing the RF Power. Multipacting analysis has been carried out for 650 MHz, β=0.61, superconducting elliptical cavity using 2D code MultiPac 2.1 and 3 D code CST particle studio and the result is presented in this paper. (author)

  18. Development of niobium spoke cavities for a superconducting light-ion Linac

    International Nuclear Information System (INIS)

    Shepard, K. W.

    1998-01-01

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed

  19. Development of niobium spoke cavities for a superconducting light-ion Linac.

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1998-11-18

    This paper reports the development of 350 MHz niobium superconducting cavities for the velocity range 0.2< v/c <0.6. Such cavities could be used to form a linac of exceptional flexibility, capable of efficiently accelerating beams of either protons, deuterons, or any of a wide range of light ions, at intensities sufficient for a production beam for a radioactive beam facility. Results of numerical modeling for several resonator geometries are presented. The design and construction status of prototype niobium cavities is discussed.

  20. Bead perturbation measurement for the KEK linac cavity

    International Nuclear Information System (INIS)

    Okumura, Shoji; Swenson, D.A.

    1975-03-01

    The axial electric field in the KEK linac cavity is measured by a bead perturbation method. The beat signal of around 1 kHz is generated with the rf signals from the cavity in self-excitation and from a signal generator whose output frequency is fixed. The period of the beat signal is measured by a counter in order to detect the small change in the resonant frequency of the cavity due to a bead perturbation. The counting data are transferred to a mini-computer after each period of the beat signal. The average fields of each gap are calculated in the computer and they are displayed on a storage oscilloscope. It takes about 50 seconds to complete the whole process of the measurement. The measuring system and the results obtained are described in this paper. (auth.)

  1. Final module tuning of the 805 MHz side-coupled cavities for the Fermilab linac group

    International Nuclear Information System (INIS)

    Qian, Z.; Champion, M.; Miller, H.W.; Moretti, A.; Padilla, R.

    1992-01-01

    As part of the Fermilab Tevatron collider upgrade program the last four linac drift-tube tanks are to be replaced with seven side-coupled cavity modules that will operate at an accelerating gradient of 8 MV/V. Each module is composed of four accelerating sections connected by three bridge couplers and is driven by a 12 MW 805 MHz klystron rf power supply. Sixteen accelerating cells and fifteen coupling cells are brazed into an accelerating section. The modules were tuned such that the π/2 mode of each section and the TM 010 mode of the individual bridge coupler agreed within 2 KHz of the module accelerating mode, the accelerating cell frequency was tuned within ± % KHz and the section stopbands were 50-100 KHz under vacuum. The main cell rms field deviation was in general <1% within any section and the section average rms field deviation was in all but one case <1%. The phase shift from section to section was tuned to <1 degree. The coupling between waveguide and cavity was tuned to match the 30 ma beam loading. 3 tabs., 4 figs., 6 refs

  2. RESONANCE CONTROL FOR THE COUPLED CAVITY LINAC AND DRIFT TUBE LINAC STRUCTURES OF THE SPALLATION NEUTRON SOURCE LINAC USING A CLOSED-LOOP WATER COOLING SYSTEM

    International Nuclear Information System (INIS)

    Bernardin, J.D.; Brown, R.L.

    2001-01-01

    The Spallation Neutron Source (SNS) is a facility being designed for scientific and industrial research and development. SNS will generate and use neutrons as a diagnostic tool for medical purposes, material science, etc. The neutrons will be produced by bombarding a heavy metal target with a high-energy beam of protons, generated and accelerated with a linear particle accelerator, or linac. The low energy end of the linac consists of two room temperature copper structures, the drift tube linac (DTL), and the coupled cavity linac (CCL). Both of these accelerating structures use large amounts of electrical energy to accelerate the protons to an energy of 185 MeV. Approximately 60-80% of the electrical energy is dissipated in the copper structure and must be removed. This is done using specifically designed water cooling passages within the linac's copper structure. Cooling water is supplied to these cooling passages by specially designed resonance control and water cooling systems

  3. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  4. Effects Of Field Distortions In Ih-apf Linac

    CERN Document Server

    Kapin, Valery; Yamada, S

    2004-01-01

    The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.

  5. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injektor Cavities for the ELBE Linac

    CERN Document Server

    Arnold, A; Teichert, J; Xiang, R; Eremeev, G V; Kneisel, P; Stirbet, M; Turlington, L

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac [1]. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning; the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing [2] was done at HZDR. The following standard surface treatment and the vertical test were carried out at TJNAF’s production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (Ø10 mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects a...

  6. HOM Dampers or not in Superconducting RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  7. HOM Dampers or not in SUPERCONDUCTING RF Proton Linacs

    CERN Document Server

    Tückmantel, Joachim

    2009-01-01

    Circular machines are plagued by Coupled Bunch Instabilities, driven by impedance peaks, irrespectively of their frequency relation to machine lines; hence all cavity Higher Order Modes are possible drivers. This is the fundamental reason that all superconducting RF cavities in circular machines are equipped with HOM dampers. This raises the question if HOM damping would not be imperative also in high current proton linacs where a mechanism akin to CBI might exist. To clarify this question we have simulated the longitudinal bunched beam dynamics in linacs, allowing bunch-to-bunch variations in time-of-arrival. Simulations were executed for a generic proton linac with properties close to SNS or the planned SPL at CERN. It was found that for monopole HOMs with high Qext large beam scatter or even beam loss cannot be excluded. Therefore omitting HOM dampers on superconducting RF cavities in high current proton linacs, even pulsed ones, is a very risky decision.

  8. Development of superconducting crossbar-H-mode cavities for proton and ion accelerators

    Directory of Open Access Journals (Sweden)

    F. Dziuba

    2010-04-01

    Full Text Available The crossbar-H-mode (CH structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H_{21} mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7  MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325  MHz, β=0.16, seven cells is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217  MHz, β=0.059, 15 cells is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

  9. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  10. Design and construction of the main linac module for the superconducting energy recovery linac project at Cornell

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, R.; Bullock, B.; He, Y.; Hoffstaetter, G.; Liepe, M.; O' Connell, T.; Quigley, P.; Sabol, D.; Sears, J.; Smith, E.; Veshcherevich, V. [Cornell Laboratory for Accelerator-based Science and Education (CLASSE), Cornell University, 161 Synchrotron Drive, Ithaca, NY 14853 (United States)

    2014-01-29

    Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) and high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.

  11. Crossbar H-mode drift-tube linac design with alternative phase focusing for muon linac

    Science.gov (United States)

    Otani, M.; Futatsukawa, K.; Hasegawa, K.; Kitamura, R.; Kondo, Y.; Kurennoy, S.

    2017-07-01

    We have developed a Crossbar H-mode (CH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The CH-DTL accelerates muons from β = v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. The design and results are described in this paper.

  12. Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); McIntosh, P. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Moss, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Narayan, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Orfin, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Pinayev, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rao, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Skaritka, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wang, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wheelhouse, A. [Science and Technology Facilities Council (STFC), Daresbury (United Kingdom). Daresbury Lab.; Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xin, T. [Stony Brook Univ., NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems

  13. LINAC4 takes a tour of Europe

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    Along the German Autobahnen, a truck carrying 20 tonnes of copper is on its way to Poland. The metal has already made a short tour of Europe, yet the drive across the high-speed highway is only the beginning of its transformation into CERN’s next linear accelerator, LINAC4.   Grzegorz Wrochna (left), director of the Andrzej Soltan Institute for Nuclear Studies (IPJ), and Rolf Heuer (right), CERN DG, sign the framework agreement between the two institutes. By the summer of 2012, the PI-Mode Structures (PIMS) will be constructed and completely installed in the LINAC4 tunnel. The PIMS cavities are the final accelerating structures needed for LINAC4, and have been designed to accelerate protons from 100 to 160MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. In a 1 million euro framework agreement signed on 11 February by the Director-General, the Andrzej Soltan Institute for Nuclear Studies in Swie...

  14. Analysis of the Qualification-Tests Performance of the Superconducting Cavities for the SNS Linac

    CERN Document Server

    Delayen, J R; Ozelis, O

    2004-01-01

    Thomas Jefferson National Accelerating Facility (Jefferson Lab) is producing superconducting radio frequency (SRF) cryomodules for the Spallation Neutron Source (SNS) cold linac. This consists of 11 medium-beta (β=0.61) cyomodules of 3 cavities each, and 12 high-beta (β=0.81) cryomodules of 4 cavities each. Before assembly into cavity strings the cavities undergo individual qualification tests in a vertical cryostat (VTA). In this paper we analyze the performance of the cavities during these qualification tests, and attempt to correlate this performance with cleaning, assembly, and testing procedures. We also compare VTA performance with performance in completed cryomodules.

  15. Design of 6 MeV X-band electron linac for dual-head gantry radiotherapy system

    Science.gov (United States)

    Shin, Seung-wook; Lee, Seung-Hyun; Lee, Jong-Chul; Kim, Huisu; Ha, Donghyup; Ghergherehchi, Mitra; Chai, Jongseo; Lee, Byung-no; Chae, Moonsik

    2017-12-01

    A compact 6 MeV electron linac is being developed at Sungkyunkwan University, in collaboration with the Korea atomic energy research institute (KAERI). The linac will be used as an X-ray source for a dual-head gantry radiotherapy system. X-band technology has been employed to satisfy the size requirement of the dual-head gantry radiotherapy machine. Among the several options available, we selected a pi/2-mode, standing-wave, side-coupled cavity. This choice of radiofrequency (RF) cavity design is intended to enhance the shunt impedance of each cavity in the linac. An optimum structure of the RF cavity with a high-performance design was determined by applying a genetic algorithm during the optimization procedure. This paper describes the detailed design process for a single normal RF cavity and the entire structure, including the RF power coupler and coupling cavity, as well as the beam dynamics results.

  16. Fabrication, Tuning, Treatment and Testing of Two 3.5 Cell Photo-Injector Cavities for the ELBE Linac

    International Nuclear Information System (INIS)

    Arnold, A.; Murcek, P.; Teichert, J.; Xiang, R.; Eremeev, G. V.; Kneisel, P.; Stirbet, M.; Turlington, L.

    2011-01-01

    As part of a CRADA (Cooperative Research and Development Agreement) between Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Thomas Jefferson Lab National Accelerator Facility (TJNAF) we have fabricated and tested two 1.3 GHz 3.5 cell photo-injector cavities from polycrystalline RRR niobium and large grain RRR niobium, respectively. The cavity with the better performance will replace the presently used injector cavity in the ELBE linac. The cavities have been fabricated and pre-tuned at TJNAF, while the more sophisticated final field tuning, the adjustment of the external couplings and the field profile measurement of transverse electric modes for RF focusing was done at HZDR. The following standard surface treatment and the vertical test was carried out at TJNAF's production facilities. A major challenge turned out to be the rinsing of the cathode cell, which has small opening (O-slash10mm) to receive the cathode stalk. Another unexpected problem encountered after etching, since large visible defects appeared in the least accessible cathode cell. This contribution reports about our experiences, initial results and the on-going diagnostic work to understand and fix the problems

  17. Electron bunch train excited higher-order modes in a superconducting RF cavity

    Science.gov (United States)

    Gao, Yong-Feng; Huang, Sen-Lin; Wang, Fang; Feng, Li-Wen; Zhuang, De-Hao; Lin, Lin; Zhu, Feng; Hao, Jian-Kui; Quan, Sheng-Wen; Liu, Ke-Xin

    2017-04-01

    Higher-order mode (HOM) based intra-cavity beam diagnostics has been proved effective and convenient in superconducting radio-frequency (SRF) accelerators. Our recent research shows that the beam harmonics in the bunch train excited HOM spectrum, which have much higher signal-to-noise ratio than the intrinsic HOM peaks, may also be useful for beam diagnostics. In this paper, we will present our study on bunch train excited HOMs, including a theoretical model and recent experiments carried out based on the DC-SRF photoinjector and SRF linac at Peking University. Supported by National Natural Science Foundation of China (11275014)

  18. Microprocessor-based control for independently-phased RF linac cavities

    International Nuclear Information System (INIS)

    Dawson, J.W.

    1979-01-01

    A microprocessor based system has been built to control the RF amplifiers associated with independently phased linac cavities. The system has an 8080A at each amplifier station, together with associated ROM, RAM, I/O, etc. At a central NOVA 3 computer an additional 8080A system is incorporated in the interface to the NOVA I/O bus. The NOVA interface is connected by a bus of eighteen twisted pairs to each amplifier station, providing bilateral transmission between each station and the NOVA. The system architecture, bus protocol, and operating characteristics are described

  19. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  20. Design development of the SCDTL structure for the TOP linac

    CERN Document Server

    Picardi, L; Spataro, B

    1999-01-01

    The Side Coupled Drift Tube Linac (SCDTL) is an attractive 3 GHz accelerating structure composed of short DTL tanks coupled together by side coupling cavities, in the course of development of the 200 MeV proton linear accelerator for proton therapy planned for the Terapia Oncologica con Protoni (TOP) program of the Italian National Institute of Health (Istituto Superiore di Sanita, ISS). The TOP Linac will be used to boost to 70 MeV the 7 MeV proton beam from a linac injector. Our main concern is to investigate in detail the characteristics of the structure in terms of RF properties of the accelerating mode, like longitudinal and transverse shunt impedance and quality factor, and of the other modes that cause the origin of the tank dispersion curve, in order to stabilize the behaviour under operating conditions. Calculations performed with the computer three-dimensional (3D) codes MAFIA and SOPRANO on the smallest unit of the system (a single DTL tank without coupling cavities) and experimental measurements m...

  1. Low- to medium-β cavities for heavy ion acceleration

    Science.gov (United States)

    Facco, Alberto

    2017-02-01

    Acceleration of low- and medium-β heavy ions by means of superconducting (SC) linear accelerators (linacs) was made possible by the development, during four decades, of a particular class of cavities characterized by low operation frequency, several different shapes and different electromagnetic modes of operation. Their performance, initially rather poor in operating accelerators, have steadily increased along with the technological progress and nowadays the gap with the high-β, elliptical cavities is close to be filled. Initially confined to a very small number of applications, this family of cavities evolved in many directions becoming one of the most widespread in linacs. Nowadays it is present in the majority of superconducting radio-frequency ion linac projects worldwide. An overview of low- and medium-β SC cavities for heavy ions, focused on their recent evolution and achievements, will be given.

  2. Effect of the transverse parasitic mode on beam performance for the ADS driver linac in China

    International Nuclear Information System (INIS)

    Cheng Peng; Pei Shilun; Wang Jiuqing; Li Zhihui

    2015-01-01

    The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper. (authors)

  3. Beam breakup in a multi-section recirculating linac

    International Nuclear Information System (INIS)

    Gluckstern, R.L.

    1986-01-01

    It has long been recognized that recirculating a beam through a linac cavity in order to provide a more efficient acceleration can also lead to an instability in which the transverse displacement on successive recirculations can excite modes which further deflect the initial beam. The effect is of particular concern for superconducting rf cavities where the high Q (or order 10 9 ) implied low starting currents for the instability. Previous work has addressed this effect by calculating the beam trajectory in a single cavity, and its effect on excitation of unwanted modes. The analysis of Gluckstern, Cooper and Channel is extended to the case of recirculation of a CW beam, and the starting current for a multi-cavity structure with several recirculations is computed. Each of the cavities is assumed to provide a simple impulse to the beam proportional to the transverse displacement in that cavity

  4. Stability study of the higher order mode beam position monitors at the Accelerating cavities at FLASH

    CERN Document Server

    Shi, L; Jones., R M

    2014-01-01

    erating cavities at FLASH linac, DESY, are equipped with electronics for beam position monitoring, which are based on HOM signals from special couplers. These monitors provide the beam position without additional vacuum components and at low cost. Moreover, they can be used to align the beam in the cavities to reduce the HOM effects on the beam. However, the HOMBPM (Higher Order Mode based Beam Position Monitor) shows an instability problem over time. In this paper, we will present the status of studies on this issue. Several methods are utilized to calibrate the HOMBPMs. These methods include DLR (Direct Linear Regression), and SVD (Singular Value Decomposition). We found that SVD generally is more suitable for HOMBPM calibration. We focus on the HOMBPMs at 1.3 GHz cavities. Techniques developed here are applicable to 3.9 ...

  5. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  6. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  7. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  8. Commissioning of the Superconducting Linac at the Spallation Neutron Source (SNS)

    International Nuclear Information System (INIS)

    Kim, Sang-Ho; Campisi, Isidoro E.

    2007-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H-ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS will use the accelerated short (about 700 ns) sub-bunches of protons to generate neutrons by spallation, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade. The SRF cavities, operated at 805 MHz, were designed, built and integrated into cryomodules at Jefferson Lab and installed and tested at SNS. SNS is also the first proton-like accelerator which uses SRF cavities in a pulse mode. Many of the details of the cavity performance are peculiar to this mode of operation, which is also being applied to lepton accelerators (TESLA test facility and X-FEL at DESY and the international linear collider project). Thanks to the low frequency of the SNS superconducting cavities, operation at 4.2 K has been possible without beam energy degradation, even though the cavities and cryogenic systems were originally designed for 2.1 K operation. The testing of the superconducting cavities, the operating experience with beam and the performance of the superconducting linac will be presented

  9. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  10. Resonator modes and mode dynamics for an external cavity-coupled laser array

    Science.gov (United States)

    Nair, Niketh; Bochove, Erik J.; Aceves, Alejandro B.; Zunoubi, Mohammad R.; Braiman, Yehuda

    2015-03-01

    Employing a Fox-Li approach, we derived the cold-cavity mode structure and a coupled mode theory for a phased array of N single-transverse-mode active waveguides with feedback from an external cavity. We applied the analysis to a system with arbitrary laser lengths, external cavity design and coupling strengths to the external cavity. The entire system was treated as a single resonator. The effect of the external cavity was modeled by a set of boundary conditions expressed by an N-by-N frequency-dependent matrix relation between incident and reflected fields at the interface with the external cavity. The coupled mode theory can be adapted to various types of gain media and internal and external cavity designs.

  11. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Boulware, Chase H.; Grimm, Terry L.; Rogacki, Adam R.

    2016-08-01

    We present a study of higher order mode (HOM) damping in the first multicell superconducting radio-frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs). Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  12. Higher order mode damping in a five-cell superconducting rf cavity with a photonic band gap coupler cell

    Directory of Open Access Journals (Sweden)

    Sergey A. Arsenyev

    2016-08-01

    Full Text Available We present a study of higher order mode (HOM damping in the first multicell superconducting radio-frequency (SRF cavity with a photonic band gap (PBG coupler cell. Achieving higher average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery linacs (ERLs. Beam current in ERLs is limited by the beam breakup instability, caused by parasitic HOMs interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The five-cell cavity with a PBG cell was designed and optimized for HOM damping. Monopole and dipole HOMs were simulated. The SRF cavity was fabricated and tuned. External quality factors for some HOMs were measured in a cold test. The measurements agreed well with the simulations.

  13. Cumulative beam break-up study of the spallation neutron source superconducting linac

    CERN Document Server

    Jeon, D; Krafft, G A; Yunn, B; Sundelin, R; Delayen, J; Kim, S; Doleans, M

    2002-01-01

    Beam instabilities due to High Order Modes (HOMs) are a concern to superconducting (SC) linacs such as the Spallation Neutron Source (SNS) linac. The effects of pulsed mode operation on transverse and longitudinal beam breakup instability are studied for H sup - beam in a consistent manner for the first time. Numerical simulation indicates that cumulative transverse beam breakup instabilities are not a concern in the SNS SC linac, primarily due to the heavy mass of H sup - beam and the HOM frequency spread resulting from manufacturing tolerances. As little as +-0.1 MHz HOM frequency spread stabilizes all the instabilities from both transverse HOMs, and also acts to stabilize the longitudinal HOMs. Such an assumed frequency spread of +-0.1 MHz HOM is small, and hence conservative compared with measured values of sigma=0.00109(f sub H sub O sub M -f sub 0)/f sub 0 obtained from Cornell and the Jefferson Lab Free Electron Laser cavities. However, a few cavities may hit resonance lines and generate a high heat lo...

  14. Study of higher order modes in superconducting accelerating structures for linac applications

    Energy Technology Data Exchange (ETDEWEB)

    Schuh, Marcel

    2011-06-22

    Higher Order Modes (HOMs) can severely limit the operation of superconducting cavities in a linear accelerator with high beam current, high duty factor and complex pulse structure. Therefore, the full HOM spectrum has to be analysed in detail to identify potentially dangerous modes already during the design phase and to define their damping requirements. For this purpose a dedicated beam dynamics simulation code, Simulation of higher order Mode Dynamics (SMD), focusing on beam-HOM interaction, has been developed in the frame of this project. SMD allows to analyse the beam behaviour under the presence of HOMs, taking into account many important effects, such as for example the HOM frequency spread, beam input jitter, different chopping patterns, as well as klystron and alignment errors. SMD is used to investigate in detail into the effects of HOMs in the Superconducting Proton Linac (SPL) at CERN and in particular their potential to drive beam instabilities in the longitudinal and transverse direction. Based on these results, HOM damping requirements for the HOM coupler design are then defined. In addition, the linear accelerators of the European Spallation Source (ESS) and the Spallation Neutron Source (SNS) are analysed with respect to HOM impact and the results are compared with the SPL simulations. (orig.)

  15. Research on backward traveling wave electron linac

    International Nuclear Information System (INIS)

    Chen Huaibi; Zheng Shuxin; Ding Xiaodong; Lin Yuzheng

    1999-01-01

    Future electron linacs require high gradient acceleration. The studies on the high shunt impedance backward traveling wave electron linac accelerating structure (BTW) are presented. At first, the characteristics of BTW are researched. The option of mode and optimal design methods of accelerating cavity for BTW are studied. A physical design method for BTW accelerators, including longitudinal and transversal particle dynamics, is given. Based on above studies, a 9 MeV BTW accelerating tube at 3π/4 mode with frequency 2856 MHz for inspecting large container as radiation source at customs is designed, and a comparison with disk-loaded waveguide accelerating tube is made. The result of research leads to the conclusion that backward traveling wave accelerating structure is preferable. Because BTW has higher effective shunt impedance, shorter filling time and more stable operation

  16. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  17. Reducing the beam current in Linac4 in pulse to pulse mode.

    CERN Document Server

    Lallement, JB; CERN. Geneva. BE Department

    2009-01-01

    In order to deliver different beam intensities to users, we studied the possibility of varying the Linac4 beam current at PS Booster injection in pulse to pulse mode. This report gives the possible configurations of Linac4 Low and Medium Energy Beam Transport lines (LEBT and MEBT) that lead to a consistent current reduction.

  18. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  19. Modes and Mode Volumes for Leaky Optical Cavities and Plasmonic Nanoresonators

    DEFF Research Database (Denmark)

    Hughes, Stephen; Kristensen, Philip Trøst

    2013-01-01

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties r...... methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics....

  20. Harnessing the mode mixing in optical fiber-tip cavities

    International Nuclear Information System (INIS)

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  1. SUPERCONDUCTING LINAC FOR THE SPALLATION NEUTRON SOURCE

    International Nuclear Information System (INIS)

    STOVALL, J.; NATH, S.

    2000-01-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance

  2. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  3. Study of influences of the first bunching cavity and injection conditions of rf SW linacs on particle transverse motions

    International Nuclear Information System (INIS)

    Lin Yuzheng; Tong Dechun; Sun Xiang; Xu Guanghua; Zhao Zhentang

    1990-01-01

    For both medical and radiographic standing wave linear accelerators, a small beam spot diameter is always pursued. In order to minimize the size and weight of the machine and reduce the power dissipation, rf focusing is preferred to the focusing solenoid coil. Therefore, it is important to study behaviours of beam transverse motions in the rf fields for the design of SW linacs. The research shows that the transverse motion behaviours of the electron beam in the compact linac is mainly determined by the rf field distribution on the first bunching cavity and injection conditions of the beam. In this paper, a beam envelope equation is presented,the proprties of the E z , E r , H θ field distributions of various first bunching cavities of both symmetric and asymmetric are studied, and then the rf electric force and rf magnetic force exerting on the beam with a different injection time are analysed. It is demonstrated that the asymmetric first bunching cavity with a small gradient of E z (z) field will provide a larger transverse emittance. And an asymmetric cavity with a larger front aperture and a small back aperture is favourable to make a smaller gradient of E z (z) field. For both symmetric and asymmetric first bunching cavity, by adopting an appropriate negative injection angle the envelopes of the beam are all decreased obviously, the optimum injection angle being always around -3 deg. The measured result of the beam spot of a 4 MeV SW linac shows that the mentioned simulation calculation of the radial dynamics above is in good agreement with the measured result

  4. A heavy ion linac complex for RI beams

    International Nuclear Information System (INIS)

    Arai, Shigeaki

    1995-01-01

    A heavy ion linac complex for RI-beams has been under construction since fiscal year 1992 at INS. The linac complex comprises following accelerating structures: a 25.5-MHz split coaxial RFQ (SCRFQ), a 51-MHz interdigital-H (IH) linac, and a 25.5-MHz rebuncher cavity. The SCRFQ with modulated vanes accelerates ions with a charge-to-mass ratio (q/A) greater than 1/30 from 2 to 170 keV/u. The IH linac comprises four cavities and three magnetic quadrupole triplets placed between cavities, accelerates ions with q/A≥1/10, and varies the output energy continuously in the range 0.17 ∼1.05 MeV/u. The rebuncher cavity with six accelerating gaps is a double coaxial λ/4 resonator, and the total accelerating voltage is 200 kV. (author)

  5. A digital closed loop control system for automatic phase locking of superconducting cavities of IUAC Linac

    International Nuclear Information System (INIS)

    Dutt, R.N.; Rai, A.; Pandey, A.; Sahu, B.K.; Patra, P.; Karmakar, J.; Chaudhari, G.K.; Mathur, Y.; Ghosh, S.; Kanjilal, D.

    2013-01-01

    A closed loop digital control system has been designed and tested to automate the tuning process of superconducting resonators of LINAC at Inter-University Accelerator Centre, New Delhi. The mechanism controls the proportional valves of the He gas based pneumatic tuner in response to the phase and frequency errors of the cavity RF field. The main RF phase lock loop (PLL) is automatically closed once the resonant frequency is within locking range of the resonator PLL. The digital control scheme was successfully tested on few resonators of LINAC cryostat 1. A high stability of phase lock was observed. The details of the digital automation system are presented in the paper. (author)

  6. Wall compliance and violin cavity modes.

    Science.gov (United States)

    Bissinger, George

    2003-03-01

    Violin corpus wall compliance, which has a substantial effect on cavity mode frequencies, was added to Shaw's two-degree-of-freedom (2DOF) network model for A0 ("main air") and A1 (lowest length mode included in "main wood") cavity modes. The 2DOF model predicts a V(-0.25) volume dependence for A0 for rigid violin-shaped cavities, to which a semiempirical compliance correction term, V(-x(c)) (optimization parameter x(c)) consistent with cavity acoustical compliance and violin-based scaling was added. Optimizing x(c) over A0 and A1 frequencies measured for a Hutchins-Schelleng violin octet yielded x(c) approximately 0.08. This markedly improved A0 and A1 frequency predictions to within approximately +/- 10% of experiment over a range of about 4.5:1 in length, 10:1 in f-hole area, 3:1 in top plate thickness, and 128:1 in volume. Compliance is a plausible explanation for A1 falling close to the "main wood" resonance, not increasingly higher for the larger instruments, which were scaled successively shorter compared to the violin for ergonomic and practical reasons. Similarly incorporating compliance for A2 and A4 (lowest lower-/upper-bout modes, respectively) improves frequency predictions within +/-20% over the octet.

  7. Full power to the first Linac4 module

    CERN Multimedia

    Francesco Poppi

    2010-01-01

    Since last week the first of a total of 23 accelerating structures for Linac4 has been undergoing high-power tests. Although still a prototype, this structure is destined to be the first of the 12 PIMS cavities to be installed in the Linac4 tunnel and it has been completely designed, developed and constructed at CERN.   The PIMS prototype. The new Linac4 has 4 different types of accelerating structures. The PI-Mode Structures (PIMS) are the last stage and are designed to accelerate protons up to 160 MeV. “PIMS have never before been used to accelerate protons”, explains Frank Gerigk, the project engineer responsible for the Linac4 accelerating structures. “In LEP, they were used to accelerate electrons, and now we have modified them and improved several design features to make them suitable for protons”. The first prototype was entirely manufactured in the CERN workshop. Due to the size of the pieces it was difficult to achieve and preserve the required to...

  8. First Linac4 DTL & CCDTL cavities installed in tunnel

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On 5 June, the first Drift Tube Linac (DTL) was successfully transported to its forever home in the Linac4 tunnel. Similarly, the first Cell-Coupled Drift Tube Linac (CCDTL) was installed on 6 June. These moves marked the end of years of design and manufacturing by Linac4 teams.   Although it may seem like a relatively routine transport operation, the DTL's move was a landmark event for the entire Linac4 collaboration. "Along with the first four Cell-Coupled DTL modules, which were installed on the following two working days, these are the first accelerating structures after front-end commissioning to be installed in the tunnel," says Frank Gerigk, who is responsible for all Linac4 accelerating structures. "It is a major milestone, because work on all these structures started well over a decade ago." The transport operation was also quite a victory for the Linac4 DTL team, whose journey to a complete DTL structure has been a bit of a wild ride. &qu...

  9. Superconducting rf and beam-cavity interactions

    International Nuclear Information System (INIS)

    Bisognano, J.J.

    1987-01-01

    Beam-cavity interactions can limit the beam quality and current handling capability of linear and circular accelerators. These collective effects include cumulative and regenerative transverse beam breakup (BBU) in linacs, transverse multipass beam breakup in recirculating linacs and microtrons, longitudinal and transverse coupled-bunch instabilities in storage rings, and a variety of transverse and longitudinal single-bunch phenomena (instabilities, beam breakup, and energy deposition). The superconducting radio frequency (SRF) environment has a number of features which distinguish it from room temperature configuration with regard to these beam-cavity interactions. Typically the unloaded Qs of the lower higher order modes (HOM) are at the 10 9 level and require significant damping through couplers. High gradient CW operation, which is a principal advantage of SRF, allows for better control of beam quality, which for its preservation requires added care which respect to collective phenomena. Gradients are significantly higher than those attainable with copper in CW operation but remain significantly lower than those obtainable with pulsed copper cavities. Finally, energy deposition by the beam into the cavity can occur in a cryogenic environment. In this note those characteristics of beam-cavity interactions which are of particular importance for superconducting RF cavities are highlighted. 6 refs., 4 figs

  10. Beam-breakup calculations for the Los Alamos free-electron laser (FEL) linac

    International Nuclear Information System (INIS)

    Cooper, R.K.

    1984-01-01

    In addition to the usual circularly symmetric TM/sub 010/ mode used to accelerate particles in an rf linac, there is a large number of modes with cos phi or sin phi dependence, for example the TM/sub 1xx/ modes. These latter modes possess a uniform magnetic (dipole) field near the axis of symmetry and therefore can deflect the beam away from the axis. Any portion of an accelerated beam that is off-axis will drive these modes, so that subsequent portions of the beam will be deflected. This deflected beam will then resonantly drive the same modes in downstream cavities, so that still later portions of the beam will be more severely deflected, and so on. In this paper are reported the results of numerical simulations of this so-called cumulative beam-breakup instability. The simulation assumes that only the TM/sub 110/ mode acts to deflect the beam, and further assumes that this mode does not couple from one accelerating cavity to the next

  11. High order mode damping in a pill box cavity

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.; Rimmer, R.

    1991-04-01

    We have substantially damped the higher order modes (HOM's) in a pill box cavity with attached beam pipe, while reducing the Q of the principal mode by less that 10%. This was accomplished by cutting slots in the cavity end wall at a radius at which the magnetic field of the lowest frequency HOM's is large. The slots couple energy from the cavity into waveguides which are below cut off for the principal mode, but which propagate energy at the HOM frequencies. Three slots 120 degrees apart couple HOM energy to three waveguides. We are concerned primarily with accelerating and deflecting modes: i.e. the TM mnp modes of order m=0 and m=1. For the strongest damping, only three m=0 and m=1 modes were detectable. These were the principal TM 010 mode, the TM 011 longitudinal mode, and the TM 110 deflecting mode. In addition the HOM Q's and the reduction of Q for the principal mode were determined by computer calculation. The principal mode Q for an actual rf cavity could not be measured because the bolted joints used in the construction of the cavity were not sufficiently good to support Q's above 6000. The measured Q of the first longitudinal mode was 31 and of the first transverse mode 37. Our maximum damping was limited by how well we could terminated the waveguides, and indeed, the computer calculations for the TM 011 and TM 110 modes give values in the range we measured. 2 refs., 2 figs

  12. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    International Nuclear Information System (INIS)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-01-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10 -4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  13. Digital low level RF control system for the DESY TTF VUV-FEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Ayvazyan, V.; Choroba, S.; Matyushin, A.; Moeller, G.; Petrosyan, G.; Rehlich, K.; Simrock, S.N.; Vetrov, P.

    2005-07-01

    In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 10{sup -4} for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorenz force detuning. The VUV-FEL Linac RF control system employs a completely digital feedback system to provide flexibility in the control algorithms, precise calibration of the accelerating field vector-sum, and extensive diagnostics and exception handling capabilities. The RF control algorithm is implemented in DSP (Digital Signal Processor) firmware and DOOCS (Distributed Object Oriented Control System) servers. The RF control system design objectives are discussed. Hardware and software design of the DSP based RF control are presented. (orig.)

  14. Intertwined and vestigial order with ultracold atoms in multiple cavity modes

    Science.gov (United States)

    Gopalakrishnan, Sarang; Shchadilova, Yulia E.; Demler, Eugene

    2017-12-01

    Atoms in transversely pumped optical cavities "self-organize" by forming a density wave and emitting superradiantly into the cavity mode(s). For a single-mode cavity, the properties of this self-organization transition are well characterized both theoretically and experimentally. Here, we explore the self-organization of a Bose-Einstein condensate in the presence of two cavity modes—a system that recently was realized experimentally [Léonard et al., Nature (London) 543, 87 (2017), 10.1038/nature21067]. We argue that this system can exhibit a "vestigially ordered" phase in which neither cavity mode exhibits superradiance but the cavity modes are mutually phase locked by the atoms. We argue that this vestigially ordered phase should generically be present in multimode cavity geometries.

  15. Dispersion of coupled mode-gap cavities

    NARCIS (Netherlands)

    Lian, Jin; Sokolov, Sergei; Yuce, E.; Combrie, S.; de Rossi, A.; Mosk, Allard

    2015-01-01

    The dispersion of a coupled resonator optical waveguide made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the inherent dispersive cavity

  16. CEBAF Cryomodule Commissioning in the South Linac

    International Nuclear Information System (INIS)

    M. Drury; H. Lankford; T. Lee; J. Marshall; J. Preble; Q. Saulter; W. Schneider; Michael Spata; Mark Wiseman

    1993-01-01

    When complete, the Continuous Electron Beam Accelerator Facility will house a 4 GeV recirculating linear accelerator containing 42 1/4 cryomodules arrayed in two antiparallel linacs and an injector. Currently, 38 1/4 cryomodules have been installed. Each cryomodule contains eight superconducting niobium 5-cell rf cavities that operate at 1.497 GHz[1]. A cryomodule must provide an energy gain of 20 MeV to the 200 mu-A beam[2]. The resultant dynamic heat load must be less than 45 W. The cavity parameters that are measured during the commissioning process include the external Q's (Q(sub ext)) of the cavity ports, the unloaded Q (Q(sub 0)) of the cavity as a function of accelerating gradient, and the maximum operating gradient of the cavity[3]. Finally, the mechanical tuners are cycled and characterized. A portable test stand allows local control of the rf system and provides automated data acquisition. During the period from April 1993 through September 1993, 16 of the 20 cryomodules installed in the South Linac were commissioned. All cryomodules tested in the South Linac meet or exceed the CEBAF specifications. This paper describes the results of the commissioning of the first 10 cryomodules in the South Linac

  17. Continued conditioning of the Fermilab 400 MeV linac high-gradient side-coupled cavities

    International Nuclear Information System (INIS)

    Kroc, Thomas; McCrory, Elliott; Moretti, Alfred; Popovic, Milorad

    1996-01-01

    The high-energy portion of the Fermilab 400 MeV Linac is made of high gradient (37 MV/meter surface field) side-coupled cavity sections which were conditioned over a 10 month period before their installation in August of 1993. We have continued to monitor the conditioning of these cavities since that time while the cavities have been in operation, and those results are presented here. The sparking rate and the X-ray production are measured and compared with the 1992/3 pre-operational and 1993/4 early operational measurements. These rates are consistent with a continued diminishing of these phenomena. Predictions and spark management strategies presented in earlier reports are evaluated in light of present experiences. We also have been measuring the sparking rate within this structure with and without our 50 mA peak beam. We find that the sparking rate is 20% higher with beam in the accelerator. (author)

  18. SRF LINAC for future extension of the PEFP

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub [Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-04-15

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  19. SRF LINAC for future extension of the PEFP

    International Nuclear Information System (INIS)

    Kim, Han Sung; Kwon, Hyeok Jung; Seol, Kyoung Tae; Jang, Ji Ho; Cho, Yong Sub

    2014-01-01

    A study on the superconducting RF linac is underway in order to increase the beam energy up to 1 GeV by extending the Proton Engineering Frontier Project (PEFP) 100-MeV linac. The operating frequency of the PEFP superconducting linac (SCL) is 700 MHz, which is determined by the fact that the frequency of the existing normal conducting linac is 350 MHz. A preliminary study on the beam dynamics showed that two types of cavities with geometrical betas of 0.50 and 0.74 could cover the entire energy range from 100 MeV to 1 GeV. An inductive output tube (IOT) based RF system is under consideration as a high-power RF source for the SCL due to its low operating voltage and high efficiency. As a prototyping activity for a reduced beta cavity, a five-cell cavity with a geometrical beta of 0.42 was designed and fabricated. A vertical test of the prototype cavity at low temperatures was performed to check the performance of the cavity. The design study and the prototyping activity for the PEFP SCL will be presented in this paper.

  20. Computation of Normal Conducting and Superconducting Linear Accelerator (LINAC) Availabilities

    International Nuclear Information System (INIS)

    Haire, M.J.

    2000-01-01

    A brief study was conducted to roughly estimate the availability of a superconducting (SC) linear accelerator (LINAC) as compared to a normal conducting (NC) one. Potentially, SC radio frequency cavities have substantial reserve capability, which allows them to compensate for failed cavities, thus increasing the availability of the overall LINAC. In the initial SC design, there is a klystron and associated equipment (e.g., power supply) for every cavity of an SC LINAC. On the other hand, a single klystron may service eight cavities in the NC LINAC. This study modeled that portion of the Spallation Neutron Source LINAC (between 200 and 1,000 MeV) that is initially proposed for conversion from NC to SC technology. Equipment common to both designs was not evaluated. Tabular fault-tree calculations and computer-event-driven simulation (EDS) computer computations were performed. The estimated gain in availability when using the SC option ranges from 3 to 13% under certain equipment and conditions and spatial separation requirements. The availability of an NC LINAC is estimated to be 83%. Tabular fault-tree calculations and computer EDS modeling gave the same 83% answer to within one-tenth of a percent for the NC case. Tabular fault-tree calculations of the availability of the SC LINAC (where a klystron and associated equipment drive a single cavity) give 97%, whereas EDS computer calculations give 96%, a disagreement of only 1%. This result may be somewhat fortuitous because of limitations of tabular fault-tree calculations. For example, tabular fault-tree calculations can not handle spatial effects (separation distance between failures), equipment network configurations, and some failure combinations. EDS computer modeling of various equipment configurations were examined. When there is a klystron and associated equipment for every cavity and adjacent cavity, failure can be tolerated and the SC availability was estimated to be 96%. SC availability decreased as

  1. The design of a five-cell high-current superconducting cavity

    International Nuclear Information System (INIS)

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  2. Inhibited emission of electromagnetic modes confined in subwavelength cavities

    International Nuclear Information System (INIS)

    Le Thomas, N.; Houdre, R.

    2011-01-01

    We experimentally demonstrate the active inhibition of subwavelength confined cavity modes emission and quality factor enhancement by controlling the cavity optical surrounding. The intrinsic radiation angular spectrum of modes confined in planar photonics crystal cavities as well as its modifications depending on the environment are inferred via a transfer matrix modeling and k-space imaging.

  3. Higher order mode damping in Kaon factory RF cavities

    International Nuclear Information System (INIS)

    Enegren, T.; Poirier, R.; Griffin, J.; Walling, L.; Thiessen, H.A.; Smythe, W.R.

    1989-05-01

    Proposed designs for Kaon factory accelerators require that the rf cavities support beam currents on the order of several amperes. The beam current has Fourier components at all multiples of the rf frequency. Empty rf buckets produce additional components at all multiples of the revolution frequency. If a Fourier component of the beam coincides with the resonant frequency of a higher order mode of the cavity, which is inevitable if the cavity has a large frequency swing, significant excitation of this mode can occur. The induced voltage may then excite coupled bunch mode instabilities. Effective means are required to damp higher order modes without significantly affecting the fundamental mode. A mode damping scheme based on coupled transmission lines has been investigated and is report

  4. Analysis of HOM Problems in the C-ADS Main Linac

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Burn [Chinese Academy of Sciences (CAS), Lanzhou (China). Inst. of Modern Physics; Ng, King Yuen [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-05-18

    Excitation of higher-order modes (HOMs) in superconducting cavities may severely affect the operation of the main linac in the Chinese Accelerator Driven System (CADS). Preliminary analysis is made on the effects of beam dynamic, which includes possible longitudinal and transverse emittance enlargements, as well as the possibility of beam breakup. Suggestions are given for further investigation. Comparison is made between the C-ADS and the Fermilab Project X.

  5. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  6. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  7. HOM (higher-order mode) test of the storage ring single-cell cavity with a 20-MeV e- beam for the Advanced Photon Source (APS)

    International Nuclear Information System (INIS)

    Song, J.; Kang, Y.W.; Kustom, R.

    1993-01-01

    To test the effectiveness of damping techniques of the APS storage ring single-cell cavity, a beamline has been designed and assembled to use the ANL Chemistry Division linac beam (20-MeV, FWHM of 20 ps). A single-cell cavity will be excited by the electron beam to investigate the effect on higher-order modes (HOMs) with and without coaxial dampers (H-loop damper, E-probe damper), and wideband aperture dampers. In order for the beam to propagate on- and off-center of the cavity, the beamline consists of two sections -- a beam collimating section and a cavity measurement section -- separated by two double Aluminum foil windows. RF cavity measurements were made with coupling loops and E-probes. The results are compared with both the TBCI calculations and 'cold' measurements with the bead-perturbation method. The data acquisition system and beam diagnostics will be described in a separate paper

  8. Cavity Processing and Preparation of 650 MHz Elliptical Cell Cavities for PIP-II

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Allan [Fermilab; Chandrasekaran, Saravan Kumar [Fermilab; Grassellino, Anna [Fermilab; Melnychuk, Oleksandr [Fermilab; Merio, Margherita [Fermilab; Reid, Thomas [Argonne (main); Sergatskov, Dmitri [Fermilab

    2017-05-01

    The PIP-II project at Fermilab requires fifteen 650 MHz SRF cryomodules as part of the 800 MeV LINAC that will provide a high intensity proton beam to the Fermilab neutrino program. A total of fifty-seven high-performance SRF cavities will populate the cryomodules and will operate in both pulsed and continuous wave modes. These cavities will be processed and prepared for performance testing utilizing adapted cavity processing infrastructure already in place at Fermilab and Argonne. The processing recipes implemented for these structures will incorporate state-of-the art processing and cleaning techniques developed for 1.3 GHz SRF cavities for the ILC, XFEL, and LCLS-II projects. This paper describes the details of the processing recipes and associated chemistry, heat treatment, and cleanroom processes at the Fermilab and Argonne cavity processing facilities. This paper also presents single and multi-cell cavity test results with quality factors above 5·10¹⁰ and accelerating gradients above 30 MV/m.

  9. The FAIR proton linac

    International Nuclear Information System (INIS)

    Kester, O.

    2015-01-01

    FAIR - the Facility for Antiproton and Ion Research in Europe - constructed at GSI in Darmstadt comprises an international centre of heavy ion accelerators that will drive heavy ion and antimatter research. FAIR will provide worldwide unique accelerator and experimental facilities, allowing a large variety of fore-front research in physics and applied science. FAIR will deliver antiproton and ion beams of unprecedented intensities and qualities. The main part of the FAIR facility is a sophisticated accelerator system, which delivers beams to different experiments of the FAIR experimental collaborations - APPA, NuSTAR, CBM and PANDA - in parallel. Modern H-type cavities offer highest shunt impedances of resonant structures of heavy ion linacs at low beam energies < 20 MeV/u and enable the acceleration of intense proton and ion beams. One example is the interdigital H-type structure. The crossed-bar H-cavities extend these properties to high energies even beyond 100 MeV/u. Compared to conventional Alvarez cavities, these crossed-bar (CH) cavities feature much higher shunt impedance at low energies. The design of the proton linac is based on those cavities

  10. ARIEL e-LINAC: Commissioning and Development

    Science.gov (United States)

    Laxdal, R. E.; Zvyagintsev, V.

    2016-09-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.

  11. ARIEL e-LINAC: Commissioning and Development

    International Nuclear Information System (INIS)

    Laxdal, R.E.; Zvyagintsev, V.

    2016-01-01

    A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented. (paper)

  12. An rf modulated electron gun pulser for linacs

    International Nuclear Information System (INIS)

    Legg, R.; Hartline, R.

    1991-01-01

    Present linac injector designs often make use of sub-harmonic prebuncher cavities to properly bunch the electron beam before injection into a buncher and subsequent accelerating cavities. This paper proposes an rf modulated thermionic gun which would allow the sub-harmonic buncher to be eliminated from the injector. The performance parameters for the proposed gun are 120 kV operating voltage, macropulse duration-single pulse mode 2 nsec, multiple pulse mode 100 nsec, rf modularing frequency 500 MHz, charge per micropulse 0.4 nC, macropulse repetition frequency 10 Hz (max). The gun pulser uses a grid modulated planar triode to drive the gun cathode. The grid driver takes advantage of recently developed modular CATV rf drivers, high performance solid state pulser devices, and high-frequency fiber optic transmitters for telecommunications. Design details are presented with associated SPICE runs simulating operation of the gun

  13. Overview and status of RF systems for the SSC Linac

    International Nuclear Information System (INIS)

    Mynk, J.; Grippe, J.; Cutler, R.I.; Rodriguez, R.

    1993-05-01

    The Superconducting Super Collider (SSC) Linear Accelerator (Linac) produces a 600-MeV, 35-μs, H-beam at a 10-Hz repetition rate. The beam is accelerated by a series of RF cavities. These consist of a Radio Frequency Quadrupole (RFQ), two bunchers, and four Drift Tube Linac (DTL) tanks at 427.617 MHz, and two bunchers, nine side-coupled Linac modules, and an energy compressor at 1282.851 MHz. The RFQ amplifier and the low-frequency buncher cavity amplifiers use gridded tubes, while the other cavities use klystron amplifier systems. The RF control system consists of a reference line and cavity feedback and feedforward loops for each amplifier. The RF amplifier system for each of these accelerator cavities is described, and the current status of each system is presented

  14. Beam simulations with initial bunch noise in superconducting RF proton linacs

    CERN Document Server

    Tückmantel, J

    2010-01-01

    Circular machines are plagued by coupled bunch instabilities (CBI), driven by impedance peaks, where then all cavity higher order modes (HOMs) are possible drivers. Limiting the CBI growth rate is the fundamental reason that all superconducting rf cavities in circular machines are equipped with HOM dampers. The question arises if for similar reasons HOM damping would not be imperative also in high current superconducting rf proton linacs. Therefore we have simulated the longitudinal bunched beam dynamics in such machines, also including charge and position noise on the injected bunches. Simulations were executed for a generic linac with properties close to the planned SPL at CERN, SNS, or Project X at FNAL. It was found that with strong bunch noise and monopole HOMs with high Qext large beam scatter, possibly exceeding the admittance of a receiving machine, cannot be excluded. A transverse simulation shows similar requirements. Therefore including initial bunch noise in any beam dynamic study on superconducti...

  15. Tuner Design for PEFP Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Tang, Yazhe; An, Sun; Zhang, Liping; Cho, Yong Sub

    2009-01-01

    A superconducting radio frequency (SRF) cavity will be used to accelerate a proton beam after 100 MeV at 700 MHz in a linac of the Proton Engineering Frontier Project (PEFP) and its extended project. In order to control the SRF cavity's operating frequency at a low temperature, a new tuner has been developed for the PEFP SRF cavities. Each PEFP superconducting RF cavity has one tuner to match the cavity resonance frequency with the desired accelerator operating frequency; or to detune a cavity frequency a few bandwidths away from a resonance, so that the beam will not excite the fundamental mode, when the cavity is not being used for an acceleration. The PEFP cavity tuning is achieved by varying the total length of the cavity. The length of the cavity is controlled differentially by tuner acting with respect to the cavity body. The PEFP tuner is attached to the helium vessel and drives the cavity Field Probe (FP) side to change the frequency of the cavity

  16. The Very Model of a Modern PI-Mode Structure

    CERN Document Server

    Katarina Anthony

    2014-01-01

    Linac4's PI-Mode Structures (PIMS) are the first structures of their kind to accelerate protons. Now, over three years after work began on production, over 180 PIMS elements have been rough-machined and the first new PIMS cavity is being assembled at CERN.   The newly assembled PIMS cavity undergoes testing in CERN's Main Workshop. As the final accelerating structures of Linac4, located 53 m to 74 m downstream of the source, the state-of-the-art PIMS cavities will take protons from 100 to 160 MeV. While the first cavity was built entirely at CERN, construction of the remaining cavities has become a larger, multi-national operation. The newest PIMS cavity is being assembled and validated at CERN's Main Workshop. Built in collaboration with the National Centre for Nuclear Research (NCBJ, Poland) and the Jülich Research Centre (Germany), it is the first of its kind to be produced outside the Organization. Sharing all the required know...

  17. Beam transfer between the coupled cavity linac and the low energy booster synchrotron for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Bhandari, R.K.; Penner, S.

    1990-09-01

    Ion optical design of the transfer line, which will be used to inject H - beam at 600 MeV from the Coupled Cavity Linac (CCL) into the Low Energy Booster (LEB) synchrotron, is described. Space charge effects of up to 50 mA average beam current have been taken into account

  18. LINAC5 - A Quasi-Alvarez Linac for BioLEIR

    International Nuclear Information System (INIS)

    Garland, J M; Lallement, J-B; Lombardi, A

    2017-01-01

    LINAC5 is a new linac proposed for the acceleration of light ions with Q/A = 1/3 to 1/4 for medical applications within the BioLEIR (Low Energy Ion Ring) design study at CERN. We propose a novel quasi-Alvarez drift-tube linac (DTL) accelerating structure design for LINAC5, which can reduce the length of a more conventional DTL structure, yet allows better beam focussing control and flexibility than the inter-digital H (IH) structures typically used for modern ion acceleration. We present the main sections of the linac with total length ∼12 m, including a 202 MHz radio frequency quadrupole (RFQ) a matching medium energy beam transport (MEBT) and a 405 MHz quasi-Alvarez accelerating section with an output energy of 4.2 MeV/u. Permanent magnet quadrupoles are proposed for use in the quasi-Alvarez structure to improve the compactness of the design and increase the efficiency. Lattice design considerations, multi-particle beam dynamics simulations and RFQ and radio frequency (RF) cavity designs are presented. (paper)

  19. The RF system for the 70 MeV linac injector

    International Nuclear Information System (INIS)

    Planner, C.W.

    1975-12-01

    The Radio Frequency System for the 70 MeV Linac Injector for Nimrod is required to power the four Accelerating Cavities and the Buncher and Debuncher Cavities. The frequency of operation is 202.5 MHz and is determined by the use of existing equipment from the redundant 50 MeV Proton Linac for the second and third accelerating cavities and the buncher and de-buncher cavities. The subject is discussed under the following headings: low power drive chain; RF feed lines; cavity field level stabilisation. Circuit diagrams are presented. (U.K.)

  20. Determination of calibration constants for perturbing objects of cavity resonators

    International Nuclear Information System (INIS)

    Franco, M.A.R.; Serrao, V.A.; Fuhrmann, C.

    1989-05-01

    Using the Slater theorem, the calibrating constants for objects utilized in the tecnique of perturbing measurements of cavities electric and magnetic fields have been determined. Such perturbing objects are utilized in the measurements of the shunt impedance and electric field relative intensity ocurring in linac accelerating structures. To determine the calibrating constants of the perturbing objects, a cylindrical cavity of well know field pattern has been utilized. The cavity was excited in two differente modes of oscillation and the experimental results are in good aggrement with the theoretical values. (author) [pt

  1. Quantum discord dynamics of two qubits in single-mode cavities

    International Nuclear Information System (INIS)

    Wang Chen; Chen Qing-Hu

    2013-01-01

    The dynamics of quantum discord for two identical qubits in two independent single-mode cavities and a common single-mode cavity are discussed. For the initial Bell state with correlated spins, while the entanglement sudden death can occur, the quantum discord vanishes only at discrete moments in the independent cavities and never vanishes in the common cavity. Interestingly, quantum discord and entanglement show opposite behavior in the common cavity, unlike in the independent cavities. For the initial Bell state with anti-correlated spins, quantum discord and entanglement behave in the same way for both independent cavities and a common cavity. It is found that the detunings always stabilize the quantum discord. (general)

  2. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  3. Cavity mode control in side-coupled periodic waveguides: theory and experiment

    DEFF Research Database (Denmark)

    Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei

    2010-01-01

    We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....

  4. Unconventional geometric quantum computation in a two-mode cavity

    International Nuclear Information System (INIS)

    Wu Chunfeng; Wang Zisheng; Feng Xunli; Lai, C. H.; Oh, C. H.; Goan, H.-S.; Kwek, L. C.

    2007-01-01

    We propose a scheme for implementing unconventional geometric quantum computation by using the interaction of two atoms with a two-mode cavity field. The evolution of the system results in a nontrivial two-qubit phase gate. The operation of the proposed gate involves only metastable states of the atom and hence is not affected by spontaneous emission. The effect of cavity decay on the gate is investigated. It is shown that the evolution time of the gate in the two-mode case is less than that in the single-mode case proposed by Feng et al. [Phys. Rev. A 75, 052312 (2007)]. Thus the gate can be more decay tolerant than the previous one. The scheme can also be generalized to a system consisting of two atoms interacting with an N-mode cavity field

  5. Beam dynamics design of the 211 MeV APT normal conducting linac

    International Nuclear Information System (INIS)

    Young, L.M.; Billen, J.H.; Takeda, H.; Wood, R.L.

    1998-01-01

    This paper describes the normal conducting linac design that is part of the Accelerator for Production of Tritium (APT) project. The new version of PARMILA designed this linac. This linac accepts the beam from the 6.7 MeV radio frequency quadrupole without a separate matching section. At about 10 MeV, it has a smooth transition in the length of period from 8βλ to 9βλ in quadrupole focusing lattice. This adjustment of the period was needed to provide sufficient space for the quadrupole focusing magnets and beam diagnostic equipment. The linac consists of the coupled cavity drift tube linac up to 97 MeV and coupled cavity linac above 97 MeV

  6. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    DEFF Research Database (Denmark)

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high...

  7. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  8. Test measurement of a new TESLA cavity beam position monitor at the ELBE linac

    International Nuclear Information System (INIS)

    Sargsyan, V.; Schreiber, H.J.; Evtushenko, P.; Schurig, R.

    2004-01-01

    A new type of a cavity BPM proposed for beam position determination along the TESLA linac was tested at the accelerator ELBE in Rossendorf / Dresden. Measurements using an improved BPM (large and stable cross-talk isolation, significantly less energy dissipation, a novel LO signal generation) were performed in single- and multi-bunch regimes. Agreement with expectations was found. The low bunch charge available allowed for preliminary measurements on sensitivity and position resolution, which extrapolated to TESLA would ful l the demands for precise bunch-to-bunch position determination. Possible improvements, in particular on the signal processing scheme, are also discussed. (orig.)

  9. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  10. Mode conversion in metal-insulator-metal waveguide with a shifted cavity

    Science.gov (United States)

    Wang, Yueke; Yan, Xin

    2018-01-01

    We propose a method, which is utilized to achieve the plasmonic mode conversion in metal-insulator-metal (MIM) waveguide, theoretically. Our proposed structure is composed of bus waveguides and a shifted cavity. The shifted cavity can choose out a plasmonic mode (a- or s-mode) when it is in Fabry-Perot (FP) resonance. The length of the shifted cavity L is carefully chosen, and our structure can achieve the mode conversion between a- and s-mode in the communication region. Besides, our proposed structure can also achieve plasmonic mode-division multiplexing. All the numerical simulations are carried on by the finite element method to verify our design.

  11. Numerical studies and measurements on the side-coupled drift tube linac (SCDTL) accelerating structure

    International Nuclear Information System (INIS)

    Picardi, L.; Ronsivalle, C.; Spataro, B.

    2000-01-01

    The 3 GHz linac section designed for the low energy (7-65 MeV) part of TOP (therapy oncological protons) linac (Picardi et al., 1997, 1996), operating at 3 GHz frequency and in π/2 mode, consists of eight modules of the structure SCDTL (side-coupled drift tube linac). The first module is designed to accelerate 7 MeV protons up to 13.4 MeV, and a prototype is presently under construction. Electromagnetic field calculations of the non-axisymmetric cavities carried out by using MAFIA 3D code (Weiland, 1986) gave the RF wall losses and the full mode spectrum. Two prototypes, an aluminium model of the first quintuplet and a copper model of the last triplet of the module, were built in order to check the complex 3D properties of the structure, and to refine the tuning procedure. This paper reports the results of the 3D numerical simulations about the RF properties of the first module and of some RF measurements on the prototypes. The beam dynamics study results in the SCDTL section are discussed as well

  12. A beamline design and data acquisition with the 20-MeV, 20-ps electron beam for the higher-order mode studies of the APS SR-rf cavities

    International Nuclear Information System (INIS)

    Song, J.; Nassiri, A.; Daly, R.

    1993-01-01

    A beamline has been designed and assembled to use the ANL Chemistry Division 20-MeV electron linac for the testing of higher-order mode excitation and damping in rf cavities. The beamline consists of two sections (a beam collimating section with a 1.5 inches-OD vacuum line, and a cavity test section with a 3 inches-OD vacuum line), separated by two double aluminum foil windows. The beam diagnostics consist of a stripline beam position monitor, integrating current transformers, fluorescent screens, and a Faraday cup. EPICS (Experimental Physics and Industrial Control System) is used for beamline control, monitoring, and data acquisition. Also described is the diagnostic system used for beam image capture and analysis using EPICS-controlled hardware and PV-WAVE software. The rf cavity measurement will be described in a separate paper

  13. Progress in design of the SNS linac

    International Nuclear Information System (INIS)

    Hardekopf, R.

    2001-01-01

    The Spallation Neutron Source (SNS) is a six-laboratory collaboration to build an intense pulsed neutron facility at Oak Ridge, TN. The linac design has evolved from the conceptual design presented in 1997 in order to achieve higher initial performance and to incorporate desirable upgrade features. The linac is now designed to produce 2-MW beam power using a combination of radio-frequency quadrupole (RFQ) linac, drift-tube linac (DTL), coupled-cavity linac (CCL), and superconducting-RF (SRF) linac. Designs of each of these elements support he high peak intensity and high quality beam required for injection into the SNS accumulator ring. This paper will trace the evolution of the linac design and the progress made in the R and D program. (author)

  14. Linac design algorithm with symmetric segments

    International Nuclear Information System (INIS)

    Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.

    1996-01-01

    The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design

  15. Cavity quantum electrodynamics with Anderson-localized modes

    DEFF Research Database (Denmark)

    Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren

    2010-01-01

    by a factor of 15 on resonance with the Anderson-localized mode, and 94% of the emitted single photons coupled to the mode. Disordered photonic media thus provide an efficient platform for quantum electrodynamics, offering an approach to inherently disorder-robust quantum information devices.......A major challenge in quantum optics and quantum information technology is to enhance the interaction between single photons and single quantum emitters. This requires highly engineered optical cavities that are inherently sensitive to fabrication imperfections. We have demonstrated a fundamentally...... different approach in which disorder is used as a resource rather than a nuisance. We generated strongly confined Anderson-localized cavity modes by deliberately adding disorder to photonic crystal waveguides. The emission rate of a semiconductor quantum dot embedded in the waveguide was enhanced...

  16. Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    DEFF Research Database (Denmark)

    Mahmoodian, Sahand; Sukhorukov, Andrey A.; Ha, Sangwoo

    2010-01-01

    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized...... cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate....

  17. Fault-tolerant superconducting linac design for a 5-MW neutron spallation source

    International Nuclear Information System (INIS)

    Swain, G.R.

    1993-01-01

    An 805-MHz superconducting linac is proposed which could accelerate protons from 0.1 to 2.0 GeV in less than 730 m for a peak surface field in the cavities of 17 MV/m. The linac would furnish 5 MW of beam for a neutron spallation source, plus up to 10 additional MW of beam for other purposes. The design uses 454 elliptical cavities arranged in twelve groups, identical cavities being used within each group. Characterization of elliptical cavities for betas from 0.44 to 0.94 and the steps of the design procedure are presented. The effective peak power fed by each rf coupler would be less than 100 kW for all of the cavities. 6.5 kW of power at 2 deg K would need to be extracted by the cryogenic system. Space charge was found to have a negligible effect on emittance growth. The design is such that one cavity per group could be inoperable, and the gradient in the remaining cavities could be increased to compensate. The longitudinal and transverse acceptances of the linac would not be significantly degraded under such fault conditions. A corresponding 402.5 MHz linac design is being developed

  18. The Fermilab 400-MeV Linac Upgrade

    International Nuclear Information System (INIS)

    Schmidt, C.W.

    1993-05-01

    The Fermilab Linac Upgrade will increase the linac energy from 201 MeV to 401.5 MeV. Seven accelerating modules, composed of 805-MHz side-coupled cells, will accelerate H - beams from 116.5 to 401.5 MeV. The side-coupled structure (SCS) has been built, tuned, tested to full power, and placed in the linac enclosure along side the operating Linac. All seven accelerating modules, each containing four sections of sixteen cells, have been connected to 12-MW power klystrons and tested to full power for a significant period. The transition section to match the beam from the 201.25-MHz drift-tube linac to the SCS, consisting of a sixteen-cell cavity and a vernier four-cell cavity, has also been tested at full power. A new import line from the Linac to the Booster synchrotron with a new Booster injection girder is to be installed. Removal of the last four Alvarez linac tanks (116.5 to 201 MeV) and beam-line installation of the Upgrade components is to begin in early June 1993 and should take about 12 weeks. Beam commissioning of the project will follow and normal operation is expected in a short period. In preparation for beam commissioning, studies are being done with done operating linac to characterize the beam at transition and prepare for phase, amplitude and energy measurements to commission the new linac. The past, present and future activities of the 400-MeV Upgrade will be reviewed

  19. Detuning effect in a traveling wave type linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1981-10-01

    Detailed measurement of acceleration characteristics has been performed on a 15 MeV electron linac as the injector of the electron synchrotron at Institute for Nuclear Study, University of Tokyo. Remarkable feature of the results is that the energy gain as well as the energy spread of the output beam, are optimized when the linac is operated with the microwave whose frequency is higher than the resonant frequency of the accelerator waveguide. The difference of this operating frequency from the resonant frequency grows up as the beam intensity is increased, and amounts to 250 KHz when the beam intensity is 350 mA. In order to clarify the mechanism of the phenomena, the interaction of electron beam with the microwave in the accelerator structure of traveling wave type, is examined on the linac and also on a test accelerator structure. For the analysis of the experimental results, the normal mode method which has been used for standing wave cavities, is developed so as to be applied to the accelerator structure of traveling wave type. The results of analysis show that the observed phenomena at INS linac are caused by the resonant frequency shift, detuning, due to the reactive beam loading and this detuning effects are compensated by use of the microwave of higher frequency. Thus the detuning effects are significant even in the traveling wave type linac composed of buncher and regular sections as well as in the standing wave type accelerator structure. (author)

  20. An induction Linac driven heavy-ion fusion systems model

    International Nuclear Information System (INIS)

    Zuckerman, D.S.; Driemeyer, D.E.; Waganer, L.M.; Dudziak, D.J.

    1988-01-01

    A computerized systems model of a heavy-ion fusion (HIF) reactor power plant is presented. The model can be used to analyze the behavior and projected costs of a commercial power plant using an induction linear accelerator (Linac) as a driver. Each major component of the model (targets, reactor cavity, Linac, beam transport, power flow, balance of plant, and costing) is discussed. Various target, reactor cavity, Linac, and beam transport schemes are examined and compared. The preferred operating regime for such a power plant is also examined. The results show that HIF power plants can compete with other advanced energy concepts at the 1000-MW (electric) power level [cost of electricity (COE) -- 50 mill/kW . h] provided that the cost savings predicted for Linacs using higher charge-state ions (+3) can be realized

  1. Status of the SNS superconducting linac and future plan

    International Nuclear Information System (INIS)

    Kim, Sang-Ho

    2008-01-01

    The use of superconducting radiofrequency (SRF) cavities in particle accelerator is becoming more widespread. Among the projects that make use of that technology is the Spallation Neutron Source, where H- ions are accelerated to about 1 GeV, mostly making use of niobium elliptical cavities. SNS generates neutrons by the spallation reaction with the accelerated short (about 700 ns) sub-bunches of protons, which will in turn allow probing structural and magnetic properties of new and existing materials. The SNS superconducting linac is the largest application of RF superconductivity to come on-line in the last decade and has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspects of its performance were unknown and unpredictable. A lot of experiences and data have been gathered on the pulsed behavior of cavities and cryomodules at various repetition rates and at various temperatures during the commissioning of its components and beam operations. This experience is of great value in determining future optimizations of SNS as well in guiding in the design and operation of future pulsed superconducting linacs. The testing of the superconducting cavities, the operating experience with beam, the performance of the superconducting linac and the future plans will be presented.

  2. High intensity proton linac activities at Los Alamos

    International Nuclear Information System (INIS)

    Rusnak, B.; Chan, K.C.; Campbell, B.

    1998-01-01

    High-current proton linear accelerators offer an attractive alternative for generating the intense neutron fluxes needed for transmutations technologies, tritium production and neutron science. To achieve the fluxes required for tritium production, a 100-mA, 1700-MeV cw proton accelerator is being designed that uses superconducting cavities for the high-energy portion of the linac, from 211 to 1,700 MeV. The development work supporting the linac design effort is focused on three areas: superconducting cavity performance for medium-beta cavities at 700 MHz, high power rf coupler development, and cryomodule design. An overview of the progress in these three areas is presented

  3. TESLA superconducting RF cavity development

    International Nuclear Information System (INIS)

    Koepke, K.

    1995-01-01

    The TESLA collaboration has made steady progress since its first official meeting at Cornell in 1990. The infrastructure necessary to assemble and test superconducting rf cavities has been installed at the TESLA Test Facility (TTF) at DESY. 5-cell, 1.3 GHz cavities have been fabricated and have reached accelerating fields of 25 MV/m. Full sized 9-cell copper cavities of TESLA geometry have been measured to verify the higher order modes present and to evaluate HOM coupling designs. The design of the TESLA 9-cell cavity has been finalized and industry has started delivery. Two prototype 9-cell niobium cavities in their first tests have reached accelerating fields of 10 MV/m and 15 MV/m in a vertical dewar after high peak power (HPP) conditioning. The first 12 m TESLA cryomodule that will house 8 9-cell cavities is scheduled to be delivered in Spring 1995. A design report for the TTF is in progress. The TTF test linac is scheduled to be commissioned in 1996/1997. (orig.)

  4. Scaling relations for a beam-deflecting TM110 mode in an asymmetric cavity

    International Nuclear Information System (INIS)

    Takeda, H.

    1989-01-01

    A deflecting mode in an rf cavity caused by an aperture of the coupling hole from a waveguide is studied. If the coupling hole was a finite size, the rf modes in the cavity can be distorted. We consider the distorted mode as a sum of the accelerating mode, and the deflecting mode. The finite-size coupling hole can be considered as radiating dipole sources in a closed cavity. Following the prescription given by H. Bethe, the relative strength of the deflecting mode TM 110 to the accelerating TM 010 mode is calculated by decomposing the dipole source field into cavity eigenmodes. Scaling relations are obtained as a function of the coupling hole radius. 2 refs., 6 figs

  5. Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter

    International Nuclear Information System (INIS)

    Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.

    1988-05-01

    The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt

  6. Dynamic compensation of an rf cavity failure in a superconducting linac

    Directory of Open Access Journals (Sweden)

    Jean-Luc Biarrotte

    2008-07-01

    Full Text Available An accelerator driven system (ADS for transmutation of nuclear waste typically requires a 600 MeV–1 GeV accelerator delivering a proton flux of a few mA for demonstrators, and of a few tens of mA for large industrial systems. Such a machine belongs to the category of the high-power proton accelerators, with an additional requirement for exceptional “reliability”: because of the induced thermal stress to the subcritical core, the number of unwanted “beam trips” should not exceed a few per year, a specification that is several orders of magnitude above usual performance. In order to meet this extremely high reliability, the accelerator needs to implement, to the maximum possible extent, a fault-tolerance strategy that would allow beam operation in the presence of most of the envisaged faults that could occur in its beam line components, and in particular rf systems’ failures. This document describes the results of the simulations performed for the analysis of the fault-tolerance capability of the XT-ADS superconducting linac in the case of an rf cavity failure. A new simulation tool, mixing transient rf behavior of the accelerating cavities with full 6D description of the beam dynamics, has been developed for this purpose. Fast fault-recovery scenarios are proposed, and required research and development is identified.

  7. Accelerator study note: An attempt of 1 GeV linac

    International Nuclear Information System (INIS)

    Kato, Takao.

    1987-01-01

    A hypothetical 1 GeV linac is described, including its structure (which includes an ion source, radio frequency quadrupole linac, drift type linac, and coupled cavity linac), criteria for optimized design, cost optimization, frequency dependability of high frequency electric power loss, tuning during operation, the general rf system, computer codes and example calculations, beam dynamics simulation, and reduction of energy spread through the use of a debuncher

  8. Self-similar photonic crystal cavity with ultrasmall mode volume for single-photon nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk

    2017-01-01

    We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3.......We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3....

  9. RF Power Requirements for PEFP SRF Cavity Test

    International Nuclear Information System (INIS)

    Kim, Han Sung; Seol, Kyung Tae; Kwon, Hyeok Jung; Cho, Yong Sub

    2011-01-01

    For the future extension of the PEFP (Proton Engineering Frontier Project) Proton linac, preliminary study on the SRF (superconducting radio-frequency) cavity is going on including a five-cell prototype cavity development to confirm the design and fabrication procedures and to check the RF and mechanical properties of a low-beta elliptical cavity. The main parameters of the cavity are like followings. - Frequency: 700 MHz - Operating mode: TM010 pi mode - Cavity type: Elliptical - Geometrical beta: 0.42 - Number of cells: 5 - Accelerating gradient: 8 MV/m - Epeak/Eacc: 3.71 - Bpeak/Eacc: 7.47 mT/(MV/m) - R/Q: 102.3 ohm - Epeak: 29.68 MV/m (1.21 Kilp.) - Geometrical factor: 121.68 ohm - Cavity wall thickness: 4.3 mm - Stiffening structure: Double ring - Effective length: 0.45 m For the test of the cavity at low temperature of 4.2 K, many subsystems are required such as a cryogenic system, RF system, vacuum system and radiation shielding. RF power required to generate accelerating field inside cavity depends on the RF coupling parameters of the power coupler and quality factor of the SRF cavity and the quality factor itself is affected by several factors such as operating temperature, external magnetic field level and surface condition. Therefore, these factors should be considered to estimate the required RF power for the SRF cavity test

  10. HOM identification by bead pulling in the Brookhaven ERL cavity

    CERN Document Server

    Hahn, H; Jain, Puneet; Johnson, Elliott C; Xu, Wencan

    2014-01-01

    Exploratory measurements of the Brookhaven Energy Recovery Linac (ERL) cavity at superconducting temperature produced a long list of high order modes (HOMs). The niobium 5-cell cavity is terminated at each end with HOM ferrite dampers that successfully reduce the Q-factors to levels required to avoid beam break up (BBU) instabilities. However, a number of un-damped resonances with Q≥106 were found at 4 K and their mode identification forms the focus of this paper. The approach taken here consists of bead pulling on a copper (Cu) replica of the ERL cavity with dampers involving various network analyzer measurements. Several different S21 transmission measurements are used, including those taken from the fundamental input coupler to the pick-up probe across the cavity, others between beam-position monitor probes in the beam tubes, and also between probes placed into the cells. The bead pull technique suitable for HOM identification with a metallic needle or dielectric bead is detailed. This paper presents the...

  11. A diode-pumped Tm:YAG laser with an elliptical cavity mode

    International Nuclear Information System (INIS)

    Lipnicki, E.; Dawes, J.M.; Browne, P.G.

    2000-01-01

    Full text: A cavity consisting of cylindrical mirrors/lenses resulting in an elliptical cavity mode is being applied to a 3-level laser; Tm:YAG which lases near 2μm. This arrangement allows the use of simple pump beam optics but also ensures efficient mode matching with good output beam quality. This cavity has been designed and modelled with experiments under way to explore the advantages of this laser design

  12. A 250-GHz CARM [Cyclotron Auto Resonance Maser] oscillator experiment driven by an induction linac

    International Nuclear Information System (INIS)

    Caplan, M.; Kulke, B.; Bubp, D.G.; McDermott, D.; Luhmann, N.

    1990-01-01

    A 250-GHz Cyclotron Auto Resonance Maser (CARM) oscillator has been designed and constructed and will be tested using a 1-kA, 2-MeV electron beam produced by the induction linac at the Accelerator Research Center (ARC) facility of Lawrence Livermore National Laboratory (LLNL). The oscillator circuit was made to operate in the TE 11 mode at ten times cutoff using waveguide Bragg reflectors to create an external cavity Q of 8000. Theory predicts cavity fill times of less than 30 ns (pulse length) and efficiencies approaching 20% is sufficiently low transverse electron velocity spreads are maintained (2%)

  13. Wakefield and RF Kicks Due to Coupler Asymmetry in TESLA-Type Accelerating Cavities

    International Nuclear Information System (INIS)

    Bane, K

    2008-01-01

    In a future linear collider, such as the International Linear Collider (ILC), trains of high current, low emittance bunches will be accelerated in a linac before colliding at the interaction point. Asymmetries in the accelerating cavities of the linac will generate fields that will kick the beam transversely and degrade the beam emittance and thus the collider performance. In the main linac of the ILC, which is filled with TESLA-type superconducting cavities, it is the fundamental (FM) and higher mode (HM) couplers that are asymmetric and thus the source of such kicks. The kicks are of two types: one, due to (the asymmetry in) the fundamental RF fields and the other, due to transverse wakefields that are generated by the beam even when it is on axis. In this report we calculate the strength of these kicks and estimate their effect on the ILC beam. The TESLA cavity comprises nine cells, one HM coupler in the upstream end, and one (identical, though rotated) HM coupler and one FM coupler in the downstream end (for their shapes and location see Figs. 1, 2) [1]. The cavity is 1.1 m long, the iris radius 35 mm, and the coupler beam pipe radius 39 mm. Note that the couplers reach closer to the axis than the irises, down to a distance of 30 mm

  14. Design, fabrication and low power RF testing of a prototype beta=1, 1050 MHz cavity developed for electron linac

    International Nuclear Information System (INIS)

    Sarkar, S.; Mondal, J.; Mittal, K.C.

    2013-01-01

    A single cell 1050 MHz β = 1 elliptical cavity has been designed for possible use in High energy electron accelerator. A prototype Aluminium cavity has been fabricated by die punch method and low power testing of the cavity has been carried out by using VNA. The fundamental mode frequency of the prototype cavity is found out to be 1051.38 MHz and Q (loaded) and Q0 values corresponding to 2 modes are 8439 and 10013 respectively. Cell to cell coupling coefficient is 1.82 % from measurement which matches with the designed value (1.84%). The higher order mode frequencies are also measured and electric field of the cavity is confirmed by bead pull method. Low power RF measurements on the prototype cavity indicate that the critical RF parameters (Qo, f, Kc etc) for the cavity are consistent with the designed value. (author)

  15. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  16. Design of large aperture 500 MHz 5-cell superconducting cavity

    International Nuclear Information System (INIS)

    Wei Yelong; Feng Ziqiang; Lu Changwang; Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Mao Dongqing

    2012-01-01

    With the potential application of Energy Recovery Linac (ERL), the superconducting (SC) cavities were developed to deliver much higher current than before. Nowadays, the current of the international SC accelerator designed has already exceeded 100 mA. This paper presents the design of a new 500 MHz 5-cell SC cavity (SINAP 5-cell cavity), in which the parameters r/Q= 515.5 Ω of the fundamental mode and the geometry factor G=275.8 are under an acceptable Radio Frequency (RF) field level. (B peak /E acc =4.31 mT/MV/m and E peak /E acc =2.48). This design employs a larger beam pipe to propagate the Higher Order Modes (HOMs) out of the cavity and increases the damping efficiently for the dangerous HOMs. By simulation technique, it has been found that almost all the dangerous HOMs (including TE 111 , TM 110 , and TM 011 ) can be propagated into the beam pipe and are absorbed by ferrite absorbers, when the beam pile is enlarged. Finally, the loss factor for the new 5-cell cavity is also calculated. (authors)

  17. Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity

    International Nuclear Information System (INIS)

    Genes, Claudiu; Vitali, David; Tombesi, Paolo

    2008-01-01

    Laser cooling of a mechanical mode of a resonator by the radiation pressure of a detuned optical cavity mode has been recently demonstrated by various groups in different experimental configurations. Here, we consider the effect of a second mechanical mode with a close but different resonance frequency. We show that the nearby mechanical resonance is simultaneously cooled by the cavity field, provided that the difference between the two mechanical frequencies is not too small. When this frequency difference becomes smaller than the effective mechanical damping of the secondary mode, the two cooling processes interfere destructively similarly to what happens in electromagnetically induced transparency, and cavity cooling is suppressed in the limit of identical mechanical frequencies. We show that also the entanglement properties of the steady state of the tripartite system crucially depend upon the difference between the two mechanical frequencies. If the latter is larger than the effective damping of the second mechanical mode, the state shows fully tripartite entanglement and each mechanical mode is entangled with the cavity mode. If instead, the frequency difference is smaller, the steady state is a two-mode biseparable state, inseparable only when one splits the cavity mode from the two mechanical modes. In this latter case, the entanglement of each mechanical mode with the cavity mode is extremely fragile with respect to temperature.

  18. Unconventional geometric logic gate in a strong-driving-assisted multi-mode cavity

    International Nuclear Information System (INIS)

    Chang-Ning, Pan; Di-Wu, Yang; Xue-Hui, Zhao; Mao-Fa, Fang

    2010-01-01

    We propose a scheme to implement an unconventional geometric logic gate separately in a two-mode cavity and a multi-mode cavity assisted by a strong classical driving field. The effect of the cavity decay is included in the investigation. The numerical calculation is carried out, and the result shows that our scheme is more tolerant to cavity decay than the previous one because the time consumed for finishing the logic gate is doubly reduced. (general)

  19. Regularized quasinormal modes for plasmonic resonators and open cavities

    Science.gov (United States)

    Kamandar Dezfouli, Mohsen; Hughes, Stephen

    2018-03-01

    Optical mode theory and analysis of open cavities and plasmonic particles is an essential component of optical resonator physics, offering considerable insight and efficiency for connecting to classical and quantum optical properties such as the Purcell effect. However, obtaining the dissipative modes in normalized form for arbitrarily shaped open-cavity systems is notoriously difficult, often involving complex spatial integrations, even after performing the necessary full space solutions to Maxwell's equations. The formal solutions are termed quasinormal modes, which are known to diverge in space, and additional techniques are frequently required to obtain more accurate field representations in the far field. In this work, we introduce a finite-difference time-domain technique that can be used to obtain normalized quasinormal modes using a simple dipole-excitation source, and an inverse Green function technique, in real frequency space, without having to perform any spatial integrations. Moreover, we show how these modes are naturally regularized to ensure the correct field decay behavior in the far field, and thus can be used at any position within and outside the resonator. We term these modes "regularized quasinormal modes" and show the reliability and generality of the theory by studying the generalized Purcell factor of dipole emitters near metallic nanoresonators, hybrid devices with metal nanoparticles coupled to dielectric waveguides, as well as coupled cavity-waveguides in photonic crystals slabs. We also directly compare our results with full-dipole simulations of Maxwell's equations without any approximations, and show excellent agreement.

  20. Interacting collective modes in a laser cavity

    International Nuclear Information System (INIS)

    Graca, E.L.; Brito, A.L. de; Baseia, B.

    1985-01-01

    Collective operators are defined for the quantized radiation field in a one-dimensional laser cavity coupled to a semi-infinite outside region and the overlaps of neighbouring collective modes are considered to show how they modify, in the linear appoximation, the time evolution of the radiation field below threshold. The model and procedure work directly within a continuous spectrum of modes and allow us to get an improved insight on the prescription for the laser field in single-mode operation. (Author) [pt

  1. Superconducting multi-cell trapped mode deflecting cavity

    Science.gov (United States)

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  2. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  3. Choke-mode damped structure design for the Compact Linear Collider main linac

    CERN Document Server

    Zha, Hao; Grudiev, Alexej; Huang, Wenhui; Shi, Jiaru; Tang, Chuanxiang; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design to waveguide damped structures for the main linac of the Compact Linear Collider (CLIC). Choke-mode structures have the potential for lower pulsed temperature rise and simpler and less expensive fabrication. An equivalent circuit model based on transmission line theory for higher-order-mode damping is presented. Using this model, a new choke geometry is proposed and the wakefield performance is verified using GDFIDL. This structure has a comparable wakefield damping effect to the baseline design which uses waveguide damping. A prototype structure with the same iris dimensions and accelerating gradient as the nominal CLIC design, but with the new choke geometry, has been designed for high-power tests. DOI: 10.1103/PhysRevSTAB.15.122003

  4. 25 years of Pelletron Linac facility

    International Nuclear Information System (INIS)

    Shrivastava, A.; Palit, R.

    2014-01-01

    The DAE-BRNS International Symposium on Nuclear Physics was held in BARC during 2nd to 6th December 2013. A summary of the highlights of this symposium has recently appeared in Physics News. As a part of the symposium, a special session was held to commemorate 25 years of operation of the Mumbai Pelletron Linac Facility (PLF). PLF, being operated jointly by Bhabha Atomic Research Centre and Tata Institute of Fundamental Research, has been a major centre for heavy-ion accelerator based research in India. The Pelletron accelerator was formally inaugurated on 30th December 1988, and marked an important milestone in nuclear physics research in India. The facility was augmented with the indigenously developed superconducting LINAC booster to enhance the energy of the accelerated beams. The LINAC booster was commissioned in a phased manner and the entire facility was dedicated to the users on the 28th November 2007. The LINAC booster consists of seven liquid helium cryostat modules, each housing four lead coated (2 μm) copper quarter wave resonators (QWR). The cavities are designed to operate at 150 MHz with an optimum acceptance at a velocity corresponding to β=0.1. The performance of the QWRs is found to be excellent with an average energy gain of 0.4 MV/q per cavity corresponding to 80% of the design value. Beam transmission from the entry to the exit of the LINAC was found to be 80% and the beam timing (FWHM) of 600 ps was measured at the target position. Development of the superconducting LINAC is a major milestone in the accelerator technology in our country. Most of the critical components of the LINAC booster, the first superconducting heavy-ion accelerator in India, have been designed, developed and fabricated indigenously

  5. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    Paparella, R.

    2006-09-01

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  6. Low power rf system for the ALS Linac

    International Nuclear Information System (INIS)

    Lo, C.C.; Taylor, B.; Lancaster, H.

    1991-05-01

    The Linear Accelerator (Linac) in the Advanced Light Source (ALS) is designed to provide either single or multiple bunchers of 50 MeV electrons for the booster synchrotron. Three cavities are used in the Linac for electron bunching. The two subharmonic bunching cavities operate at 124.914 MHz and 499.654 MHz respectively. The S Band buncher operates at 2.997924 GHz. The low level RF system includes a master signal source, RF burst generators, signal phase control, timing trigger generators and a water temperature control system. The design and performance of the system will be described. 7 refs., 3 figs

  7. Single-nanoparticle detection with slot-mode photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng; Kita, Shota; Lončar, Marko, E-mail: loncar@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States); Li, Yihang [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-29

    Optical cavities that are capable for detecting single nanoparticles could lead to great progress in early stage disease diagnostics and the study of biological interactions on the single-molecule level. In particular, photonic crystal (PhC) cavities are excellent platforms for label-free single-nanoparticle detection, owing to their high quality (Q) factors and wavelength-scale modal volumes. Here, we demonstrate the design and fabrication of a high-Q (>10{sup 4}) slot-mode PhC nanobeam cavity, which is able to strongly confine light in the slotted regions. The enhanced light-matter interaction results in an order of magnitude improvement in both refractive index sensitivity (439 nm/RIU) and single-nanoparticle sensitivity compared with conventional dielectric-mode PhC cavities. Detection of single polystyrene nanoparticles with radii of 20 nm and 30 nm is demonstrated in aqueous environments (D{sub 2}O), without additional laser and temperature stabilization techniques.

  8. Electrodynamic characterisitcs measurements of higher order modes in S-band cavity

    Science.gov (United States)

    Donetsky, R.; Lalayan, M.; Sobenin, N. P.; Orlov, A.; Bulygin, A.

    2017-12-01

    The 800 MHz superconducting cavities with grooved beam pipes were suggested as one of the harmonic cavities design options for High Luminosity LHC project. Cavity simulations were carried out and scaled aluminium prototype having operational mode frequency of 2400 MHz was manufactured for testing the results of simulations. The experimental measurements of transverse shunt impedance with error estimation for higher order modes TM 110 and TE 111 for S-band elliptical cavity were done. The experiments using dielectric and metallic spherical beads and with ring probe were carried out. The Q-factor measurements for two-cell structure and array of two cells were carried out.

  9. Preliminary design of a dedicated proton therapy linac

    International Nuclear Information System (INIS)

    Hamm, R.W.; Crandall, K.R.; Potter, J.M.

    1991-01-01

    The preliminary design has been completed for a low current, compact proton linac dedicated to cancer therapy. A 3 GHz side-coupled structure accelerates the beam from a 70 MeV drift tube linac using commercially available S-band rf power systems and accelerating cavities. This significantly reduces the linac cost and allows incremental energies up to 250 MeV. The short beam pulse width and high repetition rate make the linac similar to the high energy electron linacs now used for cancer therapy, yet produce a proton flux sufficient for treatment of large tumors. The high pulse repetition rate permits raster scanning, and the small output beam size and emittance result in a compact isocentric gantry design. Such a linac will reduce the facility and operating costs for a dedicated cancer therapy system

  10. Mechanical features of a 700 MHz bridge-coupled drift tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modem linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLS) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range

  11. Use of the upper radial order modes in spherical superconducting cavities

    International Nuclear Information System (INIS)

    Reuss, J.

    1975-04-01

    Spherical cavities resonating on a high g radial order mode are considered. The ratio of the maximum magnetic field inside the cavity to the maximum field on the wall is proportional to g. The proportion coefficient is given for the TEsub(g10); TEsub(g20), TMsub(g10), and TMsub(g20) modes. That corresponds to an energy concentration at the center. Owing to this property the superconducting cavities might be used to produce strong H.F. magnetic fields (larger than 10 Teslas) [fr

  12. Cavity enhanced interference of orthogonal modes in a birefringent medium

    Science.gov (United States)

    Kolluru, Kiran; Saha, Sudipta; Gupta, S. Dutta

    2018-03-01

    Interference of orthogonal modes in a birefringent crystal mediated by a rotator is known to lead to interesting physical effects (Solli et al., 2003). In this paper we show that additional feedback offered by a Fabry-Perot cavity (containing the birefringent crystal and the rotator) can lead to a novel strong interaction regime. Usual signatures of the strong interaction regime like the normal mode splitting and avoided crossings, sensitive to the rotator orientation, are reported. A high finesse cavity is shown to offer an optical setup for measuring small angles. The results are based on direct calculations of the cavity transmissions along with an analysis of its dispersion relation.

  13. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  14. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Villas-Boas, Jose M. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica; Laucht, Arne; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Technische Universitaet Muenchen, Garching (Germany). Walter Schottky Inst.

    2011-07-01

    Full text. We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nano cavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nano cavity mode. Photoluminescence measurements show a characteristic triple peak during the double anti crossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced

  15. Mode locking of Yb:GdYAG ceramic lasers with an isotropic cavity

    International Nuclear Information System (INIS)

    Xu, C W; Tang, D Y; Zhu, H Y; Zhang, J

    2013-01-01

    We report on the passive mode locking of a diode pumped Yb:GdYAG ceramic laser with a near isotropic cavity. It is found that the laser could simultaneously mode lock in the two orthogonal principal polarization directions of the cavity, and the mode locked pulses of the two polarizations have identical features and are temporally perfectly synchronized. However, their pulse energy varies out-of-phase periodically, manifesting the antiphase dynamics of mode locked lasers. (letter)

  16. Higher Order Modes HOM's in Coupled Cavities of the Flash Module ACC39

    International Nuclear Information System (INIS)

    Shinton, I.R.R.

    2012-01-01

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  17. Higher order modes HOMs in coupled cavities of the FLASH module ACC39

    CERN Document Server

    Shinton, I R R; Li, Z; Zhang, P

    2011-01-01

    We analyse the higher order modes (HOM’s) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  18. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations

    International Nuclear Information System (INIS)

    Seena, Abu; Sung, Hyung Jin

    2011-01-01

    Highlights: ► DMD modes were extracted from two cavity flow data set at Re D = 12,000 and 3000. ► At Re D = 3000, frequencies of boundary layer and shear layer structures coincides. ► Boundary layer structures exceed in size with shear layer structures. ► At Re D = 12,000, structure showed coherence leading to self-sustained oscillations. ► Hydrodynamic resonance occurs if coherence exists in wavenumber and frequency. - Abstract: Self-sustained oscillations in a cavity arise due to the unsteady separation of boundary layers at the leading edge. The dynamic mode decomposition method was employed to analyze the self-sustained oscillations. Two cavity flow data sets, with or without self-sustained oscillations and possessing thin or thick incoming boundary layers (Re D = 12,000 and 3000), were analyzed. The ratios between the cavity depth and the momentum thickness (D/θ) were 40 and 4.5, respectively, and the cavity aspect ratio was L/D = 2. The dynamic modes extracted from the thick boundary layer indicated that the upcoming boundary layer structures and the shear layer structures along the cavity lip line coexisted with coincident frequency space but with different wavenumber space, whereas structures with a thin boundary layer showed complete coherence among the modes to produce self-sustained oscillations. This result suggests that the hydrodynamic resonances that gave rise to the self-sustained oscillations occurred if the upcoming boundary layer structures and the shear layer structures coincided, not only in frequencies, but also in wavenumbers. The influences of the cavity dimensions and incoming momentum thickness on the self-sustained oscillations were examined.

  19. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  20. Feedback system analysis for beam breakup in a multipass multisection electron linac

    International Nuclear Information System (INIS)

    Mosnier, A.; Aune, B.

    1986-06-01

    A recirculating electron accelerator based upon superconducting cavities technology is envisaged in different laboratories to produce a high duty cycle beam with energy in the GeV region. Beam break up is a severe limitation in this kind of accelerator due to the positive feedback of the returning beams. We present here an analysis based upon feedback system theory which takes into account the different cavities of the linac, the optics of the linac and of the recirculating path. An example is given for the Saclay proposal of a 2 GeV accelerator consisting of 4 passes in a 500 MeV, 100 m-long superconducting linac

  1. Dark current and radiation shielding studies for the ILC main linac

    Energy Technology Data Exchange (ETDEWEB)

    Mokhov, Nikolai V. [Fermilab; Rakhno, I. L. [Fermilab; Solyak, N. A. [Fermilab; Sukhanov, A. [Fermilab; Tropin, I. S. [Fermilab

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel. A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.

  2. Transverse deflections in a cavity due to the short-range longitudinal wake

    International Nuclear Information System (INIS)

    Bane, K

    2003-01-01

    Consider an ultra-relativistic electron bunch passing through a (cylindrically symmetric) multi-cell linac cavity that is filled with fundamental mode rf. It is well known that this bunch--on entering the cavity--experiences a focusing kick, and--on exiting the cavity--a defocusing kick, even though the mode is cylindrically symmetric. The effects of these kicks in linacs tend to be significant only in low energy regions. Tracking computer programs such as MAD [1] and LIAR [2] include a simple model of these kicks, one based on calculations of W.H. Panofsky [3]. According to this model the effect is represented by two thin lenses positioned at the ends of the cavity, with the strength of the lenses dependent on the accelerating gradient in the cavity. However, a beam will itself excite wakefields that modify its energy gain in a cavity, a modification that depends also on longitudinal position within the bunch. The program LIAR extends Panofsky's rf kick model to include this modification to the effective gradient experienced by different parts of the beam. In this report we investigate how the wakefields affect the rf cavity kicks. In particular, we are interested in the case when the wakefields are a significant perturbation to the problem, such as when, for example, the beam traverses an empty cavity (one with no rf). In this report we have shown that one can calculate the transverse kicks when one knows the time-dependent variation of the longitudinal wake forces on axis. The variation in gradient due to wakefields, however, will in general differ from that due to normal rf acceleration. In particular, transients at the ends of structures, and--for constant gradient structures--an increase in gradient amplitude from beginning to end of the cavity, will mean that the model of focusing/defocusing edges, used for rf acceleration, will be inaccurate. Finally, we conclude that the method LIAR uses to treat the effect of rf focusing in the presence of wakefields on

  3. Smooth transverse and longitudinal focusing in high-intensity ion linacs

    International Nuclear Information System (INIS)

    Billen, J.H.; Takeda, Harunori; Young, L.M.

    1996-01-01

    We examine ion linac designs that start with a high energy radio- frequency quadrupole (RFQ) followed by either a drift-tube linac (DTL) or a coupled-cavity drift-tube linac (CCDTL). For high energies a conventional CCL follows the CCDTL. High RFQ output energy allows tailoring the transverse and longitudinal focusing strengths to match into the following structure. When the RFQ beam enters a higher frequency structure, the DTL or CCDTL starts with a low accelerating gradient and large negative synchronous phase. The gradient and phase both ramp up gradually to higher values. Other changes later in the machine are also gradual. Beam dynamics simulations show that these linacs require no separate matching sections. Applications include a cw 100 mA H + beam from a 350-MHz, 6.7 MeV RFQ injecting a 700 MHz CCDTL and CCL; a 7% duty 28 mA H - beam from a 402.5 MHz RFQ and DTL injecting 805 MHz structures; a cw 135 mA D + beam produced by a 175 MHz, 8 MeV RFQ and DTL; and a 2.4% duty, 80 mA H + beam using a 433 MHz 10 MeV RFQ and a 1300 MHz CCDTL. The machines take advantage of the considerable flexibility of the CCDTL. Designs can use a variety of different transverse focusing lattices. Use of two coupling cavity orientations permits a constant period even when the number of drift tubes per cavity changes along the linac

  4. Higher Order Mode (HOM) Impedance and Damping Study for the LHC Capture Cavity

    CERN Document Server

    Linnecar, Trevor Paul R; Tückmantel, Joachim; CERN. Geneva. SPS and LHC Division

    2001-01-01

    To investigate the higher order mode, HOM, damping in the LHC 200MHz ACN cavity when using four HOM couplers, simulations have been done by both 3-D frequency domain and time domain methods. These simulations have previously been used in other studies of HOM damped cavities and shown to be effective by comparing measurement and simulation results[1] [2]. Using these methods the impedance spectrum of the HOM modes in the cavity before and after damping has been obtained. From this, detailed information about the HOM coupler's contribution to HOM damping can be obtained. The distribution and magnitude of some potentially dangerous HOM modes in the ACN cavity have been found.

  5. Superconducting cavity development at RRCAT

    International Nuclear Information System (INIS)

    Joshi, S.C.

    2015-01-01

    Raja Ramanna Centre for Advanced Technology (RRCAT), Indore pursuing a program on 'R and D Activities for High Energy Proton Linac based Spallation Neutron Source'. Spallation neutron source (SNS) facility will provide high flux pulse neutrons for research in the areas of condensed matter physics, materials science, chemistry, biology and engineering. This will complement the existing synchrotron light source facility, INDUS-2 at RRCAT and reactor based neutron facilities at BARC. RRCAT is also participating in approved mega project on 'Physics and Advanced Technology for High Intensity Proton Accelerator' to support activities of Indian Institutions - Fermilab Collaboration (IIFC). The SNS facility will have a 1 GeV superconducting proton injector linac and 1 GeV accumulator ring. The linac will comprise of large number of superconducting radio-frequency (SCRF) cavities operating at different RF frequencies housed in suitable cryomodules. Thus, an extensive SCRF cavity infrastructure setup is being established. In addition, a scientific and technical expertise are also being developed for fabrication, processing and testing of the SCRF cavities for series production. The paper presents the status of superconducting cavity development at RRCAT

  6. Transverse-mode-selectable microlens vertical-cavity surface-emitting laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Debernardi, Pierluigi; Lee, Yong Tak

    2010-01-01

    A new vertical-cavity surface-emitting laser structure employing a thin microlens is suggested and numerically investigated. The laser can be made to emit in either a high-power Gaussian-shaped single-fundamental mode or a high-power doughnut-shaped higher-order mode. The physical origin...

  7. Mode Conversion of a Solar Extreme-ultraviolet Wave over a Coronal Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weiguo [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China); Dai, Yu, E-mail: ydai@nju.edu.cn [Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210023 (China)

    2017-01-10

    We report on observations of an extreme-ultraviolet (EUV) wave event in the Sun on 2011 January 13 by Solar Terrestrial Relations Observatory and Solar Dynamics Observatory in quadrature. Both the trailing edge and the leading edge of the EUV wave front in the north direction are reliably traced, revealing generally compatible propagation velocities in both perspectives and a velocity ratio of about 1/3. When the wave front encounters a coronal cavity near the northern polar coronal hole, the trailing edge of the front stops while its leading edge just shows a small gap and extends over the cavity, meanwhile getting significantly decelerated but intensified. We propose that the trailing edge and the leading edge of the northward propagating wave front correspond to a non-wave coronal mass ejection component and a fast-mode magnetohydrodynamic wave component, respectively. The interaction of the fast-mode wave and the coronal cavity may involve a mode conversion process, through which part of the fast-mode wave is converted to a slow-mode wave that is trapped along the magnetic field lines. This scenario can reasonably account for the unusual behavior of the wave front over the coronal cavity.

  8. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  9. Mechanical features of a 700-MHz bridge-coupled drift-tube linac

    International Nuclear Information System (INIS)

    Liska, D.; Smith, P.; Carlisle, L.; Larkin, T.; Lawrence, G.; Garnett, R.

    1992-01-01

    Modern linac designs for treating radioactive waste achieve high proton currents through funneling at low energy, typically around 20 MeV. The resulting switch to a high-frequency accelerating structure poses severe performance and fabrication difficulties below 100 MeV. Above 100 MeV, proven coupled-cavity linacs (CCLs) are available. However, at 20 MeV one must choose between a high-frequency drift-tube linac (DTL) or a coupled-cavity linac with very short cells. Potential radiation damage from the CW beam, excessive RF power losses, multipactoring, and fabricability all enter into this decision. At Los Alamos, we have developed designs for a bridge-coupled DTL (BCDTL) that, like a CCL, uses lattice focusing elements and bridge couplers, but that unlike a CCL, accelerates the beam in simple, short, large-aperture DTL modules with no internal quadrupole focusing. Thus, the BCDTL consumes less power than the CCL linac without beam performance and is simpler and cheaper to fabricate in the 20 to 100 MeV range. (Author) ref., tab., 3 figs

  10. 1-GeV Linac Upgrade Study at Fermilab

    International Nuclear Information System (INIS)

    Popovic, M.; Moretti, A.; Noble, R.; Schmidt, C.W.

    1998-09-01

    A linac injector for a new proton source complex at Fermilab is assumed to have a kinetic energy of 1 GeV. This linac would be sized to accelerate 100 mA of H - beam in a 200 microsecond pulse at a 15 Hz repetition rate. This would be adequate to produce ∼10 14 protons per pulse allowing for future improvements of the new proton source complex. An alternate proposal is to add 600 MeV of side coupled cavity linac at 805 MHz to the existing 400 MeV Linac. This addition may either be in a new location or use the present Booster tunnel. A discussion of these possibilities will be given

  11. Selection of transverse modes in laser cavities containing waveguides and open parts

    International Nuclear Information System (INIS)

    Gurin, O V; Degtyarev, A V; Maslov, Vyacheslav A; Svich, V A; Tkachenko, V M; Topkov, A N

    2001-01-01

    The transverse modes of a submillimetre laser cavity that contains waveguides and open parts were studied theoretically and experimentally with the purpose of finding methods for mode selection. Two methods based on the filtering of the Fourier spectra of the waveguide modes and the use of their interference were substantiated numerically and realised in experiment. Special attention was paid to the mode selection in tunable lasers. Scaling laws allowing one to use the obtained results in a wide range of the cavity parameters and wavelengths are presented. (laser applications and other topics in quantum electronics)

  12. Evolution of the 400 MeV linac design

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1987-01-01

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also

  13. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  14. Requirements for longitudinal HOM damping in superconducting recirculating linacs

    International Nuclear Information System (INIS)

    Bisognano, J.J.; Fripp, M.L.

    1989-01-01

    Transverse beam breakup provides the primary current limitation in the operation of superconducting recirculating linacs and requires the significant damping of transverse-deflecting higher order modes. The need to damp the coexisting longitudinal HOMs in these nominally isochronous machines, however, is not as clear. Isochronicity implies that energy variations induced by excitation of longitudinal modes do not translate directly into position and current modulations. Such modulations, if present, could enhance the initial excitation, effectively closing a potentially unstable feedback loop. Design optimization of cavity structures may suggest that no longitudinal damping be provided. On the other hand, easing of the isochronicity requirement may provide desired flexibility in lattice design. In this note, limits are placed on the requirements for longitudinal HOM damping and on the tolerances for isochronicity which are driven by possible longitudinal multipass phenomena. 2 refs., 1 fig

  15. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....... of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed...

  16. Upper-limit on the Advanced Virgo output mode cleaner cavity length noise

    Science.gov (United States)

    Bonnand, R.; Ducrot, M.; Gouaty, R.; Marion, F.; Masserot, A.; Mours, B.; Pacaud, E.; Rolland, L.; Was, M.

    2017-09-01

    The Advanced Virgo detector uses two monolithic optical cavities at its output port to suppress higher order modes and radio frequency sidebands from the carrier light used for gravitational wave detection. These two cavities in series form the output mode cleaner. We present a measured upper limit on the length noise of these cavities that is consistent with the thermo-refractive noise prediction of 8×10-16~m~Hz-1/2 at 15 Hz. The cavity length is controlled using Peltier cells and piezo-electric actuators to maintain resonance on the incoming light. A length lock precision of 3.5×10-13 m is achieved. These two results are combined to demonstrate that the broadband length noise of the output mode cleaner in the 10-60 Hz band is at least a factor 10 below other expected noise sources in the Advanced Virgo detector design configuration.

  17. Preliminary design study and problem definition for intense CW superconducting deuteron ion linac for fusion material study

    International Nuclear Information System (INIS)

    Tanabe, Y.; Kakutani, N.; Ota, T.; Yamaguchi, A.; Takeda, O.; Wachi, Y.; Yamazaki, C.; Morii, Y.

    1997-01-01

    The advantages of superconducting (SC) cavity have been verified for many electron accelerators and the application of SC cavity to high intensity CW ion linacs is currently being considered. These linacs have been required for neutron irradiation tests of materials, transmutation of nuclear waste and so on. An SC linac consisting of SC cavities, SC quadrupole magnets and cryostats, was preliminarily designed to investigate the feasibility of applying to deuteron machine. Beam dynamics analysis was also carried out by using a modified PARMILA code in order to confirm no beam loss. Since radiation damage of superconductors is especially severe for such a machine, data relating to the damage were surveyed and discussed. Moreover, other major facilities such as cryogenic system, radio frequency amplifier and RF control system were considered. Many problems to be solved were defined but no critical issues were found. In consequence, it became clear that SC linac is very attractive and competitive with a room-temperature linac. (orig.)

  18. Higher Order Modes HOM___s in Coupled Cavities of the Flash Module ACC39

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech.; Jones, R.M.; /Manchester U. /DESY; Li, Z.; /SLAC; Zhang, P.; /Manchester U. /Cockcroft Inst. Accel. Sci. Tech. /DESY

    2012-09-14

    We analyse the higher order modes (HOM's) in the 3.9GHz bunch shaping cavities installed in the FLASH facility at DESY. A suite of finite element computer codes (including HFSS and ACE3P) and globalised scattering matrix calculations (GSM) are used to investigate the modes in these cavities. This study is primarily focused on the dipole component of the multiband expansion of the wakefield, with the emphasis being on the development of a HOM-based BPM system for ACC39. Coupled inter-cavity modes are simulated together with a limited band of trapped modes.

  19. Numerical simulation of waveguide input/output couplers for a planar mm-wave linac cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity structure has been studied. The input/output couplers for the accelerating cavity structure have been designed using the Hewlett-Packard High Frequency Structure Simulator (HFSS). The program is a frequency domain finite element 3-D field solver and can include matched port boundary conditions. The power transmission property of the structure is calculated in the frequency domain. The dimensions of the, coupling cavities and the irises at the input/output ports are adjusted to have the structure matched to rectangular waveguides. The field distributions in the accelerating structure for the 2π/3-mode traveling wave are shown

  20. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  1. Present status of cryogenic system for e-linac at VECC

    International Nuclear Information System (INIS)

    Ahammed, Manir; Mondal, Manas; Pal, Sandip; Duttagupta, Anjan; Bandyopadhyay, Arup; Naik, Vaishali; Chakrabarti, Alok; Laxdal, Robert E.; Koveshnikov, Alexy

    2015-01-01

    VECC is constructing a 50 MeV, 100 kW, superconducting electron linear accelerator (e-Linac) for the upcoming ANURIB (Advanced National facility for Unstable and Rare Isotope Beams) project at the new campus. Presently a 10 MeV injector for the e-Linac is being developed in collaboration with TRIUMF laboratory in Canada.The Injector comprises a 300 kV electron gun, low energy beam transport (LEBT) line and an injector cryo-module (ICM) that houses one 9-cell beta=1, 1.3 GHz niobium elliptical cavity operated at 2K. Alternatively, a capture cryo-module (CCM) having two single cell beta=1, 1.3 GHz niobium cavities that will allow the electron gun to be operated at 100 kV is also being developed. The e-Linac has been jointly designed by VECC and TRIUMF. The ICM is being built by TRIUMF whereas front-end of the injector is being built indigenously at VECC. In this report the details and present status of the cryogenic system for the e-Linac will be presented

  2. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  3. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  4. Design and development of R.F. LINAC accelerator components

    International Nuclear Information System (INIS)

    Abhay Kumar; Guha, S.; Balasubramaniam, R.; Jawale, S.B.

    2003-01-01

    Full text: Radio frequency linear accelerator, a high power electron LINAC technology, is being developed at BARC. These accelerators are considered to be the most compact and effective for a given power capacity. Important application areas of this LINAC include medical sterilization, food preservation, pollution control, semiconductor industries, radiation therapy and material science. Center for Design and Manufacture (CDM), BARC has been entrusted with the design, development and manufacturing of various mechanical components of the accelerator. Most critical and precision components out of them are Diagnostic chamber, Faraday cup, Drift tube and R.F. cavities. This paper deals with the design aspects in respect of Ultra high vacuum compatibility and the mechanism of operation. Also this paper discusses the state-of-art technology for machining of intricate contour using specially designed poly crystalline diamond tool and the inspection methodology developed to minimize the measurement errors on the machined contour. Silver brazing technique employed to join the LINAC cavities is also described in detail

  5. Present status of superconducting cavity developments

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Nobuo; Kusano, Joichi; Hasegawa, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    1997-11-01

    An R and D work of a superconducting (SC) cavity for the high intensity proton linac has begun at JAERI in collaboration with KEK. The RF field calculation and the structural analysis have been made to determine the cavity shape in the proton energy range between 100 and 1500 MeV. The results indicate the feasibility of a SC proton linac. A vertical test stand with clean room, water rinsing system, cavity evacuation pumping system, cryostat and data acquisition system has been installed to demonstrate the cavity performance. A single cell cavity of {beta}=0.5 has been fabricated and tested at the test stand to obtain the Q-value and the maximum surface electric field strength. The measured Q-values have been found to be high enough for our requirement while the field strength was limited to about 75% of the specification by the multipacting. We describe the preliminary design of the SC cavity, the overview of the vertical test stand and experimental results of the single cell cavity. (author)

  6. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  7. Entanglement of transverse modes in a pendular cavity

    OpenAIRE

    Mancini, Stefano; Gatti, Alessandra

    2001-01-01

    We study the phenomena that arise in the transverse structure of electromagnetic field impinging on a linear Fabry-Perot cavity with an oscillating end mirror. We find quantum correlations among transverse modes which can be considered as a signature of their entanglement.

  8. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  9. CEBAF's SRF cavity manufacturing experience

    International Nuclear Information System (INIS)

    Benesch, J.F.; Reece, C.E.

    1994-01-01

    Construction of the Continuous Electron Beam Accelerator Facility (CEBAF) recirculating linac represents the largest scale application of superconducting rf (SRF) technology to date. The accelerating structures in CEBAF are 169 pairs of 1.5 GHz superconducting rf cavities -- 9 pairs in an injector and 80 pairs each in two linacs. The beam is to be recirculated up to five passes through each linac. Data is presented on mechanical tolerances achieved by the industrial fabricator of the rf cavities (Siemens). Liquid helium leak rates integrated over 22 vacuum seals have been measured on over 110 cavity pairs. A roughly normal distribution of the log 10 (leak rate) is seen, centered about a rate of 10 -10.4 torr-l/s. Over 140 pairs of the cavities have been assembled and have completed rf testing at 2.0 K. Among these, 54% demonstrated usable accelerating gradients greater than 10 MV/m. Although the rf performance characteristics well exceed the CEBAF baseline requirements of 5 MV/m at Q 0 = 2.4x10 9 , the usual limiting phenomena are encountered: field emission, quenching, and occasional multipacting. A discussion of the occurrence conditions and severity of these phenomena during production cavity testing is presented. The frequency with which performance is limited by quenching suggests that additional material advances may be required for applications which require the reliable achievement of accelerating gradients of more than 15 MV/m

  10. Development of Side Coupled Cavities

    International Nuclear Information System (INIS)

    Conto, J.M. de; Carretta, J.M.; Gomez-Martinez, Y.; Micoud, R.

    2008-01-01

    Side coupled Cavities are good candidates for proton accelerations in the 90-180 MeV range, as it has been first proposed for the CERN LINAC4 project. A side coupled Linac is made of a lump chain of resonant cavities, alternatively accelerating and coupling. A side coupled cavity has been designed in a CERN-LPSC collaboration to achieve LINAC4 requirements. After RF studies, a complete thermal study has been done, showing that 10-15% is the absolute maximum duty-cycle achievable by such a cavity. Error studies have been developed. They have shown that a tuning ring is mandatory and that a K equals 3% coupling factor is a good choice. A prototype has been built and each cell has been measured and tuned. A simple and accurate method has been used to get both the resonant frequency and the coupling factor, with a movable tuner and a linear fit. A similar method has been used to get the second order coupling factor. A large dispersion is observed on K. This is mainly due to the shape of the coupling apertures, which are very sensitive to mechanical errors. A future and realistic design must be very careful to guarantee a constant aperture (the important parameter is more the dispersion of k than its exact value). Finally, we analyse how to tune the cavity. This has to checked carefully and probably improved or corrected. Results are expected for mid-2008

  11. Investigation of using shrinking method in construction of Institute for Research in Fundamental Sciences Electron Linear Accelerator TW-tube (IPM TW-Linac tube)

    Science.gov (United States)

    Ghasemi, F.; Abbasi Davani, F.

    2015-06-01

    Due to Iran's growing need for accelerators in various applications, IPM's electron Linac project has been defined. This accelerator is a 15 MeV energy S-band traveling-wave accelerator which is being designed and constructed based on the klystron that has been built in Iran. Based on the design, operating mode is π /2 and the accelerating chamber consists of two 60cm long tubes with constant impedance and a 30cm long buncher. Amongst all construction methods, shrinking method is selected for construction of IPM's electron Linac tube because it has a simple procedure and there is no need for large vacuum or hydrogen furnaces. In this paper, different aspects of this method are investigated. According to the calculations, linear ratio of frequency alteration to radius change is 787.8 MHz/cm, and the maximum deformation at the tube wall where disks and the tube make contact is 2.7μ m. Applying shrinking method for construction of 8- and 24-cavity tubes results in satisfactory frequency and quality factor. Average deviations of cavities frequency of 8- and 24-cavity tubes to the design values are 0.68 MHz and 1.8 MHz respectively before tune and 0.2 MHz and 0.4 MHz after tune. Accelerating tubes, buncher, and high power couplers of IPM's electron linac are constructed using shrinking method.

  12. 6 MeV RF Linac for cargo scanning and industrial radiography

    International Nuclear Information System (INIS)

    2017-01-01

    RF Linac-based X-ray sources are very widely used for cargo-scanning and industrial X-ray radiography applications. A 6 MeV on-axis coupled-cavity S-band RF linac has been designed, developed and tested successfully at Electron Beam Centre, Navi Mumbai. This facility falls under the purview of BARC Safety Council, which has conducted safety reviews and awarded regulatory clearances for the operation of the linac system. This paper outlines the salient features of the 6 MeV linac, its safety aspects and test results. A brief history of regulatory aspects is also presented

  13. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    International Nuclear Information System (INIS)

    Xu, Chen; Stony Brook University, NY; Ben-Zvi, Ilan; Stony Brook University, NY; Hao, Yue

    2017-01-01

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).

  14. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng

    2017-10-01

    The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).

  15. Spatial mode effects in a cavity-EIT based quantum memory with ion Coulomb crystals

    DEFF Research Database (Denmark)

    Zangenberg, Kasper Rothe; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    Quantum storage and retrieval of light in ion Coulomb crystals using cavity electromagnetically induced transparency are investigated theoretically. It is found that when both the control and the probe fields are coupled to the same spatial cavity mode, their transverse mode profile affects the q...

  16. Energy loss to parasitic modes of accelerating cavities

    International Nuclear Information System (INIS)

    Sands, M.

    1974-01-01

    At the maximum stored current, each circulating beam in PEP will consist of three bunches, each about 10 cm long containing 1.5 /times/ 10 12 particles. The large electric charge carried by such a bunch (2.5 /times/ 10/sup /minus/7/ coulomb) will, because of its short length, give rise to a large transient excitation of hundreds of parasitic modes in the accelerating cavities. The energy loss of the stored beam to the cavities from this process may be comparable to the loss to synchrotron radiation, and may, therefore, require a significant increase in power from the accelerating rf system. In this note I considered three aspects of this effect. First, an attempt is made to estimate the magnitude of the energy loss of a bunch in a single passage through the accelerating cavities. Then, I consider the effects of the periodic passages of the bunches in a single stored beam. And finally, I look at the consequences of storing two counter-rotating beams. The general conclusions are that the magnitude energy loss to the parasitic modes is serious, though probably not disastrous; and that, in general, the separate stored bunches will act incoherently. 2 refs., 7 figs

  17. A new method for improving beam quality of LINAC

    International Nuclear Information System (INIS)

    Xie Jialin; Li Fengtian; Wang Yanshan; Wang Bosi

    1999-01-01

    The principle of the self-adaptive feed-forward (SAFF) control to improve the beam quality of linac is introduced. the analytical procedure for calculating the control signals, the structure of a practical control system, and applications of SAFF in klystron, RF gun, and linac are presented, especially the application in the thermionic gun whose response is non-linear, time-variant and of large time-delay. The described control system is operational and some primary experimental results have been obtained, including the control of amplitude and phase fluctuations of the klystron output, the microwave field in the gun cavity and linac

  18. Alignment and Field Error Tolerance in Linac4

    CERN Document Server

    Bellodi, G; Garcia Tudela, M; Hein, L; Lallement, J B; Lanzone, S; Lombardi, A M; Posocco, P; Sargsyan, E

    2011-01-01

    LINAC4 [1] is a linear accelerator for negative Hydrogen ions (H−), which will replace the 50 MeV proton LINAC (LINAC2) as linear injector for the CERN accelerators. The higher output energy (160 MeV) together with charge-exchange injection will allow increasing beam intensity in the following machines. LINAC4 is about 80 m long, normal-conducting, and will be housed in a tunnel 12 m below ground on the CERN Meyrin site. The location has been chosen to allow using LINAC4 as the first stage of acceleration for a Multi-MegaWatt superconducting LINAC (SPL [2]). A 60 m long transfer line brings the beam towards the present LINAC2-to-PS Booster transfer line, which is joined at the position of BHZ20. The new transfer line consists of 17 new quadrupoles, an RF cavity and 4 bending magnets to adjust both the direction and the level for injection into the PS Booster. End-to-end beam dynamics simulations have been carried out in parallel with the codes PATH [3] and TRACEWIN[4]. Following the definition of the layout...

  19. The Linac4 DTL Prototype: Low and High Power Measurements

    CERN Document Server

    De Michele, G; Marques-Balula, J; Ramberger, S

    2012-01-01

    The prototype of the Linac4 Drift Tube Linac (DTL) has undergone low power measurements in order to verify the RF coupling and to adjust the post-coupler lengths based on bead-pull and spectrum measurements. Following the installation at the test stand, the cavity has been subjected to high power operation at Linac4 and SPL duty cycles. Saturation effects and multipacting have been observed and linked to X-ray emission. Voltage holding is reported in the presence of magnetic fields from permanent magnet quadrupoles (PMQ) installed in the first drift tubes.

  20. Conceptual design of compact heavy-ion inertial fusion driver with an r.f. LINAC with high acceleration rate

    International Nuclear Information System (INIS)

    Hattori, T.; Sasa, K.; Okamura, M.; Ito, T.; Tomizawa, H.; Katayose, T.; Hayashizaki, N.; Yoshida, T.; Isokawa, K.; Aoki, M.; Fujita, N.; Okada, M.

    1996-01-01

    The interdigital-H-type (IH) linear accelerator (LINAC) is well known for its high shunt impedance at low and medium particle velocities. Therefore, it can be used to operate efficiently with a high acceleration gradient. The IH LINAC cavity is able to generate 10 MV m -1 (average acceleration gradient) with focusing of the particles by a superconducting solenoid and quadrupole. The LINAC can accelerate particles with a charge to mass ratio (q/A) greater than 1/250 from 0.3 MeV a.m.u. -1 . In a compact heavy-ion inertial fusion driver design, the total effective length of the IH LINAC cavities is about 1250 m. (orig.)

  1. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  2. Linac-driven spallation-neutron source

    International Nuclear Information System (INIS)

    Jason, A.J.

    1995-01-01

    Strong interest has arisen in accelerator-driven spallation-neutron sources that surpass existing facilities (such as ISIS at Rutherford or LANSCE at Los Alamos) by more than an order of magnitude in beam power delivered to the spallation target. The approach chosen by Los Alamos (as well as the European Spallation Source) provides the full beam energy by acceleration in a linac as opposed to primary acceleration in a synchrotron or other circular device. Two modes of neutron production are visualized for the source. A short-pulse mode produces 1 MW of beam power (at 60 pps) in pulses, of length less than 1 ms, by compression of the linac macropulse through multi-turn injection in an accumulator ring. A long-pulse mode produces a similar beam power with 1-ms-long pulses directly applied to a target. This latter mode rivals the performance of existing reactor facilities to very low neutron energies. Combination with the short-pulse mode addresses virtually all applications

  3. Design study on an intense heavy-ion linac system

    International Nuclear Information System (INIS)

    Okamura, M.; Oguri, Y.; Takahashi, Y.; Hattori, T.; Takeda, O.; Satoh, K.; Tanabe, Y.

    1992-01-01

    A four-vane RFQ cavity is designed for an intense heavy-ion linac system. RFQ-vanes with small tip curvatures are applied in order to improve the RF power efficiency. Beam optical and RF parameters are investigated by beams of numerical methods. Using a scale model, the cavity structure is experimentally optimized. (Author) 7 refs., 4 figs

  4. Experimental Demonstration on Air Cavity Mode of Violin Using Holed Sheets of Paper

    Science.gov (United States)

    Matsutani, Akihiro

    2018-01-01

    The fundamental air cavity mode (A0) of a violin was investigated from the viewpoint of its dependence on the opening area and shape by using holed sheets of paper. The dependences of the frequency response of the A0 cavity mode on the shape, opening area, and orientation of the openings were observed. It was also demonstrated that the change of…

  5. Higher order mode analysis of the SNS superconducting linac

    CERN Document Server

    Sang Ho Kim; Dong Jeon; Sundelin, R

    2001-01-01

    Higher order modes (HOM's) of monopoles, dipoles, quadrupoles and sextupoles in beta =0.61 and beta =0.81 6-cell superconducting (SC) cavities for the Spallation Neutron Source (SNS) project, have been found up to about 3 GHz and their properties such as R/Q, trapping possibility, etc have been figured out concerning manufacturing imperfection. The main issues of HOM's are beam instabilities (published separately) and HOM induced power especially from TM monopoles. The time structure of SNS beam has three different time scales of pulses, which are micro-pulse, midi-pulse and macropulse. Each time structure will generate resonances. When a mode is near these resonance frequencies, the induced voltage could be large and accordingly the resulting HOM power. In order to understand the effects from such a complex beam time structure on the mode excitation and resulting HOM power, analytic expressions are developed. With these analytic expressions, the induced HOM voltage and HOM power were calculated by assuming e...

  6. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  7. Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems

    International Nuclear Information System (INIS)

    Chow, S.

    1976-01-01

    A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. In the power generation mode, the plasma and propellant flows are shut off, and the driver elements supply thermal power to the power conversion system, which generates electricity for primary electric propulsion purposes

  8. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    CERN Document Server

    Zhang, P; Baboi, Nicoleta

    2012-01-01

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrum...

  9. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  10. 4-rod RFQ linac for ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, Hiroshi; Hamamoto, Nariaki; Inouchi, Yutaka [Nisshin Electric Co. Ltd., Kyoto (Japan)

    1997-03-01

    A 34 MHz 4-rod RFQ linac system has been upgraded in both its rf power efficiency and beam intensity. The linac is able to accelerate in cw operation 0.83 mA of a B{sup +} ion beam from 0.03 to 0.91 MeV with transmission of 61 %. The rf power fed to the RFQ is 29 kW. The unloaded Q-value of the RFQ has been improved approximately 61 % to 5400 by copper-plating stainless steel cooling pipes in the RFQ cavity. (author)

  11. Increasing the mode-locking efficiency of a cw solid-state laser with an auxiliary cavity

    International Nuclear Information System (INIS)

    Kalashnikov, V.L.; Kalosha, V.P.; Mikhailov, V.P.; Demchuk, M.I.

    1992-01-01

    It is predicted theoretically that the efficiency of self-mode locking can be raised by means of a bleachable shutter in the main cavity or an auxiliary cavity. The laser emits a stable train of ultrashort pulses under these conditions. The theory is based on a fluctuation model of the operation of a cw solid-state laser with a linear auxiliary cavity. The increase in efficiency involves a broadening of the region of parameter values of the system in which self-mode locking occurs, a significant decrease in the threshold pump intensity, and a reduced sensitivity of the operation to the phase mismatch of the lengths of the cavities. It is shown, for the first time, that a stable train of double ultrashort pulses can be generated by a system with a shutter in the auxiliary cavity. It is also shown that a self-mode locking is possible in the case in which there is a phase mismatch of the cavity lengths and there is no phase self-modulation in the main cavity. 15 refs., 8 figs

  12. Few-mode vertical-cavity surface-emitting laser: Optional emission of transverse modes with different polarizations

    Science.gov (United States)

    Zhong, Chuyu; Zhang, Xing; Hofmann, Werner; Yu, Lijuan; Liu, Jianguo; Ning, Yongqiang; Wang, Lijun

    2018-05-01

    Few-mode vertical-cavity surface-emitting lasers that can be controlled to emit certain modes and polarization states simply by changing the biased contacts are proposed and fabricated. By directly etching trenches in the p-doped distributed Bragg reflector, the upper mesa is separated into several submesas above the oxide layer. Individual contacts are then deposited. Each contact is used to control certain transverse modes with different polarization directions emitted from the corresponding submesa. These new devices can be seen as a prototype of compact laser sources in mode division multiplexing communications systems.

  13. Coherent coupling of two different semiconductor quantum dots via an optical cavity mode

    Energy Technology Data Exchange (ETDEWEB)

    Laucht, Arne; Villas-Boas, Jose M.; Hauke, Norman; Hofbauer, Felix; Boehm, Gerhard; Kaniber, Michael; Finley, Jonathan J. [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    We present a combined experimental and theoretical study of a strongly coupled system consisting of two spatially separated self-assembled InGaAs quantum dots and a single optical nanocavity mode. Due to their different size and strain profile, the two dots exhibit markedly different electric field dependences due to the quantum confined Stark effect. This allows us to tune them into resonance simply by changing the applied bias voltage and to independently tune them into the photonic crystal nanocavity mode. Photoluminescence measurements show a characteristic triple peak during the double anticrossing, which is a clear signature of a coherently coupled system of three quantum states. We fit the emission spectra of the coupled system to theory and are able to investigate the coupling between the two quantum dots directly via the cavity mode. Furthermore, we investigate the coupling between the two quantum dots when they are detuned from the cavity mode in a V-system where dephasing due to incoherent losses from the cavity mode can be reduced.

  14. Fermilab Linac Upgrade: Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-12-01

    The 805 MHz Side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side-cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and disc the near-online commissioning plans for this accelerator

  15. Status of the mechanical design of the 650 MHz cavities for Project X

    Energy Technology Data Exchange (ETDEWEB)

    Barbanotti, S.; Grimm, C.; Champion, M.; Foley, M.; Ginsburg, C.M.; Gonin, I.; Peterson, T.; Ristori, L.; Yakovlev, V.; /Fermilab

    2011-03-01

    In the high-energy section of the Project X Linac, acceleration of H{sup -} ions takes place in superconducting cavities operating at 650 MHz. Two families of five-cell elliptical cavities are planned: beta = 0.61 and beta = 0.9. A specific feature of the Project X Linac is low beam loading, and thus, low bandwidth and higher sensitivity to microphonics. Efforts to optimize the mechanical design of the cavities to improve their mechanical stability in response to the helium bath pressure fluctuations will be presented. These efforts take into account constraints such as cost and ease of fabrication. Also discussed will be the overall design status of the cavities and their helium jackets. The proposed design of the 3 GeV Project X superconducting (SC) Linac employs 650 MHz five-cell elliptical cavities to accelerate 1.0 mA of average H-beam current in the 160-3000 MeV energy range. The 650 MHz region of the Linac is divided into two sections with two different geometric phase velocity factors: beta = 0.61 to cover the 160-520 MeV range and beta = 0.9 to cover the 520-3000 MeV range. Approximately 40 beta = 0.61 and 150 beta = 0.9 cavities are currently planned for the project. An R&D program is in progress at FNAL, in collaboration with TJNAF and India, to develop the 650 MHz cavities for the proposed Linac design. This R&D program includes the design and fabrication of several beta = 0.61 and beta = 0.9 single-cell prototypes for evaluation prior to production of the five-cell cavities. FNAL has contracted AES to fabricate the beta = 0.9 prototypes, while TJNAF is building beta = 0.61 prototypes of their own design. In the remainder of this paper we will restrict our discussion to the five-cell beta = 0.9 cavities.

  16. RIA Superconducting Drift Tube Linac R and D

    International Nuclear Information System (INIS)

    Popielarski, J.; Bierwagen, J.; Bricker, S.; Compton, C.; DeLauter, J.; Glennon, P.; Grimm, T.; Hartung, W.; Harvell, D.; Hodek, M.; Johnson, M.; Marti, F.; Miller, P.; Moblo, A.; Norton, D.; Popielarski, L.; Wlodarczak, J.; York, R.C.; Zeller, A.

    2009-01-01

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to (ge) 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focusing. Active and passive shielding is required to ensure that the solenoids field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  17. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  18. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    International Nuclear Information System (INIS)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-01

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting

  19. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  20. Industrialization of the nitrogen-doping preparation for SRF cavities for LCLS-II

    Science.gov (United States)

    Gonnella, D.; Aderhold, S.; Burrill, A.; Daly, E.; Davis, K.; Grassellino, A.; Grimm, C.; Khabiboulline, T.; Marhauser, F.; Melnychuk, O.; Palczewski, A.; Posen, S.; Ross, M.; Sergatskov, D.; Sukhanov, A.; Trenikhina, Y.; Wilson, K. M.

    2018-03-01

    The Linac Coherent Light Source II (LCLS-II) is a new state-of-the-art coherent X-ray source being constructed at SLAC National Accelerator Laboratory. It employs 280 superconducting radio frequency (SRF) cavities in order operate in continuous wave (CW) mode. To reduce the overall cryogenic cost of such a large accelerator, nitrogen-doping of the SRF cavities is being used. Nitrogen-doping has consistently been shown to increase the efficiency of SRF cavities operating in the 2.0 K regime and at medium fields (15-20 MV/m) in vertical cavity tests and horizontal cryomodule tests. While nitrogen-doping's efficacy for improvement of cavity performance was demonstrated at three independent labs, Fermilab, Jefferson Lab, and Cornell University, transfer of the technology to industry for LCLS-II production was not without challenges. Here we present results from the beginning of LCLS-II cavity production. We discuss qualification of the cavity vendors and the first cavities from each vendor. Finally, we demonstrate that nitrogen-doping has been successfully transferred to SRF cavity vendors, resulting in consistent production of cavities with better cryogenic efficiency than has ever been achieved for a large-scale accelerator.

  1. Design considerations for a superconducting linac as an option for the ESS

    CERN Document Server

    Bräutigam, W F; Schug, G; Zaplatin, E N; Meads, P F; Senichev, Yu V

    1999-01-01

    An approach for a superconducting high-current proton linac for the ESS has been discussed as an option in the "Proposal for a Next Generation Neutron Source for Europe-the European Spallation Source (ESS)". The following work studies the technical and economic conditions for a superconducting linac at the high-energy end of the proposed accelerator system. The use of superconducting elliptical cavities for the acceleration of high-energetic particles beta =v/c-1 is certainly state of the art. This is documented by many activities (TJNAF, TESLA, LEP, LHC, and KEK). A design study for the cavities is described in another paper on this conference. For low energy particles ( beta <<1) quarter wave type cavities and spoke-type cavities have been discussed. The main motivation for this study is the expectation of significant cost reduction in terms of operational and possibly investment cost. (5 refs).

  2. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    International Nuclear Information System (INIS)

    Zhang, Pei

    2013-02-01

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrumentation. At the FLASH facility in DESY, 1.3 GHz (known as TESLA) and 3.9 GHz (third harmonic) cavities are installed. Wakefields in 3.9 GHz cavities are significantly larger than in the 1.3 GHz cavities. It is therefore important to mitigate the adverse effects of HOMs to the beam by aligning the beam on the electric axis of the cavities. This alignment requires an accurate beam position diagnostics inside the 3.9 GHz cavities. It is this aspect that is focused on in this thesis. Although the principle of beam diagnostics with HOM has been demonstrated on 1.3 GHz cavities, the realization in 3.9 GHz cavities is considerably more challenging. This is due to the dense HOM spectrum and the relatively strong coupling of most HOMs amongst the four cavities in the third harmonic cryo-module. A comprehensive series of simulations and HOM spectra measurements have been performed in order to study the modal band structure of the 3.9 GHz cavities. The dependencies of

  3. Beam position diagnostics with higher order modes in third harmonic superconducting accelerating cavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei

    2013-02-15

    Higher order modes (HOM) are electromagnetic resonant fields. They can be excited by an electron beam entering an accelerating cavity, and constitute a component of the wakefield. This wakefield has the potential to dilute the beam quality and, in the worst case, result in a beam-break-up instability. It is therefore important to ensure that these fields are well suppressed by extracting energy through special couplers. In addition, the effect of the transverse wakefield can be reduced by aligning the beam on the cavity axis. This is due to their strength depending on the transverse offset of the excitation beam. For suitably small offsets the dominant components of the transverse wakefield are dipole modes, with a linear dependence on the transverse offset of the excitation bunch. This fact enables the transverse beam position inside the cavity to be determined by measuring the dipole modes extracted from the couplers, similar to a cavity beam position monitor (BPM), but requires no additional vacuum instrumentation. At the FLASH facility in DESY, 1.3 GHz (known as TESLA) and 3.9 GHz (third harmonic) cavities are installed. Wakefields in 3.9 GHz cavities are significantly larger than in the 1.3 GHz cavities. It is therefore important to mitigate the adverse effects of HOMs to the beam by aligning the beam on the electric axis of the cavities. This alignment requires an accurate beam position diagnostics inside the 3.9 GHz cavities. It is this aspect that is focused on in this thesis. Although the principle of beam diagnostics with HOM has been demonstrated on 1.3 GHz cavities, the realization in 3.9 GHz cavities is considerably more challenging. This is due to the dense HOM spectrum and the relatively strong coupling of most HOMs amongst the four cavities in the third harmonic cryo-module. A comprehensive series of simulations and HOM spectra measurements have been performed in order to study the modal band structure of the 3.9 GHz cavities. The dependencies of

  4. Conceptual Design of the Superconducting Proton Linac Short Cryo-module

    CERN Document Server

    Bourcey, N; Capatina, O; Azevedo, P; Montesinos, E; Parma, V; Renaglia, T; Vande Craen, A; Williams, L R; Weingarten, W; Rousselot, S; Duthil, P; Duchesne, P; Reynet, D; Dambre, P

    2012-01-01

    The Superconducting Proton Linac (SPL) is an R&amp;amp;D effort conducted by CERN in partnership with other international laboratories, aimed at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art Superconducting Radio Frequency technology, which would serve as a driver for new physics facilities such as neutrinos and radioactive ion beams. Amongst the main objectives of this effort, are the development of 704 MHz bulk niobium b=1 elliptical cavities, operating at 2 K and providing an accelerating field of 25 MV/m, and testing of a string of cavities integrated in a machine-type cryo-module. In an initial phase only four out of the eight cavities of an SPL cryo-module will be tested in a ½ length cryo-module developed for this purpose, and therefore called the Short Cryo-module. This paper presents the conceptual design of the SC, highlighting its innovative principles in terms of cavity supporting and alignment, and describes the integratio...

  5. FEM design and simulation of a short, 10 MV, S-band Linac with Monte Carlo dose simulations

    International Nuclear Information System (INIS)

    Baillie, Devin; Aubin, J. St.; Steciw, S.; Fallone, B. G.

    2015-01-01

    Purpose: Current commercial 10 MV Linac waveguides are 1.5 m. The authors’ current 6 MV linear accelerator–magnetic resonance imager (Linac–MR) system fits in typical radiotherapy vaults. To allow 10 MV treatments with the Linac–MR and still fit within typical vaults, the authors design a 10 MV Linac with an accelerator waveguide of the same length (27.5 cm) as current 6 MV Linacs. Methods: The first design stage is to design a cavity such that a specific experimental measurement for breakdown is applicable to the cavity. This is accomplished through the use of finite element method (FEM) simulations to match published shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength from an electric breakdown study. A full waveguide is then designed and tuned in FEM simulations based on this cavity design. Electron trajectories are computed through the resulting radio frequency fields, and the waveguide geometry is modified by shifting the first coupling cavity in order to optimize the electron beam properties until the energy spread and mean energy closely match values published for an emulated 10 MV Linac. Finally, Monte Carlo dose simulations are used to compare the resulting photon beam depth dose profile and penumbra with that produced by the emulated 10 MV Linac. Results: The shunt impedance, Q factor, and ratio of peak to mean-axial electric field strength are all matched to within 0.1%. A first coupling cavity shift of 1.45 mm produces an energy spectrum width of 0.347 MeV, very close to the published value for the emulated 10 MV of 0.315 MeV, and a mean energy of 10.53 MeV, nearly identical to the published 10.5 MeV for the emulated 10 MV Linac. The depth dose profile produced by their new Linac is within 1% of that produced by the emulated 10 MV spectrum for all depths greater than 1.5 cm. The penumbra produced is 11% narrower, as measured from 80% to 20% of the central axis dose. Conclusions: The authors have successfully

  6. SRF and RF systems for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Belomestnykh, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Ben-Zvi, I. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Brutus, J. C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fedotov, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); McIntyre, G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Polizzo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Than, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Veshcherevich, V. [Cornell Univ., Ithaca, NY (United States); Wu, Q. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xiao, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zaltsman, A. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow rings. For the first stage of the project, LEReC-I, we will install a 704 MHz superconducting RF cavity and three normal conducting cavities operating at 9 MHz, 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status.

  7. Spectral tuning of optical coupling between air-mode nanobeam cavities and individual carbon nanotubes

    Science.gov (United States)

    Machiya, Hidenori; Uda, Takushi; Ishii, Akihiro; Kato, Yuichiro K.

    Air-mode nanobeam cavities allow for high efficiency coupling to air-suspended carbon nanotubes due to their unique mode profile that has large electric fields in air. Here we utilize heating-induced energy shift of carbon nanotube emission to investigate the cavity quantum electrodynamics effects. In particular, we use laser-induced heating which causes a large blue-shift of the nanotube photoluminescence as the excitation power is increased. Combined with a slight red-shift of the cavity mode at high powers, detuning of nanotube emission from the cavity can be controlled. We estimate the spontaneous emission coupling factor β at different spectral overlaps and find an increase of β factor at small detunings, which is consistent with Purcell enhancement of nanotube emission. Work supported by JSPS (KAKENHI JP26610080, JP16K13613), Asahi Glass Foundation, Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  8. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    International Nuclear Information System (INIS)

    Yu Qingchang; Ouyang Huafu; Xu Taoguang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the authors consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  9. Finite element thermal study of the Linac4 plasma generator

    International Nuclear Information System (INIS)

    Faircloth, D.; Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R.

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H - ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  10. Finite element thermal study of the Linac4 plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Faircloth, D. [STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Kronberger, M.; Kuechler, D.; Lettry, J.; Scrivens, R. [BE-ABP, Hadron Sources and Linacs, CERN, CH-1211 Geneva (Switzerland)

    2010-02-15

    The temperature distribution and heat flow at equilibrium of the plasma generator of the rf-powered noncesiated Linac4 H{sup -} ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW rf power, 2 Hz repetition rate, and 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of the Superconducting Proton Linac (SPL), an extrapolation of the heat load toward 100 kW rf power, 50 Hz repetition rate, and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in the high-power mode of SPL.

  11. Fermilab linac upgrade. Module conditioning results

    International Nuclear Information System (INIS)

    Kroc, T.; Moretti, A.; Popovic, M.

    1992-01-01

    The 805 MHz side-coupled cavity modules for the Fermilab 400 MeV linac upgrade have been conditioned to accept full power. The sparking rate in the cavities and in the side cells has been reduced to acceptable levels. It required approximately 40 x 10 6 pulses for each module to achieve an adequately low sparking rate. This contribution outlines the commissioning procedure, presents the sparking rate improvements and the radiation level improvements through the commissioning process and discusses the near-on-line commissioning plans for this accelerator. (Author) ref., 4 figs

  12. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    Science.gov (United States)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  13. Improvement of the Longitudinal Beam Dynamics Tuning Procedure for the MSU RIA Driver Linac

    CERN Document Server

    Doleans, Marc; Grimm, Terry L; Marti, Felix; Wu, Xiaoyu; York, Richard

    2005-01-01

    The Rare Isotope Accelerator (RIA) driver linac will use a superconducting, cw linac with independently phased superconducting radio frequency cavities for acceleration and, for the heavier ions, utilize beams of multiple-charge-states (multi-q). Given the acceleration of multi-q beams and a stringent beam loss requirement in the RIA driver linac, a new beam envelope code capable of simulating nonlinearities of the multi-q beam envelopes in the longitudinal phase space was developed. Using optimization routines, the code is able to maximize the linearity of the longitudinal phase space motion and thereby minimizing beam loss by finding values for the amplitude and phase of the cavities for a given accelerating lattice. Relative motion of the multi-q beams is also taken into account so that superposition of the beam centroids and matching of their Twiss parameters are automatically controlled. As a result, the linac tuning procedure has been simplified and the longitudinal lattice performance has been improved...

  14. Higher order mode damping studies on the PEP-II B-Factory RF cavity

    International Nuclear Information System (INIS)

    Rimmer, R.; Goldberg, D.; Lambertson, G.; Voelker, F.; Ko, K.; Kroll, N.; Pendleton, R.; Schwarz, H.; Adams, F.; De Jong, M.

    1992-03-01

    We describe studies of the higher-order-mode (HOM) properties of the prototype 476 MHz RF cavity for the proposed PEP-II B-Factory and a waveguide damping scheme to reduce possible HOM-driven coupled-bunch beam instability growth. Numerical studies include modelling of the HOM spectrum using MAFIA and ARGUS, and calculation of the loaded Q's of the damped modes using data from these codes and the Kroll-Yu method. We discuss briefly the experimental investigations of the modes, which will be made in a full-size low-power test cavity, using probes, wire excitation and bead perturbation methods

  15. Development of a split coaxial RFQ for the JHP heavy ion linac

    International Nuclear Information System (INIS)

    Arai, Shigeaki.

    1990-05-01

    A split coaxial RFQ (SCRFQ) is being developed as the front-end structure of the heavy-ion linac chain planned in the Japanese Hadron Project (JHP). The features of the INS SCRFQ is that four modulated vanes are installed and that the whole cavity comprises short module cavities. The fundamental problems concerning to the rf and mechanical characteristics were clarified and solved through studies with a cold model. This model was then converted to an accelerating model working at 50 MHz. Acceleration tests using a proton beam showed that the linac had the designed performance. A 25.5-MHz prototype for a JHP machine is now under development. The cavity, 2.1 m in length and 0.9 m in diameter, has been built, and will accelerate ions with a charge-to-mass ratio greater than 1/30 from 1 keV/u to 45 keV/u. From low-power tests so far conducted, we have found that the cavity has good rf characteristics. (author)

  16. Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS for Near-Infrared Gas Sensing

    Directory of Open Access Journals (Sweden)

    Qixin He

    2017-12-01

    Full Text Available A Pound-Drever-Hall (PDH-based mode-locked cavity-enhanced sensor system was developed using a distributed feedback diode laser centered at 1.53 µm as the laser source. Laser temperature scanning, bias control of the piezoelectric ceramic transducer (PZT and proportional-integral-derivative (PID feedback control of diode laser current were used to repetitively lock the laser modes to the cavity modes. A gas absorption spectrum was obtained by using a series of absorption data from the discrete mode-locked points. The 15 cm-long Fabry-Perot cavity was sealed using an enclosure with an inlet and outlet for gas pumping and a PZT for cavity length tuning. The performance of the sensor system was evaluated by conducting water vapor measurements. A linear relationship was observed between the measured absorption signal amplitude and the H2O concentration. A minimum detectable absorption coefficient of 1.5 × 10–8 cm–1 was achieved with an averaging time of 700 s. This technique can also be used for the detection of other trace gas species by targeting the corresponding gas absorption line.

  17. Deflecting modes of the side-coupled cavity structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM{sub 1} passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at {pi}/10 exceeds 50 M{Omega}/m if the quality value of the mode is around 12000.

  18. Deflecting modes of the side-coupled cavity structure

    International Nuclear Information System (INIS)

    Inagaki, Shigemi.

    1990-11-01

    The deflecting modes of the 805 MHz side-coupled cavity structure with the relativistic factor 0.566 are studied. Our main concern is the dispersion properties among different configurations of side-coupling cells and their interpretations. It is shown that the ninety degree side-coupling cell configuration, so to speak, the Mickey Mouse configuration has a merit in reducing the HEM 1 passband. Another concern is the magnitude of the transverse coupling impedance around the synchronization condition. It is shown that the existence of the coupling cell introduces the nonuniformity of the deflecting mode and gives different impedance relative to the beam axis and that the coupling impedance at π/10 exceeds 50 MΩ/m if the quality value of the mode is around 12000

  19. Recirculating beam-breakup thresholds for polarized higher-order modes with optical coupling

    Directory of Open Access Journals (Sweden)

    Georg H. Hoffstaetter

    2007-04-01

    Full Text Available Here we will derive the general theory of the beam-breakup (BBU instability in recirculating linear accelerators with coupled beam optics and with polarized higher-order dipole modes. The bunches do not have to be at the same radio-frequency phase during each recirculation turn. This is important for the description of energy recovery linacs (ERLs where beam currents become very large and coupled optics are used on purpose to increase the threshold current. This theory can be used for the analysis of phase errors of recirculated bunches, and of errors in the optical coupling arrangement. It is shown how the threshold current for a given linac can be computed and a remarkable agreement with tracking data is demonstrated. General formulas are then analyzed for several analytically solvable problems: (a Why can different higher order modes (HOM in one cavity couple and why can they then not be considered individually, even when their frequencies are separated by much more than the resonance widths of the HOMs? For the Cornell ERL as an example, it is noted that optimum advantage is taken of coupled optics when the cavities are designed with an x-y HOM frequency splitting of above 50 MHz. The simulated threshold current is then far above the design current of this accelerator. To justify that the simulation can represent an actual accelerator, we simulate cavities with 1 to 8 modes and show that using a limited number of modes is reasonable. (b How does the x-y coupling in the particle optics determine when modes can be considered separately? (c How much of an increase in threshold current can be obtained by coupled optics and why does the threshold current for polarized modes diminish roughly with the square root of the HOMs’ quality factors. Because of this square root scaling, polarized modes with coupled optics increase the threshold current more effectively for cavities that have rather large HOM quality factors, e.g. those without very

  20. Linac beam dynamics calculations for low-current large-emittance beams

    International Nuclear Information System (INIS)

    Swain, G.R.; Butler, H.S.

    1992-01-01

    The beam in PILAC, a superconducting linac for pions proposed at LAUFF, will have a lager momentum spread (7% dp/p) and occupy a larger transverse space (13 cm dia. bore) than is usual in high-beta linacs. To find the effects of this large phase space, a cavity element is being added to the MOTER code. With this addition, pions and other particles may be tracked through the injection line and the PILAC linac. In one option, the particles may be cell by cell through a multicell cavity using formulas. The formulas are derived by integrating the energy gain and transverse impulse from the fields in a cell along the path of the particle. What is new in this analysis is that the transverse momentum is considered to be a significant part of the total momentum. The effect of a difference in velocity from the design velocity of the structure is considered. In another option still under development, field information is specified, and the particles may be tracked by stepwise integration

  1. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    Science.gov (United States)

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  2. A non-uniform three-gap buncher cavity with suppression of transverse-electromagnetic mode leakage in the triaxial klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zumin; Zhang, Jun, E-mail: zhangjun-nudt@126.com; Zhong, Huihuang; Zhu, Danni; Qiu, Yongfeng [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-01-15

    The triaxial klystron amplifier is an efficient high power relativistic klystron amplifier operating at high frequencies due to its coaxial structure with large radius. However, the coaxial structures result in coupling problems among the cavities as the TEM mode is not cut-off in the coaxial tube. Therefore, the suppression of the TEM mode leakage, especially the leakage from the buncher cavity to the input cavity, is crucial in the design of a triaxial klystron amplifier. In this paper, a non-uniform three-gap buncher cavity is proposed to suppress the TEM mode leakage. The cold cavity analysis shows that the non-uniform three-gap buncher cavity can significantly suppress the TEM mode generation compared to a uniform three-gap buncher cavity. Particle-in-cell simulation shows that the power leakage to the input cavity is less than 1.5‰ of the negative power in the buncher cavity and the buncher cavity can efficiently modulate an intense relativistic electron beam free of self-oscillations. A fundamental current modulation depth of 117% is achieved by employing the proposed non-uniform buncher cavity into an X-band triaxial amplifier, which results in the high efficiency generation of high power microwave.

  3. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  4. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  5. The optimized advanced demonstrator for the SC CW heavy ion linac at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Malte; Basten, Markus; Busch, Marco; Dziuba, Florian; Podlech, Holger; Ratzinger, Ulrich; Tiede, Rudolf [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt am Main (Germany); Gettmann, Viktor; Heilmann, Manuel [GSI Helmholtzzentrum, Darmstadt (Germany); Barth, Winfried; Mickat, Sascha [GSI Helmholtzzentrum, Darmstadt (Germany); HIM, Helmholtzinstitut, Mainz (Germany); Miski-Oglu, Maksym [HIM, Helmholtzinstitut, Mainz (Germany); Aulenbacher, Kurt [KPH, Johannes Gutenberg Universitaet, Mainz (Germany)

    2016-07-01

    For future experiments with heavy ions at the coulomb barrier within the SHE research project a multi-stage R and D program of GSI, HIM and IAP is currently under progress. It aims at developing a superconducting (sc) continuous wave (cw) LINAC with multiple CH-cavities as key components. As intermediate step towards the whole LINAC, the Optimized Advanced Demonstrator is proposed. Consisting of short CH-cavities and cryostats, it could provide several advantages regarding velocity acceptance, higher tolerance with respect to frequency and field deviation, easier mounting, handling and maintenance as well as a more robust longitudinal beam dynamic. The beam dynamics concept is based on EQUUS (Equidistant Multigap Structure) constant-beta cavities. The corresponding simulations for the proposed next extension stage - the Optimized Advanced Demonstrator - will be presented.

  6. A development of BPM for P-LINAC at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Almalki, Mohammed; Kester, Oliver; Forck, Peter; Kaufmann, Wolfgang; Sieber, Thomas; Kowina, Piotr; Vinzenz, Wolfgang; Krueger, Christoph [GSI, Darmstadt (Germany); Simon, Claire [CEA/DSM/IRFU (France); Tinta, Dejan; Hrovatin, Rok; Lemut, Promoz [Instrumentation Technologies, Solkan (Slovenia)

    2014-07-01

    Four-fold button Beam Position Monitor (BPM) has been developed for the planned Proton LINAC at the FAIR facility. These monitors will be installed at 14 locations along the LINAC and four of them will be mounted only about 40 mm upstream of the CH cavities. A BPM prototype will be fabricated to evaluate the rf power at the BPM location as generated by cavity excitation as well as to test different options in the mechanical design. For the read-out electronics, the I/Q digital signal processing will be implemented to derive the transverse beam position and the beam phase. This contribution presents the status of the BPM development and focuses on the mechanical design and the optimization of the button pick-ups. The development progress of digital signal processing system is discussed as well.

  7. Prediction of multipactor in the iris region of rf deflecting mode cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2011-12-01

    Full Text Available Multipactor is a major cause of field limitation in many superconducting rf cavities. Multipacting is a particular issue for deflecting mode cavities as the typical behavior is not well studied, understood, or parametrized. In this paper an approximate analytical model for the prediction of multipactor in the iris region of deflecting mode cavities is developed. This new but simple model yields a clear explanation on the broad range of rf field levels over which the multipactor can occur. The principle multipactors under investigation here are two-point multipactors associated with cyclotron motion in the cavity’s rf magnetic field. The predictions from the model are compared to numerical simulations and good agreement is obtained. The results are also compared to experimental results previously reported by KEK and are also found in good agreement.

  8. Beam loading and cavity compensation for the ground test accelerator

    International Nuclear Information System (INIS)

    Jachim, S.P.; Natter, E.F.

    1989-01-01

    The Ground Test Accelerator (GTA) will be a heavily beam-loaded H/sup minus/ linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outlined. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs

  9. Mode-locked Pr3+-doped silica fiber laser with an external cavity

    DEFF Research Database (Denmark)

    Shi, Yuan; Poulsen, Christian; Sejka, Milan

    1994-01-01

    We present a Pr3+-doped silica-based fiber laser mode-locked by using a linear external cavity with a vibrating mirror. Stable laser pulses with a FWHM of less than 44 ps, peak power greater than 9 W, and repetition rate up to 100 MHz are obtained. The pulse width versus cavity mismatch ΔL and pump...... power have been investigated. With a short piece of nonlinear fiber included in the external cavity, laser pulses of 45 ps have been measured...

  10. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying-Hui; Niu, Xin-Jian; Wang, Hui [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu (China); Jia, Nan; Duan, Yaoyong [The Chinese People' s Armed Police Force Academy, Hebei (China); Li, Zheng-Hong [Science and Technology on High Power Microwave Laboratory, Institute of Applied Electronics, CAEP, Mianyang (China); Cheng, Hui [Microwave Department, Sichuan Jiuzhou Electric Appliance Group Co., Ltd., Mianyang (China); Yang, Xiao-Chuan [Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang (China)

    2016-07-15

    The high-order mode oscillation is studied in designing a four-cavity intense relativistic klystron amplifier. The reason for the oscillation caused by high-order modes and a method to suppress these kinds of spurious modes are found through theoretical analyses and the study on the influence of major parameters of a high frequency structure (such as the oscillation frequency of cavities, the cavity Q value, the length of drift tube section, and the characteristic impedance). Based on much simulation, a four-cavity intense relativistic klystron amplifier with a superior performance has been designed, built, and tested. An output power of 2.22 GW corresponding to 27.4% efficiency and 61 dB gain has been obtained. Moreover, the high-order mode oscillation is suppressed effectively, and an output power of 1.95 GW corresponding to 26% efficiency and 62 dB gain has been obtained in our laboratory.

  11. Simulation of electromagnetic scattering through the E-XFEL third harmonic cavity module

    CERN Document Server

    Joshi, N.Y; Shiliang, L; Baboi, N

    2017-01-01

    The European XFEL (E-XFEL) is being fabricated in Hamburg to serve as an X-ray Free Electron Laser light source. The electron beam will be accelerated through linacs consisting of 1.3GHz superconducting cavities along a length of 2.1km. In addition, third harmonic cavities will improve the quality of the beam by line arising the field profile and hence reducing the energy spread. There are eight 3.9GHz cavities within a single module AH1 of E-XFEL. The beam-excited electromagnetic(EM) field in these cavities can be decomposed into a series of eigenmodes. These modes are, in general, not cut-off between one cavity and the next, as they are able to couple to each other through out the module. Here for the first time, we evaluate components of the scattering matrix for module AH1. This is a computation ally expensive system, and hence we employ a Generalized Scattering Matrix(GSM)technique to allow rapid computation with reduced memory requirements. Verification is provided on reduced structures, which are...

  12. Split-disk micro-lasers: Tunable whispering gallery mode cavities

    Directory of Open Access Journals (Sweden)

    T. Siegle

    2017-09-01

    Full Text Available Optical micro-cavities of various types have emerged as promising photonic structures, for both the investigation of fundamental science in cavity quantum electrodynamics and simultaneously for various applications, e.g., lasers, filters, or modulators. In either branch a demand for adjustable and tunable photonic devices becomes apparent, which has been mainly based on the modification of the refractive index of the micro-resonators so far. In this paper, we report on a novel type of whispering gallery mode resonator where resonance tuning is achieved by modification of the configuration. This is realized by polymeric split-disks consisting of opposing half-disks with an intermediate air gap. Functionality of the split-disk concept and its figures of merit like low-threshold lasing are demonstrated for laser dye-doped split-disks fabricated by electron beam lithography on Si substrates. Reversible resonance tuning is achieved for split-disks structured onto elastomeric substrates by direct laser writing. The gap width and hence the resonance wavelength can be well-controlled by mechanically stretching the elastomer and exploiting the lateral shrinkage of the substrate. We demonstrate a broad spectral tunability of laser modes by more than three times the free spectral range. These cavities have the potential to form a key element of flexible and tunable photonic circuits based on polymers.

  13. Heavy-ion LINAC development for the US RIA project

    Indian Academy of Sciences (India)

    obtain 403 MeV/u the driver LINAC has to have two strippers. Three different sections ... The RFQ and multi-harmonic buncher are specially designed in order to provide very low ..... The colors represent three different types of cavities. Table 6.

  14. Study of a cylindrical cavity gyrotron, influence of power reflection and of the oscillation of a travelling mode

    International Nuclear Information System (INIS)

    Muggli, P.

    1991-11-01

    The quality factor and oscillating mode of a gyrotron cavity are essential parameters to consider when trying to obtain a high power (>500 kW), high efficiency (∼50%) microwave source, which oscillates in a stable manner in the principal mode of the cavity. The study and development of an 8 GHz gyrotron whose resonant cavity is formed by a cylindrical waveguide of slowly varying radius, is undertaken. The study is principally concerned with the phenomena associated with the low quality factor of the TE o 011 mode of the cavity. (author) figs., tabs., 102 refs

  15. Overview of superconducting RF technology and its application to high-current linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.

    1994-01-01

    Superconducting linacs may be a viable option for high-current applications such as copious neutron production like that needed for transmutation of radioactive waste. These linacs must run reliably for many years and allow easy routine maintenance. superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs. However, cost effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement

  16. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  17. Analysis of a three-cell cavity which suppresses instabilities associated with the accelerating mode

    International Nuclear Information System (INIS)

    Yamazaki, Y.; Kageyama, T.

    1994-01-01

    In a large ring with extremely heavy beam loading such as a B-factory it is possible that the accelerating mode, itself, gives rise to a longitudinal coupled-bunch instability. In order to solve this problem Shintake proposed to attach a storage cavity to an accelerating cavity. The present paper shows that the system can be put into practical use, if one adds a coupling cavity in between the two cavities. (author)

  18. The LINAC4 Project at CERN

    CERN Document Server

    Arnaudon, L; Bertone, C; Body, Y; Broere, J; Brunner, O; Buzio, M; Carli, C; Caspers, F; Corso, JP; Coupard, J; Dallocchio, A; Dos Santos, N; Garoby, R; Gerigk, F; Hammouti, L; Hanke, K; Jones, M; Kozsar, I; Lettry, J; Lallement, JB; Lombardi, A; Lopez-Hernandez, LA; Maglioni, C; Mathot, S; Maury, S; Mikulec, B; Nisbet, D; Noels, C; Paoluzzi, M; Puccio, B; Raich, U; Ramberger, S; Rossi, C; Schwerg, N; Scrivens, R; Vandoni, G; Weisz, S; Vollaire, J; Vretenar, M; Zickler, T

    2011-01-01

    As the first step of a long-term programme aiming at an increase in the LHC luminosity, CERN is building a new 160 MeV H¯ linear accelerator, Linac4, to replace the ageing 50 MeV Linac2 as injector to the PS Booster (PSB). Linac4 is an 86-m long normal-conducting linac made of an H¯ source, a Radio Frequency Quadrupole (RFQ), a chopping line and a sequence of three accelerating structures: a Drift-Tube Linac (DTL), a Cell-Coupled DTL (CCDTL) and a Pi-Mode Structure (PIMS). The civil engineering has been recently completed, and construction of the main accelerator components has started with the support of a network of international collaborations. The low-energy section up to 3 MeV including a 3-m long 352 MHz RFQ entirely built at CERN is in the final construction phase and is being installed on a dedicated test stand. The present schedule foresees beam commissioning of the accelerator in the new tunnel in 2013/14; the moment of connection of the new linac to the CERN accelerator chain will depend on the L...

  19. A new rf structure for intermediate-velocity particles

    International Nuclear Information System (INIS)

    Billen, J.H.; Krawczyk, F.L.; Wood, R.L.; Young, L.M.

    1994-01-01

    This paper describes an rf structure with high shunt impedance and good field stability for particle velocities o.1 ≤ β ≤ 0.5. Traditionally, the drift-tube linac (DTL) has been the structure of choice for this velocity range. The new structure, called a coupled-cavity drift-tube linac (CCDTL), combines features of the Alvarez DTL and the π-mode coupled-cavity linac (CCL). Each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between gaps is γλ. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a π/2 structure mode so the coupling cavities are nominally unexcited. We will discuss 2-D and 3-D electromagnetic code calculations, and some initial measurements on a low-power model of a CCDTL. We will compare shunt impedance calculations for DTL, CCL, and CCDTL structures. The CCDTL has potential application for a wide range of ion linacs. For example, high-intensity proton linacs could use the CCDTL instead of a DTL up to an energy of about 200 MeV. Another example is a stand-alone, low-duty, low-current, very high gradient, proton, cancer therapy machine. The advantage for this application would be a saving in the cost of the machine because the linac would be short

  20. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers

    International Nuclear Information System (INIS)

    Wójcik, Aleksander K.; Belyanin, Alexey; Malara, Pietro; Blanchard, Romain; Mansuripur, Tobias S.; Capasso, Federico

    2013-01-01

    We propose a robust and reliable method of active mode locking of mid-infrared quantum cascade lasers and develop its theoretical description. Its key element is the use of an external ring cavity, which circumvents fundamental issues undermining the stability of mode locking in quantum cascade lasers. We show that active mode locking can give rise to the generation of picosecond pulses and phase-locked frequency combs containing thousands of the ring cavity modes

  1. Progress in the Development of the TOP Linac

    CERN Document Server

    Picardi, L

    2004-01-01

    The TOP Linac (Oncological Therapy with Protons), under development by ENEA and ISS is a sequence of three pulsed (5 msec, 300 Hz) linear accelerators: a 7 MeV, 425 MHz RFQ+DTL (AccSys Model PL-7), a 7–65 MeV, 2998 MHz Side Coupled Drift Tube Linac (SCDTL) and a 65–200 MeV, variable energy 2998 MHz Side Coupled Linac (SCL). The first SCDTL module is composed by 11 DTL tanks coupled by 10 side cavities. The tanks has modified to overcome vacuum leakage that occurred during brazing, and now the module has been completed, and is ready to be tested with protons. The 7 MeV injector has been recently installed in the ENEA Frascati laboratories for preliminary test, before being transferred to the main Oncologycal Hospital in Rome, Istituto Regina Elena.

  2. Release the beams! - Linac4 ready to hit the 50 MeV mark

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    The Linac4 accelerator is now prepared to reach 50 MeV. This milestone energy - expected in the coming weeks - will allow the machine to act as a replacement for the ageing Linac2, four years before it takes over at the head of the accelerator chain in 2020.    Inside the Linac4 tunnel, the final DTL cavities will guide beams to 50 MeV.  (Image: Stephan Russenschuck.) The Linac4 accelerator will bring H- ion beams (hydrogen atoms with an extra electron) up to 160 MeV for injection into the PS Booster. As a key part of the LHC injector upgrade programme, Linac4 will allow the PS Booster to double its beam brightness, which will contribute to increasing the LHC’s luminosity. Linac4 will soon bring beams up to 50 MeV - the current energy delivered by the Linac2 accelerator. This milestone follows on from another recent accomplishment: the installation and commissioning of the final Drift Tube Linac (DTL) tank. Using an innovati...

  3. Technical Developments on Reduced $\\beta$ Superconducting Cavities at CERN

    CERN Document Server

    Aberle, O; Calatroni, Sergio; Chiaveri, Enrico; Häbel, E; Hanni, R; Losito, R; Marque, S; Tückmantel, Joachim

    1999-01-01

    Several authors proposed the construction of superconducting proton linacs using the LEP2 cavities once LEP will be decommissioned. However only a fraction (about half) of these cavities can be used as they are for the high-energy part (b~1) of such a linac, the low energy part requiring the development of accelerating structures optimized for lower values of the particle velocity. At CERN an R&D programme on reduced-b single-cell cavities started in 1996 in order to study and explore the limits of the technology successfully used for the production of LEP2 cavities (copper cavities niobium-plated using the magnetron sputtering technique). Four different geometries were extensively investigated, each representing part of a multicell structure optimized for particles having b=0.48, b=0.625, b=0.66 and b=0.8 respectively. The results were encouraging for the last two types and therefore a new phase of R&D aimed at the production of multicell cavities for b=0.66 and b=0.8 was started. The goal is to demo...

  4. Status of the LCLS-II Accelerating Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Ed [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Marhauser, Frank [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Fitzpatrick, Jarrod A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Palczewski, Ari D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Preble, Joe [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Wilson, Katherine M. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Grimm, C. J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Burrill, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gonnella, Daniel [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-05-01

    Cavity serial production for the LCLS-II 4 GeV CM SRF linac has started. A quantity of 266 accelerating cavities has been ordered from two industrial vendors. Jefferson Laboratory leads the cavity procurement activities for the project and has successfully transferred the Nitrogen-Doping process to the industrial partners in the initial phase, which is now being applied for the production cavities. We report on the results from vendor qualification and the status of the cavity production for LCLS-II.

  5. Fermilab linac upgrade side coupled cavity temperature control system

    International Nuclear Information System (INIS)

    Crisp, J.; Satti, J.

    1991-05-01

    Each cavity section has a temperature control system which maintains the resonant frequency by exploiting the 17.8 ppm/degree C frequency sensitivity of the copper cavities. Each accelerating cell has a cooling tube brazed azimuthally to the outside surface. Alternate supply and return connection to the water manifolds reduce temperature gradients and maintain physical alignment of the cavity string. Special tubing with spiral inner fins and large flow rate are used to reduce the film coefficient. Temperature is controlled by mixing chilled water with the water circulating between the cavity and the cooling skid located outside the radiation enclosure. Chilled water flow is regulated with a valve controlled by a local microcomputer. The temperature loop set point will be obtained from a slower loop which corrects the phase error between the cavity section and the rf drive during normal beam loaded conditions. Time constants associated with thermal gradients induced in the cavity with the rf power require programming it to the nominal 7.1 MW level over a 1 minute interval to limit the reverse power. 4 refs., 4 figs

  6. Optimization of the RF cavity heat load and trip rates for CEBAF at 12 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Freyberger, Arne P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Krafft, Geoffrey A. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Terzic, Balsa P. [Old Dominion Univ., Norfolk, VA (United States)

    2017-05-01

    The Continuous Electron Beam Accelerator Facility at JLab has 200 RF cavities in the north linac and the south linac respectively after the 12 GeV upgrade. The purpose of this work is to simultaneously optimize the heat load and the trip rate for the cavities and to reconstruct the pareto-optimal front in a timely manner when some of the cavities are turned down. By choosing an efficient optimizer and strategically creating the initial gradients, the pareto-optimal front for no more than 15 cavities down can be re-established within 20 seconds.

  7. Analysis of timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2006-01-01

    We develop a comprehensive theoretical description of passive mode-locking in external-cavity mode-locked semiconductor lasers based on a fully distributed time-domain approach. The model accounts for the dispersion of both gain and refractive index, nonlinear gain saturation from ultrafast...... processes, self-phase modulation, and spontaneous emission noise. Fluctuations of the mode-locked pulses are characterized from the fully distributed model using direct integration of noise-skirts in the phase-noise spectrum and the soliton perturbations introduced by Haus. We implement the model in order...

  8. Multi-cell disk-and-ring tapered structure for compact RF linacs

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S. [RadiaBeam Systems LLC, 1713 Stewart Street, Santa Monica, CA 90404, US (United States); Hartzell, J. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); Savin, E. [RadiaBeam Technologies, LLC, 1717 Stewart Street, Santa Monica, CA 90404, US (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-09-11

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  9. Multi-cell disk-and-ring tapered structure for compact RF linacs

    International Nuclear Information System (INIS)

    Smirnov, A.V.; Boucher, S.; Kutsaev, S.; Hartzell, J.; Savin, E.

    2016-01-01

    A tubular disk-and-ring, tapered accelerating structure for small electron linacs and MicroLinacs is considered. It consists of metal and dielectric elements inserted into a metallic tube to eliminate multi-cell, multi-step brazing. The structure enables a wide range of phase velocities (including non-relativistic), a wide bandwidth allowing large number of cells (for standing wave mode) or short filling time (for traveling wave mode), combination of compensated and purely π-mode cells, alternative periodic focusing built-in to the RF structure (the disks), and combining of RF and vacuum windows. RF and accelerating performance of such a long structure having up to four dozens cells is analyzed. Some of beam dynamics, thermal, and vacuum aspects of the structure and MicroLinac performance are considered as well.

  10. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  11. Mechanical Engineering of the Linac for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Bultman, N.K.; Chen, Z.; Collier, M.; Erickson, J.L.; Guthrie, A.; Hunter, W.T.; Ilg, T.; Meyer, R.K.; Snodgrass, N.L.

    1999-01-01

    The linac for the Spallation Neutron Source (SNS) Project will accelerate an average current of 1 mA of H - ions from 20 MeV to 1GeV for injection into an accumulator ring. The linac will be an intense source of H - ions and as such requires advanced design techniques to meet project technical goals as well as to minimize costs. The DTL, CCDTL and CCL are 466m long and operate at 805 MHz with a maximum H - input current of 28 mA and 7% rf duty factor. The Drift Tube Linac is a copper-plated steel structure using permanent magnetic quadrupoles. The Coupled-Cavity portions are brazed copper structures and use electromagnetic quads. RF losses in the copper are 80 MW, with total rf power supplied by 52 klystrons. Additionally, the linac is to be upgraded to the 2- and 4-MW beam power levels with no increase in duty factor. The authors give an overview of the linac mechanical engineering effort and discuss the special challenges and status of the effort

  12. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  13. Long term performance of the superconducting cavities of the Saclay heavy ion linac

    International Nuclear Information System (INIS)

    Cauvin, B.; Desmons, M.; Girard, J.; Letonturier, P.

    1993-12-01

    The Saclay heavy ion superconducting linac has been in operation at full energy since mid 1989. The 50 independent superconducting helix resonators have now accelerated beams for more than 20000 hours. The long term performances of the linac, and more specifically of the superconducting R.F. technology, are discussed: vibrations of the resonators, cryostat design and operation, beam time, vacuum accidents, multipactor during operation due to small leaks, stability of the electric fields, cryogenics operation. 4 figs., 6 refs

  14. An overview of BARC-TIFR pelletron linac facility

    International Nuclear Information System (INIS)

    Gupta, A.K.

    2014-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A∼60 region with E∼5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  15. An overview of BARC-TIFR Pelletron-Linac Facility

    International Nuclear Information System (INIS)

    Gupta, A. K.

    2015-01-01

    The 14UD Pelletron Accelerator at Mumbai has recently completed twenty five years of successful operation. The accelerator is primarily used for basic research in the fields of nuclear, atomic, condensed matter and material science. The superconducting Linac booster provides additional acceleration to the ions from Pelletron injector up to A~60 region with E~5 MeV/A. Further, an alternate injector system to the Superconducting LINAC booster is planned as an augmentation programme, comprising of a superconducting ECR ion source, room temperature RFQ and superconducting low-beta cavity resonators. This talk will provide an overview of the recent developmental activities carried out at the Pelletron Accelerator Facility, resulting in enhanced overall performance and uptime of the accelerator. The application oriented programs initiated at Pelletron Accelerator and the current status of the alternate injector system at the Pelletron-Linac facility will also be discussed. (author)

  16. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel

    2008-07-21

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10{sup -4} in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  17. Compensating microphonics in SRF cavities to ensure beam stability for future free electron lasers

    International Nuclear Information System (INIS)

    Neumann, Axel

    2008-01-01

    In seeded High-Gain-Harmonic-Generation free electron lasers or energy recovery linear accelerators the requirements for the bunch-to-bunch timing and energy jitter of the beam are in the femtosecond and per mill regime. This implies the ability to control the cavity radiofrequency (RF) field to an accuracy of 0.02 in phase and up to 1.10 -4 in amplitude. For the planned BESSY-FEL it is envisaged to operate 144 superconducting 1.3 GHz cavities of the 2.3 GeV driver linac in continuous wave mode and at a low beam current. The cavity resonance comprises a very narrow bandwidth of the order of tens of Hertz. Such cavities have been characterized under accelerator like conditions in the HoBiCaT test facility. It was possible to measure the error sources affecting the field stability in continuous wave (CW) operation. Microphonics, the main error source for a mechanical detuning of the cavities, lead to an average fluctuation of the cavity resonance of 1-5 Hz rms. Furthermore, the static and dynamic Lorentz force detuning and the helium pressure dependance of the cavity resonance have been measured. Single cavity RF control and linac bunch-to-bunch longitudinal phase space modeling containing the measured properties showed, that it is advisable to find means to minimize the microphonics detuning by mechanical tuning. Thus, several fast tuning systems have been tested for CW operation. These tuners consist of a motor driven lever for slow and coarse tuning and a piezo that is integrated into the tuner support for fast and fine tuning. Regarding the analysis of the detuning spectrum an adaptive feedforward method based on the least-mean-square filter algorithm has been developed for fast cavity tuning. A detuning compensation between a factor of two and up to a factor of seven has been achieved. Modeling the complete system including the fast tuning scheme, showed that the requirements of the BESSY-FEL are attainable. (orig.)

  18. Time-Gating Processes in Intra-Cavity Mode-Locking Devices Like Saturable Absorbers and Kerr Cells

    Science.gov (United States)

    Prasad, Narasimha; Roychoudhuri, Chandrasekhar

    2010-01-01

    Photons are non-interacting entities. Light beams do not interfere by themselves. Light beams constituting different laser modes (frequencies) are not capable of re-arranging their energies from extended time-domain to ultra-short time-domain by themselves without the aid of light-matter interactions with suitable intra-cavity devices. In this paper we will discuss the time-gating properties of intra-cavity "mode-locking" devices that actually help generate a regular train of high energy wave packets.

  19. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  20. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  1. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  2. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    CERN Document Server

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  3. HOM Consideration of 704 MHz and 2.1 GHz Cavities for LEReC Linac

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Binping [RIKEN BNL; Belomestnykh, Sergey [SUNY, Stony Brook; Ben-Zvi, Ilan [RIKEN BNL; Blaskiewicz, Michael [RIKEN BNL; Brennan, Joseph [RIKEN BNL; Brutus, Jean Clifford [RIKEN BNL; Fedotov, Alexei [RIKEN BNL; Hahn, Harald [RIKEN BNL; McIntyre, Gary [RIKEN BNL; Pai, Chien [RIKEN BNL; Smith, Kevin [RIKEN BNL; Tuozzolo, Joseph [RIKEN BNL; Veshcherevich, Vadim [Cornell U., CLASSE; Wu, Qiong [RIKEN BNL; Xin, Tianmu [RIKEN BNL; Xu, Wencan [RIKEN BNL; Zaltsman, Alex [RIKEN BNL

    2016-06-01

    To improve RHIC luminosity for heavy ion beam energies below 10 GeV/nucleon, the Low Energy RHIC electron Cooler (LEReC) is currently under development at BNL. The Linac of LEReC is designed to deliver 2 MV to 5 MV electron beam, with rms dp/p less than 5·10⁻⁴. The HOM in this Linac is carefully studied to ensure this specification.

  4. Modeling of Reduced-Beta Half-Reentrant Cavities: Final Report

    International Nuclear Information System (INIS)

    Popielarksi, J.T.; Hartung, W.; Johnson, M.J.

    2011-01-01

    The linear accelerator for the Spallation Neutron Source uses multi-cell elliptical superconducting cavities to provide much of the accelerating voltage. Similar technology is being considered for other projects, including a proposed superconducting proton linac at Fermilab and the European Spallation Source. A new type of accelerating structure, a 'half-reentrant' elliptical cavity has been studied at Michigan State University. A half-reentrant cavity can potentially improve upon existing elliptical cavity designs by reducing the cryogenic load by as much as 40% for the same accelerating gradient. Alternatively, with the same peak surface magnetic field as traditional elliptical cavities, it is anticipated that half-reentrant designs could operate at up to 25% higher accelerating gradient. With a half-reentrant shape, liquids can drain easily during chemical etching and high pressure rinsing, which allows standard multi-cell processing techniques to be used. Electromagnetic designs have been developed for three half-reentrant cell shapes suitable for an ion or proton linac (β = 0.47, 0.61 and 0.81). The mechanical designs have been done for prototypes at 805 MHz. The design and optimization of the reduced-β half-reentrant cavities are summarized in this report.

  5. Analysis of phase velocity designing on superconducting section of proton Linac for spallation neutron source

    International Nuclear Information System (INIS)

    Ouyang Huafu; Xu Taoguang; Yu Qingchang; Guan Xialing; Luo Zihua

    2001-01-01

    A preliminary design of superconducting section of proton linac for spallation neutron source is made, which includes the design and optimization of the cavity shape and the architecture design of the superconducting section. In addition, the choice of the cell number of the superconducting cavity, the value of the geometric β G , the optimization principles of cavity and the beam dynamic properties are discussed

  6. Electro neutrons around a 12 MV Linac

    International Nuclear Information System (INIS)

    Vega C, H. R.; Perez L, L. H.

    2012-10-01

    Neutron contamination around Linacs for radiotherapy is a source of undesirable doses for the patient. The main source of these neutrons is the photonuclear reactions occurring in the Linac head and the patient body. Electrons also produce neutrons through (e, en) reactions. This reaction is known as electro disintegration and is carried out by the electron scattering that produce a virtual photon that is absorbed by the scattering nucleus producing the reaction e + A → (A-1) + n + e'. In this work the electron-neutron spectrum to 100 cm from the isocenter of a 12 MV Linac has been measured using a passive Bonner spheres spectrometer in a novel procedure named Planetary mode. (Author)

  7. Micro-phonics analysis and compensation with a feedback loop at low cavity gradient

    International Nuclear Information System (INIS)

    Luong, M.; Devanz, G.; Jacques, E.; Novo, J.; Neumann, A.; Kugeler, O.

    2007-10-01

    For FEL projects based on a superconducting linac operating in continuous wave (CW) mode, the RF power optimization finally comes up against the micro-phonics disturbances, which result in an unpredictable detuning of the cavities. A new piezoelectric tuner was developed and mounted on a TTF 9-cells cavity with an appropriate instrumentation. This system enables a full characterization of the disturbances and the tuner behavior. The experimental results pointed out 3 distinct regimes of perturbation: a strong but quickly damped very low frequency oscillation due to cryogenic control, a quasi-stationary oscillation around 50 and 100 Hz due to the operation of vacuum pumps motor and some lower amplitudes oscillations related to the excitation of the mechanical structure Eigenmodes by environmental noise. Modeling, simulations and experimental validations were carried out to demonstrate the feasibility of a feedback compensation for a multi-cell cavity. The results also bring to some recommendations that may overcome the limitations pointed out in the present experimentation

  8. A Bloch modal approach for engineering waveguide and cavity modes in two-dimensional photonic crystals

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    uses no external excitation and determines the quasi-normal modes as unity eigenvalues of the cavity roundtrip matrix. We demonstrate the method and the quasi-normal modes for two types of two-dimensional photonic crystal structures, and discuss the quasi-normal mode eld distributions and Q-factors...

  9. Normal mode splitting and ground state cooling in a Fabry—Perot optical cavity and transmission line resonator

    International Nuclear Information System (INIS)

    Chen Hua-Jun; Mi Xian-Wu

    2011-01-01

    Optomechanical dynamics in two systems which are a transmission line resonator and Fabrya—Perot optical cavity via radiation—pressure are investigated by linearized quantum Langevin equation. We work in the resolved sideband regime where the oscillator resonance frequency exceeds the cavity linewidth. Normal mode splittings of the mechanical resonator as a pure result of the coupling interaction in the two optomechanical systems is studied, and we make a comparison of normal mode splitting of mechanical resonator between the two systems. In the optical cavity, the normal mode splitting of the movable mirror approaches the latest experiment very well. In addition, an approximation scheme is introduced to demonstrate the ground state cooling, and we make a comparison of cooling between the two systems dominated by two key factors, which are the initial bath temperature and the mechanical quality factor. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Considering the size of the mechanical resonator and precooling the system, the mechanical resonator in the transmission line resonator system is easier to achieve the ground state cooling than in optical cavity. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Impact of nitrogen doping of niobium superconducting cavities on the sensitivity of surface resistance to trapped magnetic flux

    Science.gov (United States)

    Gonnella, Dan; Kaufman, John; Liepe, Matthias

    2016-02-01

    Future particle accelerators such as the SLAC "Linac Coherent Light Source-II" (LCLS-II) and the proposed Cornell Energy Recovery Linac require hundreds of superconducting radio-frequency (SRF) niobium cavities operating in continuous wave mode. In order to achieve economic feasibility of projects such as these, the cavities must achieve a very high intrinsic quality factor (Q0) to keep cryogenic losses within feasible limits. To reach these high Q0's in the case of LCLS-II, nitrogen-doping of niobium cavities has been selected as the cavity preparation technique. When dealing with Q0's greater than 1 × 1010, the effects of ambient magnetic field on Q0 become significant. Here, we show that the sensitivity to RF losses from trapped magnetic field in a cavity's walls is strongly dependent on the cavity preparation. Specifically, standard electropolished and 120 °C baked cavities show a sensitivity of residual resistance from trapped magnetic flux of ˜0.6 and ˜0.8 nΩ/mG trapped, respectively, while nitrogen-doped cavities show a higher sensitivity of residual resistance from trapped magnetic flux of ˜1 to 5 nΩ/mG trapped. We show that this difference in sensitivities is directly related to the mean free path of the RF surface layer of the niobium: shorter mean free paths lead to less sensitivity of residual resistance to trapped magnetic flux in the dirty limit (ℓ ≪ ξ0), while longer mean free paths lead to lower sensitivity of residual resistance to trapped magnetic flux in the clean limit (ℓ ≫ ξ0). These experimental results are also shown to have good agreement with recent theoretical predictions for pinned vortex lines oscillating in RF fields.

  11. Feasibility study of a 2 GeV superconducting $H^{-}$ linac as injector for the CERN PS

    CERN Document Server

    Garoby, R; Hill, C E; Lombardi, A M; Ostroumov, P N; Tessier, J M; Vretenar, Maurizio

    1998-01-01

    This preliminary feasibility study is based on the availability of the CERN LEP2 superconducting RF system after LEP de-commissioning. The option that is explored is to use this system as part of a high energy H- linac injecting at 2 GeV into the CERN PS, with the aim of reliably providing at its output twice the presently foreseen transverse beam brightness at the ultimate intensity envisaged for LHC. This requires the linac to be pulsed at the PS repetition rate of 0.8 Hz with a mean beam current of 10 mA which is sufficient for filling the PS in 240 ms (i.e. about 100 turns) with the ultimate intensity foreseen for injection for the LHC. The linac is composed of two RFQs with a chopping section, a room temperature DTL, a superconducting section with reduced beta cavities up to 1 GeV, and a section of LEP2 cavities up to 2 GeV. This study deals, in particular, with the problems inherent in H- acceleration up to high energy and in the pulsed operation of SC cavities. Means for compensating microphonic vibrat...

  12. Selection of a LGp0-shaped fundamental mode in a laser cavity: Phase versus amplitude masks

    CSIR Research Space (South Africa)

    Hasnaoui, A

    2012-01-01

    Full Text Available Laser beams of a single high-order transverse mode have been of interest to the laser community for several years now. In order to achieve such a mode as the fundamental mode of the cavity, mode selecting elements in the form of a phase or amplitude...

  13. Ion cyclotron modes in a low density plasma cavity. Part I: Theory

    International Nuclear Information System (INIS)

    Sawley, M.L.

    1990-12-01

    Ion cyclotron modes excited in a low density, cylindrical plasma cavity using an external inductive antenna are investigated theoretically. These modes, which have a long parallel wavelength, exhibit a strong electrostatic character and are only weakly coupled to the antenna fields. It is shown that, despite the low frequency considered, electron dynamics play a dominant role via the effects of both Landau damping and electron inertia. The characteristics of the wavefields associated with these modes, relevant to an experimental investigation, are described. (author) 8 figs., 1 tab., 10 refs

  14. Effect of high current electron beam in a 30 MeV radio frequency linac for neutron-time-of-flight applications

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); DasGupta, K. [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Beam Technology Development Group, BARC, Mumbai 400085 (India)

    2016-01-15

    A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentials are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.

  15. A case study testing the cavity mode model of the magnetosphere

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-07-01

    Full Text Available Based on a case study we test the cavity mode model of the magnetosphere, looking for eigenfrequencies via multi-satellite and multi-instrument measurements. Geotail and ACE provide information on the interplanetary medium that dictates the input parameters of the system; the four Cluster satellites monitor the magnetopause surface waves; the POLAR (L=9.4 and LANL 97A (L=6.6 satellites reveal two in-situ monochromatic field line resonances (FLRs with T=6 and 2.5 min, respectively; and the IMAGE ground magnetometers demonstrate latitude dependent delays in signature arrival times, as inferred by Sarafopoulos (2004b. Similar dispersive structures showing systematic delays are also extensively scrutinized by Sarafopoulos (2005 and interpreted as tightly associated with the so-called pseudo-FLRs, which show almost the same observational characteristics with an authentic FLR. In particular for this episode, successive solar wind pressure pulses produce recurring ionosphere twin vortex Hall currents which are identified on the ground as pseudo-FLRs. The BJN ground magnetometer records the pseudo-FLR (alike with the other IMAGE station responses associated with an intense power spectral density ranging from 8 to 12 min and, in addition, two discrete resonant lines with T=3.5 and 7 min. In this case study, even though the magnetosphere is evidently affected by a broad-band compressional wave originated upstream of the bow shock, nevertheless, we do not identify any cavity mode oscillation within the magnetosphere. We fail, also, to identify any of the cavity mode frequencies proposed by Samson (1992.

    Keywords. Magnetospheric physics (Magnetosphereionosphere interactions; Solar wind-magnetosphere interactions; MHD waves and instabilities

  16. Update on the VECC-TRIUMF collaboration for superconducting e-Linac development

    International Nuclear Information System (INIS)

    Naik, V.; Dechoudhury, S.; Mondal, M.

    2013-01-01

    A 50 MeV 100 kW cw superconducting electron linac (e-Linac) will be used as photo-fission driver for the ANURIB facility at Variable Energy Cyclotron Centre. In the first phase a 10 MeV Injector is being developed in collaboration with TRIUMF Canada, who will also be using an e-Linac driver for their ARIEL (Advanced Rare IsotopE Laboratory) upgrade. The VECC e-Linac will be installed at the upcoming Rajarhat campus. For the initial R and D on the Injector an e-Linac test area is being set-up in one of the experimental caves of the K130 cyclotron at the Salt Lake campus. The Injector will be tested using a 100 kV gun. A Capture Cryo Module (CCM) consisting of two beta=1, 1.3 GHz, single-cell niobium cavities is being designed and built indigenously. The CCM will be used for pre-acceleration of the beam from the gun to around 400 keV before injection in to the ICM. The ICM will be built and tested at TRIUMF and a test area has been set-up at TRIUMF for the purpose. Detailed status report on various components of the e-Linac will be presented. (author)

  17. Linac4, a New Injector for the CERN PS Booster

    CERN Document Server

    Garoby, R; Gerigk, F; Hanke, K; Lombardi, A; Pasini, M; Rossi, C; Sargsyan, E; Vretenar, M

    2006-01-01

    The first bottle-neck towards higher beam brightness in the LHC injector chain is due to space charge induced tune spread at injection into the CERN PS Booster (PSB). A new injector called Linac4 is proposed to remove this limitation. Using RF cavities at 352 and 704 MHz, it will replace the present 50 MeV proton Linac2, and deliver a 160 MeV, 40 mA H- beam. The higher injection energy will reduce space charge effects by a factor of 2, and charge exchange will drastically reduce the beam losses at injection. Operation will be simplified and the beam brightness required for the LHC ultimate luminosity should be obtained at PS ejection. Moreover, for the needs of non-LHC physics experiments like ISOLDE, the number of protons per pulse from the PSB will increase by a significant factor. This new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios. It is also designed to become the low energy part of a future 3.5 GeV, multi-megawatt superconducting linac (SPL). The present desig...

  18. Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity

    International Nuclear Information System (INIS)

    Kang, Y.W.

    1993-01-01

    An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper

  19. TBCI and URMEL - New computer codes for wake field and cavity mode calculations

    International Nuclear Information System (INIS)

    Weiland, T.

    1983-01-01

    Wake force computation is important for any study of instabilities in high current accelerators and storage rings. These forces are generated by intense bunches of charged particles passing cylindrically symmetric structures on or off axis. The adequate method for computing such forces is the time domain approach. The computer Code TBCI computes for relativistic as well as for nonrelativistic bunches of arbitrary shape longitudinal and transverse wake forces up to the octupole component. TBCI is not limited to cavity-like objects and thus applicable to bellows, beam pipes with varying cross sections and any other nonresonant structures. For the accelerating cavities one also needs to know the resonant modes and frequencies for the study of instabilities and mode couplers. The complementary code named URMEL computes these fields for any azimuthal dependence of the fields in ascending order. The mathematical procedure being used is very safe and does not miss modes. Both codes together represent a unique tool for accelerator design and are easy to use

  20. Finite Element Thermal Study of the Linac4 Plasma Generatora

    CERN Document Server

    Faircloth, D; Kuchler, D; Lettry, L; Scrivens, R; CERN. Geneva. BE Department

    2010-01-01

    The temperature distribution and heat flow at equilibrium of the plasma generator of the RF-powered non-cesiated Linac4 H- ion source have been studied with a finite element model. It is shown that the equilibrium temperatures obtained in the Linac4 nominal operation mode (100 kW RF power, 2 Hz, 0.4 ms pulse duration) are within material specifications except for the magnet cage, where a redesign may be necessary. To assess the upgrade of the Linac4 source for operation in the high-power operation mode of SPL, an extrapolation of the heat load towards 100 kW RF power, 50 Hz repetition rate and 0.4 ms pulse duration has been performed. The results indicate that a significant improvement of the source cooling is required to allow for operation in HP-SPL.

  1. Investigation of Fano resonances induced by higher order plasmon modes on a circular nano-disk with an elongated cavity

    KAUST Repository

    Amin, Muhammad Ruhul

    2012-08-10

    In this paper, a planar metallic nanostructure design, which supports two distinct Fano resonances in its extinction cross-section spectrum under normally incident and linearly polarized electromagnetic field, is proposed. The proposed design involves a circular disk embedding an elongated cavity; shifting and rotating the cavity break the symmetry of the structure with respect to the incident field and induce higher order plasmon modes. As a result, Fano resonances are generated in the visible spectrum due to the destructive interference between the sub-radiant higher order modes and super-radiant the dipolar mode. The Fano resonances can be tuned by varying the cavity\\'s width and the rotation angle. An RLC circuit, which is mathematically equivalent to a mass-spring oscillator, is proposed to model the optical response of the nanostructure design.

  2. Performance of Superconducting Cavities as Required for the SPL

    CERN Document Server

    Weingarten, Wolfgang

    2008-01-01

    This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a phenomenological assessment of the field dependent Q-value, as taken from published test results from RF cavities of various proveniences. It turns out that the design Q-value at an accelerating gradient of 25 MV/m ($\\Beta$ = 1 cavity) of $1^{.}10^{10}$ at 704 (1408) MHz is attainable at 1.9 (1.6) K, respectively, however, with the present state-of-the-art manufacturing, at the expense of some reprocessing. The optimum of the total electrical grid power consumption (composed of RF and cryogenics) is estimated as a function of frequency and operating temperature for both the low and high power SPL. This document outlines an optimisation analysis for the RF cavities of the planned Superconducting Proton Linac (SPL) at CERN with regard to the operating frequency and temperature. The analysis is based on a p...

  3. Superconducting RF for energy-recovery linacs

    International Nuclear Information System (INIS)

    Liepe, M.; Knobloch, J.

    2006-01-01

    Since superconducting RF for particle accelerators made its first appearance in the 1970s, it has found highly successful application in a variety of machines. Recent progress in this technology has made so-called Energy-Recovery Linacs (ERLs)-originally proposed in 1965-feasible, and interest in this type of machine has increased enormously. A superconducting linac is the driving heart of ERLs, and emittance preservation and cost efficiency is of utmost importance. The resulting challenges for the superconducting cavity technology and RF field control are manifold. In March 2005 the first international workshop on ERLs was held at Newport News, VA, to explore the potential of ERLs and to discuss machine-physics and technology challenges and their solutions. This paper reviews the state-of-the-art in superconducting RF and RF control for ERLs, and summarizes the discussions of the SRF working group on this technology during the ERL2005 workshop

  4. Quasi-optical mode converter for a coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  5. Short wavelength FELs using the SLAC linac

    International Nuclear Information System (INIS)

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops

  6. Development of 400- to 450-MHz RFQ resonator-cavity mechanical designs

    International Nuclear Information System (INIS)

    Hansborough, L.D.

    1982-01-01

    In the development of the radio-frequency quadrupole (RFQ) linac, the resonator cavity's mechanical design may be a challenge similar in magnitude to that of the development of the accelerator structure itself. Experience with the all-copper 425-MHz RFQ proof-of-principle linac has demonstrated that the resonator cavity must be structurally stiff and easily tunable. This experience has led to development of copper-plated steel structures having vanes that may be moved within a cylinder for tuning. Design of a flexible vane-to-cylinder radio-frequency (rf) joint, the vane, and the cylinder has many constraints dictated by the small-diameter cavities in the 400-MHz-frequency region. Two types of flexible, mechanical vane-to-cylinder rf joints are being developed at Los Alamos: the C-seal and the rf clamp-joint

  7. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Directory of Open Access Journals (Sweden)

    F. J. Cullinan

    2015-11-01

    Full Text Available The Compact Linear Collider (CLIC requires beam position monitors (BPMs with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3 at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2/3  ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  8. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Science.gov (United States)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  9. Dealing with a large installation of SRF cavities: Characterizing limitations and exploiting operational flexibility

    International Nuclear Information System (INIS)

    C. Reece; B. Madre; L. Doolittle; J. Delayen

    1999-01-01

    Linacs using a large number of SRF cavities can have an awkwardly large number of degrees of freedom for operational setup. The cost and robustness of operation as a function of operating gradient is a particular characteristic of each cavity system and the intended beamloading. A systematic characterization of these limitations has been developed which yields a valuable guide for development resource allocation. In addition, a software tool has been developed which enables the CEBAF machine operator to conveniently exploit the flexibility that results from the many degrees of freedom in response to changing programmatic needs. The two CEBAF SRF linacs each have about 160 independently-controlled SRF cavities. The software utility (LEM++) establishes the operationally optimum gradient in each cavity in response to the operator providing only three of the following four parameters: linac voltage, anticipated beam current, rf cryoheat load, and net rf trip rate. The utility is now fully operational at CEBAF. The methods employed and particular features useful for operations will be presented. The interactive process that has brought the software to its current form will also be discussed. The analysis scheme used to characterize the limitations of the ensemble of cavities will be presented as well

  10. Design, construction, system integration, and test results of the 1 MW CW RF system for the e-gun cavity in the energy recovery LINAC at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Lenci, S.J.; Eisen, E.L.; Dickey, D.L.; Sainz, J.E.; Utay, P.F.; Zaltsman, A.; Lambiase, R.

    2009-01-01

    Brookhaven's ERL (Energy Recovery LINAC) requires a 1 MW CW RF system for the superconducting electron gun cavity. The system consists primarily of a klystron tube, transmitter, and High-Voltage Power Supply (HVPS). The 703.75 MHz klystron made by CPl, Inc. provides RF power of 1MW CW with efficiency of 65%. It has a single output window, diode-type electron gun, and collector capable of dissipating the entire beam power. It was fully factory tested including 24-hour heat run at 1.1 MW CWo The solid state HVPS designed by Continental Electronics provides up to 100 kV at low ripple and 2.1 MW CW with over 95% efficiency. With minimal stored energy and a fast shut-down mode no crowbar circuit is needed. Continental 's transmitter includes PLC based user interface and monitoring, RF pre-amplifier, magnet and Vac-Ion pump supplies, cooling water instrumentation, and integral safety interlock system. BNL installed the klystron, HVPS, and transmitter along with other items, such as circulator, water load, and waveguide components. The collaboration of BNL, CPI, and Continental in the design, installation, and testing was essential to the successful operation of the 1MW system

  11. Nonlinear process in the mode transition in typical strut-based and cavity-strut based scramjet combustors

    Science.gov (United States)

    Yan, Li; Liao, Lei; Huang, Wei; Li, Lang-quan

    2018-04-01

    The analysis of nonlinear characteristics and control of mode transition process is the crucial issue to enhance the stability and reliability of the dual-mode scramjet engine. In the current study, the mode transition processes in both strut-based combustor and cavity-strut based combustor are numerically studied, and the influence of the cavity on the transition process is analyzed in detail. The simulations are conducted by means of the Reynolds averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism, and this numerical approach is proved to be valid by comparing the predicted results with the available experimental shadowgraphs in the open literature. During the mode transition process, an obvious nonlinear property is observed, namely the unevenly variations of pressure along the combustor. The hysteresis phenomenon is more obvious upstream of the flow field. For the cavity-strut configuration, the whole flow field is more inclined to the supersonic state during the transition process, and it is uneasy to convert to the ramjet mode. In the scram-to-ram transition process, the process would be more stable, and the hysteresis effect would be reduced in the ram-to-scram transition process.

  12. Proton acceleration by RF TE{sub 11} mode in a cylindrical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Masaaki; Yoshikawa, Kiyoshi; Ohnishi, Masami; Yamamoto, Yasushi; Masuda, Kai [Kyoto Univ., Uji (Japan). Inst. of Advanced Energy

    1997-03-01

    We found that protons are accelerated significantly by RF TE{sub 11} mode in a cylindrical cavity. In this method, protons get the perpendicular kinetic energy, so we thought it might be a compact accelerator, and studied the feasibility by numerical simulation. (author)

  13. Linac Coherent Light Source Undulator RF BPM System

    International Nuclear Information System (INIS)

    Lill, R.M.; Morrison, L.H.; Waldschmidt, G.J.; Walters, D.R.; Argonne; Johnson, R.; Li, Z.; Smith, S.; Straumann, T.; SLAC

    2007-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results

  14. Measurement of electrodynamics characteristics of higher order modes for harmonic cavity at 2400 MHz

    Science.gov (United States)

    Shashkov, Ya V.; Sobenin, N. P.; Gusarova, M. A.; Lalayan, M. V.; Bazyl, D. S.; Donetskiy, R. V.; Orlov, A. I.; Zobov, M. M.; Zavadtsev, A. A.

    2016-09-01

    In the frameworks of the High Luminosity Large Hadron Collider (HL-LHC) upgrade program an application of additional superconducting harmonic cavities operating at 800 MHz is currently under discussion. As a possible candidate, an assembly of two cavities with grooved beam pipes connected by a drift tube and housed in a common cryomodule, was proposed. In this article we discuss measurements of loaded Q-factors of higher order modes (HOM) performed on a scaled aluminium single cell cavity prototype with the fundamental frequency of 2400 MHz and on an array of two such cavities connected by a narrow beam pipe. The measurements were performed for the system with and without the matching load in the drift tube..

  15. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  16. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  17. Investigations of repetition rate stability of a mode-locked quantum dot semiconductor laser in an auxiliary optical fiber cavity

    DEFF Research Database (Denmark)

    Breuer, Stefan; Elsässer, Wolfgang; McInerney, J.G.

    2010-01-01

    We have investigated experimentally the pulse train (mode beating) stability of a monolithic mode-locked multi-section quantum-dot laser with an added passive auxiliary optical fiber cavity. Addition of the weakly coupled (¿ -24dB) cavity reduces the current-induced shift d¿/dI of the principal...

  18. Cryogenic testing of the 2.1 GHz five-cell superconducting RF cavity with a photonic band gap coupler cell

    Science.gov (United States)

    Arsenyev, Sergey A.; Temkin, Richard J.; Haynes, W. Brian; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.; Tajima, Tsuyoshi; Boulware, Chase H.; Grimm, Terrence L.; Rogacki, Adam R.

    2016-05-01

    We present results from cryogenic tests of the multi-cell superconducting radio frequency (SRF) cavity with a photonic band gap (PBG) coupler cell. Achieving high average beam currents is particularly desirable for future light sources and particle colliders based on SRF energy-recovery-linacs (ERLs). Beam current in ERLs is limited by the beam break-up instability, caused by parasitic higher order modes (HOMs) interacting with the beam in accelerating cavities. A PBG cell incorporated in an accelerating cavity can reduce the negative effect of HOMs by providing a frequency selective damping mechanism, thus allowing significantly higher beam currents. The multi-cell cavity was designed and fabricated of niobium. Two cryogenic (vertical) tests were conducted. The high unloaded Q-factor was demonstrated at a temperature of 4.2 K at accelerating gradients up to 3 MV/m. The measured value of the unloaded Q-factor was 1.55 × 108, in agreement with prediction.

  19. Narrow Q-switching pulse width and low mode-locking repetition rate Q-switched mode locking with a new coupled laser cavity

    International Nuclear Information System (INIS)

    Peng, J Y; Zheng, Y; Shen, J P; Shi, Y X

    2013-01-01

    An original diode-pumped Q-switched and mode-locked solid state Nd:GdVO 4 laser is demonstrated. The laser operates with double saturable absorbers and a new coupled laser cavity. The Q-switching envelope width is compressed to be about 15 ns and the mode-locking repetition rate is as low as 90 MHz. (paper)

  20. Identification of amplitude and timing jitter in external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper; Kroh, Marcel

    2004-01-01

    We theoretically and experimentally investigate the dynamics of external-cavity mode-locked semiconductor lasers, focusing on stability properties, optimization of pulsewidth and timing jitter. A new numerical approach allows to clearly separate timing and amplitude jitter....

  1. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Science.gov (United States)

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  2. Optical modeling of induction-linac driven free-electron lasers

    International Nuclear Information System (INIS)

    Scharlemann, E.T.; Fawley, W.M.

    1986-01-01

    The free-electron laser (FEL) simulation code FRED, developed at Lawrence Livermore National Laboratory (LLNL) primarily to model single-pass FEL amplifiers driven by induction linear accelerators, is described. The main emphasis is on the modeling of optical propagation in the laser and on the differences between the requirements for modeling rf-linac-driven vs. induction-linac-driven FELs. Examples of optical guiding and mode cleanup are presented for a 50 μm FEL

  3. Non-destructive splitter of twisted light based on modes splitting in a ring cavity.

    Science.gov (United States)

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2016-02-08

    Efficiently discriminating beams carrying different orbital angular momentum (OAM) is of fundamental importance for various applications including high capacity optical communication and quantum information processing. We design and experimentally verify a distinguished method for effectively splitting different OAM-carried beams by introducing Dove prisms in a ring cavity. Because of rotational symmetry broken of two OAM-carried beams with opposite topological charges, their transmission spectra will split. When mode and impedance matches between the cavity and one OAM-carried beam are achieved, this beam will transmit through the cavity and other beam will be reflected, both beams keep their spatial shapes. In this case, the cavity acts like a polarized beam splitter. Besides, the transmitting beam can be selected at your will, the splitting efficiency can reach unity if the cavity is lossless and it completely matches the beam. Furthermore, beams carry multi-OAMs can also be split by cascading ring cavities.

  4. Investigation of alternating-phase focusing for superconducting linacs

    International Nuclear Information System (INIS)

    Sagalovsky, L.; Delayen, J.R.

    1992-01-01

    The paper describes a new model of alternating-phase focusing (APF) dynamics applicable to ion linacs with short independently controlled superconducting cavities. The equations of motion are derived for a cylindrically symmetric electric field represented by a traveling wave with continuous periodic phase modulation. Solutions are obtained and analyzed for both the linear and nonlinear particle motion. Problems of linear stability and overall longitudinal acceptance are solved using standard mathematical techniques for periodic systems; analytical results are obtained. It is shown that the main beam dynamical aspects of APF are adequately described by four parameters; equilibrium synchronous phase, phase modulation amplitude, length of APF period, and incremental energy gain. The model can be applied to study the feasibility of realizing APF in a low-β section of a proton linac. (author). 9 refs., 3 figs

  5. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  6. A hot-spare injector for the APS linac

    International Nuclear Information System (INIS)

    Lewellen, J. W.

    1999-01-01

    Last year a second-generation SSRL-type thermionic cathode rf gun was installed in the Advanced Photon Source (APS) linac. This gun (referred to as ''gun2'') has been successfully commissioned and now serves as the main injector for the APS linac, essentially replacing the Koontz-type DC gun. To help ensure injector availability, particularly with the advent of top-up mode operation at the APS, a second thermionic-cathode rf gun will be installed in the APS linac to act as a hot-spare beam source. The hot-spare installation includes several unique design features, including a deep-orbit Panofsky-style alpha magnet. Details of the hot-spare beamline design and projected performance are presented, along with some plans for future performance upgrades

  7. SU-E-T-670: Radiotherapy Vault Shielding Evaluation Method for a Flattening Filter-Free (FFF) Linac-Practical Considerations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Mihailidis, D [CAMC Cancer Center-Alliance Oncology and West Virginia University, Charleston, WV (United States)

    2015-06-15

    Purpose: To date, there isn’t formal approach for flattening filter-free (FFF) linac vault shielding evaluation, thus, we propose an extension to NCRP#151 to accommodate the recent large number of FFF linac installations.Methods and Materials: We extended the approach in NCRP#151 to design two Truebeam vaults in our new cancer center for hypofractionated treatments. Monte Carlo calculations have characterized primary, scattered, leakage and neutron radiations from FFF-modes. These calculations have shown that: a) FFF primary beam is softer on the central-axis compared to flattening filtered (FF), b) the lateral dose profile is peaked on the central axis and less integral target current is required to generate the same tumor dose with the FF beam. Thus, the TVLs for FFF mode are smaller than those of the FF mode and the scatter functions of the FF mode (NCRP#151) may not be appropriate for FFF-mode, c) the neutron source strength and fluence for 18X-FFF is smaller than 18X-FF, but it is not of a concern here, no 18X-FFF-mode is available on the linac under investigation. Results: These barrier thickness are smaller (12% reduction on the average) than those computed for conventional FF mode with same realistic primary workload since, the primary TVLs used here are smaller and the WL is smaller than the conventional (almost half reduced), keeping the TADR in tolerance. Conclusions: A comprehensive method for shielding barrier calculations based on dedicated data for FFF-mode linacs is highly desired. Meanwhile, we provide an extension to NCRP#151 to accommodate the shielding design of such installations. It is also shown that if a vault is already designed for IMRT/VMAT and SABR hypofractionated treatments with FFF-mode linac, the vault can also be used for a FFF mode linac replacement, leaving some leeway for slightly higher workload on the FFF linac.

  8. SU-E-T-670: Radiotherapy Vault Shielding Evaluation Method for a Flattening Filter-Free (FFF) Linac-Practical Considerations and Recommendations

    International Nuclear Information System (INIS)

    Mihailidis, D

    2015-01-01

    Purpose: To date, there isn’t formal approach for flattening filter-free (FFF) linac vault shielding evaluation, thus, we propose an extension to NCRP#151 to accommodate the recent large number of FFF linac installations.Methods and Materials: We extended the approach in NCRP#151 to design two Truebeam vaults in our new cancer center for hypofractionated treatments. Monte Carlo calculations have characterized primary, scattered, leakage and neutron radiations from FFF-modes. These calculations have shown that: a) FFF primary beam is softer on the central-axis compared to flattening filtered (FF), b) the lateral dose profile is peaked on the central axis and less integral target current is required to generate the same tumor dose with the FF beam. Thus, the TVLs for FFF mode are smaller than those of the FF mode and the scatter functions of the FF mode (NCRP#151) may not be appropriate for FFF-mode, c) the neutron source strength and fluence for 18X-FFF is smaller than 18X-FF, but it is not of a concern here, no 18X-FFF-mode is available on the linac under investigation. Results: These barrier thickness are smaller (12% reduction on the average) than those computed for conventional FF mode with same realistic primary workload since, the primary TVLs used here are smaller and the WL is smaller than the conventional (almost half reduced), keeping the TADR in tolerance. Conclusions: A comprehensive method for shielding barrier calculations based on dedicated data for FFF-mode linacs is highly desired. Meanwhile, we provide an extension to NCRP#151 to accommodate the shielding design of such installations. It is also shown that if a vault is already designed for IMRT/VMAT and SABR hypofractionated treatments with FFF-mode linac, the vault can also be used for a FFF mode linac replacement, leaving some leeway for slightly higher workload on the FFF linac

  9. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  10. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Directory of Open Access Journals (Sweden)

    Oleksiy Kononenko

    2017-10-01

    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  11. First heavy ion beam tests with a superconducting multigap CH cavity

    Science.gov (United States)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  12. Control system by the technological electron Linac KUT-20

    CERN Document Server

    Akchurin, Y I; Gurin, V A; Demidov, N V

    2001-01-01

    The high-power technological electron linac KUT-20 was developed at the Science Research Complex 'Accelerator' of NSC KIPT. The linac consists of two 1.2 m length accelerating structures with a variable geometry and an injector. The latter comprises a diode electron gun,a klystron type buncher and an accelerating cavity.With a RF supply power at accelerating structure entries of 11 MW and with a current at the accelerator exit of 1A,the beam energy will be up to 20 MeV.An average beam power is planned to be 20 kW.All systems of the accelerator are controlled by a computerised control system. The program and technical complex consist of PC equipped with fast ADC control console, synchronization unit, microprocessor-operated complexes.

  13. Measurements of higher-order mode damping in the PEP-II low-power test cavity

    International Nuclear Information System (INIS)

    Rimmer, R.A.; Goldberg, D.A.

    1993-05-01

    The paper describes the results of measurements of the Higher-Order Mode (HOM) spectrum of the low-power test model of the PEP-II RF cavity and the reduction in the Q's of the modes achieved by the addition of dedicated damping waveguides. All the longitudinal (monopole) and deflecting (dipole) modes below the beam pipe cut-off are identified by comparing their measured frequencies and field distributions with calculations using the URMEL code. Field configurations were determined using a perturbation method with an automated bead positioning system. The loaded Q's agree well with the calculated values reported previously, and the strongest HOMs are damped by more than three orders of magnitude. This is sufficient to reduce the coupled-bunch growth rates to within the capability of a reasonable feedback system. A high power test cavity will now be built to validate the thermal design at the 150 kW nominal operating level, as described elsewhere at this conference

  14. A Study of Failure Modes in the ILC Main Linac

    CERN Document Server

    Eliasson, Peder; Krücker, Dirk; Latina, Andrea; Poirier, Freddy; Schulte, Daniel; Walker, Nicholas John; Xia, Guoxing

    2006-01-01

    Failures in the ILC can lead to beam loss or even damage the machine. In the paper quadrupole failures and errors in the klystron phase are being investigated and the impact on the machine protection is being considered for the main linac.

  15. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, Pablo J. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)]. E-mail: pbarriga@cyllene.uwa.edu.au; Zhao Chunnong [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia); Blair, David G. [School of Physics, University of Western Australia, Crawley, WA 6009 (Australia)

    2005-06-06

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen.

  16. Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors

    International Nuclear Information System (INIS)

    Barriga, Pablo J.; Zhao Chunnong; Blair, David G.

    2005-01-01

    Interferometric gravitational wave detectors use triangular ring cavities to filter spatial and frequency instabilities from the input laser beam. The next generation of interferometric detectors will use high laser power and greatly increased circulating power inside the cavities. The increased power inside the cavities increases thermal effects in their mirrors. The triangular configuration of conventional mode-cleaners creates an intrinsic astigmatism that can be corrected by using the thermal effects to advantage. In this Letter we show that an astigmatism free output beam can be created if the design parameters are correctly chosen

  17. On the Theory of Coupled Modes in Optical Cavity-Waveguide Structures

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; de Lasson, Jakob Rosenkrantz; Heuck, Mikkel

    2017-01-01

    Light propagation in systems of optical cavities coupled to waveguides can be conveniently described by a general rate equation model known as (temporal) coupled mode theory (CMT). We present an alternative derivation of the CMT for optical cavitywaveguide structures, which explicitly relies...... in the coupled systems. Practical application of the theory is illustrated using example calculations in one and two dimensions....

  18. Active mode locking of quantum cascade lasers in an external ring cavity.

    Science.gov (United States)

    Revin, D G; Hemingway, M; Wang, Y; Cockburn, J W; Belyanin, A

    2016-05-05

    Stable ultrashort light pulses and frequency combs generated by mode-locked lasers have many important applications including high-resolution spectroscopy, fast chemical detection and identification, studies of ultrafast processes, and laser metrology. While compact mode-locked lasers emitting in the visible and near infrared range have revolutionized photonic technologies, the systems operating in the mid-infrared range where most gases have their strong absorption lines, are bulky and expensive and rely on nonlinear frequency down-conversion. Quantum cascade lasers are the most powerful and versatile compact light sources in the mid-infrared range, yet achieving their mode-locked operation remains a challenge, despite dedicated effort. Here we report the demonstration of active mode locking of an external-cavity quantum cascade laser. The laser operates in the mode-locked regime at room temperature and over the full dynamic range of injection currents.

  19. Experience with a radio frequency gun on the SSRL Injector Linac

    International Nuclear Information System (INIS)

    Weaver, J.N.; Genin, R.D.; Golceff, P.; Morales, H.; Sebek, J.

    1993-04-01

    A-SSRL/Varian-Associates-built, one-and-a-half cavity microwave, thermionic-cathode gun has operated on the SSRL Injector Linac reliably without changing the cathode for over 10,000 hours, with no significant decrease in emission. Thus, for a pulsed electron beam, with a maximum of 0.5 A peak at 2 to 3 MeV from a 3.5 MW peak rf pulse of 2 μs pulse width at 10 pps, the apparent but small amount of back bombardment of the cathode has been tolerable. Use of a bunch-compression alpha magnet and a stripline chopper after the gun produces the required S-band 3 to 5 microbunches of electrons for injection into a standard 10-m-long linac and on into a booster synchrotron, which in turn is used to fill SPEAR. Component limitations and operating characteristics of the gun and the linac's rf system are discussed

  20. Superconducting Radio-Frequency Cavities for Low-Beta Particle Accelerators

    Science.gov (United States)

    Kelly, Michael

    2012-01-01

    High-power proton and ion linac projects based on superconducting accelerating cavities are driving a worldwide effort to develop and build superconducting cavities for beta < 1. Laboratories and institutions building quarter-wave, halfwave and single- or multi-spoke cavities continue to advance the state of the art for this class of cavities, and the common notion that low-beta SRF cavities fill a need in niche applications and have low performance is clearly no longer valid. This article reviews recent developments and results for SC cavity performance for cavities with beta up to approximately 0.5. The considerable ongoing effort on reduced beta elliptical cell cavities is not discussed. An overview of associated subsystems required to operate low-beta cavities, including rf power couplers and fast and slow tuners, is presented.

  1. Linac coherent light source (LCLS) undulator RF BPM system

    International Nuclear Information System (INIS)

    Lill, R.; Waldschmidt, G.; Morrison, L.; Smith, S.; Straumann, T; Li, Z.; Johnson, R.

    2006-01-01

    The Linac Coherent Light Source (LCLS) will be the world's first x-ray free-electron laser (FEL) when it becomes operational in 2009. The LCLS is currently in the construction phase. The beam position monitor (BPM) system planned for the LCLS undulator will incorporate a high-resolution X-band cavity BPM system described in this paper. The BPM system will provide high-resolution measurements of the electron beam trajectory on a pulse-to-pulse basis and over many shots. The X-band cavity BPM size, simple fabrication, and high resolution make it an ideal choice for LCLS beam position detection. We will discuss the system specifications, design, and prototype test results.

  2. Differential current measurement in the BNL energy recovery linac test facility

    International Nuclear Information System (INIS)

    Cameron, Peter

    2006-01-01

    An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine

  3. Probing the fundamental limit of niobium in high radiofrequency fields by dual mode excitation in superconducting radiofrequency cavities

    International Nuclear Information System (INIS)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-01-01

    We have studied thermal breakdown in several multicell superconducting radiofrequency cavity by simultaneous excitation of two TM 010 passband modes. Unlike measurements done in the past, which indicated a clear thermal nature of the breakdown, our measurements present a more complex picture with interplay of both thermal and magnetic effects. JLab LG-1 that we studied was limited at 40.5 MV/m, corresponding to B peak = 173 mT, in 89 mode. Dual mode measurements on this quench indicate that this quench is not purely magnetic, and so we conclude that this field is not the fundamental limit in SRF cavities

  4. Approach of a failure analysis for the MYRRHA linac

    International Nuclear Information System (INIS)

    Carneiro, J.P.; Medeiros-Romao, L.; Salemne, R.; Vandeplassche, D.; Biarotte, J.L.; Bouly, F.; Uriot, D.

    2015-01-01

    The MYRRHA project currently under development at SCK-CEN (Mol, Belgium) is a subcritical research reactor that requires a 600 MeV proton accelerator as a driver. This linac is expected to produce a beam power of 1.5 MW onto a spallation target for the reactor to deliver a thermal power around 70 MW. Thermomechanical considerations of the spallation target set stringent requirements on the beam trip rate which should not exceed 40 trips/year for interruptions longer than three seconds. The 3 underlying principles in the design of the MYRRHA linac are elements redundancy (like the dual-injector), elements operation at de-rated values (like cavities operating at about 30% from their nominal operating points) and the fault tolerance concept, which allows the failure of a beamline component to be compensated by its neighbouring elements. Studies presented in this document show that in the event of a failure of the first cryo-module or the first quadrupole doublet the linac can resume nominal operation with a re-matched lattice. Since the fault tolerance procedure is expected to work more efficiently at higher energies (due to lower space charge effects) we can extrapolate from our studies that the MYRRHA linac is expected to operate with the failure of any cryo-module or quadrupole doublet in the main linac. A virtual accelerator-based control system is mandatory for the operation of the MYRRHA linac to ensure the very fast implementation (<3 seconds) of the fault tolerance procedure. The virtual accelerator uses a beam dynamics code (like TRACEWIN or TRACK) to compute the model of the real accelerator in operation and interacts with this later through the accelerator control command

  5. Fermilab 500 GeV main accelerator rf cavity 128 MHz mode damper

    International Nuclear Information System (INIS)

    Kerns, Q.A.; Miller, H.W.

    1977-01-01

    The Fermilab 500-GeV main accelerating system has been operating for a year now with the aid of 128-MHz mode dampers. Such dampers proved to be necessary to achieve stable operation and a reasonably smooth slow spill at intensities of approximately 2 x 10 13 protons per pulse, and furthermore are low-cost and reliable. The approach used to identify troublesome modes, the observed beam blow-up without dampers, and the steps taken to design and install suitable dampers on eighteen main ring cavities are discussed. Spectrum analyzer pictures help illustrate the performance

  6. An engineering two-mode field NOON state in cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Saif, Farhan; Rameez-ul-Islam [Department of Electronics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khosa, Ashfaq H [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2010-01-14

    We generate highly non-classical entangled two-mode field states of the type (|n{sub X},0{sub Y}>+-|0{sub X},n{sub Y}>)/sq root2 by utilizing an atomic analogue of the Mach-Zehnder interferometer, where quantized fields in the high-Q cavities act as beam splitters and mirrors. We discuss that the probability for the production of the desired states may approach a value close to unity under presently available experimental conditions.

  7. Mode stability analysis in the beam—wave interaction process for a three-gap Hughes-type coupled cavity chain

    International Nuclear Information System (INIS)

    Luo Ji-Run; Zhu Min; Guo Wei; Cui Jian

    2013-01-01

    Based on space-charge wave theory, the formulae of the beam—wave coupling coefficient and the beam-loaded conductance are given for the beam—wave interaction in an N-gap Hughes-type coupled cavity chain. The ratio of the non-beam-loaded quality factor of the coupled cavity chain to the beam quality factor is used to determine the stability of the beam—wave interaction. As an example, the stabilities of the beam—wave interaction in a three-gap Hughes-type coupled cavity chain are discussed with the formulae and the CST code for the operations of the 2π, π, and π/2 modes, respectively. The results show that stable operation of the 2π, π, and π/2 modes may all be realized in an extended-interaction klystron with the three-gap Hughes-type coupled cavity chain

  8. Tunable single and dual mode operation of an external cavity quantum-dot injection laser

    International Nuclear Information System (INIS)

    Biebersdorf, A; Lingk, C; De Giorgi, M; Feldmann, J; Sacher, J; Arzberger, M; Ulbrich, C; Boehm, G; Amann, M-C; Abstreiter, G

    2003-01-01

    We investigate quantum-dot (QD) lasers in an external cavity using Littrow and Littman configurations. Here, we report on a continuously tunable QD laser with a broad tuning range from 1047 to 1130 nm with high stability and efficient side mode suppression. The full-width at half-maximum of the laser line is 0.85 nm determined mainly by the quality of the external grating. This laser can be operated in a dual-mode modus, where the mode-spacing can be tuned continuously between 1.1 and 34 nm. Simultaneous emission of the two laser modes is shown by sum frequency generation experiments

  9. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.

    Science.gov (United States)

    Dhama, Rakesh; Caligiuri, Vincenzo; Petti, Lucia; Rashed, Alireza R; Rippa, Massimo; Lento, Raffaella; Termine, Roberto; Caglayan, Humeyra; De Luca, Antonio

    2018-01-23

    Plasmonic quasi-periodic structures are well-known to exhibit several surprising phenomena with respect to their periodic counterparts, due to their long-range order and higher rotational symmetry. Thanks to their specific geometrical arrangement, plasmonic quasi-crystals offer unique possibilities in tailoring the coupling and propagation of surface plasmons through their lattice, a scenario in which a plethora of fascinating phenomena can take place. In this paper we investigate the extraordinary transmission phenomenon occurring in specifically patterned Thue-Morse nanocavities, demonstrating noticeable enhanced transmission, directly revealed by near-field optical experiments, performed by means of a scanning near-field optical microscope (SNOM). SNOM further provides an intuitive picture of confined plasmon modes inside the nanocavities and confirms that localization of plasmon modes is based on size and depth of nanocavities, while cross talk between close cavities via propagating plasmons holds the polarization response of patterned quasi-crystals. Our performed numerical simulations are in good agreement with the experimental results. Thus, the control on cavity size and incident polarization can be used to alter the intensity and spatial properties of confined cavity modes in such structures, which can be exploited in order to design a plasmonic device with customized optical properties and desired functionalities, to be used for several applications in quantum plasmonics.

  10. Suppression of Higher Order Modes in an Array of Cavities Using Waveguides

    Science.gov (United States)

    Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.

    An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.

  11. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    Science.gov (United States)

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  12. Electron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Loew, G A; Schriber, S O [ed.

    1976-11-01

    A study was made of the present status of the thousand or so electron linacs in the world, and future trends in the field. These machines were classified according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for x-ray and electron therapy, and those which may in the future be used for negative pion therapy. Industrial machines discussed include linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a c-w, 1 GeV, 100..mu..A electron linac is raised, and various options using recirculation and stretchers are examined. In this connection, the status of rf superconductivity is summarized. A review is given of linacs for injectors into synchrotrons and e/sup +-/ storage rings, and recent work done to upgrade the only multi-GeV linac, namely SLAC, is described.

  13. Electron linacs

    International Nuclear Information System (INIS)

    Loew, G.A.

    1976-01-01

    To study the present status of the thousand or so electron linacs in the world, and future trends in the field, we have classified these machines according to their use: medical, industrial, and nuclear physics. In the medical category, two types of electron linacs are discussed: the conventional ones which are used for X-ray and electron therapy, and those which may in the future be used for negative pion therapy. The section on industrial machines includes linacs for radiographic and other specialized applications. In the nuclear physics category, the status of conventional low- and medium-energy as well as high duty cycle linacs is reviewed. The question of how one might obtain a C.W., 1 GeV, 100 μA electron linac is raised and various options using recirculation and stretchers are examined. In this connection, the status of RF superconductivity is summarized. Following, there is a review of linacs for injectors into synchrotrons and e +- storage rings. The paper ends with a description of recent work done to upgrade the only multi-GeV linac, namely SLAC. (author)

  14. Asymptotic entanglement dynamics phase diagrams for two electromagnetic field modes in a cavity

    International Nuclear Information System (INIS)

    Drumond, R. C.; Souza, L. A. M.; Terra Cunha, M.

    2010-01-01

    We investigate theoretically an open dynamics for two modes of electromagnetic field inside a microwave cavity. The dynamics is Markovian and determined by two types of reservoirs: the ''natural'' reservoirs due to dissipation and temperature of the cavity, and an engineered one, provided by a stream of atoms passing trough the cavity, as devised by Pielawa et al. [Phys. Rev. Lett. 98, 240401 (2007)]. We found that, depending on the reservoir parameters, the system can have distinct ''phases'' for the asymptotic entanglement dynamics: it can disentangle at finite time or it can have persistent entanglement for large times, with the transition between them characterized by the possibility of asymptotical disentanglement. Incidentally, we also discuss the effects of dissipation on the scheme proposed in the above reference for generation of entangled states.

  15. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  16. Development of 650 MHz (β=0.9) single-cell SCRF cavity

    International Nuclear Information System (INIS)

    Bagre, M.; Jain, V.; Yedle, A.; Maurya, T.; Yadav, A.; Puntambekar, A.; Goswami, S.G.; Choudhary, R.S.; Sandha, S.; Dwivedi, J.; Kane, G.V.; Mahawar, A.; Mohania, P.; Shrivastava, P.; Sharma, S.; Gupta, R.; Sharma, S.D.; Joshi, S.C.; Mistri, K.K.; Prakash, P.N.

    2013-01-01

    Raja Ramanna Centre for Advanced Technology has initiated the work on development of Superconducting Radio Frequency (SCRF) cavities and associated technologies as part of R and D activities for upcoming Spallation Neutron Source (SNS) project involving superconducting Linear Accelerator (LINAC). It is planned to use 650 MHz SCRF cavities for the medium and high energy section of the proposed LINAC. Under Indian Institution Fermilab Collaboration (IIFC), Raja Ramanna Centre for Advanced Technology is also working on development of 650 MHz (β=0.9) SCRF cavities proposed to be used in the high energy section of Project-X at FNAL. The work has been initiated with design and development of 650 MHz single cell SCRF cavity. FE analysis was done to estimate change in frequency with temperature as well as to estimate the frequency of the cavity at different cavity manufacturing stages. The development cycle comprises of design and manufacturing of forming tooling, machining, welding and RF measurement fixtures as well as design for manufacturing. The half-cell and beam tubes forming and machining of all parts were done using in-house facilities. The Electron beam welding was carried out at Inter-University Accelerator Centre (IUAC), New Delhi under a MoU. One 650 MHz single cell SCRF cavity has been recently manufactured. In this paper we present the development efforts on manufacturing and pre-qualification of 650 MHz (β=0.9) single cell SCRF cavity. (author)

  17. Superconducting Prototype Cavities for the Spallation Neutron Source (SNS) Project

    International Nuclear Information System (INIS)

    Ciovati, G.; Kneisel, P.; Brawley, J.; Bundy, R.; Campisi, I.; Davis, K.; Macha, K.; Machie, D.; Mammosser, J.; Morgan, S.; Sundelin, R.; Turlington, L.; Wilson, K.; Doleans, M.; Kim, S.H.; Barni, D.; Pagani, C.; Pierini, P.; Matsumoto, K.; Mitchell, R.; Schrage, D.; Parodi, R.; Sekutowicz, J.; Ylae-Oijala, P.

    2001-01-01

    The Spallation Neutron Source project includes a superconducting linac section in the energy range from 192 MeV to 1000 MeV, operating at a frequency of 805 MHz at 2.1 K. For this energy range two types of cavities are needed with geometrical beta - values of beta= 0.61 and beta= 0.81. An aggressive cavity prototyping program is being pursued at Jlab, which calls for fabricating and testing of four beta= 0.61 cavities and two beta= 0.81 cavities. Both types consist of six cells made from high purity niobium and feature one HOM coupler on each beam pipe and a port for a high power coaxial input coupler. Three of the four beta= 0.61 cavities will be used for a cryomodule test in early 2002. At this time four medium beta cavities and one high beta cavity have been completed at JLab. The first tests on the beta=0.61 cavity and the beta= 0.81 exceeded the design values for gradient and Q - value: E acc = 1 0.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.61 and E acc = 12.3 MV/m and Q = 5 x 10 9 at 2.1K for beta= 0.81. One of the medium beta cavities has been equipped with an integrated helium vessel and measurements of the static and dynamic Lorentz force detuning will be done and compared to the ''bare'' cavities. In addition two single cell cavities have been fabricated, equipped with welded-on HOM couplers. They are being used to evaluate the HOM couplers with respect to multipacting, fundamental mode rejection and HOM damping as far as possible in a single cell. This paper will describe the cavity design with respect to electrical and mechanical features, the fabrication efforts and the results obtained with the different cavities existing at the time of this workshop

  18. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  19. Stable and High OSNR Compound Linear-Cavity Single-Longitudinal-Mode Erbium-Doped Silica Fiber Laser Based on an Asymmetric Four-Cavity Structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Wen Xiao-Dong; Tan Si-Yu; Liu Peng

    2012-01-01

    We propose a stable and high optical signal-to-noise ratio (OSNR) compound linear-cavity single-longitudinal-mode (SLM) erbium-doped silica fiber laser. It consists of three uniform fiber Bragg gratings (FBGs) and two fiber couplers to form a simple asymmetric four-cavity structure to select the longitudinal mode. The stable SLM operation at the wavelength of 1544.053 nm with a 3 dB bandwidth of 0.014 nm and an OSNR of ∼60 dB was verified experimentally. Under laboratory conditions, a power fluctuation performance of less than 0.05 dB for 5 h and wavelength variation of less than 0.01 nm for about 150 min is demonstrated. Finally, the characteristic of laser output power as a function of pump power is investigated. The proposed system provides a simple and cost-effective approach to realize a stable SLM fiber laser

  20. Focussing magnets for proton Linac of ADS

    International Nuclear Information System (INIS)

    Malhotra, Sanjay; Mahapatra, U.; Singh, Pitamber; Choudhury, R.K.; Goel, Priyanshu; Verma, Vishnu; Bhattacharya, S.; Srivastava, G.P.; Kailas, S.; Sahni, V.C.

    2009-01-01

    A linear accelerator comprising of Radio frequency quadruple (RFQ) and drift tube linac (DTL) is being developed by BARC. The Alvarez type post-coupled cw DTL accelerates protons from an energy of 3 MeV to 20 MeV. The drift tube linac is excited in TM010 mode, wherein the particles are accelerated by longitudinal electric fields at the gap crossings between drift tubes. The particles are subjected to transverse RF defocusing forces at the gap crossings due to the increasing electric fields in the gap. The transverse defocusing is corrected by housing magnetic quadrupole focussing lenses inside the drift tubes. The permanent magnet quadrupoles (PMQs) are placed inside the hermetically sealed drift tubes and provide a constant magnetic field gradient in the beam aperture. This paper discusses various aspects of magnetic design, selection of magnetic materials and the engineering development involved in the prototype development of these drift tubes for proton Linac. (author)

  1. Higher order mode damping of a higher harmonic superconducting cavity for SSRF

    International Nuclear Information System (INIS)

    Yu Haibo; Liu Jianfei; Hou Hongtao; Ma Zhenyu; Feng Xiqiang; Mao Dongqing

    2012-01-01

    Adopting a higher harmonic cavity on a synchrotron radiation facility can increase the beam lifetime and suppress the beam instability. In this paper, we report the simulation and preliminary design on higher order modes (HOMs) damping of the designed and fabricated higher harmonic superconducting cavity for Shanghai Synchrotron Radiation Facility (SSRF). The requirements for the HOM damping are analyzed, and the length and location of the HOM damper are optimized by using the SEAFISH code. The results show that the design can provide heavy damping for harmful HOMs with decreased impedance, and the beam instability requirement of SSRF can be satisfied. By using the ABCI code, the loss factor is obtained and the HOM power is estimated. (authors)

  2. Beam dynamics study and superconducting triple spoke cavity design for the EURISOL driver

    International Nuclear Information System (INIS)

    Ponton, A.

    2009-07-01

    EURISOL will be the next generation source of intense radioactive ion beams. Its accelerator complex consists of a driver linac, a set of targets and sources and a post-accelerator linac which aims at supplying different experimental areas with the exotic ions. The presented study deals with the driver accelerator: a superconducting RF linac capable of accelerating different ion kinds (D + , 3 He 2+ and H - ) up to a maximal power of 4 MW. First beam dynamics studies pointed out a very good acceleration efficiency when triple spoke cavities working at a frequency of 352 MHz are used in the medium energy part (0.2 < beta < 0.4). Thanks to a novel geometry, the electromagnetic design of the proposed cavity leads to 33 MV/m and 72 mT for the peak electric field and magnetic induction respectively at an ambitious accelerating field of 8 MV/m. The beam transport was then simulated and optimized in the original layout and calculations were also performed considering an alternative, periodic solution, for the low energy part. The 'all-periodic' linac keeps the beam qualities better by strongly reducing the emittance growth and the halo formation. (author)

  3. HF power couplers for pulsed superconducting cavity resonators; Coupleurs de puissance HF pour cavites supraconductrices en mode pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jenhani, Hassen [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud, BP 34, F-91898 Orsay Cedex (France)

    2006-11-15

    Recent years have seen an impressive improvement in the accelerating gradients obtained in superconducting cavities. Consequently, such cavities have become attractive candidates for large superconducting linear accelerator projects such as the European XFEL and the International Linear Collider (ILC). As a result, there is a strong interest in reducing RF conditioning time and improving the performance of the input power couplers for these cavities. The so-called TTF-III input power coupler, adopted for the XFEL superconducting RF cavities are complex components. In order to better understand the behavior of this component we have performed a series of experiments on a number of such couplers. Initially, we developed a fully automated RF high power test stand for coupler conditioning procedure. Following this, we performed a series of coupler conditioning tests. This has allowed the study of the coupler behavior during processing. A number of experiments were carried out to evaluate the in-situ baking effect on the conditioning time. Some of the conditioned couplers were sent to DESY in order to be tested on 9-cells TESLA cavities under cryogenic conditions. These tests have shown that the couplers in no way limit the cavity performance, even up to gradients of 35 MV/m. The main objective of our coupler studies was the reduction of their conditioning time, which represents one of the most important criteria in the choice of coupler for high energy linacs. Excellent progress in reducing the conditioning time has been demonstrated by making appropriate modifications to the conditioning procedure. Furthermore, special attention was paid to electron generation processes in the couplers, via multipacting. Simulations of this process were made on both the TTF-III coupler and on a new coupler prototype, TTF-V. Experiments aimed at suppressing multipacting were also successfully achieved by using a DC bias on the inner conductor of the co-axial coupler. (author)

  4. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    International Nuclear Information System (INIS)

    Li, Y. M.; Liu, Kexin; Geng, Rongli

    2014-01-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6A-1.6 MV/m, 21A-34 MV/m, 32A-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6A-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MPA's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model

  5. Comparative Simulation Studies of Multipacting in Higher-Order-Mode Couplers of Superconducting RF Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. M. [Peking University, Beijing (China); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Liu, Kexin [Peking University, Beijing (China); Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Multipacting (MP) in higher-order-mode (HOM) couplers of the International Linear Collider (ILC) baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6-1.6 MV/m, 21-34 MV/m, 32-35 MV/m, and > 40MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6-13 MV/m. Potential implications of these MP barriers are discussed in the context of future high energy pulsed as well as medium energy continuous wave (CW) accelerators based on superconducting radio frequency cavities. Frequency scaling of MP's predicted in HOM couplers of the ILC, CBEAF upgrade, SNS and FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  6. Optothermal transport behavior in whispering gallery mode optical cavities

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Soheil [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Armani, Andrea M., E-mail: armani@usc.edu [Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089 (United States); Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089 (United States)

    2014-08-04

    Over the past century, whispering gallery mode optical cavities have enabled numerous advances in science and engineering, such as discoveries in quantum mechanics and non-linear optics, as well as the development of optical gyroscopes and add drop filters. One reason for their widespread appeal is their ability to confine light for long periods of time, resulting in high circulating intensities. However, when sufficiently large amounts of optical power are coupled into these cavities, they begin to experience optothermal or photothermal behavior, in which the optical energy is converted into heat. Above the optothermal threshold, the resonance behavior is no longer solely defined by electromagnetics. Previous work has primarily focused on the role of the optothermal coefficient of the material in this instability. However, the physics of this optothermal behavior is significantly more complex. In the present work, we develop a predictive theory based on a generalizable analytical expression in combination with a geometry-specific COMSOL Multiphysics finite element method model. The simulation couples the optical and thermal physics components, accounting for geometry variations as well as the temporal and spatial profile of the optical field. To experimentally verify our theoretical model, the optothermal thresholds of a series of silica toroidal resonant cavities are characterized at different wavelengths (visible through near-infrared) and using different device geometries. The silica toroid offers a particularly rigorous case study for the developed optothermal model because of its complex geometrical structure which provides multiple thermal transport paths.

  7. An ultra-long cavity passively mode-locked fiber laser based on nonlinear polarization rotation in a semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Liu, Tonghui; Jia, Dongfang; Yang, Jingwen; Chen, Jiong; Wang, Zhaoying; Yang, Tianxin

    2013-01-01

    In this paper we investigate an ultra-long cavity passively mode-locked fiber laser based on a semiconductor optical amplifier (SOA). Experimental results are presented which indicate that stable mode-locked pulses can be obtained by combining nonlinear polarization rotation (NPR) in the SOA with a polarization controller. By adding a 4 km single mode fiber into the ring cavity, a stable fundamental-order mode-locked pulse train with a repetition rate of 50.72 kHz is generated through the NPR effect in the SOA. The central wavelength, 3 dB bandwidth and single pulse energy of the output pulse are 1543.95 nm, 1.506 nm and 33.12 nJ, respectively. Harmonic mode-locked pulses are also observed in experiments when the parameters are chosen properly. (paper)

  8. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pei [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg (Germany); Jones, Roger M.; Shinton, Ian R. R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Cockcroft Institute, Cheshire WA4 4AD (United Kingdom); Flisgen, Thomas; Glock, Hans-Walter [Institut fuer Allgemeine Elektrotechnik, Universitaet Rostock, 18051 Rostock (Germany)

    2012-08-15

    We investigate the feasibility of beam position diagnostics using higher order mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band, and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR), and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  9. A study of beam position diagnostics using beam-excited dipole modes in third harmonic superconducting accelerating cavities at a free-electron laser

    CERN Document Server

    Zhang, P; Jones, R M; Shinton, I R R; Flisgen, T; Glock, H W

    2012-01-01

    We investigate the feasibility of beam position diagnostics using Higher Order Mode (HOM) signals excited by an electron beam in the third harmonic 3.9 GHz superconducting accelerating cavities at FLASH. After careful theoretical and experimental assessment of the HOM spectrum, three modal choices have been narrowed down to fulfill different diagnostics requirements. These are localized dipole beam-pipe modes, trapped cavity modes from the fifth dipole band and propagating modes from the first two dipole bands. These modes are treated with various data analysis techniques: modal identification, direct linear regression (DLR) and singular value decomposition (SVD). Promising options for beam diagnostics are found from all three modal choices. This constitutes the first prediction, subsequently confirmed by experiments, of trapped HOMs in third harmonic cavities, and also the first direct comparison of DLR and SVD in the analysis of HOM-based beam diagnostics.

  10. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Shashkov, Ya.V., E-mail: shashkovyv@mail.ru [National Research Nuclear University MEPhI, Moscow (Russian Federation); Sobenin, N.P.; Petrushina, I.I. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Zobov, M.M. [Laboratori Nazionali di Frascati INFN, Rome (Italy)

    2014-12-11

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  11. Comparison of higher order modes damping techniques for 800 MHz single cell superconducting cavities

    Science.gov (United States)

    Shashkov, Ya. V.; Sobenin, N. P.; Petrushina, I. I.; Zobov, M. M.

    2014-12-01

    At present, applications of 800 MHz harmonic cavities in both bunch lengthening and shortening regimes are under consideration and discussion in the framework of the High Luminosity LHC project. In this paper we study electromagnetic characteristics of high order modes (HOMs) for a single cell 800 MHz superconducting cavity and arrays of such cavities connected by drifts tubes. Different techniques for the HOMs damping such as beam pipe grooves, coaxial-notch loads, fluted beam pipes etc. are investigated and compared. The influence of the sizes and geometry of the drift tubes on the HOMs damping is analyzed. The problems of a multipacting discharge in the considered structures are discussed and the operating frequency detuning due to the Lorentz force is evaluated.

  12. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  13. Performance of the 2 × 4-cell superconducting linac module for the THz-FEL facility

    Science.gov (United States)

    Kui, Zhou; Chenglong, Lao; Dai, Wu; Xing, Luo; Jianxin, Wang; Dexin, Xiao; Lijun, Shan; Tianhui, He; Xuming, Shen; Sifen, Lin; Linde, Yang; Hanbin, Wang; Xingfan, Yang; Ming, Li; Xiangyang, Lu

    2018-07-01

    A high average power THz radiation facility has been developed by the China Academy of Engineering Physics. It is the first CW THz user facility based on superconducting accelerator technology in China. The superconducting linac module, which contains two 4-cell 1.3 GHz TESLA-like superconducting radio frequency cavities, is a major component of this facility. The expected electron energy gain is 6-8 MeV with a field gradient of 8-10 MV/m. The design and fabrication of the linac module is complete. This paper discusses its assembly and results from cyromodule tests and beam commissioning. At 2 K, the cryomodule works smoothly and stably. Both cavities have achieved effective field gradients of 10 MV/m. In beam loading experiments, 8 MeV, 5 mA electron beams with an energy spread less than 0.2% have been produced, which satisfies our requirements.

  14. Mechanical design and fabrication of power feed cavity test setup

    International Nuclear Information System (INIS)

    Ghodke, S.R.; Dhavle, A.S.; Sharma, Vijay; Sarkar, Shreya; Kumar, Mahendra; Nayak, Susanta; Barnwal, Rajesh; Jayaprakash, D.; Mondal, J.; Nimje, V.T.; Mittal, K.C.; Gantayet, L.M.

    2013-01-01

    Power feed cavity set up consists of nine number of accelerating cavity and eight numbers of coupling cavity for testing of power feed cavity with coupling flange for 2856 MHz S band standing wave coupled cavity linac. When we are assembling the cavity and applying the pressure, its resonance frequency changes with applied pressure/load. After some critical pressure/load frequency change becomes negligible or zero. This set up will be used to find out assembly performance of power feed cavity and its coupler. Top four cavity or eight half cells as well as bottom four cavity or eight half cells will be brazed separately. Power feed cavity will be sandwiched between this two brazed cavity assemblies. This paper discuss about linear motion bush, linear motion rod, load cell, hydraulic actuator, power pack, stepper motor PLC control, jig boring, alignment, tolerances and assembly procedure for this test setup. (author)

  15. Measurement of the high-field Q drop in the TM010 and TE011 modes in a niobium cavity

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel

    2006-04-01

    In the last few years superconducting radio-frequency (rf) cavities made of high-purity (residual resistivity ratio>200) niobium achieved accelerating gradients close to the theoretical limits. An obstacle towards achieving reproducibly higher fields is represented by ''anomalous'' losses causing a sharp degradation of the cavity quality factor when the peak surface magnetic field (Bp) is above about 90 mT, in the absence of field emission. This effect, called ''Q drop'' has been measured in many laboratories with single- and multicell cavities mainly in the gigahertz range. In addition, a low-temperature (100-140 C) ''in situ'' baking of the cavity was found to be beneficial in reducing the Q drop. In order to gain some understanding of the nature of these losses, a single-cell cavity has been tested in the TM010 and TE011 modes at 2 K. The feature of the TE011 mode is to have zero electric field on the cavity surface, so that electric field effects can be excluded as a source for the Q drop. This article will present some of the experimental results for different cavity treatments and will compare them with existing models.

  16. Measurement of the high-field Q drop in the TM_{010} and TE_{011} modes in a niobium cavity

    Directory of Open Access Journals (Sweden)

    Gianluigi Ciovati

    2006-04-01

    Full Text Available In the last few years superconducting radio-frequency (rf cavities made of high-purity (residual resistivity ratio>200 niobium achieved accelerating gradients close to the theoretical limits. An obstacle towards achieving reproducibly higher fields is represented by “anomalous” losses causing a sharp degradation of the cavity quality factor when the peak surface magnetic field (B_{p} is above about 90 mT, in the absence of field emission. This effect, called “Q drop” has been measured in many laboratories with single- and multicell cavities mainly in the gigahertz range. In addition, a low-temperature (100–140 °C “in situ” baking of the cavity was found to be beneficial in reducing the Q drop. In order to gain some understanding of the nature of these losses, a single-cell cavity has been tested in the TM_{010} and TE_{011} modes at 2 K. The feature of the TE_{011} mode is to have zero electric field on the cavity surface, so that electric field effects can be excluded as a source for the Q drop. This article will present some of the experimental results for different cavity treatments and will compare them with existing models.

  17. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  18. First operation of the XFEL linac with the 2 K cryogenic system

    Science.gov (United States)

    Paetzold, T.; Petersen, B.; Schnautz, T.; Ueresin, C.; Zajac, J.

    2017-12-01

    The RF operation of the about 800 superconducting 1.3 GHz 9-cell cavities of the XFEL linac requires helium II bath cooling at 2 K, corresponding to a vapor pressure of 3100 Pa. After the first cool-down of the XFEL linac to 4 K in December, 27th 2016 the operation of the 2 K cryogenic system was started in January, 2nd 2017. The 2 K cryogenic system consist of a 4-stage set of cold compressors to compress helium vapor at a mass flow of up to 100 g/s from 2400 Pa to about 110 kPa and a full flow bypass with an arrangement of heat exchangers and control valves. This paper describes the XFEL refrigerating plant, especially the 2 K cryogenic system, the tuning of the cold compressor regulation to adapt to the XFEL linac static and dynamic heat loads and experience of about 6 months of operation.

  19. InP femtosecond mode-locked laser in a compound feedback cavity with a switchable repetition rate

    Science.gov (United States)

    Lo, Mu-Chieh; Guzmán, Robinson; Carpintero, Guillermo

    2018-02-01

    A monolithically integrated mode-locked semiconductor laser is proposed. The compound ring cavity is composed of a colliding pulse mode-locking (ML) subcavity and a passive Fabry-Perot feedback subcavity. These two 1.6 mm long subcavities are coupled by using on-chip reflectors at both ends, enabling harmonic mode locking. By changing DC-bias conditions, optical mode spacing from 50 to 450 GHz is experimentally demonstrated. Ultrafast pulses shorter than 0.3 ps emitted from this laser diode are shown in autocorrelation traces.

  20. Multi-mode competition in an FEL oscillator at perfect synchronism of an optical cavity

    CERN Document Server

    Dong, Z W; Kii, T; Yamazaki, T; Yoshikawa, K

    2002-01-01

    The sustained saturation in a short pulse free electron laser (FEL) oscillator at perfect synchronism of an optical cavity has been observed recently by Japan Atomic Energy Research Institute (JAERI) FEL group by using their super-conducting linac (Phys. Rev. Lett., in preparation). The experiments have clearly shown that FEL efficiency becomes maximum at perfect synchronism, although it has been considered that only a transient state exists at perfect synchronism due to the lethargy effect. Through careful analyses of the experimental condition of JAERI FEL, we found that, in spite of the short length of the electron micro-bunch, the saturation appears due to the following features, which were different from other FEL experiments: (1) very large ratio of the small signal gain to losses, (2) very long electron macro-bunch which can tolerate a slow start up. The saturation and high efficiency at perfect synchronism were benefited from the contribution of the weak sideband instability. In order to analyse these...

  1. Higher-Order-Mode Diagnostics and Suppression in Superconducting Cavities (HOMSC12)

    Science.gov (United States)

    Jones, Roger M.

    2014-01-01

    From the 25th of June through Wednesday lunchtime of the 27th of June 2012 the Cockcroft Institute and ASTeC hosted an ICFA supported mini workshop on Higher-Order-Mode Diagnostics and Suppression in Superconducting Cavities (HOMSC12). The local organizing committee for this international workshop was chaired by S. Buckley (ASTeC/STFC), conference administration by S. Waller (ASTeC/STFC), and the scientific program committee by R.M. Jones (Cockcroft Institute/University of Manchester).

  2. Comparative simulation studies of multipacting in higher-order-mode couplers of superconducting rf cavities

    Directory of Open Access Journals (Sweden)

    Y. M. Li

    2014-02-01

    Full Text Available Multipacting (MP in higher-order-mode (HOM couplers of the International Linear Collider (ILC baseline cavity and the Continuous Electron Beam Accelerator Facility (CEBAF 12 GeV upgrade cavity is studied by using the ACE3P suites, developed by the Advanced Computations Department at SLAC. For the ILC cavity HOM coupler, the simulation results show that resonant trajectories exist in three zones, corresponding to an accelerating gradient range of 0.6–1.6  MV/m, 21–34   MV/m, 32–35  MV/m and >40  MV/m, respectively. For the CEBAF 12 GeV upgrade cavity HOM coupler, resonant trajectories exist in one zone, corresponding to an accelerating gradient range of 6–13  MV/m. Potential implications of these MP barriers are discussed in the context of future high-energy pulsed as well as medium-energy continuous wave accelerators based on superconducting radio frequency cavities. Frequency scaling of MP’s predicted in HOM couplers of the ILC, CEBAF upgrade, Spallation Neutron Source (SNS, and Free-Electron Laser in Hamburg (FLASH third harmonic cavity is given and found to be in good agreement with the analytical result based on the parallel plate model.

  3. Multiple-bunch-length operating mode design for a storage ring using hybrid low alpha and harmonic cavity method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Weiwei, E-mail: gaomqr@mail.ustc.edu.cn [College of Mathematics and Physics, Fujian University of Technology, Fuzhou 350118 (China); Wang, Lin; Li, Heting [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China)

    2017-03-11

    In this paper we design a simultaneous three bunch length operating mode at the HLS-II (Hefei Light Source II) storage ring by installing two harmonic cavities and minimizing the momentum compaction factor. The short bunches (2.6 mm) presented in this work will meet the requirement of coherent millimeter-wave and sub-THz radiation experiments, while the long bunches (20 mm) will efficiently increase the total beam current. Therefore, this multiple-bunch-length operating mode allows present synchrotron users and coherent millimeter-wave users (or sub THz users) to carry out their experiments simultaneously. Since the relatively low energy characteristic of HLS-II we achieve the multiple-bunch-length operating mode without multicell superconducting RF cavities, which is technically feasible.

  4. Simplified RF power system for Wideroe-type linacs

    International Nuclear Information System (INIS)

    Fugitt, J.; Howard, D.; Crosby, F.; Johnson, R.; Nolan, M.; Yuen, G.

    1981-03-01

    The RF system for the SuperHILAC injector linac was designed and constructed for minimum system complexity, wide dynamic range, and ease of maintenance. The final amplifier is close coupled to the linac and operates in an efficient semilinear mode, eliminating troublesome transmission lines, modulators, and high level regulators. The system has been operated at over 250 kW, 23 MHz with good regulation. The low level RF electronics are contained in a single chassis adjacent to the RF control computer, which monitors all important operating parameters. A unique 360 0 phase and amplitude modular is used for precise control and regulation of the accelerating voltage

  5. Design features of a seven-cell high-gradient superconducting cavity

    International Nuclear Information System (INIS)

    Liska, D.J.; Ledford, J.; Black, S.; Spalek, G.; DiMarco, J.N.

    1992-01-01

    A cavity development program is in place at Los Alamos National Laboratory to evaluate structures that could be used to accelerate pions. The work is being guided by the conceptual design of PILAC, a high-gradient superconducting linac for raising the energy of rapidly decaying intense pion beams generated by Los Alamos Meson Physics Facility (LAMPF) to 1 GeV. The specification requires a cavity gradient of 12.5 MV/m at 805 MHz. The design of a seven-cell prototype cavity to achieve these high gradients has been completed by the Accelerator Technology division. The cavity is presently under procurement for high power testing a 2.0 K in 1993

  6. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    International Nuclear Information System (INIS)

    Nazaruk, D E; Blokhin, S A; Maleev, N A; Bobrov, M A; Pavlov, M M; Kulagina, M M; Vashanova, K A; Zadiranov, Yu M; Ustinov, V M; Kuzmenkov, A G; Vasil'ev, A P; Gladyshev, A G; Blokhin, A A; Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" data-affiliation=" (JSV Salut, 7 Larina Str, N Novgorod, 603950 (Russian Federation))" >Fefelov, A G

    2014-01-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range

  7. Intra-cavity vortex beam generation

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-08-01

    Full Text Available at exploring the methods of generating optical vortex beams. We will discuss a typical extra-cavity approach that harnesses digital holography through the use of a SLM. We consider vortex beam generation as the fundamental mode of a monolithic microchip laser...-cavity phase diffractive elements can result in the desired mode as the fundamental mode of the cavity with pure modal quality. This approach, although very attractive is insufficient for the generation of these modes in monolithic microchip lasers. A...

  8. Development of superconducting RF cavity at 1050 MHz frequency for an electron LINAC

    International Nuclear Information System (INIS)

    Sarkar, S.G.; Mondal, J.; Mittal, K.C.

    2011-01-01

    This paper reports the design of a prototype superconducting cavity at 1050 MHz and design of associated die punch and machining fixtures for the cavity fabrication. The cavity is of β= 1 and elliptical in shape. The circle-straight line-ellipse-type structure design has been optimized by 'SUPERFISH' - a 2 dimensional code for cavity tuning. The 3 Dimensional EM field analysis of the cavity structure has been done using 'CST' software. The ratio of the maximum surface electric field to the accelerating gradient, E pk /E acc , is optimised to 1.984 and H pk /E acc is optimised to 4.141 mT/(MV/m). Bore radius of the cavity has been chosen such a way so that the cell-to-cell coupling remains as high as 1.85%. The cavity is designed to achieve 25 MV/m accelerating gradient. (author)

  9. The RF system for FELI linac

    International Nuclear Information System (INIS)

    Morii, Y.; Abe, S.; Keishi, T.; Tomimasu, T.

    1995-01-01

    FELI (Free Electron Laser Research Institute, Inc.) is constructing a Free Electron Laser facility covering from 20μm (infra red region) to 0.35μm (ultra violet region), using as S-band linac. The linac consists of a thermoionic 0.5ns-pulse triggered gun, a 714-MHz SHB (subharmonic buncher), a 2856-MHz standing wave type buncher, and seven ETL (Electro-technical Laboratory) type accelerating sections. An RF system of the linac for FELs is required of long pulse duration and high stability. Two S-band klystrons (TOSHIBA E3729) are operated in three pulse operation modes (pulse width and peak RF power): 24μs-24MW, 12.5μs-34MW, 0.5μs-70MW. Each klystron modulator has a PFN consisting of 4 parallel networks of 24 capacitors and 24 variable inductors, and it has a line switch of an optical thyristor stack. An S-band klystron and its modulator were combined to test their performance at the works of NISSIN ELECTRIC Co. in December 1993. These equipments were installed at FELI in January 1994. The design and experimental results of the RF system are summarized in this paper. (author)

  10. SU-E-T-406: Use of TrueBeam Developer Mode and API to Increase the Efficiency and Accuracy of Commissioning Measurements for the Varian EDGE Stereotactic Linac

    International Nuclear Information System (INIS)

    Gardner, S; Gulam, M; Song, K; Li, H; Huang, Y; Zhao, B; Qin, Y; Snyder, K; Kim, J; Gordon, J; Chetty, I; Wen, N

    2014-01-01

    Purpose: The Varian EDGE machine is a new stereotactic platform, combining Calypso and VisionRT localization systems with a stereotactic linac. The system includes TrueBeam DeveloperMode, making possible the use of XML-scripting for automation of linac-related tasks. This study details the use of DeveloperMode to automate commissioning tasks for Varian EDGE, thereby improving efficiency and measurement consistency. Methods: XML-scripting was used for various commissioning tasks,including couch model verification,beam-scanning,and isocenter verification. For couch measurements, point measurements were acquired for several field sizes (2×2,4×4,10×10cm 2 ) at 42 gantry angles for two couch-models. Measurements were acquired with variations in couch position(rails in/out,couch shifted in each of motion axes) compared to treatment planning system(TPS)-calculated values,which were logged automatically through advanced planning interface(API) scripting functionality. For beam scanning, XML-scripts were used to create custom MLC-apertures. For isocenter verification, XML-scripts were used to automate various Winston-Lutz-type tests. Results: For couch measurements, the time required for each set of angles was approximately 9 minutes. Without scripting, each set required approximately 12 minutes. Automated measurements required only one physicist, while manual measurements required at least two physicists to handle linac positions/beams and data recording. MLC apertures were generated outside of the TPS,and with the .xml file format, double-checking without use of TPS/operator console was possible. Similar time efficiency gains were found for isocenter verification measurements Conclusion: The use of XML scripting in TrueBeam DeveloperMode allows for efficient and accurate data acquisition during commissioning. The efficiency improvement is most pronounced for iterative measurements, exemplified by the time savings for couch modeling measurements(approximately 10 hours

  11. Leak Propagation Dynamics for the HIE-ISOLDE Superconducting Linac

    CERN Document Server

    Ady, M; Kersevan, R; Vandoni, G; Ziemianski, D

    2014-01-01

    In order to cope with space limitations of existing infrastructure, the cryomodules of the HIE-ISOLDE superconducting linac feature a common insulation and beam vacuum, imposing the severe cleanliness standard of RF cavities to the whole cryostat. Protection of the linac vacuum against air-inrush from the three experimental stations through the HEBT (High Energy Beam Transport) lines relies on fast valves, triggered by fast cold cathode gauges. To evaluate the leak propagation velocity as a function of leak size and geometry of the lines, a computational and experimental investigation is being carried out at CERN. A 28 m long tube is equipped with cold-cathode gauges. A leak is opened by the effect of a cutting pendulum, equipped with an accelerometer for data acquisition triggering, on a thin aluminium window. The air inrush dynamics is simulated by Finite Elements fluid dynamics in the viscous regime.

  12. Minimizing Energy Spread In The REX/HIE-ISOLDE Linac

    CERN Document Server

    Yucemoz, Mert

    2017-01-01

    This report tries to minimize the energy spread of the beam at the end of the REX-HIE-ISOLDE Linac using the last RF cavity as a buncher. Beams with very low energy spread are often required by the users of the facility In addition, one of the main reason to have minimum energy spread in longitudinal phase space is that higher beam energy spread translates in to a position spread after interacting with target. This causes an overlap in the position of different particles that makes it difficult to distinguish them. Hence, in order to find the operation settings for minimum energy spread at the end of the REX-HIE-ISOLDE linac and to inspect the ongoing physics, several functions on Matlab were created that runs beam dynamics program called “TRACKV39” that provides some graphs and values as a result for analysis.

  13. A new RFQ linac fabrication technique

    International Nuclear Information System (INIS)

    Schrage, D.; Roybal, P.; Young, L.; Clark, W.; DePaula, R.; Martinez, F.

    1994-01-01

    The use of hydrogen furnace brazing has been applied as a joining technology to the fabrication of a Radio-Frequency-Quadrupole (RFQ) linac for the Los Alamos Accelerator Performance Demonstration Facility (APDF). The design concept provides a monolithic cavity with no longitudinal rf, vacuum, or mechanical joints. A 530 MHz, 0.46 meter long engineering model RFQ has been fabricated and tested at the Los Alamos National Laboratory as a technical demonstration of this concept. It is planned that two funneled RFQ's for the APDF (7 MeV, 350 MHz, 100 mAmp CW, each eight meters in length) will be manufactured by this method

  14. Operating experience with superconducting cavities at the TESLA test facility

    International Nuclear Information System (INIS)

    Moeller, Wolf-Dietrich

    2003-01-01

    A description of the TESLA Test Facility, which has been set up at DESY by the TeV Energy Superconducting Accelerator (TESLA) collaboration, will be given as it is now after five years of installation and operation. The experience with the first three modules, each containing 8 superconducting 9-cell cavities, installed and operated in the TTF-linac will be described. The measurements in the vertical and horizontal cryostats as well as in the modules will be compared. Recent results of the operation at the TESLA design current, macropulses of 800 μsec with bunches of 3.2 nC at a rate of 2.25 MHz are given. New measurement results of the higher order modes (HOM) will be presented. The operation and optimisation of the TTF Free Electron Laser (TTF-FEL) will also be covered in this paper. (author)

  15. Matching the laser generated p bunch into a crossbar-H drift tube linac

    Science.gov (United States)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  16. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    Science.gov (United States)

    Bogacz, S. A.

    2018-02-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H- and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.

  17. Development of Infrastructure Facilities for Superconducting RF Cavity Fabrication, Processing and 2 K Characterization at RRCAT

    Science.gov (United States)

    Joshi, S. C.; Raghavendra, S.; Jain, V. K.; Puntambekar, A.; Khare, P.; Dwivedi, J.; Mundra, G.; Kush, P. K.; Shrivastava, P.; Lad, M.; Gupta, P. D.

    2017-02-01

    An extensive infrastructure facility is being established at Raja Ramanna Centre for Advanced Technology (RRCAT) for a proposed 1 GeV, high intensity superconducting proton linac for Indian Spallation Neutron Source. The proton linac will comprise of a large number of superconducting Radio Frequency (SCRF) cavities ranging from low beta spoke resonators to medium and high beta multi-cell elliptical cavities at different RF frequencies. Infrastructure facilities for SCRF cavity fabrication, processing and performance characterization at 2 K are setup to take-up manufacturing of large number of cavities required for future projects of Department of Atomic Energy (DAE). RRCAT is also participating in a DAE’s approved mega project on “Physics and Advanced technology for High intensity Proton Accelerators” under Indian Institutions-Fermilab Collaboration (IIFC). In the R&D phase of IIFC program, a number of high beta, fully dressed multi-cell elliptical SCRF cavities will be developed in collaboration with Fermilab. A dedicated facility for SCRF cavity fabrication, tuning and processing is set up. SCRF cavities developed will be characterized at 2K using a vertical test stand facility, which is already commissioned. A Horizontal Test Stand facility has also been designed and under development for testing a dressed multi-cell SCRF cavity at 2K. The paper presents the infrastructure facilities setup at RRCAT for SCRF cavity fabrication, processing and testing at 2K.

  18. Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

    Directory of Open Access Journals (Sweden)

    Hoon-Sang Chang

    2013-07-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS: Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Dr's Light, GoodDoctors Co., Seoul, Korea using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS: The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION: In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.

  19. Semi-analytical quasi-normal mode theory for the local density of states in coupled photonic crystal cavity-waveguide structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2015-01-01

    We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained, ......-trivial spectrum with a peak and a dip is found, which is reproduced only when including both the two relevant QNMs in the theory. In both cases, we find relative errors below 1% in the bandwidth of interest.......We present and validate a semi-analytical quasi-normal mode (QNM) theory for the local density of states (LDOS) in coupled photonic crystal (PhC) cavity-waveguide structures. By means of an expansion of the Green's function on one or a few QNMs, a closed-form expression for the LDOS is obtained......, and for two types of two-dimensional PhCs, with one and two cavities side-coupled to an extended waveguide, the theory is validated against numerically exact computations. For the single cavity, a slightly asymmetric spectrum is found, which the QNM theory reproduces, and for two cavities a non...

  20. SORE - a pulse stretcher for the Saskatchewan 300-MeV linac

    International Nuclear Information System (INIS)

    Bergstrom, J.C.; Caplan, H.S.; Norum, B.E.; Servranckx, R.V.

    1983-01-01

    A design study has been made of a pulse stretcher to increase the duty factor of the 300 MeV electron accelerator of the Saskatchewan Accelerator Laboratory. The design was constrained by the desire to house the pulse stretcher within the existing accelerator building and to make maximal use of existing beam transport lines. The pulse stretcher ring consists of two 180 0 bend regions connected by achromatic straight sections. The overall length is 50.49 m and the width is 6.64m. The modes of injection and extraction will be available. In the first mode a shortened linac pulse of 300 ns duration will be injected during a single turn directly into the closed orbit of the pulse stretcher. A second mode of injection/extraction involves use of a longer linac pulse. The basic geometry of the PSR is dictated by the dimensions of the accelerator vault and access room

  1. Status of SCRF cavity and ADS development in Japan

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    SCRF cavity technology has progressed with high-energy particle accelerator programs in Japan. It was first applied for TRISTAN program at KEK, in early 1980s, and it is expected to be a key technology to realize the next energy-frontier lepton collider such as ILC, and/or intensity-frontier proton accelerators hopefully to be realized in Japan. The JPARC project as a joint program between JAEA and KEK is scoping to realize ADS program with the linac upgrade using a superconducting cavity system, as a future program. The talk will cover an overview of the SCRF cavity development and the ADS development in Japan. (author)

  2. Simulation Study of Electronic Damping of Microphonic Vibrations in Superconducting Cavities

    International Nuclear Information System (INIS)

    Alicia Hofler; Jean Delayen

    2005-01-01

    Electronic damping of microphonic vibrations in superconducting rf cavities involves an active modulation of the cavity field amplitude in order to induce ponderomotive forces that counteract the effect of ambient vibrations on the cavity frequency. In lightly beam loaded cavities, a reduction of the microphonics-induced frequency excursions leads directly to a reduction of the rf power required for phase and amplitude stabilization. Jefferson Lab is investigating such an electronic damping scheme that could be applied to the JLab 12 GeV upgrade, the RIA driver, and possibly to energy-recovering superconducting linacs. This paper discusses a model and presents simulation results for electronic damping of microphonic vibrations

  3. High-Power Hybrid Mode-Locked External Cavity Semiconductor Laser Using Tapered Amplifier with Large Tunability

    Directory of Open Access Journals (Sweden)

    Andreas Schmitt-Sody

    2008-01-01

    Full Text Available We report on hybrid mode-locked laser operation of a tapered semiconductor amplifier in an external ring cavity, generating pulses as short as 0.5 ps at 88.1 MHz with an average power of 60 mW. The mode locking is achieved through a combination of a multiple quantum well saturable absorber (>10% modulation depth and an RF current modulation. This designed laser has 20 nm tuning bandwidth in continuous wave and 10 nm tuning bandwidth in mode locking around 786 nm center wavelength at constant temperature.

  4. Improved performance of the control scheme for IUAC superconducting Linac

    International Nuclear Information System (INIS)

    Sahu, B.K.; Suman, S.K.; Kumar, R.

    2015-01-01

    Since many years energized ion beams from linac are being delivered routinely for scheduled experiments using all the three accelerating modules of linac along with super buncher and rebuncher. Major efforts are dedicated to improve the performance of the control scheme to minimise the down time of the linac during operation. Earlier, a number of developments were carried out to improve the dynamics of the control scheme. The most significant of them is the piezoelectric actuator based tuning mechanism which is implemented in all the operational resonators of second and third accelerating modules of superconducting linac. This has helped us to bridge the gap between the accelerating fields achieved during Q measurement at 6 W of helium power and during phase locking of the resonator during beam operation at a given RF power (∼120W). The piezoelectric actuator based tuner is also instrumental to reduce the unlocking rate of the resonators. Pulse width modulation (PWM) control based helium gas operated tuner is implemented in few resonators to improve phase locking performance. CAMAC based distributed control scheme is upgraded to VME based distributed control without changing the existing client interface to maintain uniformity between the Pelletron and linac control. Python code support has been implemented to protect the resonators against high forward power during unlocking. This is also integrated with the display status of the resonators for monitoring. A frequency to voltage converter is incorporated in control scheme to monitor the frequency error. This has helped us to develop a scheme for automatic phase locking of the cavities using piezoelectric actuator based tuner control. (author)

  5. New developed cylindrical TM010 mode EPR cavity for X-band in vivo tooth dosimetry.

    Directory of Open Access Journals (Sweden)

    Guo Junwang

    Full Text Available EPR tooth in vivo dosimetry is an attractive approach for initial triage after unexpected nuclear events. An X-band cylindrical TM010 mode resonant cavity was developed for in vivo tooth dosimetry and used in EPR applications for the first time. The cavity had a trapezoidal measuring aperture at the exact position of the cavity's cylindrical wall where strong microwave magnetic field H1 concentrated and weak microwave electric field E1 distributed. Theoretical calculations and simulations were used to design and optimize the cavity parameters. The cavity features were evaluated by measuring DPPH sample, intact incisor samples embed in a gum model and the rhesus monkey teeth. The results showed that the cavity worked at designed frequency and had the ability to make EPR spectroscopy in relative high sensitivity. Sufficient modulation amplitude and microwave power could be applied into the aperture. Radiation induced EPR signal could be observed remarkably from 1 Gy irradiated intact incisor within only 30 seconds, which was among the best in scan time and detection limit. The in vivo spectroscopy was also realized by acquiring the radiation induced EPR signal from teeth of rhesus monkey whose teeth was irradiated by dose of 2 Gy. The results suggested that the cavity was sensitive to meet the demand to assess doses of significant level in short time. This cavity provided a very potential option for the development of X-band in vivo dosimetry.

  6. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  7. Beam halo in high-intensity hadron linacs

    Energy Technology Data Exchange (ETDEWEB)

    Gerigk, F

    2006-12-21

    This document aims to cover the most relevant mechanisms for the development of beam halo in high-intensity hadron linacs. The introduction outlines the various applications of high-intensity linacs and it will explain why, in the case of the CERN Superconducting Proton Linac (SPL) study a linac was chosen to provide a high-power beam, rather than a different kind of accelerator. The basic equations, needed for the understanding of halo development are derived and employed to study the effects of initial and distributed mismatch on high-current beams. The basic concepts of the particle-core model, envelope modes, parametric resonances, the free-energy approach, and the idea of core-core resonances are introduced and extended to study beams in realistic linac lattices. The approach taken is to study the behavior of beams not only in simplified theoretical focusing structures but to highlight the beam dynamics in realistic accelerators. All effects which are described and derived with simplified analytic models, are tested in realistic lattices and are thus related to observable effects in linear accelerators. This approach involves the use of high-performance particle tracking codes, which are needed to simulate the behavior of the outermost particles in distributions of up to 100 million macro particles. In the end a set of design rules are established and their impact on the design of a typical high-intensity machine, the CERN SPL, is shown. The examples given in this document refer to two different design evolutions of the SPL study: the first conceptual design report (SPL I) and the second conceptual design report (SPL II). (orig.)

  8. Design of RF structures for a superconducting proton linac

    International Nuclear Information System (INIS)

    Pande, Rajni; Roy, Shweta; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    One of the main components of the Accelerator Driven System (ADS) programme in India is a 1 GeV, high intensity CW proton accelerator that will be superconducting after the radio-frequency quadrupole (RFQ), i.e. after 3 MeV. The superconducting linac will consist of various superconducting structures like Half Wave Resonators, Spoke Resonators and elliptical cavities, operating at RF frequencies of 162.5 MHz, 325 MHz and 650 MHz. The paper will discuss the optimization of the electromagnetic design of the various superconducting structures. (author)

  9. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    Science.gov (United States)

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz).

  10. Stable single longitudinal mode erbium-doped silica fiber laser based on an asymmetric linear three-cavity structure

    International Nuclear Information System (INIS)

    Feng Ting; Yan Feng-Ping; Li Qi; Peng Wan-Jing; Feng Su-Chun; Tan Si-Yu; Wen Xiao-Dong

    2013-01-01

    We present a stable linear-cavity single longitudinal mode (SLM) erbium-doped silica fiber laser. It consists of four fiber Bragg gratings (FBGs) directly written in a section of photosensitive erbium-doped fiber (EDF) to form an asymmetric three-cavity structure. The stable SLM operation at a wavelength of 1545.112 nm with a 3-dB bandwidth of 0.012 nm and an optical signal-to-noise ratio (OSNR) of about 60 dB is verified experimentally. Under laboratory conditions, the performance of a power fluctuation of less than 0.05 dB observed from the power meter for 6 h and a wavelength variation of less than 0.01 nm obtained from the optical spectrum analyzer (OSA) for about 1.5 h are demonstrated. The gain fiber length is no longer limited to only several centimeters for SLM operation because of the excellent mode-selecting ability of the asymmetric three-cavity structure. The proposed scheme provides a simple and cost-effective approach to realizing a stable SLM fiber laser. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. HOM Coupler Optimisation for the Superconducting RF Cavities in ESS

    CERN Document Server

    Ainsworth, R; Calaga, R

    2012-01-01

    The European Spallation Source (ESS) will be the world’s most powerful next generation neutron source. It consists of a linear accelerator, target, and instruments for neutron experiments. The linac is designed to accelerate protons to a final energy of 2.5 GeV, with an average design beam power of 5 MW, for collision with a target used to produce a high neutron flux. A section of the linac will contain Superconducting RF (SCRF) cavities designed at 704 MHz. Beam induced HOMs in these cavities may drive the beam unstable and increase the cryogenic load, therefore HOM couplers are installed to provide sufficient damping. Previous studies have shown that these couplers are susceptible to multipacting, a resonant process which can absorb RF power and lead to heating effects. This paper will show how a coupler suffering from multipacting has been redesigned to limit this effect. Optimisation of the RF damping is also discussed.

  12. Fabrication and tests and RF control of the superconducting resonators of the Saclay heavy ion LINAC

    International Nuclear Information System (INIS)

    Cauvin, B.; Coret, M.; Fouan, J.P.; Girard, J.; Girma, J.L.; Leconte, P.; Lussignol, Y.; Moreau, R.; Passerieux, J.P.; Ramstein, G.; Wartski, L.

    1987-01-01

    Two types of niobium superconducting resonators used in the Saclay linac are discussed. The outer cylinder and RF ports are identical for the two designs, but internal structures are different: full wave helix with three gaps behavior; or half wave with two gaps behavior. All cavities (34 full wave, 16 half) were tested for field and mounted in the machine cryostats. Cavity fabrication and performance are summarized. Vibration tests and Rf control are described. It is argued that helix resonators can overcome problems due to vibration. The very low lock out time percentage measured in an acceleration test with 21 cavities supports this confidence

  13. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  14. Effect of Surface Plasmon Coupling to Optical Cavity Modes on the Field Enhancement and Spectral Response of Dimer-Based sensors

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    with the resonant modes of a Fabry-Perot (FP) cavity. The strong coupling is demonstrated by the large anticrossing in the reflection spectra and a Rabi splitting of 76 meV. Up to 2-fold enhancement increase can be achieved compared to that without using the cavity

  15. An asymmetric integrated extended cavity 20GHz mode-locked quantum well ring laser fabricated in the JePPIX technology platform

    NARCIS (Netherlands)

    Tahvili, M.S.; Barbarin, Y.; Ambrosius, H.P.M.M.; Smit, M.K.; Bente, E.A.J.M.; Leijtens, X.J.M.; Vries, de T.; Smalbrugge, E.; Bolk, J.

    2011-01-01

    In this paper, we present mode-locked operation of a monolithic 20GHz integrated extended cavity ring laser. The 4mm-long laser ring cavity incorporates a 750µm-long optical amplifier section (SOA), a separate 40µm long saturable absorber (SA) section, passive waveguide sections (shallow and deep

  16. Experimental Results from a Microwave Cavity Beam Position Monitor

    International Nuclear Information System (INIS)

    Balakin, V.; Bazhan, A.; Lunev, P.; Solyak, N.; Vogel, V.; Zhogolev, P.; Lisitsyn, A.; Yakimenko, V.

    1999-01-01

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required

  17. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  18. PIC Simulations in Low Energy Part of PIP-II Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Gennady

    2014-07-01

    The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.

  19. Driven-Dissipative Supersolid in a Ring Cavity

    Science.gov (United States)

    Mivehvar, Farokh; Ostermann, Stefan; Piazza, Francesco; Ritsch, Helmut

    2018-03-01

    Supersolids are characterized by the counterintuitive coexistence of superfluid and crystalline order. Here we study a supersolid phase emerging in the steady state of a driven-dissipative system. We consider a transversely pumped Bose-Einstein condensate trapped along the axis of a ring cavity and coherently coupled to a pair of degenerate counterpropagating cavity modes. Above a threshold pump strength the interference of photons scattered into the two cavity modes results in an emergent superradiant lattice, which spontaneously breaks the continuous translational symmetry towards a periodic atomic pattern. The crystalline steady state inherits the superfluidity of the Bose-Einstein condensate, thus exhibiting genuine properties of a supersolid. A gapless collective Goldstone mode correspondingly appears in the superradiant phase, which can be nondestructively monitored via the relative phase of the two cavity modes on the cavity output. Despite cavity-photon losses the Goldstone mode remains undamped, indicating the robustness of the supersolid phase.

  20. Generation of strong electromagnetic power at 35 GHz from the interaction of a resonant cavity with a relativistic electron beam generated by a free electron laser

    International Nuclear Information System (INIS)

    Lefevre, Thibaut

    2000-01-01

    The next generation of electron-positron linear colliders must reach the TeV energy range. For this, one requires an adequate RF power source to feed the accelerating cavities of the collider. One way to generate this source is to use the Two Beam Accelerator concept in which the RF power is produced in resonant cavities driven by an intense bunched beam. In this thesis, I present the experimental results obtained at the CEA/CESTA using an electron beam generated by an induction linac. First, some studies were performed with the LELIA induction linac (2.2 MeV, 1 kA, 80 ns) using a Free Electron Laser (FEL) as a buncher at 35 GHz. A second part relates the experiment made with the PIVAIR induction linac (7 MeV, 1 kA, 80 ns) in order to measure the RF power extracted from a resonant cavity at 35 GHz, which is driven by the bunches produced in the FEL. One can also find a simple theoretical modeling of the beam-cavity interaction, and the numerical results dealing with the design of the cavity we tested. (author) [fr

  1. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    International Nuclear Information System (INIS)

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-01-01

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed (ℎ/2π)ω/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  2. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    CERN Document Server

    Merminga, L; Benson, S; Bolshakov, A; Doolittle, L; Neil, George R

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed...

  3. Compact LINAC for deuterons

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; O'Hara, J.F.; Rybarcyk, L.J.

    2008-01-01

    We are developing a compact deuteron-beam accelerator up to the deuteron energy of a few MeV based on room-temperature inter-digital H-mode (IH) accelerating structures with the transverse beam focusing using permanent-magnet quadrupoles (PMQ). Combining electromagnetic 3-D modeling with beam dynamics simulations and thermal-stress analysis, we show that IHPMQ structures provide very efficient and practical accelerators for light-ion beams of considerable currents at the beam velocities around a few percent of the speed of light. IH-structures with PMQ focusing following a short RFQ can also be beneficial in the front end of ion linacs.

  4. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter

    International Nuclear Information System (INIS)

    Song, Rui; Chen, Hong-Wei; Chen, Sheng-Ping; Hou, Jing; Lu, Qi-Sheng

    2011-01-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked fiber laser with a long cavity length over 700 m is demonstrated. A band pass filter is inserted into the laser cavity to stabilize the lasing wavelength. Some interesting phenomena are observed and discussed. The central wavelength, repetition rate, average power and single pulse energy of the laser are 1064 nm, 281.5 kHz, 11 mW and 39 nJ, respectively. The laser operates stably without Q-switching instabilities, which greatly reduces the damage opportunities of the SESAM

  5. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  6. The source development lab linac at BNL

    International Nuclear Information System (INIS)

    Graves, W.S.; Johnson, E.D.

    1996-12-01

    A 210 MeV SLAC-type electron linac is currently under construction at BNL as part of the Source Development Laboratory. A 1.6 cell RF photoinjector is employed as the high brightness electron source which is excited by a frequency tripled Titanium:Sapphire laser. This linac will be used for several source development projects including a short bunch storage ring, and a series of FEL experiments based on the 10 m long NISUS undulator. The FEL will be operated as either a SASE or seeded beam device using the Ti:Sapp laser. For the seeded beam experiments; direct amplification, harmonic generation, and chirped pulse amplification modes will be studied, spanning an output wavelength range from 900 nm down to 100 nm. This paper presents the project's design parameters and results of recent modeling using the PARMELA and MAD simulation codes

  7. Matching the laser generated p bunch into a crossbar-H drift tube linac

    Directory of Open Access Journals (Sweden)

    A. Almomani

    2012-05-01

    Full Text Available Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×10^{19}  W/cm^{2}, a total yield of 1.5×10^{13}  protons was produced. For the reference energy of 10 MeV, the yield within ±0.5  MeV was exceeding 10^{10}  protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  8. Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance

    Science.gov (United States)

    Amin, Rubab; Suer, Can; Ma, Zhizhen; Sarpkaya, Ibrahim; Khurgin, Jacob B.; Agarwal, Ritesh; Sorger, Volker J.

    2017-10-01

    Electro-optic modulation is a key function in optical data communication and possible future optical compute engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While a variety of high-performance modulators have been demonstrated, no comprehensive picture of what factors are most responsible for high performance has emerged so far. Here we report the first systematic and comprehensive analytical and computational investigation for high-performance compact on-chip electro-optic modulators by considering emerging active materials, model considerations and cavity feedback at the nanoscale. We discover that the delicate interplay between the material characteristics and the optical mode properties plays a key role in defining the modulator performance. Based on physical tradeoffs between index modulation, loss, optical confinement factors and slow-light effects, we find that there exist combinations of bias, material and optical mode that yield efficient phase or amplitude modulation with acceptable insertion loss. Furthermore, we show how material properties in the epsilon near zero regime enable reduction of length by as much as by 15 times. Lastly, we introduce and apply a cavity-based electro-optic modulator figure of merit, Δλ/Δα, relating obtainable resonance tuning via phase shifting relative to the incurred losses due to the fundamental Kramers-Kronig relations suggesting optimized device operating regions with optimized modulation-to-loss tradeoffs. This work paves the way for a holistic design rule of electro-optic modulators for high-density on-chip integration.

  9. Fabrication and measurement of a 10x scale model of a double-sided planar mm-wave linac cavity structure

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.; Nassiri, A.; Kustom, R.L.

    1994-01-01

    A double-sided planar mm-wave linear accelerating cavity, structure has been investigated. An 80-cell constant impedance structure working with 2π/3-mode traveling wave was chosen as an accelerator section. A 10x scale model of the structure has been fabricated and the basic electrical performances have been tested. The nodal shift measurement technique with a rectangular detuning plunger was used to measure the phase advance between the cells with a vector network analyzer

  10. Anomalous Q(sub 0) Results in the CEBAF South Linac

    International Nuclear Information System (INIS)

    William J. Schneider; M. Drury; Joe Preble

    1993-01-01

    While in practice, the performance of cavities - Q(sub 0) versus E(sub acc) - in the assembled CEBAF cryomodule corresponds in nearly every respect to the performance as measured in the vertical test area; there are a few cases where this is not true. On six (6) of the twenty (20) cryomodules installed in the south linac, cavity 4 specifically, and one other cavity in cryomodule 7 have an anomalous low Q(sub 0). Investigation into the source of the low Q(sub 0) on these particular cavities have centered around trapped magnetic fields, slow cooldowns or maldistribution of He flow during cooldown leading to hydride precipitation and Q(sub 0) disease. Other possibilities such as low window Q(sub 0)'s or harmonic content of the klystron were also considered. A detailed investigation to understand the phenomena leading to the low Q(sub 0)'s on cryomodule 7 and 8 is discussed. We have found evidence suggesting cooldown dependent Q(sub 0) disease as well as window heating to account for some of the discrepancies but not all. A complete explanation of the problem is still under further investigation

  11. Development of an IH-type linac for the acceleration of high current heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Haehnel, Jan Hendrik

    2017-07-20

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U{sup 28+}. To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  12. Development of an IH-type linac for the acceleration of high current heavy ion beams

    International Nuclear Information System (INIS)

    Haehnel, Jan Hendrik

    2017-01-01

    The Facility for Antiproton and Ion Research (FAIR) at GSI Darmstadt will provide unprecedented intensities of protons and heavy ions up to uranium at energies of up to 29 GeV for protons and 2.7 GeV/u for U 28+ . To achieve high intensities in the synchrotron accelerators, high beam currents have to be provided by the injector linear accelerators. High current heavy ion beams are provided by the Universal Linear Accelerator (UNILAC), which in its current state will not be able to provide the required FAIR beam currents. This thesis deals with the development of upgrades for the UNILAC to ensure its high current capability. The first improvement is a matching section (MEBT) for the interface between the RFQ and the IH-DTL of the existing high current injector HSI at the UNILAC. With this new MEBT section, particle losses are eliminated and the overall beam quality is improved. As a second improvement, a complete replacement of the existing Alvarez-DTL is presented. A combination of efficient IH-type cavities and KONUS beam dynamics results in a reduction of the linac length from about 60 m (Alvarez) to just 23 m (new IH-DTL) while providing the same energy and fulfilling FAIR requirements of a high beam current and beam quality. This thesis contains a detailed beam dynamics design of the new linac including some fundamental investigations of the KONUS beam dynamics concept. A cross-check of the beam dynamics design was performed with two independent multi-particle simulation codes. Detailed error studies were conducted to investigate the influence of manufacturing, alignment and operating errors on the beam dynamics performance. Additionally, all five linac cavities were designed, optimized, and their RF parameters including power requirements calculated to provide a comprehensive linac design.

  13. Feasibility of efficient room-temperature solid-state sources of indistinguishable single photons using ultrasmall mode volume cavities

    Science.gov (United States)

    Wein, Stephen; Lauk, Nikolai; Ghobadi, Roohollah; Simon, Christoph

    2018-05-01

    Highly efficient sources of indistinguishable single photons that can operate at room temperature would be very beneficial for many applications in quantum technology. We show that the implementation of such sources is a realistic goal using solid-state emitters and ultrasmall mode volume cavities. We derive and analyze an expression for photon indistinguishability that accounts for relevant detrimental effects, such as plasmon-induced quenching and pure dephasing. We then provide the general cavity and emitter conditions required to achieve efficient indistinguishable photon emission and also discuss constraints due to phonon sideband emission. Using these conditions, we propose that a nanodiamond negatively charged silicon-vacancy center combined with a plasmonic-Fabry-Pérot hybrid cavity is an excellent candidate system.

  14. A hospital-based proton linac for neutron therapy and radioisotope production

    International Nuclear Information System (INIS)

    Lennox, A.J.

    1988-10-01

    Fermilab's Alvarez proton linac has been used routinely for neutron therapy since 1976. The Neutron Therapy Facility (NTF) operates in a mode parasitic to the laboratory's high energy physics program, which uses the linac as an injector for a synchrotron. Parasitic operation is possible because the linac delivers /approximately/1.2 /times/ 10 13 protons per pulse at a 15 Hz rate, while the high energy physics program requires beam at a rate not greater than 0.5 Hz. Protons not needed for physics experiments strike a beryllium target to produce neutrons for neutron therapy. Encouraging clinical results from NTF have led to a study of the issues involved in providing hospitals with a neutron beam of the type available at Fermilab. This paper describes the issues addressed by that study. 12 refs., 1 fig., 1 tab

  15. Control system in the technological electron linacs

    International Nuclear Information System (INIS)

    Boriskin, V.N.; Akchurin, Yu.I.; Bahmetev, N.N.; Gurin, V.A.

    1999-01-01

    The special system has been developed for linac control.It controls the electron beam current,the energy and the position,protects the accelerating and scanning systems from the damage caused by the beam;blocks the modulator and the klystron amplifier in the case of intolerable operating modes;regulates the phase and power of the HF signals in the injecting system and also regulates the source power currents in the magnetic system

  16. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.

    1979-01-01

    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  17. Spallation Neutron Source Drift Tube Linac Resonance Control Cooling System Modeling

    CERN Document Server

    Tang, Johnny Y; Champion, Marianne M; Feschenko, Alexander; Gibson, Paul; Kiselev, Yuri; Kovalishin, A S; Kravchuk, Leonid V; Kvasha, Adolf; Schubert, James P

    2005-01-01

    The Resonance Control Cooling System (RCCS) for the warm linac of the Spallation Neutron Source was designed by Los Alamos National Laboratory. The primary design focus was on water cooling of individual component contributions. The sizing the RCCS water skid was accomplished by means of a specially created SINDA/FLUINT model tailored to these system requirements. A new model was developed in Matlab Simulink and incorporates actual operational values and control valve interactions. Included is the dependence of RF input power on system operation, cavity detuning values during transients, time delays that result from water flows through the heat exchanger, the dynamic process of water warm-up in the cooling system due to dissipated RF power on the cavity surface, differing contributions on the cavity detuning due to drift tube and wall heating, and a dynamic model of the heat exchanger with characteristics in close agreement to the real unit. Because of the Matlab Simulink model, investigation of a wide range ...

  18. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  19. Important aspects of linac beams for food irradiation

    International Nuclear Information System (INIS)

    McKeown, J.; Jones, R.T.

    1987-01-01

    Linac based irradiators will require careful design before they can be routinely adopted for the radiation processing of food. The transverse emittance and energy spread from simple injectors provide a significant challenge to the design of a beam delivery system which must handle high power especially in photon mode. Any nonuniform current distribution at the plane of the product is further complicated by large dose variations near the air/product interface, even with simple geometries. The paper describes the use of methods developed at AECL to control and monitor linac behaviour as well as electron interactions at the product surface. It also reports on activation cross-section measurements and particularly on neutron yields from composite targets, designed to monitor the energy of accelerators used in food applications. (orig.)

  20. Linac 1, inner structure

    CERN Multimedia

    1968-01-01

    This photo shows the inner structure of Linac 1. As injector to the PS, and later to the Booster, Linac 1 accelerated protons to 50 MeV, but it has also accelerated heavier ions. Fitted with a 520 keV RFQ pre-injector (instead of the original Cockcroft-Walton generator), it delivered protons and heavy ions to LEAR, from 1982 to 1992. After 33 years of faithful service, Linac 1 was dismantled in 1992 to make room for Linac 3 (Pb ions).

  1. Thermionic RF Gun and Linac Pre-Injector for SPEAR3

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.

    2003-08-11

    Preparations are underway to upgrade the Spear2 to the third generation light source. Installation of all the subsystems will start in April 2003. Although the Spear3 RF system is entirely different from the present form, the pre-injector gun/linac and booster synchrotron will remain the same even after the upgrade. The thermionic rf gun reliability and stability are to be improved to inject 500 mA of stored current in shortest possible time. When a top-up mode is enforced, where the stored beam decay is replenished to maintain the constant current and thus constant light intensity, the Spear3 will take injection every few minutes. In that case the gun, linac, and booster must stay on at all times. In this report we will describe some improvements made on the gun and linac in the recent past, as well as their present performance and future upgrade to be made.

  2. Operating experience with superconducting cavities at Jefferson Lab

    International Nuclear Information System (INIS)

    Reece, C.E.

    1998-01-01

    The CEBAF recirculating superconducting electron linac at Jefferson Lab is now in full operation supporting nuclear physics experiments in three target halls at up to 4.4 GeV. The 330 SRF cavities, operating at 2.0 K, continue to perform well above design specifications, and have accumulated over 8,000,000 operating cavity hours. The authors have to date no evidence of degradation of cavity performance. The SRF cavities have demonstrated excellent reliability. The one klystron per cavity design provides CEBAF with flexibility and redundancy for normal operations. Several techniques have been developed for establishing optimum operating conditions for the 330 independent systems. Operation of the cavities and control systems at the full design current of 1 mA has recently been achieved. The principal constraints on usable gradient for low current operations are (1) discharge at the cold ceramic rf window induced by electron field emission in cavities, (2) tuner controls, and (3) stability of the waveguide vacuum in the region between the warm and cold windows. Several cryomodules have been improved by application of rf helium processing while installed on the beamline

  3. X-ray imaging of superconducting radio frequency cavities

    Science.gov (United States)

    Musser, Susan Elizabeth

    The goal of this research was to develop an improved diagnostic technique to identify the location of defects that limit superconducting radio frequency (SRF) cavity performance during cavity testing or in existing accelerators. SRF cavities are primarily constructed of niobium. Electrons within the metal of a cavity under high electric field gradient have a probability of tunneling through the potential barrier. i e. leave the surface or are field emitted in regions where defects are encountered. Field emitted electrons are accelerated in the electric fields within the cavity. The electrons can have complicated trajectories and strike the cavity walls thus producing x-rays via Coulomb interactions and/or bremsstrahlung radiation. The endpoint energy of an x-ray spectrum predicts the electron maximum final kinetic energy within the cavity. Field emission simulations can then predict the source of the field-emitted electrons and the defect(s). In a multicell cavity the cells are coupled together and act as a set of coupled oscillators. There are multiple passbands of excitation for a multicell structure operating in a particular mode. For different passbands of operation the direction and amplitude of the fields within a cavity change from that of the normal accelerating mode. Field emitted electrons have different trajectories depending on the mode and thus produce x-rays in different locations. Using a collimated sodium iodide detector and subjecting a cavity to multiple passband modes at high electric field gradient the source of a cavity's x-rays can be determined. Knowing the location of the x-rays and the maximum electron kinetic energy; field emission simulations for different passband modes can be used to determine and verify the source of the field emitted electrons from mode to mode. Once identified, the defect(s) can be repaired or modifications made to the manufacturing process.

  4. RF Processing of the Couplers for the SNS Superconducting Cavities

    International Nuclear Information System (INIS)

    Y.Kang; I.E. Campisi; D. Stout; A. Vassioutchenko; M. Stirbet; M. Drury; T. Powers

    2005-01-01

    All eighty-one fundamental power couplers for the 805 MHz superconducting cavities of the SNS linac have been RF conditioned and installed in the cryomodules successfully. The couplers were RF processed at JLAB or at the SNS in ORNL: more than forty couplers have been RF conditioned in the SNS RF Test Facility (RFTF) after the first forty couplers were conditioned at JLAB. The couplers were conditioned up to 650 kW forward power at 8% duty cycle in traveling and standing waves. They were installed on the cavities in the cryomodules and then assembled with the airside waveguide transitions. The couplers have been high power RF tested with satisfactory accelerating field gradients in the cooled cavities

  5. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  6. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  7. Study of a spoke cavity for low-beta applications

    International Nuclear Information System (INIS)

    Olry, G.; Biarrotte, J.L.; Saugnac, H.; Lesrel, J.

    2003-01-01

    Since a few years, intensive studies have been developed on SC cavities (for instance, spoke-type or reentrant cavities) for their use as accelerating structures in the low energy part of high power proton or ions accelerators (typically from 5 to 100 MeV). Within the framework of the EURISOL (EURopean Isotope Separation On-Line) and XADS (eXperimental Accelerator Driven System) European accelerators projects, IPN Orsay decided to plan a R and D program on low-beta spoke-type cavities. In the major part of this paper, we report on the optimization of the geometry of a β=0.35, 2 gap spoke cavity, aiming at achieving good electromagnetic parameters (i.e. lowest E pk /E acc and B pk /E acc ). A mechanical study is also presented, as well as a preliminary design of a proton spoke Linac (12-85 MeV) composed of β=0.18 and β=0.35, 2 gap cavities. (author)

  8. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering

    Science.gov (United States)

    O'Brien, Thomas R.; Kesler, Benjamin; Dallesasse, John M.

    2017-02-01

    Top emission 850-nm vertical-cavity surface-emitting lasers (VCSELs) demonstrating transverse mode selection via impurity-induced disordering (IID) are presented. The IID apertures are fabricated via closed ampoule zinc diffusion. A simple 1-D plane wave model based on the intermixing of Group III atoms during IID is presented to optimize the mirror loss of higher-order modes as a function of IID strength and depth. In addition, the impact of impurity diffusion into the cap layer of the lasers is shown to improve contact resistance. Further investigation of the mode-dependent characteristics of the device imply an increase in the thermal impedance associated with the fraction of IID contained within the oxide aperture. The optimization of the ratio of the IID aperture to oxide aperture is experimentally determined. Single fundamental mode output of 1.6 mW with 30 dBm side mode suppression ratio is achieved by a 3.0 μm oxide-confined device with an IID aperture of 1.3 μm indicating an optimal IID aperture size of 43% of the oxide aperture.

  9. Optimizing of the higher order mode dampers in the 56MHz SRF cavity

    International Nuclear Information System (INIS)

    Wu, Q.; Ben-Zvi, I.

    2010-01-01

    Earlier, we reported that a 56 MHz cavity was designed for a luminosity upgrade of the RHIC, and presented the requirements for Higher Order Mode (HOM) damping, the design of the HOM dampers, along with measurements and simulations of the HOM dampers. In this report, we describe our optimization of the dampers performance, and the modifications we made to their original design. We also optimized the number of the HOM dampers, and tested different configurations of locations for them.

  10. Passive mode locking in a multisegment laser diode with an external cavity

    International Nuclear Information System (INIS)

    Andreeva, E V; Magnitskiy, Sergey A; Koroteev, Nikolai I; Salik, E; Feinberg, J; Starodubov, D S; Shramenko, M V; Yakubovich, S D

    1999-01-01

    The structure and operating conditions of multisegment laser (GaAl)As diodes with passive locking of the modes of an external cavity (bulk and fibre) were optimised. Regular trains of optical single pulses of picosecond duration were generated in a spectral range 850 - 860 nm. The peak power of these pulses was several watts and the repetition rate was near 1 GHz. Under certain conditions these output pulses were linearly chirped, i.e. they were suitable for subpicosecond time compression. Laboratory prototypes were made of miniature light-emitting modules with these characteristics. (lasers)

  11. Terahertz repetition frequencies from harmonic mode-locked monolithic compound-cavity laser diodes

    International Nuclear Information System (INIS)

    Yanson, D. A.; Street, M. W.; McDougall, S. D.; Thayne, I. G.; Marsh, J. H.; Avrutin, E. A.

    2001-01-01

    Compound-cavity laser diodes are mode locked at a harmonic of the fundamental round-trip frequency to achieve repetition rates of up to 2.1 THz. The devices are fabricated from GaAs/AlGaAs material at a wavelength of 860 nm and incorporate two gain sections with an etched slot reflector between them, and a saturable absorber section. Autocorrelation studies are used to investigate device behavior for different reflector types and reflectivity. These lasers may find applications in terahertz imaging, medicine, ultrafast optical links, and atmospheric sensing. [copyright] 2001 American Institute of Physics

  12. Compendium of Scientific Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Clendenin, James E

    2003-05-16

    The International Committee supported the proposal of the Chairman of the XVIII International Linac Conference to issue a new Compendium of linear accelerators. The last one was published in 1976. The Local Organizing Committee of Linac96 decided to set up a sub-committee for this purpose. Contrary to the catalogues of the High Energy Accelerators which compile accelerators with energies above 1 GeV, we have not defined a specific limit in energy. Microtrons and cyclotrons are not in this compendium. Also data from thousands of medical and industrial linacs has not been collected. Therefore, only scientific linacs are listed in the present compendium. Each linac found in this research and involved in a physics context was considered. It could be used, for example, either as an injector for high energy accelerators, or in nuclear physics, materials physics, free electron lasers or synchrotron light machines. Linear accelerators are developed in three continents only: America, Asia, and Europe. This geographical distribution is kept as a basis. The compendium contains the parameters and status of scientific linacs. Most of these linacs are operational. However, many facilities under construction or design studies are also included. A special mention has been made at the end for the studies of future linear colliders.

  13. CERN’s Linac4 H− sources: Status and operational results

    International Nuclear Information System (INIS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Fink, D.; Gil-Flores, J.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Jones, A.; Koszar, I.; Machado, C.; Mastrostefano, C.

    2015-01-01

    Two volume sources equipped with DESY and CERN plasma generators and a low voltage electron dump were operated at 45 kV in the Linac4 tunnel and on a dedicated test stand. These volume sources delivered approximately 20 mA and ensured the commissioning of the Radio Frequency Quadrupole accelerator and of the first section of the Drift Tube Linac. CERN’s prototype of a cesiated surface source equipped with this electron dump was operated continuously from November 2013 to April 2014 on the ion source test stand and is being commissioned in the Linac4 tunnel. Before cesiation, the prototype conditioned in volume mode provided up to 30 mA H − beam. Short cesiations, of the order of 10 mg effectively reduced the intensity of co-extracted electrons down to 2 - 8 times the H − current; this cesiated surface operation mode delivered up to 60 mA H − beam. An H − beam of the order of 40 mA was sustained up to four weeks operation with 500 μs pulses at 1.2s spacing. A new extraction was designed to match these beam properties. A copy of BNL’s magnetron produced at CERN was tested at BNL and delivered at 40 kV H − beam exceeding Linac4’s nominal intensity of 80 mA. In this contribution, the performances, dynamic response to cesiation, stability and availability of these prototypes are described. The needed optimization of the emittance of H − beam above 40 mA is presented, which requires an evolution of the front end that encompasses implementation of a large ceramic insulator

  14. TU-H-BRA-03: Performance of a Clinical Gridded Electron Gun in Magnetic Fields: Implications for MRI-Linac Therapy

    International Nuclear Information System (INIS)

    Whelan, B; Keall, P; Bazalova-Carter, M; Oborn, B; Constantin, D; Holloway, L; Fahrig, R

    2016-01-01

    Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quoted as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.

  15. TU-H-BRA-03: Performance of a Clinical Gridded Electron Gun in Magnetic Fields: Implications for MRI-Linac Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, B; Keall, P [University of Sydney, Sydney (Australia); Bazalova-Carter, M [University of Victoria, VCH040, Victoria, BC (Australia); Oborn, B [Illawarra Hospital, Wollongong, NSW (Australia); Constantin, D [Varian Medical Systems, Palo Alto, California (United States); Holloway, L [Liverpool Hospital and Ingham Institute, Liverpool, NSW (United Kingdom); Fahrig, R [Siemens Healthcare GmbH, Forchheim (Germany)

    2016-06-15

    Purpose: Recent advances towards MRI Linac radiotherapy have motivated a wide range of studies characterizing electromagnetic interactions between the two devices. One of the most sensitive components is the linac electron gun. To data, only non gridded (diode) guns have been investigated however, most linac vendors utilize gridded (triode) guns, which enable efficient and robust beam gating. The purpose of this study was to develop a realistic model of a gridded gun used clinically, and to characterize its performance in magnetic fields. Methods: The gridded electron gun used on Varian high energy machines was measured using 3D laser scanning quoted as accurate to 0.1mm. Based on the scane, a detailed CAD mode was developed. From this, key geometry was extracted and a FEM model was developed (Opera/SCALA). Next, the high voltage (HV), grid voltage, and emission current were read from six dose matched TrueBeam linacs for the 6X, 10X and 15X photon modes (0 B-field). The mean values were used to represent each mode, which was simulated I constant magnetic fields from 0–200G in-line, and 0–35G perpendicular. Results: Experimentally measured HV, grid voltage, and emission current from 6X, 10X and 15X modes were respectively: 15±.03kV, 10±.08kV, 11±.03kV; 93±7V, 41±3V, and 70±6V; 327±27mA, 129±10mA, and 214±19mA. The error in simulated emission current of each mode was 3%,6%, and 3%. For in-line fields, 50% beam loss occurred at 114, 96, and 97G; for perpendicular; at 12, 13 and 14G. Sensitivity for a given geometry is primarily determined by HV setting. Conclusion: Future MRI-Linac systems will almost certainly use gridded guns. We present the first model of a clinical gridded gun, and match the experimental emission current to within 6% across three different operating modes. This clinical gun shows increased sensitivity to magnetic fields than previous work,and different modes show different sensitivity.

  16. Pulsed-focusing recirculating linacs for muon acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of

  17. Improved temperature regulation of APS linac RF components

    International Nuclear Information System (INIS)

    Dortwegt, R.

    1998-01-01

    The temperature of the APS S-Band linac's high-power rf components is regulated by water from individual closed-loop deionized (DI) water systems. The rf components are all made of oxygen-free high-conductivity copper and respond quickly to temperature changes. The SLED cavities are especially temperature-sensitive and cause beam energy instabilities when the temperature is not well regulated. Temperature regulation better than ± 0.1 F is required to achieve good energy stability. Improvements in the closed-loop water systems have enabled them to achieve a regulation of ± 0.05 F over long periods. Regulation philosophy and equipment are discussed and numerical results are presented

  18. 400 MeV upgrade for the Fermilab linac

    International Nuclear Information System (INIS)

    MacLachlan, J.A.

    1989-01-01

    Fermilab has plans for a comprehensive accelerator upgrade to open new possibilities for both the fixed target and collider experimental programs. An early step in this program is to increase the energy of the linac from 200 to 400 MeV by replacing the last four of its nine 201 MHz Alvarez tanks with twenty-eight 805 MHz side-coupled cavity chains operating at about 8 MV/m average axial field. The principal purpose is to reduce the incoherent spacecharge tuneshift at injection into the Booster which currently limits both the brightness of the beam, an important determinant of collider luminosity, and total intensity to produce both the antiprotons for the collider and the beams to fixed target experimental areas. Other consequences of higher Booster injection energy expected to contribute to some degree of higher intensity limits and improved operational characteristics include improved quality of the guide field at injection, reduced frequency swing for the rf systems, and smaller emittance for the injected beam. The linac upgrade project has moved from a 1986 study through a development project including structure models and numerical studies to a full-feature module prototyping starting this year

  19. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, L.; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G.

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  20. Analysis of the FEL-RF interaction in recirculating energy-recovering linacs with an FEL

    International Nuclear Information System (INIS)

    Merminga, Lia; Alexeev, P.; Benson, Steve; Bolshakov, A.; Doolittle, Lawrence; Neil, George

    1999-01-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab

  1. Analysis of the FEL-RF interaction in recirculating, energy-recovering linacs with an FEL

    Energy Technology Data Exchange (ETDEWEB)

    Merminga, L. E-mail: merminga@jlab.org; Alexeev, P.; Benson, S.; Bolshakov, A.; Doolittle, L.; Neil, G

    1999-06-01

    Recirculating, energy-recovering linacs can be used as driver accelerators for high power FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy changes can cause beam loss on apertures, phase oscillations and optical cavity detuning. These effects in turn cause changes in the laser output power through a time-varying FEL gain function. All three effects change the beam-induced voltage in the cavities and can lead to unstable variations of the accelerating field and output laser power. We have developed a model of the coupled system and solved it both analytically and numerically. It includes the beam-cavity interaction, low level RF feedback, and the electron-photon interaction. The latter includes the FEL gain function in terms of cavity detuning, energy offset, and is valid both in the small signal gain and in the saturated regimes. We have demonstrated that in the limit of small perturbations, the linear theory agrees with the numerical solutions and have performed numerical simulations for the IR FEL presently being commissioned at Jefferson Lab.

  2. Development of new S-band SLED for PAL-XFEL Linac

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Lee, Heung-Soo, E-mail: lhs@postech.ac.kr [Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673 (Korea, Republic of); Noh, Sungju; Oh, Kyoungmin [VitzroTech, Ansan, Gyeonggi 15603 (Korea, Republic of)

    2017-01-21

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  3. Development of new S-band SLED for PAL-XFEL Linac

    Science.gov (United States)

    Joo, Youngdo; Park, Yongjung; Heo, Hoon; Heo, Jinyul; Park, Sung-Soo; Kim, Sang-Hee; Kim, Kwang-Hoon; Kang, Heung-Sik; Lee, Heung-Soo; Noh, Sungju; Oh, Kyoungmin

    2017-01-01

    In order to achieve beam acceleration to the beam energy of 10 GeV at the end of its 716 m-long linear accelerator (Linac), the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL) is going to operate the Stanford Linear Accelerator Energy Doubler (SLED) at the maximum klystron output peak power of 80 MW, with a pulse length of 4 μs, and at a repetition rate of 60 Hz. The original SLED that had been used in Pohang Light Source-II (PLS-II) can no longer sustain such a high-power operation because excessive radiation caused by RF breakdown has been frequently detected even at the lower klystron peak power during the PLS-II operation. Therefore, a new SLED is designed by modifying both the 3-dB power hybrid and the waveguide-cavity coupling structure of the original SLED where the excessive radiation has been mainly detected. The finite-difference time-domain (FDTD) simulation in the CST Microwave Studio shows that the new SLED has a peak electric field and a surface current lower than those of the original SLED at the same level of the RF input peak power, which would secure stable high-power operation. All of the 42 SLEDs in the PAL-XFEL Linac are newly fabricated and installed. During the RF conditioning of the PAL-XFEL Linac, no significant vacuum and radiation issue was found in the new SLEDs. Finally, the accelerated electron beam energy of 10 GeV obtained at the end of the PAL-XFEL Linac verified that the RF performance of the new SLED is stable.

  4. Multiple-linac approach for tritium production and other applications

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1995-01-01

    This report describes an approach to tritium production based on the use of multiple proton linear accelerators. Features of a single APTT Linac as proposed by the Los Alamos National Laboratory are presented and discussed. An alternative approach to the attainment of the same total proton beam power of 200 MW with several lower-performance superconducting Linacs is proposed and discussed. Although each of these accelerators are considerable extrapolations of present technology, the latter can nevertheless be built at less technical risk when compared to the single high-current APT Linac, particularly concerning the design and the performance of the low-energy front-end. The use of superconducting cavities is also proposed as a way of optimizing the accelerating gradient, the overall length, and the operational costs. The superconducting technology has already been successfully demonstrated in a number of large-size projects and should be seriously considered for the acceleration of intense low-energy beams of protons. Finally, each linear accelerator would represent an ideal source of very intense beams of protons for a variety of applications, such as: weapons and waste actinide transmutation processes, isotopes for medical application, spallation neutron sources, and the generation of intense beams of neutrinos and muons for nuclear and high-energy physics research. The research community at large has obviously an interest in providing expertise for, and in having access to, the demonstration, the construction, the operation, and the exploitation of these top-performance accelerators

  5. Superconducting heavy-ion linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1977-01-01

    A summary is given of plans developed by four different groups for the construction of small superconducting linacs to boost the energy of heavy ions from existing tandem electrostatic accelerators. The projects considered are the linac under construction at Argonne and the design efforts at Karlsruhe, at Stanford, and by a Cal Tech-Stony Brook collaboration. The intended uses of the accelerator systems are stated. Beam dynamics of linacs formed of short independently-phased resonators are reviewed, and the implications for performance are discussed. The main parameters of the four linacs are compared, and a brief analysis of accelerating structures is given

  6. Superconducting linac beam dynamics with high-order maps for RF resonators

    CERN Document Server

    Geraci, A A; Pardo, R C; 10.1016/j.nima.2003.11.177

    2004-01-01

    The arbitrary-order map beam optics code COSY Infinity has recently been adapted to calculate accurate high-order ion-optical maps for electrostatic and radio-frequency accelerating structures. The beam dynamics of the superconducting low-velocity positive-ion injector linac for the ATLAS accelerator at Argonne National Lab is used to demonstrate some advantages of the new simulation capability. The injector linac involves four different types of superconducting accelerating structures and has a total of 18 resonators. The detailed geometry for each of the accelerating cavities is included, allowing an accurate representation of the on- and off-axis electric fields. The fields are obtained within the code from a Poisson-solver for cylindrically symmetric electrodes of arbitrary geometry. The transverse focusing is done with superconducting solenoids. A detailed comparison of the transverse and longitudinal phase space is made with the conventional ray-tracing code LINRAY. The two codes are evaluated for ease ...

  7. Engineering, design and prototype tests of a 3.9 GHz transverse-mode superconducting cavity for a radiofrequency-separated kaon beam

    International Nuclear Information System (INIS)

    Mark S. Champion et al.

    2001-01-01

    A research and development program is underway to construct superconducting cavities to be used for radiofrequency separation of a Kaon beam at Fermilab. The design calls for installation of twelve 13-cell cavities operating in the 3.9 GHz transverse mode with a deflection gradient of 5 MV/m. They present the mechanical, cryogenic and vacuum design of the cavity, cryomodule, rf power coupler, cold tuner and supporting hardware. The electromagnetic design of the cavity is presented in a companion paper by Wanzenberg and McAshan. The warm tuning system (for field flatness) and the vertical test system is presented along with test results of bench measurements and cold tests on single-cell and five-cell prototypes

  8. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  9. Longitudinal instability in heavy-ion-fusion induction linacs

    International Nuclear Information System (INIS)

    Lee, E.P.

    1993-05-01

    A induction linac accelerating a high-current pulse of heavy ions at subrelativistic velocities is predicted to exhibit unstable growth of current fluctuations. An overview is given of the mode character, estimates of growth rates, and their application to an IFE driver. The present and projected effort to understand and ameliorate the instability is described. This includes particle-in-cell simulations, calculation and measurements of impedance, and design of feedback controls

  10. Design, Fabrication and Testing of Medium-Beta 650 MHz SRF Cavity Prototypes for Project-X

    International Nuclear Information System (INIS)

    Marhauser, F.; Clemens, W.A.; Henry, J.; Kneisel, P.; Martin, R.; Rimmer, R.A.; Slack, G.; Turlington, L.; Williams, R.S.

    2011-01-01

    A new type of superconducting radio frequency (SRF) cavity shape with a shallow equator dome to reduce electron impact energies for suppressing multipacting barriers has been proposed. The shape is in consideration for the first time in the framework of Project-X to design a potential multi-cell cavity candidate for the medium-beta section of the SRF proton CW linac operating at 650 MHz. Rationales covering the design of the multi-cell cavity, the manufacture, post-processing and high power testing of two single-cell prototypes are presented.

  11. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  12. Frequency to digital converter for IUAC Linac control system

    International Nuclear Information System (INIS)

    Jain, Mamta; Subramaiam, E.T.; Sahu, B.K.

    2015-01-01

    A frequency to digital converter CAMAC module has been designed and developed for LINAC control systems. This module is used to see the frequency difference of master clock and the resonator frequency digitally without using the oscilloscope. Later on this can be used for automatic tuning and locking of the cavities using piezoelectric actuator based tunner control. This module has eight independent channels to fulfill the need of all the eight cavities of the cryostat. A Schmitt trigger along with level converaccepts almost any form of pulse train, with 30 Vp-p. The time period is measured by counters clocked from a high resolution clock (10 MHz +/- 250 ps). The counter values are cross checked at both the input levels. Frequency is obtained from the computed time period by a special divisor core implemented inside the FPGA. The major task was the implementation of eight individual divisor cores and routing inside one Spartan 3s500E FPGA chip

  13. Free electron laser facilities employing a 150-MeV linac injector for Saga synchrotron light source

    International Nuclear Information System (INIS)

    Tomimasu, T.; Yasumoto, M.; Ochiai, Y.; Ishibashi, M.; Murayama, T.

    1999-01-01

    Free electron laser (FEL) facilities as the FELI FEL Facility are proposed, for which a 150-MeV linac type injector for a Saga synchrotron light source (SLS) is employed in FEL mode. The linac has two operating modes; short macropulse mode a 1 μs at 150 MeV for injection to a 1 - 1.3-GeV third generation type storage ring and long macropulse mode of 12 μs at 100 MeV for four FEL Facilities. The macropulse beam consists of a train of several ps, 0.6 nC microbunches (peak current 100 A) repeating at 89.25 MHz. We are aiming to supply high power level photon beams covering an attractive wavelength range from 0.05 nm (25 keV) to 200 μm (0.006 eV) for scientific researches, bio-medical and industrial applications, using the Saga third generation type SLS with a superconducting wiggler and the proposed four FEL Facilities. (author)

  14. Pressurized rf cavities in ionizing beams

    Directory of Open Access Journals (Sweden)

    B. Freemire

    2016-06-01

    Full Text Available A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. Energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SF_{6} and O_{2} were measured.

  15. Status and first measurement results for a high gradient CH-cavity

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Ali; Ratzinger, Ulrich [Institut fuer Angewandte Physik, Frankfurt Universitaet, Frankfurt am Main (Germany)

    2016-07-01

    This pulsed linac activity aims on compact designs and on a considerable increase of the voltage gain per meter. A high gradient CH {sup *} cavity operated at 325 MHz was developed at IAP {sup *} Frankfurt. The mean effective accelerating field for this cavity is expected well above 10 MV/m at β=0.164. This cavity is developed within a funded project. The results might influence the rebuilt of the UNILAC {sup *} Alvarez section, aiming to achieve the beam intensities specified for the GSI {sup *} FAIR project (15 mA U28+). Another motivation is the development of an efficient pulsed ion accelerator for significantly higher energies like 60 AMeV. The new GSI 3 MW Thales klystron test stand will be used for the cavity RF power tests. Detailed studies on two different types of copper plating will be performed with this cavity.

  16. Computer simulation and cold model testing of CCL cavities

    International Nuclear Information System (INIS)

    Chang, C.R.; Yao, C.G.; Swenson, D.A.; Funk, L.W.

    1993-01-01

    The SSC coupled-cavity-linac (CCL) consists of nine modules with eight tanks in each module. Multicavity magnetically coupled bridge couplers are used to couple the eight tanks within a module into one RF resonant chain. The operating frequency is 1282.851 MHz. In this paper the authors discuss both computer calculations and cold model measurements to determine the geometry dimension of the RF structure

  17. Construction of SPring-8 LINAC

    International Nuclear Information System (INIS)

    Yokomizo, Hideaki; Yoshikawa, Hiroshi; Suzuki, Shinsuke; Yanagida, Ken-ichi; Mizuno, Akihiko; Hori, Toshihiko; Tamezane, Kenji; Kodera, Masahiko; Sakaki, Hironao; Mashiko, Katsuo

    1993-01-01

    Construction of the linac building has been started in February 1993. The components of the linac are under manufacturing. The preinjector of linac was already constructed and temporarily installed in Tokai Establishment in order to test the beam quality. (author)

  18. Event Registration System for INR Linac

    International Nuclear Information System (INIS)

    Grekhov, O.V.; Drugakov, A.N.; Kiselev, Yu.V.

    2006-01-01

    The software of the Event registration system for the linear accelerators is described. This system allows receiving of the information on changes of operating modes of the accelerator and supervising of hundreds of key parameters of various systems of the accelerator. The Event registration system consists of the source and listeners of events. The sources of events are subroutines built in existing ACS Linac. The listeners of events are software Supervisor and Client ERS. They are used for warning the operator about change controlled parameter of the accelerator

  19. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  20. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.