WorldWideScience

Sample records for mobile ground sensor

  1. Obstacle negotiation control for a mobile robot suspended on overhead ground wires by optoelectronic sensors

    Science.gov (United States)

    Zheng, Li; Yi, Ruan

    2009-11-01

    Power line inspection and maintenance already benefit from developments in mobile robotics. This paper presents mobile robots capable of crossing obstacles on overhead ground wires. A teleoperated robot realizes inspection and maintenance tasks on power transmission line equipment. The inspection robot is driven by 11 motor with two arms, two wheels and two claws. The inspection robot is designed to realize the function of observation, grasp, walk, rolling, turn, rise, and decline. This paper is oriented toward 100% reliable obstacle detection and identification, and sensor fusion to increase the autonomy level. An embedded computer based on PC/104 bus is chosen as the core of control system. Visible light camera and thermal infrared Camera are both installed in a programmable pan-and-tilt camera (PPTC) unit. High-quality visual feedback rapidly becomes crucial for human-in-the-loop control and effective teleoperation. The communication system between the robot and the ground station is based on Mesh wireless networks by 700 MHz bands. An expert system programmed with Visual C++ is developed to implement the automatic control. Optoelectronic laser sensors and laser range scanner were installed in robot for obstacle-navigation control to grasp the overhead ground wires. A novel prototype with careful considerations on mobility was designed to inspect the 500KV power transmission lines. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  2. The application of unattended ground sensors to stationary targets

    International Nuclear Information System (INIS)

    Sleefe, G.E.; Peglow, S.; Hamrick, R.

    1997-01-01

    The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary target will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures

  3. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  4. Energy optimization in mobile sensor networks

    Science.gov (United States)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while

  5. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Science.gov (United States)

    Almasri, Marwah; Elleithy, Khaled; Alajlan, Abrar

    2015-01-01

    Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes. PMID:26712766

  6. Sensor Fusion Based Model for Collision Free Mobile Robot Navigation

    Directory of Open Access Journals (Sweden)

    Marwah Almasri

    2015-12-01

    Full Text Available Autonomous mobile robots have become a very popular and interesting topic in the last decade. Each of them are equipped with various types of sensors such as GPS, camera, infrared and ultrasonic sensors. These sensors are used to observe the surrounding environment. However, these sensors sometimes fail and have inaccurate readings. Therefore, the integration of sensor fusion will help to solve this dilemma and enhance the overall performance. This paper presents a collision free mobile robot navigation based on the fuzzy logic fusion model. Eight distance sensors and a range finder camera are used for the collision avoidance approach where three ground sensors are used for the line or path following approach. The fuzzy system is composed of nine inputs which are the eight distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot’s wheels, and 24 fuzzy rules for the robot’s movement. Webots Pro simulator is used for modeling the environment and the robot. The proposed methodology, which includes the collision avoidance based on fuzzy logic fusion model and line following robot, has been implemented and tested through simulation and real time experiments. Various scenarios have been presented with static and dynamic obstacles using one robot and two robots while avoiding obstacles in different shapes and sizes.

  7. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    Science.gov (United States)

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  8. Escape and evade control policies for ensuring the physical security of nonholonomic, ground-based, unattended mobile sensor nodes

    Science.gov (United States)

    Mascarenas, David; Stull, Christopher; Farrar, Charles

    2011-06-01

    In order to realize the wide-scale deployment of high-endurance, unattended mobile sensing technologies, it is vital to ensure the self-preservation of the sensing assets. Deployed mobile sensor nodes face a variety of physical security threats including theft, vandalism and physical damage. Unattended mobile sensor nodes must be able to respond to these threats with control policies that facilitate escape and evasion to a low-risk state. In this work the Precision Immobilization Technique (PIT) problem has been considered. The PIT maneuver is a technique that a pursuing, car-like vehicle can use to force a fleeing vehicle to abruptly turn ninety degrees to the direction of travel. The abrupt change in direction generally causes the fleeing driver to lose control and stop. The PIT maneuver was originally developed by law enforcement to end vehicular pursuits in a manner that minimizes damage to the persons and property involved. It is easy to imagine that unattended autonomous convoys could be targets of this type of action by adversarial agents. This effort focused on developing control policies unattended mobile sensor nodes could employ to escape, evade and recover from PIT-maneuver-like attacks. The development of these control policies involved both simulation as well as small-scale experimental testing. The goal of this work is to be a step toward ensuring the physical security of unattended sensor node assets.

  9. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  10. Performance analysis of a self-locating mobile sensor

    DEFF Research Database (Denmark)

    Bøgsted, Martin; Rasmussen, Jakob Gulddahl; Lundbye-Christensen, Søren

    to an autoregressive model. Measurement uncertainty is assumed to follow a Gaussian distribution and the probability for detecting a distance to a given sensor is assumed to fall off exponentially with squared distance. The combined model is formulated as a nonlinear state space model and Bayesian inference......We consider the ability of a mobile sensor to locate its own geographical location, the so-called self-localization problem. The need to locate people and objects has inspired the development of many systems for automatic localization. Most systems are based on location information and measured...... the performance of localization algorithms in mobile and critical situations. This is done by exploring the performance of various filtering techniques for self-localization of a mobile sensor in a field of sensors. More specifically, we model the mobility of the sensor such that the velocity varies according...

  11. An Orientation Sensor for Mobile Robots Using Differentials

    Directory of Open Access Journals (Sweden)

    Wei-Chen Lee

    2013-02-01

    Full Text Available Without access to external guidance, such as landmarks or beacons, indoor mobile robots usually orientate themselves by using magnetic compasses or gyroscopes. However, compasses face interference from steel furniture, and gyroscopes suffer from zero drift errors. This paper proposes an orientation sensor that can be used on differentially driven mobile robots to resolve these issues. The sensor innovatively combines the general differentials and an optical encoder so that it can provide only the orientation information. Such a sensor has not been described in any known literature and is cost-efficient compared to the common method of using two encoders for differentially driven mobile robots. The kinematic analysis and the mechanical design of this sensor are presented in this paper. The maximum mean error of the proposed orientation sensor was about 0.7° during the component tests. The application of the sensor on a vacuum cleaning robot was also demonstrated. The use of the proposed sensor may provide less uncertain orientation data for an indoor differentially driven mobile robot.

  12. LinkMind: link optimization in swarming mobile sensor networks.

    Science.gov (United States)

    Ngo, Trung Dung

    2011-01-01

    A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  13. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Trung Dung Ngo

    2011-08-01

    Full Text Available A swarming mobile sensor network is comprised of a swarm of wirelessly connected mobile robots equipped with various sensors. Such a network can be applied in an uncertain environment for services such as cooperative navigation and exploration, object identification and information gathering. One of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm is demonstrated and evaluated in simulation.

  14. A Decentralized Interactive Architecture for Aerial and Ground Mobile Robots Cooperation

    OpenAIRE

    Harik, El Houssein Chouaib; Guérin, François; Guinand, Frédéric; Brethé, Jean-François; Pelvillain, Hervé

    2014-01-01

    International audience; —This paper presents a novel decentralized interactive architecture for aerial and ground mobile robots cooperation. The aerial mobile robot is used to provide a global coverage during an area inspection, while the ground mobile robot is used to provide a local coverage of ground features. We include a human-in-the-loop to provide waypoints for the ground mobile robot to progress safely in the inspected area. The aerial mobile robot follows continuously the ground mobi...

  15. Radio Sensor for Monitoring of UMTS Mobile Terminals

    Directory of Open Access Journals (Sweden)

    F. Kozak

    2014-06-01

    Full Text Available Relatively simple and low-cost radio sensor for monitoring of 3rd generation (3G UMTS mobile terminals (i.e., phones has been designed and practically tested. The main purpose of this sensor is to serve as an extending module that can be installed into systems used for monitoring of standard 2nd generation (2G GSM and DCS mobile phones in highly guarded buildings and areas. Since the transmitted powers of UMTS mobile terminals can be very low in relation to GSM and DCS specifications, the new UMTS sensor is based on a highly sensitive receiver and additional signal processing. The radio sensor was practically tested in several scenarios representing worst-case mobile terminal - base station relations. The measured detection ranges attain values from approx. 11 m inside of rooms to more than 30 m in corridors, which seems to be sufficient for the expected application. Results of all performed tests correspond fairly well with the presented theoretical descriptions. An extended version of the radio sensor can be used for monitoring of mobile terminals of all existing voice or data formats.

  16. Ion mobility sensor system

    Science.gov (United States)

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  17. Investigation of the Usability of Mobile Sensors for Weather Forecasting

    Directory of Open Access Journals (Sweden)

    Semih Dalğın

    2015-08-01

    Full Text Available Crowd sourcing is a popular method for providing data from people by the use of mobile sensor, internet and communication technologies. However efficient use of the raw data provided by the sensors with different characteristics in order to obtain accurate results is not investigated in detail. This study aims to investigate the data collected by mobile sensors integrated in the smartphones for scientific purposes such as weather forecasting. In this context, accuracy of the data provided mobile humidity, pressure and temperature sensors was examined in this study. Data provided by 5 smart phones and 3 Bluetooth sensors were tested in this context. Accuracy assessment process was performed by calculating the Root Mean Square Errors of the data with respect to reference data collected by TST Sensor simultaneously. This study shows that accuracy of the data collected with the mobile sensors is affected by several external parameters such as climatic conditions, handling habits of the user, and etc. Although it is possible to calculate correction constant for each sensor separately, it is not possible to calculate a unique and universal correction constant in order to increase the accuracy of the raw data collected by the mobile sensors. Therefore further studies should be executed for improving the accuracy of the mobile sensor data for scientific purposes.

  18. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    Science.gov (United States)

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...

  19. Propagation Modeling and Defending of a Mobile Sensor Worm in Wireless Sensor and Actuator Networks.

    Science.gov (United States)

    Wang, Tian; Wu, Qun; Wen, Sheng; Cai, Yiqiao; Tian, Hui; Chen, Yonghong; Wang, Baowei

    2017-01-13

    WSANs (Wireless Sensor and Actuator Networks) are derived from traditional wireless sensor networks by introducing mobile actuator elements. Previous studies indicated that mobile actuators can improve network performance in terms of data collection, energy supplementation, etc. However, according to our experimental simulations, the actuator's mobility also causes the sensor worm to spread faster if an attacker launches worm attacks on an actuator and compromises it successfully. Traditional worm propagation models and defense strategies did not consider the diffusion with a mobile worm carrier. To address this new problem, we first propose a microscopic mathematical model to describe the propagation dynamics of the sensor worm. Then, a two-step local defending strategy (LDS) with a mobile patcher (a mobile element which can distribute patches) is designed to recover the network. In LDS, all recovering operations are only taken in a restricted region to minimize the cost. Extensive experimental results demonstrate that our model estimations are rather accurate and consistent with the actual spreading scenario of the mobile sensor worm. Moreover, on average, the LDS outperforms other algorithms by approximately 50% in terms of the cost.

  20. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    Science.gov (United States)

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  1. A fiber Bragg grating acceleration sensor for ground surveillance

    Science.gov (United States)

    Jiang, Shaodong; Zhang, Faxiang; Lv, Jingsheng; Ni, Jiasheng; Wang, Chang

    2017-10-01

    Ground surveillance system is a kind of intelligent monitoring equipment for detecting and tracking the ground target. This paper presents a fiber Bragg grating (FBG) acceleration sensor for ground surveillance, which has the characteristics of no power supply, anti-electromagnetic interference, easy large-scale networking, and small size. Which make it able to achieve the advantage of the ground surveillance system while avoiding the shortcoming of the electric sensing. The sensor has a double cantilever beam structure with a sensitivity of 1000 pm/g. Field experiment has been carried out on a flood beach to examine the sensor performance. The result shows that the detection distance on the walking of personnel reaches 70m, and the detection distance on the ordinary motor vehicle reaches 200m. The performance of the FBG sensor can satisfy the actual needs of the ground surveillance system.

  2. Robotic and Sensor Technologies for Mobility in Older People.

    Science.gov (United States)

    Penteridis, Lazaros; D'Onofrio, Grazia; Sancarlo, Daniele; Giuliani, Francesco; Ricciardi, Francesco; Cavallo, Filippo; Greco, Antonio; Trochidis, Ilias; Gkiokas, Alexander

    2017-10-01

    Maintaining independent mobility is fundamental to independent living and to the quality of life of older people. Robotic and sensor technologies may offer a lot of potential and can make a significant difference in the lives of older people and to their primary caregivers. The aim of this study was to provide a presentation of the methods that are used up till now for analysis and evaluation of human mobility utilizing sensor technologies and to give the state of the art in robotic platforms for supporting older people with mobility limitations. The literature was reviewed and systematic reviews of cohort studies and other authoritative reports were identified. The selection criteria included (1) patients with age ≥60 years; (2) patients with unstable gait, with or without recurrent falls; (3) patients with slow movements, short strides, and little trunk movement; (4) sensor technologies that are currently used for mobility evaluation; and (5) robotic technologies that can serve as a supporting companion for older people with mobility limitations. One hundred eighty-one studies published up until February 2017 were identified, of which 36 were included. Two categories of research were identified from the review regarding the robot and sensor technologies: (1) sensor technologies for mobility analysis and (2) robots for supporting older people with mobility limitations. Potential for robotic and sensor technologies can be taken advantage of for evaluation and support at home for elder persons with mobility limitations in an automated way without the need of the physical presence of any medical personnel, reducing the stress of caregivers.

  3. Artillery localization using networked wireless ground sensors

    Science.gov (United States)

    Swanson, David C.

    2002-08-01

    This paper presents the results of an installation of four acoustic/seismic ground sensors built using COTS computers and networking gear and operating on a continuous basis at Yuma Proving Grounds, Arizona. A description of the design can be found as well, which is essentially a Windows 2000 PC with 24-bit data acquisition, GPS timing, and environmental sensors for wind and temperature. A 4-element square acoustic array 1.8m on a side can be used to detect the time and angle of arrival of the muzzle blast and the impact explosion. A 3-component geophone allows the seismic wave direction to be estimated. The 8th channel of the 24-bit data acquisition system has a 1-pulse-per-second time signal from the GPS. This allows acoustic/seismic 'snapshots' to be coherently related from multiple disconnected ground sensor nodes. COTS 2.4 GHz frequency hopping radios (802.11 standard) are used with either omni or yagi antennas depending on the location on the range. Localization of the artillery or impact can be done by using the time and angle of arrival of the waves at 2 or more ground sensor locations. However, this straightforward analysis can be significantly complicated by weather and wind noise and is also the subject of another research contract. This work will present a general description of the COTS ground sensor installation, show example data autonomously collected including agent-based atmospheric data, and share some of the lessons learned from operating a Windows 2000 based system continuously outdoors.

  4. Autonomous distributed self-organization for mobile wireless sensor networks.

    Science.gov (United States)

    Wen, Chih-Yu; Tang, Hung-Kai

    2009-01-01

    This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  5. Decentralized coverage control problems for mobile robotic sensor and actuator networks

    CERN Document Server

    Savkin, A; Xi, Z; Javed, F; Matveev, A; Nguyen, H

    2015-01-01

    This book introduces various coverage control problems for mobile sensor networks including barrier, sweep and blanket. Unlike many existing algorithms, all of the robotic sensor and actuator motion algorithms developed in the book are fully decentralized or distributed, computationally efficient, easily implementable in engineering practice and based only on information on the closest neighbours of each mobile sensor and actuator and local information about the environment. Moreover, the mobile robotic sensors have no prior information about the environment in which they operation. These various types of coverage problems have never been covered before by a single book in a systematic way. Another topic of this book is the study of mobile robotic sensor and actuator networks. Many modern engineering applications include the use of sensor and actuator networks to provide efficient and effective monitoring and control of industrial and environmental processes. Such mobile sensor and actuator networks are abl...

  6. Mobile trap algorithm for zinc detection using protein sensors

    International Nuclear Information System (INIS)

    Inamdar, Munish V.; Lastoskie, Christian M.; Fierke, Carol A.; Sastry, Ann Marie

    2007-01-01

    We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p 1 ) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p 2 ). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p 1 ,p 2 ), which, in turn, is linked to the system level chemical kinetic constants, k on and k off . Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure

  7. Autonomous Distributed Self-Organization for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chih-Yu Wen

    2009-11-01

    Full Text Available This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently. A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.

  8. Self-deployable mobile sensor networks for on-demand surveillance

    Science.gov (United States)

    Miao, Lidan; Qi, Hairong; Wang, Feiyi

    2005-05-01

    This paper studies two interconnected problems in mobile sensor network deployment, the optimal placement of heterogeneous mobile sensor platforms for cost-efficient and reliable coverage purposes, and the self-organizable deployment. We first develop an optimal placement algorithm based on a "mosaicked technology" such that different types of mobile sensors form a mosaicked pattern uniquely determined by the popularity of different types of sensor nodes. The initial state is assumed to be random. In order to converge to the optimal state, we investigate the swarm intelligence (SI)-based sensor movement strategy, through which the randomly deployed sensors can self-organize themselves to reach the optimal placement state. The proposed algorithm is compared with the random movement and the centralized method using performance metrics such as network coverage, convergence time, and energy consumption. Simulation results are presented to demonstrate the effectiveness of the mosaic placement and the SI-based movement.

  9. Supervisory control of mobile sensor networks: math formulation, simulation, and implementation.

    Science.gov (United States)

    Giordano, Vincenzo; Ballal, Prasanna; Lewis, Frank; Turchiano, Biagio; Zhang, Jing Bing

    2006-08-01

    This paper uses a novel discrete-event controller (DEC) for the coordination of cooperating heterogeneous wireless sensor networks (WSNs) containing both unattended ground sensors (UGSs) and mobile sensor robots. The DEC sequences the most suitable tasks for each agent and assigns sensor resources according to the current perception of the environment. A matrix formulation makes this DEC particularly useful for WSN, where missions change and sensor agents may be added or may fail. WSN have peculiarities that complicate their supervisory control. Therefore, this paper introduces several new tools for DEC design and operation, including methods for generating the required supervisory matrices based on mission planning, methods for modifying the matrices in the event of failed nodes, or nodes entering the network, and a novel dynamic priority assignment weighting approach for selecting the most appropriate and useful sensors for a given mission task. The resulting DEC represents a complete dynamical description of the WSN system, which allows a fast programming of deployable WSN, a computer simulation analysis, and an efficient implementation. The DEC is actually implemented on an experimental wireless-sensor-network prototyping system. Both simulation and experimental results are presented to show the effectiveness and versatility of the developed control architecture.

  10. LinkMind: Link Optimization in Swarming Mobile Sensor Networks

    DEFF Research Database (Denmark)

    Ngo, Trung Dung

    2012-01-01

    of the most advantageous properties of the swarming wireless sensor network is that mobile nodes can work cooperatively to organize an ad-hoc network and optimize the network link capacity to maximize the transmission of gathered data from a source to a target. This paper describes a new method of link...... optimization of swarming mobile sensor networks. The new method is based on combination of the artificial potential force guaranteeing connectivities of the mobile sensor nodes and the max-flow min-cut theorem of graph theory ensuring optimization of the network link capacity. The developed algorithm...

  11. Vehicle classification using mobile sensors.

    Science.gov (United States)

    2013-04-01

    In this research, the feasibility of using mobile traffic sensors for binary vehicle classification on arterial roads is investigated. Features (e.g. : speed related, acceleration/deceleration related, etc.) are extracted from vehicle traces (passeng...

  12. Simulation and Data Analytics for Mobile Road Weather Sensors

    Science.gov (United States)

    Chettri, S. R.; Evans, J. D.; Tislin, D.

    2016-12-01

    Numerous algorithmic and theoretical considerations arise in simulating a vehicle-based weather observation network known as the Mobile Platform Environmental Data (MoPED). MoPED integrates sensor data from a fleet of commercial vehicles (about 600 at last count, with thousands more to come) as they travel interstate, state and local routes and metropolitan areas throughout the conterminous United States. The MoPED simulator models a fleet of anywhere between 1000-10,000 vehicles that travel a highway network encoded in a geospatial database, starting and finishing at random times and moving at randomly-varying speeds. Virtual instruments aboard these vehicles interpolate surface weather parameters (such as temperature and pressure) from the High-Resolution Rapid Refresh (HRRR) data series, an hourly, coast-to-coast 3km grid of weather parameters modeled by the National Centers for Environmental Prediction. Whereas real MoPED sensors have noise characteristics that lead to drop-outs, drift, or physically unrealizable values, our simulation introduces a variety of noise distributions into the parameter values inferred from HRRR (Fig. 1). Finally, the simulator collects weather readings from the National Weather Service's Automated Surface Observation System (ASOS, comprised of over 800 airports around the country) for comparison, validation, and analytical experiments. The simulator's MoPED-like weather data stream enables studies like the following: Experimenting with data analysis and calibration methods - e.g., by comparing noisy vehicle data with ASOS "ground truth" in close spatial and temporal proximity (e.g., 10km, 10 min) (Fig. 2). Inter-calibrating different vehicles' sensors when they pass near each other. Detecting spatial structure in the surface weather - such as dry lines, sudden changes in humidity that accompany severe weather - and estimating how many vehicles are needed to reliably map these structures and their motion. Detecting bottlenecks in the

  13. Adapting Mobile Beacon-Assisted Localization in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Dong

    2009-04-01

    Full Text Available The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL, to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL and Arrival and Departure Overlap (ADO when both of them use only a single mobile beacon for localization in static WSNs.

  14. Adapting mobile beacon-assisted localization in wireless sensor networks.

    Science.gov (United States)

    Teng, Guodong; Zheng, Kougen; Dong, Wei

    2009-01-01

    The ability to automatically locate sensor nodes is essential in many Wireless Sensor Network (WSN) applications. To reduce the number of beacons, many mobile-assisted approaches have been proposed. Current mobile-assisted approaches for localization require special hardware or belong to centralized localization algorithms involving some deterministic approaches due to the fact that they explicitly consider the impreciseness of location estimates. In this paper, we first propose a range-free, distributed and probabilistic Mobile Beacon-assisted Localization (MBL) approach for static WSNs. Then, we propose another approach based on MBL, called Adapting MBL (A-MBL), to increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during the estimation process. Evaluation results show that the accuracy of MBL and A-MBL outperform both Mobile and Static sensor network Localization (MSL) and Arrival and Departure Overlap (ADO) when both of them use only a single mobile beacon for localization in static WSNs.

  15. Sensor Fusion for Autonomous Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Plascencia, Alfredo

    Multi-sensor data fusion is a broad area of constant research which is applied to a wide variety of fields such as the field of mobile robots. Mobile robots are complex systems where the design and implementation of sensor fusion is a complex task. But research applications are explored constantl....... The scope of the thesis is limited to building a map for a laboratory robot by fusing range readings from a sonar array with landmarks extracted from stereo vision images using the (Scale Invariant Feature Transform) SIFT algorithm....

  16. Data Dissemination in Mobile Phone Sensor Networks

    NARCIS (Netherlands)

    Le Viet Duc, Duc Viet

    Deploying sensors over large areas is costly in terms of configuration, hardware, and maintenance. Using onboard sensors of today mobile phones can significantly reduce the expenses in monitoring areas and disseminating events or data. Via the available short-range Bluetooth and/or WiFi interfaces,

  17. Biomedical sensor technologies on the platform of mobile phones

    Science.gov (United States)

    Liu, Lin; Liu, Jing

    2011-06-01

    Biomedical sensors have been widely used in various areas of biomedical practices, which play an important role in disease detection, diagnosis, monitoring, treatment, health management, and so on. However, most of them and their related platforms are generally not easily accessible or just too expensive or complicated to be kept at home. As an alternative, new technologies enabled from the mobile phones are gradually changing such situations. As can be freely available to almost everyone, mobile phone offers a unique way to improve the conventional medical care through combining with various biomedical sensors. Moreover, the established systems will be both convenient and low cost. In this paper, we present an overview on the state-of-art biomedical sensors, giving a brief introduction of the fundamental principles and showing several new examples or concepts in the area. The focus was particularly put on interpreting the technical strategies to innovate the biomedical sensor technologies based on the platform of mobile phones. Some challenging issues, including feasibility, usability, security, and effectiveness, were discussed. With the help of electrical and mechanical technologies, it is expected that a full combination between the biomedical sensors and mobile phones will bring a bright future for the coming pervasive medical care.

  18. Sensor proxy mobile IPv6 (SPMIPv6)--a novel scheme for mobility supported IP-WSNs.

    Science.gov (United States)

    Islam, Md Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.

  19. Opportunistic mobility support for resource constrained sensor devices in smart cities.

    Science.gov (United States)

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-03-02

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  20. Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities

    Directory of Open Access Journals (Sweden)

    Daniel Granlund

    2015-03-01

    Full Text Available A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  1. Operation of remote mobile sensors for security of drinking water distribution systems.

    Science.gov (United States)

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.

    Science.gov (United States)

    Ostaszewski, Michal; Pauk, Jolanta

    2018-05-16

    Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.

  3. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes

    Directory of Open Access Journals (Sweden)

    Theofanis P. Lambrou

    2009-01-01

    Full Text Available Monitoring a large area with stationary sensor networks requires a very large number of nodes which with current technology implies a prohibitive cost. The motivation of this work is to develop an architecture where a set of mobile sensors will collaborate with the stationary sensors in order to reliably detect and locate an event. The main idea of this collaborative architecture is that the mobile sensors should sample the areas that are least covered (monitored by the stationary sensors. Furthermore, when stationary sensors have a “suspicion” that an event may have occurred, they report it to a mobile sensor that can move closer to the suspected area and can confirm whether the event has occurred or not. An important component of the proposed architecture is that the mobile nodes autonomously decide their path based on local information (their own beliefs and measurements as well as information collected from the stationary sensors in a neighborhood around them. We believe that this approach is appropriate in the context of wireless sensor networks since it is not feasible to have an accurate global view of the state of the environment.

  4. A dead reckoning localization system for mobile robots using inertial sensors and wheel revolution encoding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Su; Moon, Woo Sung; Seo, Woo Jin; Baek, Kwang Ryul [Pusan National University, Busan (Korea, Republic of)

    2011-11-15

    Inertial navigation systems (INS) are composed of inertial sensors, such as accelerometers and gyroscopes. An INS updates its orientation and position automatically; it has an acceptable stability over the short term, however this stability deteriorates over time. Odometry, used to estimate the position of a mobile robot, employs encoders attached to the robot's wheels. However, errors occur caused by the integrative nature of the rotating speed and the slippage between the wheel and the ground. In this paper, we discuss mobile robot position estimation without using external signals in indoor environments. In order to achieve optimal solutions, a Kalman filter that estimates the orientation and velocity of mobile robots has been designed. The proposed system combines INS and odometry and delivers more accurate position information than standalone odometry.

  5. Sensor Proxy Mobile IPv6 (SPMIPv6)—A Novel Scheme for Mobility Supported IP-WSNs

    Science.gov (United States)

    Islam, Md. Motaharul; Huh, Eui-Nam

    2011-01-01

    IP based Wireless Sensor Networks (IP-WSNs) are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6). We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly. PMID:22319386

  6. Sensor Proxy Mobile IPv6 (SPMIPv6—A Novel Scheme for Mobility Supported IP-WSNs

    Directory of Open Access Journals (Sweden)

    Md. Motaharul Islam

    2011-02-01

    Full Text Available IP based Wireless Sensor Networks (IP-WSNs are gaining importance for their broad range of applications in health-care, home automation, environmental monitoring, industrial control, vehicle telematics and agricultural monitoring. In all these applications, mobility in the sensor network with special attention to energy efficiency is a major issue to be addressed. Host-based mobility management protocols are not suitable for IP-WSNs because of their energy inefficiency, so network based mobility management protocols can be an alternative for the mobility supported IP-WSNs. In this paper we propose a network based mobility supported IP-WSN protocol called Sensor Proxy Mobile IPv6 (SPMIPv6. We present its architecture, message formats and also evaluate its performance considering signaling cost, mobility cost and energy consumption. Our analysis shows that with respect to the number of IP-WSN nodes, the proposed scheme reduces the signaling cost by 60% and 56%, as well as the mobility cost by 62% and 57%, compared to MIPv6 and PMIPv6, respectively. The simulation results also show that in terms of the number of hops, SPMIPv6 decreases the signaling cost by 56% and 53% as well as mobility cost by 60% and 67% as compared to MIPv6 and PMIPv6 respectively. It also indicates that proposed scheme reduces the level of energy consumption significantly.

  7. Tracking Mobile Robot in Indoor Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Liping Zhang

    2014-01-01

    Full Text Available This work addresses the problem of tracking mobile robots in indoor wireless sensor networks (WSNs. Our approach is based on a localization scheme with RSSI (received signal strength indication which is used widely in WSN. The developed tracking system is designed for continuous estimation of the robot’s trajectory. A WSN, which is composed of many very simple and cheap wireless sensor nodes, is deployed at a specific region of interest. The wireless sensor nodes collect RSSI information sent by mobile robots. A range-based data fusion scheme is used to estimate the robot’s trajectory. Moreover, a Kalman filter is designed to improve tracking accuracy. Experiments are provided to assess the performance of the proposed scheme.

  8. Accessing data transfer reliability for duty cycled mobile wireless sensor network

    International Nuclear Information System (INIS)

    Shaikh, F.K.

    2014-01-01

    Mobility in WSNs (Wireless Sensor Networks) introduces significant challenges which do not arise in static WSNs. Reliable data transport is an important aspect of attaining consistency and QoS (Quality of Service) in several applications of MWSNs (Mobile Wireless Sensor Networks). It is important to understand how each of the wireless sensor networking characteristics such as duty cycling, collisions, contention and mobility affects the reliability of data transfer. If reliability is not managed well, the MWSN can suffer from overheads which reduce its applicability in the real world. In this paper, reliability assessment is being studied by deploying MWSN in different indoor and outdoor scenarios with various duty cycles of the motes and speeds of the mobile mote. Results show that the reliability is greatly affected by the duty cycled motes and the mobility using inherent broadcast mechanisms. (author)

  9. A Mobile Sensor Network to Map CO2 in Urban Environments

    Science.gov (United States)

    Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.

    2014-12-01

    Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.

  10. An Energy-Efficient Target-Tracking Strategy for Mobile Sensor Networks.

    Science.gov (United States)

    Mahboubi, Hamid; Masoudimansour, Walid; Aghdam, Amir G; Sayrafian-Pour, Kamran

    2017-02-01

    In this paper, an energy-efficient strategy is proposed for tracking a moving target in an environment with obstacles, using a network of mobile sensors. Typically, the most dominant sources of energy consumption in a mobile sensor network are sensing, communication, and movement. The proposed algorithm first divides the field into a grid of sufficiently small cells. The grid is then represented by a graph whose edges are properly weighted to reflect the energy consumption of sensors. The proposed technique searches for near-optimal locations for the sensors in different time instants to route information from the target to destination, using a shortest path algorithm. Simulations confirm the efficacy of the proposed algorithm.

  11. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-09-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  12. Autonomous Deployment and Restoration of Sensor Network using Mobile Robots

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Suzuki

    2010-06-01

    Full Text Available This paper describes an autonomous deployment and restoration of a Wireless Sensor Network (WSN using mobile robots. The authors have been developing an information-gathering system using mobile robots and WSNs in underground spaces in post-disaster environments. In our system, mobile robots carry wireless sensor nodes (SN and deploy them into the environment while measuring Received Signal Strength Indication (RSSI values to ensure communication, thereby enabling the WSN to be deployed and restored autonomously. If the WSN is disrupted, mobile robots restore the communication route by deploying additional or alternate SNs to suitable positions. Utilizing the proposed method, a mobile robot can deploy a WSN and gather environmental information via the WSN. Experimental results using a verification system equipped with a SN deployment and retrieval mechanism are presented.

  13. Sleep Scheduling Schemes Based on Location of Mobile User in Sensor-Cloud

    OpenAIRE

    N. Mahendran; R. Priya

    2016-01-01

    The mobile cloud computing (MCC) with wireless sensor networks (WSNs) technology gets more attraction by research scholars because its combines the sensors data gathering ability with the cloud data processing capacity. This approach overcomes the limitation of data storage capacity and computational ability of sensor nodes. Finally, the stored data are sent to the mobile users when the user sends the request. The most of the integrated sensor-cloud schemes fail to observe the following crite...

  14. Alcohol control: Mobile sensor system and numerical signal analysis

    OpenAIRE

    Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens

    2016-01-01

    An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is ...

  15. Localization with a mobile beacon in underwater acoustic sensor networks.

    Science.gov (United States)

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  16. Localization with a Mobile Beacon in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangho Lee

    2012-04-01

    Full Text Available Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB. The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node’s location and then the node’s location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  17. Data Compression by Shape Compensation for Mobile Video Sensors

    Directory of Open Access Journals (Sweden)

    Ben-Shung Chow

    2009-04-01

    Full Text Available Most security systems, with their transmission bandwidth and computing power both being sufficient, emphasize their automatic recognition techniques. However, in some situations such as baby monitors and intruder avoidance by mobile sensors, the decision function sometimes can be shifted to the concerned human to reduce the transmission and computation cost. We therefore propose a binary video compression method in low resolution to achieve a low cost mobile video communication for inexpensive camera sensors. Shape compensation as proposed in this communication successfully replaces the standard Discrete Cosine Transformation (DCT after motion compensation.

  18. Java-based mobile agent platforms for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Carbone, A.; Fortino, G.; Galzarano, S.; Ganzha, M.; Paprzycki, M.

    2010-01-01

    This paper proposes an overview and comparison of mobile agent platforms for the development of wireless sensor network applications. In particular, the architecture, programming model and basic performance of two Java-based agent platforms, Mobile Agent Platform for Sun SPOT (MAPS) and Agent

  19. Potential use of ground-based sensor technologies for weed detection.

    Science.gov (United States)

    Peteinatos, Gerassimos G; Weis, Martin; Andújar, Dionisio; Rueda Ayala, Victor; Gerhards, Roland

    2014-02-01

    Site-specific weed management is the part of precision agriculture (PA) that tries to effectively control weed infestations with the least economical and environmental burdens. This can be achieved with the aid of ground-based or near-range sensors in combination with decision rules and precise application technologies. Near-range sensor technologies, developed for mounting on a vehicle, have been emerging for PA applications during the last three decades. These technologies focus on identifying plants and measuring their physiological status with the aid of their spectral and morphological characteristics. Cameras, spectrometers, fluorometers and distance sensors are the most prominent sensors for PA applications. The objective of this article is to describe-ground based sensors that have the potential to be used for weed detection and measurement of weed infestation level. An overview of current sensor systems is presented, describing their concepts, results that have been achieved, already utilized commercial systems and problems that persist. A perspective for the development of these sensors is given. © 2013 Society of Chemical Industry.

  20. Coverage Improvement for Wireless Sensor Networks using Grid Quorum based Node Mobility

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2012-01-01

    Coverage of wireless sensor networks (WSNs) is an important quality of service (QoS) metric and often the desired coverage is not attainable at the initial deployment, but node mobility can be used to improve the coverage by relocating sensor nodes. Unconstrained node mobility is considered infea...

  1. An Intelligent Cooperative Visual Sensor Network for Urban Mobility.

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco

    2017-11-10

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  2. Time response for sensor sensed to actuator response for mobile robotic system

    Science.gov (United States)

    Amir, N. S.; Shafie, A. A.

    2017-11-01

    Time and performance of a mobile robot are very important in completing the tasks given to achieve its ultimate goal. Tasks may need to be done within a time constraint to ensure smooth operation of a mobile robot and can result in better performance. The main purpose of this research was to improve the performance of a mobile robot so that it can complete the tasks given within time constraint. The problem that is needed to be solved is to minimize the time interval between sensor detection and actuator response. The research objective is to analyse the real time operating system performance of sensors and actuators on one microcontroller and on two microcontroller for a mobile robot. The task for a mobile robot for this research is line following with an obstacle avoidance. Three runs will be carried out for the task and the time between the sensors senses to the actuator responses were recorded. Overall, the results show that two microcontroller system have better response time compared to the one microcontroller system. For this research, the average difference of response time is very important to improve the internal performance between the occurrence of a task, sensors detection, decision making and actuator response of a mobile robot. This research helped to develop a mobile robot with a better performance and can complete task within the time constraint.

  3. Strategies for a better performance of RPL under mobility in wireless sensor networks

    Science.gov (United States)

    Latib, Z. A.; Jamil, A.; Alduais, N. A. M.; Abdullah, J.; Audah, L. H. M.; Alias, R.

    2017-09-01

    A Wireless Sensor Network (WSN) is usually stationary, which the network comprises of static nodes. The increase demand for mobility in various applications such as environmental monitoring, medical, home automation, and military, raises the question how IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) would perform under these mobility applications. This paper aims to understand performance of RPL and come out with strategies for a better performance of RPL in mobility scenarios. Because of this, this paper evaluates the performance of the RPL protocol under three different scenarios: sink and sensor nodes are static, static sink and mobile sensor nodes, and sink and sensor nodes are mobile. The network scenarios are implemented in Cooja simulator. A WSN consists of 25 sensor nodes and one sink node is configured in the simulation environment. The simulation is varied over different packet rates and ContikiMAC's Clear Channel Assessment (CCA) rate. As the performance metric, RPL is evaluated in term of packet delivery ratio (PDR), power consumption and packet rates. The simulation results show RPL provides a poor PDR in the mobility scenarios when compared to the static scenario. In addition, RPL consumes more power and increases duty-cycle rate to support mobility when compared to the static scenario. Based on the findings, we suggest three strategies for a better performance of RPL in mobility scenarios. First, RPL should operates at a lower packet rates when implemented in the mobility scenarios. Second, RPL should be implemented with a higher duty-cycle rate. Lastly, the sink node should be positioned as much as possible in the center of the mobile network.

  4. Human movement activity classification approaches that use wearable sensors and mobile devices

    Science.gov (United States)

    Kaghyan, Sahak; Sarukhanyan, Hakob; Akopian, David

    2013-03-01

    Cell phones and other mobile devices become part of human culture and change activity and lifestyle patterns. Mobile phone technology continuously evolves and incorporates more and more sensors for enabling advanced applications. Latest generations of smart phones incorporate GPS and WLAN location finding modules, vision cameras, microphones, accelerometers, temperature sensors etc. The availability of these sensors in mass-market communication devices creates exciting new opportunities for data mining applications. Particularly healthcare applications exploiting build-in sensors are very promising. This paper reviews different approaches of human activity recognition.

  5. Mobile platform sampling for designing environmental sensor networks.

    Science.gov (United States)

    Budi, Setia; de Souza, Paulo; Timms, Greg; Susanto, Ferry; Malhotra, Vishv; Turner, Paul

    2018-02-09

    This paper proposes a method to design the deployment of sensor nodes in a new region where historical data is not available. A number of mobile platforms are simulated to build initial knowledge of the region. Further, an evolutionary algorithm is employed to find the optimum placement of a given number of sensor nodes that best represents the region of interest.

  6. Efficient Hybrid Detection of Node Replication Attacks in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2017-01-01

    Full Text Available The node replication attack is one of the notorious attacks that can be easily launched by adversaries in wireless sensor networks. A lot of literatures have studied mitigating the node replication attack in static wireless sensor networks. However, it is more difficult to detect the replicas in mobile sensor networks because of their node mobility. Considering the limitations of centralized detection schemes for static wireless sensor networks, a few distributed solutions have been recently proposed. Some existing schemes identified replicated attacks by sensing mobile nodes with identical ID but different locations. To facilitate the discovery of contradictory conflicts, we propose a hybrid local and global detection method. The local detection is performed in a local area smaller than the whole deployed area to improve the meeting probability of contradictory nodes, while the distant replicated nodes in larger area can also be efficiently detected by the global detection. The complementary two levels of detection achieve quick discovery by searching of the replicas with reasonable overhead.

  7. Mobility-based Time References for Wireless Sensor Networks

    CERN Document Server

    Sebastiano, Fabio; Makinwa, Kofi A A

    2013-01-01

     This book describes the use of low-power low-cost and extremely small radios to provide essential time reference for wireless sensor networks.  The authors explain how to integrate such radios in a standard CMOS process to reduce both cost and size, while focusing on the challenge of designing a fully integrated time reference for such radios. To enable the integration of the time reference, system techniques are proposed and analyzed, several kinds of integrated time references are reviewed, and mobility-based references are identified as viable candidates to provide the required accuracy at low-power consumption. Practical implementations of a mobility-based oscillator and a temperature sensor are also presented, which demonstrate the required accuracy over a wide temperature range, while drawing 51-uW from a 1.2-V supply in a 65-nm CMOS process. Provides system analysis to understand requirements for time/frequency accuracy in wireless sensor networks; Describes system optimization for time references i...

  8. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents.

    Science.gov (United States)

    Wu, Chunxue; Wu, Wenliang; Wan, Caihua; Bekkering, Ernst; Xiong, Naixue

    2017-11-03

    Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications.

  9. Sensor fusion for mobile robot navigation

    International Nuclear Information System (INIS)

    Kam, M.; Zhu, X.; Kalata, P.

    1997-01-01

    The authors review techniques for sensor fusion in robot navigation, emphasizing algorithms for self-location. These find use when the sensor suite of a mobile robot comprises several different sensors, some complementary and some redundant. Integrating the sensor readings, the robot seeks to accomplish tasks such as constructing a map of its environment, locating itself in that map, and recognizing objects that should be avoided or sought. The review describes integration techniques in two categories: low-level fusion is used for direct integration of sensory data, resulting in parameter and state estimates; high-level fusion is used for indirect integration of sensory data in hierarchical architectures, through command arbitration and integration of control signals suggested by different modules. The review provides an arsenal of tools for addressing this (rather ill-posed) problem in machine intelligence, including Kalman filtering, rule-based techniques, behavior based algorithms and approaches that borrow from information theory, Dempster-Shafer reasoning, fuzzy logic and neural networks. It points to several further-research needs, including: robustness of decision rules; simultaneous consideration of self-location, motion planning, motion control and vehicle dynamics; the effect of sensor placement and attention focusing on sensor fusion; and adaptation of techniques from biological sensor fusion

  10. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-01-01

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period. PMID:26389903

  11. Adaptive Data Gathering in Mobile Sensor Networks Using Speedy Mobile Elements.

    Science.gov (United States)

    Lai, Yongxuan; Xie, Jinshan; Lin, Ziyu; Wang, Tian; Liao, Minghong

    2015-09-15

    Data gathering is a key operator for applications in wireless sensor networks; yet it is also a challenging problem in mobile sensor networks when considering that all nodes are mobile and the communications among them are opportunistic. This paper proposes an efficient data gathering scheme called ADG that adopts speedy mobile elements as the mobile data collector and takes advantage of the movement patterns of the network. ADG first extracts the network meta-data at initial epochs, and calculates a set of proxy nodes based on the meta-data. Data gathering is then mapped into the Proxy node Time Slot Allocation (PTSA) problem that schedules the time slots and orders, according to which the data collector could gather the maximal amount of data within a limited period. Finally, the collector follows the schedule and picks up the sensed data from the proxy nodes through one hop of message transmissions. ADG learns the period when nodes are relatively stationary, so that the collector is able to pick up the data from them during the limited data gathering period. Moreover, proxy nodes and data gathering points could also be timely updated so that the collector could adapt to the change of node movements. Extensive experimental results show that the proposed scheme outperforms other data gathering schemes on the cost of message transmissions and the data gathering rate, especially under the constraint of limited data gathering period.

  12. Social-Driven Information Dissemination for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Basim MAHMOOD

    2015-06-01

    Full Text Available As we move into the so-called Internet of Things (IoT, the boundary between sensor networks and social networks is likely to disappear. Moreover, previous works argue that mobility in sensor networks may become a consequence of human movement making the understanding of human mobility crucial to the design of sensor networks. When people carry sensors, they become able to use concepts from social networks in the design of sensor network infrastructures. However, to this date, the utilization of social networks in designing protocols for wireless sensor networks has not received much attention. In this paper, we focus on the concept of information dissemination in a framework where sensors are carried by people who, like most of us, are part of a social network. We propose two social-based forwarding approaches for what has been called Social Network of Sensors (SNoS. To this end, we exploit two important characteristics of ties in social networks, namely strong ties and weak ties. The former is used to achieve rapid dissemination to nearby sensors while the latter aims at dissemination to faraway sensors. We compared our results against two well-known approaches in the literature: Epidemic and PRoPHET protocols. We evaluate our approaches according to four criteria: information-dissemination distance, information-dissemination coverage area, the number of messages exchanged, and information delivery time. We believe this is the first work that investigates the issues of information-dissemination distance and information-dissemination coverage area using an approach inspired on social network concepts.

  13. Probabilistic Location-based Routing Protocol for Mobile Wireless Sensor Networks with Intermittent Communication

    Directory of Open Access Journals (Sweden)

    Sho KUMAGAI

    2015-02-01

    Full Text Available In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach IRDT-GEDIR with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that IRDT-GEDIR achieves higher pseudo speed of sensor data message transmissions and shorter transmission delay than achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node. In addition, the guideline of the estimated numbers of the neighbor nodes of each intermediate sensor node is provided based on the results of the simulation experiments to apply the probabilistic approach IRDT-GEDIR.

  14. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Science.gov (United States)

    Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea

    2017-01-01

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535

  15. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    Directory of Open Access Journals (Sweden)

    Giuseppe Riccardo Leone

    2017-11-01

    Full Text Available Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  16. Data Transmission Scheme Using Mobile Sink in Static Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2015-01-01

    Full Text Available Multihop communication in wireless sensor network (WSN brings new challenges in reliable data transmission. Recent work shows that data collection from sensor nodes using mobile sink minimizes multihop data transmission and improves energy efficiency. However, due to continuous movements, mobile sink has limited communication time to collect data from sensor nodes, which results in rapid depletion of node’s energy. Therefore, we propose a data transmission scheme that addresses the aforementioned constraints. The proposed scheme first finds out the group based region on the basis of localization information of the sensor nodes and predefined trajectory information of a mobile sink. After determining the group region in the network, selection of master nodes is made. The master nodes directly transmit their data to the mobile sink upon its arrival at their group region through restricted flooding scheme. In addition, the agent node concept is introduced for swapping of the role of the master nodes in each group region. The master node when consuming energy up to a certain threshold, neighboring node with second highest residual energy is selected as an agent node. The mathematical analysis shows that the selection of agent node maximizes the throughput while minimizing transmission delay in the network.

  17. 30 CFR 57.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 57.12027 Section 57.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Electricity...

  18. Estimating Human Predictability From Mobile Sensor Data

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Larsen, Jakob Eg; Jensen, Kristian

    2010-01-01

    Quantification of human behavior is of prime interest in many applications ranging from behavioral science to practical applications like GSM resource planning and context-aware services. As proxies for humans, we apply multiple mobile phone sensors all conveying information about human behavior....... Using a recent, information theoretic approach it is demonstrated that the trajectories of individual sensors are highly predictable given complete knowledge of the infinite past. We suggest using a new approach to time scale selection which demonstrates that participants have even higher predictability...

  19. Design and Analysis of a Data Fusion Scheme in Mobile Wireless Sensor Networks Based on Multi-Protocol Mobile Agents

    Directory of Open Access Journals (Sweden)

    Chunxue Wu

    2017-11-01

    Full Text Available Sensors are increasingly used in mobile environments with wireless network connections. Multiple sensor types measure distinct aspects of the same event. Their measurements are then combined to produce integrated, reliable results. As the number of sensors in networks increases, low energy requirements and changing network connections complicate event detection and measurement. We present a data fusion scheme for use in mobile wireless sensor networks with high energy efficiency and low network delays, that still produces reliable results. In the first phase, we used a network simulation where mobile agents dynamically select the next hop migration node based on the stability parameter of the link, and perform the data fusion at the migration node. Agents use the fusion results to decide if it should return the fusion results to the processing center or continue to collect more data. In the second phase. The feasibility of data fusion at the node level is confirmed by an experimental design where fused data from color sensors show near-identical results to actual physical temperatures. These results are potentially important for new large-scale sensor network applications.

  20. Sensor city mobility. Innovaties in mobiliteit kansrijk voor stedelijke regio's

    NARCIS (Netherlands)

    Burgmeijer, J.W.

    2014-01-01

    Slimmer omgaan met informatie uit sensoren loont. Dat is de uitkomst van het innovatieproject Sensor City Mobility. Van 2010 tot 2014 was 'sensor city' Assen een living lab voor dit project. Het project beoogde een innovatieslag in reisinformatie- en verkeersmanagementdiensten. Het project is

  1. Mobile Sensor Networks for Inspection Tasks in Harsh Industrial Environments

    NARCIS (Netherlands)

    Mulder, Jacob; Wang, Xinyu; Ferwerda, Franke; Cao, Ming

    Recent advances in sensor technology have enabled the fast development of mobile sensor networks operating in various unknown and sometimes hazardous environments. In this paper, we introduce one integrative approach to design, analyze and test distributed control algorithms to coordinate a network

  2. Alcohol Control: Mobile Sensor System and Numerical Signal Analysis

    Directory of Open Access Journals (Sweden)

    Rolf SEIFERT

    2016-10-01

    Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.

  3. 30 CFR 56.12027 - Grounding mobile equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding mobile equipment. 56.12027 Section 56.12027 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56...

  4. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  5. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  6. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Directory of Open Access Journals (Sweden)

    Anton Kos

    2016-04-01

    Full Text Available Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models.

  7. Animals as Mobile Biological Sensors for Forest Fire Detection

    Directory of Open Access Journals (Sweden)

    Yasar Guneri Sahin

    2007-12-01

    Full Text Available This paper proposes a mobile biological sensor system that can assist in earlydetection of forest fires one of the most dreaded natural disasters on the earth. The main ideapresented in this paper is to utilize animals with sensors as Mobile Biological Sensors(MBS. The devices used in this system are animals which are native animals living inforests, sensors (thermo and radiation sensors with GPS features that measure thetemperature and transmit the location of the MBS, access points for wireless communicationand a central computer system which classifies of animal actions. The system offers twodifferent methods, firstly: access points continuously receive data about animals’ locationusing GPS at certain time intervals and the gathered data is then classified and checked tosee if there is a sudden movement (panic of the animal groups: this method is called animalbehavior classification (ABC. The second method can be defined as thermal detection(TD: the access points get the temperature values from the MBS devices and send the datato a central computer to check for instant changes in the temperatures. This system may beused for many purposes other than fire detection, namely animal tracking, poachingprevention and detecting instantaneous animal death.

  8. An Effective Collaborative Mobile Weighted Clustering Schemes for Energy Balancing in Wireless Sensor Networks.

    Science.gov (United States)

    Tang, Chengpei; Shokla, Sanesy Kumcr; Modhawar, George; Wang, Qiang

    2016-02-19

    Collaborative strategies for mobile sensor nodes ensure the efficiency and the robustness of data processing, while limiting the required communication bandwidth. In order to solve the problem of pipeline inspection and oil leakage monitoring, a collaborative weighted mobile sensing scheme is proposed. By adopting a weighted mobile sensing scheme, the adaptive collaborative clustering protocol can realize an even distribution of energy load among the mobile sensor nodes in each round, and make the best use of battery energy. A detailed theoretical analysis and experimental results revealed that the proposed protocol is an energy efficient collaborative strategy such that the sensor nodes can communicate with a fusion center and produce high power gain.

  9. Rancang Bangun Aplikasi Perepresentasian Data Perilaku Pengemudi Mobil Berbasis Android Menggunakan Sensor Accelerometer dan Orientation

    Directory of Open Access Journals (Sweden)

    Muhammad Dery Rahma

    2017-01-01

    Full Text Available Semakin meningkatnya popularitas smartphone dari tahun ke tahun, semakin meningkat pula jumlah aplikasi perangkat bergerak yang berkaitan dengan keamanan dalam berkemudi. Oleh karena itu, diperlukan aplikasi perangkat bergerak lain yang dapat mendeteksi pergerakan mobil yang normal dan berbahaya menggunakan sensor accelerometer dan orientation yang berasal dari smartphone serta tanpa memerlukan sensor hardware tambahan. Arsitektur aplikasi perangkat bergerak ini berbasis client-server, dimana web service melayani permintaan dari aplikasi client berbasis Android. Aplikasi ini juga menggabungkan beberapa teknologi lain seperti Geolocation API, Geocoding API, dan Android Sensor API. Teknologi-teknologi tersebut digunakan untuk mengetahui kecepatan mobil, lokasi terkini dari pengemudi, dan merekam pola gerakan mobil melalui representasi nilai-nilai sensor accelerometer dan orientation.Tujuan dari dikembangkannya aplikasi perangkat bergerak untuk tugas akhir ini adalah untuk membantu pihak kepolisian lalu lintas dalam mendapatkan data pergerakan mobil berupa raw data 2-axis yang direkam oleh sensor accelerometer dan orientation pada smartphone Android ketika pengemudi mengendarai mobil. Data-data tersebut nantinya digunakan untuk membantu mendeteksi riwayat pola berkendara seorang pengemudi.

  10. Routing in Mobile Wireless Sensor Networks: A Leader-Based Approach.

    Science.gov (United States)

    Burgos, Unai; Amozarrain, Ugaitz; Gómez-Calzado, Carlos; Lafuente, Alberto

    2017-07-07

    This paper presents a leader-based approach to routing in Mobile Wireless Sensor Networks (MWSN). Using local information from neighbour nodes, a leader election mechanism maintains a spanning tree in order to provide the necessary adaptations for efficient routing upon the connectivity changes resulting from the mobility of sensors or sink nodes. We present two protocols following the leader election approach, which have been implemented using Castalia and OMNeT++. The protocols have been evaluated, besides other reference MWSN routing protocols, to analyse the impact of network size and node velocity on performance, which has demonstrated the validity of our approach.

  11. Hop-by-HopWorm Propagation with Carryover Epidemic Model in Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jun-Won Ho

    2015-10-01

    Full Text Available In the internet, a worm is usually propagated in a random multi-hop contact manner. However, the attacker will not likely select this random multi-hop propagation approach in a mobile sensor network. This is because multi-hop worm route paths to random vulnerable targets can be often breached due to node mobility, leading to failure of fast worm spread under this strategy. Therefore, an appropriate propagation strategy is needed for mobile sensor worms. To meet this need, we discuss a hop-by-hop worm propagation model in mobile sensor networks. In a hop-by-hop worm propagation model, benign nodes are infected by worm in neighbor-to-neighbor spread manner. Since worm infection occurs in hop-by-hop contact, it is not substantially affected by a route breach incurred by node mobility. We also propose the carryover epidemic model to deal with the worm infection quota deficiency that might occur when employing an epidemic model in a mobile sensor network. We analyze worm infection capability under the carryover epidemic model. Moreover, we simulate hop-by-hop worm propagation with carryover epidemic model by using an ns-2 simulator. The simulation results demonstrate that infection quota carryovers are seldom observed where a node’s maximum speed is no less than 20 m/s.

  12. iShake: Mobile Phones as Seismic Sensors (Invited)

    Science.gov (United States)

    Dashti, S.; Reilly, J.; Bray, J. D.; Bayen, A. M.; Glaser, S. D.; Mari, E.

    2010-12-01

    Emergency responders must “see” the effects of an earthquake clearly and rapidly so that they can respond effectively to the damage it has produced. Great strides have been made recently in developing methodologies that deliver rapid and accurate post-earthquake information. However, shortcomings still exist. The iShake project is an innovative use of cell phones and information technology to bridge the gap between the high quality, but sparse, ground motion instrument data that are used to help develop ShakeMap and the low quality, but large quantity, human observational data collected to construct a “Did You Feel It?” (DYFI)-based map. Rather than using people as measurement “devices” as is being done through DYFI, the iShake project is using their cell phones to measure ground motion intensity parameters and automatically deliver the data to the U.S. Geological Survey (USGS) for processing and dissemination. In this participatory sensing paradigm, quantitative shaking data from numerous cellular phones will enable the USGS to produce shaking intensity maps more accurately than presently possible. The phone sensor, however, is an imperfect device with performance variations among phones of a given model as well as between models. The sensor is the entire phone, not just the micro-machined transducer inside. A series of 1-D and 3-D shaking table tests were performed at UC San Diego and UC Berkeley, respectively, to evaluate the performance of a class of cell phones. In these tests, seven iPhones and iPod Touch devices that were mounted at different orientations were subjected to 124 earthquake ground motions to characterize their response and reliability as seismic sensors. The testing also provided insight into the seismic response of unsecured and falling instruments. The cell phones measured seismic parameters such as peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and 5% damped spectral accelerations well

  13. Low-Cost Ground Sensor Network for Intrusion Detection

    Science.gov (United States)

    2017-09-01

    their suitability to our research. 1. Wireless Sensor Networks The backend network infrastructure forms the communication links for the network...were not ideal as they were perpetually turned on. Our research considered the backend communication infrastructure and its power requirements when...7 3. Border Patrol— Mobile Situation Awareness Tool (MSAT

  14. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... such as Average Energy consumption, Control Overhead, Reaction Time, LQI, and HOP Count. The authors study the influence of energy heterogeneity and mobility of sensor nodes on the performance of EMRP. The Performance of EMRP compared with Simple Hybrid Routing Protocol (SHRP) and Dynamic Multi-Objective Routing...

  15. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  16. A Reliable Handoff Mechanism for Mobile Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Jian; Yang, Dong; Zhang, Hongke; Gidlund, Mikael

    2017-08-04

    With the prevalence of low-power wireless devices in industrial applications, concerns about timeliness and reliability are bound to continue despite the best efforts of researchers to design Industrial Wireless Sensor Networks (IWSNs) to improve the performance of monitoring and control systems. As mobile devices have a major role to play in industrial production, IWSNs should support mobility. However, research on mobile IWSNs and practical tests have been limited due to the complicated resource scheduling and rescheduling compared with traditional wireless sensor networks. This paper proposes an effective mechanism to guarantee the performance of handoff, including a mobility-aware scheme, temporary connection and quick registration. The main contribution of this paper is that the proposed mechanism is implemented not only in our testbed but in a real industrial environment. The results indicate that our mechanism not only improves the accuracy of handoff triggering, but also solves the problem of ping-pong effect during handoff. Compared with the WirelessHART standard and the RSSI-based approach, our mechanism facilitates real-time communication while being more reliable, which can help end-to-end packet delivery remain an average of 98.5% in the scenario of mobile IWSNs.

  17. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  18. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-01-01

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439

  19. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.

    Science.gov (United States)

    Chen, Jing; Cao, Ruochen; Wang, Yongtian

    2015-12-10

    Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  20. Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-12-01

    Full Text Available Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.

  1. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  2. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM of Mobile Sensor Computing Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-03-01

    Full Text Available As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude, engagement and electronic word of mouth (eWOM behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand relationships.

  3. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  4. Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2016-01-01

    Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.

  5. Learning Mobility: Adaptive Control Algorithms for the Novel Unmanned Ground Vehicle (NUGV)

    National Research Council Canada - National Science Library

    Blackburn, Mike

    2003-01-01

    Mobility is a serious limiting factor in the usefulness of unmanned ground vehicles, This paper contains a description of our approach to develop control algorithms for the Novel Unmanned Ground Vehicle (NUGV...

  6. A Comprehensive Study of Data Collection Schemes Using Mobile Sinks in Wireless Sensor Networks

    Science.gov (United States)

    Khan, Abdul Waheed; Abdullah, Abdul Hanan; Anisi, Mohammad Hossein; Bangash, Javed Iqbal

    2014-01-01

    Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink. PMID:24504107

  7. DE-Sync: A Doppler-Enhanced Time Synchronization for Mobile Underwater Sensor Networks.

    Science.gov (United States)

    Zhou, Feng; Wang, Qi; Nie, DongHu; Qiao, Gang

    2018-05-25

    Time synchronization is the foundation of cooperative work among nodes of underwater sensor networks; it takes a critical role in the research and application of underwater sensor networks. Although numerous time synchronization protocols have been proposed for terrestrial wireless sensor networks, they cannot be directly applied to underwater sensor networks. This is because most of them typically assume that the propagation delay among sensor nodes is negligible, which is not the case in underwater sensor networks. Time synchronization is mainly affected by a long propagation delay among sensor nodes due to the low propagation speed of acoustic signals. Furthermore, sensor nodes in underwater tend to experience some degree of mobility due to wind or ocean current, or some other nodes are on self-propelled vehicles, such as autonomous underwater vehicles (AUVs). In this paper, we propose a Doppler-enhanced time synchronization scheme for mobile underwater sensor networks, called DE-Sync. Our new scheme considers the effect of the clock skew during the process of estimating the Doppler scale factor and directly substitutes the Doppler scale factor into linear regression to achieve the estimation of the clock skew and offset. Simulation results show that DE-Sync outperforms existing time synchronization protocols in both accuracy and energy efficiency.

  8. TARDEC Overview: Ground Vehicle Power and Mobility

    Science.gov (United States)

    2011-02-04

    Fuel & Water Distribution • Force Sustainment • Construction Equipment • Bridging • Assured Mobility Systems Robotics • TALON • PackBot • MARCbot...Equipment • Mechanical Countermine Equipment • Tactical Bridging Intelligent Ground Systems • Autonomous Robotics Systems • Safe Operations...Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT) • Electro-chemical Analysis and Research Lab (EARL) • Battery Lab • Air

  9. Cost Benefit Analysis of Utilising Mobile Nodes in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Mathur, Prateek; Nielsen, Rasmus Hjorth; Prasad, Neeli R.

    2015-01-01

    Mobile nodes have been found useful for improving performance of network parameters such as coverage, data latency and load balancing in wireless sensor networks (WSNs). In spite of the benets which mobile nodes could oer when used in WSNs, they have been often stated as infeasible for use...

  10. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    Science.gov (United States)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  11. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    Directory of Open Access Journals (Sweden)

    Youxian Sung

    2007-10-01

    Full Text Available Wireless sensor/actuator networks (WSANs are emerging as a new generationof sensor networks. Serving as the backbone of control applications, WSANs will enablean unprecedented degree of distributed and mobile control. However, the unreliability ofwireless communications and the real-time requirements of control applications raise greatchallenges for WSAN design. With emphasis on the reliability issue, this paper presents anapplication-level design methodology for WSANs in mobile control applications. Thesolution is generic in that it is independent of the underlying platforms, environment,control system models, and controller design. To capture the link quality characteristics interms of packet loss rate, experiments are conducted on a real WSAN system. From theexperimental observations, a simple yet efficient method is proposed to deal withunpredictable packet loss on actuator nodes. Trace-based simulations give promisingresults, which demonstrate the effectiveness of the proposed approach.

  12. Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application

    Directory of Open Access Journals (Sweden)

    Malin Premaratne

    2009-01-01

    Full Text Available Measurement losses adversely affect the performance of target tracking. The sensor network’s life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node’s path. First, we assume that the mobile sink node’s position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods’ performance.

  13. Mobile robot multi-sensor unit for unsupervised gas discrimination in uncontrolled environments

    OpenAIRE

    Xing, Yuxin; Vincent, Timothy A.; Cole, Marina; Gardner, Julian W.; Fan, Han; Hernandez Bennetts, Victor; Schaffernicht, Erik; Lilienthal, Achim

    2017-01-01

    In this work we present a novel multi-sensor unit to detect and discriminate unknown gases in uncontrolled environments. The unit includes three metal oxide (MOX) sensors with CMOS micro heaters, a plasmonic enhanced non-dispersive infra-red (NDIR) sensor, a commercial temperature humidity sensor, and a flow sensor. The proposed sensing unit was evaluated with plumes of gases (propanol, ethanol and acetone) in both, a laboratory setup on a gas testing bench and on-board a mobile robot operati...

  14. Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks.

    Science.gov (United States)

    Han, Yongkoo; Park, Kisung; Hong, Jihye; Ulamin, Noor; Lee, Young-Koo

    2015-07-27

    The κ-Nearest Neighbors ( κNN) query is an important spatial query in mobile sensor networks. In this work we extend κNN to include a distance constraint, calling it a l-distant κ-nearest-neighbors (l-κNN) query, which finds the κ sensor nodes nearest to a query point that are also at or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The l-κNN query can be used in most κNN applications for the case of well distributed query results. To process an l-κNN query, we must discover all sets of κNN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance l. Given the limited battery and computing power of sensor nodes, this l-κNN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for l-κNN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are l. By selecting κ sensor nodes from the other subspaces near the query point, we guarantee accurate query results for l-κNN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the κNN query in terms of energy efficiency, query latency, and accuracy.

  15. Detecting unknown attacks in wireless sensor networks that contain mobile nodes.

    Science.gov (United States)

    Banković, Zorana; Fraga, David; Moya, José M; Vallejo, Juan Carlos

    2012-01-01

    As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.

  16. Privacy-preserving data aggregation in two-tiered wireless sensor networks with mobile nodes.

    Science.gov (United States)

    Yao, Yonglei; Liu, Jingfa; Xiong, Neal N

    2014-11-10

    Privacy-preserving data aggregation in wireless sensor networks (WSNs) with mobile nodes is a challenging problem, as an accurate aggregation result should be derived in a privacy-preserving manner, under the condition that nodes are mobile and have no pre-specified keys for cryptographic operations. In this paper, we focus on the SUM aggregation function and propose two privacy-preserving data aggregation protocols for two-tiered sensor networks with mobile nodes: Privacy-preserving Data Aggregation against non-colluded Aggregator and Sink (PDAAS) and Privacy-preserving Data Aggregation against Colluded Aggregator and Sink (PDACAS). Both protocols guarantee that the sink can derive the SUM of all raw sensor data but each sensor's raw data is kept confidential. In PDAAS, two keyed values are used, one shared with the sink and the other shared with the aggregator. PDAAS can protect the privacy of sensed data against external eavesdroppers, compromised sensor nodes, the aggregator or the sink, but fails if the aggregator and the sink collude. In PDACAS, multiple keyed values are used in data perturbation, which are not shared with the aggregator or the sink. PDACAS can protect the privacy of sensor nodes even the aggregator and the sink collude, at the cost of a little more overhead than PDAAS. Thorough analysis and experiments are conducted, which confirm the efficacy and efficiency of both schemes.

  17. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    Science.gov (United States)

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  18. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    Science.gov (United States)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  19. THE PERFORMANCE ANALYSIS OF AN INDOOR MOBILE MAPPING SYSTEM WITH RGB-D SENSOR

    Directory of Open Access Journals (Sweden)

    G. J. Tsai

    2015-08-01

    Full Text Available Over the years, Mobile Mapping Systems (MMSs have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM. The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU, the Kinect RGB-D sensor and light detection, ranging (LIDAR and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  20. Automatic tracking of wake vortices using ground-wind sensor data

    Science.gov (United States)

    1977-01-03

    Algorithms for automatic tracking of wake vortices using ground-wind anemometer : data are developed. Methods of bad-data suppression, track initiation, and : track termination are included. An effective sensor-failure detection-and identification : ...

  1. A Multiple Mobility Support Approach (MMSA Based on PEAS for NCW in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Bong-Joo Koo

    2011-01-01

    Full Text Available Wireless Sensor Networks (WSNs can be implemented as one of sensor systems in Network Centric Warfare (NCW. Mobility support and energy efficiency are key concerns for this application, due to multiple mobile users and stimuli in real combat field. However, mobility support approaches that can be adopted in this circumstance are rare. This paper proposes Multiple Mobility Support Approach (MMSA based on Probing Environment and Adaptive Sleeping (PEAS to support the simultaneous mobility of both multiple users and stimuli by sharing the information of stimuli in WSNs. Simulations using Qualnet are conducted, showing that MMSA can support multiple mobile users and stimuli with good energy efficiency. It is expected that the proposed MMSA can be applied to real combat field.

  2. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study

    Science.gov (United States)

    Saeb, Sohrab; Zhang, Mi; Karr, Christopher J; Schueller, Stephen M; Corden, Marya E; Kording, Konrad P

    2015-01-01

    Background Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful in monitoring behavioral patterns that might be indicative of depressive symptoms. Objective The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity. Methods A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis. At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features were developed and extracted from GPS location and phone usage data. Results A number of features from GPS data were related to depressive symptom severity, including circadian movement (regularity in 24-hour rhythm; r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58, P=.012), and location variance (GPS mobility independent of location; r=-.58, P=.012). Phone usage features, usage duration, and usage frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score mobile phone sensor data, including GPS and phone usage, provided behavioral markers that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including continuous monitoring of at-risk populations with

  3. An energy efficient multiple mobile sinks based routing algorithm for wireless sensor networks

    Science.gov (United States)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    With the fast development of wireless sensor networks (WSNs), more and more energy efficient routing algorithms have been proposed. However, one of the research challenges is how to alleviate the hot spot problem since nodes close to static sink (or base station) tend to die earlier than other sensors. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we mainly study the energy efficient routing method with multiple mobile sinks support. We divide the whole network into several clusters and study the influence of mobile sink number on network lifetime. Simulation results show that the best network performance appears when mobile sink number is about 3 under our simulation environment.

  4. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    Science.gov (United States)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  5. Unmanned Ground Vehicle Navigation and Coverage Hole Patching in Wireless Sensor Networks

    Science.gov (United States)

    Zhang, Guyu

    2013-01-01

    This dissertation presents a study of an Unmanned Ground Vehicle (UGV) navigation and coverage hole patching in coordinate-free and localization-free Wireless Sensor Networks (WSNs). Navigation and coverage maintenance are related problems since coverage hole patching requires effective navigation in the sensor network environment. A…

  6. Mobility and Heterogeneity Aware Cluster-Based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2016-01-01

    Internet of things (IoT) is the modern era, which offers a variety of novel applications for mobile targets and opens the new domains for the distributed data aggregations using Wireless Sensor Networks (WSNs). However, low cost tiny sensors used for network formation generate the large amount...

  7. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  8. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    Science.gov (United States)

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  9. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2014-08-01

    Full Text Available Traffic patterns in wireless sensor networks (WSNs usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  10. Design and evaluation of a telemonitoring concept based on NFC-enabled mobile phones and sensor devices.

    Science.gov (United States)

    Morak, Jürgen; Kumpusch, Hannes; Hayn, Dieter; Modre-Osprian, Robert; Schreier, Günter

    2012-01-01

    Utilization of information and communication technologies such as mobile phones and wireless sensor networks becomes more and more common in the field of telemonitoring for chronic diseases. Providing elderly people with a mobile-phone-based patient terminal requires a barrier-free design of the overall user interface including the setup of wireless communication links to sensor devices. To easily manage the connection between a mobile phone and wireless sensor devices, a concept based on the combination of Bluetooth and near-field communication technology has been developed. It allows us initiating communication between two devices just by bringing them close together for a few seconds without manually configuring the communication link. This concept has been piloted with a sensor device and evaluated in terms of usability and feasibility. Results indicate that this solution has the potential to simplify the handling of wireless sensor networks for people with limited technical skills.

  11. Fuzzy Mobile-Robot Positioning in Intelligent Spaces Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    David Herrero

    2011-11-01

    Full Text Available This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using Wireless Sensor Networks (WSNs. The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  12. Distributed estimation and control for mobile sensor networks with coupling delays.

    Science.gov (United States)

    Su, Housheng; Chen, Xuan; Chen, Michael Z Q; Wang, Lei

    2016-09-01

    This paper deals with the issue of distributed estimation and control for mobile sensor networks with coupling delays. Based on the Kalman-Consensus filter and the flocking algorithm, all mobile sensors move to a target to increase the quality of gathered data, and achieve consensus on the estimation values of the target in the presence of time-delay and noises. By applying an effective cascading Lyapunov method and matrix theory, stability analysis is carried out. Furthermore, a necessary condition for the convergence is presented via the boundary conditions of feedback coefficients. Some numerical examples are provided to validate the effectiveness of theoretical results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Delay-tolerant mobile network protocol for rice field monitoring using wireless sensor networks

    Science.gov (United States)

    Guitton, Alexandre; Andres, Frédéric; Cardoso, Jarbas Lopes; Kawtrakul, Asanee; Barbin, Silvio E.

    2015-10-01

    The monitoring of rice fields can improve productivity by helping farmers throughout the rice cultivation cycle, on various issues: when to harvest, when to treat the crops against disease, when to increase the water level, how to share observations and decisions made in a collaborative way, etc. In this paper, we propose an architecture to monitor a rice field by a wireless sensor network. Our architecture is based on static sensor nodes forming a disconnected network, and mobile nodes communicating with the sensor nodes in a delay-tolerant manner. The data collected by the static sensor nodes are transmitted to mobile nodes, which in turn transmit them to a gateway, connected to a database, for further analysis. We focus on the related architecture, as well as on the energy-efficient protocols intended to perform the data collection.

  14. A source-initiated on-demand routing algorithm based on the Thorup-Zwick theory for mobile wireless sensor networks.

    Science.gov (United States)

    Mao, Yuxin; Zhu, Ping

    2013-01-01

    The unreliability and dynamics of mobile wireless sensor networks make it hard to perform end-to-end communications. This paper presents a novel source-initiated on-demand routing mechanism for efficient data transmission in mobile wireless sensor networks. It explores the Thorup-Zwick theory to achieve source-initiated on-demand routing with time efficiency. It is able to find out shortest routing path between source and target in a network and transfer data in linear time. The algorithm is easy to be implemented and performed in resource-constrained mobile wireless sensor networks. We also evaluate the approach by analyzing its cost in detail. It can be seen that the approach is efficient to support data transmission in mobile wireless sensor networks.

  15. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M.

    2016-01-01

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized. PMID:27447630

  16. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-07-01

    Full Text Available The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  17. Kalman Filters in Geotechnical Monitoring of Ground Subsidence Using Data from MEMS Sensors.

    Science.gov (United States)

    Li, Cheng; Azzam, Rafig; Fernández-Steeger, Tomás M

    2016-07-19

    The fast development of wireless sensor networks and MEMS make it possible to set up today real-time wireless geotechnical monitoring. To handle interferences and noises from the output data, Kalman filter can be selected as a method to achieve a more realistic estimate of the observations. In this paper, a one-day wireless measurement using accelerometers and inclinometers was deployed on top of a tunnel section under construction in order to monitor ground subsidence. The normal vectors of the sensors were firstly obtained with the help of rotation matrices, and then be projected to the plane of longitudinal section, by which the dip angles over time would be obtained via a trigonometric function. Finally, a centralized Kalman filter was applied to estimate the tilt angles of the sensor nodes based on the data from the embedded accelerometer and the inclinometer. Comparing the results from two sensor nodes deployed away and on the track respectively, the passing of the tunnel boring machine can be identified from unusual performances. Using this method, the ground settlement due to excavation can be measured and a real-time monitoring of ground subsidence can be realized.

  18. Sensor Fusion and Model Verification for a Mobile Robot

    DEFF Research Database (Denmark)

    Bisgaard, Morten; Vinther, Dennis; Østergaard, Kasper Zinck

    2005-01-01

    This paper presents the results of modeling, sensor fusion and model verification for a four-wheel driven, four-wheel steered mobile robot moving in outdoor terrain. The model derived for the robot describes the actuator and wheel dynamics and the vehicle kinematics, and includes friction terms...

  19. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    Science.gov (United States)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  20. DESIGN AND DEVELOPMENT OF A MOBILE SENSOR BASED THE BLIND ASSISTANCE WAYFINDING SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Barati

    2015-12-01

    Full Text Available The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  1. Report on the Audit of Unattended Ground Sensor Systems

    Science.gov (United States)

    1991-02-26

    This final report on the Audit of Unattended Ground Sensor Systems is for your information and use. Comments on the draft were considered in...preparing the final report and changes have been made where appropriate. We performed the audit from February through August 1990. The objective was to

  2. Design of automatic mobile trolley using ultrasonic sensors

    Science.gov (United States)

    Dodi Suryanto, Eka; Siagian, Hendrik; Perangin-Angin, Despaleri; Sashanti, Rahayu; Yogen, Suthes

    2018-04-01

    An automatic mobile trolley was a prototype of wheel robot that serves as a trolley or shopping cart. This paper proposed an automatic mobile trolley using ultrasonic sensors. It can follow human movement automatically. It did not need to be encouraged or withdrawn. It would make an easier shopping for people as customers. The trolley controlled by a microcontroller module unit. It can stop, turn right, turn left, forward and backward. It can follow wherever they go, during they were in range. Based on the test results, the trolley succeeded to move forward by 80%, move backward 80%, turn left, 70%, turn right 70%, and stop 80%.

  3. Mobility-aware Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...... in maintaining the effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Mobility-aware Hybrid Synchronization Algorithm (MHS) which works on the formation of cluster based on spanning tree mechanism (SPT). Nodes used...... for formation of the network have random mobility and heterogeneous in terms of energy with static sink. The nodes in the cluster and cluster heads in the network are synchronized with the notion of global time scale. In the initial stage, the algorithm establishes the hierarchical structure of the network...

  4. Mobile Device Based Dynamic Key Management Protocols for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chin-Ling Chen

    2015-01-01

    Full Text Available In recent years, wireless sensor network (WSN applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.

  5. Adaptive multi-node multiple input and multiple output (MIMO) transmission for mobile wireless multimedia sensor networks.

    Science.gov (United States)

    Cho, Sunghyun; Choi, Ji-Woong; You, Cheolwoo

    2013-10-02

    Mobile wireless multimedia sensor networks (WMSNs), which consist of mobile sink or sensor nodes and use rich sensing information, require much faster and more reliable wireless links than static wireless sensor networks (WSNs). This paper proposes an adaptive multi-node (MN) multiple input and multiple output (MIMO) transmission to improve the transmission reliability and capacity of mobile sink nodes when they experience spatial correlation. Unlike conventional single-node (SN) MIMO transmission, the proposed scheme considers the use of transmission antennas from more than two sensor nodes. To find an optimal antenna set and a MIMO transmission scheme, a MN MIMO channel model is introduced first, followed by derivation of closed-form ergodic capacity expressions with different MIMO transmission schemes, such as space-time transmit diversity coding and spatial multiplexing. The capacity varies according to the antenna correlation and the path gain from multiple sensor nodes. Based on these statistical results, we propose an adaptive MIMO mode and antenna set switching algorithm that maximizes the ergodic capacity of mobile sink nodes. The ergodic capacity of the proposed scheme is compared with conventional SN MIMO schemes, where the gain increases as the antenna correlation and path gain ratio increase.

  6. Evaluation of Opportunistic Routing Algorithms on Opportunistic Mobile Sensor Networks with Infrastructure Assistance

    NARCIS (Netherlands)

    Le Viet Duc, L Duc; Scholten, Johan; Havinga, Paul J.M.

    2012-01-01

    Recently the increasing number of sensors integrated in smartphones, especially the iPhone and Android phones, has motivated the development of routing algorithms for Opportunistic Mobile Sensor Networks (OppMSNs). Although there are many existing opportunistic routing algorithms, researchers still

  7. VIBRATION SENSORS AND MICROELECTROMECHANICAL SYSTEM FOR MOBILE DEVICES SUCH AS ANALOGS, FOR EVALUATION OF VIBRATION OF ROTARY MACHINES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.

  8. Ground-based transmission line conductor motion sensor

    International Nuclear Information System (INIS)

    Jacobs, M.L.; Milano, U.

    1988-01-01

    A ground-based-conductor motion-sensing apparatus is provided for remotely sensing movement of electric-power transmission lines, particularly as would occur during the wind-induced condition known as galloping. The apparatus is comprised of a motion sensor and signal-generating means which are placed underneath a transmission line and will sense changes in the electric field around the line due to excessive line motion. The detector then signals a remote station when a conditioning of galloping is sensed. The apparatus of the present invention is advantageous over the line-mounted sensors of the prior art in that it is easier and less hazardous to install. The system can also be modified so that a signal will only be given when particular conditions, such as specific temperature range, large-amplitude line motion, or excessive duration of the line motion, are occurring

  9. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    Science.gov (United States)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization

  10. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    Directory of Open Access Journals (Sweden)

    Miguel Ramos

    2010-10-01

    Full Text Available We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS Ground Temperature Sensor (GTS, an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  11. An efficient schedule based data aggregation using node mobility for wireless sensor network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Pawar, Pranav M.; Prasad, Neeli R.

    2014-01-01

    In the Wireless Sensor Networks, (WSNs) a key challenge is to schedule the activities of the mobile node for improvement in throughput, energy consumption and delay. This paper proposes efficient schedule based data aggregation algorithm using node mobility (SDNM). It considers the cluster...

  12. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink.

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations.

  13. Modeling the Energy Performance of Event-Driven Wireless Sensor Network by Using Static Sink and Mobile Sink

    Science.gov (United States)

    Chen, Jiehui; Salim, Mariam B.; Matsumoto, Mitsuji

    2010-01-01

    Wireless Sensor Networks (WSNs) designed for mission-critical applications suffer from limited sensing capacities, particularly fast energy depletion. Regarding this, mobile sinks can be used to balance the energy consumption in WSNs, but the frequent location updates of the mobile sinks can lead to data collisions and rapid energy consumption for some specific sensors. This paper explores an optimal barrier coverage based sensor deployment for event driven WSNs where a dual-sink model was designed to evaluate the energy performance of not only static sensors, but Static Sink (SS) and Mobile Sinks (MSs) simultaneously, based on parameters such as sensor transmission range r and the velocity of the mobile sink v, etc. Moreover, a MS mobility model was developed to enable SS and MSs to effectively collaborate, while achieving spatiotemporal energy performance efficiency by using the knowledge of the cumulative density function (cdf), Poisson process and M/G/1 queue. The simulation results verified that the improved energy performance of the whole network was demonstrated clearly and our eDSA algorithm is more efficient than the static-sink model, reducing energy consumption approximately in half. Moreover, we demonstrate that our results are robust to realistic sensing models and also validate the correctness of our results through extensive simulations. PMID:22163503

  14. Energy-Aware Computation Offloading of IoT Sensors in Cloudlet-Based Mobile Edge Computing.

    Science.gov (United States)

    Ma, Xiao; Lin, Chuang; Zhang, Han; Liu, Jianwei

    2018-06-15

    Mobile edge computing is proposed as a promising computing paradigm to relieve the excessive burden of data centers and mobile networks, which is induced by the rapid growth of Internet of Things (IoT). This work introduces the cloud-assisted multi-cloudlet framework to provision scalable services in cloudlet-based mobile edge computing. Due to the constrained computation resources of cloudlets and limited communication resources of wireless access points (APs), IoT sensors with identical computation offloading decisions interact with each other. To optimize the processing delay and energy consumption of computation tasks, theoretic analysis of the computation offloading decision problem of IoT sensors is presented in this paper. In more detail, the computation offloading decision problem of IoT sensors is formulated as a computation offloading game and the condition of Nash equilibrium is derived by introducing the tool of a potential game. By exploiting the finite improvement property of the game, the Computation Offloading Decision (COD) algorithm is designed to provide decentralized computation offloading strategies for IoT sensors. Simulation results demonstrate that the COD algorithm can significantly reduce the system cost compared with the random-selection algorithm and the cloud-first algorithm. Furthermore, the COD algorithm can scale well with increasing IoT sensors.

  15. Ground and river water quality monitoring using a smartphone-based pH sensor

    Directory of Open Access Journals (Sweden)

    Sibasish Dutta

    2015-05-01

    Full Text Available We report here the working of a compact and handheld smartphone-based pH sensor for monitoring of ground and river water quality. Using simple laboratory optical components and the camera of the smartphone, we develop a compact spectrophotometer which is operational in the wavelength range of 400-700 nm and having spectral resolution of 0.305 nm/pixel for our equipment. The sensor measures variations in optical absorption band of pH sensitive dye sample in different pH solutions. The transmission image spectra through a transmission grating gets captured by the smartphone, and subsequently converted into intensity vs. wavelengths. Using the designed sensor, we measure water quality of ground water and river water from different locations in Assam and the results are found to be reliable when compared with the standard spectrophotometer tool. The overall cost involved for development of the sensor is relatively low. We envision that the designed sensing technique could emerge as an inexpensive, compact and portable pH sensor that would be useful for in-field applications.

  16. Mobile Networked Sensors for Environmental Observatories

    Science.gov (United States)

    Kaiser, W. J.

    2005-12-01

    carried by NIMS include sensors for visible wavelength imaging, thermal infrared temperature mapping, microclimate, solar radiation, and for water quality and physical characterization of aquatic systems. NIMS devices include compact embedded computing, wireless network connectivity to surrounding static sensors, and remote Internet access. Exploiting this onboard computing allows NIMS devices to follow precise scanning protocols and self-calibration procedures. This presentation will describe permanent facility NIMS systems deployed at the James San Jacinto Mountains Reserve. Rapidly deployable NIMS permitting short term, highly mobile experiments will also be discussed. This includes the Thermal Mapper system that simultaneously samples plant physical structure (using laser position sensing and imaging) along with plant surface temperature (using high spatial resolution thermal infrared sensing). This compact system has been applied to the investigation of thermal characteristics of alpine plants in varying soil surfaces at the White Mountains Research Station. Other NIMS applications and results to be described include novel spatial mapping of nitrate concentration and other variables in flowing streams. Finally, this presentation will also address the many future applications of observatories linking investigators with remote mobile and static sensor networks. This research is supported by the NSF0331481 ITR program. Research has been performed in collaboration with R. Ambrose, K. Bible, D. Estrin, E. Graham, M. Hamilton, M. Hanson, T. Harmon, G. Pottie, P. Rundel, M. Srivastava, and G. Sukhatme

  17. Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies

    Directory of Open Access Journals (Sweden)

    Chmielewski Mariusz

    2017-01-01

    Full Text Available This paper discusses method and tool for assisting clinical tests of pharmaceutical drugs utilising sensors and mobile technologies. Emerging sensor and mobile technologies deliver new opportunities to gather and process medical data. Presented analytical approach implements such observations and delivers new, convenient means for remote patient monitoring. Clinical tests are highly specialised process requiring methodology and tools to support such research. Currently available methods rely mostly on analogue approach (booklets, requiring the clinical test participant to fill in health state daily. Such approach often can be biased by unpunctual, not precise reporting. The mobile device can support this process by automatic scheduling and recording an actual time of reports and most of all it can record the inertial and biometric sensor data during the survey process. Presented analytical method (tremors recognition and mobile tool offers consistent approach to clinical test assistance transforming and Android smartphone into remote reporting and notification tool. The tool offers additionally features for sensor based diagnostics support for PD tremor recognition as well as specific clonic and tonic symptoms (dedicated for further system extensions towards epilepsy. Capabilities of the system delivers also RFID mechanisms for efficient on-site clinical test authorisation and configuration. This feature simplifies application installation and automatic set-up considering the participant, clinical test configuration, schedule, smartphone and sensor data. Such a composition delivers convenient and reliable tool which can assist patients and medical staff during the process objectifying the clinical tests results and helping to ensure good quality of the data, quickly available and easily accessible.

  18. Solid state magnetic field sensors for micro unattended ground networks using spin dependent tunneling

    Science.gov (United States)

    Tondra, Mark; Nordman, Catherine A.; Lange, Erik H.; Reed, Daniel; Jander, Albrect; Akou, Seraphin; Daughton, James

    2001-09-01

    Micro Unattended Ground Sensor Networks will likely employ magnetic sensors, primarily for discrimination of objects as opposed to initial detection. These magnetic sensors, then, must fit within very small cost, size, and power budgets to be compatible with the envisioned sensor suites. Also, a high degree of sensitivity is required to minimize the number of sensor cells required to survey a given area in the field. Solid state magnetoresistive sensors, with their low cost, small size, and ease of integration, are excellent candidates for these applications assuming that their power and sensitivity performance are acceptable. SDT devices have been fabricated into prototype magnetic field sensors suitable for use in micro unattended ground sensor networks. They are housed in tiny SOIC 8-pin packages and mounted on a circuit board with required voltage regulation, signal amplification and conditioning, and sensor control and communications functions. The best sensitivity results to date are 289 pT/rt. Hz at 1 Hz, and and 7 pT/rt. Hz at f > 10 kHz. Expected near term improvements in performance would bring these levels to approximately 10 pT/rt Hz at 1 Hz and approximately 1 pT/rt. Hz at > 1 kHz.

  19. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity.

    Science.gov (United States)

    Guimarães, Dayan Adionel; Sakai, Lucas Jun; Alberti, Antonio Marcos; de Souza, Rausley Adriano Amaral

    2016-09-20

    In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors' batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  20. Spatial Search Techniques for Mobile 3D Queries in Sensor Web Environments

    Directory of Open Access Journals (Sweden)

    James D. Carswell

    2013-03-01

    Full Text Available Developing mobile geo-information systems for sensor web applications involves technologies that can access linked geographical and semantically related Internet information. Additionally, in tomorrow’s Web 4.0 world, it is envisioned that trillions of inexpensive micro-sensors placed throughout the environment will also become available for discovery based on their unique geo-referenced IP address. Exploring these enormous volumes of disparate heterogeneous data on today’s location and orientation aware smartphones requires context-aware smart applications and services that can deal with “information overload”. 3DQ (Three Dimensional Query is our novel mobile spatial interaction (MSI prototype that acts as a next-generation base for human interaction within such geospatial sensor web environments/urban landscapes. It filters information using “Hidden Query Removal” functionality that intelligently refines the search space by calculating the geometry of a three dimensional visibility shape (Vista space at a user’s current location. This 3D shape then becomes the query “window” in a spatial database for retrieving information on only those objects visible within a user’s actual 3D field-of-view. 3DQ reduces information overload and serves to heighten situation awareness on constrained commercial off-the-shelf devices by providing visibility space searching as a mobile web service. The effects of variations in mobile spatial search techniques in terms of query speed vs. accuracy are evaluated and presented in this paper.

  1. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    Science.gov (United States)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  2. Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    Science.gov (United States)

    Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726

  3. Method for reading sensors and controlling actuators using audio interfaces of mobile devices.

    Science.gov (United States)

    Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.

  4. ALAT PENDETEKSI KEBOCORAN GAS BERACUN CO PADA MOBIL DENGAN ARRAY SENSOR MENGGUNAKAN FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2016-03-01

    Full Text Available Perkembangan teknologi otomotif sekarang ini semakin pesat yaitu dengan fasilitas accessories mobil yang semakin lengkap. Namun berbagai fasilitas yang terdapat dalam mobil tanpa disadari menyimpan ancaman bahaya bagi pengguna mobil salah satunya ketika system pada AC (Air Conditioner terjadi kebocoran maka gas CO (karbon monoksida akan memenuhi ruang mobil yang tertutup. Gas CO ini sangat berbahaya karena gas ini tidak berwarna, tidak berbau, dan tidak berasa sehingga sulit untuk dideteksi yang dapat menyebabkan orang yang ada didalam mobil menjadi mati lemas tanpa disadari karena menghirup gas CO yang bocor. Dengan fenomena tersebut dibutuhkan sebuah alat yang dapat mendeteksi dan mengontrol kebocoran gas CO untuk memberikan rasa aman kepada pengguna mobil. Alat ini menggunakan kendali logika fuzzy sebagai proses pengambilan keputusan sebagai hasil nilai dari inferensi kerja array sensor. Pengendali utama pada sistem menggunakan mikrokontroller ATmega32. Ketika array sensor yaitu TGS2442 dan TGS2600 mendeteksi kadar gas CO >29,0 ppm berarti dalam status bahaya sehingga buzzer akan aktif diikuti motor DC yang menggerakkan kaca mobil agar terbuka. Berdasarkan lima kali pengujian yang dilakukan didapatkanlah rata-rata selisih error output gas sebesar 0.29 ppm disaat kondisi aman dan 3.87 ppm disaat kondisi bahaya.

  5. Addressing practical challenges in utility optimization of mobile wireless sensor networks

    Science.gov (United States)

    Eswaran, Sharanya; Misra, Archan; La Porta, Thomas; Leung, Kin

    2008-04-01

    This paper examines the practical challenges in the application of the distributed network utility maximization (NUM) framework to the problem of resource allocation and sensor device adaptation in a mission-centric wireless sensor network (WSN) environment. By providing rich (multi-modal), real-time information about a variety of (often inaccessible or hostile) operating environments, sensors such as video, acoustic and short-aperture radar enhance the situational awareness of many battlefield missions. Prior work on the applicability of the NUM framework to mission-centric WSNs has focused on tackling the challenges introduced by i) the definition of an individual mission's utility as a collective function of multiple sensor flows and ii) the dissemination of an individual sensor's data via a multicast tree to multiple consuming missions. However, the practical application and performance of this framework is influenced by several parameters internal to the framework and also by implementation-specific decisions. This is made further complex due to mobile nodes. In this paper, we use discrete-event simulations to study the effects of these parameters on the performance of the protocol in terms of speed of convergence, packet loss, and signaling overhead thereby addressing the challenges posed by wireless interference and node mobility in ad-hoc battlefield scenarios. This study provides better understanding of the issues involved in the practical adaptation of the NUM framework. It also helps identify potential avenues of improvement within the framework and protocol.

  6. Path Planning and Navigation for Mobile Robots in a Hybrid Sensor Network without Prior Location Information

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-03-01

    Full Text Available In a hybrid wireless sensor network with mobile and static nodes, which have no prior geographical knowledge, successful navigation for mobile robots is one of the main challenges. In this paper, we propose two novel navigation algorithms for outdoor environments, which permit robots to travel from one static node to another along a planned path in the sensor field, namely the RAC and the IMAP algorithms. Using this, the robot can navigate without the help of a map, GPS or extra sensor modules, only using the received signal strength indication (RSSI and odometry. Therefore, our algorithms have the advantage of being cost-effective. In addition, a path planning algorithm to schedule mobile robots' travelling paths is presented, which focuses on shorter distances and robust paths for robots by considering the RSSI-Distance characteristics. The simulations and experiments conducted with an autonomous mobile robot show the effectiveness of the proposed algorithms in an outdoor environment.

  7. HUMS: An Autonomous Moving Strategy for Mobile Sinks in Data-Gathering Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yanzhong Bi

    2007-06-01

    Full Text Available Sink mobility has attracted much research interest in recent years because it can improve network performance such as energy efficiency and throughput. An energy-unconscious moving strategy is potentially harmful to the balance of the energy consumption among sensor nodes so as to aggravate the hotspot problem of sensor networks. In this paper, we propose an autonomous moving strategy for the mobile sinks in data-gathering applications. In our solution, a mobile sink approaches the nodes with high residual energy to force them to forward data for other nodes and tries to avoid passing by the nodes with low energy. We performed simulation experiments to compare our solution with other three data-gathering schemes. The simulation results show that our strategy cannot only extend network lifetime notably but also provides scalability and topology adaptability.

  8. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    Science.gov (United States)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  9. Attention-based navigation in mobile robots using a reconfigurable sensor

    NARCIS (Netherlands)

    Maris, M.

    2001-01-01

    In this paper, a method for visual attentional selection in mobile robots is proposed, based on amplification of the selected stimulus. Attention processing is performed on the vision sensor, which is integrated on a silicon chip and consists of a contrast sensitive retina with the ability to change

  10. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    Science.gov (United States)

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  11. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    Directory of Open Access Journals (Sweden)

    Tae Hyeon Nam

    2017-11-01

    Full Text Available Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  12. Mobile Mapping of Sporting Event Spectators Using Bluetooth Sensors: Tour of Flanders 2011

    Directory of Open Access Journals (Sweden)

    Frederik van Bossche

    2012-10-01

    Full Text Available Accurate spatiotemporal information on crowds is a necessity for a better management in general and for the mitigation of potential security risks. The large numbers of individuals involved and their mobility, however, make generation of this information non-trivial. This paper proposes a novel methodology to estimate and map crowd sizes using mobile Bluetooth sensors and examines to what extent this methodology represents a valuable alternative to existing traditional crowd density estimation methods. The proposed methodology is applied in a unique case study that uses Bluetooth technology for the mobile mapping of spectators of the Tour of Flanders 2011 road cycling race. The locations of nearly 16,000 cell phones of spectators along the race course were registered and detailed views of the spatiotemporal distribution of the crowd were generated. Comparison with visual head counts from camera footage delivered a detection ratio of 13.0 ± 2.3%, making it possible to estimate the crowd size. To our knowledge, this is the first study that uses mobile Bluetooth sensors to count and map a crowd over space and time.

  13. Fast decision algorithms in low-power embedded processors for quality-of-service based connectivity of mobile sensors in heterogeneous wireless sensor networks.

    Science.gov (United States)

    Jaraíz-Simón, María D; Gómez-Pulido, Juan A; Vega-Rodríguez, Miguel A; Sánchez-Pérez, Juan M

    2012-01-01

    When a mobile wireless sensor is moving along heterogeneous wireless sensor networks, it can be under the coverage of more than one network many times. In these situations, the Vertical Handoff process can happen, where the mobile sensor decides to change its connection from a network to the best network among the available ones according to their quality of service characteristics. A fitness function is used for the handoff decision, being desirable to minimize it. This is an optimization problem which consists of the adjustment of a set of weights for the quality of service. Solving this problem efficiently is relevant to heterogeneous wireless sensor networks in many advanced applications. Numerous works can be found in the literature dealing with the vertical handoff decision, although they all suffer from the same shortfall: a non-comparable efficiency. Therefore, the aim of this work is twofold: first, to develop a fast decision algorithm that explores the entire space of possible combinations of weights, searching that one that minimizes the fitness function; and second, to design and implement a system on chip architecture based on reconfigurable hardware and embedded processors to achieve several goals necessary for competitive mobile terminals: good performance, low power consumption, low economic cost, and small area integration.

  14. The research of autonomous obstacle avoidance of mobile robot based on multi-sensor integration

    Science.gov (United States)

    Zhao, Ming; Han, Baoling

    2016-11-01

    The object of this study is the bionic quadruped mobile robot. The study has proposed a system design plan for mobile robot obstacle avoidance with the binocular stereo visual sensor and the self-control 3D Lidar integrated with modified ant colony optimization path planning to realize the reconstruction of the environmental map. Because the working condition of a mobile robot is complex, the result of the 3D reconstruction with a single binocular sensor is undesirable when feature points are few and the light condition is poor. Therefore, this system integrates the stereo vision sensor blumblebee2 and the Lidar sensor together to detect the cloud information of 3D points of environmental obstacles. This paper proposes the sensor information fusion technology to rebuild the environment map. Firstly, according to the Lidar data and visual data on obstacle detection respectively, and then consider two methods respectively to detect the distribution of obstacles. Finally fusing the data to get the more complete, more accurate distribution of obstacles in the scene. Then the thesis introduces ant colony algorithm. It has analyzed advantages and disadvantages of the ant colony optimization and its formation cause deeply, and then improved the system with the help of the ant colony optimization to increase the rate of convergence and precision of the algorithm in robot path planning. Such improvements and integrations overcome the shortcomings of the ant colony optimization like involving into the local optimal solution easily, slow search speed and poor search results. This experiment deals with images and programs the motor drive under the compiling environment of Matlab and Visual Studio and establishes the visual 2.5D grid map. Finally it plans a global path for the mobile robot according to the ant colony algorithm. The feasibility and effectiveness of the system are confirmed by ROS and simulation platform of Linux.

  15. Truck-based mobile wireless sensor networks for the experimental observation of vehicle–bridge interaction

    International Nuclear Information System (INIS)

    Kim, Junhee; Lynch, Jerome P; Lee, Jong-Jae; Lee, Chang-Geun

    2011-01-01

    Heavy vehicles driving over a bridge create a complex dynamic phenomenon known as vehicle–bridge interaction. In recent years, interest in vehicle–bridge interaction has grown because a deeper understanding of the phenomena can lead to improvements in bridge design methods while enhancing the accuracy of structural health monitoring techniques. The mobility of wireless sensors can be leveraged to directly monitor the dynamic coupling between the moving vehicle and the bridge. In this study, a mobile wireless sensor network is proposed for installation on a heavy truck to capture the vertical acceleration, horizontal acceleration and gyroscopic pitching of the truck as it crosses a bridge. The vehicle-based wireless monitoring system is designed to interact with a static, permanent wireless monitoring system installed on the bridge. Specifically, the mobile wireless sensors time-synchronize with the bridge's wireless sensors before transferring the vehicle response data. Vertical acceleration and gyroscopic pitching measurements of the vehicle are combined with bridge accelerations to create a time-synchronized vehicle–bridge response dataset. In addition to observing the vehicle vibrations, Kalman filtering is adopted to accurately track the vehicle position using the measured horizontal acceleration of the vehicle and positioning information derived from piezoelectric strip sensors installed on the bridge deck as part of the bridge monitoring system. Using the Geumdang Bridge (Korea), extensive field testing of the proposed vehicle–bridge wireless monitoring system is conducted. Experimental results verify the reliability of the wireless system and the accuracy of the vehicle positioning algorithm

  16. Increasing the Lifetime of Mobile WSNs via Dynamic Optimization of Sensor Node Communication Activity

    Directory of Open Access Journals (Sweden)

    Dayan Adionel Guimarães

    2016-09-01

    Full Text Available In this paper, a simple and flexible method for increasing the lifetime of fixed or mobile wireless sensor networks is proposed. Based on past residual energy information reported by the sensor nodes, the sink node or another central node dynamically optimizes the communication activity levels of the sensor nodes to save energy without sacrificing the data throughput. The activity levels are defined to represent portions of time or time-frequency slots in a frame, during which the sensor nodes are scheduled to communicate with the sink node to report sensory measurements. Besides node mobility, it is considered that sensors’ batteries may be recharged via a wireless power transmission or equivalent energy harvesting scheme, bringing to the optimization problem an even more dynamic character. We report large increased lifetimes over the non-optimized network and comparable or even larger lifetime improvements with respect to an idealized greedy algorithm that uses both the real-time channel state and the residual energy information.

  17. The parameters of a sensor

    International Nuclear Information System (INIS)

    Neacsu, A.; Ciucu, C.

    2004-01-01

    The development of electronics and technology led to the development of high precision sensors. Generally all sensors are based on the inertia of a suspended mass which remains stationary with respect to the ground's movement. In the case of electromagnetic instruments, a coil is linked to the mass of a pendulum that moves in a magnetic field, creating an electric tension. In the case of this sensor, there is no need for a damper mechanism due to the fact that the damping force is produced by the currents induced in a copper plate oscillating in a strong magnetic field. In the experiment we determined the inner oscillating frequency and the damping factor of a sensor based on a mobile coil. (authors)

  18. Networked sensors for the combat forces

    Science.gov (United States)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  19. REAL-TIME MONITORING SYSTEM USING UNMANNED AERIAL VEHICLE INTEGRATED WITH SENSOR OBSERVATION SERVICE

    Directory of Open Access Journals (Sweden)

    A. Witayangkurn

    2012-09-01

    Full Text Available The Unmanned Aerial Vehicle (UAV is an emerging technology being adapted for a wide range of applications. Real-time monitoring is essential to enhance the effectiveness of UAV applications. Sensor networks are networks constructed from various sensor nodes. International standard such as OGC's SOS (Sensor Observation Service makes it possible to share sensor data with other systems as well as to provide accessibility to globally distributed users. In this paper, we propose a system combining UAV technology and sensor network technology to use an UAV as a mobile node of sensor network so that the sensor data from UAV is published and shared real-time. A UAV can extend the observation range of a sensor network to remote areas where it is usually difficult to access such as disaster area. We constructed a UAV system using remote-controlled helicopter and various sensors such as GPS, gyrocompass, laser range finder, Digital camera and Thermometer. Furthermore, we extended the Sensor Observation Service (SOS and Sensor Service Grid (SSG to support mobile sensor nodes. Then, we conducted experiments of flying the helicopter over an area of the interest. During the flight, the system measured environmental data using its sensors and captured images of the ground. The data was sent to a SOS node as the ground station via Wi-Fi which was published using SSG to give real- time access to globally distributed users.

  20. Energy Efficient and Safe Weighted Clustering Algorithm for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amine Dahane

    2015-01-01

    Full Text Available The main concern of clustering approaches for mobile wireless sensor networks (WSNs is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. The approach based on the computing of the weight of each node in the network is one of the proposed techniques to deal with this problem. In this paper, we propose an energy efficient and safe weighted clustering algorithm (ES-WCA for mobile WSNs using a combination of five metrics. Among these metrics lies the behavioral level metric which promotes a safe choice of a cluster head in the sense where this last one will never be a malicious node. Moreover, the highlight of our work is summarized in a comprehensive strategy for monitoring the network, in order to detect and remove the malicious nodes. We use simulation study to demonstrate the performance of the proposed algorithm.

  1. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Suleiman Zubair

    2016-01-01

    Full Text Available The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage, PU signal protection (by the introduction of a mobility-induced guard (mguard distance and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput. It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  2. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-29

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works.

  3. Mobility-Enhanced Reliable Geographical Forwarding in Cognitive Radio Sensor Networks

    Science.gov (United States)

    Zubair, Suleiman; Syed Yusoff, Sharifah Kamilah; Fisal, Norsheila

    2016-01-01

    The emergence of the Internet of Things and the proliferation of mobile wireless devices has brought the area of mobile cognitive radio sensor networks (MCRSN) to the research spot light. Notwithstanding the potentials of CRSNs in terms of opportunistic channel usage for bursty traffic, the effect of the mobility of resource-constrained nodes to route stability, mobility-induced spatio-temporal spectral opportunities and primary user (PU) protection still remain open issues that need to be jointly addressed. To this effect, this paper proposes a mobile reliable geographical forwarding routing (MROR) protocol. MROR provides a robust mobile framework for geographical forwarding that is based on a mobility-induced channel availability model. It presents a comprehensive routing strategy that considers PU activity (to take care of routes that have to be built through PU coverage), PU signal protection (by the introduction of a mobility-induced guard (mguard) distance) and the random mobility-induced spatio-temporal spectrum opportunities (for enhancement of throughput). It also addresses the issue of frequent route maintenance that arises when speeds of the mobile nodes are considered as a routing metric. As a result, simulation has shown the ability of MROR to reduce the route failure rate by about 65% as against other schemes. In addition, further results show that MROR can improve both the throughput and goodput at the sink in an energy-efficient manner that is required in CRSNs as against compared works. PMID:26840312

  4. Cooperative Control of Mobile Sensor Networks for Environmental Monitoring: An Event-Triggered Finite-Time Control Scheme.

    Science.gov (United States)

    Lu, Qiang; Han, Qing-Long; Zhang, Botao; Liu, Dongliang; Liu, Shirong

    2017-12-01

    This paper deals with the problem of environmental monitoring by developing an event-triggered finite-time control scheme for mobile sensor networks. The proposed control scheme can be executed by each sensor node independently and consists of two parts: one part is a finite-time consensus algorithm while the other part is an event-triggered rule. The consensus algorithm is employed to enable the positions and velocities of sensor nodes to quickly track the position and velocity of a virtual leader in finite time. The event-triggered rule is used to reduce the updating frequency of controllers in order to save the computational resources of sensor nodes. Some stability conditions are derived for mobile sensor networks with the proposed control scheme under both a fixed communication topology and a switching communication topology. Finally, simulation results illustrate the effectiveness of the proposed control scheme for the problem of environmental monitoring.

  5. Soil Moisture Estimation Across Scales with Mobile Sensors for Cosmic-Ray Neutrons from the Ground and Air

    Science.gov (United States)

    Schrön, Martin; Köhler, Mandy; Bannehr, Lutz; Köhli, Markus; Fersch, Benjamin; Rebmann, Corinna; Mai, Juliane; Cuntz, Matthias; Kögler, Simon; Schröter, Ingmar; Wollschläger, Ute; Oswald, Sascha; Dietrich, Peter; Zacharias, Steffen

    2016-04-01

    Soil moisture is a key variable for environmental sciences, but its determination at various scales and depths is still an open challenge. Cosmic-ray neutron sensing has become a well accepted and unique method to monitor an effective soil water content, covering tens of hectares in area and tens of centimeters in depth. The technology is famous for its low maintanance, non-invasiveness, continous measurement, and most importantly its large footprint and penetration depth. Beeing more representative than point data, and finer resolved plus deeper penetrating than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for agriculture, regional hydrologic and land surface models. The method takes advantage of omnipresent neutrons which are extraordinarily sensitive to hydrogen in soil, plants, snow and air. Unwanted hydrogen sources in the footprint can be excluded by local calibration to extract the pure soil water information. However, this procedure is not feasible for mobile measurements, where neutron detectors are mounted on a car to do catchment-scale surveys. As a solution to that problem, we suggest strategies to correct spatial neutron data with the help of available spatial data of soil type, landuse and vegetation. We further present results of mobile rover campaigns at various scales and conditions, covering small sites from 0.2 km2 to catchments of 100 km2 area, and complex terrain from agricultural fields, urban areas, forests, to snowy alpine sites. As the rover is limited to accessible roads, we further investigated the applicability of airborne measurements. First tests with a gyrocopter at 150 to 200m heights proofed the concept of airborne neutron detection for environmental sciences. Moreover, neutron transport simulations confirm an improved areal coverage during these campaigns. Mobile neutron measurements at the ground or air are a promising tool for the detection of water sources across many

  6. Cooperative Cloud Service Aware Mobile Internet Coverage Connectivity Guarantee Protocol Based on Sensor Opportunistic Coverage Mechanism

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-01-01

    Full Text Available In order to improve the Internet coverage ratio and provide connectivity guarantee, based on sensor opportunistic coverage mechanism and cooperative cloud service, we proposed the coverage connectivity guarantee protocol for mobile Internet. In this scheme, based on the opportunistic covering rules, the network coverage algorithm of high reliability and real-time security was achieved by using the opportunity of sensor nodes and the Internet mobile node. Then, the cloud service business support platform is created based on the Internet application service management capabilities and wireless sensor network communication service capabilities, which is the architecture of the cloud support layer. The cooperative cloud service aware model was proposed. Finally, we proposed the mobile Internet coverage connectivity guarantee protocol. The results of experiments demonstrate that the proposed algorithm has excellent performance, in terms of the security of the Internet and the stability, as well as coverage connectivity ability.

  7. Joint Transmit Antenna Selection and Power Allocation for ISDF Relaying Mobile-to-Mobile Sensor Networks.

    Science.gov (United States)

    Xu, Lingwei; Zhang, Hao; Gulliver, T Aaron

    2016-02-19

    The outage probability (OP) performance of multiple-relay incremental-selective decode-and-forward (ISDF) relaying mobile-to-mobile (M2M) sensor networks with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. Exact closed-form OP expressions for both optimal and suboptimal TAS schemes are derived. The power allocation problem is formulated to determine the optimal division of transmit power between the broadcast and relay phases. The OP performance under different conditions is evaluated via numerical simulation to verify the analysis. These results show that the optimal TAS scheme has better OP performance than the suboptimal scheme. Further, the power allocation parameter has a significant influence on the OP performance.

  8. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2017-01-01

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  9. Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations

    KAUST Repository

    Canepa, Edward S.

    2017-06-19

    Nowadays, traffic management has become a challenge for urban areas, which are covering larger geographic spaces and facing the generation of different kinds of traffic data. This article presents a robust traffic estimation framework for highways modeled by a system of Lighthill Whitham Richards equations that is able to assimilate different sensor data available. We first present an equivalent formulation of the problem using a Hamilton–Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton–Jacobi equation are linear ones. We then pose the problem of estimating the traffic density given incomplete and inaccurate traffic data as a Mixed Integer Program. We then extend the density estimation framework to highway networks with any available data constraint and modeling junctions. Finally, we present a travel estimation application for a small network using real traffic measurements obtained obtained during Mobile Century traffic experiment, and comparing the results with ground truth data.

  10. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe; Smith, L.; Rasekh, A.; Stoleru, R.; Banks, M.K.; Shihada, Basem

    2014-01-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  11. Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems

    KAUST Repository

    Suresh, M. Agumbe

    2014-05-01

    Leak and backflow detection are essential aspects of Water Distribution System (WDS) monitoring. Most existing solutions for leak/backflow detection in WDSs focus on the placement of expensive static sensors located strategically. In contrast to these, we propose a solution whereby mobile sensors (i.e., their movement aided only by the inherent water flow in the system) detect leaks/backflow. Information about the leaks/backflow is collected from the sensors either by physically capturing them, or through wireless communication. Specifically, we propose models to maximize leak/backflow detection given a cost constraint (a limit on the number of sensors). Through extensive simulations, we demonstrate the superior performance of our proposed solution when compared with the state of the art solutions (e.g., algorithms/protocols and analysis).

  12. Secure Cooperation of Autonomous Mobile Sensors Using an Underwater Acoustic Network

    Directory of Open Access Journals (Sweden)

    Gianluca Dini

    2012-02-01

    Full Text Available Methodologies and algorithms are presented for the secure cooperation of a team of autonomous mobile underwater sensors, connected through an acoustic communication network, within surveillance and patrolling applications. In particular, the work proposes a cooperative algorithm in which the mobile underwater sensors (installed on Autonomous Underwater Vehicles—AUVs respond to simple local rules based on the available information to perform the mission and maintain the communication link with the network (behavioral approach. The algorithm is intrinsically robust: with loss of communication among the vehicles the coverage performance (i.e., the mission goal is degraded but not lost. The ensuing form of graceful degradation provides also a reactive measure against Denial of Service. The cooperative algorithm relies on the fact that the available information from the other sensors, though not necessarily complete, is trustworthy. To ensure trustworthiness, a security suite has been designed, specifically oriented to the underwater scenario, and in particular with the goal of reducing the communication overhead introduced by security in terms of number and size of messages. The paper gives implementation details on the integration between the security suite and the cooperative algorithm and provides statistics on the performance of the system as collected during the UAN project sea trial held in Trondheim, Norway, in May 2011.

  13. A Mobile Localization Strategy for Wireless Sensor Network in NLOS Conditions

    Institute of Scientific and Technical Information of China (English)

    Long Cheng; Yan Wang; Xingming Sun; Nan Hu; Jian Zhang

    2016-01-01

    The problem of mobile localization for wireless sensor network has attracted considerable attention in recent years.The localization accuracy will drastically grade in non-line of sight (NLOS) conditions.In this paper,we propose a mobile localization strategy based on Kalman filter.The key technologies for the proposed method are the NLOS identification and mitigation.The proposed method does not need the prior knowledge of the NLOS error and it is independent of the physical measurement ways.Simulation results show that the proposed method owns the higher localization accuracy when compared with other methods.

  14. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    Science.gov (United States)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  15. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs.

  16. Evaluation of chemical sensors for in situ ground-water monitoring at the Hanford Site

    International Nuclear Information System (INIS)

    Murphy, E.M.; Hostetler, D.D.

    1989-03-01

    This report documents a preliminary review and evaluation of instrument systems and sensors that may be used to detect ground-water contaminants in situ at the Hanford Site. Three topics are covered in this report: (1) identification of a group of priority contaminants at Hanford that could be monitored in situ, (2) a review of current instrument systems and sensors for environmental monitoring, and (3) an evaluation of instrument systems that could be used to monitor Hanford contaminants. Thirteen priority contaminants were identified in Hanford ground water, including carbon tetrachloride and six related chlorinated hydrocarbons, cyanide, methyl ethyl ketone, chromium (VI), fluoride, nitrate, and uranium. Based on transduction principles, chemical sensors were divided into four classes, ten specific types of instrument systems were considered: fluorescence spectroscopy, surface-enhanced Raman spectroscopy (SERS), spark excitation-fiber optic spectrochemical emission sensor (FOSES), chemical optrodes, stripping voltammetry, catalytic surface-modified ion electrode immunoassay sensors, resistance/capacitance, quartz piezobalance and surface acoustic wave devices. Because the flow of heat is difficult to control, there are currently no environmental chemical sensors based on thermal transduction. The ability of these ten instrument systems to detect the thirteen priority contaminants at the Hanford Site at the required sensitivity was evaluated. In addition, all ten instrument systems were qualitatively evaluated for general selectivity, response time, reliability, and field operability. 45 refs., 23 figs., 7 tabs

  17. 30 CFR 77.906 - Trailing cables supplying power to low-voltage mobile equipment; ground wires and ground check...

    Science.gov (United States)

    2010-07-01

    ... portable or mobile equipment from low-voltage three-phase resistance grounded power systems shall contain... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables supplying power to low-voltage... STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Low- and Medium-Voltage...

  18. Sensor fusion-based map building for mobile robot exploration

    International Nuclear Information System (INIS)

    Ribo, M.

    2000-01-01

    To carry out exploration tasks in unknown or partially unknown environments, a mobile robot needs to acquire and maintain models of its environment. In doing so, several sensors of same nature and/or heterogeneous sensor configurations may be used by the robot to achieve reliable performances. However, this in turn poses the problem of sensor fusion-based map building: How to interpret, combine and integrate sensory information in order to build a proper representation of the environment. Specifically, the goal of this thesis is to probe integration algorithms for Occupancy Grid (OG) based map building using odometry, ultrasonic rangefinders, and stereo vision. Three different uncertainty calculi are presented here which are used for sensor fusion-based map building purposes. They are based on probability theory, Dempster-Shafer theory of evidence, and fuzzy set theory. Besides, two different sensor models are depicted which are used to translate sensing data into range information. Experimental examples of OGs built from real data recorded by two robots in office-like environment are presented. They show the feasibility of the proposed approach for building both sonar and visual based OGs. A comparison among the presented uncertainty calculi is performed in a sonar-based framework. Finally, the fusion of both sonar and visual information based of the fuzzy set theory is depicted. (author)

  19. A mobile sensor network to map carbon dioxide emissions in urban environments

    Science.gov (United States)

    Lee, Joseph K.; Christen, Andreas; Ketler, Rick; Nesic, Zoran

    2017-03-01

    A method for directly measuring carbon dioxide (CO2) emissions using a mobile sensor network in cities at fine spatial resolution was developed and tested. First, a compact, mobile system was built using an infrared gas analyzer combined with open-source hardware to control, georeference, and log measurements of CO2 mixing ratios on vehicles (car, bicycles). Second, two measurement campaigns, one in summer and one in winter (heating season) were carried out. Five mobile sensors were deployed within a 1 × 12. 7 km transect across the city of Vancouver, BC, Canada. The sensors were operated for 3.5 h on pre-defined routes to map CO2 mixing ratios at street level, which were then averaged to 100 × 100 m grid cells. The averaged CO2 mixing ratios of all grids in the study area were 417.9 ppm in summer and 442.5 ppm in winter. In both campaigns, mixing ratios were highest in the grid cells of the downtown core and along arterial roads and lowest in parks and well vegetated residential areas. Third, an aerodynamic resistance approach to calculating emissions was used to derive CO2 emissions from the gridded CO2 mixing ratio measurements in conjunction with mixing ratios and fluxes collected from a 28 m tall eddy-covariance tower located within the study area. These measured emissions showed a range of -12 to 226 CO2 ha-1 h-1 in summer and of -14 to 163 kg CO2 ha-1 h-1 in winter, with an average of 35.1 kg CO2 ha-1 h-1 (summer) and 25.9 kg CO2 ha-1 h-1 (winter). Fourth, an independent emissions inventory was developed for the study area using buildings energy simulations from a previous study and routinely available traffic counts. The emissions inventory for the same area averaged to 22.06 kg CO2 ha-1 h-1 (summer) and 28.76 kg CO2 ha-1 h-1 (winter) and was used to compare against the measured emissions from the mobile sensor network. The comparison on a grid-by-grid basis showed linearity between CO2 mixing ratios and the emissions inventory (R2 = 0. 53 in summer and R

  20. RoCoMAR: Robots' Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Science.gov (United States)

    Van Le, Duc; Oh, Hoon; Yoon, Seokhoon

    2013-01-01

    In a practical deployment, mobile sensor network (MSN) suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots' Controllable Mobility Aided Routing) that uses robotic nodes' controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay. PMID:23881134

  1. RoCoMAR: Robots’ Controllable Mobility Aided Routing and Relay Architecture for Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Seokhoon Yoon

    2013-07-01

    Full Text Available In a practical deployment, mobile sensor network (MSN suffers from a low performance due to high node mobility, time-varying wireless channel properties, and obstacles between communicating nodes. In order to tackle the problem of low network performance and provide a desired end-to-end data transfer quality, in this paper we propose a novel ad hoc routing and relaying architecture, namely RoCoMAR (Robots’ Controllable Mobility Aided Routing that uses robotic nodes’ controllable mobility. RoCoMAR repeatedly performs link reinforcement process with the objective of maximizing the network throughput, in which the link with the lowest quality on the path is identified and replaced with high quality links by placing a robotic node as a relay at an optimal position. The robotic node resigns as a relay if the objective is achieved or no more gain can be obtained with a new relay. Once placed as a relay, the robotic node performs adaptive link maintenance by adjusting its position according to the movements of regular nodes. The simulation results show that RoCoMAR outperforms existing ad hoc routing protocols for MSN in terms of network throughput and end-to-end delay.

  2. In/Out Status Monitoring in Mobile Asset Tracking with Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    2010-03-01

    Full Text Available A mobile asset with a sensor node in a mobile asset tracking system moves around a monitoring area, leaves it, and then returns to the region repeatedly. The system monitors the in/out status of the mobile asset. Due to the continuous movement of the mobile asset, the system may generate an error for the in/out status of the mobile asset. When the mobile asset is inside the region, the system might determine that it is outside, or vice versa. In this paper, we propose a method to detect and correct the incorrect in/out status of the mobile asset. To solve this problem, our approach uses data about the connection state transition and the battery lifetime of the mobile node attached to the mobile asset. The connection state transition is used to classify the mobile node as normal or abnormal. The battery lifetime is used to predict a valid working period for the mobile node. We evaluate our method using real data generated by a medical asset tracking system. The experimental results show that our method, by using the estimated battery life time or by using the invalid connection state, can detect and correct most cases of incorrect in/out statuses generated by the conventional approach.

  3. In/out status monitoring in mobile asset tracking with wireless sensor networks.

    Science.gov (United States)

    Kim, Kwangsoo; Chung, Chin-Wan

    2010-01-01

    A mobile asset with a sensor node in a mobile asset tracking system moves around a monitoring area, leaves it, and then returns to the region repeatedly. The system monitors the in/out status of the mobile asset. Due to the continuous movement of the mobile asset, the system may generate an error for the in/out status of the mobile asset. When the mobile asset is inside the region, the system might determine that it is outside, or vice versa. In this paper, we propose a method to detect and correct the incorrect in/out status of the mobile asset. To solve this problem, our approach uses data about the connection state transition and the battery lifetime of the mobile node attached to the mobile asset. The connection state transition is used to classify the mobile node as normal or abnormal. The battery lifetime is used to predict a valid working period for the mobile node. We evaluate our method using real data generated by a medical asset tracking system. The experimental results show that our method, by using the estimated battery life time or by using the invalid connection state, can detect and correct most cases of incorrect in/out statuses generated by the conventional approach.

  4. Energy and round time estimation method for mobile wireless sensor networks

    International Nuclear Information System (INIS)

    Ismat, M.; Qureshi, R.; Imam, M.U.

    2018-01-01

    Clustered WSN (Wireless Sensor Networks) is a hierarchical network structure that conserves energy by distributing the task of sensing and data transfer to destination among the non-CH (Cluster-Head) and CH (Cluster Head) node in a cluster. In clustered MWSN (Mobile Wireless Sensor Network), cluster maintenance to increase at a reception at the destination during communication operation is difficult due to the movement of CHs and non-CH nodes in and out of the cluster. To conserve energy and increased data transfer to the destination, it is necessary to find the duration after which sensor node’s role should be changed from CH to non-CH and vice-versa. In this paper, we have proposed an energy independent round time scheme to identify the duration after which re-clustering procedure should be invoked for changing roles of sensor nodes as CHs and associated nodes to conserve energy and increased data delivery. This depends on the dissemination interval of the sensor nodes rather than sensor node’s energy. We have also provided a complete analytical estimate of network energy consumption with energy consumed in every phase of a around. (author)

  5. Maximizing Lifetime of Wireless Sensor Networks with Mobile Sink Nodes

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2014-01-01

    Full Text Available In order to maximize network lifetime and balance energy consumption when sink nodes can move, maximizing lifetime of wireless sensor networks with mobile sink nodes (MLMS is researched. The movement path selection method of sink nodes is proposed. Modified subtractive clustering method, k-means method, and nearest neighbor interpolation method are used to obtain the movement paths. The lifetime optimization model is established under flow constraint, energy consumption constraint, link transmission constraint, and other constraints. The model is solved from the perspective of static and mobile data gathering of sink nodes. Subgradient method is used to solve the lifetime optimization model when one sink node stays at one anchor location. Geometric method is used to evaluate the amount of gathering data when sink nodes are moving. Finally, all sensor nodes transmit data according to the optimal data transmission scheme. Sink nodes gather the data along the shortest movement paths. Simulation results show that MLMS can prolong network lifetime, balance node energy consumption, and reduce data gathering latency under appropriate parameters. Under certain conditions, it outperforms Ratio_w, TPGF, RCC, and GRND.

  6. Standards for the Mobility Common Operational Picture (M-COP): Elements of Ground Vehicle Maneuver

    National Research Council Canada - National Science Library

    Richmond, Paul W; Blais, Curtis L; Nagle, Joyce A; Goerger, Niki C; Gates, Burhman Q; Burk, Robin K; Willis, John; Keeter, Robert

    2007-01-01

    ...-structured information between human forces and robotic systems. Addressing this operational challenge begins with a clear understanding of the information content needed for ground mobility planning...

  7. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  8. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F., E-mail: c.hogan@latrobe.edu.au

    2013-08-06

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing.

  9. Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  10. Development of mine explosion ground truth smart sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Steven R. [Rocky Mountain Geophysics, Inc., Los Alamos, NM (United States); Harben, Phillip E. [Rocky Mountain Geophysics, Inc., Los Alamos, NM (United States); Jarpe, Steve [Jarpe Data Solutions, Prescott, AZ (United States); Harris, David B. [Deschutes Signal Processing, Maupin, OR (United States)

    2015-09-14

    Accurate seismo-acoustic source location is one of the fundamental aspects of nuclear explosion monitoring. Critical to improved location is the compilation of ground truth data sets for which origin time and location are accurately known. Substantial effort by the National Laboratories and other seismic monitoring groups have been undertaken to acquire and develop ground truth catalogs that form the basis of location efforts (e.g. Sweeney, 1998; Bergmann et al., 2009; Waldhauser and Richards, 2004). In particular, more GT1 (Ground Truth 1 km) events are required to improve three-dimensional velocity models that are currently under development. Mine seismicity can form the basis of accurate ground truth datasets. Although the location of mining explosions can often be accurately determined using array methods (e.g. Harris, 1991) and from overhead observations (e.g. MacCarthy et al., 2008), accurate origin time estimation can be difficult. Occasionally, mine operators will share shot time, location, explosion size and even shot configuration, but this is rarely done, especially in foreign countries. Additionally, shot times provided by mine operators are often inaccurate. An inexpensive, ground truth event detector that could be mailed to a contact, placed in close proximity (< 5 km) to mining regions or earthquake aftershock regions that automatically transmits back ground-truth parameters, would greatly aid in development of ground truth datasets that could be used to improve nuclear explosion monitoring capabilities. We are developing an inexpensive, compact, lightweight smart sensor unit (or units) that could be used in the development of ground truth datasets for the purpose of improving nuclear explosion monitoring capabilities. The units must be easy to deploy, be able to operate autonomously for a significant period of time (> 6 months) and inexpensive enough to be discarded after useful operations have expired (although this may not be part of our business

  11. AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    NARCIS (Netherlands)

    Ollero, Anibal; Bernard, Markus; La Civita, Marco; van Hoesel, L.F.W.; Marron, Pedro J.; Lepley, Jason; de Andres, Eduardo

    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network,

  12. Multi-Source Cooperative Data Collection with a Mobile Sink for the Wireless Sensor Network.

    Science.gov (United States)

    Han, Changcai; Yang, Jinsheng

    2017-10-30

    The multi-source cooperation integrating distributed low-density parity-check codes is investigated to jointly collect data from multiple sensor nodes to the mobile sink in the wireless sensor network. The one-round and two-round cooperative data collection schemes are proposed according to the moving trajectories of the sink node. Specifically, two sparse cooperation models are firstly formed based on geographical locations of sensor source nodes, the impairment of inter-node wireless channels and moving trajectories of the mobile sink. Then, distributed low-density parity-check codes are devised to match the directed graphs and cooperation matrices related with the cooperation models. In the proposed schemes, each source node has quite low complexity attributed to the sparse cooperation and the distributed processing. Simulation results reveal that the proposed cooperative data collection schemes obtain significant bit error rate performance and the two-round cooperation exhibits better performance compared with the one-round scheme. The performance can be further improved when more source nodes participate in the sparse cooperation. For the two-round data collection schemes, the performance is evaluated for the wireless sensor networks with different moving trajectories and the variant data sizes.

  13. An Energy-aware Routing Scheme in Delay Tolerant Mobile Sensor Networking

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    2014-08-01

    Full Text Available In Delay Tolerant Mobile Sensor Networking (DTMSN, mobile sensor nodes are usually limited to their energy capacity, one important concern in routing design of DTMSN is energy consumption. This paper presents a number of variations of the Epidemic Routing Protocol (ERP to extend the DTMSN lifetime. It introduces the analytical model for ERP, after introducing the concepts behind the Target Delivery Probability and Minimum Delivery Probability, it defines the network lifetime. In this paper, it firstly studies many variations of the Epidemic Routing Protocol to extend the lifetime of the DTMSN. Secondly, based on the Epidemic Routing Protocol, three schemes are introduced. Those schemes rely on the limiting the times of message allowed for propagation (LT scheme, directly controlling the number of the copies (LC scheme, split the copies to the residual energies of the nodes (LE scheme. Finally, with the experiment and the validation of the simulation, the LE scheme can significantly maximize the lifetime of DTMSN, because it minimizes the number of copies and that shifts the generation of the copies to the nodes with larger residual energy.

  14. Optimized Charging Scheduling with Single Mobile Charger for Wireless Rechargeable Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qihua Wang

    2017-11-01

    Full Text Available Due to the rapid development of wireless charging technology, the recharging issue in wireless rechargeable sensor network (WRSN has been a popular research problem in the past few years. The weakness of previous work is that charging route planning is not reasonable. In this work, a dynamic optimal scheduling scheme aiming to maximize the vacation time ratio of a single mobile changer for WRSN is proposed. In the proposed scheme, the wireless sensor network is divided into several sub-networks according to the initial topology of deployed sensor networks. After comprehensive analysis of energy states, working state and constraints for different sensor nodes in WRSN, we transform the optimized charging path problem of the whole network into the local optimization problem of the sub networks. The optimized charging path with respect to dynamic network topology in each sub-network is obtained by solving an optimization problem, and the lifetime of the deployed wireless sensor network can be prolonged. Simulation results show that the proposed scheme has good and reliable performance for a small wireless rechargeable sensor network.

  15. Intelligent lead: a novel HRI sensor for guide robots.

    Science.gov (United States)

    Cho, Keum-Bae; Lee, Beom-Hee

    2012-01-01

    This paper addresses the introduction of a new Human Robot Interaction (HRI) sensor for guide robots. Guide robots for geriatric patients or the visually impaired should follow user's control command, keeping a certain desired distance allowing the user to work freely. Therefore, it is necessary to acquire control commands and a user's position on a real-time basis. We suggest a new sensor fusion system to achieve this objective and we will call this sensor the "intelligent lead". The objective of the intelligent lead is to acquire a stable distance from the user to the robot, speed-control volume and turn-control volume, even when the robot platform with the intelligent lead is shaken on uneven ground. In this paper we explain a precise Extended Kalman Filter (EKF) procedure for this. The intelligent lead physically consists of a Kinect sensor, the serial linkage attached with eight rotary encoders, and an IMU (Inertial Measurement Unit) and their measurements are fused by the EKF. A mobile robot was designed to test the performance of the proposed sensor system. After installing the intelligent lead in the mobile robot, several tests are conducted to verify that the mobile robot with the intelligent lead is capable of achieving its goal points while maintaining the appropriate distance between the robot and the user. The results show that we can use the intelligent lead proposed in this paper as a new HRI sensor joined a joystick and a distance measure in the mobile environments such as the robot and the user are moving at the same time.

  16. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  17. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  18. A Multiobjective Fuzzy Inference System based Deployment Strategy for a Distributed Mobile Sensor Network

    Directory of Open Access Journals (Sweden)

    Amol P. Bhondekar

    2010-03-01

    Full Text Available Sensor deployment scheme highly governs the effectiveness of distributed wireless sensor network. Issues such as energy conservation and clustering make the deployment problem much more complex. A multiobjective Fuzzy Inference System based strategy for mobile sensor deployment is presented in this paper. This strategy gives a synergistic combination of energy capacity, clustering and peer-to-peer deployment. Performance of our strategy is evaluated in terms of coverage, uniformity, speed and clustering. Our algorithm is compared against a modified distributed self-spreading algorithm to exhibit better performance.

  19. Influence of Mobility Models in Precision Spray Aided by Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Gonçalves, L B L; Neves, L A; Zafalon, G F D; Costa, F G; Ueyama, J; Montez, C; Pinto, A S R

    2015-01-01

    Precision Spray is a technique to increase performance of Precision Agriculture. This spray technique may be aided by a Wireless Sensor Network, however, for such approach, the communication between the agricultural input applicator vehicle and network is critical due to its proper functioning. Thus, this work analyzes how the number of nodes in a wireless sensor network, its type of distribution and different areas of scenario affects the performance of communication. We performed simulations to observe system's behavior changing to find the most fitted non-controlled mobility model to the system

  20. TinyMAPS : a lightweight Java-based mobile agent system for wireless sensor networks

    NARCIS (Netherlands)

    Aiello, F.; Fortino, G.; Galzarano, S.; Vittorioso, A.; Brazier, F.M.T.; Nieuwenhuis, K.; Pavlin, G.; Warnier, M.; Badica, C.

    2012-01-01

    In the context of the development of wireless sensor network (WSN) applications, effective programming frameworks and middlewares for rapid and efficient prototyping of resource-constrained applications are highly required. Mobile agents are an effective distributed programming paradigm that is

  1. Design of power cable grounding wire anti-theft monitoring system

    Science.gov (United States)

    An, Xisheng; Lu, Peng; Wei, Niansheng; Hong, Gang

    2018-01-01

    In order to prevent the serious consequences of the power grid failure caused by the power cable grounding wire theft, this paper presents a GPRS based power cable grounding wire anti-theft monitoring device system, which includes a camera module, a sensor module, a micro processing system module, and a data monitoring center module, a mobile terminal module. Our design utilize two kinds of methods for detecting and reporting comprehensive image, it can effectively solve the problem of power and cable grounding wire box theft problem, timely follow-up grounded cable theft events, prevent the occurrence of electric field of high voltage transmission line fault, improve the reliability of the safe operation of power grid.

  2. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  3. Mobile health: the power of wearables, sensors, and apps to transform clinical trials.

    Science.gov (United States)

    Munos, Bernard; Baker, Pamela C; Bot, Brian M; Crouthamel, Michelle; de Vries, Glen; Ferguson, Ian; Hixson, John D; Malek, Linda A; Mastrototaro, John J; Misra, Veena; Ozcan, Aydogan; Sacks, Leonard; Wang, Pei

    2016-07-01

    Mobile technology has become a ubiquitous part of everyday life, and the practical utility of mobile devices for improving human health is only now being realized. Wireless medical sensors, or mobile biosensors, are one such technology that is allowing the accumulation of real-time biometric data that may hold valuable clues for treating even some of the most devastating human diseases. From wearable gadgets to sophisticated implantable medical devices, the information retrieved from mobile technology has the potential to revolutionize how clinical research is conducted and how disease therapies are delivered in the coming years. Encompassing the fields of science and engineering, analytics, health care, business, and government, this report explores the promise that wearable biosensors, along with integrated mobile apps, hold for improving the quality of patient care and clinical outcomes. The discussion focuses on groundbreaking device innovation, data optimization and validation, commercial platform integration, clinical implementation and regulation, and the broad societal implications of using mobile health technologies. © 2016 New York Academy of Sciences.

  4. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Valerie M.; Gay, Valerie; Leijdekkers, Peter

    2009-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases a patient’s biosignals are measured by means of a body sensor

  5. Autonomous Mission Operations for Sensor Webs

    Science.gov (United States)

    Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.

    2008-12-01

    We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC

  6. Design of Mobility System for Ground Model of Planetary Exploration Rover

    Directory of Open Access Journals (Sweden)

    Younkyu Kim

    2012-12-01

    Full Text Available In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL, followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

  7. Wearable sensor platform and mobile application for use in cognitive behavioral therapy for drug addiction and PTSD.

    Science.gov (United States)

    Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce

    2011-01-01

    We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).

  8. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...... by the authors; licensee MDPI, Basel, Switzerland. Keyword: Thermal pollution,Summer months,Advanced-along track scanning radiometers,Urban heat island,Remote sensing,Canopy layer,Atmospheric temperature,Ground based sensors,Weather information services,Satellite remote sensing,Infra-red sensor,Weather stations...

  9. A State-of-the-Art Review on Mapping and Localization of Mobile Robots Using Omnidirectional Vision Sensors

    Directory of Open Access Journals (Sweden)

    L. Payá

    2017-01-01

    Full Text Available Nowadays, the field of mobile robotics is experiencing a quick evolution, and a variety of autonomous vehicles is available to solve different tasks. The advances in computer vision have led to a substantial increase in the use of cameras as the main sensors in mobile robots. They can be used as the only source of information or in combination with other sensors such as odometry or laser. Among vision systems, omnidirectional sensors stand out due to the richness of the information they provide the robot with, and an increasing number of works about them have been published over the last few years, leading to a wide variety of frameworks. In this review, some of the most important works are analysed. One of the key problems the scientific community is addressing currently is the improvement of the autonomy of mobile robots. To this end, building robust models of the environment and solving the localization and navigation problems are three important abilities that any mobile robot must have. Taking it into account, the review concentrates on these problems; how researchers have addressed them by means of omnidirectional vision; the main frameworks they have proposed; and how they have evolved in recent years.

  10. An Energy-Efficient Secure Routing and Key Management Scheme for Mobile Sinks in Wireless Sensor Networks Using Deployment Knowledge

    Directory of Open Access Journals (Sweden)

    Le Xuan Hung

    2008-12-01

    Full Text Available For many sensor network applications such as military or homeland security, it is essential for users (sinks to access the sensor network while they are moving. Sink mobility brings new challenges to secure routing in large-scale sensor networks. Previous studies on sink mobility have mainly focused on efficiency and effectiveness of data dissemination without security consideration. Also, studies and experiences have shown that considering security during design time is the best way to provide security for sensor network routing. This paper presents an energy-efficient secure routing and key management for mobile sinks in sensor networks, called SCODEplus. It is a significant extension of our previous study in five aspects: (1 Key management scheme and routing protocol are considered during design time to increase security and efficiency; (2 The network topology is organized in a hexagonal plane which supports more efficiency than previous square-grid topology; (3 The key management scheme can eliminate the impacts of node compromise attacks on links between non-compromised nodes; (4 Sensor node deployment is based on Gaussian distribution which is more realistic than uniform distribution; (5 No GPS or like is required to provide sensor node location information. Our security analysis demonstrates that the proposed scheme can defend against common attacks in sensor networks including node compromise attacks, replay attacks, selective forwarding attacks, sinkhole and wormhole, Sybil attacks, HELLO flood attacks. Both mathematical and simulation-based performance evaluation show that the SCODEplus significantly reduces the communication overhead, energy consumption, packet delivery latency while it always delivers more than 97 percent of packets successfully.

  11. Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition

    Science.gov (United States)

    Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    The impact of global change, urbanization and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of urban areas, a comprehensive monitoring of these effects remains to be a challenging issue. Open source based electronics and cost-effective sensors are offering a promising approach to explore new possibilities of mobile data acquisition and innovative strategies and thereby support a comprehensive ad-hoc monitoring and the capturing of environmental processes close to real time. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. This ensures a consistent data stream and a rapid data processing. However, the overarching goal is the provision of an integrated service instead of lengthy and arduous data acquisition by hand. Therefore, the system also serves as a data acquisition assistant and gives guidance during the measurements. In technical terms, our monitoring system consists of mobile sensor devices, which can be controlled and managed by a smart phone app (Android). At the moment, the system is able to acquire temperature and humidity in space (GPS) and time (real-time clock) as a built in function. In addition, larger system functionality can be accomplished by adding further sensors for the detection of e.g. fine dust, methane or dissolved organic compounds. From the IT point of view, the system includes a smart phone app and a web service for

  12. Distributed data fusion across multiple hard and soft mobile sensor platforms

    Science.gov (United States)

    Sinsley, Gregory

    One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion

  13. Development of an optochemical sensor for continuous reversible determination of nitrate in drinking water and ground water

    International Nuclear Information System (INIS)

    Lumpp, R.

    1993-09-01

    An optochemical sensor has been developed for continuous reversible determination of nitrate in drinking water and ground water. The sensor is based on the combination of the anion selective liquid ion exchanger Ni(II[bathophenanthroline] 3 2+ with phenolsulfonephtalein dyes in a polyvinylchloride membrane. (orig.) [de

  14. Direct sensor orientation of a land-based mobile mapping system.

    Science.gov (United States)

    Rau, Jiann-Yeou; Habib, Ayman F; Kersting, Ana P; Chiang, Kai-Wei; Bang, Ki-In; Tseng, Yi-Hsing; Li, Yu-Hua

    2011-01-01

    A land-based mobile mapping system (MMS) is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS). The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters). In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  15. Disposable Multi-Sensor Unattended Ground Sensor Systems for Detecting Personnel (Systemes de detection multi-capteurs terrestres autonome destines a detecter du personnel)

    Science.gov (United States)

    2015-02-01

    the set of DCT coefficients for all the training data corresponding to the people. Then, the matrix ][ pX can be written as: ][][][ −+ −= ppp XXX ...deployed on two types of ground conditions. This included ARL multi-modal sensors, video and acoustic sensors from the Universities of Memphis and...Mississippi, SASNet from Canada, video from Night Vision Laboratory and Pearls of Wisdom system from Israel operated in conjunction with ARL personnel. This

  16. Center of excellence for mobile sensor data-to-knowledge (MD2K).

    Science.gov (United States)

    Kumar, Santosh; Abowd, Gregory D; Abraham, William T; al'Absi, Mustafa; Beck, J Gayle; Chau, Duen Horng; Condie, Tyson; Conroy, David E; Ertin, Emre; Estrin, Deborah; Ganesan, Deepak; Lam, Cho; Marlin, Benjamin; Marsh, Clay B; Murphy, Susan A; Nahum-Shani, Inbal; Patrick, Kevin; Rehg, James M; Sharmin, Moushumi; Shetty, Vivek; Sim, Ida; Spring, Bonnie; Srivastava, Mani; Wetter, David W

    2015-11-01

    Mobile sensor data-to-knowledge (MD2K) was chosen as one of 11 Big Data Centers of Excellence by the National Institutes of Health, as part of its Big Data-to-Knowledge initiative. MD2K is developing innovative tools to streamline the collection, integration, management, visualization, analysis, and interpretation of health data generated by mobile and wearable sensors. The goal of the big data solutions being developed by MD2K is to reliably quantify physical, biological, behavioral, social, and environmental factors that contribute to health and disease risk. The research conducted by MD2K is targeted at improving health through early detection of adverse health events and by facilitating prevention. MD2K will make its tools, software, and training materials widely available and will also organize workshops and seminars to encourage their use by researchers and clinicians. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    Science.gov (United States)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is

  18. Hierarchical Self Organizing Map for Novelty Detection using Mobile Robot with Robust Sensor

    International Nuclear Information System (INIS)

    Sha'abani, M N A H; Miskon, M F; Sakidin, H

    2013-01-01

    This paper presents a novelty detection method based on Self Organizing Map neural network using a mobile robot. Based on hierarchical neural network, the network is divided into three networks; position, orientation and sensor measurement network. A simulation was done to demonstrate and validate the proposed method using MobileSim. Three cases of abnormal events; new, missing and shifted objects are employed for performance evaluation. The result of detection was then filtered for false positive detection. The result shows that the inspection produced less than 2% false positive detection at high sensitivity settings

  19. Towards the Robotic “Avatar”: An Extensive Survey of the Cooperation between and within Networked Mobile Sensors

    Directory of Open Access Journals (Sweden)

    Aydan M. Erkmen

    2010-09-01

    Full Text Available Cooperation between networked mobile sensors, wearable and sycophant sensor networks with parasitically sticking agents, and also having human beings involved in the loop is the “Avatarization” within the robotic research community, where all networks are connected and where you can connect/disconnect at any time to acquire data from a vast unstructured world. This paper extensively surveys the networked robotic foundations of this robotic biological “Avatar” that awaits us in the future. Cooperation between networked mobile sensors as well as cooperation of nodes within a network are becoming more robust, fault tolerant and enable adaptation of the networks to changing environment conditions. In this paper, we survey and comparatively discuss the current state of networked robotics via their critical application areas and their design characteristics. We conclude by discussing future challenges.

  20. A distance-aware replica adaptive data gathering protocol for Delay Tolerant Mobile Sensor Networks.

    Science.gov (United States)

    Feng, Yong; Gong, Haigang; Fan, Mingyu; Liu, Ming; Wang, Xiaomin

    2011-01-01

    In Delay Tolerant Mobile Sensor Networks (DTMSNs) that have the inherent features of intermitted connectivity and frequently changing network topology it is reasonable to utilize multi-replica schemes to improve the data gathering performance. However, most existing multi-replica approaches inject a large amount of message copies into the network to increase the probability of message delivery, which may drain each mobile node's limited battery supply faster and result in too much contention for the restricted resources of the DTMSN, so a proper data gathering scheme needs a trade off between the number of replica messages and network performance. In this paper, we propose a new data gathering protocol called DRADG (for Distance-aware Replica Adaptive Data Gathering protocol), which economizes network resource consumption through making use of a self-adapting algorithm to cut down the number of redundant replicas of messages, and achieves a good network performance by leveraging the delivery probabilities of the mobile sensors as main routing metrics. Simulation results have shown that the proposed DRADG protocol achieves comparable or higher message delivery ratios at the cost of the much lower transmission overhead than several current DTMSN data gathering schemes.

  1. A ToF-Camera as a 3D Vision Sensor for Autonomous Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Sobers Lourdu Xavier Francis

    2015-11-01

    Full Text Available The aim of this paper is to deploy a time-of-flight (ToF based photonic mixer device (PMD camera on an Autonomous Ground Vehicle (AGV whose overall target is to traverse from one point to another in hazardous and hostile environments employing obstacle avoidance without human intervention. The hypothesized approach of applying a ToF Camera for an AGV is a suitable approach to autonomous robotics because, as the ToF camera can provide three-dimensional (3D information at a low computational cost, it is utilized to extract information about obstacles after their calibration and ground testing and is mounted and integrated with the Pioneer mobile robot. The workspace is a two-dimensional (2D world map which has been divided into a grid/cells, where the collision-free path defined by the graph search algorithm is a sequence of cells the AGV can traverse to reach the target. PMD depth data is used to populate traversable areas and obstacles by representing a grid/cells of suitable size. These camera data are converted into Cartesian coordinates for entry into a workspace grid map. A more optimal camera mounting angle is needed and adopted by analysing the camera's performance discrepancy, such as pixel detection, the detection rate and the maximum perceived distances, and infrared (IR scattering with respect to the ground surface. This mounting angle is recommended to be half the vertical field-of-view (FoV of the PMD camera. A series of still and moving tests are conducted on the AGV to verify correct sensor operations, which show that the postulated application of the ToF camera in the AGV is not straightforward. Later, to stabilize the moving PMD camera and to detect obstacles, a tracking feature detection algorithm and the scene flow technique are implemented to perform a real-time experiment.

  2. PhysioDroid: combining wearable health sensors and mobile devices for a ubiquitous, continuous, and personal monitoring.

    Science.gov (United States)

    Banos, Oresti; Villalonga, Claudia; Damas, Miguel; Gloesekoetter, Peter; Pomares, Hector; Rojas, Ignacio

    2014-01-01

    Technological advances on the development of mobile devices, medical sensors, and wireless communication systems support a new generation of unobtrusive, portable, and ubiquitous health monitoring systems for continuous patient assessment and more personalized health care. There exist a growing number of mobile apps in the health domain; however, little contribution has been specifically provided, so far, to operate this kind of apps with wearable physiological sensors. The PhysioDroid, presented in this paper, provides a personalized means to remotely monitor and evaluate users' conditions. The PhysioDroid system provides ubiquitous and continuous vital signs analysis, such as electrocardiogram, heart rate, respiration rate, skin temperature, and body motion, intended to help empower patients and improve clinical understanding. The PhysioDroid is composed of a wearable monitoring device and an Android app providing gathering, storage, and processing features for the physiological sensor data. The versatility of the developed app allows its use for both average users and specialists, and the reduced cost of the PhysioDroid puts it at the reach of most people. Two exemplary use cases for health assessment and sports training are presented to illustrate the capabilities of the PhysioDroid. Next technical steps include generalization to other mobile platforms and health monitoring devices.

  3. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F., E-mail: c.hogan@latrobe.edu.au

    2013-11-25

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing.

  4. Reprint of: Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors

    International Nuclear Information System (INIS)

    Delaney, Jacqui L.; Doeven, Egan H.; Harsant, Anthony J.; Hogan, Conor F.

    2013-01-01

    Graphical abstract: -- Highlights: •The ability to generate ECL emission using the audio output of a mobile phone is demonstrated. •Electrochemical control can be achieved by controlling the amplitude and waveform of the sound. •A mobile phone “app” synchronises the electrochemical stimulation with detection via the camera. •In combination with paper-based microfluidic sensors, extremely low cost analysis is possible. •Detection of proline at levels suitable for diagnosis of hyperprolinemia is demonstrated. -- Abstract: By exploiting its ability to play sounds, a mobile phone with suitable software installed can serve the basic functions of a potentiostat in controlling an applied potential to oxidise ECL-active molecules, while the resultant photonic signal is monitored using the camera in video mode. In combination with paper microfluidic sensors this opens significant new possibilities for low-cost, instrument-free sensing

  5. The KCLBOT: Exploiting RGB-D Sensor Inputs for Navigation Environment Building and Mobile Robot Localization

    Directory of Open Access Journals (Sweden)

    Evangelos Georgiou

    2011-09-01

    Full Text Available This paper presents an alternative approach to implementing a stereo camera configuration for SLAM. The approach suggested implements a simplified method using a single RGB-D camera sensor mounted on a maneuverable non-holonomic mobile robot, the KCLBOT, used for extracting image feature depth information while maneuvering. Using a defined quadratic equation, based on the calibration of the camera, a depth computation model is derived base on the HSV color space map. Using this methodology it is possible to build navigation environment maps and carry out autonomous mobile robot path following and obstacle avoidance. This paper presents a calculation model which enables the distance estimation using the RGB-D sensor from Microsoft .NET micro framework device. Experimental results are presented to validate the distance estimation methodology.

  6. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    Science.gov (United States)

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper. PMID:22438753

  7. Architecture and Protocol of a Semantic System Designed for Video Tagging with Sensor Data in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Alvaro Suarez

    2012-02-01

    Full Text Available Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  8. Architecture and protocol of a semantic system designed for video tagging with sensor data in mobile devices.

    Science.gov (United States)

    Macias, Elsa; Lloret, Jaime; Suarez, Alvaro; Garcia, Miguel

    2012-01-01

    Current mobile phones come with several sensors and powerful video cameras. These video cameras can be used to capture good quality scenes, which can be complemented with the information gathered by the sensors also embedded in the phones. For example, the surroundings of a beach recorded by the camera of the mobile phone, jointly with the temperature of the site can let users know via the Internet if the weather is nice enough to swim. In this paper, we present a system that tags the video frames of the video recorded from mobile phones with the data collected by the embedded sensors. The tagged video is uploaded to a video server, which is placed on the Internet and is accessible by any user. The proposed system uses a semantic approach with the stored information in order to make easy and efficient video searches. Our experimental results show that it is possible to tag video frames in real time and send the tagged video to the server with very low packet delay variations. As far as we know there is not any other application developed as the one presented in this paper.

  9. Building Mobile Apps for Underrepresented Mental Health care Consumers: A Grounded Theory Approach.

    Science.gov (United States)

    Leung, Ricky; Hastings, Julia F; Keefe, Robert H; Brownstein-Evans, Carol; Chan, Keith T; Mullick, Rosemary

    2016-01-01

    Cell phone mobile application ("app") use has risen dramatically within the past several years. Many individuals access apps to address mental health issues. Unlike individuals from privileged backgrounds, individuals from oppressed backgrounds may rely on apps rather than costly mental health treatment. To date, very little research has been published evaluating mental health apps' effectiveness. This paper focuses on three methods through which grounded theory can facilitate app development and evaluation for people underrepresented in mental health care. Recommendations are made to advance mobile app technology that will help clinicians provide effective treatment, and consumers to realize positive treatment outcomes.

  10. Building Mobile Apps for Underrepresented Mental Health care Consumers: A Grounded Theory Approach

    Science.gov (United States)

    Leung, Ricky; Hastings, Julia F.; Keefe, Robert H.; Brownstein-Evans, Carol; Chan, Keith T.; Mullick, Rosemary

    2017-01-01

    Cell phone mobile application (“app”) use has risen dramatically within the past several years. Many individuals access apps to address mental health issues. Unlike individuals from privileged backgrounds, individuals from oppressed backgrounds may rely on apps rather than costly mental health treatment. To date, very little research has been published evaluating mental health apps’ effectiveness. This paper focuses on three methods through which grounded theory can facilitate app development and evaluation for people underrepresented in mental health care. Recommendations are made to advance mobile app technology that will help clinicians provide effective treatment, and consumers to realize positive treatment outcomes. PMID:29056878

  11. Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors

    Directory of Open Access Journals (Sweden)

    Aiwu Zhang

    2015-12-01

    Full Text Available The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i the stability and reliability of the method is verified through simulation-based experiments; (ii the boresight calibration is performed using ground-based experiments; and (iii the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level.

  12. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas

    Directory of Open Access Journals (Sweden)

    Ze Wang

    2015-09-01

    Full Text Available Network security is one of the most important issues in mobile sensor networks (MSNs. Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA is proposed to resist malicious attacks by using mobile nodes’ dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  13. Layered Location-Based Security Mechanism for Mobile Sensor Networks: Moving Security Areas.

    Science.gov (United States)

    Wang, Ze; Zhang, Haijuan; Wu, Luqiang; Zhou, Chang

    2015-09-25

    Network security is one of the most important issues in mobile sensor networks (MSNs). Networks are particularly vulnerable in hostile environments because of many factors, such as uncertain mobility, limitations on computation, and the need for storage in mobile nodes. Though some location-based security mechanisms can resist some malicious attacks, they are only suitable for static networks and may sometimes require large amounts of storage. To solve these problems, using location information, which is one of the most important properties in outdoor wireless networks, a security mechanism called a moving security area (MSA) is proposed to resist malicious attacks by using mobile nodes' dynamic location-based keys. The security mechanism is layered by performing different detection schemes inside or outside the MSA. The location-based private keys will be updated only at the appropriate moments, considering the balance of cost and security performance. By transferring parts of the detection tasks from ordinary nodes to the sink node, the memory requirements are distributed to different entities to save limited energy.

  14. Observing the Context of Use of a Media Player on Mobile Phones using Embedded and Virtual Sensors

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Petersen, Michael Kai; Handler, Rasmus

    2010-01-01

    In this paper, we discuss how contextual data acquired from multiple embedded mobile phone sensors can provide insights into the mobile user experience. We report from two field studies where contextual information were obtained from N=21 mobile phone users in a 2–8 week duration, to derive...... information about participant context. In the second study our focus was on observing mobile interaction with a media player application over time and we discuss how the captured contextual data can lead to a better understanding of the context in which mobile applications and devices are used. We argue...... that this information can provide valuable insights to the design of mobile applications and user interfaces....

  15. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2013-10-01

    Full Text Available A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y values are used to get a new fit of the (lower surface (line. The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  16. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    Science.gov (United States)

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  17. A novel method of range measuring for a mobile robot based on multi-sensor information fusion

    International Nuclear Information System (INIS)

    Zhang Yi; Luo Yuan; Wang Jifeng

    2005-01-01

    The traditional measuring range for a mobile robot is based on a sonar sensor. Because of different working environments, it is very difficult to obtain high precision by using just one single method of range measurement. So, a hybrid sonar sensor and laser scanner method is put forward to overcome these shortcomings. A novel fusion model is proposed based on basic theory and a method of information fusion. An optimal measurement result has been obtained with information fusion from different sensors. After large numbers of experiments and performance analysis, a conclusion can be drawn that the laser scanner and sonar sensor method with multi-sensor information fusion have a higher precision than the single method of sonar. It can also be the same with different environments

  18. Cooperative Transmission in Mobile Wireless Sensor Networks with Multiple Carrier Frequency Offsets: A Double-Differential Approach

    Directory of Open Access Journals (Sweden)

    Kun Zhao

    2014-01-01

    Full Text Available As a result of the rapidly increasing mobility of sensor nodes, mobile wireless sensor networks (MWSNs would be subject to multiple carrier frequency offsets (MCFOs, which result in time-varying channels and drastically degrade the network performance. To enhance the performance of such MWSNs, we propose a relay selection (RS based double-differential (DD cooperative transmission scheme, termed RSDDCT, in which the best relay sensor node is selected to forward the source sensor node’s signals to the destination sensor node with the detect-and-forward (DetF protocol. Assuming a Rayleigh fading environment, first, exact closed-form expressions for the outage probability and average bit error rate (BER of the RSDDCT scheme are derived. Then, simple and informative asymptotic outage probability and average BER expressions at the large signal-to-noise ratio (SNR regime are presented, which reveal that the RSDDCT scheme can achieve full diversity. Furthermore, the optimum power allocation strategy in terms of minimizing the average BER is investigated, and simple analytical solutions are obtained. Simulation results demonstrate that the proposed RSDDCT scheme can achieve excellent performance over fading channels in the presence of unknown random MCFOs. It is also shown that the proposed optimum power allocation strategy offers substantial average BER performance improvement over the equal power allocation strategy.

  19. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, John Kyle P [ORNL; Ericson, Milton Nance [ORNL; Farquhar, Ethan [ORNL; Lind, Randall F [ORNL; Evans III, Boyd Mccutchen [ORNL

    2011-01-01

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  20. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Science.gov (United States)

    Hong, Zhiling; Lin, Fan; Xiao, Bin

    2017-01-01

    Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  1. Direct Sensor Orientation of a Land-Based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Yu-Hua Li

    2011-07-01

    Full Text Available A land-based mobile mapping system (MMS is flexible and useful for the acquisition of road environment geospatial information. It integrates a set of imaging sensors and a position and orientation system (POS. The positioning quality of such systems is highly dependent on the accuracy of the utilized POS. This limitation is the major drawback due to the elevated cost associated with high-end GPS/INS units, particularly the inertial system. The potential accuracy of the direct sensor orientation depends on the architecture and quality of the GPS/INS integration process as well as the validity of the system calibration (i.e., calibration of the individual sensors as well as the system mounting parameters. In this paper, a novel single-step procedure using integrated sensor orientation with relative orientation constraint for the estimation of the mounting parameters is introduced. A comparative analysis between the proposed single-step and the traditional two-step procedure is carried out. Moreover, the estimated mounting parameters using the different methods are used in a direct geo-referencing procedure to evaluate their performance and the feasibility of the implemented system. Experimental results show that the proposed system using single-step system calibration method can achieve high 3D positioning accuracy.

  2. Coordinator Role Mobility Method for Increasing the Life Expectancy of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jurenoks Aleksejs

    2017-05-01

    Full Text Available The general problem of wireless sensor network nodes is the low-power batteries that significantly limit the life expectancy of a network. Nowadays the technical solutions related to energy resource management are being rapidly developed and integrated into the daily lives of people. The energy resource management systems use sensor networks for receiving and processing information during the realia time. The present paper proposes using a coordinator role mobility method for controlling the routing processes for energy balancing in nodes, which provides dynamic network reconfiguration possibilities. The method is designed to operate fully in the background and can be integrated into any exiting working system.

  3. Bayesian prediction and adaptive sampling algorithms for mobile sensor networks online environmental field reconstruction in space and time

    CERN Document Server

    Xu, Yunfei; Dass, Sarat; Maiti, Tapabrata

    2016-01-01

    This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive di...

  4. P2P Data Management in Mobile Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Nida Sahar Sayeda

    2013-04-01

    Full Text Available The rapid growth in wireless technologies has made wireless communication an important source for transporting data across different domains. In the same way, there are possibilities of many potential applications that can be deployed using WSNs (Wireless Sensor Networks. However, very limited applications are deployed in real life due to the uncertainty and dynamics of the environment and scare resources. This makes data management in WSN a challenging area to find an approach that suits its characteristics. Currently, the trend is to find efficient data management schemes using evolving technologies, i.e. P2P (Peer-to-Peer systems. Many P2P approaches have been applied in WSNs to carry out the data management due to similarities between WSN and P2P. With the similarities, there are differences too that makes P2P protocols inefficient in WSNs. Furthermore, to increase the efficiency and to exploit the delay tolerant nature of WSNs, where ever possible, the mobile WSNs are gaining importance. Thus, creating a three dimensional problem space to consider, i.e. mobility, WSNs and P2P. In this paper, an efficient algorithm is proposed for data management using P2P techniques for mobile WSNs. The real world implementation and deployment of proposed algorithm is also presented

  5. Recognizing the degree of human attention using EEG signals from mobile sensors.

    Science.gov (United States)

    Liu, Ning-Han; Chiang, Cheng-Yu; Chu, Hsuan-Chin

    2013-08-09

    During the learning process, whether students remain attentive throughout instruction generally influences their learning efficacy. If teachers can instantly identify whether students are attentive they can be suitably reminded to remain focused, thereby improving their learning effects. Traditional teaching methods generally require that teachers observe students' expressions to determine whether they are attentively learning. However, this method is often inaccurate and increases the burden on teachers. With the development of electroencephalography (EEG) detection tools, mobile brainwave sensors have become mature and affordable equipment. Therefore, in this study, whether students are attentive or inattentive during instruction is determined by observing their EEG signals. Because distinguishing between attentiveness and inattentiveness is challenging, two scenarios were developed for this study to measure the subjects' EEG signals when attentive and inattentive. After collecting EEG data using mobile sensors, various common features were extracted from the raw data. A support vector machine (SVM) classifier was used to calculate and analyze these features to identify the combination of features that best indicates whether students are attentive. Based on the experiment results, the method proposed in this study provides a classification accuracy of up to 76.82%. The study results can be used as a reference for learning system designs in the future.

  6. Rancang Bangun Prototype Counter Mobil Menggunakan Sensor Giant Magnetic Resistance (Gmr Berbasis Mikrokontroler

    Directory of Open Access Journals (Sweden)

    Adnan Ardiansyah

    2017-06-01

    Full Text Available Kapadatan lalu lintas salah satunya diakibatkan pertambahan jumlah mobil yang tidak seimbang dengan pertambahan panjang jalan. Data kepadatan lalu lintas dapat menjadi informasi yang berguna untuk statistik pengembangan jalan dan pengguna jalan. Data tersebut didapatkan dengan cara menghitung manual ataupun dengan detektor yang ditanam pada jalan atau kamera CCTV. Namun, cara tersebut tidak efisien karena data yang didapat membutuhkan sumber daya manusia dan sumber dana yang besar. Pada penelitian ini, telah dirancang sistem sederhana yang dapat mendeteksi frekuensi atau jumlah kepadatan mobil tiap satuan waktu. Data diperoleh dengan mikrokontroler berbasis arduino yang menggunakan sensor magnet GMR sebagai input. Ketika kendaraan diatas telah melewati sistem, mikrokontroler memproses sinyal yang diterima dari sensor untuk mendapatkan data jumlah kendaraan. Serta LCD karakter 2x16 sebagai penampil data. Data yang diperoleh kemudian dapat digunakan untuk otomatisasi penggukur kemacetan dan sistem kontrol lalu lintas lainnya, menggantikan sistem detektor yang ditanam pada jalan raya dan video kamera dimalam hari dan untuk menutupi daerah yang tidak terjangkau. Hasil penelitian menujukan bahwa sensor mempunyai tingkat akurasi pengukuran 94,66%, serta mempunyai tingkat presisi yang cukup baik. Traffic data frequency can be beneficial for statistic extended road method and road user. Data may be found from manual counter or using detector implanted to the road or CCTV camera. However, that method not efficient because need operator in order to obtained the data and expensive cost. In this research, already planned a simple systemtraffic vehicle counter or vehicle quantity by the time. Data obtained by microcontroller Arduino UNO with magnetic sensor (GMR attached as input. When a vehicle passes above the circuit system, a microcontroller processes signal of sensor to obtain data quantity of vehicle. And also character LCD 2x16 as display data

  7. Mobile user identity sensing using the motion sensor

    Science.gov (United States)

    Zhao, Xi; Feng, Tao; Xu, Lei; Shi, Weidong

    2014-05-01

    Employing mobile sensor data to recognize user behavioral activities has been well studied in recent years. However, to adopt the data as a biometric modality has rarely been explored. Existing methods either used the data to recognize gait, which is considered as a distinguished identity feature; or segmented a specific kind of motion for user recognition, such as phone picking-up motion. Since the identity and the motion gesture jointly affect motion data, to fix the gesture (walking or phone picking-up) definitively simplifies the identity sensing problem. However, it meanwhile introduces the complexity from gesture detection or requirement on a higher sample rate from motion sensor readings, which may draw the battery fast and affect the usability of the phone. In general, it is still under investigation that motion based user authentication in a large scale satisfies the accuracy requirement as a stand-alone biometrics modality. In this paper, we propose a novel approach to use the motion sensor readings for user identity sensing. Instead of decoupling the user identity from a gesture, we reasonably assume users have their own distinguishing phone usage habits and extract the identity from fuzzy activity patterns, represented by a combination of body movements whose signals in chains span in relative low frequency spectrum and hand movements whose signals span in relative high frequency spectrum. Then Bayesian Rules are applied to analyze the dependency of different frequency components in the signals. During testing, a posterior probability of user identity given the observed chains can be computed for authentication. Tested on an accelerometer dataset with 347 users, our approach has demonstrated the promising results.

  8. Validation and User Evaluation of a Sensor-Based Method for Detecting Mobility-Related Activities in Older Adults.

    Directory of Open Access Journals (Sweden)

    Hilde A E Geraedts

    Full Text Available Regular physical activity is essential for older adults to stay healthy and independent. However, daily physical activity is generally low among older adults and mainly consists of activities such as standing and shuffling around indoors. Accurate measurement of this low-energy expenditure daily physical activity is crucial for stimulation of activity. The objective of this study was to assess the validity of a necklace-worn sensor-based method for detecting time-on-legs and daily life mobility related postures in older adults. In addition user opinion about the practical use of the sensor was evaluated. Twenty frail and non-frail older adults performed a standardized and free movement protocol in their own home. Results of the sensor-based method were compared to video observation. Sensitivity, specificity and overall agreement of sensor outcomes compared to video observation were calculated. Mobility was assessed based on time-on-legs. Further assessment included the categories standing, sitting, walking and lying. Time-on-legs based sensitivity, specificity and percentage agreement were good to excellent and comparable to laboratory outcomes in other studies. Category-based sensitivity, specificity and overall agreement were moderate to excellent. The necklace-worn sensor is considered an acceptable valid instrument for assessing home-based physical activity based upon time-on-legs in frail and non-frail older adults, but category-based assessment of gait and postures could be further developed.

  9. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  10. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  11. Assessment of learning powered mobility use--applying grounded theory to occupational performance.

    Science.gov (United States)

    Nilsson, Lisbeth; Durkin, Josephine

    2014-01-01

    Collaboration by two grounded theory researchers, who each had developed a learning continuum instrument, led to the emergence of a new tool for assessment of learning powered mobility use. We undertook a rigorous process of comparative reanalysis that included merging, modifying, and expanding our previous research findings. A new instrument together with its facilitating strategies emerged in the course of revisits to our existing rich account of data taken from real environment powered mobility practice over an extensive time period. Instrument descriptors, categories, phases, and stages allow a facilitator to assess actual phase and plot actual occupational performance and provide a learner with the just right challenge through the learning process. Facilitating strategies are described for each of the phases and provide directions for involvement during learner performance. The learning approach is led by a belief system that the intervention is user-led, working in partnership and empowering the learner. The new assessment tool is inclusive of every potential powered mobility user because it focuses on the whole continuum of the learning process of powered mobility use from novice to expert. The new tool was appraised by clinicians and has been used successfully in clinical practice in the United Kingdom and Sweden.

  12. Mobile phone sensors and supervised machine learning to identify alcohol use events in young adults: Implications for just-in-time adaptive interventions.

    Science.gov (United States)

    Bae, Sangwon; Chung, Tammy; Ferreira, Denzil; Dey, Anind K; Suffoletto, Brian

    2017-11-27

    Real-time detection of drinking could improve timely delivery of interventions aimed at reducing alcohol consumption and alcohol-related injury, but existing detection methods are burdensome or impractical. To evaluate whether phone sensor data and machine learning models are useful to detect alcohol use events, and to discuss implications of these results for just-in-time mobile interventions. 38 non-treatment seeking young adult heavy drinkers downloaded AWARE app (which continuously collected mobile phone sensor data), and reported alcohol consumption (number of drinks, start/end time of prior day's drinking) for 28days. We tested various machine learning models using the 20 most informative sensor features to classify time periods as non-drinking, low-risk (1 to 3/4 drinks per occasion for women/men), and high-risk drinking (>4/5 drinks per occasion for women/men). Among 30 participants in the analyses, 207 non-drinking, 41 low-risk, and 45 high-risk drinking episodes were reported. A Random Forest model using 30-min windows with 1day of historical data performed best for detecting high-risk drinking, correctly classifying high-risk drinking windows 90.9% of the time. The most informative sensor features were related to time (i.e., day of week, time of day), movement (e.g., change in activities), device usage (e.g., screen duration), and communication (e.g., call duration, typing speed). Preliminary evidence suggests that sensor data captured from mobile phones of young adults is useful in building accurate models to detect periods of high-risk drinking. Interventions using mobile phone sensor features could trigger delivery of a range of interventions to potentially improve effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2017-05-01

    Full Text Available Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k-means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  14. Adaptive Energy-Efficient Target Detection Based on Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Zou, Tengyue; Li, Zhenjia; Li, Shuyuan; Lin, Shouying

    2017-05-04

    Target detection is a widely used application for area surveillance, elder care, and fire alarms; its purpose is to find a particular object or event in a region of interest. Usually, fixed observing stations or static sensor nodes are arranged uniformly in the field. However, each part of the field has a different probability of being intruded upon; if an object suddenly enters an area with few guardian devices, a loss of detection will occur, and the stations in the safe areas will waste their energy for a long time without any discovery. Thus, mobile wireless sensor networks may benefit from adaptation and pertinence in detection. Sensor nodes equipped with wheels are able to move towards the risk area via an adaptive learning procedure based on Bayesian networks. Furthermore, a clustering algorithm based on k -means++ and an energy control mechanism is used to reduce the energy consumption of nodes. The extended Kalman filter and a voting data fusion method are employed to raise the localization accuracy of the target. The simulation and experimental results indicate that this new system with adaptive energy-efficient methods is able to achieve better performance than the traditional ones.

  15. Mobile Phone Based Falling Detection Sensor and Computer-Aided Algorithm for Elderly People

    Directory of Open Access Journals (Sweden)

    Lee Jong-Ha

    2016-01-01

    Full Text Available Falls are dangerous for the elderly population; therefore many fall detection systems have been developed. However, previous methods are bulky for elderly people or only use a single sensor to isolate falls from daily living activities, which makes a fall difficult to distinguish. In this paper, we present a cost-effective and easy-to-use portable fall-detection sensor and algorithm. Specifically, to detect human falls, we used a three-axis accelerator and a three-axis gyroscope in a mobile phone. We used the Fourier descriptor-based frequency analysis method to classify both normal and falling status. From the experimental results, the proposed method detects falling status with 96.14% accuracy.

  16. An energy-efficient MAC protocol using dynamic queue management for delay-tolerant mobile sensor networks.

    Science.gov (United States)

    Li, Jie; Li, Qiyue; Qu, Yugui; Zhao, Baohua

    2011-01-01

    Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC) for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  17. An Energy-Efficient MAC Protocol Using Dynamic Queue Management for Delay-Tolerant Mobile Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yugui Qu

    2011-02-01

    Full Text Available Conventional MAC protocols for wireless sensor network perform poorly when faced with a delay-tolerant mobile network environment. Characterized by a highly dynamic and sparse topology, poor network connectivity as well as data delay-tolerance, delay-tolerant mobile sensor networks exacerbate the severe power constraints and memory limitations of nodes. This paper proposes an energy-efficient MAC protocol using dynamic queue management (EQ-MAC for power saving and data queue management. Via data transfers initiated by the target sink and the use of a dynamic queue management strategy based on priority, EQ-MAC effectively avoids untargeted transfers, increases the chance of successful data transmission, and makes useful data reach the target terminal in a timely manner. Experimental results show that EQ-MAC has high energy efficiency in comparison with a conventional MAC protocol. It also achieves a 46% decrease in packet drop probability, 79% increase in system throughput, and 25% decrease in mean packet delay.

  18. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    Science.gov (United States)

    Rodrigues, Joel J. P. C.

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212

  19. A novel Gravity-FREAK feature extraction and Gravity-KLT tracking registration algorithm based on iPhone MEMS mobile sensor in mobile environment.

    Directory of Open Access Journals (Sweden)

    Zhiling Hong

    Full Text Available Based on the traditional Fast Retina Keypoint (FREAK feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.

  20. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    Science.gov (United States)

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  1. Forecasting Global Horizontal Irradiance Using the LETKF and a Combination of Advected Satellite Images and Sparse Ground Sensors

    Science.gov (United States)

    Harty, T. M.; Lorenzo, A.; Holmgren, W.; Morzfeld, M.

    2017-12-01

    The irradiance incident on a solar panel is the main factor in determining the power output of that panel. For this reason, accurate global horizontal irradiance (GHI) estimates and forecasts are critical when determining the optimal location for a solar power plant, forecasting utility scale solar power production, or forecasting distributed, behind the meter rooftop solar power production. Satellite images provide a basis for producing the GHI estimates needed to undertake these objectives. The focus of this work is to combine satellite derived GHI estimates with ground sensor measurements and an advection model. The idea is to use accurate but sparsely distributed ground sensors to improve satellite derived GHI estimates which can cover large areas (the size of a city or a region of the United States). We use a Bayesian framework to perform the data assimilation, which enables us to produce irradiance forecasts and associated uncertainties which incorporate both satellite and ground sensor data. Within this framework, we utilize satellite images taken from the GOES-15 geostationary satellite (available every 15-30 minutes) as well as ground data taken from irradiance sensors and rooftop solar arrays (available every 5 minutes). The advection model, driven by wind forecasts from a numerical weather model, simulates cloud motion between measurements. We use the Local Ensemble Transform Kalman Filter (LETKF) to perform the data assimilation. We present preliminary results towards making such a system useful in an operational context. We explain how localization and inflation in the LETKF, perturbations of wind-fields, and random perturbations of the advection model, affect the accuracy of our estimates and forecasts. We present experiments showing the accuracy of our forecasted GHI over forecast-horizons of 15 mins to 1 hr. The limitations of our approach and future improvements are also discussed.

  2. Development of a mobile sensor for robust assessment of river bed grain forces

    Science.gov (United States)

    Maniatis, G.; Hoey, T.; Sventek, J.; Hodge, R. A.

    2013-12-01

    The forces experienced by sediment grains at entrainment and during transport, and those exerted on river beds, are significant for the development of river systems and landscape evolution. The assessment of local grain forces has been approached using two different methodologies. The first approach uses static impact sensors at points or cross-sections to measure velocity and/or acceleration. A second approach uses mobile natural or artificial 'smart' pebbles instrumented with inertia micro-sensors for directly measuring the local forces experienced by individual grains. The two approaches have yielded significantly different magnitudes of impact forces. Static sensors (piezoelectric plates connected to accelerometers) temporally smooth the impacts from several grains and infrequently detect the higher forces (up to ×100g) generated by direct single-grain impacts. The second method is currently unable to record the full range of impacts in real rivers due to the low measurement range of the deployed inertia sensors (×3g). Laboratory applications have required only low-range accelerometers, so excluding the magnitude of natural impacts from the design criteria. Here we present the first results from the development of a mobile sensor, designed for the purpose of measuring local grain-forces in a natural riverbed. We present two sets of measurements. The first group presents the calibration of a wide range micro-accelerometer from a set of vertical drop experiments (gravitational acceleration) and further experiments on a shaking table moving with pre-defined acceleration. The second group of measurements are from incipient motion experiments performed in a 9m x0.9m flume (slope 0.001 to 0.018) under steadily increasing discharge. Initially the spherical sensor grain was placed on an artificial surface of hemispheres of identical diameter to the sensor (111mm). Incipient motion was assessed under both whole and half-diameter exposure for each slope. Subsequently

  3. Recognizing Academic Performance, Sleep Quality, Stress Level, and Mental Health using Personality Traits, Wearable Sensors and Mobile Phones.

    Science.gov (United States)

    Sano, Akane; Phillips, Andrew J; Yu, Amy Z; McHill, Andrew W; Taylor, Sara; Jaques, Natasha; Czeisler, Charles A; Klerman, Elizabeth B; Picard, Rosalind W

    2015-06-01

    What can wearable sensors and usage of smart phones tell us about academic performance, self-reported sleep quality, stress and mental health condition? To answer this question, we collected extensive subjective and objective data using mobile phones, surveys, and wearable sensors worn day and night from 66 participants, for 30 days each, totaling 1,980 days of data. We analyzed daily and monthly behavioral and physiological patterns and identified factors that affect academic performance (GPA), Pittsburg Sleep Quality Index (PSQI) score, perceived stress scale (PSS), and mental health composite score (MCS) from SF-12, using these month-long data. We also examined how accurately the collected data classified the participants into groups of high/low GPA, good/poor sleep quality, high/low self-reported stress, high/low MCS using feature selection and machine learning techniques. We found associations among PSQI, PSS, MCS, and GPA and personality types. Classification accuracies using the objective data from wearable sensors and mobile phones ranged from 67-92%.

  4. A Lifetime Optimization Algorithm Limited by Data Transmission Delay and Hops for Mobile Sink-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yourong Chen

    2017-01-01

    Full Text Available To improve the lifetime of mobile sink-based wireless sensor networks and considering that data transmission delay and hops are limited in actual system, a lifetime optimization algorithm limited by data transmission delay and hops (LOA_DH for mobile sink-based wireless sensor networks is proposed. In LOA_DH, some constraints are analyzed, and an optimization model is proposed. Maximum capacity path routing algorithm is used to calculate the energy consumption of communication. Improved genetic algorithm which modifies individuals to meet all constraints is used to solve the optimization model. The optimal solution of sink node’s sojourn grid centers and sojourn times which maximizes network lifetime is obtained. Simulation results show that, in three node distribution scenes, LOA_DH can find the movement solution of sink node which covers all sensor nodes. Compared with MCP_RAND, MCP_GMRE, and EASR, the solution improves network lifetime and reduces average amount of node discarded data and average energy consumption of nodes.

  5. Improving mobile robot localization: grid-based approach

    Science.gov (United States)

    Yan, Junchi

    2012-02-01

    Autonomous mobile robots have been widely studied not only as advanced facilities for industrial and daily life automation, but also as a testbed in robotics competitions for extending the frontier of current artificial intelligence. In many of such contests, the robot is supposed to navigate on the ground with a grid layout. Based on this observation, we present a localization error correction method by exploring the geometric feature of the tile patterns. On top of the classical inertia-based positioning, our approach employs three fiber-optic sensors that are assembled under the bottom of the robot, presenting an equilateral triangle layout. The sensor apparatus, together with the proposed supporting algorithm, are designed to detect a line's direction (vertical or horizontal) by monitoring the grid crossing events. As a result, the line coordinate information can be fused to rectify the cumulative localization deviation from inertia positioning. The proposed method is analyzed theoretically in terms of its error bound and also has been implemented and tested on a customary developed two-wheel autonomous mobile robot.

  6. A Review on Sensor Network Issues and Robotics

    Directory of Open Access Journals (Sweden)

    Ji Hyoung Ryu

    2015-01-01

    Full Text Available The interaction of distributed robotics and wireless sensor networks has led to the creation of mobile sensor networks. There has been an increasing interest in building mobile sensor networks and they are the favored class of WSNs in which mobility plays a key role in the execution of an application. More and more researches focus on development of mobile wireless sensor networks (MWSNs due to its favorable advantages and applications. In WSNs robotics can play a crucial role, and integrating static nodes with mobile robots enhances the capabilities of both types of devices and enables new applications. In this paper we present an overview on mobile sensor networks in robotics and vice versa and robotic sensor network applications.

  7. Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile Devices

    Science.gov (United States)

    Pombo, Nuno

    2018-01-01

    Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature. PMID:29466316

  8. Approach for the Development of a Framework for the Identification of Activities of Daily Living Using Sensors in Mobile Devices.

    Science.gov (United States)

    Pires, Ivan Miguel; Garcia, Nuno M; Pombo, Nuno; Flórez-Revuelta, Francisco; Spinsante, Susanna

    2018-02-21

    Sensors available on mobile devices allow the automatic identification of Activities of Daily Living (ADL). This paper describes an approach for the creation of a framework for the identification of ADL, taking into account several concepts, including data acquisition, data processing, data fusion, and pattern recognition. These concepts can be mapped onto different modules of the framework. The proposed framework should perform the identification of ADL without Internet connection, performing these tasks locally on the mobile device, taking in account the hardware and software limitations of these devices. The main purpose of this paper is to present a new approach for the creation of a framework for the recognition of ADL, analyzing the allowed sensors available in the mobile devices, and the existing methods available in the literature.

  9. Advances in mobile mapping technology

    CERN Document Server

    Tao; Li, Jonathan

    2007-01-01

    With the increasing availability of low-cost and portable sensors, mobile mapping has become more dynamic, and even pervasive. The book addresses a wide variety of research issues in the mobile mapping community, ranging from system development to sensor integration, imaging algorithms and mobile GIS applications.

  10. LPTA: location predictive and time adaptive data gathering scheme with mobile sink for wireless sensor networks.

    Science.gov (United States)

    Zhu, Chuan; Wang, Yao; Han, Guangjie; Rodrigues, Joel J P C; Lloret, Jaime

    2014-01-01

    This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  11. A Secure Automated Elevator Management System and Pressure Sensor based Floor Estimation for Indoor Mobile Robot Transportation

    Directory of Open Access Journals (Sweden)

    Ali Abduljalil Abdulla

    2017-08-01

    Full Text Available In this paper, a secure elevator handling system is presented to enable a flexible movement of wheeled mobile robots among laboratories distributed in different floors. The automated handling system consists mainly of an ADAM module which has the ability to call the elevator to the robot’s current floor and to request the destination floor. The LPS25HP pressure sensor attached to an STM32F411 microcontroller is utilized as a height measurement system to estimate the robot’s current floor inside the elevator. The ultrasonic sensor is used to recognize the elevator’s door status. Many challenges have to be solved to realize a stable height measurement system based on pressure sensor readings. The difference of the pressure sensor readings before and after soldering is realized by comparing the reading after soldering with an accurate barometric reading. In addition, the sensor output signal shows oscillation and wide variation of the same floor pressure sensor readings at different times. The oscillation in the output signal has been handled using a first order FIR smoothing filter. The first order filter was selected to balance between the stability and the elapsed time to receive the updated values. An auto-calibration stage is established to maintain the wide variation in the atmospheric pressure readings by calibrating the sensor readings with the robot’s current floor before entering the elevator. An error handling management system is utilized to guarantee a stable automated elevator management system performance. Many experiments to assess and verify the performance of the automated elevator management system and robot’s current floor estimation are reported. The experimental results show that the proposed methods and sub-systems developed for the mobile robot are effective and efficient in providing a transportation service in multiple-floor life sciences laboratories.

  12. Energy-Efficient Region Shift Scheme to Support Mobile Sink Group in Wireless Sensor Networks.

    Science.gov (United States)

    Yim, Yongbin; Kim, Kyong Hoon; Aldwairi, Monther; Kim, Ki-Il

    2017-12-30

    Mobile sink groups play crucial roles to perform their own missions in many wireless sensor network (WSN) applications. In order to support mobility of such sink groups, it is important to design a mechanism for effective discovery of the group in motion. However, earlier studies obtain group region information by periodic query. For that reason, the mechanism leads to significant signaling overhead due to frequent flooding for the query regardless of the group movement. Furthermore, the mechanism worsens the problem by the flooding in the whole expected area. To deal with this problem, we propose a novel mobile sink group support scheme with low communication cost, called Region-Shift-based Mobile Geocasting Protocol (RSMGP). In this study, we utilize the group mobility feature for which members of a group have joint motion patterns. Thus, we could trace group movement by shifting the region as much as partial members move out of the previous region. Furthermore, the region acquisition is only performed at the moment by just deviated members without collaboration of all members. Experimental results validate the improved signaling overhead of our study compared to the previous studies.

  13. Muon Trigger for Mobile Phones

    Science.gov (United States)

    Borisyak, M.; Usvyatsov, M.; Mulhearn, M.; Shimmin, C.; Ustyuzhanin, A.

    2017-10-01

    The CRAYFIS experiment proposes to use privately owned mobile phones as a ground detector array for Ultra High Energy Cosmic Rays. Upon interacting with Earth’s atmosphere, these events produce extensive particle showers which can be detected by cameras on mobile phones. A typical shower contains minimally-ionizing particles such as muons. As these particles interact with CMOS image sensors, they may leave tracks of faintly-activated pixels that are sometimes hard to distinguish from random detector noise. Triggers that rely on the presence of very bright pixels within an image frame are not efficient in this case. We present a trigger algorithm based on Convolutional Neural Networks which selects images containing such tracks and are evaluated in a lazy manner: the response of each successive layer is computed only if activation of the current layer satisfies a continuation criterion. Usage of neural networks increases the sensitivity considerably comparable with image thresholding, while the lazy evaluation allows for execution of the trigger under the limited computational power of mobile phones.

  14. LPTA: Location Predictive and Time Adaptive Data Gathering Scheme with Mobile Sink for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chuan Zhu

    2014-01-01

    Full Text Available This paper exploits sink mobility to prolong the lifetime of sensor networks while maintaining the data transmission delay relatively low. A location predictive and time adaptive data gathering scheme is proposed. In this paper, we introduce a sink location prediction principle based on loose time synchronization and deduce the time-location formulas of the mobile sink. According to local clocks and the time-location formulas of the mobile sink, nodes in the network are able to calculate the current location of the mobile sink accurately and route data packets timely toward the mobile sink by multihop relay. Considering that data packets generating from different areas may be different greatly, an adaptive dwelling time adjustment method is also proposed to balance energy consumption among nodes in the network. Simulation results show that our data gathering scheme enables data routing with less data transmission time delay and balance energy consumption among nodes.

  15. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  16. Smart multi-level tool for remote patient monitoring based on a wireless sensor network and mobile augmented reality.

    Science.gov (United States)

    González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa

    2014-09-16

    Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.

  17. Estimation of Vertical Ground Reaction Forces and Sagittal Knee Kinematics During Running Using Three Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Frank J. Wouda

    2018-03-01

    Full Text Available Analysis of running mechanics has traditionally been limited to a gait laboratory using either force plates or an instrumented treadmill in combination with a full-body optical motion capture system. With the introduction of inertial motion capture systems, it becomes possible to measure kinematics in any environment. However, kinetic information could not be provided with such technology. Furthermore, numerous body-worn sensors are required for a full-body motion analysis. The aim of this study is to examine the validity of a method to estimate sagittal knee joint angles and vertical ground reaction forces during running using an ambulatory minimal body-worn sensor setup. Two concatenated artificial neural networks were trained (using data from eight healthy subjects to estimate the kinematics and kinetics of the runners. The first artificial neural network maps the information (orientation and acceleration of three inertial sensors (placed at the lower legs and pelvis to lower-body joint angles. The estimated joint angles in combination with measured vertical accelerations are input to a second artificial neural network that estimates vertical ground reaction forces. To validate our approach, estimated joint angles were compared to both inertial and optical references, while kinetic output was compared to measured vertical ground reaction forces from an instrumented treadmill. Performance was evaluated using two scenarios: training and evaluating on a single subject and training on multiple subjects and evaluating on a different subject. The estimated kinematics and kinetics of most subjects show excellent agreement (ρ>0.99 with the reference, for single subject training. Knee flexion/extension angles are estimated with a mean RMSE <5°. Ground reaction forces are estimated with a mean RMSE < 0.27 BW. Additionaly, peak vertical ground reaction force, loading rate and maximal knee flexion during stance were compared, however, no significant

  18. An Adaptive Clustering Approach Based on Minimum Travel Route Planning for Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Tang, Jiqiang; Yang, Wu; Zhu, Lingyun; Wang, Dong; Feng, Xin

    2017-04-26

    In recent years, Wireless Sensor Networks with a Mobile Sink (WSN-MS) have been an active research topic due to the widespread use of mobile devices. However, how to get the balance between data delivery latency and energy consumption becomes a key issue of WSN-MS. In this paper, we study the clustering approach by jointly considering the Route planning for mobile sink and Clustering Problem (RCP) for static sensor nodes. We solve the RCP problem by using the minimum travel route clustering approach, which applies the minimum travel route of the mobile sink to guide the clustering process. We formulate the RCP problem as an Integer Non-Linear Programming (INLP) problem to shorten the travel route of the mobile sink under three constraints: the communication hops constraint, the travel route constraint and the loop avoidance constraint. We then propose an Imprecise Induction Algorithm (IIA) based on the property that the solution with a small hop count is more feasible than that with a large hop count. The IIA algorithm includes three processes: initializing travel route planning with a Traveling Salesman Problem (TSP) algorithm, transforming the cluster head to a cluster member and transforming the cluster member to a cluster head. Extensive experimental results show that the IIA algorithm could automatically adjust cluster heads according to the maximum hops parameter and plan a shorter travel route for the mobile sink. Compared with the Shortest Path Tree-based Data-Gathering Algorithm (SPT-DGA), the IIA algorithm has the characteristics of shorter route length, smaller cluster head count and faster convergence rate.

  19. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.

    Science.gov (United States)

    Uddin, Mohammad Ammad; Mansour, Ali; Jeune, Denis Le; Ayaz, Mohammad; Aggoune, El-Hadi M

    2018-02-11

    In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use.

  20. Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring.

    Science.gov (United States)

    Bhattacharjee, Mitradip; Nemade, Harshal B; Bandyopadhyay, Dipankar

    2017-08-15

    The frequency of breathing and peak flow rate of exhaled air are necessary parameters to detect chronic obstructive pulmonary diseases (COPDs) such as asthma, bronchitis, or pneumonia. We developed a lung function monitoring point-of-care-testing device (LFM-POCT) consisting of mouthpiece, paper-based humidity sensor, micro-heater, and real-time monitoring unit. Fabrication of a mouthpiece of optimal length ensured that the exhaled air was focused on the humidity-sensor. The resistive relative humidity sensor was developed using a filter paper coated with nanoparticles, which could easily follow the frequency and peak flow rate of the human breathing. Adsorption followed by condensation of the water molecules of the humid air on the paper-sensor during the forced exhalation reduced the electrical resistance of the sensor, which was converted to an electrical signal for sensing. A micro-heater composed of a copper-coil embedded in a polymer matrix helped in maintaining an optimal temperature on the sensor surface. Thus, water condensed on the sensor surface only during forcible breathing and the sensor recovered rapidly after the exhalation was complete by rapid desorption of water molecules from the sensor surface. Two types of real-time monitoring units were integrated into the device based on light emitting diodes (LEDs) and smart phones. The LED based unit displayed the diseased, critical, and fit conditions of the lungs by flashing LEDs of different colors. In comparison, for the mobile based monitoring unit, an application was developed employing an open source software, which established a wireless connectivity with the LFM-POCT device to perform the tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Can mobile phones used in strong motion seismology?

    Science.gov (United States)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude

  2. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  3. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  4. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  5. mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data.

    Science.gov (United States)

    Saleheen, Nazir; Chakraborty, Supriyo; Ali, Nasir; Mahbubur Rahman, Md; Hossain, Syed Monowar; Bari, Rummana; Buder, Eugene; Srivastava, Mani; Kumar, Santosh

    2016-09-01

    Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.

  6. An Improved Forwarding of Diverse Events with Mobile Sinks in Underwater Wireless Sensor Networks.

    Science.gov (United States)

    Raza, Waseem; Arshad, Farzana; Ahmed, Imran; Abdul, Wadood; Ghouzali, Sanaa; Niaz, Iftikhar Azim; Javaid, Nadeem

    2016-11-04

    In this paper, a novel routing strategy to cater the energy consumption and delay sensitivity issues in deep underwater wireless sensor networks is proposed. This strategy is named as ESDR: Event Segregation based Delay sensitive Routing. In this strategy sensed events are segregated on the basis of their criticality and, are forwarded to their respective destinations based on forwarding functions. These functions depend on different routing metrics like: Signal Quality Index, Localization free Signal to Noise Ratio, Energy Cost Function and Depth Dependent Function. The problem of incomparable values of previously defined forwarding functions causes uneven delays in forwarding process. Hence forwarding functions are redefined to ensure their comparable values in different depth regions. Packet forwarding strategy is based on the event segregation approach which forwards one third of the generated events (delay sensitive) to surface sinks and two third events (normal events) are forwarded to mobile sinks. Motion of mobile sinks is influenced by the relative distribution of normal nodes. We have also incorporated two different mobility patterns named as; adaptive mobility and uniform mobility for mobile sinks. The later one is implemented for collecting the packets generated by the normal nodes. These improvements ensure optimum holding time, uniform delay and in-time reporting of delay sensitive events. This scheme is compared with the existing ones and outperforms the existing schemes in terms of network lifetime, delay and throughput.

  7. Sensors Fusion based Online Mapping and Features Extraction of Mobile Robot in the Road Following and Roundabout

    International Nuclear Information System (INIS)

    Ali, Mohammed A H; Yussof, Wan Azhar B.; Hamedon, Zamzuri B; Yussof, Zulkifli B.; Majeed, Anwar P P; Mailah, Musa

    2016-01-01

    A road feature extraction based mapping system using a sensor fusion technique for mobile robot navigation in road environments is presented in this paper. The online mapping of mobile robot is performed continuously in the road environments to find the road properties that enable the robot to move from a certain start position to pre-determined goal while discovering and detecting the roundabout. The sensors fusion involving laser range finder, camera and odometry which are installed in a new platform, are used to find the path of the robot and localize it within its environments. The local maps are developed using camera and laser range finder to recognize the roads borders parameters such as road width, curbs and roundabout. Results show the capability of the robot with the proposed algorithms to effectively identify the road environments and build a local mapping for road following and roundabout. (paper)

  8. Development of mobile sensor for volcanic observation "HOMURA": Test campaigns for a long-term operation

    Science.gov (United States)

    Kaneko, K.; Iwahori, K.; Ito, K.; Sagi, H.

    2016-12-01

    Unmanned robots are useful to observe volcanic phenomena near active volcanic vents, to learn symptoms and transitions of eruptions, and to mitigate volcanic disasters. We have been trying to develop a practical UGV robot for flexible observation of active volcanic vents. We named this system "Homura". In this presentation, we report results of test campaigns of Homura for observation in a volcanic field. We have developed a prototype of Homura, which is a small robot vehicle with six wheels (75 x 43 x 31 cm and a weight of about 12 kg). It is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors (camera and gas sensors) equipped in the vehicle to the base station. Homura has a small solar panel (4 W). Power consumption of Homura is about 4 W in operation of sensors and less than 0.1 W in idle state, so that Homura can work outdoors for a long time by intermittent operation.We carried out two test campaigns of Homura at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields (however, it had no solar panel in these campaigns). Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct., 2014 to May, 2015 and from Feb. to Mar., 2016 because of strong volcanic seismicity. On Feb. 19th, 2015 and Mar. 7th, 2016, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we did not move Homura and only obtain real time data of the sensors. In the two campaigns, we operated Homura at our office for a few hours every day for 49 and 37 days, respectively. Although the weather was often bad (rain, fog, or cold temperature) during the campaigns, Homura perfectly worked. The results of these campaigns indicate that Homura is useful as s simple monitoring station in volcanic fields where mobile phone connection is available.

  9. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    OpenAIRE

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Fi...

  10. Mobile Context Toolbox

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Larsen, Jakob Eg; Skomail, Lukasz

    2010-01-01

    In this paper we describe an open framework utilizing sensors and application data on the Maemo mobile platform enabling rapid prototyping of context-aware mobile applications. The framework has an extensible layered architecture allowing new hardware and software sensors and features to be added...... to the context framework. We present initial results from in-the-wild experiments where contextual data was acquired using the tool. In the experiments 6 participants were using a Nokia N900 mobile phone continuously with a logger application for an average of 33 days. The study has provided valuable insights...

  11. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    Science.gov (United States)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  12. Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks.

    Science.gov (United States)

    Khan, Majid I; Gansterer, Wilfried N; Haring, Guenter

    2013-05-15

    Over the last decade a large number of routing protocols has been designed for achieving energy efficiency in data collecting wireless sensor networks. The drawbacks of using a static sink are well known. It has been argued in the literature that a mobile sink may improve the energy dissipation compared to a static one. Some authors focus on minimizing Emax , the maximum energy dissipation of any single node in the network, while others aim at minimizing Ebar , the average energy dissipation over all nodes. In our paper we take a more holistic view, considering both Emax and Ebar . The main contribution of this paper is to provide a simulation-based analysis of the energy efficiency of WSNs with static and mobile sinks. The focus is on two important configuration parameters: mobility path of the sink and duty cycling value of the nodes. On the one hand, it is well known that in the case of a mobile sink with fixed trajectory the choice of the mobility path influences energy efficiency. On the other hand, in some types of applications sensor nodes spend a rather large fraction of their total lifetime in idle mode, and therefore higher energy efficiency can be achieved by using the concept of reduced duty cycles. In particular, we quantitatively analyze the influence of duty cycling and the mobility radius of the sink as well as their interrelationship in terms of energy consumption for a well-defined model scenario. The analysis starts from general load considerations and is refined into a geometrical model. This model is validated by simulations which are more realistic in terms of duty cycling than previous work. It is illustrated that over all possible configuration scenarios in terms of duty cycle and mobility radius of the sink the energy dissipation in the WSN can vary up to a factor of nine in terms of Emax and up to a factor of 17 in terms of Ebar. It turns out that in general the choice of the duty cycle value is more important for achieving energy

  13. Spatio-temporal monitoring of cotton cultivation using ground-based and airborne multispectral sensors in GIS environment.

    Science.gov (United States)

    Papadopoulos, Antonis; Kalivas, Dionissios; Theocharopoulos, Sid

    2017-07-01

    Multispectral sensor capability of capturing reflectance data at several spectral channels, together with the inherent reflectance responses of various soils and especially plant surfaces, has gained major interest in crop production. In present study, two multispectral sensing systems, a ground-based and an aerial-based, were applied for the multispatial and temporal monitoring of two cotton fields in central Greece. The ground-based system was Crop Circle ACS-430, while the aerial consisted of a consumer-level quadcopter (Phantom 2) and a modified Hero3+ Black digital camera. The purpose of the research was to monitor crop growth with the two systems and investigate possible interrelations between the derived well-known normalized difference vegetation index (NDVI). Five data collection campaigns were conducted during the cultivation period and concerned scanning soil and plants with the ground-based sensor and taking aerial photographs of the fields with the unmanned aerial system. According to the results, both systems successfully monitored cotton growth stages in terms of space and time. The mean values of NDVI changes through time as retrieved by the ground-based system were satisfactorily modelled by a second-order polynomial equation (R 2 0.96 in Field 1 and 0.99 in Field 2). Further, they were highly correlated (r 0.90 in Field 1 and 0.74 in Field 2) with the according values calculated via the aerial-based system. The unmanned aerial system (UAS) can potentially substitute crop scouting as it concerns a time-effective, non-destructive and reliable way of soil and plant monitoring.

  14. Infrared Range Sensor Array for 3D Sensing in Robotic Applications

    Directory of Open Access Journals (Sweden)

    Yongtae Do

    2013-04-01

    Full Text Available This paper presents the design and testing of multiple infrared range detectors arranged in a two-dimensional (2D array. The proposed system can collect the sparse three-dimensional (3D data of objects and surroundings for robotics applications. Three kinds of tasks are considered using the system: detecting obstacles that lie ahead of a mobile robot, sensing the ground profile for the safe navigation of a mobile robot, and sensing the shape and position of an object on a conveyor belt for pickup by a robot manipulator. The developed system is potentially a simple alternative to high-resolution (and expensive 3D sensing systems, such as stereo cameras or laser scanners. In addition, the system can provide shape information about target objects and surroundings that cannot be obtained using simple ultrasonic sensors. Laboratory prototypes of the system were built with nine infrared range sensors arranged in a 3×3 array and test results confirmed the validity of system.

  15. Validation Techniques for Sensor Data in Mobile Health Applications

    Directory of Open Access Journals (Sweden)

    Ivan Miguel Pires

    2016-01-01

    Full Text Available Mobile applications have become a must in every user’s smart device, and many of these applications make use of the device sensors’ to achieve its goal. Nevertheless, it remains fairly unknown to the user to which extent the data the applications use can be relied upon and, therefore, to which extent the output of a given application is trustworthy or not. To help developers and researchers and to provide a common ground of data validation algorithms and techniques, this paper presents a review of the most commonly used data validation algorithms, along with its usage scenarios, and proposes a classification for these algorithms. This paper also discusses the process of achieving statistical significance and trust for the desired output.

  16. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks.

    Science.gov (United States)

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-10-27

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor's mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay.

  17. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiao Xu

    2009-04-01

    Full Text Available Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  18. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    Science.gov (United States)

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  19. Replica Node Detection Using Enhanced Single Hop Detection with Clonal Selection Algorithm in Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    L. S. Sindhuja

    2016-01-01

    Full Text Available Security of Mobile Wireless Sensor Networks is a vital challenge as the sensor nodes are deployed in unattended environment and they are prone to various attacks. One among them is the node replication attack. In this, the physically insecure nodes are acquired by the adversary to clone them by having the same identity of the captured node, and the adversary deploys an unpredictable number of replicas throughout the network. Hence replica node detection is an important challenge in Mobile Wireless Sensor Networks. Various replica node detection techniques have been proposed to detect these replica nodes. These methods incur control overheads and the detection accuracy is low when the replica is selected as a witness node. This paper proposes to solve these issues by enhancing the Single Hop Detection (SHD method using the Clonal Selection algorithm to detect the clones by selecting the appropriate witness nodes. The advantages of the proposed method include (i increase in the detection ratio, (ii decrease in the control overhead, and (iii increase in throughput. The performance of the proposed work is measured using detection ratio, false detection ratio, packet delivery ratio, average delay, control overheads, and throughput. The implementation is done using ns-2 to exhibit the actuality of the proposed work.

  20. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  1. An FPGA-Based Omnidirectional Vision Sensor for Motion Detection on Mobile Robots

    Directory of Open Access Journals (Sweden)

    Jones Y. Mori

    2012-01-01

    Full Text Available This work presents the development of an integrated hardware/software sensor system for moving object detection and distance calculation, based on background subtraction algorithm. The sensor comprises a catadioptric system composed by a camera and a convex mirror that reflects the environment to the camera from all directions, obtaining a panoramic view. The sensor is used as an omnidirectional vision system, allowing for localization and navigation tasks of mobile robots. Several image processing operations such as filtering, segmentation and morphology have been included in the processing architecture. For achieving distance measurement, an algorithm to determine the center of mass of a detected object was implemented. The overall architecture has been mapped onto a commercial low-cost FPGA device, using a hardware/software co-design approach, which comprises a Nios II embedded microprocessor and specific image processing blocks, which have been implemented in hardware. The background subtraction algorithm was also used to calibrate the system, allowing for accurate results. Synthesis results show that the system can achieve a throughput of 26.6 processed frames per second and the performance analysis pointed out that the overall architecture achieves a speedup factor of 13.78 in comparison with a PC-based solution running on the real-time operating system xPC Target.

  2. A mobile sensing system for structural health monitoring: design and validation

    International Nuclear Information System (INIS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-01-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring

  3. A mobile sensing system for structural health monitoring: design and validation

    Science.gov (United States)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  4. Predictability of Mobile Phone Associations

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Larsen, Jan; Hansen, Lars Kai

    2010-01-01

    Prediction and understanding of human behavior is of high importance in many modern applications and research areas ranging from context-aware services, wireless resource allocation to social sciences. In this study we collect a novel dataset using standard mobile phones and analyze how the predi...... representation, and general behavior. This is of vital interest in the development of context-aware services which rely on forecasting based on mobile phone sensors.......Prediction and understanding of human behavior is of high importance in many modern applications and research areas ranging from context-aware services, wireless resource allocation to social sciences. In this study we collect a novel dataset using standard mobile phones and analyze how...... the predictability of mobile sensors, acting as proxies for humans, change with time scale and sensor type such as GSM and WLAN. Applying recent information theoretic methods, it is demonstrated that an upper bound on predictability is relatively high for all sensors given the complete history (typically above 90...

  5. Challenges in complementing data from ground-based sensors with satellite-derived products to measure ecological changes in relation to climate – lessons from temperate wetland-upland landscapes

    Science.gov (United States)

    Gallant, Alisa L.; Sadinski, Walter J.; Brown, Jesslyn F.; Senay, Gabriel B.; Roth, Mark F.

    2018-01-01

    Assessing climate-related ecological changes across spatiotemporal scales meaningful to resource managers is challenging because no one method reliably produces essential data at both fine and broad scales. We recently confronted such challenges while integrating data from ground- and satellite-based sensors for an assessment of four wetland-rich study areas in the U.S. Midwest. We examined relations between temperature and precipitation and a set of variables measured on the ground at individual wetlands and another set measured via satellite sensors within surrounding 4 km2 landscape blocks. At the block scale, we used evapotranspiration and vegetation greenness as remotely sensed proxies for water availability and to estimate seasonal photosynthetic activity. We used sensors on the ground to coincidentally measure surface-water availability and amphibian calling activity at individual wetlands within blocks. Responses of landscape blocks generally paralleled changes in conditions measured on the ground, but the latter were more dynamic, and changes in ecological conditions on the ground that were critical for biota were not always apparent in measurements of related parameters in blocks. Here, we evaluate the effectiveness of decisions and assumptions we made in applying the remotely sensed data for the assessment and the value of integrating observations across scales, sensors, and disciplines.

  6. Mobile Robotics Activities in DOE Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

    2005-03-01

    This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

  7. Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Arain

    2015-03-01

    Full Text Available The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.

  8. Dynamic Task Allocation in Multi-Hop Multimedia Wireless Sensor Networks with Low Mobility

    Directory of Open Access Journals (Sweden)

    Klaus Moessner

    2013-10-01

    Full Text Available This paper presents a task allocation-oriented framework to enable efficient in-network processing and cost-effective multi-hop resource sharing for dynamic multi-hop multimedia wireless sensor networks with low node mobility, e.g., pedestrian speeds. The proposed system incorporates a fast task reallocation algorithm to quickly recover from possible network service disruptions, such as node or link failures. An evolutional self-learning mechanism based on a genetic algorithm continuously adapts the system parameters in order to meet the desired application delay requirements, while also achieving a sufficiently long network lifetime. Since the algorithm runtime incurs considerable time delay while updating task assignments, we introduce an adaptive window size to limit the delay periods and ensure an up-to-date solution based on node mobility patterns and device processing capabilities. To the best of our knowledge, this is the first study that yields multi-objective task allocation in a mobile multi-hop wireless environment under dynamic conditions. Simulations are performed in various settings, and the results show considerable performance improvement in extending network lifetime compared to heuristic mechanisms. Furthermore, the proposed framework provides noticeable reduction in the frequency of missing application deadlines.

  9. Adaptive Remote-Sensing Techniques Implementing Swarms of Mobile Agents

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Loubriel, G.M.; Rbinett, R.D. III; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-04-01

    This paper focuses on our recent work at Sandia National Laboratories toward engineering a physics-based swarm of mobile vehicles for distributed sensing applications. Our goal is to coordinate a sensor array that optimizes sensor coverage and multivariate signal analysis by implementing artificial intelligence and evolutionary computational techniques. These intelligent control systems integrate both globally operating decision-making systems and locally cooperative information-sharing modes using genetically-trained neural networks. Once trained, neural networks have the ability to enhance real-time operational responses to dynamical environments, such as obstacle avoidance, responding to prevailing wind patterns, and overcoming other natural obscurants or interferences (jammers). The swarm realizes a collective set of sensor neurons with simple properties incorporating interactions based on basic community rules (potential fields) and complex interconnecting functions based on various neural network architectures, Therefore, the swarm is capable of redundant heterogeneous measurements which furnishes an additional degree of robustness and fault tolerance not afforded by conventional systems, while accomplishing such cognitive tasks as generalization, error correction, pattern recognition, and sensor fission. The robotic platforms could be equipped with specialized sensor devices including transmit/receive dipole antennas, chemical or biological sniffers in combination with recognition analysis tools, communication modulators, and laser diodes. Our group has been studying the collective behavior of an autonomous, multi-agent system applied to emerging threat applications. To accomplish such tasks, research in the fields of robotics, sensor technology, and swarms are being conducted within an integrated program. Mission scenarios under consideration include ground penetrating impulse radar (GPR) for detection of under-ground structures, airborne systems, and plume

  10. An energy-efficient and secure hybrid algorithm for wireless sensor networks using a mobile data collector

    Science.gov (United States)

    Dayananda, Karanam Ravichandran; Straub, Jeremy

    2017-05-01

    This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.

  11. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  12. Tracking and Interception of Ground-Based RF Sources Using Autonomous Guided Munitions with Passive Bearings-Only Sensors and Tracking Algorithms

    National Research Council Canada - National Science Library

    Ezal, Kenan; Agate, Craig

    2006-01-01

    This paper considers the problem of tracking and intercepting a potentially moving ground-based RF source with an autonomous guided munition that has a passive bearings-only sensor located on its nose...

  13. A low-noise MEMS accelerometer for unattended ground sensor applications

    Science.gov (United States)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  14. Automatic camera to laser calibration for high accuracy mobile mapping systems using INS

    Science.gov (United States)

    Goeman, Werner; Douterloigne, Koen; Gautama, Sidharta

    2013-09-01

    A mobile mapping system (MMS) is a mobile multi-sensor platform developed by the geoinformation community to support the acquisition of huge amounts of geodata in the form of georeferenced high resolution images and dense laser clouds. Since data fusion and data integration techniques are increasingly able to combine the complementary strengths of different sensor types, the external calibration of a camera to a laser scanner is a common pre-requisite on today's mobile platforms. The methods of calibration, nevertheless, are often relatively poorly documented, are almost always time-consuming, demand expert knowledge and often require a carefully constructed calibration environment. A new methodology is studied and explored to provide a high quality external calibration for a pinhole camera to a laser scanner which is automatic, easy to perform, robust and foolproof. The method presented here, uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration, a well studied absolute orientation problem needs to be solved. In many cases, the camera and laser sensor are calibrated in relation to the INS system. Therefore, the transformation from camera to laser contains the cumulated error of each sensor in relation to the INS. Here, the calibration of the camera is performed in relation to the laser frame using the time synchronization between the sensors for data association. In this study, the use of the inertial relative movement will be explored to collect more useful calibration data. This results in a better intersensor calibration allowing better coloring of the clouds and a more accurate depth mask for images, especially on the edges of objects in the scene.

  15. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  16. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    Science.gov (United States)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  17. [A mobile sensor for remote detection of natural gas leakage].

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Kan, Rui-feng; Ruan, Jun; Wang, Li-ming; Yu, Dian-qiang; Dong, Jin-ting; Han, Xiao-lei; Cui, Yi-ben; Liu, Jian-guo

    2012-02-01

    The detection of natural gas pipeline leak becomes a significant issue for body security, environmental protection and security of state property. However, the leak detection is difficult, because of the pipeline's covering many areas, operating conditions and complicated environment. A mobile sensor for remote detection of natural gas leakage based on scanning wavelength differential absorption spectroscopy (SWDAS) is introduced. The improved soft threshold wavelet denoising was proposed by analyzing the characteristics of reflection spectrum. And the results showed that the signal to noise ratio (SNR) was increased three times. When light intensity is 530 nA, the minimum remote sensitivity will be 80 ppm x m. A widely used SWDAS can make quantitative remote sensing of natural gas leak and locate the leak source precisely in a faster, safer and more intelligent way.

  18. A Compact MIMO Antenna with Inverted C-Shaped Ground Branches for Mobile Terminals

    Directory of Open Access Journals (Sweden)

    Zixian Yang

    2016-01-01

    Full Text Available A compact printed MIMO antenna for mobile terminals is presented. With two planar antenna elements, the −6 dB impedance bandwidth of 2.32 GHz (1.48–3.8 GHz is obtained, which covers GSM 1800/1900, UMTS, WLAN, Wimax, S-band, and most of LTE bands. Each antenna element with a small occupation of 15 × 20 mm2 consists of a driven strip and a shorted strip. Two inverted C-shaped ground branches are introduced between two elements to improve the isolation. The simulated results are studied and the measured results show that high isolation of more than 18 dB at the entire operating band is achieved. Meanwhile, the impedance performance is also improved by adding the branches. Furthermore, the measured radiation performances and envelope correlation coefficient also demonstrate that the proposed antenna could be a good candidate for mobile terminals.

  19. Online variational Bayesian filtering-based mobile target tracking in wireless sensor networks.

    Science.gov (United States)

    Zhou, Bingpeng; Chen, Qingchun; Li, Tiffany Jing; Xiao, Pei

    2014-11-11

    The received signal strength (RSS)-based online tracking for a mobile node in wireless sensor networks (WSNs) is investigated in this paper. Firstly, a multi-layer dynamic Bayesian network (MDBN) is introduced to characterize the target mobility with either directional or undirected movement. In particular, it is proposed to employ the Wishart distribution to approximate the time-varying RSS measurement precision's randomness due to the target movement. It is shown that the proposed MDBN offers a more general analysis model via incorporating the underlying statistical information of both the target movement and observations, which can be utilized to improve the online tracking capability by exploiting the Bayesian statistics. Secondly, based on the MDBN model, a mean-field variational Bayesian filtering (VBF) algorithm is developed to realize the online tracking of a mobile target in the presence of nonlinear observations and time-varying RSS precision, wherein the traditional Bayesian filtering scheme cannot be directly employed. Thirdly, a joint optimization between the real-time velocity and its prior expectation is proposed to enable online velocity tracking in the proposed online tacking scheme. Finally, the associated Bayesian Cramer-Rao Lower Bound (BCRLB) analysis and numerical simulations are conducted. Our analysis unveils that, by exploiting the potential state information via the general MDBN model, the proposed VBF algorithm provides a promising solution to the online tracking of a mobile node in WSNs. In addition, it is shown that the final tracking accuracy linearly scales with its expectation when the RSS measurement precision is time-varying.

  20. Design and research of intelligent mobile robot environment detection system based on multi-sensor technology

    International Nuclear Information System (INIS)

    Chen Yu; Wen Xinling

    2007-01-01

    The intelligent mobile robot environment detection system is researched based on SCM MC68HC908GP3 as core of control system. The four groups of detection systems constituted by ultrasonic sensors and infrared sensors gather information of forward, behind, left and right different directions, solve the problem of blind spot, and make up each other shortage. The distance measurement precision is improved rapidly and the detection precision is less than ±1% through using the way of the pulse shooting, the signal chooses circuit, and the temperature compensation. The system design method and the hardware circuit are introduced in detail. Simultaneity, the system adopts the single chip control technology, it makes the system possess favorable expansibility and gains the practicability in engineering field. (authors)

  1. A Study of Mobile Robot Control using EEG Emotiv Epoch Sensor

    Directory of Open Access Journals (Sweden)

    Victorio Yasin Timothius

    2018-01-01

    Full Text Available The study was using an EEG Emotiv Epoc+ sensor to recognize brain activity for controlling a mobile robot's movement. The study used Emotiv Control Panel software for EEG command identification. The commands will be interfaced inside Mind Your OSCs software and processing software which processed inside an Arduino Controller. The output of the Arduino is a movement command (ie. forward, backward, turn left, and turn right. The training methods of the system composed of three sets of thinking mode. First, thinking with doing facial expressions. Second, thinking with visual help. Third, thinking mentally without any help. In the first set, there are two configurations thinking with facial expression help as command of the mobile robot. Final results of the system are the second facial expressions configuration as the best facial expressions method with success rate 88.33 %. The second facial expression configuration has overall response time 1.60175 s faster than the first facial expressions configuration. In these two methods have dominant signals on the frontal lobe. The second facial expressions method have overall respond time 6.12 and 9.53 s faster than thinking with visual, and thinking without help respectively.

  2. Mobile Context Toolbox - an extensible context framework for S60 mobile phones

    DEFF Research Database (Denmark)

    Larsen, Jakob Eg; Jensen, Kristian

    2009-01-01

    We describe an open framework utilizing sensors and application data on S60 mobile phones enabling rapid prototyping of context-aware mobile applications. The framework has an extensible layered architecture allowing new sensors and features to be added to the context framework as they become....... In the experiments 14 participants have been continuously using a Nokia N95 mobile phone with a context logger application for an average of 48 days per user and covering 70% of the time. The study has provided valuable insights into the performance issues of the system in real-life usage situations, including...

  3. Ground robotic measurement of aeolian processes

    Science.gov (United States)

    Qian, Feifei; Jerolmack, Douglas; Lancaster, Nicholas; Nikolich, George; Reverdy, Paul; Roberts, Sonia; Shipley, Thomas; Van Pelt, R. Scott; Zobeck, Ted M.; Koditschek, Daniel E.

    2017-08-01

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists' efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science

  4. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    Science.gov (United States)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations

  5. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiuhua Wang

    2017-02-01

    Full Text Available Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  6. A Novel Physical Layer Assisted Authentication Scheme for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Qiuhua

    2017-02-04

    Physical-layer authentication can address physical layer vulnerabilities and security threats in wireless sensor networks, and has been considered as an effective complementary enhancement to existing upper-layer authentication mechanisms. In this paper, to advance the existing research and improve the authentication performance, we propose a novel physical layer assisted authentication scheme for mobile wireless sensor networks. In our proposed scheme, we explore the reciprocity and spatial uncorrelation of the wireless channel to verify the identities of involved transmitting users and decide whether all data frames are from the same sender. In our proposed scheme, a new method is developed for the legitimate users to compare their received signal strength (RSS) records, which avoids the information from being disclosed to the adversary. Our proposed scheme can detect the spoofing attack even in a high dynamic environment. We evaluate our scheme through experiments under indoor and outdoor environments. Experiment results show that our proposed scheme is more efficient and achieves a higher detection rate as well as keeping a lower false alarm rate.

  7. A novel flexible capacitive load sensor for use in a mobile unicompartmental knee replacement bearing: An in vitro proof of concept study.

    Science.gov (United States)

    Mentink, M J A; Van Duren, B H; Murray, D W; Gill, H S

    2017-08-01

    Instrumented knee replacements can provide in vivo data quantifying physiological loads acting on the knee. To date instrumented mobile unicompartmental knee replacements (UKR) have not been realised. Ideally instrumentation would be embedded within the polyethylene bearing. This study investigated the feasibility of an embedded flexible capacitive load sensor. A novel flexible capacitive load sensor was developed which could be incorporated into standard manufacturing of compression moulded polyethylene bearings. Dynamic experiments were performed to determine the characteristics of the sensor on a uniaxial servo-hydraulic material testing machine. The instrumented bearing was measured at sinusoidal frequencies between 0.1 and 10Hz, allowing for measurement of typical gait load magnitudes and frequencies. These correspond to frequencies of interest in physiological loading. The loads that were applied were a static load of 390N, corresponding to an equivalent body weight load for UKR, and a dynamic load of ±293N. The frequency transfer response of the sensor suggests a low pass filter response with a -3dB frequency of 10Hz. The proposed embedded capacitive load sensor was shown to be applicable for measuring in vivo loads within a polyethylene mobile UKR bearing. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. A Greedy Scanning Data Collection Strategy for Large-Scale Wireless Sensor Networks with a Mobile Sink.

    Science.gov (United States)

    Zhu, Chuan; Zhang, Sai; Han, Guangjie; Jiang, Jinfang; Rodrigues, Joel J P C

    2016-09-06

    Mobile sink is widely used for data collection in wireless sensor networks. It can avoid 'hot spot' problems but energy consumption caused by multihop transmission is still inefficient in real-time application scenarios. In this paper, a greedy scanning data collection strategy (GSDCS) is proposed, and we focus on how to reduce routing energy consumption by shortening total length of routing paths. We propose that the mobile sink adjusts its trajectory dynamically according to the changes of network, instead of predetermined trajectory or random walk. Next, the mobile sink determines which area has more source nodes, then it moves toward this area. The benefit of GSDCS is that most source nodes are no longer needed to upload sensory data for long distances. Especially in event-driven application scenarios, when event area changes, the mobile sink could arrive at the new event area where most source nodes are located currently. Hence energy can be saved. Analytical and simulation results show that compared with existing work, our GSDCS has a better performance in specific application scenarios.

  9. SOMM: A new service oriented middleware for generic wireless multimedia sensor networks based on code mobility.

    Science.gov (United States)

    Faghih, Mohammad Mehdi; Moghaddam, Mohsen Ebrahimi

    2011-01-01

    Although much research in the area of Wireless Multimedia Sensor Networks (WMSNs) has been done in recent years, the programming of sensor nodes is still time-consuming and tedious. It requires expertise in low-level programming, mainly because of the use of resource constrained hardware and also the low level API provided by current operating systems. The code of the resulting systems has typically no clear separation between application and system logic. This minimizes the possibility of reusing code and often leads to the necessity of major changes when the underlying platform is changed. In this paper, we present a service oriented middleware named SOMM to support application development for WMSNs. The main goal of SOMM is to enable the development of modifiable and scalable WMSN applications. A network which uses the SOMM is capable of providing multiple services to multiple clients at the same time with the specified Quality of Service (QoS). SOMM uses a virtual machine with the ability to support mobile agents. Services in SOMM are provided by mobile agents and SOMM also provides a t space on each node which agents can use to communicate with each other.

  10. A wearable mobility device for the blind using retina-inspired dynamic vision sensors.

    Science.gov (United States)

    Ghaderi, Viviane S; Mulas, Marcello; Pereira, Vinicius Felisberto Santos; Everding, Lukas; Weikersdorfer, David; Conradt, Jorg

    2015-01-01

    Proposed is a prototype of a wearable mobility device which aims to assist the blind with navigation and object avoidance via auditory-vision-substitution. The described system uses two dynamic vision sensors and event-based information processing techniques to extract depth information. The 3D visual input is then processed using three different strategies, and converted to a 3D output sound using an individualized head-related transfer function. The performance of the device with different processing strategies is evaluated via initial tests with ten subjects. The outcome of these tests demonstrate promising performance of the system after only very short training times of a few minutes due to the minimal encoding of outputs from the vision sensors which are translated into simple sound patterns easily interpretable for the user. The envisioned system will allow for efficient real-time algorithms on a hands-free and lightweight device with exceptional battery life-time.

  11. Identifying Objective Physiological Markers and Modifiable Behaviors for Self-Reported Stress and Mental Health Status Using Wearable Sensors and Mobile Phones: Observational Study.

    Science.gov (United States)

    Sano, Akane; Taylor, Sara; McHill, Andrew W; Phillips, Andrew Jk; Barger, Laura K; Klerman, Elizabeth; Picard, Rosalind

    2018-06-08

    Wearable and mobile devices that capture multimodal data have the potential to identify risk factors for high stress and poor mental health and to provide information to improve health and well-being. We developed new tools that provide objective physiological and behavioral measures using wearable sensors and mobile phones, together with methods that improve their data integrity. The aim of this study was to examine, using machine learning, how accurately these measures could identify conditions of self-reported high stress and poor mental health and which of the underlying modalities and measures were most accurate in identifying those conditions. We designed and conducted the 1-month SNAPSHOT study that investigated how daily behaviors and social networks influence self-reported stress, mood, and other health or well-being-related factors. We collected over 145,000 hours of data from 201 college students (age: 18-25 years, male:female=1.8:1) at one university, all recruited within self-identified social groups. Each student filled out standardized pre- and postquestionnaires on stress and mental health; during the month, each student completed twice-daily electronic diaries (e-diaries), wore two wrist-based sensors that recorded continuous physical activity and autonomic physiology, and installed an app on their mobile phone that recorded phone usage and geolocation patterns. We developed tools to make data collection more efficient, including data-check systems for sensor and mobile phone data and an e-diary administrative module for study investigators to locate possible errors in the e-diaries and communicate with participants to correct their entries promptly, which reduced the time taken to clean e-diary data by 69%. We constructed features and applied machine learning to the multimodal data to identify factors associated with self-reported poststudy stress and mental health, including behaviors that can be possibly modified by the individual to improve

  12. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor

    Directory of Open Access Journals (Sweden)

    Bodo eRückauer

    2016-04-01

    Full Text Available In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS. For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240x180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS. This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera.

  13. Self-stabilizing Synchronization in Mobile Sensor Networks with Covering

    Science.gov (United States)

    Beauquier, Joffroy; Burman, Janna

    Synchronization is widely considered as an important service in distributed systems which may simplify protocol design. Phase clock is a general synchronization tool that provides a form of a logical time. This paper presents a self-stabilizing (a tolerating state-corrupting transient faults) phase clock algorithm suited to the model of population protocols with covering. This model has been proposed recently for sensor networks with a very large, possibly unknown number of anonymous mobile agents having small memory. Agents interact in pairs in an asynchronous way subject to the constraints expressed in terms of the cover times of agents. The cover time expresses the "frequency" of an agent to communicate with all the others and abstracts agent's communication characteristics (e.g. moving speed/patterns, transmitting/receiving capabilities). We show that a phase clock is impossible in the model with only constant-state agents. Hence, we assume an existence of resource-unlimited agent - the base station.

  14. Optical Communication System for Remote Monitoring and Adaptive Control of Distributed Ground Sensors Exhibiting Collective Intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1998-11-01

    Comprehensive management of the battle-space has created new requirements in information management, communication, and interoperability as they effect surveillance and situational awareness. The objective of this proposal is to expand intelligent controls theory to produce a uniquely powerful implementation of distributed ground-based measurement incorporating both local collective behavior, and interoperative global optimization for sensor fusion and mission oversight. By using a layered hierarchal control architecture to orchestrate adaptive reconfiguration of autonomous robotic agents, we can improve overall robustness and functionality in dynamic tactical environments without information bottlenecks. In this concept, each sensor is equipped with a miniaturized optical reflectance modulator which is interactively monitored as a remote transponder using a covert laser communication protocol from a remote mothership or operative. Robot data-sharing at the ground level can be leveraged with global evaluation criteria, including terrain overlays and remote imaging data. Information sharing and distributed intelli- gence opens up a new class of remote-sensing applications in which small single-function autono- mous observers at the local level can collectively optimize and measure large scale ground-level signals. AS the need for coverage and the number of agents grows to improve spatial resolution, cooperative behavior orchestrated by a global situational awareness umbrella will be an essential ingredient to offset increasing bandwidth requirements within the net. A system of the type described in this proposal will be capable of sensitively detecting, tracking, and mapping spatial distributions of measurement signatures which are non-stationary or obscured by clutter and inter- fering obstacles by virtue of adaptive reconfiguration. This methodology could be used, for example, to field an adaptive ground-penetrating radar for detection of underground structures in

  15. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qingguo Zhang

    2017-01-01

    Full Text Available Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches.

  16. Development of mobile sensor for volcanic observation "HOMURA": Test campaign at Kirishima Iwo-yama, SW Japan

    Science.gov (United States)

    Kaneko, K.; Ito, K.; Iwahori, K.; Anbe, Y.

    2015-12-01

    Monitoring volcanoes near active craters is important to know symptoms and transitions of volcanic eruptions. In order to observe volcanic phenomena near craters according to the circumstance, monitoring system with unmanned robots are useful. We have been trying to develop a practical UGV-type robot, and have completed a prototype, which we named "Homura". Homura is a small-sized, vehicle-type robot with six wheels (750 x 430 x 310 mm in dimensions and a weight of about 12 kg). Homura is remotely controlled with mobile phone radio waves; it can move in volcanic fields and send real time data of sensors equipped in the vehicle to the base station. We carried out a test campaign of Homura from Feb. 19th to Apr. 8th, 2015 at Iwo-yama to examine if Homura can work for a few month in natural volcanic fields. Iwo-yama is one of craters in the Kirishima volcanic field, SW Japan; the area within 1 km from the crater was an off-limit area from Oct. 24th, 2014 to May 5th, 2015 because volcanic seismicity there was active and eruption might occur. On Feb. 19th, we carried and put Homura at the rim of the crater. Unfortunately, mobile phone connectivity was not entirely stable around Iwo-yama. Then, we decided not to move Homura and only to obtain real time data of the sensors (a camera, CO2 gas sensor, and thermometer). After we returned to our office, we operated Homura for one to two hours every day until Apr. 8th. Although the weather was often bad (rain, fog, or cold temperature) during the test campaign, we could completely operate Homura without any trouble. On Apr. 8th, the battery in Homura ran down. After we collected Homura from Iwo-yama and recharged the battery, Homura perfectly worked again. The results of this campaign indicate that Homura stably operates for a long time in volcanic field. Homura is useful as simple monitoring station in volcanic fields where mobile phone connection is available.

  17. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2010-12-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  18. Autonomous Inspection Robot for Power Transmission Lines Maintenance While Operating on the Overhead Ground Wires

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2011-01-01

    Full Text Available This paper describes the development of a mobile robot capable of clearing such obstacles as counterweights, anchor clamps, and torsion tower. The mobile robot walks on overhead ground wires in 500KV power tower. Its ultimate purpose is to automate to inspect the defect of power transmission line. The robot with 13 motors is composed of two arms, two wheels, two claws, two wrists, etc. Each arm has 4 degree of freedom. Claws are also mounted on the arms. An embedded computer based on PC/104 is chosen as the core of control system. Visible light and thermal infrared cameras are installed to obtain the video and temperature information, and the communication system is based on wireless LAN TCP/IP protocol. A prototype robot was developed with careful considerations of mobility. The new sensor configuration is used for the claw to grasp the overhead ground wires. The bridge is installed in the torsion tower for the robot easy to cross obstacles. The new posture plan is proposed for obstacles cleaning in the torsion tower. Results of experiments demonstrate that the robot can be applied to execute the navigation and inspection tasks.

  19. Wireless Sensor Networks Database: Data Management and Implementation

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2014-04-01

    Full Text Available As the core application of wireless sensor network technology, Data management and processing have become the research hotspot in the new database. This article studied mainly data management in wireless sensor networks, in connection with the characteristics of the data in wireless sensor networks, discussed wireless sensor network data query, integrating technology in-depth, proposed a mobile database structure based on wireless sensor network and carried out overall design and implementation for the data management system. In order to achieve the communication rules of above routing trees, network manager uses a simple maintenance algorithm of routing trees. Design ordinary node end, server end in mobile database at gathering nodes and mobile client end that can implement the system, focus on designing query manager, storage modules and synchronous module at server end in mobile database at gathering nodes.

  20. SENSOR-TOPOLOGY BASED SIMPLICIAL COMPLEX RECONSTRUCTION FROM MOBILE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Guinard

    2018-05-01

    Full Text Available We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles from 3D point clouds from Mobile Laser Scanning (MLS. Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  1. Experimental Investigations of a Precision Sensor for an Automatic Weapons Stabilizer System

    Directory of Open Access Journals (Sweden)

    Igor Korobiichuk

    2016-12-01

    Full Text Available This paper presents the results of experimental investigations of a precision sensor for an automatic weapons stabilizer system. It also describes the experimental equipment used and the structure of the developed sensor. A weapons stabilizer is designed for automatic guidance of an armament unit in the horizontal and vertical planes when firing at ground and air targets that are quickly maneuvering, and at lower speeds when firing anti-tank missiles, as well as the bypass of construction elements by the armament unit, and the automatic tracking of moving targets when interacting with a fire control system. The results of experimental investigations have shown that the error of the precision sensor developed on the basis of a piezoelectric element is 6 × 10−10 m/s2 under quasi-static conditions, and ~10−5 m/s2 for mobile use. This paper defines metrological and calibration properties of the developed sensor.

  2. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  3. MHBCDA: Mobility and Heterogeneity aware Bandwidth Efficient Cluster based Data Aggregation for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2013-01-01

    Wireless Sensor Network (WSN) offers a variety of novel applications for mobile targets. It generates the large amount of redundant sensing data. The data aggregation techniques are extensively used to reduce the energy consumption and increase the network lifetime, although it has the side effect...... efficient. It exploits correlation of data packets generated by varying the packet generation rate. It prevents transmission of redundant data packets by improving energy consumption by 4.11% and prolongs the network life by 34.45% as compared with state-of-the-art solutions.......-based Data Aggregation (MHBCDA) algorithm for the randomly distributed nodes. It considers the mobile sink based packet aggregation for the heterogeneous WSN. It uses predefined region for the aggregation at cluster head to minimize computation and communication cost. The MHBCDA is energy and bandwidth...

  4. Trusted Operations on Sensor Data †

    Directory of Open Access Journals (Sweden)

    Hassaan Janjua

    2018-04-01

    Full Text Available The widespread use of mobile devices has allowed the development of participatory sensing systems that capture various types of data using the existing or external sensors attached to mobile devices. Gathering data from such anonymous sources requires a mechanism to establish the integrity of sensor readings. In many cases, sensor data need to be preprocessed on the device itself before being uploaded to the target server while ensuring the chain of trust from capture to the delivery of the data. This can be achieved by a framework that provides a means to implement arbitrary operations to be performed on trusted sensor data, while guaranteeing the security and integrity of the data. This paper presents the design and implementation of a framework that allows the capture of trusted sensor data from both external and internal sensors on a mobile phone along with the development of trusted operations on sensor data while providing a mechanism for performing predefined operations on the data such that the chain of trust is maintained. The evaluation shows that the proposed system ensures the security and integrity of sensor data with minimal performance overhead.

  5. Advanced Software Ground Station and UAV Development for NLoS Control Using Mobile Communications

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available Over the last decades, Unmanned Aerial Systems (UASs have gained much attention due to their various applications in different sections. However, their communication range is limited to utilized communication equipment. Therefore, utilization of GSM channels opens a new prospect towards long distance UAV missions and mobile command and control centers. This paper demonstrates new design and development of a small-scale UAV and a Ground Control Station (GCS using GSM bidirectional communications for Non-Line of Sight (NLoS long range control. GCSs are considered the front end node in UAV guidance process. Therefore, the proposed GCS employs a two-layer framework to consider all ground pilot requirements. Moreover, a new exploitation of global weather forecast data is added to the GCS. On the other hand, the proposed airborne system utilizes a new integration of different Commercial off-the-Shelf (COTS components and excludes short range receivers. The ground and flight tests show that stable bidirectional GSM communication is established, reliable hardware integration is accomplished, real time performance is achieved, GCS functional fidelity is obtained, and low cost is maintained. Finally, some qualitative aspects of the proposed platform are presented to address the detailed features.

  6. Trail-Based Search for Efficient Event Report to Mobile Actors in Wireless Sensor and Actor Networks †

    Science.gov (United States)

    Xu, Zhezhuang; Liu, Guanglun; Yan, Haotian; Cheng, Bin; Lin, Feilong

    2017-01-01

    In wireless sensor and actor networks, when an event is detected, the sensor node needs to transmit an event report to inform the actor. Since the actor moves in the network to execute missions, its location is always unavailable to the sensor nodes. A popular solution is the search strategy that can forward the data to a node without its location information. However, most existing works have not considered the mobility of the node, and thus generate significant energy consumption or transmission delay. In this paper, we propose the trail-based search (TS) strategy that takes advantage of actor’s mobility to improve the search efficiency. The main idea of TS is that, when the actor moves in the network, it can leave its trail composed of continuous footprints. The search packet with the event report is transmitted in the network to search the actor or its footprints. Once an effective footprint is discovered, the packet will be forwarded along the trail until it is received by the actor. Moreover, we derive the condition to guarantee the trail connectivity, and propose the redundancy reduction scheme based on TS (TS-R) to reduce nontrivial transmission redundancy that is generated by the trail. The theoretical and numerical analysis is provided to prove the efficiency of TS. Compared with the well-known expanding ring search (ERS), TS significantly reduces the energy consumption and search delay. PMID:29077017

  7. Development of Mine Explosion Ground Truth Smart Sensors

    Science.gov (United States)

    2011-09-01

    interest. The two candidates are the GS11-D by Oyo Geospace that is used extensively in seismic monitoring of geothermal fields and the Sensor Nederland SM...Technologies 853 Figure 4. Our preferred sensors and processor for the GTMS. (a) Sensor Nederland SM-6 geophone with emplacement spike. (b

  8. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility.

    Science.gov (United States)

    Akbar, Mariam; Javaid, Nadeem; Khan, Ayesha Hussain; Imran, Muhammad; Shoaib, Muhammad; Vasilakos, Athanasios

    2016-03-19

    Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs) demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS), i.e., an autonomous underwater vehicle (AUV), and also courier nodes (CNs), to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.

  9. Efficient Data Gathering in 3D Linear Underwater Wireless Sensor Networks Using Sink Mobility

    Directory of Open Access Journals (Sweden)

    Mariam Akbar

    2016-03-01

    Full Text Available Due to the unpleasant and unpredictable underwater environment, designing an energy-efficient routing protocol for underwater wireless sensor networks (UWSNs demands more accuracy and extra computations. In the proposed scheme, we introduce a mobile sink (MS, i.e., an autonomous underwater vehicle (AUV, and also courier nodes (CNs, to minimize the energy consumption of nodes. MS and CNs stop at specific stops for data gathering; later on, CNs forward the received data to the MS for further transmission. By the mobility of CNs and MS, the overall energy consumption of nodes is minimized. We perform simulations to investigate the performance of the proposed scheme and compare it to preexisting techniques. Simulation results are compared in terms of network lifetime, throughput, path loss, transmission loss and packet drop ratio. The results show that the proposed technique performs better in terms of network lifetime, throughput, path loss and scalability.

  10. Electrophoretic mobility shift in native gels indicates calcium-dependent structural changes of neuronal calcium sensor proteins.

    Science.gov (United States)

    Viviano, Jeffrey; Krishnan, Anuradha; Wu, Hao; Venkataraman, Venkat

    2016-02-01

    In proteins of the neuronal calcium sensor (NCS) family, changes in structure as well as function are brought about by the binding of calcium. In this article, we demonstrate that these structural changes, solely due to calcium binding, can be assessed through electrophoresis in native gels. The results demonstrate that the NCS proteins undergo ligand-dependent conformational changes that are detectable in native gels as a gradual decrease in mobility with increasing calcium but not other tested divalent cations such as magnesium, strontium, and barium. Surprisingly, such a gradual change over the entire tested range is exhibited only by the NCS proteins but not by other tested calcium-binding proteins such as calmodulin and S100B, indicating that the change in mobility may be linked to a unique NCS family feature--the calcium-myristoyl switch. Even within the NCS family, the changes in mobility are characteristic of the protein, indicating that the technique is sensitive to the individual features of the protein. Thus, electrophoretic mobility on native gels provides a simple and elegant method to investigate calcium (small ligand)-induced structural changes at least in the superfamily of NCS proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A wireless potentiostat for mobile chemical sensing and biosensing.

    Science.gov (United States)

    Steinberg, Matthew D; Kassal, Petar; Kereković, Irena; Steinberg, Ivana Murković

    2015-10-01

    Wireless chemical sensors are used as analytical devices in homeland defence, home-based healthcare, food logistics and more generally for the Sensor Internet of Things (SIoT). Presented here is a battery-powered and highly portable credit-card size potentiostat that is suitable for performing mobile and wearable amperometric electrochemical measurements with seamless wireless data transfer to mobile computing devices. The mobile electrochemical analytical system has been evaluated in the laboratory with a model redox system - the reduction of hexacyanoferrate(III) - and also with commercially available enzymatic blood-glucose test-strips. The potentiostat communicates wirelessly with mobile devices such as tablets or Smartphones by near-field communication (NFC) or with personal computers by radio-frequency identification (RFID), and thus provides a solution to the 'missing link' in connectivity that often exists between low-cost mobile and wearable chemical sensors and ubiquitous mobile computing products. The mobile potentiostat has been evaluated in the laboratory with a set of proof-of-concept experiments, and its analytical performance compared with a commercial laboratory potentiostat (R(2)=0.9999). These first experimental results demonstrate the functionality of the wireless potentiostat and suggest that the device could be suitable for wearable and point-of-sample analytical measurements. We conclude that the wireless potentiostat could contribute significantly to the advancement of mobile chemical sensor research and adoption, in particular for wearable sensors in healthcare and sport physiology, for wound monitoring and in mobile point-of-sample diagnostics as well as more generally as a part of the Sensor Internet of Things. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  13. Compact Printed Arrays with Embedded Coupling Mitigation for Energy-Efficient Wireless Sensor Networking

    Directory of Open Access Journals (Sweden)

    Constantine G. Kakoyiannis

    2010-01-01

    Full Text Available Wireless sensors emerged as narrowband, resource-constrained devices to provide monitoring services over a wide life span. Future applications of sensor networks are multimedia-driven and include sensor mobility. Thus, sensors must combine small size, large bandwidth, and diversity capabilities. Compact arrays, offering transmit/receive diversity, suffer from strong mutual coupling (MC, which causes lower antenna efficiency, loss of bandwidth, and signal correlation. An efficient technique to reduce coupling in compact arrays is described herein: a defect was inserted in the ground plane (GNDP area between each pair of elements. The defect disturbed the GNDP currents and offered multidecibel coupling suppression, bandwidth recovery, and reduction of in-band correlation. Minimal pattern distortion was estimated. Computational results were supported by measurements. The bandwidth of unloaded arrays degraded gracefully from 38% to 28% with decreasing interelement distance (0.25 to 0.10. Defect-loaded arrays exhibited active impedance bandwidths 37–45%, respectively. Measured coupling was reduced by 15–20 dB.

  14. Cooperative robots and sensor networks 2014

    CERN Document Server

    Khelil, Abdelmajid

    2014-01-01

    This book is the second volume on Cooperative Robots and Sensor Networks. The primary objective of this book is to provide an up-to-date reference for cutting-edge studies and research trends related to mobile robots and wireless sensor networks, and in particular for the coupling between them. Indeed, mobile robots and wireless sensor networks have enabled great potentials and a large space for ubiquitous and pervasive applications. Robotics and wireless sensor networks have mostly been considered as separate research fields and little work has investigated the marriage between these two technologies. However, these two technologies share several features, enable common cyber-physical applications and provide complementary support to each other. The book consists of ten chapters, organized into four parts. The first part of the book presents three chapters related to localization of mobile robots using wireless sensor networks. Two chapters presented new solutions based Extended Kalman Filter and Particle Fi...

  15. Teleoperated Marsupial Mobile Sensor Platform Pair for Telepresence Insertion Into Challenging Structures

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Norman F.; Greer, Lawrence C.

    2011-01-01

    the interior of a bus whose landing is 44 in. (.1.1 m) from the road surface. This vehicle can position the end of its ramp to a surface over 50 in. (.1.3 m) above ground level and can drive over rail heights exceeding 6 in. (.15 cm). Thus configured, this vehicle can conceivably deliver the smaller robot to the end platform of New York City subway cars from between the rails. This innovation is scalable to other formulations for size, mobility, and surveillance functions. Conceivably the larger vehicle can be configured to traverse unstable rubble and debris to transport a smaller search and rescue vehicle as close as possible to the scene of a disaster such as a collapsed building. The smaller vehicle, tethered or otherwise, and capable of penetrating and traversing within the confined spaces in the collapsed structure, can transport imaging and other sensors to look for victims or other targets.

  16. Cooperative control of UAVs for localization of intermittently emitting mobile targets.

    Science.gov (United States)

    Pack, Daniel J; Delima, Pedro; Toussaint, Gregory J; York, George

    2009-08-01

    Compared with a single platform, cooperative autonomous unmanned aerial vehicles (UAVs) offer efficiency and robustness in performing complex tasks. Focusing on ground mobile targets that intermittently emit radio frequency signals, this paper presents a decentralized control architecture for multiple UAVs, equipped only with rudimentary sensors, to search, detect, and locate targets over large areas. The proposed architecture has in its core a decision logic which governs the state of operation for each UAV based on sensor readings and communicated data. To support the findings, extensive simulation results are presented, focusing primarily on two success measures that the UAVs seek to minimize: overall time to search for a group of targets and the final target localization error achieved. The results of the simulations have provided support for hardware flight tests.

  17. Assessing community exposure to hazardous air pollutants by combining optical remote sensing and "low-cost" sensor technologies

    Science.gov (United States)

    Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.

    2017-12-01

    Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS

  18. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks.

    Science.gov (United States)

    González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina

    2017-01-09

    Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  19. Integrated active fire retrievals and biomass burning emissions using complementary near-coincident ground, airborne and spaceborne sensor data

    Science.gov (United States)

    Wilfrid Schroeder; Evan Ellicott; Charles Ichoku; Luke Ellison; Matthew B. Dickinson; Roger D. Ottmar; Craig Clements; Dianne Hall; Vincent Ambrosia; Robert. Kremens

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near-coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge...

  20. APPLICATION OF SMART MOBILE PHONES IN VIBRATION MONITORING

    Directory of Open Access Journals (Sweden)

    Ljubomir Vračar

    2015-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the smart mobile phone application for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is based on Bluetooth connection between smart sensor and smart mobile phone. Software for acquisition and data analysis is optimized for imbedded application in smart sensors. Smart acceleration sensor in conjunction with Bluetooth connection to smart mobile phone creates one touch mobile vibration monitoring system. The authors have performed numerous measurements on a wide range of aggregates for establishing the operating functionality of the newly created system. The possibility of system application I rail vehicle vibration monitoring is also analyzed.

  1. Adaptive Opportunistic Cooperative Control Mechanism Based on Combination Forecasting and Multilevel Sensing Technology of Sensors for Mobile Internet of Things

    Directory of Open Access Journals (Sweden)

    Yong Jin

    2014-01-01

    Full Text Available In mobile Internet of Things, there are many challenges, including sensing technology of sensors, how and when to join cooperative transmission, and how to select the cooperative sensors. To address these problems, we studied the combination forecasting based on the multilevel sensing technology of sensors, building upon which we proposed the adaptive opportunistic cooperative control mechanism based on the threshold values such as activity probability, distance, transmitting power, and number of relay sensors, in consideration of signal to noise ratio and outage probability. More importantly, the relay sensors would do self-test real time in order to judge whether to join the cooperative transmission, for maintaining the optimal cooperative transmission state with high performance. The mathematical analyses results show that the proposed adaptive opportunistic cooperative control approach could perform better in terms of throughput ratio, packet error rate and delay, and energy efficiency, compared with the direct transmission and opportunistic cooperative approaches.

  2. Advanced Networks in Motion Mobile Sensorweb

    Science.gov (United States)

    Ivancic, William D.; Stewart, David H.

    2011-01-01

    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.

  3. Autonomous mobile robot localization using Kalman filter

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Nabil Zhafri

    2017-01-01

    Full Text Available Autonomous mobile robot field has gain interest among researchers in recent years. The ability of a mobile robot to locate its current position and surrounding environment is the fundamental in order for it to operate autonomously, which commonly known as localization. Localization of mobile robot are commonly affected by the inaccuracy of the sensors. These inaccuracies are caused by various factors which includes internal interferences of the sensor and external environment noises. In order to overcome these noises, a filtering method is required in order to improve the mobile robot’s localization. In this research, a 2- wheeled-drive (2WD mobile robot will be used as platform. The odometers, inertial measurement unit (IMU, and ultrasonic sensors are used for data collection. Data collected is processed using Kalman filter to predict and correct the error from these sensors reading. The differential drive model and measurement model which estimates the environmental noises and predict a correction are used in this research. Based on the simulation and experimental results, the x, y and heading was corrected by converging the error to10 mm, 10 mm and 0.06 rad respectively.

  4. More mobile & not so well-connected yet

    DEFF Research Database (Denmark)

    Wac, Katarzyna; Pinar, Gerardo; Gustarini, Mattia

    2015-01-01

    , to infer mobility state of users, we derived and evaluated the accuracy of a machine learning-based model, i.e., MobilitySensor, which is based solely on smartphone built-in sensors. It is a tree-based model, defined for each network operator and its average accuracy reaches 91%. Next, we leverage our...

  5. Efficient Data Collection by Mobile Sink to Detect Phenomena in Internet of Things

    Directory of Open Access Journals (Sweden)

    Amany Abu Safia

    2017-10-01

    Full Text Available With the rapid development of Internet of Things (IoT, more and more static and mobile sensors are being deployed for sensing and tracking environmental phenomena, such as fire, oil spills and air pollution. As these sensors are usually battery-powered, energy-efficient algorithms are required to extend the sensors’ lifetime. Moreover, forwarding sensed data towards a static sink causes quick battery depletion of the sinks’ nearby sensors. Therefore, in this paper, we propose a distributed energy-efficient algorithm, called the Hilbert-order Collection Strategy (HCS, which uses a mobile sink (e.g., drone to collect data from a mobile wireless sensor network (mWSN and detect environmental phenomena. The mWSN consists of mobile sensors that sense environmental data. These mobile sensors self-organize themselves into groups. The sensors of each group elect a group head (GH, which collects data from the mobile sensors in its group. Periodically, a mobile sink passes by the locations of the GHs (data collection path to collect their data. The collected data are aggregated to discover a global phenomenon. To shorten the data collection path, which results in reducing the energy cost, the mobile sink establishes the path based on the order of Hilbert values of the GHs’ locations. Furthermore, the paper proposes two optimization techniques for data collection to further reduce the energy cost of mWSN and reduce the data loss.

  6. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-01-01

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio. PMID:29562628

  7. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks.

    Science.gov (United States)

    Wu, Shaobo; Chou, Wusheng; Niu, Jianwei; Guizani, Mohsen

    2018-03-18

    Wireless sensor networks (WSNs) involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector) path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  8. Delay-Aware Energy-Efficient Routing towards a Path-Fixed Mobile Sink in Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shaobo Wu

    2018-03-01

    Full Text Available Wireless sensor networks (WSNs involve more mobile elements with their widespread development in industries. Exploiting mobility present in WSNs for data collection can effectively improve the network performance. However, when the sink (i.e., data collector path is fixed and the movement is uncontrollable, existing schemes fail to guarantee delay requirements while achieving high energy efficiency. This paper proposes a delay-aware energy-efficient routing algorithm for WSNs with a path-fixed mobile sink, named DERM, which can strike a desirable balance between the delivery latency and energy conservation. We characterize the object of DERM as realizing the energy-optimal anycast to time-varying destination regions, and introduce a location-based forwarding technique tailored for this problem. To reduce the control overhead, a lightweight sink location calibration method is devised, which cooperates with the rough estimation based on the mobility pattern to determine the sink location. We also design a fault-tolerant mechanism called track routing to tackle location errors for ensuring reliable and on-time data delivery. We comprehensively evaluate DERM by comparing it with two canonical routing schemes and a baseline solution presented in this work. Extensive evaluation results demonstrate that DERM can provide considerable energy savings while meeting the delay constraint and maintaining a high delivery ratio.

  9. CoAP-Based Mobility Management for the Internet of Things.

    Science.gov (United States)

    Chun, Seung-Man; Kim, Hyun-Su; Park, Jong-Tae

    2015-07-03

    Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT) environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6), Hierarchical Mobile IPv4/v6 (HMIPv4/v6), in terms of the handover latency and packet loss.

  10. CoAP-Based Mobility Management for the Internet of Things

    Science.gov (United States)

    Chun, Seung-Man; Kim, Hyun-Su; Park, Jong-Tae

    2015-01-01

    Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT) environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6), Hierarchical Mobile IPv4/v6 (HMIPv4/v6), in terms of the handover latency and packet loss. PMID:26151214

  11. CoAP-Based Mobility Management for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Seung-Man Chun

    2015-07-01

    Full Text Available Most of the current mobility management protocols such as Mobile IP and its variants standardized by the IETF may not be suitable to support mobility management for Web-based applications in an Internet of Things (IoT environment. This is because the sensor nodes have limited power capacity, usually operating in sleep/wakeup mode in a constrained wireless network. In addition, sometimes the sensor nodes may act as the server using the CoAP protocol in an IoT environment. This makes it difficult for Web clients to properly retrieve the sensing data from the mobile sensor nodes in an IoT environment. In this article, we propose a mobility management protocol, named CoMP, which can effectively retrieve the sensing data of sensor nodes while they are moving. The salient feature of CoMP is that it makes use of the IETF CoAP protocol for mobility management, instead of using Mobile IP. Thus CoMP can eliminates the additional signaling overhead of Mobile IP, provides reliable mobility management, and prevents the packet loss. CoMP employs a separate location management server to keep track of the location of the mobile sensor nodes. In order to prevent the loss of important sensing data during movement, a holding mode of operation has been introduced. All the signaling procedures including discovery, registration, binding and holding have been designed by extending the IETF CoAP protocol. The numerical analysis and simulation have been done for performance evaluation in terms of the handover latency and packet loss. The results show that the proposed CoMP is superior to previous mobility management protocols, i.e., Mobile IPv4/v6 (MIPv4/v6, Hierarchical Mobile IPv4/v6 (HMIPv4/v6, in terms of the handover latency and packet loss.

  12. A Social Potential Fields Approach for Self-Deployment and Self-Healing in Hierarchical Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eva González-Parada

    2017-01-01

    Full Text Available Autonomous mobile nodes in mobile wireless sensor networks (MWSN allow self-deployment and self-healing. In both cases, the goals are: (i to achieve adequate coverage; and (ii to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.

  13. HotMobile 2008: Postconference Report

    NARCIS (Netherlands)

    Hong, J.; Lindqvist, J.; Pawar, P.; Stuntebeck, E.

    2008-01-01

    HotMobile 2008 presented a two-day program on mobile computing systems and applications. The authors focuses on the sessions on sensors, modularity, wireless, security, systems, and screens. The mobile device is the most amazing invention in history and that it has had the largest impact on human

  14. Distributed cluster management techniques for unattended ground sensor networks

    Science.gov (United States)

    Essawy, Magdi A.; Stelzig, Chad A.; Bevington, James E.; Minor, Sharon

    2005-05-01

    Smart Sensor Networks are becoming important target detection and tracking tools. The challenging problems in such networks include the sensor fusion, data management and communication schemes. This work discusses techniques used to distribute sensor management and multi-target tracking responsibilities across an ad hoc, self-healing cluster of sensor nodes. Although miniaturized computing resources possess the ability to host complex tracking and data fusion algorithms, there still exist inherent bandwidth constraints on the RF channel. Therefore, special attention is placed on the reduction of node-to-node communications within the cluster by minimizing unsolicited messaging, and distributing the sensor fusion and tracking tasks onto local portions of the network. Several challenging problems are addressed in this work including track initialization and conflict resolution, track ownership handling, and communication control optimization. Emphasis is also placed on increasing the overall robustness of the sensor cluster through independent decision capabilities on all sensor nodes. Track initiation is performed using collaborative sensing within a neighborhood of sensor nodes, allowing each node to independently determine if initial track ownership should be assumed. This autonomous track initiation prevents the formation of duplicate tracks while eliminating the need for a central "management" node to assign tracking responsibilities. Track update is performed as an ownership node requests sensor reports from neighboring nodes based on track error covariance and the neighboring nodes geo-positional location. Track ownership is periodically recomputed using propagated track states to determine which sensing node provides the desired coverage characteristics. High fidelity multi-target simulation results are presented, indicating the distribution of sensor management and tracking capabilities to not only reduce communication bandwidth consumption, but to also

  15. Mobile robot navigation in unknown static environments using ANFIS controller

    Directory of Open Access Journals (Sweden)

    Anish Pandey

    2016-09-01

    Full Text Available Navigation and obstacle avoidance are the most important task for any mobile robots. This article presents the Adaptive Neuro-Fuzzy Inference System (ANFIS controller for mobile robot navigation and obstacle avoidance in the unknown static environments. The different sensors such as ultrasonic range finder sensor and sharp infrared range sensor are used to detect the forward obstacles in the environments. The inputs of the ANFIS controller are obstacle distances obtained from the sensors, and the controller output is a robot steering angle. The primary objective of the present work is to use ANFIS controller to guide the mobile robot in the given environments. Computer simulations are conducted through MATLAB software and implemented in real time by using C/C++ language running Arduino microcontroller based mobile robot. Moreover, the successful experimental results on the actual mobile robot demonstrate the effectiveness and efficiency of the proposed controller.

  16. Simulation of olive grove gross primary production by the combination of ground and multi-sensor satellite data

    Science.gov (United States)

    Brilli, L.; Chiesi, M.; Maselli, F.; Moriondo, M.; Gioli, B.; Toscano, P.; Zaldei, A.; Bindi, M.

    2013-08-01

    We developed and tested a methodology to estimate olive (Olea europaea L.) gross primary production (GPP) combining ground and multi-sensor satellite data. An eddy-covariance station placed in an olive grove in central Italy provided carbon and water fluxes over two years (2010-2011), which were used as reference to evaluate the performance of a GPP estimation methodology based on a Monteith type model (modified C-Fix) and driven by meteorological and satellite (NDVI) data. A major issue was related to the consideration of the two main olive grove components, i.e. olive trees and inter-tree ground vegetation: this issue was addressed by the separate simulation of carbon fluxes within the two ecosystem layers, followed by their recombination. In this way the eddy covariance GPP measurements were successfully reproduced, with the exception of two periods that followed tillage operations. For these periods measured GPP could be approximated by considering synthetic NDVI values which simulated the expected response of inter-tree ground vegetation to tillages.

  17. Measuring Radiant Emissions from Entire Prescribed Fires with Ground, Airborne and Satellite Sensors RxCADRE 2012

    Science.gov (United States)

    Dickinson, Matthew B.; Hudak, Andrew T.; Zajkowski, Thomas; Loudermilk, E. Louise; Schroeder, Wilfrid; Ellison, Luke; Kremens, Robert L.; Holley, William; Martinez, Otto; Paxton, Alexander; hide

    2015-01-01

    Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE) field campaign, we used ground, airborne and spaceborne sensors to measure fire radiative power (FRP) from whole fires, applying different methods to small (2 ha) and large (.100 ha) burn blocks. For small blocks (n1/46), FRP estimated from an obliquely oriented long-wave infrared (LWIR) camera mounted on a boom lift were compared with FRP derived from combined data from tower-mounted radiometers and remotely piloted aircraft systems (RPAS). For large burn blocks (n1/43), satellite FRP measurements from the Moderate-resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors were compared with near-coincident FRP measurements derived from a LWIR imaging system aboard a piloted aircraft. We describe measurements and consider their strengths and weaknesses. Until quantitative sensors exist for small RPAS, their use in fire research will remain limited. For oblique, airborne and satellite sensors, further FRP measurement development is needed along with greater replication of coincident measurements, which we show to be feasible.

  18. A Vehicular Mobile Standard Instrument for Field Verification of Traffic Speed Meters Based on Dual-Antenna Doppler Radar Sensor.

    Science.gov (United States)

    Du, Lei; Sun, Qiao; Cai, Changqing; Bai, Jie; Fan, Zhe; Zhang, Yue

    2018-04-05

    Traffic speed meters are important legal measuring instruments specially used for traffic speed enforcement and must be tested and verified in the field every year using a vehicular mobile standard speed-measuring instrument to ensure speed-measuring performances. The non-contact optical speed sensor and the GPS speed sensor are the two most common types of standard speed-measuring instruments. The non-contact optical speed sensor requires extremely high installation accuracy, and its speed-measuring error is nonlinear and uncorrectable. The speed-measuring accuracy of the GPS speed sensor is rapidly reduced if the amount of received satellites is insufficient enough, which often occurs in urban high-rise regions, tunnels, and mountainous regions. In this paper, a new standard speed-measuring instrument using a dual-antenna Doppler radar sensor is proposed based on a tradeoff between the installation accuracy requirement and the usage region limitation, which has no specified requirements for its mounting distance and no limitation on usage regions and can automatically compensate for the effect of an inclined installation angle on its speed-measuring accuracy. Theoretical model analysis, simulated speed measurement results, and field experimental results compared with a GPS speed sensor with high accuracy showed that the dual-antenna Doppler radar sensor is effective and reliable as a new standard speed-measuring instrument.

  19. Motion-sensor fusion-based gesture recognition and its VLSI architecture design for mobile devices

    Science.gov (United States)

    Zhu, Wenping; Liu, Leibo; Yin, Shouyi; Hu, Siqi; Tang, Eugene Y.; Wei, Shaojun

    2014-05-01

    With the rapid proliferation of smartphones and tablets, various embedded sensors are incorporated into these platforms to enable multimodal human-computer interfaces. Gesture recognition, as an intuitive interaction approach, has been extensively explored in the mobile computing community. However, most gesture recognition implementations by now are all user-dependent and only rely on accelerometer. In order to achieve competitive accuracy, users are required to hold the devices in predefined manner during the operation. In this paper, a high-accuracy human gesture recognition system is proposed based on multiple motion sensor fusion. Furthermore, to reduce the energy overhead resulted from frequent sensor sampling and data processing, a high energy-efficient VLSI architecture implemented on a Xilinx Virtex-5 FPGA board is also proposed. Compared with the pure software implementation, approximately 45 times speed-up is achieved while operating at 20 MHz. The experiments show that the average accuracy for 10 gestures achieves 93.98% for user-independent case and 96.14% for user-dependent case when subjects hold the device randomly during completing the specified gestures. Although a few percent lower than the conventional best result, it still provides competitive accuracy acceptable for practical usage. Most importantly, the proposed system allows users to hold the device randomly during operating the predefined gestures, which substantially enhances the user experience.

  20. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Leonardo Romero

    2006-09-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  1. Exploration and Navigation for Mobile Robots With Perceptual Limitations

    Directory of Open Access Journals (Sweden)

    Eduardo F. Morales

    2008-11-01

    Full Text Available To learn a map of an environment a mobile robot has to explore its workspace using its sensors. Sensors are noisy and have perceptual limitations that must be considered while learning a map. This paper considers a mobile robot with sensor perceptual limitations and introduces a new method for exploring and navigating autonomously in indoor environments. To minimize the risk of collisions as well as to not exceed the range of sensors, we introduce the concept of a travel space as a way to associate costs to grid cells of the map, based on distances to obstacles. During exploration the mobile robot minimizes its movements, including rotations, to reach the nearest unexplored region of the environment, using a dynamic programming algorithm. Once the exploration ends, the travel space is used to form a roadmap, a net of safe roads that the mobile robot can use for navigation. These exploration and navigation method are tested using a simulated and a real mobile robot with promising results.

  2. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-02-01

    Full Text Available Due to their special environment, Underwater Wireless Sensor Networks (UWSNs are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  3. A Localization Method for Underwater Wireless Sensor Networks Based on Mobility Prediction and Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei

    2016-02-06

    Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object's mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field.

  4. Semantics in mobile sensing

    CERN Document Server

    Yan, Zhixian

    2014-01-01

    The dramatic progress of smartphone technologies has ushered in a new era of mobile sensing, where traditional wearable on-body sensors are being rapidly superseded by various embedded sensors in our smartphones. For example, a typical smartphone today, has at the very least a GPS, WiFi, Bluetooth, triaxial accelerometer, and gyroscope. Alongside, new accessories are emerging such as proximity, magnetometer, barometer, temperature, and pressure sensors. Even the default microphone can act as an acoustic sensor to track noise exposure for example. These sensors act as a ""lens"" to understand t

  5. Toward a Nationwide Mobile-Based Public Healthcare Service System with Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chien-wen Shen

    2016-01-01

    Full Text Available This paper describes the development of a nationwide public healthcare service system with the integration of cloud technology, wireless sensor networks, and mobile technology to provide citizens with convenient and professional healthcare services. The basic framework of the system includes the architectures for the user end of wireless physiological examinations, for the regional healthcare cloud, and for national public healthcare service system. Citizens with chronic conditions or elderly people who are living alone can use the wireless physiological sensing devices to keep track of their health conditions and get warning if the system detects abnormal signals. Through mobile devices, citizens are able to get real-time health advice, prompt warning, health information, feedback, personalized support, and intervention ubiquitously. With the long-term tracking data for physiological sensing, reliable prediction models for epidemic diseases and chronic diseases can be developed for the government to respond to and control diseases immediately. Besides, such a nationwide approach enables government to have a holistic understanding of the public health information in real time, which is helpful to establish effective policies or strategies to prevent epidemic diseases or chronic diseases.

  6. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    Science.gov (United States)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  7. A Comparative Study on Two Typical Schemes for Securing Spatial-Temporal Top-k Queries in Two-Tiered Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Xingpo; Liu, Xingjian; Liang, Junbin; Li, Yin; Li, Ran; Ma, Wenpeng; Qi, Chuanda

    2018-03-15

    A novel network paradigm of mobile edge computing, namely TMWSNs (two-tiered mobile wireless sensor networks), has just been proposed by researchers in recent years for its high scalability and robustness. However, only a few works have considered the security of TMWSNs. In fact, the storage nodes, which are located at the upper layer of TMWSNs, are prone to being attacked by the adversaries because they play a key role in bridging both the sensor nodes and the sink, which may lead to the disclosure of all data stored on them as well as some other potentially devastating results. In this paper, we make a comparative study on two typical schemes, EVTopk and VTMSN, which have been proposed recently for securing Top- k queries in TMWSNs, through both theoretical analysis and extensive simulations, aiming at finding out their disadvantages and advancements. We find that both schemes unsatisfactorily raise communication costs. Specifically, the extra communication cost brought about by transmitting the proof information uses up more than 40% of the total communication cost between the sensor nodes and the storage nodes, and 80% of that between the storage nodes and the sink. We discuss the corresponding reasons and present our suggestions, hoping that it will inspire the researchers researching this subject.

  8. Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chunhui Zhao

    2015-09-01

    Full Text Available Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-MN schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust.

  9. Fringe effect of electrical capacitance and resistance tomography sensors

    International Nuclear Information System (INIS)

    Sun, Jiangtao; Yang, Wuqiang

    2013-01-01

    Because of the ‘soft-field’ nature, all electrical tomography sensors suffer from electric field distortion, i.e. the fringe effect. In electrical resistance tomography (ERT) sensors, small pin electrodes are commonly used. It is well known that the pin electrodes result in severe electric field distortion or the fringe effect, and the sensing region of such an ERT sensor spreads out of the pin electrode plane to a large volume. This is also true for electrical capacitance tomography (ECT) sensors, even though it is less severe because of larger electrodes and grounded end guards used. However, when the length of electrodes in an ECT sensor without guards is reduced to almost the same dimension as those in an ERT sensor, the fringe effect is equally obvious. To investigate the fringe effect of ERT and ECT sensors with and without guards, simulations were carried out with different length of electrodes and the results are compared with the corresponding 2D simulation. It is concluded that ECT and ERT sensors with longer electrodes have less fringe effect. Because grounded end guards are effective in reducing the fringe effect of ECT sensors, we propose to apply grounded guards in ERT sensors and integrate ECT and ERT sensors together. Simulation results reveal that ERT sensors with grounded guards have less fringe effect. While commonly current excitation is used with ERT sensors, we propose voltage excitation instead to apply the grounded guards. The feasibility of this approach has been verified by experiment. Finally, a common structure for reducing the fringe effect is proposed for ECT and ERT sensors for the first time to simplify the sensor structure and reduce the mutual interference in ECT/ERT dual-modality measurements. (paper)

  10. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    Science.gov (United States)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  11. Highly selective and sensitive phosphate anion sensors based on AlGaN/GaN high electron mobility transistors functionalized by ion imprinted polymer.

    Science.gov (United States)

    Jia, Xiuling; Chen, Dunjun; Bin, Liu; Lu, Hai; Zhang, Rong; Zheng, Youdou

    2016-06-09

    A novel ion-imprinted electrochemical sensor based on AlGaN/GaN high electron mobility transistors (HEMTs) was developed to detect trace amounts of phosphate anion. This sensor combined the advantages of the ion sensitivity of AlGaN/GaN HEMTs and specific recognition of ion imprinted polymers. The current response showed that the fabricated sensor is highly sensitive and selective to phosphate anions. The current change exhibited approximate linear dependence for phosphate concentration from 0.02 mg L(-1) to 2 mg L(-1), the sensitivity and detection limit of the sensor is 3.191 μA/mg L(-1) and 1.97 μg L(-1), respectively. The results indicated that this AlGaN/GaN HEMT-based electrochemical sensor has the potential applications on phosphate anion detection.

  12. An Architecture Offering Mobile Pollution Sensing with High Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2016-01-01

    Full Text Available Mobile sensing is becoming the best option to monitor our environment due to its ease of use, high flexibility, and low price. In this paper, we present a mobile sensing architecture able to monitor different pollutants using low-end sensors. Although the proposed solution can be deployed everywhere, it becomes especially meaningful in crowded cities where pollution values are often high, being of great concern to both population and authorities. Our architecture is composed of three different modules: a mobile sensor for monitoring environment pollutants, an Android-based device for transferring the gathered data to a central server, and a central processing server for analyzing the pollution distribution. Moreover, we analyze different issues related to the monitoring process: (i filtering captured data to reduce the variability of consecutive measurements; (ii converting the sensor output to actual pollution levels; (iii reducing the temporal variations produced by mobile sensing process; and (iv applying interpolation techniques for creating detailed pollution maps. In addition, we study the best strategy to use mobile sensors by first determining the influence of sensor orientation on the captured values and then analyzing the influence of time and space sampling in the interpolation process.

  13. Data transport and management in P2P Data Management in Mobile Wireless Sensor Network

    International Nuclear Information System (INIS)

    Sahar, S.; Shaikh, F.K.

    2013-01-01

    The rapid growth in wireless technologies has made wireless communication an important source for transporting data across different domains. In the same way, there are possibilities of many potential applications that can be deployed using WSNs (Wireless Sensor Networks). However, very limited applications are deployed in real life due to the uncertainty and dynamics of the environment and scare resources. This makes data management in WSN a challenging area to find an approach that suits its characteristics. Currently, the trend is to find efficient data management schemes using evolving technologies, i.e. P2P (Peer-to-Peer) systems. Many P2P approaches have been applied in WSNs to carry out the data management due to similarities between WSN and P2P. With the similarities, there are differences too that makes P2P protocols inefficient in WSNs. Furthermore, to increase the efficiency and to exploit the delay tolerant nature of WSNs, where ever possible, the mobile WSNs are gaining importance. Thus, creating a three dimensional problem space to consider, i.e. mobility, WSNs and P2P. In this paper, an efficient algorithm is proposed for data management using P2P techniques for mobile WSNs. The real world implementation and deployment of proposed algorithm is also presented. (author)

  14. Automatic 3D City Modeling Using a Digital Map and Panoramic Images from a Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    Hyungki Kim

    2014-01-01

    Full Text Available Three-dimensional city models are becoming a valuable resource because of their close geospatial, geometrical, and visual relationship with the physical world. However, ground-oriented applications in virtual reality, 3D navigation, and civil engineering require a novel modeling approach, because the existing large-scale 3D city modeling methods do not provide rich visual information at ground level. This paper proposes a new framework for generating 3D city models that satisfy both the visual and the physical requirements for ground-oriented virtual reality applications. To ensure its usability, the framework must be cost-effective and allow for automated creation. To achieve these goals, we leverage a mobile mapping system that automatically gathers high-resolution images and supplements sensor information such as the position and direction of the captured images. To resolve problems stemming from sensor noise and occlusions, we develop a fusion technique to incorporate digital map data. This paper describes the major processes of the overall framework and the proposed techniques for each step and presents experimental results from a comparison with an existing 3D city model.

  15. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks.

    Science.gov (United States)

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-04-23

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss.

  16. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Science.gov (United States)

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet

    2014-05-01

    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  17. Structure Sensor for mobile markerless augmented reality

    Science.gov (United States)

    Kilgus, T.; Bux, R.; Franz, A. M.; Johnen, W.; Heim, E.; Fangerau, M.; Müller, M.; Yen, K.; Maier-Hein, L.

    2016-03-01

    3D Visualization of anatomical data is an integral part of diagnostics and treatment in many medical disciplines, such as radiology, surgery and forensic medicine. To enable intuitive interaction with the data, we recently proposed a new concept for on-patient visualization of medical data which involves rendering of subsurface structures on a mobile display that can be moved along the human body. The data fusion is achieved with a range imaging device attached to the display. The range data is used to register static 3D medical imaging data with the patient body based on a surface matching algorithm. However, our previous prototype was based on the Microsoft Kinect camera and thus required a cable connection to acquire color and depth data. The contribution of this paper is two-fold. Firstly, we replace the Kinect with the Structure Sensor - a novel cable-free range imaging device - to improve handling and user experience and show that the resulting accuracy (target registration error: 4.8+/-1.5 mm) is comparable to that achieved with the Kinect. Secondly, a new approach to visualizing complex 3D anatomy based on this device, as well as 3D printed models of anatomical surfaces, is presented. We demonstrate that our concept can be applied to in vivo data and to a 3D printed skull of a forensic case. Our new device is the next step towards clinical integration and shows that the concept cannot only be applied during autopsy but also for presentation of forensic data to laypeople in court or medical education.

  18. Data Collection Method for Mobile Control Sink Node in Wireless Sensor Network Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Ling Yongfa

    2016-01-01

    Full Text Available The paper proposes a mobile control sink node data collection method in the wireless sensor network based on compressive sensing. This method, with regular track, selects the optimal data collection points in the monitoring area via the disc method, calcu-lates the shortest path by using the quantum genetic algorithm, and hence determines the data collection route. Simulation results show that this method has higher network throughput and better energy efficiency, capable of collecting a huge amount of data with balanced energy consumption in the network.

  19. Guaranteed cost control of mobile sensor networks with Markov switching topologies.

    Science.gov (United States)

    Zhao, Yuan; Guo, Ge; Ding, Lei

    2015-09-01

    This paper investigates the consensus seeking problem of mobile sensor networks (MSNs) with random switching topologies. The network communication topologies are composed of a set of directed graphs (or digraph) with a spanning tree. The switching of topologies is governed by a Markov chain. The consensus seeking problem is addressed by introducing a global topology-aware linear quadratic (LQ) cost as the performance measure. By state transformation, the consensus problem is transformed to the stabilization of a Markovian jump system with guaranteed cost. A sufficient condition for global mean-square consensus is derived in the context of stochastic stability analysis of Markovian jump systems. A computational algorithm is given to synchronously calculate both the sub-optimal consensus controller gains and the sub-minimum upper bound of the cost. The effectiveness of the proposed design method is illustrated by three numerical examples. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. From mobile mental health to mobile wellbeing: opportunities and challenges.

    Science.gov (United States)

    Gaggioli, Andrea; Riva, Giuseppe

    2013-01-01

    The combination of smart phones, wearable sensor devices and social media offer new ways of monitoring and promoting mental and physical wellbeing. In this contribution, we describe recent developments in the field of mobile healthcare (or mHealth), by focusing in particular on mobile mental health applications. First, we examine the potential benefits associated with this approach, providing examples from existing projects. Next, we identify and explain possible differences in focus between mobile mental health and mobile wellbeing applications. Finally, we discuss some open challenges associated with the implementation of this vision, ranging from the lack of evidence-based validation to privacy, security and ethical concerns.

  1. MOBILITY: A SYSTEMS APPROACH

    OpenAIRE

    Mykola I. Striuk; Serhiy O. Semerikov; Andrii M. Striuk

    2015-01-01

    A comprehensive study on the problem of mobility in the socio-educational and technical systems was carried out: the evolution of the concept of mobility in scientific sources of XIX–XXI centuries was analyzed and the new sources on the issue of mobility introduced into scientific circulation, the interrelation of the types of mobility in the socio-pedagogical and technical systems are theoretically grounded, an integrative model of mobility in the information society is proposed. The major t...

  2. Rule-Based vs. Behavior-Based Self-Deployment for Mobile Wireless Sensor Networks.

    Science.gov (United States)

    Urdiales, Cristina; Aguilera, Francisco; González-Parada, Eva; Cano-García, Jose; Sandoval, Francisco

    2016-07-07

    In mobile wireless sensor networks (MWSN), nodes are allowed to move autonomously for deployment. This process is meant: (i) to achieve good coverage; and (ii) to distribute the communication load as homogeneously as possible. Rather than optimizing deployment, reactive algorithms are based on a set of rules or behaviors, so nodes can determine when to move. This paper presents an experimental evaluation of both reactive deployment approaches: rule-based and behavior-based ones. Specifically, we compare a backbone dispersion algorithm with a social potential fields algorithm. Most tests are done under simulation for a large number of nodes in environments with and without obstacles. Results are validated using a small robot network in the real world. Our results show that behavior-based deployment tends to provide better coverage and communication balance, especially for a large number of nodes in areas with obstacles.

  3. Electric field sensor studies

    International Nuclear Information System (INIS)

    Griffith, R.D.; Parks, S.

    1977-01-01

    Above-ground intrusion sensors are reviewed briefly. Buried wire sensors are next considered; feasibility studies were conducted. A triangular system of an overhead transmitter wire exciting two buried sensor wires was developed and tested. It failed sometimes to detect a man making a broad jump. A differential receiver was developed to solve this problem

  4. Development and radiation evaluation of mobile station for personnel monitoring system based on indigenous plastic scintillator sensor rods

    International Nuclear Information System (INIS)

    Chaudhary, H.S.; Parihar, A.; Senwar, K.R.; Prakash, V.; Rathore, A.S.

    2018-01-01

    The Mobile Station for Personnel Monitoring (MSPM) system has been designed and developed for rapid screening of personnel with respect to radiation contamination during nuclear or radiological emergency; it can also be used for prevention of illicit movement of radioactive sources. The objective was to develop a modular, transportable and easily deployable gamma portal monitoring system based on indigenous DLJ developed plastic scintillator sensors. The Gamma radiation response of the system is presented here

  5. EgoSENSE: A Framework for Context-Aware Mobile Applications Development

    Directory of Open Access Journals (Sweden)

    E. M. Milic

    2017-08-01

    Full Text Available This paper presents a context-aware mobile framework (or middleware, intended to support the implementation of context-aware mobile services. The overview of basic concepts, architecture and components of context-aware mobile framework is given. The mobile framework provide acquisition and management of context, where raw data sensed from physical (hardware sensors and virtual (software sensors are combined, processed and analyzed to provide high-level context and situation of the user to the mobile context-aware applications in near real-time. Using demo mobile health application, its most important components and functions, such as these supposed to detect urgent or alarming health conditions of a mobile user and to initiate appropriate actions demonstrated.

  6. Sensor Sharing in Mobile Ad-Hoc Networks

    Science.gov (United States)

    Mitra, Pramita

    2013-01-01

    Today's modern mobile devices (such as smartphones and tablets) present great potential for growth of many novel, powerful, but also highly demanding applications. However, most mobile devices/users operate in isolation from one another, i.e., they are not aware of the presence of other devices in their proximity. There are numerous situations…

  7. On the ground-state degeneracy and entropy in a double-tetrahedral chain formed by the localized Ising spins and mobile electrons

    Science.gov (United States)

    Gálisová, Lucia

    2018-05-01

    Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.

  8. Demonstration of MPV Sensor at Yuma Proving Ground, AZ

    Science.gov (United States)

    2011-06-01

    test plot in Ashland, OR, where magnetic soils have shown to have a significant effect on EMI sensors ( Pasion et al., 2008). The recorded signal...sensors was also investigated during that survey as part of SERDP MM-1573 (PI: Len Pasion , Sky Research). The MPV offers possibilities to defeat...of magnetic soils (Lhomme et al., 2008; Pasion et al., 2008). The MPV response due to sensor motion and topography over magnetic soil is predicable

  9. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.

    Science.gov (United States)

    Mehta, Daryush D; Zañartu, Matías; Feng, Shengran W; Cheyne, Harold A; Hillman, Robert E

    2012-11-01

    Many common voice disorders are chronic or recurring conditions that are likely to result from faulty and/or abusive patterns of vocal behavior, referred to generically as vocal hyperfunction. An ongoing goal in clinical voice assessment is the development and use of noninvasively derived measures to quantify and track the daily status of vocal hyperfunction so that the diagnosis and treatment of such behaviorally based voice disorders can be improved. This paper reports on the development of a new, versatile, and cost-effective clinical tool for mobile voice monitoring that acquires the high-bandwidth signal from an accelerometer sensor placed on the neck skin above the collarbone. Using a smartphone as the data acquisition platform, the prototype device provides a user-friendly interface for voice use monitoring, daily sensor calibration, and periodic alert capabilities. Pilot data are reported from three vocally normal speakers and three subjects with voice disorders to demonstrate the potential of the device to yield standard measures of fundamental frequency and sound pressure level and model-based glottal airflow properties. The smartphone-based platform enables future clinical studies for the identification of the best set of measures for differentiating between normal and hyperfunctional patterns of voice use.

  10. New-generation security network with synergistic IP sensors

    Science.gov (United States)

    Peshko, Igor

    2007-09-01

    Global Dynamic Monitoring and Security Network (GDMSN) for real-time monitoring of (1) environmental and atmospheric conditions: chemical, biological, radiological and nuclear hazards, climate/man-induced catastrophe areas and terrorism threats; (2) water, soil, food chain quantifiers, and public health care; (3) large government/public/ industrial/ military areas is proposed. Each GDMSN branch contains stationary or mobile terminals (ground, sea, air, or space manned/unmanned vehicles) equipped with portable sensors. The sensory data are transferred via telephone, Internet, TV, security camera and other wire/wireless or optical communication lines. Each sensor is a self-registering, self-reporting, plug-and-play, portable unit that uses unified electrical and/or optical connectors and operates with IP communication protocol. The variant of the system based just on optical technologies cannot be disabled by artificial high-power radio- or gamma-pulses or sunbursts. Each sensor, being supplied with a battery and monitoring means, can be used as a separate portable unit. Military personnel, police officers, firefighters, miners, rescue teams, and nuclear power plant personnel may individually use these sensors. Terminals may be supplied with sensors essential for that specific location. A miniature "universal" optical gas sensor for specific applications in life support and monitoring systems was designed and tested. The sensor is based on the physics of absorption and/or luminescence spectroscopy. It can operate at high pressures and elevated temperatures, such as in professional and military diving equipment, submarines, underground shelters, mines, command stations, aircraft, space shuttles, etc. To enable this capability, the multiple light emitters, detectors and data processing electronics are located within a specially protected chamber.

  11. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  12. Devices for measuring the capacitance of micromechanical sensors of mobile robots navigation systems and its deviation from the nominal value

    Directory of Open Access Journals (Sweden)

    Rudyk A.V.

    2016-12-01

    Full Text Available The article describes methods of constructing devices for measuring the capacitance of micromechanical sensors (accelerometers and gyros mobile robots navigation systems and its deviation from the nominal value. A modified diagram of a sigma-delta modulator is offered. It realizes a direct connection capacitive sensor connection to the sigma-delta converter, as a result increased resolution, accuracy and linearity of the conversion. This interface is insensitive to the value of capacitance between the sensor leads and common wire or leakage current to a common wire. Variants of expansion as the nominal of the test capacity and the range of conversion of the relative deviation of the nominal capacity using two integrators are offered. The versions of circuit implementation devices for measuring the capacitance deviation of a micromechanical sensor from the nominal value are designed on the basis of the completed integrated circuit AD7745 / AD7746 and AD7747 of Analog Devices, CAV414 / 424 firm Analog Microelectronics and precision analog microcontroller ADuCM360 / CM361 company ARM Limited.

  13. Airfield Ground Safety

    National Research Council Canada - National Science Library

    Petrescu, Jon

    2000-01-01

    .... The system developed under AGS, called the Ground Safety Tracking and Reporting System, uses multisensor data fusion from in-pavement inductive loop sensors to address a critical problem affecting out nation's airports: runway incursions...

  14. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  15. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2016-01-01

    Full Text Available In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  16. Key Management Scheme Based on Route Planning of Mobile Sink in Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Liang, Jixing; Zheng, Bingxin; Jiang, Shengming; Chen, Wei

    2016-01-29

    In many wireless sensor network application scenarios the key management scheme with a Mobile Sink (MS) should be fully investigated. This paper proposes a key management scheme based on dynamic clustering and optimal-routing choice of MS. The concept of Traveling Salesman Problem with Neighbor areas (TSPN) in dynamic clustering for data exchange is proposed, and the selection probability is used in MS route planning. The proposed scheme extends static key management to dynamic key management by considering the dynamic clustering and mobility of MSs, which can effectively balance the total energy consumption during the activities. Considering the different resources available to the member nodes and sink node, the session key between cluster head and MS is established by modified an ECC encryption with Diffie-Hellman key exchange (ECDH) algorithm and the session key between member node and cluster head is built with a binary symmetric polynomial. By analyzing the security of data storage, data transfer and the mechanism of dynamic key management, the proposed scheme has more advantages to help improve the resilience of the key management system of the network on the premise of satisfying higher connectivity and storage efficiency.

  17. Pose Estimation of a Mobile Robot Based on Fusion of IMU Data and Vision Data Using an Extended Kalman Filter.

    Science.gov (United States)

    Alatise, Mary B; Hancke, Gerhard P

    2017-09-21

    Using a single sensor to determine the pose estimation of a device cannot give accurate results. This paper presents a fusion of an inertial sensor of six degrees of freedom (6-DoF) which comprises the 3-axis of an accelerometer and the 3-axis of a gyroscope, and a vision to determine a low-cost and accurate position for an autonomous mobile robot. For vision, a monocular vision-based object detection algorithm speeded-up robust feature (SURF) and random sample consensus (RANSAC) algorithms were integrated and used to recognize a sample object in several images taken. As against the conventional method that depend on point-tracking, RANSAC uses an iterative method to estimate the parameters of a mathematical model from a set of captured data which contains outliers. With SURF and RANSAC, improved accuracy is certain; this is because of their ability to find interest points (features) under different viewing conditions using a Hessain matrix. This approach is proposed because of its simple implementation, low cost, and improved accuracy. With an extended Kalman filter (EKF), data from inertial sensors and a camera were fused to estimate the position and orientation of the mobile robot. All these sensors were mounted on the mobile robot to obtain an accurate localization. An indoor experiment was carried out to validate and evaluate the performance. Experimental results show that the proposed method is fast in computation, reliable and robust, and can be considered for practical applications. The performance of the experiments was verified by the ground truth data and root mean square errors (RMSEs).

  18. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  19. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network.

    Science.gov (United States)

    Ahmed, Farwa; Wadud, Zahid; Javaid, Nadeem; Alrajeh, Nabil; Alabed, Mohamad Souheil; Qasim, Umar

    2018-04-02

    The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs). The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  20. Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Farwa Ahmed

    2018-04-01

    Full Text Available The distinctive features of acoustic communication channel-like high propagation delay, multi-path fading, quick attenuation of acoustic signal, etc. limit the utilization of underwater wireless sensor networks (UWSNs. The immutable selection of forwarder node leads to dramatic death of node resulting in imbalanced energy depletion and void hole creation. To reduce the probability of void occurrence and imbalance energy dissipation, in this paper, we propose mobility assisted geo-opportunistic routing paradigm based on interference avoidance for UWSNs. The network volume is divided into logical small cubes to reduce the interference and to make more informed routing decisions for efficient energy consumption. Additionally, an optimal number of forwarder nodes is elected from each cube based on its proximity with respect to the destination to avoid void occurrence. Moreover, the data packets are recovered from void regions with the help of mobile sinks which also reduce the data traffic on intermediate nodes. Extensive simulations are performed to verify that our proposed work maximizes the network lifetime and packet delivery ratio.

  1. Beyond where to how: a machine learning approach for sensing mobility contexts using smartphone sensors.

    Science.gov (United States)

    Guinness, Robert E

    2015-04-28

    This paper presents the results of research on the use of smartphone sensors (namely, GPS and accelerometers), geospatial information (points of interest, such as bus stops and train stations) and machine learning (ML) to sense mobility contexts. Our goal is to develop techniques to continuously and automatically detect a smartphone user's mobility activities, including walking, running, driving and using a bus or train, in real-time or near-real-time (feature selection process for a subset of algorithms, the performance was improved slightly. Furthermore, after tuning the parameters of RandomForest, performance improved to above 97.5%. Lastly, we measured the computational complexity of the classifiers, in terms of central processing unit (CPU) time needed for classification, to provide a rough comparison between the algorithms in terms of battery usage requirements. As a result, the classifiers can be ranked from lowest to highest complexity (i.e., computational cost) as follows: SVM, ANN, LR, BN, DT, NB, IBk, LWL and KStar. The instance-based classifiers take considerably more computational time than the non-instance-based classifiers, whereas the slowest non-instance-based classifier (NB) required about five-times the amount of CPU time as the fastest classifier (SVM). The above results suggest that DT algorithms are excellent candidates for detecting mobility contexts in smartphones, both in terms of performance and computational complexity.

  2. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.

    Science.gov (United States)

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.

  3. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN

    Directory of Open Access Journals (Sweden)

    Seung-Wha Yoo

    2009-07-01

    Full Text Available Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob, which employs Mobility Support Points (MSPs to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.

  4. Space trajectory calculation based on G-sensor

    Science.gov (United States)

    Xu, Biya; Zhan, Yinwei; Shao, Yang

    2017-08-01

    At present, without full use of the mobile phone around us, most of the research in human body posture recognition field is use camera or portable acceleration sensor to collect data. In this paper, G-sensor built-in mobile phone is use to collect data. After processing data with the way of moving average filter and acceleration integral, joint point's space three-dimensional coordinates can be abtained accurately.

  5. HUMAN FOLLOWING ON ROS FRAMEWORK A MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Gigih Priyandoko

    2018-06-01

    Full Text Available Service mobile robot is playing a more critical role in today's society as more people such as a disabled person or the elderly are in need of mobile robot assistance. An autonomous person following ability shows great importance to the overall role of service mobile robot in assisting human. The objective of this paper focuses on developing a robot follow a person. The robot is equipped with the necessary sensors such as a Microsoft Kinect sensor and a Hokuyo laser sensor. Four suitable tracking methods are introduced in this project which is implemented and tested on the person following algorithm. The tracking methods implemented are face detection, leg detection, color detection and person blob detection. All of the algorithms implementations in this project is performed using Robot Operating System (ROS. The result showed that the mobile robot could track and follow the target person based on the person movement.

  6. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  7. A Performance Evaluation Model for Mobile Ad Hoc Networks and Sensor Networks

    Directory of Open Access Journals (Sweden)

    Heng LUO

    2014-03-01

    Full Text Available Potential applications in areas such as military sites and disaster relief fields that are characterized by absence of prefixed infrastructure justify the development of mobile ad hoc networks (MANETs and wireless sensor networks (WSNs. However, unfavorable wireless links and dynamic topology are still challenging, leading to the proposal of a collection of routing protocols for MANETs and WSNs. Nevertheless the performance of algorithms may vary with deployment scenario due to the application dependent philosophy behind algorithms. In this paper, the performance evaluation problem for MANETs and WSNs is investigated and a novel performance ranking model, termed AHP-SAW, is proposed. For simplicity but without loss of generality, the performance of two routing protocols DSDV and DSR are studies based on which ranking results are provided. Extensive simulations show that an overall 37.2 %, at most, gain may be achieved based on the AHP-SAW model.

  8. Formal reconstruction of attack scenarios in mobile ad hoc and sensor networks

    Directory of Open Access Journals (Sweden)

    Rekhis Slim

    2011-01-01

    Full Text Available Abstract Several techniques of theoretical digital investigation are presented in the literature but most of them are unsuitable to cope with attacks in wireless networks, especially in Mobile Ad hoc and Sensor Networks (MASNets. In this article, we propose a formal approach for digital investigation of security attacks in wireless networks. We provide a model for describing attack scenarios in a wireless environment, and system and network evidence generated consequently. The use of formal approaches is motivated by the need to avoid ad hoc generation of results that impedes the accuracy of analysis and integrity of investigation. We develop an inference system that integrates the two types of evidence, handles incompleteness and duplication of information in them, and allows possible and provable actions and attack scenarios to be generated. To illustrate the proposal, we consider a case study dealing with the investigation of a remote buffer overflow attack.

  9. A Survey on Security, Privacy and Trust in Mobile Crowdsourcing

    OpenAIRE

    Feng, Wei; Yan, Zheng; Zhang, Hengrun; Zeng, Kai; Xiao, Yu; Hou, Thomas

    2017-01-01

    With the popularity of sensor-rich mobile devices (e.g., smart phones and wearable devices), Mobile Crowdsourcing (MCS) has emerged as an effective method for data collection and processing. Compared with traditional Wireless Sensor Networking (WSN), MCS holds many advantages such as mobility, scalability, cost-efficiency, and human intelligence. However, MCS still faces many challenges with regard to security, privacy and trust. This paper provides a survey of these challenges and discusses ...

  10. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  11. A Survey of Online Activity Recognition Using Mobile Phones

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib

    2015-01-01

    Full Text Available Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. Initially, one or more dedicated wearable sensors were used for such applications. However, recently, many researchers started using mobile phones for this purpose, since these ubiquitous devices are equipped with various sensors, ranging from accelerometers to magnetic field sensors. In most of the current studies, sensor data collected for activity recognition are analyzed offline using machine learning tools. However, there is now a trend towards implementing activity recognition systems on these devices in an online manner, since modern mobile phones have become more powerful in terms of available resources, such as CPU, memory and battery. The research on offline activity recognition has been reviewed in several earlier studies in detail. However, work done on online activity recognition is still in its infancy and is yet to be reviewed. In this paper, we review the studies done so far that implement activity recognition systems on mobile phones and use only their on-board sensors. We discuss various aspects of these studies. Moreover, we discuss their limitations and present various recommendations for future research.

  12. A Survey of Online Activity Recognition Using Mobile Phones

    Science.gov (United States)

    Shoaib, Muhammad; Bosch, Stephan; Incel, Ozlem Durmaz; Scholten, Hans; Havinga, Paul J.M.

    2015-01-01

    Physical activity recognition using embedded sensors has enabled many context-aware applications in different areas, such as healthcare. Initially, one or more dedicated wearable sensors were used for such applications. However, recently, many researchers started using mobile phones for this purpose, since these ubiquitous devices are equipped with various sensors, ranging from accelerometers to magnetic field sensors. In most of the current studies, sensor data collected for activity recognition are analyzed offline using machine learning tools. However, there is now a trend towards implementing activity recognition systems on these devices in an online manner, since modern mobile phones have become more powerful in terms of available resources, such as CPU, memory and battery. The research on offline activity recognition has been reviewed in several earlier studies in detail. However, work done on online activity recognition is still in its infancy and is yet to be reviewed. In this paper, we review the studies done so far that implement activity recognition systems on mobile phones and use only their on-board sensors. We discuss various aspects of these studies. Moreover, we discuss their limitations and present various recommendations for future research. PMID:25608213

  13. PERANCANGAN DAN IMPLEMENTASI SENSOR PARKIR PADA MOBIL MENGGUNAKAN SENSOR ULTRASONIK

    Directory of Open Access Journals (Sweden)

    Rudy Susanto

    2007-05-01

    Full Text Available A car driver often had trouble to park his car a narrow location, caused by a narrow parking area on the wane.Also, cars had often crashed the electric pillar or scratched the car on the wall while retreat. The problem was the driverdidn’t know condition behind vehicle because of limited of view. The research aimed to make a system that can easily helpdriver in parking his car, by using of ultrasonic parking sensor. The method used in sensor scheme parks is ultrasonicisensor to detect and measure car and balk distance by utilising of 851 family microcontroller as the main system. Theresult indicates that ultrasonic censor effective deep measurement was on distance of 2 cm – 30 m. It is that enoughultrasonic censor is effective to be implemented on censor parks.

  14. Concepts of the Internet of Things from the Aspect of the Autonomous Mobile Robots

    Directory of Open Access Journals (Sweden)

    Janos Simon

    2015-01-01

    Full Text Available The Internet of Things (IoT is slowly gaining grounds and through the properties of barcodes, QR codes, RFID, active sensors and IPv6, objects are fitted with some form of readability and traceability. People are becoming part of digital global network driven by personal interests. The feeling being part of a community and the constant drive of getting connected from real life finds it continuation in digital networks. This article investigates the concepts of the internet of things from the aspect of the autonomous mobile robots with an overview of the performances of the currently available database systems.

  15. Localization of Wheeled Mobile Robot Based on Extended Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Li Guangxu

    2015-01-01

    Full Text Available A mobile robot localization method which combines relative positioning with absolute orientation is presented. The code salver and gyroscope are used for relative positioning, and the laser radar is used to detect absolute orientation. In this paper, we established environmental map, multi-sensor information fusion model, sensors and robot motion model. The Extended Kalman Filtering (EKF is adopted as multi-sensor data fusion technology to realize the precise localization of wheeled mobile robot.

  16. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle.

    Science.gov (United States)

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-11-11

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality.

  17. Coupled wave sensor technology

    International Nuclear Information System (INIS)

    Maki, M.C.

    1988-01-01

    Buried line guided radar sensors have been used successfully for a number of years to provide perimeter security for high value resources. This paper introduces a new complementary sensor advancement at Computing Devices termed 'coupled wave device technology' (CWD). It provides many of the inherent advantages of leakey cable sensors, such as terrain-following and the ability to discriminate between humans and small animals. It also is able to provide a high or wide detection zone, and allows the sensor to be mounted aerially and adjacent to a wall or fence. Several alternative sensors have been developed which include a single-line sensor, a dual-line hybrid sensor that combines the elements of ported coax and CWD technology, and a rapid-deployment portable sensor for temporary or mobile applications. A description of the technology, the sensors, and their characteristics is provided

  18. Behavior analysis for elderly care using a network of low-resolution visual sensors

    Science.gov (United States)

    Eldib, Mohamed; Deboeverie, Francis; Philips, Wilfried; Aghajan, Hamid

    2016-07-01

    Recent advancements in visual sensor technologies have made behavior analysis practical for in-home monitoring systems. The current in-home monitoring systems face several challenges: (1) visual sensor calibration is a difficult task and not practical in real-life because of the need for recalibration when the visual sensors are moved accidentally by a caregiver or the senior citizen, (2) privacy concerns, and (3) the high hardware installation cost. We propose to use a network of cheap low-resolution visual sensors (30×30 pixels) for long-term behavior analysis. The behavior analysis starts by visual feature selection based on foreground/background detection to track the motion level in each visual sensor. Then a hidden Markov model (HMM) is used to estimate the user's locations without calibration. Finally, an activity discovery approach is proposed using spatial and temporal contexts. We performed experiments on 10 months of real-life data. We show that the HMM approach outperforms the k-nearest neighbor classifier against ground truth for 30 days. Our framework is able to discover 13 activities of daily livings (ADL parameters). More specifically, we analyze mobility patterns and some of the key ADL parameters to detect increasing or decreasing health conditions.

  19. Development and deployment of a low-cost, mobile-ready, air quality sensor system: progress toward distributed networks and autonomous aerial sampling

    Science.gov (United States)

    Hersey, S. P.; DiVerdi, R.; Gadtaula, P.; Sheneman, T.; Flores, K.; Chen, Y. H.; Jayne, J. T.; Cross, E. S.

    2017-12-01

    Throughout the 2016-2017 academic year, a new partnership between Olin College of Engineering and Aerodyne Research, Inc. developed an affordable, self-contained air quality monitoring instrument called Modulair. The Modulair instrument is based on the same operating principles as Aerodyne's newly-developed ARISense integrated sensor system, employing electrochemical sensors for gas-phase measurements of CO, NO, NO2, and O3 and an off-the-shelf optical particle counter for particle concentration, number, and size distribution information (0.4 backend with a mobile, cloud-based data management system for real-time data posting and analysis. Open source tools and software were utilized in the development of the instrument. All initial work was completed by a team of undergraduate students as part of the Senior Capstone Program in Engineering (SCOPE) at Olin College. Deployment strategies for Modulair include distributed, mobile measurements and drone-based aerial sampling. Design goals for the drone integration include maximizing airborne sampling time and laying the foundation for software integration with the drone's autopilot system to allow for autonomous plume sampling across concentration gradients. Modulair and its flexible deployments enable real-time mapping of air quality data at exposure-relevant spatial scales, as well as regular, autonomous characterization of sources and dispersion of atmospheric pollutants. We will present an overview of the Modulair instrument and results from benchtop and field validation, including mobile and drone-based plume sampling in the Boston area.

  20. MOSDEN: A Scalable Mobile Collaborative Platform for Opportunistic Sensing Applications

    Directory of Open Access Journals (Sweden)

    Prem Prakash Jayaraman

    2014-05-01

    Full Text Available Mobile smartphones along with embedded sensors have become an efficient enabler for various mobile applications including opportunistic sensing. The hi-tech advances in smartphones are opening up a world of possibilities. This paper proposes a mobile collaborative platform called MOSDEN that enables and supports opportunistic sensing at run time. MOSDEN captures and shares sensor data acrossmultiple apps, smartphones and users. MOSDEN supports the emerging trend of separating sensors from application-specific processing, storing and sharing. MOSDEN promotes reuse and re-purposing of sensor data hence reducing the efforts in developing novel opportunistic sensing applications. MOSDEN has been implemented on Android-based smartphones and tablets. Experimental evaluations validate the scalability and energy efficiency of MOSDEN and its suitability towards real world applications. The results of evaluation and lessons learned are presented and discussed in this paper.

  1. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  2. Recognition and automatic tracking of weld line in fringe welding by autonomous mobile robot with visual sensor

    International Nuclear Information System (INIS)

    Suga, Yasuo; Saito, Keishin; Ishii, Hideaki.

    1994-01-01

    An autonomous mobile robot with visual sensor and four driving axes for welding of pipe and fringe was constructed. The robot can move along a pipe, and detect the weld line to be welded by visual sensor. Moreover, in order to perform welding automatically, the tip of welding torch can track the weld line of the joint by rotating the robot head. In the case of welding of pipe and fringe, the robot can detect the contact angle between the two base metals to be welded, and the torch angle changes according to the contact angle. As the result of tracking test by the robot system, it was made clear that the recognition of geometry of the joint by the laser lighting method and automatic tracking of weld line were possible. The average tracking error was ±0.3 mm approximately and the torch angle could be always kept at the optimum angle. (author)

  3. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    International Nuclear Information System (INIS)

    Schivo, Michael; Kenyon, Nicholas J; Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E

    2011-01-01

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  4. Building biomarker libraries with novel chemical sensors: correlating differential mobility spectrometer signal outputs with mass spectrometry data

    Energy Technology Data Exchange (ETDEWEB)

    Schivo, Michael; Kenyon, Nicholas J [Division of Pulmonary and Critical Care Medicine, Genome and Biomedical Sciences Facility, University of California, Davis, CA 95616 (United States); Aksenov, Alexander A; Bardaweel, Hamzeh; Zhao Weixiang; Davis, Cristina E, E-mail: cedavis@ucdavis.edu [Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California, Davis, CA 95616 (United States)

    2011-10-29

    Gas chromatography/mass spectrometry (GC/MS) is a widely used analytic tool for qualitative and quantitative analysis of volatile and semi-volatile compounds. However, GC/MS use is limited by its large size, lack of portability, high cost and inherent complexity. Smaller instruments capable of high-throughput analysis of volatile compounds have the potential of combining MS-like sensitivity with portability. The micromachined differential mobility spectrometer (DMS) is a miniature sensor capable of registering volatile compounds in sub-parts-per-million (ppm) concentrations. It is small, portable, and can be coupled with multiple other compound separation methods. Here we describe paired volatile sample analyses using both GC/MS and GC/DMS which show that the DMS is capable of registering known compounds as verified by MS. Furthermore, we show that MS can be used to help build a library for our unique DMS sensor outputs and detect compounds in chemically complex backgrounds.

  5. Handheld and mobile hyperspectral imaging sensors for wide-area standoff detection of explosives and chemical warfare agents

    Science.gov (United States)

    Gomer, Nathaniel R.; Gardner, Charles W.; Nelson, Matthew P.

    2016-05-01

    Hyperspectral imaging (HSI) is a valuable tool for the investigation and analysis of targets in complex background with a high degree of autonomy. HSI is beneficial for the detection of threat materials on environmental surfaces, where the concentration of the target of interest is often very low and is typically found within complex scenery. Two HSI techniques that have proven to be valuable are Raman and shortwave infrared (SWIR) HSI. Unfortunately, current generation HSI systems have numerous size, weight, and power (SWaP) limitations that make their potential integration onto a handheld or field portable platform difficult. The systems that are field-portable do so by sacrificing system performance, typically by providing an inefficient area search rate, requiring close proximity to the target for screening, and/or eliminating the potential to conduct real-time measurements. To address these shortcomings, ChemImage Sensor Systems (CISS) is developing a variety of wide-field hyperspectral imaging systems. Raman HSI sensors are being developed to overcome two obstacles present in standard Raman detection systems: slow area search rate (due to small laser spot sizes) and lack of eye-safety. SWIR HSI sensors have been integrated into mobile, robot based platforms and handheld variants for the detection of explosives and chemical warfare agents (CWAs). In addition, the fusion of these two technologies into a single system has shown the feasibility of using both techniques concurrently to provide higher probability of detection and lower false alarm rates. This paper will provide background on Raman and SWIR HSI, discuss the applications for these techniques, and provide an overview of novel CISS HSI sensors focused on sensor design and detection results.

  6. A mobile-agent-based wireless sensing network for structural monitoring applications

    International Nuclear Information System (INIS)

    Taylor, Stuart G; Farinholt, Kevin M; Figueiredo, Eloi; Moro, Erik A; Park, Gyuhae; Farrar, Charles R; Flynn, Eric B; Mascarenas, David L; Todd, Michael D

    2009-01-01

    A new wireless sensing network paradigm is presented for structural monitoring applications. In this approach, both power and data interrogation commands are conveyed via a mobile agent that is sent to sensor nodes to perform intended interrogations, which can alleviate several limitations of the traditional sensing networks. Furthermore, the mobile agent provides computational power to make near real-time assessments on the structural conditions. This paper will discuss such prototype systems, which are used to interrogate impedance-based sensors for structural health monitoring applications. Our wireless sensor node is specifically designed to accept various energy sources, including wireless energy transmission, and to be wirelessly triggered on an as-needed basis by the mobile agent or other sensor nodes. The capabilities of this proposed sensing network paradigm are demonstrated in the laboratory and the field

  7. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    Directory of Open Access Journals (Sweden)

    Chao-I Chen

    2015-05-01

    Full Text Available An essential capability for an unmanned aerial vehicle (UAV to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR. This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously.

  8. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    Science.gov (United States)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  9. Path planning in GPS-denied environments via collective intelligence of distributed sensor networks

    Science.gov (United States)

    Jha, Devesh K.; Chattopadhyay, Pritthi; Sarkar, Soumik; Ray, Asok

    2016-05-01

    This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin's car-like robot.

  10. Coincident Observation of Lightning using Spaceborne Spectrophotometer and Ground-Level Electromagnetic Sensors

    Science.gov (United States)

    Adachi, Toru; Cohen, Morris; Li, Jingbo; Cummer, Steve; Blakeslee, Richard; Marshall, THomas; Stolzenberg, Maribeth; Karunarathne, Sumedhe; Hsu, Rue-Ron; Su, Han-Tzong; hide

    2012-01-01

    The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.

  11. Ground based mobile isotopic methane measurements in the Front Range, Colorado

    Science.gov (United States)

    Vaughn, B. H.; Rella, C.; Petron, G.; Sherwood, O.; Mielke-Maday, I.; Schwietzke, S.

    2014-12-01

    Increased development of unconventional oil and gas resources in North America has given rise to attempts to monitor and quantify fugitive emissions of methane from the industry. Emission estimates of methane from oil and gas basins can vary significantly from one study to another as well as from EPA or State estimates. New efforts are aimed at reconciling bottom-up, or inventory-based, emission estimates of methane with top-down estimates based on atmospheric measurements from aircraft, towers, mobile ground-based vehicles, and atmospheric models. Attributing airborne measurements of regional methane fluxes to specific sources is informed by ground-based measurements of methane. Stable isotopic measurements (δ13C) of methane help distinguish between emissions from the O&G industry, Confined Animal Feed Operations (CAFO), and landfills, but analytical challenges typically limit meaningful isotopic measurements to individual point sampling. We are developing a toolbox to use δ13CH4 measurements to assess the partitioning of methane emissions for regions with multiple methane sources. The method was applied to the Denver-Julesberg Basin. Here we present data from continuous isotopic measurements obtained over a wide geographic area by using MegaCore, a 1500 ft. tube that is constantly filled with sample air while driving, then subsequently analyzed at slower rates using cavity ring down spectroscopy (CRDS). Pressure, flow and calibration are tightly controlled allowing precise attribution of methane enhancements to their point of collection. Comparisons with point measurements are needed to confirm regional values and further constrain flux estimates and models. This effort was made in conjunction with several major field campaigns in the Colorado Front Range in July-August 2014, including FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment), DISCOVER-AQ, and the Air Water Gas NSF Sustainability Research Network at the University of Colorado.

  12. Capturing the sensitivity of land-use regression models to short-term mobile monitoring campaigns using air pollution micro-sensors.

    Science.gov (United States)

    Minet, L; Gehr, R; Hatzopoulou, M

    2017-11-01

    The development of reliable measures of exposure to traffic-related air pollution is crucial for the evaluation of the health effects of transportation. Land-use regression (LUR) techniques have been widely used for the development of exposure surfaces, however these surfaces are often highly sensitive to the data collected. With the rise of inexpensive air pollution sensors paired with GPS devices, we witness the emergence of mobile data collection protocols. For the same urban area, can we achieve a 'universal' model irrespective of the number of locations and sampling visits? Can we trade the temporal representation of fixed-point sampling for a larger spatial extent afforded by mobile monitoring? This study highlights the challenges of short-term mobile sampling campaigns in terms of the resulting exposure surfaces. A mobile monitoring campaign was conducted in 2015 in Montreal; nitrogen dioxide (NO 2 ) levels at 1395 road segments were measured under repeated visits. We developed LUR models based on sub-segments, categorized in terms of the number of visits per road segment. We observe that LUR models were highly sensitive to the number of road segments and to the number of visits per road segment. The associated exposure surfaces were also highly dissimilar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    Directory of Open Access Journals (Sweden)

    Paula Jimena Ramos Giraldo

    2017-04-01

    Full Text Available Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  14. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees.

    Science.gov (United States)

    Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-04-06

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  15. First Results of a Tandem Terrestrial-Unmanned Aerial mapKITE System with Kinematic Ground Control Points for Corridor Mapping

    Directory of Open Access Journals (Sweden)

    Pere Molina

    2017-01-01

    Full Text Available In this article, we report about the first results of the mapKITE system, a tandem terrestrial-aerial concept for geodata acquisition and processing, obtained in corridor mapping missions. The system combines an Unmanned Aerial System (UAS and a Terrestrial Mobile Mapping System (TMMS operated in a singular way: real-time waypoints are computed from the TMMS platform and sent to the UAS in a follow-me scheme. This approach leads to a simultaneous acquisition of aerial-plus-ground geodata and, moreover, opens the door to an advanced post-processing approach for sensor orientation. The current contribution focuses on analysing the impact of the new, dynamic Kinematic Ground Control Points (KGCPs, which arise inherently from the mapKITE paradigm, as an alternative to conventional, costly Ground Control Points (GCPs. In the frame of a mapKITE campaign carried out in June 2016, we present results entailing sensor orientation and calibration accuracy assessment through ground check points, and precision and correlation analysis of self-calibration parameters’ estimation. Conclusions indicate that the mapKITE concept eliminates the need for GCPs when using only KGCPs plus a couple of GCPs at each corridor end, achieving check point horizontal accuracy of μ E , N ≈ 1.7 px (3.4 cm and μ h ≈ 4.3 px (8.6 cm. Since obtained from a simplified version of the system, these preliminary results are encouraging from a future perspective.

  16. A Deployment Scheme Based Upon Virtual Force for Directional Sensor Networks

    Directory of Open Access Journals (Sweden)

    Chiu-Kuo Liang

    2015-11-01

    Full Text Available A directional sensor network is composed of many directional sensor nodes. Unlike conventional omni-directional sensors that always have an omni-angle of sensing range; directional sensors may have a limited angle of sensing range due to technical constraints or cost considerations. Area coverage is still an essential issue in a directional sensor network. In this paper, we study the area coverage problem in directional sensor networks with mobile sensors, which can move to the correct places to get high coverage. We present distributed self-deployment schemes of mobile sensors. After sensors are randomly deployed, each sensor calculates its next new location to move in order to obtain a better coverage than previous one. The locations of sensors are adjusted round by round so that the coverage is gradually improved. Based on the virtual force of the directional sensors, we design a scheme, namely Virtual force scheme. Simulation results show the effectiveness of our scheme in term of the coverage improvement.

  17. Mobile phone based mini-spectrometer for rapid screening of skin cancer

    Science.gov (United States)

    Das, Anshuman; Swedish, Tristan; Wahi, Akshat; Moufarrej, Mira; Noland, Marie; Gurry, Thomas; Aranda-Michel, Edgar; Aksel, Deniz; Wagh, Sneha; Sadashivaiah, Vijay; Zhang, Xu; Raskar, Ramesh

    2015-06-01

    We demonstrate a highly sensitive mobile phone based spectrometer that has potential to detect cancerous skin lesions in a rapid, non-invasive manner. Earlier reports of low cost spectrometers utilize the camera of the mobile phone to image the field after moving through a diffraction grating. These approaches are inherently limited by the closed nature of mobile phone image sensors and built in optical elements. The system presented uses a novel integrated grating and sensor that is compact, accurate and calibrated. Resolutions of about 10 nm can be achieved. Additionally, UV and visible LED excitation sources are built into the device. Data collection and analysis is simplified using the wireless interfaces and logical control on the smart phone. Furthermore, by utilizing an external sensor, the mobile phone camera can be used in conjunction with spectral measurements. We are exploring ways to use this device to measure endogenous fluorescence of skin in order to distinguish cancerous from non-cancerous lesions with a mobile phone based dermatoscope.

  18. Ambulatory Measurement of Ground Reaction Forces

    NARCIS (Netherlands)

    Veltink, Peter H.; Liedtke, Christian; Droog, Ed

    2004-01-01

    The measurement of ground reaction forces is important in the biomechanical analysis of gait and other motor activities. It is the purpose of this study to show the feasibility of ambulatory measurement of ground reaction forces using two six degrees of freedom sensors mounted under the shoe. One

  19. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors.

    Science.gov (United States)

    Guo, Yuzhu; Storm, Fabio; Zhao, Yifan; Billings, Stephen A; Pavic, Aleksandar; Mazzà, Claudia; Guo, Ling-Zhong

    2017-09-22

    Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  20. A New Proxy Measurement Algorithm with Application to the Estimation of Vertical Ground Reaction Forces Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Yuzhu Guo

    2017-09-01

    Full Text Available Measurement of the ground reaction forces (GRF during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0% using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra. Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications.

  1. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  2. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  3. Influence of Self-emissions on a Mobile Laboratory and Implications for Urban Sampling

    Science.gov (United States)

    Wendt, L. P.

    2017-12-01

    The importance of urban systems as a large source of greenhouse gases has led to an increase in ground-based campaigns designed to identify and quantify sources. However, plume emissions from vehicle tailpipes can affect emissions for a stationary vehicle or if a tailwind lofts the plume over the car particularly in an urban canyons where wind flow is constrained [1]. Advances in battery technology allow for electric vehicles to sample without self-emissions. Chevrolet has released the Bolt with an estimated range of 238 miles per charge. We are designing a mobile lab using a Chevrolet Bolt with the sensors 5 ft above the ground to reduce drag. Here we investigate the occurrence of self-emissions from a gasoline mobile laboratory set-up that has been optimized to reduce self-emissions and the potential benefits of switching to an electric vehicle for urban sampling. A 2002 Toyota Sienna van and a Licor 7500 CO2/H2O analyzer were deployed to quantify self-emissions. A custom-designed rack elevated the sensors to a height of 8 feet above the tailpipe to minimize self-emission samples [1]. Emissions were sampled over 5 intervals near a relatively isolated field with the van oriented in five directions. A south-easterly wind ( 131o) provided a self-sample opportunity by orienting the car with the tailpipe between the oncoming wind and the sensors. Over 1.5 hours of measurement, 7.8 % of CO2 measurements exceeded 420 ppmv. Of these, four possible self-sample events were observed, or less than 1% with other enhancements attributed to passing cars. These were observed in mild wind conditions averaging 2.8 m/s and only with the tail pipe directly facing into the wind. Results suggest that self-sampling is small in an environment with mild sustained winds and open surroundings. Given the challenge of identifying self-emissions in an isolated environment, urban self-sampling could impact the overall sample especially as these signals may be hard to distinguish from the

  4. Multi-Sensor Mud Detection

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2010-01-01

    Robust mud detection is a critical perception requirement for Unmanned Ground Vehicle (UGV) autonomous offroad navigation. A military UGV stuck in a mud body during a mission may have to be sacrificed or rescued, both of which are unattractive options. There are several characteristics of mud that may be detectable with appropriate UGV-mounted sensors. For example, mud only occurs on the ground surface, is cooler than surrounding dry soil during the daytime under nominal weather conditions, is generally darker than surrounding dry soil in visible imagery, and is highly polarized. However, none of these cues are definitive on their own. Dry soil also occurs on the ground surface, shadows, snow, ice, and water can also be cooler than surrounding dry soil, shadows are also darker than surrounding dry soil in visible imagery, and cars, water, and some vegetation are also highly polarized. Shadows, snow, ice, water, cars, and vegetation can all be disambiguated from mud by using a suite of sensors that span multiple bands in the electromagnetic spectrum. Because there are military operations when it is imperative for UGV's to operate without emitting strong, detectable electromagnetic signals, passive sensors are desirable. JPL has developed a daytime mud detection capability using multiple passive imaging sensors. Cues for mud from multiple passive imaging sensors are fused into a single mud detection image using a rule base, and the resultant mud detection is localized in a terrain map using range data generated from a stereo pair of color cameras.

  5. AGSM Intelligent Devices/Smart Sensors Project

    Science.gov (United States)

    Harp, Janicce Leshay

    2014-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.

  6. Design and Optimisation Problems in Wireless Sensor Networks

    Indian Academy of Sciences (India)

    Premkumar Karumbu,1.05 ECE,,+91-9448227167

    2010-11-14

    Nov 14, 2010 ... Wireless Networks of Multifunction Smart Sensors (WSNs). A smart sensor ... Energy and environment management networks in large buildings. Emerging ISA ... Monitoring mobile patients in hospitals and homes. Locating ...

  7. Integration Of Sensor Orientation Data Into An Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Edgaras Artemčiukas

    2014-05-01

    Full Text Available Currently, such microelectromechanical sensors as accelerome­ters, gyroscopes and magnetometers are the dominant sensors in mobile devices. The market of mobile devices is constantly expanding and focused on sensor integration process by adding supplementary functionality for the applications; therefore, it is possible to adapt these sensors for augmented reality technology solutions. Many augmented reality solutions are based on computer vision processing methods in order to identify and track markers or other objects. However, the main problem is chaotic environment, lighting conditions where object recognition and tracking in real-time becomes difficult and sometimes is an impossible process. This paper analyses possibilities to apply microelectromechanical sensors. Additionally, it investigates quaternion use for sensor data to estimate reliable and accurate camera orientation and represent virtual content in augmented reality technology.

  8. A Spawn Mobile Agent Itinerary Planning Approach for Energy-Efficient Data Gathering in Wireless Sensor Networks.

    Science.gov (United States)

    Qadori, Huthiafa Q; Zulkarnain, Zuriati A; Hanapi, Zurina Mohd; Subramaniam, Shamala

    2017-06-03

    Mobile agent (MA), a part of the mobile computing paradigm, was recently proposed for data gathering in Wireless Sensor Networks (WSNs). The MA-based approach employs two algorithms: Single-agent Itinerary Planning (SIP) and Multi-mobile agent Itinerary Planning (MIP) for energy-efficient data gathering. The MIP was proposed to outperform the weakness of SIP by introducing distributed multi MAs to perform the data gathering task. Despite the advantages of MIP, finding the optimal number of distributed MAs and their itineraries are still regarded as critical issues. The existing MIP algorithms assume that the itinerary of the MA has to start and return back to the sink node. Moreover, each distributed MA has to carry the processing code (data aggregation code) to collect the sensory data and return back to the sink with the accumulated data. However, these assumptions have resulted in an increase in the number of MA's migration hops, which subsequently leads to an increase in energy and time consumption. In this paper, a spawn multi-mobile agent itinerary planning (SMIP) approach is proposed to mitigate the substantial increase in cost of energy and time used in the data gathering processes. The proposed approach is based on the agent spawning such that the main MA is able to spawn other MAs with different tasks assigned from the main MA. Extensive simulation experiments have been conducted to test the performance of the proposed approach against some selected MIP algorithms. The results show that the proposed SMIP outperforms the counterpart algorithms in terms of energy consumption and task delay (time), and improves the integrated energy-delay performance.

  9. RadMAP: The Radiological Multi-sensor Analysis Platform

    International Nuclear Information System (INIS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-01-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  10. RadMAP: The Radiological Multi-sensor Analysis Platform

    Energy Technology Data Exchange (ETDEWEB)

    Bandstra, Mark S., E-mail: msbandstra@lbl.gov [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Aucott, Timothy J. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Brubaker, Erik [Sandia National Laboratory, Livermore, CA (United States); Chivers, Daniel H.; Cooper, Reynold J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Curtis, Joseph C. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States); Davis, John R. [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Srinivasan, Shreyas [Department of Nuclear Engineering, University of California Berkeley, CA (United States); Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Zakhor, Avideh; Zhang, Richard [Department of Electrical Engineering and Computer Science, University of California Berkeley, CA (United States); Vetter, Kai [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Nuclear Engineering, University of California Berkeley, CA (United States)

    2016-12-21

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  11. Optimized autonomous space in-situ sensor web for volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  12. An Authentication Protocol for Future Sensor Networks.

    Science.gov (United States)

    Bilal, Muhammad; Kang, Shin-Gak

    2017-04-28

    Authentication is one of the essential security services in Wireless Sensor Networks (WSNs) for ensuring secure data sessions. Sensor node authentication ensures the confidentiality and validity of data collected by the sensor node, whereas user authentication guarantees that only legitimate users can access the sensor data. In a mobile WSN, sensor and user nodes move across the network and exchange data with multiple nodes, thus experiencing the authentication process multiple times. The integration of WSNs with Internet of Things (IoT) brings forth a new kind of WSN architecture along with stricter security requirements; for instance, a sensor node or a user node may need to establish multiple concurrent secure data sessions. With concurrent data sessions, the frequency of the re-authentication process increases in proportion to the number of concurrent connections. Moreover, to establish multiple data sessions, it is essential that a protocol participant have the capability of running multiple instances of the protocol run, which makes the security issue even more challenging. The currently available authentication protocols were designed for the autonomous WSN and do not account for the above requirements. Hence, ensuring a lightweight and efficient authentication protocol has become more crucial. In this paper, we present a novel, lightweight and efficient key exchange and authentication protocol suite called the Secure Mobile Sensor Network (SMSN) Authentication Protocol. In the SMSN a mobile node goes through an initial authentication procedure and receives a re-authentication ticket from the base station. Later a mobile node can use this re-authentication ticket when establishing multiple data exchange sessions and/or when moving across the network. This scheme reduces the communication and computational complexity of the authentication process. We proved the strength of our protocol with rigorous security analysis (including formal analysis using the BAN

  13. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  14. Sensor Alerting Capability

    Science.gov (United States)

    Henriksson, Jakob; Bermudez, Luis; Satapathy, Goutam

    2013-04-01

    There is a large amount of sensor data generated today by various sensors, from in-situ buoys to mobile underwater gliders. Providing sensor data to the users through standardized services, language and data model is the promise of OGC's Sensor Web Enablement (SWE) initiative. As the amount of data grows it is becoming difficult for data providers, planners and managers to ensure reliability of data and services and to monitor critical data changes. Intelligent Automation Inc. (IAI) is developing a net-centric alerting capability to address these issues. The capability is built on Sensor Observation Services (SOSs), which is used to collect and monitor sensor data. The alerts can be configured at the service level and at the sensor data level. For example it can alert for irregular data delivery events or a geo-temporal statistic of sensor data crossing a preset threshold. The capability provides multiple delivery mechanisms and protocols, including traditional techniques such as email and RSS. With this capability decision makers can monitor their assets and data streams, correct failures or be alerted about a coming phenomena.

  15. A New User Interface for On-Demand Customizable Data Products for Sensors in a SensorWeb

    Science.gov (United States)

    Mandl, Daniel; Cappelaere, Pat; Frye, Stuart; Sohlberg, Rob; Ly, Vuong; Chien, Steve; Sullivan, Don

    2011-01-01

    A SensorWeb is a set of sensors, which can consist of ground, airborne and space-based sensors interoperating in an automated or autonomous collaborative manner. The NASA SensorWeb toolbox, developed at NASA/GSFC in collaboration with NASA/JPL, NASA/Ames and other partners, is a set of software and standards that (1) enables users to create virtual private networks of sensors over open networks; (2) provides the capability to orchestrate their actions; (3) provides the capability to customize the output data products and (4) enables automated delivery of the data products to the users desktop. A recent addition to the SensorWeb Toolbox is a new user interface, together with web services co-resident with the sensors, to enable rapid creation, loading and execution of new algorithms for processing sensor data. The web service along with the user interface follows the Open Geospatial Consortium (OGC) standard called Web Coverage Processing Service (WCPS). This presentation will detail the prototype that was built and how the WCPS was tested against a HyspIRI flight testbed and an elastic computation cloud on the ground with EO-1 data. HyspIRI is a future NASA decadal mission. The elastic computation cloud stores EO-1 data and runs software similar to Amazon online shopping.

  16. Unattended Ground Sensors for Expeditionary Force 21 Intelligence Collections

    Science.gov (United States)

    2015-06-01

    little impact on modern intelligence collections. This thesis analyzes and compares the units and individual Marine skillsets that employ UGS, and the...the sensor employment planning cycle, and the socialization of this plan through the proper chain-of-command [4]. Figure 8 depicts the Sensor...the use of newly developed cellphone based technologies and emerging UGS capabilities to assist in Listening Post/ Observation Post (LP/OP

  17. MOBILITY: A SYSTEMS APPROACH

    Directory of Open Access Journals (Sweden)

    Mykola I. Striuk

    2015-10-01

    Full Text Available A comprehensive study on the problem of mobility in the socio-educational and technical systems was carried out: the evolution of the concept of mobility in scientific sources of XIX–XXI centuries was analyzed and the new sources on the issue of mobility introduced into scientific circulation, the interrelation of the types of mobility in the socio-pedagogical and technical systems are theoretically grounded, an integrative model of mobility in the information society is proposed. The major trends in academic mobility are identified (the transition from student mobility to mobility programs and educational services providers, the new mobility programs (franchising, double/joint degrees, combinations, nostrification etc. are characterized. The new types of mobility providers are reviewed and attention is focused on virtual universities that are now the basis of virtual mobility of students and activities which are based on the use of new ICT in higher education, especially – the Internet and mobile learning environments.

  18. A Hybrid Smartphone Indoor Positioning Solution for Mobile LBS

    OpenAIRE

    Liu, Jingbin; Chen, Ruizhi; Pei, Ling; Guinness, Robert; Kuusniemi, Heidi

    2012-01-01

    Smartphone positioning is an enabling technology used to create new business in the navigation and mobile location-based services (LBS) industries. This paper presents a smartphone indoor positioning engine named HIPE that can be easily integrated with mobile LBS. HIPE is a hybrid solution that fuses measurements of smartphone sensors with wireless signals. The smartphone sensors are used to measure the user’s motion dynamics information (MDI), which represent the spatial correlatio...

  19. Sensors and sensor integration; Proceedings of the Meeting, Orlando, FL, Apr. 4, 1991

    Science.gov (United States)

    Dean, Peter D.

    Consideration is given to adaptive control of propellant slosh for launch vehicles, a lidar for expendable launch vehicles, a high-resolution airborne multisensor system, an optical velocity sensor for air data applications, and use of absorption spectroscopy for refined petroleum product discrimination. Attention is also given to edge effects in silicon photodiode arrays, sensing and environment perception for a mobile vehicle, distributed-effect optical fiber sensors for trusses and plates, and instrumentation concepts for multiplexed Bragg grating sensors. (For individual items see A93-21962 to A93-21972)

  20. Mobile Sensor System AGaMon for Breath Control: Numerical Signal Analysis of Ternary Gas Mixtures and First Field Tests

    Directory of Open Access Journals (Sweden)

    Rolf Seifert

    2018-01-01

    Full Text Available An innovative mobile sensor system for breath control in the exhaled air is introduced. In this paper, the application of alcohol control in the exhaled air is considered. This sensor system operates semiconducting gas sensor elements with respect to the application in a thermo-cyclic operation mode. This operation mode leads to so-called conductance-over-time-profiles (CTPs, which are fingerprints of the gas mixture under consideration and can be used for substance identification and concentration determination. Especially for the alcohol control in the exhaled air, ethanol is the leading gas component to be investigated. But, there are also other interfering gas components in the exhaled air, like H2 and acetone, which may influence the measurement results. Therefore, a ternary ethanol-H2-acetone gas mixture was investigated. The establishing of the mathematical calibration model and the data analysis was performed with a newly developed innovative calibration and evaluation procedure called ProSens 3.0. The analysis of ternary ethanol-H2-acetone gas samples with ProSens 3.0 shows a very good substance identification performance and a very good concentration determination of the leading ethanol component. The relative analysis errors for the leading component ethanol were in all considered samples less than 9 %. First field test performed with the sensor system AGaMon shows very promising results.