WorldWideScience

Sample records for mobile electronic nose

  1. Application Of Electronic Nose And Ion Mobility Spectrometer To Quality Control Of Spice Mixtures

    International Nuclear Information System (INIS)

    Banach, U.; Tiebe, C.; Huebert, Th.

    2009-01-01

    The aim of the paper is to demonstrate the application of electronic nose (e-nose) and ion mobility spectrometry (IMS) to quality control and to find out product adulteration of spice mixtures. Therefore the gaseous head space phase of four different spice mixtures (spices for sausages and saveloy) was differed from original composition and product adulteration. In this set of experiments metal-oxide type e-nose (KAMINA-type) has been used, and characteristic patterns of data corresponding to various complex odors of the four different spice mixtures were generated. Simultaneously an ion mobility spectrometer was coupled also to an emission chamber for the detection of gaseous components of spice mixtures. The two main methods that have been used show a clear discrimination between the original spice mixtures and product adulteration could be distinguished from original spice mixtures.

  2. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study.

    Science.gov (United States)

    Roine, Antti; Saviauk, Taavi; Kumpulainen, Pekka; Karjalainen, Markus; Tuokko, Antti; Aittoniemi, Janne; Vuento, Risto; Lekkala, Jukka; Lehtimäki, Terho; Tammela, Teuvo L; Oksala, Niku K J

    2014-01-01

    Urinary tract infection (UTI) is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose) is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS) -based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA) and logistic regression (LR). The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures. These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.

  3. Rapid and accurate detection of urinary pathogens by mobile IMS-based electronic nose: a proof-of-principle study.

    Directory of Open Access Journals (Sweden)

    Antti Roine

    Full Text Available Urinary tract infection (UTI is a common disease with significant morbidity and economic burden, accounting for a significant part of the workload in clinical microbiology laboratories. Current clinical chemisty point-of-care diagnostics rely on imperfect dipstick analysis which only provides indirect and insensitive evidence of urinary bacterial pathogens. An electronic nose (eNose is a handheld device mimicking mammalian olfaction that potentially offers affordable and rapid analysis of samples without preparation at athmospheric pressure. In this study we demonstrate the applicability of ion mobility spectrometry (IMS -based eNose to discriminate the most common UTI pathogens from gaseous headspace of culture plates rapidly and without sample preparation. We gathered a total of 101 culture samples containing four most common UTI bacteries: E. coli, S. saprophyticus, E. faecalis, Klebsiella spp and sterile culture plates. The samples were analyzed using ChemPro 100i device, consisting of IMS cell and six semiconductor sensors. Data analysis was conducted by linear discriminant analysis (LDA and logistic regression (LR. The results were validated by leave-one-out and 5-fold cross validation analysis. In discrimination of sterile and bacterial samples sensitivity of 95% and specificity of 97% were achieved. The bacterial species were identified with sensitivity of 95% and specificity of 96% using eNose as compared to urine bacterial cultures.These findings strongly demonstrate the ability of our eNose to discriminate bacterial cultures and provides a proof of principle to use this method in urinanalysis of UTI.

  4. Electronic Nose and Electronic Tongue

    Science.gov (United States)

    Bhattacharyya, Nabarun; Bandhopadhyay, Rajib

    Human beings have five senses, namely, vision, hearing, touch, smell and taste. The sensors for vision, hearing and touch have been developed for several years. The need for sensors capable of mimicking the senses of smell and taste have been felt only recently in food industry, environmental monitoring and several industrial applications. In the ever-widening horizon of frontier research in the field of electronics and advanced computing, emergence of electronic nose (E-Nose) and electronic tongue (E-Tongue) have been drawing attention of scientists and technologists for more than a decade. By intelligent integration of multitudes of technologies like chemometrics, microelectronics and advanced soft computing, human olfaction has been successfully mimicked by such new techniques called machine olfaction (Pearce et al. 2002). But the very essence of such research and development efforts has centered on development of customized electronic nose and electronic tongue solutions specific to individual applications. In fact, research trends as of date clearly points to the fact that a machine olfaction system as versatile, universal and broadband as human nose and human tongue may not be feasible in the decades to come. But application specific solutions may definitely be demonstrated and commercialized by modulation in sensor design and fine-tuning the soft computing solutions. This chapter deals with theory, developments of E-Nose and E-Tongue technology and their applications. Also a succinct account of future trends of R&D efforts in this field with an objective of establishing co-relation between machine olfaction and human perception has been included.

  5. Electronic Noses and Applications

    Directory of Open Access Journals (Sweden)

    Martine LUMBRERAS

    2014-05-01

    Full Text Available Electronic noses are customized devices employed to detect and to identify gaseous mixtures, even to give the concentration of the atmosphere components. Nowadays, the research in this domain is more and more growing, in Europe and other countries in the world, for many applications, such as environmental protection, food industries, perfumery, public safety, medicine, and pharmacy. Electronic noses allow to detect many organic volatile compounds, for which there is no specific detector. They constitute an alternative to complex, long, and too expensive existing methods, unable to ensure continuous monitoring. Their conception deals with many related areas (metrology, chemistry, physics, electronics, informatics, statistics, modelisation as well as areas related to the molecules to be detected. The system training is a primary step: during a measurement under a gaseous atmosphere, we must record the sensor time-responses in a treatment system, while specifying the name of the concerned odor. This process must be repeated many times for each studied atmosphere, and for all the chosen atmospheres. So a learning data base can be created, made from representative parameters of all the realized measures. After this training stage, clustering software will classify the data analysis in “concentration” or “nature” groups. Using the group separation rules given by this supervised classification, the system will be able to find itself the name of an odor or a concentration.

  6. Electronic Nose Technology and its Applications

    Directory of Open Access Journals (Sweden)

    Esmaeil MAHMOUDI

    2009-08-01

    Full Text Available In the past decade, Electronic Nose instrumentation has generated much interest internationally for its potential to solve a wide variety of problems in fragrance and cosmetics production, food and beverages manufacturing, chemical engineering, environmental monitoring and more recently medical diagnostic, bioprocesses and clinical diagnostic plant diseases. This instrument measure electrical resistance changes generated by adsorption of volatiles to the surface of electro active- polymer coated sensor- unique digital electronic fingerprint of aroma derived from multi-sensor- responses to distinct mixture of microbial volatiles. Major advances in information and gas sensor technology could enhance the diagnostic power of future bio-electronic nose and facilitate global surveillance mode of disease control and management. Several dozen companies are now designed and selling electronic nose units globally for a wide variety of expending markets. The present review includes principles of electronic nose technology, biosensor structure and applications of electronic nose in many fields.

  7. Micro-Electronic Nose System

    Science.gov (United States)

    Zee, Frank C.

    2011-12-01

    The ability to "smell" various gas vapors and complex odors is important for many applications such as environmental monitoring for detecting toxic gases as well as quality control in the processing of food, cosmetics, and other chemical products for commercial industries. Mimicking the architecture of the biological nose, a miniature electronic nose system was designed and developed consisting of an array of sensor devices, signal-processing circuits, and software pattern-recognition algorithms. The array of sensors used polymer/carbon-black composite thin-films, which would swell or expand reversibly and reproducibly and cause a resistance change upon exposure to a wide variety of gases. Two types of sensor devices were fabricated using silicon micromachining techniques to form "wells" that confined the polymer/carbon-black to a small and specific area. The first type of sensor device formed the "well" by etching into the silicon substrate using bulk micromachining. The second type built a high-aspect-ratio "well" on the surface of a silicon wafer using SU-8 photoresist. Two sizes of "wells" were fabricated: 500 x 600 mum² and 250 x 250 mum². Custom signal-processing circuits were implemented on a printed circuit board and as an application-specific integrated-circuit (ASIC) chip. The circuits were not only able to measure and amplify the small resistance changes, which corresponded to small ppm (parts-per-million) changes in gas concentrations, but were also adaptable to accommodate the various characteristics of the different thin-films. Since the thin-films were not specific to any one particular gas vapor, an array of sensors each containing a different thin-film was used to produce a distributed response pattern when exposed to a gas vapor. Pattern recognition, including a clustering algorithm and two artificial neural network algorithms, was used to classify the response pattern and identify the gas vapor or odor. Two gas experiments were performed, one

  8. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    Novel mobile electronic-nose (e-nose) devices and algorithms capable of real-time detection of industrial and municipal pollutants, released from point-sources, recently have been developed by scientists worldwide that are useful for monitoring specific environmental-pollutant levels for enforcement and implementation of effective pollution-abatement programs. E-nose...

  9. Electronic nose in edible insects area

    OpenAIRE

    Martin Adámek; Anna Adámková; Marie Borkovcová; Jiří Mlček; Martina Bednářová; Lenka Kouřimská; Josef Skácel; Michal Řezníček

    2017-01-01

    Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manusc...

  10. Applications of electronic noses in meat analysis

    Directory of Open Access Journals (Sweden)

    Elżbieta GÓRSKA-HORCZYCZAK

    2016-01-01

    Full Text Available Abstract Electronic noses are devices able to characterize and differentiate the aroma profiles of various food, especially meat and meat products. During recent years e-noses have been widely used in food analysis and proved to provide a fast, simple, non-expensive and non-destructive method of food assessment and quality control. The aim of this study is to summarize the most important features of this analytic tool and to present basic fields and typical areas of e-nose use as well as most commonly used sensor types and patterns for e-nose design. Prospects for the future development of this technique are presented. Methods and research results presented in this manuscript may be a guideline for practical e-nose use.

  11. Electronic nose in edible insects area

    Directory of Open Access Journals (Sweden)

    Martin Adámek

    2017-01-01

    Full Text Available Edible insect is appraised by many cultures as delicious and nutritionally beneficial food. In western countries this commodity is not fully appreciated, and the worries about edible insect food safety prevail. Electronic noses can become a simple and cheap way of securing the health safety of food, and they can also become a tool for evaluating the quality of certain commodities. This research is a pilot project of using an electronic nose in edible insect culinary treatment, and this manuscript describes the phases of edible insect culinary treatment and methods of distinguishing mealworm (Tenebrio molitor and giant mealworm (Zophobas morio using simple electronic nose. These species were measured in the live stage, after killing with boiling water, after drying and after inserting into the chocolate.The sensing device was based on the Arduino Mega platform with the ability to store the recorded data on the SD memory card, and with the possibility to communicate via internet. Data analysis shows that even a simple, cheap and portable electronic nose can distinguish between the different steps of culinary treatment (native samples, dried samples, samples enriched with chocolate for cooking and selected species. Another benefit of the electronic nose could be its future introduction into the control mechanisms of food security systems (e.g. HACCP.

  12. Handbook of Machine Olfaction: Electronic Nose Technology

    Science.gov (United States)

    Pearce, Tim C.; Schiffman, Susan S.; Nagle, H. Troy; Gardner, Julian W.

    2003-02-01

    "Electronic noses" are instruments which mimic the sense of smell. Consisting of olfactory sensors and a suitable signal processing unit, they are able to detect and distinguish odors precisely and at low cost. This makes them very useful for a remarkable variety of applications in the food and pharmaceutical industry, in environmental control or clinical diagnostics and more. The scope covers biological and technical fundamentals and up-to-date research. Contributions by renowned international scientists as well as application-oriented news from successful "e-nose" manufacturers give a well-rounded account of the topic, and this coverage from R&D to applications makes this book a must-have read for e-nose researchers, designers and users alike.

  13. Sensors: From Biosensors to the Electronic Nose

    OpenAIRE

    García-González, Diego L.; Aparicio López, Ramón

    2002-01-01

    The recent advances in sensor devices have allowed the developing of new applications in many technological fields. This review describes the current state-of-the-art of this sensor technology, placing special emphasis on the food applications. The design, technology and sensing mechanism of each type of sensor are analysed. A description of the main characteristics of the electronic nose and electronic tongue (taste sensors) is also given. Finally, the applications of some statistical pro...

  14. Sensors: From biosensors to the electronic nose

    OpenAIRE

    Aparicio, Ramón; García-González, Diego L.

    2002-01-01

    The recent advances in sensor devices have allowed the developing of new applications in many technological fields. This review describes the current state-of-the-art of this sensor technology, placing special emphasis on the food applications. The design, technology and sensing mechanism of each type of sensor are analysed. A description of the main characteristics of the electronic nose and electronic tongue (taste sensors) is also given. Finally, the applications of some statistical proced...

  15. Electronic Noses and Tongues in Wine Industry

    Directory of Open Access Journals (Sweden)

    Maria Luz Rodriguez-Mendez

    2016-10-01

    Full Text Available The quality of wines is usually evaluated by a sensory panel formed of trained experts or traditional chemical analysis. Over the last few decades, electronic noses and electronic tongues have been developed to determine the quality of foods and beverages. They consist of arrays of sensors with cross-sensitivity, combined with pattern recognition software, which provide a fingerprint of the samples that can be used to discriminate or classify the samples. This holistic approach is inspired by the method used in mammals to recognize food through their senses. They have been widely applied to the analysis of wines, including quality control, aging control or the detection of fraudulence, among others. In this paper, the current status of research and development in the field of electronic noses and tongues applied to the analysis of wines is reviewed. Their potential applications in the wine industry are described. The review ends with a final comment about expected future developments.

  16. Miniature sensor suitable for electronic nose applications

    DEFF Research Database (Denmark)

    Pinnaduwage, L. A.; Gehl, A. C.; Allman, S. L.

    2007-01-01

    A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors probably tens of sensors in a sensor package to achieve sel...... microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10 s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications. © 2007 American Institute of Physics....

  17. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2013-10-01

    Full Text Available Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip.

  18. Bacteria classification using Cyranose 320 electronic nose

    Directory of Open Access Journals (Sweden)

    Gardner Julian W

    2002-10-01

    Full Text Available Abstract Background An electronic nose (e-nose, the Cyrano Sciences' Cyranose 320, comprising an array of thirty-two polymer carbon black composite sensors has been used to identify six species of bacteria responsible for eye infections when present at a range of concentrations in saline solutions. Readings were taken from the headspace of the samples by manually introducing the portable e-nose system into a sterile glass containing a fixed volume of bacteria in suspension. Gathered data were a very complex mixture of different chemical compounds. Method Linear Principal Component Analysis (PCA method was able to classify four classes of bacteria out of six classes though in reality other two classes were not better evident from PCA analysis and we got 74% classification accuracy from PCA. An innovative data clustering approach was investigated for these bacteria data by combining the 3-dimensional scatter plot, Fuzzy C Means (FCM and Self Organizing Map (SOM network. Using these three data clustering algorithms simultaneously better 'classification' of six eye bacteria classes were represented. Then three supervised classifiers, namely Multi Layer Perceptron (MLP, Probabilistic Neural network (PNN and Radial basis function network (RBF, were used to classify the six bacteria classes. Results A [6 × 1] SOM network gave 96% accuracy for bacteria classification which was best accuracy. A comparative evaluation of the classifiers was conducted for this application. The best results suggest that we are able to predict six classes of bacteria with up to 98% accuracy with the application of the RBF network. Conclusion This type of bacteria data analysis and feature extraction is very difficult. But we can conclude that this combined use of three nonlinear methods can solve the feature extraction problem with very complex data and enhance the performance of Cyranose 320.

  19. Rapid lard identification with portable electronic nose

    Science.gov (United States)

    Latief, Marsad; Khorsidtalab, Aida; Saputra, Irwan; Akmeliawati, Rini; Nurashikin, Anis; Jaswir, Irwandi; Witjaksono, Gunawan

    2017-11-01

    Human sensory systems are limited in many different regards, yet they are great sources of inspiration for development of technologies that help humans to overcome their restraints. This paper signifies the capability of our developed electronic nose in rapid lard identification. The developed device, known as E-Nose, mimics human’s olfactory system’s technique to identify a particular substance. Lard is a common pig derivative which is often used as a food additive, emulsion or shortening. It’s also commonly used as an adulterant or as an alternative for cooking oils, margarine and butter. This substance is prohibited to be consumed by Muslims and Orthodox Jews for religious reasons. A portable reliable device with an ability to identify lard rapidly can be convenient to users concerned about lard adulteration. The prototype was examined using K-Nearest Neighbors algorithm (KNN), Support Vector Machine (SVM), Bagged Trees and Simple Tree, and can identify lard with the highest accuracy of 95.6% among three types of fat (lard, chicken and beef) in liquid form over a certain range of temperature using KNN.

  20. Applications and advances in electronic-nose technologies

    Science.gov (United States)

    A. D. Wilson; M. Baietto

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software...

  1. Sensors: From biosensors to the electronic nose

    Directory of Open Access Journals (Sweden)

    Aparicio, Ramón

    2002-03-01

    Full Text Available The recent advances in sensor devices have allowed the developing of new applications in many technological fields. This review describes the current state-of-the-art of this sensor technology, placing special emphasis on the food applications. The design, technology and sensing mechanism of each type of sensor are analysed. A description of the main characteristics of the electronic nose and electronic tongue (taste sensors is also given. Finally, the applications of some statistical procedures in sensor systems are described briefly.Los recientes avances en los sistemas de sensores han permitido el desarrollo de nuevas aplicaciones en muchos campos tecnológicos. Este artículo de revisión describe el estado actual de esta nueva tecnología, con especial énfasis en las aplicaciones alimentarias. El diseño, la tecnología y el mecanismo sensorial de cada tipo de sensor son analizados en el artículo. También se describen las principales características de la nariz y la lengua electrónica (sensores de sabor. Finalmente, se describe brevemente el uso de algunos procedimientos estadísticos en sistemas de sensores.

  2. Advances in electronic-nose technologies developed for biomedical applications

    Science.gov (United States)

    Dan Wilson; Manuela. Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and...

  3. Quality Evaluation of Agricultural Distillates Using an Electronic Nose

    OpenAIRE

    Dymerski, Tomasz; Gębicki, Jacek; Wardencki, Waldemar; Namieśnik, Jacek

    2013-01-01

    The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing ...

  4. Advances in electronic-nose technologies developed for biomedical applications.

    Science.gov (United States)

    Wilson, Alphus D; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

  5. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2011-01-01

    Full Text Available The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

  6. A Compact and Low Cost Electronic Nose for Aroma Detection

    Directory of Open Access Journals (Sweden)

    Ramón Gallardo Caballero

    2013-04-01

    Full Text Available This article explains the development of a prototype of a portable and a very low-cost electronic nose based on an mbed microcontroller. Mbeds are a series of ARM microcontroller development boards designed for fast, flexible and rapid prototyping. The electronic nose is comprised of an mbed, an LCD display, two small pumps, two electro-valves and a sensor chamber with four TGS Figaro gas sensors. The performance of the electronic nose has been tested by measuring the ethanol content of wine synthetic matrices and special attention has been paid to the reproducibility and repeatability of the measurements taken on different days. Results show that the electronic nose with a neural network classifier is able to discriminate wine samples with 10, 12 and 14% V/V alcohol content with a classification error of less than 1%.

  7. Applications and Advances in Electronic-Nose Technologies

    Directory of Open Access Journals (Sweden)

    Manuela Baietto

    2009-06-01

    Full Text Available Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man.

  8. Electronic Nose Odor Classification with Advanced Decision Tree Structures

    Directory of Open Access Journals (Sweden)

    S. Guney

    2013-09-01

    Full Text Available Electronic nose (e-nose is an electronic device which can measure chemical compounds in air and consequently classify different odors. In this paper, an e-nose device consisting of 8 different gas sensors was designed and constructed. Using this device, 104 different experiments involving 11 different odor classes (moth, angelica root, rose, mint, polis, lemon, rotten egg, egg, garlic, grass, and acetone were performed. The main contribution of this paper is the finding that using the chemical domain knowledge it is possible to train an accurate odor classification system. The domain knowledge about chemical compounds is represented by a decision tree whose nodes are composed of classifiers such as Support Vector Machines and k-Nearest Neighbor. The overall accuracy achieved with the proposed algorithm and the constructed e-nose device was 97.18 %. Training and testing data sets used in this paper are published online.

  9. A new kernel discriminant analysis framework for electronic nose recognition

    International Nuclear Information System (INIS)

    Zhang, Lei; Tian, Feng-Chun

    2014-01-01

    Graphical abstract: - Highlights: • This paper proposes a new discriminant analysis framework for feature extraction and recognition. • The principle of the proposed NDA is derived mathematically. • The NDA framework is coupled with kernel PCA for classification. • The proposed KNDA is compared with state of the art e-Nose recognition methods. • The proposed KNDA shows the best performance in e-Nose experiments. - Abstract: Electronic nose (e-Nose) technology based on metal oxide semiconductor gas sensor array is widely studied for detection of gas components. This paper proposes a new discriminant analysis framework (NDA) for dimension reduction and e-Nose recognition. In a NDA, the between-class and the within-class Laplacian scatter matrix are designed from sample to sample, respectively, to characterize the between-class separability and the within-class compactness by seeking for discriminant matrix to simultaneously maximize the between-class Laplacian scatter and minimize the within-class Laplacian scatter. In terms of the linear separability in high dimensional kernel mapping space and the dimension reduction of principal component analysis (PCA), an effective kernel PCA plus NDA method (KNDA) is proposed for rapid detection of gas mixture components by an e-Nose. The NDA framework is derived in this paper as well as the specific implementations of the proposed KNDA method in training and recognition process. The KNDA is examined on the e-Nose datasets of six kinds of gas components, and compared with state of the art e-Nose classification methods. Experimental results demonstrate that the proposed KNDA method shows the best performance with average recognition rate and total recognition rate as 94.14% and 95.06% which leads to a promising feature extraction and multi-class recognition in e-Nose

  10. Future applications of electronic-nose technologies in healthcare and biomedicine

    Science.gov (United States)

    Alphus D. Wilson

    2011-01-01

    The development and utilization of many new electronic-nose (e-nose) applications in the healthcare and biomedical fields have continued to rapidly accelerate over the past 20 years. Innovative e-nose technologies are providing unique solutions to a diversity of complex problems in biomedicine that are now coming to fruition. A wide range of electronic-nose instrument...

  11. Determination of authenticity of brand perfume using electronic nose prototypes

    International Nuclear Information System (INIS)

    Gebicki, Jacek; Szulczynski, Bartosz; Kaminski, Marian

    2015-01-01

    The paper presents the practical application of an electronic nose technique for fast and efficient discrimination between authentic and fake perfume samples. Two self-built electronic nose prototypes equipped with a set of semiconductor sensors were employed for that purpose. Additionally 10 volunteers took part in the sensory analysis. The following perfumes and their fake counterparts were analysed: Dior—Fahrenheit, Eisenberg—J’ose, YSL—La nuit de L’homme, 7 Loewe and Spice Bomb. The investigations were carried out using the headspace of the aqueous solutions. Data analysis utilized multidimensional techniques: principle component analysis (PCA), linear discrimination analysis (LDA), k-nearest neighbour (k-NN). The results obtained confirmed the legitimacy of the electronic nose technique as an alternative to the sensory analysis as far as the determination of authenticity of perfume is concerned. (paper)

  12. Determination of authenticity of brand perfume using electronic nose prototypes

    Science.gov (United States)

    Gebicki, Jacek; Szulczynski, Bartosz; Kaminski, Marian

    2015-12-01

    The paper presents the practical application of an electronic nose technique for fast and efficient discrimination between authentic and fake perfume samples. Two self-built electronic nose prototypes equipped with a set of semiconductor sensors were employed for that purpose. Additionally 10 volunteers took part in the sensory analysis. The following perfumes and their fake counterparts were analysed: Dior—Fahrenheit, Eisenberg—J’ose, YSL—La nuit de L’homme, 7 Loewe and Spice Bomb. The investigations were carried out using the headspace of the aqueous solutions. Data analysis utilized multidimensional techniques: principle component analysis (PCA), linear discrimination analysis (LDA), k-nearest neighbour (k-NN). The results obtained confirmed the legitimacy of the electronic nose technique as an alternative to the sensory analysis as far as the determination of authenticity of perfume is concerned.

  13. Assessment of compost maturity by using an electronic nose.

    Science.gov (United States)

    López, Rafael; Giráldez, Inmaculada; Palma, Alberto; Jesús Díaz, M

    2016-02-01

    The composting process produces and emits hundreds of different gases. Volatile organic compounds (VOCs) can provide information about progress of composting process. This paper is focused on the qualitative and quantitative relationships between compost age, as sign of compost maturity, electronic-nose (e-nose) patterns and composition of compost and composting gas at an industrial scale plant. Gas and compost samples were taken at different depths from composting windrows of different ages. Temperature, classical chemical parameters, O2, CO, combustible gases, VOCs and e-nose profiles were determined and related using principal component analysis (PCA). Factor analysis carried out to a data set including compost physical-chemical properties, pile pore gas composition and composting time led to few factors, each one grouping together standard composting parameters in an easy to understand way. PCA obtained from e-nose profiles allowed the classifying of piles, their aerobic-anaerobic condition, and a rough estimation of the composting time. That would allow for immediate and in-situ assessment of compost quality and maturity by using an on-line e-nose. The e-nose patterns required only 3-4 sensor signals to account for a great percentage (97-98%) of data variance. The achieved patterns both from compost (chemical analysis) and gas (e-nose analysis) samples are robust despite the high variability in feedstock characteristics (3 different materials), composting conditions and long composting time. GC-MS chromatograms supported the patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Using Electronic Noses to Detect Tumors During Neurosurgery

    Science.gov (United States)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.; Kateb, Babak; Chen, Mike

    2008-01-01

    It has been proposed to develop special-purpose electronic noses and algorithms for processing the digitized outputs of the electronic noses for determining whether tissue exposed during neurosurgery is cancerous. At present, visual inspection by a surgeon is the only available intraoperative technique for detecting cancerous tissue. Implementation of the proposal would help to satisfy a desire, expressed by some neurosurgeons, for an intraoperative technique for determining whether all of a brain tumor has been removed. The electronic-nose technique could complement multimodal imaging techniques, which have also been proposed as means of detecting cancerous tissue. There are also other potential applications of the electronic-nose technique in general diagnosis of abnormal tissue. In preliminary experiments performed to assess the viability of the proposal, the problem of distinguishing between different types of cultured cells was substituted for the problem of distinguishing between normal and abnormal specimens of the same type of tissue. The figure presents data from one experiment, illustrating differences between patterns that could be used to distinguish between two types of cultured cancer cells. Further development can be expected to include studies directed toward answering questions concerning not only the possibility of distinguishing among various types of normal and abnormal tissue but also distinguishing between tissues of interest and other odorous substances that may be present in medical settings.

  15. Toward a minituarized low-power micromechanical electronic nose

    NARCIS (Netherlands)

    Karabaçak, D.; Sieben-Xu, L.; Vandecasteele, M.; Andel, Y. van; Wouters, D.; Calama, M.C.; Brongersma, S.H.

    2012-01-01

    An electronic nose based on an array of vibrating doubly clamped beams is proposed. These very high aspect ratio (length/thickness) suspended resonators can be individually functionalized by applying polymer coatings with an inkjet printing approach. The absorption of volatile compounds induces a

  16. Classification of human pathogen bacteria for early screening using electronic nose

    Science.gov (United States)

    Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan

    2017-10-01

    This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.

  17. Quality Evaluation of Agricultural Distillates Using an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Tomasz Dymerski

    2013-11-01

    Full Text Available The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h, thermostat temperature during the barbotage process (15 °C and time of sensor signal acquisition from the onset of the barbotage process (60 s.

  18. Quality evaluation of agricultural distillates using an electronic nose.

    Science.gov (United States)

    Dymerski, Tomasz; Gębicki, Jacek; Wardencki, Waldemar; Namieśnik, Jacek

    2013-11-25

    The paper presents the application of an electronic nose instrument to fast evaluation of agricultural distillates differing in quality. The investigations were carried out using a prototype of electronic nose equipped with a set of six semiconductor sensors by FIGARO Co., an electronic circuit converting signal into digital form and a set of thermostats able to provide gradient temperature characteristics to a gas mixture. A volatile fraction of the agricultural distillate samples differing in quality was obtained by barbotage. Interpretation of the results involved three data analysis techniques: principal component analysis, single-linkage cluster analysis and cluster analysis with spheres method. The investigations prove the usefulness of the presented technique in the quality control of agricultural distillates. Optimum measurements conditions were also defined, including volumetric flow rate of carrier gas (15 L/h), thermostat temperature during the barbotage process (15 °C) and time of sensor signal acquisition from the onset of the barbotage process (60 s).

  19. Meat quality assessment by electronic nose (machine olfaction technology).

    Science.gov (United States)

    Ghasemi-Varnamkhasti, Mahdi; Mohtasebi, Seyed Saeid; Siadat, Maryam; Balasubramanian, Sundar

    2009-01-01

    Over the last twenty years, newly developed chemical sensor systems (so called "electronic noses") have made odor analyses possible. These systems involve various types of electronic chemical gas sensors with partial specificity, as well as suitable statistical methods enabling the recognition of complex odors. As commercial instruments have become available, a substantial increase in research into the application of electronic noses in the evaluation of volatile compounds in food, cosmetic and other items of everyday life is observed. At present, the commercial gas sensor technologies comprise metal oxide semiconductors, metal oxide semiconductor field effect transistors, organic conducting polymers, and piezoelectric crystal sensors. Further sensors based on fibreoptic, electrochemical and bi-metal principles are still in the developmental stage. Statistical analysis techniques range from simple graphical evaluation to multivariate analysis such as artificial neural network and radial basis function. The introduction of electronic noses into the area of food is envisaged for quality control, process monitoring, freshness evaluation, shelf-life investigation and authenticity assessment. Considerable work has already been carried out on meat, grains, coffee, mushrooms, cheese, sugar, fish, beer and other beverages, as well as on the odor quality evaluation of food packaging material. This paper describes the applications of these systems for meat quality assessment, where fast detection methods are essential for appropriate product management. The results suggest the possibility of using this new technology in meat handling.

  20. Differentiation of closely related fungi by electronic nose analysis

    DEFF Research Database (Denmark)

    Karlshøj, Kristian; Nielsen, Per Væggemose; Larsen, Thomas Ostenfeld

    2007-01-01

    the electronic nose potentially responded to, volatile metabolites were collected, by diffusive sampling overnight onto tubes containing Tenax TA, between the 7th and 8th day of Incubation.Volatiles were analyzed by gas chromatography coupled to mass spectrometry and the results indicated that mail alcohols...... as well as the noacheese ociated P. expansum have been investigated by electronic nose, GC-MS, and LGMS analysis. The isolates were inoculated on yeast extract sucroseagar in 20-mL headspace flasks and electronicnose analysis was performed daily for a-74period. To assess which volatile metabolites...... by high pressure liquid chromatography, coupled-to a diode array detector and a time of flight mass spectrometer. Several mycotoxins were detected in samples from the specles P.nordicum, P.roqueforti, P.paneum, P.carneum, and P.expansum. Differentiation of closely related mycotoxin producing fungi...

  1. Development of an electronic nose for environmental odour monitoring.

    Science.gov (United States)

    Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Zanetti, Sonia; Della Torre, Matteo

    2012-10-25

    Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.

  2. Electronic Nose using Gas Chromatography Column and Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Hari Agus Sujono

    2011-08-01

    Full Text Available The conventional electronic nose usually consists of an array of dissimilar chemical sensors such as quartz crystal microbalance (QCM combined with pattern recognition algorithm such as Neural network. Because of parallel processing, the system needs a huge number of sensors and circuits which may emerge complexity and inter-channel crosstalk problems. In this research, a new type of odor identification which combines between gas chromatography (GC and electronic nose methods has been developed. The system consists of a GC column and a 10-MHz quartz crystal microbalance sensor producing a unique pattern for an odor in time domain. This method offers advantages of substantially reduced size, interferences and power consumption in comparison to existing odor identification system. Several odors of organic compounds were introduced to evaluate the selectivity of the system. Principle component analysis method was used to visualize the classification of each odor in two-dimensional space. This system could resolve common organic solvents, including molecules of different classes (aromatic from alcohols as well as those within a particular class (methanol from ethanol and also fuels (premium from pertamax. The neural network can be taught to recognize the odors tested in the experiment with identification rate of 85 %. It is therefore the system may take the place of human nose, especially for poisonous odor evaluations.

  3. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  4. Prediction of egg freshness during storage using electronic nose.

    Science.gov (United States)

    Yimenu, Samuel M; Kim, J Y; Kim, B S

    2017-10-01

    The aim of the present study was to investigate the potential of a fast gas chromatography (GC) e-nose for freshness discrimination and for prediction of storage time as well as sensory and internal quality changes during storage of hen eggs. All samples were obtained from the same egg production farm and stored at 20 °C for 20 d. Egg sampling was conducted every 0, 3, 6, 9, 12, 16, and 20 d. During each sampling time, 4 egg cartons (each containing 10 eggs) were randomly selected: one carton for Haugh units, one carton for sensory evaluation and 2 cartons for the e-nose experiment. The e-nose study included 2 independent test sets; calibration (35 samples) and validation (28 samples). Every sampling time, 5 replicates were prepared from one egg carton for calibration samples and 4 replicates were prepared from the remaining egg carton for validation samples. Sensors (peaks) were selected prior to multivariate chemometric analysis; qualitative sensors for principal component analysis (PCA) and discriminant factor analysis (DFA) and quantitative sensors for partial least square (PLS) modeling. PCA and DFA confirmed the difference in volatile profiles of egg samples from 7 different storage times accounting for a total variance of 95.7% and 93.71%, respectively. Models for predicting storage time, Haugh units, odor score, and overall acceptability score from e-nose data were developed using calibration samples by PLS regression. The results showed that these quality indices were well predicted from the e- nose signals, with correlation coefficients of R2 = 0.9441, R2 = 0.9511, R2 = 0.9725, and R2 = 0.9530 and with training errors of 0.887, 1.24, 0.626, and 0.629, respectively. As a result of ANOVA, most of the PLS model results were not significantly (P > 0.05) different from the corresponding reference values. These results proved that the fast GC electronic nose has the potential to assess egg freshness and feasibility to predict multiple egg freshness indices

  5. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology

    Directory of Open Access Journals (Sweden)

    Sundar Balasubramanian

    2009-07-01

    Full Text Available Over the last twenty years, newly developed chemical sensor systems (so called “electronic noses” have made odor analyses possible. These systems involve various types of electronic chemical gas sensors with partial specificity, as well as suitable statistical methods enabling the recognition of complex odors. As commercial instruments have become available, a substantial increase in research into the application of electronic noses in the evaluation of volatile compounds in food, cosmetic and other items of everyday life is observed. At present, the commercial gas sensor technologies comprise metal oxide semiconductors, metal oxide semiconductor field effect transistors, organic conducting polymers, and piezoelectric crystal sensors. Further sensors based on fibreoptic, electrochemical and bi-metal principles are still in the developmental stage. Statistical analysis techniques range from simple graphical evaluation to multivariate analysis such as artificial neural network and radial basis function. The introduction of electronic noses into the area of food is envisaged for quality control, process monitoring, freshness evaluation, shelf-life investigation and authenticity assessment. Considerable work has already been carried out on meat, grains, coffee, mushrooms, cheese, sugar, fish, beer and other beverages, as well as on the odor quality evaluation of food packaging material. This paper describes the applications of these systems for meat quality assessment, where fast detection methods are essential for appropriate product management. The results suggest the possibility of using this new technology in meat handling.

  6. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  7. Advances of electronic nose and its application in fresh foods: A review.

    Science.gov (United States)

    Shi, Hao; Zhang, Min; Adhikari, Benu

    2017-06-30

    The science and technology aspects of electronic nose (E-nose) has been developed rapidly in last decade (2006-2016). This paper reviews of the publications that that cover the developments in science and technological aspects of electronic nose together with its application in fresh foods. The first part of this review covers the sensing and pattern recognition system (PR) of E-nose. The second part covers the application of E-nose in classification, flavor detection, and evaluation of spoilage in fresh foods area. With more new sensor materials to be found and more combination between E-nose and other analysis technologies, the usages of E-nose in fresh foods will have wider prospects.

  8. Electronic Nose for Microbiological Quality Control of Food Products

    Directory of Open Access Journals (Sweden)

    M. Falasconi

    2012-01-01

    Full Text Available Electronic noses (ENs have recently emerged as valuable candidates in various areas of food quality control and traceability, including microbial contamination diagnosis. In this paper, the EN technology for microbiological screening of food products is reviewed. Four paradigmatic and diverse case studies are presented: (a Alicyclobacillus spp. spoilage of fruit juices, (b early detection of microbial contamination in processed tomatoes, (c screening of fungal and fumonisin contamination of maize grains, and (d fungal contamination on green coffee beans. Despite many successful results, the high intrinsic variability of food samples together with persisting limits of the sensor technology still impairs ENs trustful applications at the industrial scale. Both advantages and drawbacks of sensor technology in food quality control are discussed. Finally, recent trends and future directions are illustrated.

  9. Electronic Nose For Measuring Wine Evolution In Wine Cellars

    International Nuclear Information System (INIS)

    Lozano, J.; Santos, J. P.; Horrillo, M. C.; Cabellos, J. M.; Arroyo, T.

    2009-01-01

    An electronic nose installed in a wine cellar for measuring the wine evolution is presented in this paper. The system extract the aroma directly from the tanks where wine is stored and carry the volatile compounds to the sensors cell. A tin oxide multisensor, prepared with RF sputtering onto an alumina substrate and doped with chromium and indium, is used. The whole system is fully automated and controlled by computer and can be supervised by internet. Linear techniques like principal component analysis (PCA) and nonlinear ones like probabilistic neural networks (PNN) are used for pattern recognition. Results show that system can detect the evolution of two different wines along 9 months stored in tanks. This system could be trained to detect off-odours of wine and warn the wine expert to correct it as soon as possible, improving the final quality of wine.

  10. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status

    OpenAIRE

    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano

    2011-01-01

    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  11. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  12. Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis

    NARCIS (Netherlands)

    de Vries, R.; Brinkman, P.; van der Schee, M. P.; Fens, N.; Dijkers, E.; Bootsma, S. K.; de Jongh, F. H. C.; Sterk, P. J.

    2015-01-01

    New 'omics'-technologies have the potential to better define airway disease in terms of pathophysiological and clinical phenotyping. The integration of electronic nose (eNose) technology with existing diagnostic tests, such as routine spirometry, can bring this technology to 'point-of-care'. We

  13. Identification of insecticide residues with a conducting-polymer electronic nose

    Science.gov (United States)

    A.D. Wilson

    2014-01-01

    The identification of insecticide residues on crop foliage is needed to make periodic pest management decisions. Electronic-nose (e-nose) methods were developed and tested as a means of acquiring rapid identifications of insecticide residue types at relatively low cost by detection of headspace volatiles released from inert surfaces in vitro. Detection methods were...

  14. Identification and discrimination of herbicide residues using a conducting polymer electronic nose

    Science.gov (United States)

    Alphus Dan Wilson

    2016-01-01

    The identification of herbicide residues on crop foliage is necessary to make crop-management decisions for weed pest control and to monitor pesticide residue levels on food crops. Electronic-nose (e-nose) methods were tested as a cheaper, alternative means of discriminating between herbicide residue types (compared with conventional chromatography methods), by...

  15. Potential Applications and Limitations of Electronic Nose Devices for Plant Disease Diagnosis

    Directory of Open Access Journals (Sweden)

    Antonio Cellini

    2017-11-01

    Full Text Available Electronic nose technology has recently been applied to the detection of several plant diseases and pests, with promising results. However, in spite of its numerous advantages, including operational simplicity, non-destructivity, and bulk sampling, drawbacks include a low sensitivity and specificity in comparison with microbiological and molecular methods. A critical review of the use of an electronic nose for plant disease diagnosis and pest detection is presented, describing the instrumental and procedural advances of sensorial analysis, for the improvement of discrimination between healthy and infected or infested plants. In conclusion, the use of electronic nose technology is suggested to assist, direct, and optimise traditionally adopted diagnostic techniques.

  16. Calibration of an electronic nose for poultry farm

    Science.gov (United States)

    Abdullah, A. H.; Shukor, S. A.; Kamis, M. S.; Shakaff, A. Y. M.; Zakaria, A.; Rahim, N. A.; Mamduh, S. M.; Kamarudin, K.; Saad, F. S. A.; Masnan, M. J.; Mustafa, H.

    2017-03-01

    Malodour from the poultry farms could cause air pollution and therefore potentially dangerous to humans' and animals' health. This issue also poses sustainability risk to the poultry industries due to objections from local community. The aim of this paper is to develop and calibrate a cost effective and efficient electronic nose for poultry farm air monitoring. The instrument main components include sensor chamber, array of specific sensors, microcontroller, signal conditioning circuits and wireless sensor networks. The instrument was calibrated to allow classification of different concentrations of main volatile compounds in the poultry farm malodour. The outcome of the process will also confirm the device's reliability prior to being used for poultry farm malodour assessment. The Multivariate Analysis (HCA and KNN) and Artificial Neural Network (ANN) pattern recognition technique was used to process the acquired data. The results show that the instrument is able to calibrate the samples using ANN classification model with high accuracy. The finding verifies the instrument's performance to be used as an effective poultry farm malodour monitoring.

  17. A Novel Semi-Supervised Electronic Nose Learning Technique: M-Training

    Directory of Open Access Journals (Sweden)

    Pengfei Jia

    2016-03-01

    Full Text Available When an electronic nose (E-nose is used to distinguish different kinds of gases, the label information of the target gas could be lost due to some fault of the operators or some other reason, although this is not expected. Another fact is that the cost of getting the labeled samples is usually higher than for unlabeled ones. In most cases, the classification accuracy of an E-nose trained using labeled samples is higher than that of the E-nose trained by unlabeled ones, so gases without label information should not be used to train an E-nose, however, this wastes resources and can even delay the progress of research. In this work a novel multi-class semi-supervised learning technique called M-training is proposed to train E-noses with both labeled and unlabeled samples. We employ M-training to train the E-nose which is used to distinguish three indoor pollutant gases (benzene, toluene and formaldehyde. Data processing results prove that the classification accuracy of E-nose trained by semi-supervised techniques (tri-training and M-training is higher than that of an E-nose trained only with labeled samples, and the performance of M-training is better than that of tri-training because more base classifiers can be employed by M-training.

  18. Tracking Dynamic Source Direction with a Novel Stationary Electronic Nose System

    Directory of Open Access Journals (Sweden)

    David C. Levy

    2006-11-01

    Full Text Available Arrays of chemical sensors, usually called electronic noses (ENose, are widelyused in industry for classifying and identifying odours. They may also be used to locate theposition and detect the direction of an emission source. Usually this task is performed by anENose cooperating with a mobile vehicle, but when a source is instantaneous, or thesurrounding terrain is hard for vehicles to traverse, an alternative approach is needed. Thus athree-step method for a stationary ENose with a novel structure to detect the direction of adynamic source is presented in this paper. The method uses the ratio of measuredconcentration from different sensors (Cn /C1 where n=2, 4 as a discriminator. In addition,this method could easily be adapted to robotics as an optimized algorithm for path trackingto a source location. The paper presents the results of a simulation of the method.

  19. Post-harvest Quality Evaluation of Grapes using Non-destructive Electronic Nose

    Directory of Open Access Journals (Sweden)

    RAJIN S. M. Ataul Karim

    2015-10-01

    Full Text Available Over the past decades, electronic nose has opened a variety of possibilities and is becoming one of the most important non-destructive odour inspection technologies in the food industry. The objective of this study is to determine the quality degradation of the fruit by monitoring the change in the volatile compound while kept in storage using a lab manufactured electronic nose. Here, grapes are chosen as the fruit sample for experiment. Principal component analysis (PCA is used to determine the ability of the electronic nose to distinguish the different quality of the fruit stored over an interval of time. The result shows that using PCA analysis, the electronic nose is able to identify a clear distinction between the aromas of grapes stored for different time intervals.

  20. Electronic nose breathprints are independent of acute changes in airway caliber in asthma

    NARCIS (Netherlands)

    Lazar, Zsofia; Fens, Niki; Van der Maten, Jan; van der Schee, Marc P.; Wagener, Ariane H.; de Nijs, Selma B.; Dijkers, Erica; Sterk, Peter J.

    2010-01-01

    Molecular profiling of exhaled volatile organic compounds (VOC) by electronic nose technology provides breathprints that discriminate between patients with different inflammatory airway diseases, such as asthma and COPD. However, it is unknown whether this is determined by differences in airway

  1. Electronic Nose Breathprints Are Independent of Acute Changes in Airway Caliber in Asthma

    NARCIS (Netherlands)

    Lazar, Z.; Fens, N.; Van der Maten, J.; van der Schee, M.P.; Wagener, A.H.; de Nijs, S.B.; Dijkers, E.; Sterk, P.J.

    2010-01-01

    Molecular profiling of exhaled volatile organic compounds (VOC) by electronic nose technology provides breathprints that discriminate between patients with different inflammatory airway diseases, such as asthma and COPD. However, it is unknown whether this is determined by differences in airway

  2. Quantification of Wine Mixtures with an Electronic Nose and a Human Panel

    Science.gov (United States)

    Aleixandre, Manuel; Cabellos, Juan M.; Arroyo, Teresa; Horrillo, M. C.

    2018-01-01

    In this work, an electronic nose and a human panel were used for the quantification of wines formed by binary mixtures of four white grape varieties and two varieties of red wines at different percentages (from 0 to 100% in 10% steps for the electronic nose and from 0 to 100% in 25% steps for the human panel). The wines were prepared using the traditional method with commercial yeasts. Both techniques were able to quantify the mixtures tested, but it is important to note that the technology of the electronic nose is faster, simpler, and more objective than the human panel. In addition, better results of quantification were also obtained using the electronic nose. PMID:29484296

  3. Discrimination of chicken seasonings and beef seasonings using electronic nose and sensory evaluation.

    Science.gov (United States)

    Tian, Huaixiang; Li, Fenghua; Qin, Lan; Yu, Haiyan; Ma, Xia

    2014-11-01

    This study examines the feasibility of electronic nose as a method to discriminate chicken and beef seasonings and to predict sensory attributes. Sensory evaluation showed that 8 chicken seasonings and 4 beef seasonings could be well discriminated and classified based on 8 sensory attributes. The sensory attributes including chicken/beef, gamey, garlic, spicy, onion, soy sauce, retention, and overall aroma intensity were generated by a trained evaluation panel. Principal component analysis (PCA), discriminant factor analysis (DFA), and cluster analysis (CA) combined with electronic nose were used to discriminate seasoning samples based on the difference of the sensor response signals of chicken and beef seasonings. The correlation between sensory attributes and electronic nose sensors signal was established using partial least squares regression (PLSR) method. The results showed that the seasoning samples were all correctly classified by the electronic nose combined with PCA, DFA, and CA. The electronic nose gave good prediction results for all the sensory attributes with correlation coefficient (r) higher than 0.8. The work indicated that electronic nose is an effective method for discriminating different seasonings and predicting sensory attributes. © 2014 Institute of Food Technologists®

  4. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries

    Directory of Open Access Journals (Sweden)

    Sharon Dea

    2011-05-01

    Full Text Available The electronic nose (e-nose is designed to crudely mimic the mammalian nose in that most contain sensors that non-selectively interact with odor molecules to produce some sort of signal that is then sent to a computer that uses multivariate statistics to determine patterns in the data. This pattern recognition is used to determine that one sample is similar or different from another based on headspace volatiles. There are different types of e-nose sensors including organic polymers, metal oxides, quartz crystal microbalance and even gas-chromatography (GC or combined with mass spectroscopy (MS can be used in a non-selective manner using chemical mass or patterns from a short GC column as an e-nose or “Z” nose. The electronic tongue reacts similarly to non-volatile compounds in a liquid. This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses.

  5. Data Fusion of Electronic Nose and Electronic Tongue for Detection of Mixed Edible-Oil

    OpenAIRE

    Men, Hong; Chen, Donglin; Zhang, Xiaoting; Liu, Jingjing; Ning, Ke

    2014-01-01

    For the problem of the waste of the edible-oil in the food processing, on the premise of food security, they often need to add new edible-oil to the old frying oil which had been used in food processing to control the cost of the production. Due to the fact that the different additive proportion of the oil has different material and different volatile gases, we use fusion technology based on the electronic nose and electronic tongue to detect the blending ratio of the old frying oil and the n...

  6. Use of a MS-electronic nose for prediction of early fungal spoilage of bakery products.

    Science.gov (United States)

    Marín, S; Vinaixa, M; Brezmes, J; Llobet, E; Vilanova, X; Correig, X; Ramos, A J; Sanchis, V

    2007-02-28

    A MS-based electronic nose was used to detect fungal spoilage (measured as ergosterol concentration) in samples of bakery products. Bakery products were inoculated with different Eurotium, Aspergillus and Penicillium species, incubated in sealed vials and their headspace sampled after 2, 4 and 7 days. Once the headspace was sampled, ergosterol content was determined in each sample. Different electronic nose signals were recorded depending on incubation time. Both the e-nose signals and ergosterol levels were used to build models for prediction of ergosterol content using e-nose measurements. Accuracy on prediction of those models was between 87 and 96%, except for samples inoculated with Penicillium corylophilum where the best predictions only reached 46%.

  7. The Detection of Patients at Risk of Gastrointestinal Toxicity during Pelvic Radiotherapy by Electronic Nose and FAIMS: A Pilot Study

    Science.gov (United States)

    Covington, James A.; Wedlake, Linda; Andreyev, Jervoise; Ouaret, Nathalie; Thomas, Matthew G.; Nwokolo, Chuka U.; Bardhan, Karna D.; Arasaradnam, Ramesh P.

    2012-01-01

    It is well known that the electronic nose can be used to identify differences between human health and disease for a range of disorders. We present a pilot study to investigate if the electronic nose and a newer technology, FAIMS (Field Asymmetric Ion Mobility Spectrometry), can be used to identify and help inform the treatment pathway for patients receiving pelvic radiotherapy, which frequently causes gastrointestinal side-effects, severe in some. From a larger group, 23 radiotherapy patients were selected where half had the highest levels of toxicity and the others the lowest. Stool samples were obtained before and four weeks after radiotherapy and the volatiles and gases emitted analysed by both methods; these chemicals are products of fermentation caused by gut microflora. Principal component analysis of the electronic nose data and wavelet transform followed by Fisher discriminant analysis of FAIMS data indicated that it was possible to separate patients after treatment by their toxicity levels. More interestingly, differences were also identified in their pre-treatment samples. We believe these patterns arise from differences in gut microflora where some combinations of bacteria result to give this olfactory signature. In the future our approach may result in a technique that will help identify patients at “high risk” even before radiation treatment is started. PMID:23201982

  8. The Detection of Patients at Risk of Gastrointestinal Toxicity during Pelvic Radiotherapy by Electronic Nose and FAIMS: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ramesh P. Arasaradnam

    2012-09-01

    Full Text Available It is well known that the electronic nose can be used to identify differences between human health and disease for a range of disorders. We present a pilot study to investigate if the electronic nose and a newer technology, FAIMS (Field Asymmetric Ion Mobility Spectrometry, can be used to identify and help inform the treatment pathway for patients receiving pelvic radiotherapy, which frequently causes gastrointestinal side-effects, severe in some. From a larger group, 23 radiotherapy patients were selected where half had the highest levels of toxicity and the others the lowest. Stool samples were obtained before and four weeks after radiotherapy and the volatiles and gases emitted analysed by both methods; these chemicals are products of fermentation caused by gut microflora. Principal component analysis of the electronic nose data and wavelet transform followed by Fisher discriminant analysis of FAIMS data indicated that it was possible to separate patients after treatment by their toxicity levels. More interestingly, differences were also identified in their pre-treatment samples. We believe these patterns arise from differences in gut microflora where some combinations of bacteria result to give this olfactory signature. In the future our approach may result in a technique that will help identify patients at “high risk” even before radiation treatment is started.

  9. Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2010-10-01

    Full Text Available In this study, we have developed a prototype of a portable electronic nose (E-Nose comprising a sensor array of eight commercially available sensors, a data acquisition interface PCB, and a microprocessor. Verification software was developed to verify system functions. Experimental results indicate that the proposed system prototype is able to identify the fragrance of three fruits, namely lemon, banana, and litchi.

  10. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    Energy Technology Data Exchange (ETDEWEB)

    Peris, Miguel, E-mail: mperist@qim.upv.es [Departamento de Química, Universidad Politécnica de Valencia, 46071 Valencia (Spain); Escuder-Gilabert, Laura [Departamento de Química Analítica, Universitat de Valencia, C/ Vicente Andrés Estellés s/n, E-46100 Burjasot, Valencia (Spain)

    2013-12-04

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article.

  11. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    International Nuclear Information System (INIS)

    Peris, Miguel; Escuder-Gilabert, Laura

    2013-01-01

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article

  12. Identification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Huaying Zhou

    2017-05-01

    Full Text Available This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs. Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS. Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing.

  13. Identification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges.

    Science.gov (United States)

    Zhou, Huaying; Luo, Dehan; GholamHosseini, Hamid; Li, Zhong; He, Jiafeng

    2017-05-09

    This paper provides a review of the most recent works in machine olfaction as applied to the identification of Chinese Herbal Medicines (CHMs). Due to the wide variety of CHMs, the complexity of growing sources and the diverse specifications of herb components, the quality control of CHMs is a challenging issue. Much research has demonstrated that an electronic nose (E-nose) as an advanced machine olfaction system, can overcome this challenge through identification of the complex odors of CHMs. E-nose technology, with better usability, high sensitivity, real-time detection and non-destructive features has shown better performance in comparison with other analytical techniques such as gas chromatography-mass spectrometry (GC-MS). Although there has been immense development of E-nose techniques in other applications, there are limited reports on the application of E-noses for the quality control of CHMs. The aim of current study is to review practical implementation and advantages of E-noses for robust and effective odor identification of CHMs. It covers the use of E-nose technology to study the effects of growing regions, identification methods, production procedures and storage time on CHMs. Moreover, the challenges and applications of E-nose for CHM identification are investigated. Based on the advancement in E-nose technology, odor may become a new quantitative index for quality control of CHMs and drug discovery. It was also found that more research could be done in the area of odor standardization and odor reproduction for remote sensing.

  14. Electronic Nose Testing Procedure for the Definition of Minimum Performance Requirements for Environmental Odor Monitoring

    Directory of Open Access Journals (Sweden)

    Lidia Eusebio

    2016-09-01

    Full Text Available Despite initial enthusiasm towards electronic noses and their possible application in different fields, and quite a lot of promising results, several criticalities emerge from most published research studies, and, as a matter of fact, the diffusion of electronic noses in real-life applications is still very limited. In general, a first step towards large-scale-diffusion of an analysis method, is standardization. The aim of this paper is describing the experimental procedure adopted in order to evaluate electronic nose performances, with the final purpose of establishing minimum performance requirements, which is considered to be a first crucial step towards standardization of the specific case of electronic nose application for environmental odor monitoring at receptors. Based on the experimental results of the performance testing of a commercialized electronic nose type with respect to three criteria (i.e., response invariability to variable atmospheric conditions, instrumental detection limit, and odor classification accuracy, it was possible to hypothesize a logic that could be adopted for the definition of minimum performance requirements, according to the idea that these are technologically achievable.

  15. Recent advances in electronic nose techniques for monitoring of fermentation process.

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  16. A novel method for qualitative analysis of edible oil oxidation using an electronic nose.

    Science.gov (United States)

    Xu, Lirong; Yu, Xiuzhu; Liu, Lei; Zhang, Rui

    2016-07-01

    An electronic nose (E-nose) was used for rapid assessment of the degree of oxidation in edible oils. Peroxide and acid values of edible oil samples were analyzed using data obtained by the American Oil Chemists' Society (AOCS) Official Method for reference. Qualitative discrimination between non-oxidized and oxidized oils was conducted using the E-nose technique developed in combination with cluster analysis (CA), principal component analysis (PCA), and linear discriminant analysis (LDA). The results from CA, PCA and LDA indicated that the E-nose technique could be used for differentiation of non-oxidized and oxidized oils. LDA produced slightly better results than CA and PCA. The proposed approach can be used as an alternative to AOCS Official Method as an innovative tool for rapid detection of edible oil oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Hybrid System Based on an Electronic Nose Coupled with an Electronic Tongue for the Characterization of Moroccan Waters

    Directory of Open Access Journals (Sweden)

    Z. Haddi

    2014-05-01

    Full Text Available A hybrid multisensor system combined with multivariate analysis was applied to the characterization of different kinds of Moroccan waters. The proposed hybrid system based on an electronic nose coupled with an electronic tongue consisted of metal oxide semiconductors and potentiometric sensors respectively. Five Taguchi Gas Sensors were implemented in the electronic nose for the discrimination between mineral, natural, sparkling, river and tap waters. Afterwards, the electronic tongue, based on series of Ion-Selective-Electrodes was applied to the analysis of the same waters. Multisensor responses obtained from the waters were processed by two chemometrics: Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. PCA results using electronic nose data depict all of the potable water samples in a separate group from the samples that were originated from river. Furthermore, PCA and LDA analysis on electronic tongue data permitted clear and rapid recognizing of the different waters due to the concentration changes of the chemical parameters from source to another.

  18. Quality evaluation of agricultural distillates using different types of electronic noses

    Science.gov (United States)

    Dymerski, Tomasz; Gebicki, Jacek; Namieśnik, Jacek

    2014-08-01

    The paper presents the results of investigation on quality evaluation of agricultural distillates using a prototype of electronic nose instrument and a commercial electronic nose of Fast/Flash GC type- HERACLES II. The prototype was equipped with TGS type semiconductor sensors. HERACLES II included two chromatographic columns with different polarity of stationary phase and two FID detectors. In case of the prototype volatile fraction of the agricultural distillate was prepared via barbotage process, whereas HERACLES II analysed the headspace fraction. Classification of the samples into three quality classes was performed using: quadratic discriminant function (QDA), supported with cross-validation method. Over 95% correct classification of the agricultural distillates into particular quality classes was observed for the analyses with HERACLES II. The prototype of electronic nose provided correct classification at the level of 70%.

  19. Bacterial Infection Potato Tuber Soft Rot Disease Detection Based on Electronic Nose

    Directory of Open Access Journals (Sweden)

    Chang Zhiyong

    2017-11-01

    Full Text Available Soft rot is a severe bacterial disease of potatoes, and soft rot infection can cause significant economic losses during the storage period of potatoes. In this study, potato soft rot was selected as the research object, and a type of potato tuber soft rot disease early detection method based on the electronic nose technology was proposed. An optimized bionic electronic nose gas chamber and a scientific and reasonable sampling device were designed to detect a change in volatile substances of the infected soft rot disease of potato tuber. The infection of soft rot disease in potato tuber samples was detected and identified by using the RBF NN algorithm and SVM algorithm. The results revealed that the proposed bionic electronic nose system can be utilized for early detection of potato tuber soft rot disease. Through comparison and analysis, the recognition rate using the SVM algorithm reached up to 89.7%, and the results were superior to the RBF NN algorithm.

  20. Potential application of electronic nose in processed animal proteins (PAP detection in feedstuffs

    Directory of Open Access Journals (Sweden)

    Dell'Orto V.

    2004-01-01

    Full Text Available Electronic nose and olfactometry techniques represent a modern analytical approach in food industry since they could potentially improve quality and safety of food processing. The aim of this study was to evaluate possible application of electronic nose in PA P detection and recognition in feed. For this purpose 6 reference feedstuffs (CRA-W / UE STRAT F E E D Project were used. The basis of the test samples was a compound feed for bovine fortified with processed animal proteins ( PAP consisting of meat and bone meal (MBM and/or fish meal at different concentrations. Each feed sample was tested in glass vials and the odour profile was determined by the ten MOS (metal oxide semi-conductor sensors of the electronic nose. Ten different descriptors, representing each ten sensors of electronic nose, were used to characterise the odour of each sample. In the present study, electronic nose was able to discriminate the blank sample from all other samples containing PA P ( M B M , fish meal or both. Samples containing either 0.5% of MBM or 5% of fish meal were identified, while samples containing a high fish meal content (5% associated with a low MBM content (0.5% were not discriminated from samples containing solely fish meal at that same high level (5%. This latter indicates that probably the high fish meal level, in samples containing both MBM and fish meal, tended to mask MBM odour. It was also evident that two odour descriptors were enough to explain 72.12% of total variability in odour pattern. In view of these results, it could be suggested that electronic nose and olfactometry techniques can provide an interesting approach for screening raw materials in feed industry, even though further studies using a wider set of samples are needed.

  1. Continuous monitoring of odours from a composting plant using electronic noses.

    Science.gov (United States)

    Sironi, Selena; Capelli, Laura; Céntola, Paolo; Del Rosso, Renato; Il Grande, Massimiliano

    2007-01-01

    The odour impact of a composting plant situated in an urbanized area was evaluated by continuously monitoring the ambient air close to the plant during a period of about 4 days using two electronic noses. One electronic nose was installed in a nearby house, and the other one inside the perimeter of the composting plant in order to compare the response of both instruments. The results of the monitoring are represented by tables that report the olfactory class and the odour concentration value attributed to the analyzed air for each of the 370 measurements carried out during the monitoring period. The electronic nose installed at the house detected the presence of odours coming from the composting plant for about 7.8% of the monitoring total duration. Of the odour detections, 86% (25 of 29 measurements) were classified as belonging to the olfactory class corresponding to the open air storage of the waste screening overflows heaps, which was therefore identified to be the major odour source of the monitored composting plant. In correspondence of the measurements during which the electronic nose inside the house detected the presence of odours from the composting plant, the olfactory classes recognized by both instruments coincide. Moreover, the electronic nose at the house detected the presence of odours from the composting plant at issue in correspondence of each odour perception of the house occupants. The results of the study show the possibility of using an electronic nose for environmental odours monitoring, which enables the classification of the quality of the air and to quantify the olfactory nuisance from an industrial source in terms of duration and odour concentration.

  2. Detection and Classification of Human Body Odor Using an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Teerakiat Kerdcharoen

    2009-09-01

    Full Text Available An electronic nose (E-nose has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition.

  3. Detection and classification of human body odor using an electronic nose.

    Science.gov (United States)

    Wongchoosuk, Chatchawal; Lutz, Mario; Kerdcharoen, Teerakiat

    2009-01-01

    An electronic nose (E-nose) has been designed and equipped with software that can detect and classify human armpit body odor. An array of metal oxide sensors was used for detecting volatile organic compounds. The measurement circuit employs a voltage divider resistor to measure the sensitivity of each sensor. This E-nose was controlled by in-house developed software through a portable USB data acquisition card with a principle component analysis (PCA) algorithm implemented for pattern recognition and classification. Because gas sensor sensitivity in the detection of armpit odor samples is affected by humidity, we propose a new method and algorithms combining hardware/software for the correction of the humidity noise. After the humidity correction, the E-nose showed the capability of detecting human body odor and distinguishing the body odors from two persons in a relative manner. The E-nose is still able to recognize people, even after application of deodorant. In conclusion, this is the first report of the application of an E-nose for armpit odor recognition.

  4. Design of a portable electronic nose for real-fake detection of liquors

    Science.gov (United States)

    Qi, Pei-Feng; Zeng, Ming; Li, Zhi-Hua; Sun, Biao; Meng, Qing-Hao

    2017-09-01

    Portability is a major issue that influences the practical application of electronic noses (e-noses). For liquors detection, an e-nose must preprocess the liquid samples (e.g., using evaporation and thermal desorption), which makes the portable design even more difficult. To realize convenient and rapid detection of liquors, we designed a portable e-nose platform that consists of hardware and software systems. The hardware system contains an evaporation/sampling module, a reaction module, a control/data acquisition and analysis module, and a power module. The software system provides a user-friendly interface and can achieve automatic sampling and data processing. This e-nose platform has been applied to the real-fake recognition of Chinese liquors. Through parameter optimization of a one-class support vector machine classifier, the error rate of the negative samples is greatly reduced, and the overall recognition accuracy is improved. The results validated the feasibility of the designed portable e-nose platform.

  5. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    Science.gov (United States)

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  6. Diverse applications of electronic-nose technologies in agriculture and forestry.

    Science.gov (United States)

    Wilson, Alphus D

    2013-02-08

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.

  7. An improved approach to identify irradiated spices using electronic nose, FTIR, and EPR spectroscopy.

    Science.gov (United States)

    Sanyal, Bhaskar; Ahn, Jae-Jun; Maeng, Jeong-Hwan; Kyung, Hyun-Kyu; Lim, Ha-Kyeong; Sharma, Arun; Kwon, Joong-Ho

    2014-09-01

    Changes in cumin and chili powder from India resulting from electron-beam irradiation were investigated using 3 analytical methods: electronic nose (E-nose), Fourier transform infrared (FTIR) spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The spices had been exposed to 6 to 14 kGy doses recommended for microbial decontamination. E-nose measured a clear difference in flavor patterns of the irradiated spices in comparison with the nonirradiated samples. Principal component analysis further showed a dose-dependent variation. FTIR spectra of the samples showed strong absorption bands at 3425, 3007 to 2854, and 1746 cm(-1). However, both nonirradiated and irradiated spice samples had comparable patterns without any noteworthy changes in functional groups. EPR spectroscopy of the irradiated samples showed a radiation-specific triplet signal at g = 2.006 with a hyper-fine coupling constant of 3 mT confirming the results obtained with the E-nose technique. Thus, E-nose was found to be a potential tool to identify irradiated spices. © 2014 Institute of Food Technologists®

  8. Application of fuzzy logic to determine the odour intensity of model gas mixtures using electronic nose

    Science.gov (United States)

    Szulczyński, Bartosz; Gębicki, Jacek; Namieśnik, Jacek

    2018-01-01

    The paper presents the possibility of application of fuzzy logic to determine the odour intensity of model, ternary gas mixtures (α-pinene, toluene and triethylamine) using electronic nose prototype. The results obtained using fuzzy logic algorithms were compared with the values obtained using multiple linear regression (MLR) model and sensory analysis. As the results of the studies, it was found the electronic nose prototype along with the fuzzy logic pattern recognition system can be successfully used to estimate the odour intensity of tested gas mixtures. The correctness of the results obtained using fuzzy logic was equal to 68%.

  9. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  10. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  11. A Solid Trap and Thermal Desorption System with Application to a Medical Electronic Nose

    Directory of Open Access Journals (Sweden)

    Xuntao Xu

    2008-11-01

    Full Text Available In this paper, a solid trap/thermal desorption-based odorant gas condensation system has been designed and implemented for measuring low concentration odorant gas. The technique was successfully applied to a medical electronic nose system. The developed system consists of a flow control unit, a temperature control unit and a sorbent tube. The theoretical analysis and experimental results indicate that gas condensation, together with the medical electronic nose system can significantly reduce the detection limit of the nose system and increase the system’s ability to distinguish low concentration gas samples. In addition, the integrated system can remove the influence of background components and fluctuation of operational environment. Even with strong disturbances such as water vapour and ethanol gas, the developed system can classify the test samples accurately.

  12. Monitoring storage time and quality attribute of egg based on electronic nose

    International Nuclear Information System (INIS)

    Wang Yongwei; Jun Wang; Bo Zhou; Qiujun Lu

    2009-01-01

    The objective of this study was to investigate the potential of an electronic nose (E-nose) technique for monitoring egg storage time and quality attributes. An electronic nose was used to distinguish eggs under cool and room-temperature storage by means of principal component analysis (PCA), linear discriminant analysis (LDA), BP neural network (BPNN) and the combination of a genetic algorithm and BP neural network (GANN). Results showed that the E-nose could distinguish eggs of different storage time under cool and room-temperature storage by LDA, PCA, BPNN and GANN; better prediction values were obtained by GANN than by BPNN. Relationships were established between the E-nose signal and egg quality indices (Haugh unit and yolk factor) by quadratic polynomial step regression (QPSR). The prediction models for Haugh unit and yolk factor indicated a good prediction performance. The Haugh unit model had a standard error of prediction of 3.74 and correlation coefficient 0.91; the yolk factor model had a 0.02 SEP and 0.93 correlation coefficient between predicted and measured values respectively.

  13. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD

    NARCIS (Netherlands)

    Dragonieri, Silvano; Annema, Jouke T.; Schot, Robert; van der Schee, Marc P. C.; Spanevello, Antonio; Carratú, Pierluigi; Resta, Onofrio; Rabe, Klaus F.; Sterk, Peter J.

    2009-01-01

    Background: Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish

  14. Research on Electronic-nose Application Based on Wireless Sensor Networks

    International Nuclear Information System (INIS)

    Zhao, A; Wang, L; Yao, C H

    2006-01-01

    The paper proposed a structure of Wireless Sensor Networks based Electronic-nose system to monitors air quality in the building. In the study, the authors researched a data processing algorithm: fuzzy neural network based on RBF(Radial Basis Function) network model, to quantitatively analyze the gas ingredient and put forward a routing protocol for the system

  15. Electronic-nose technology using sputum samples in diagnosis of patients with tuberculosis

    NARCIS (Netherlands)

    Kolk, A.; Hoelscher, M.; Maboko, L.; Jung, J.; Kuijper, S.; Cauchi, M.; Bessant, C.; van Beers, S.; Dutta, R.; Gibson, T.; Reither, K.

    2010-01-01

    We investigated the potential of two different electronic noses (EN; code named "Rob" and "Walter") to differentiate between sputum headspace samples from tuberculosis (TB) patients and non-TB patients. Only samples from Ziehl-Neelsen stain (ZN)- and Mycobacterium tuberculosis culture-positive

  16. Monitoring of biological odour filtration in closed environments with olfactometry and an electronic nose

    NARCIS (Netherlands)

    Willers, H.C.; Gijsel, de P.; Ogink, N.W.M.; Amico, D' A.; Martinelli, E.; Natale, Di C.; Ras, van N.; Waarde, van der J.

    2004-01-01

    Air treatment with a compact biological membrane filter, and air quality monitoring with an electronic nose were tested in the laboratory on air from a cage containing six mice. Additional analyses of air to and from the filter were performed using olfactometry and ammonia and hydrogen sulphide gas

  17. Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose

    Directory of Open Access Journals (Sweden)

    Miguel Macías Macías

    2012-12-01

    Full Text Available Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP. To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L.

  18. Analog Multilayer Perceptron Circuit with On-chip Learning: Portable Electronic Nose

    Science.gov (United States)

    Pan, Chih-Heng; Tang, Kea-Tiong

    2011-09-01

    This article presents an analog multilayer perceptron (MLP) neural network circuit with on-chip back propagation learning. This low power and small area analog MLP circuit is proposed to implement as a classifier in an electronic nose (E-nose). Comparing with the E-nose using microprocessor or FPGA as a classifier, the E-nose applying analog circuit as a classifier can be faster and much smaller, demonstrate greater power efficiency and be capable of developing a portable E-nose [1]. The system contains four inputs, four hidden neurons, and only one output neuron; this simple structure allows the circuit to have a smaller area and less power consumption. The circuit is fabricated using TSMC 0.18 μm 1P6M CMOS process with 1.8 V supply voltage. The area of this chip is 1.353×1.353 mm2 and the power consumption is 0.54 mW. Post-layout simulations show that the proposed analog MLP circuit can be successively trained to identify three kinds of fruit odors.

  19. Detection of Off-Flavor in Catfish Using a Conducting Polymer Electronic-Nose Technology

    Science.gov (United States)

    Wilson, Alphus D.; Oberle, Charisse S.; Oberle, Daniel F.

    2013-01-01

    The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor) and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA) and a Quality Factor value (QF > 7.9) indicating a significant difference at (P 90%) and with relatively low rates (≤5%) of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed. PMID:24287526

  20. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    Directory of Open Access Journals (Sweden)

    Panida Lorwongtragool

    2014-10-01

    Full Text Available A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  1. Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection

    OpenAIRE

    Casalinuovo, Ida A.; Di Pierro, Donato; Coletta, Massimiliano; Di Francesco, Paolo

    2006-01-01

    Over the last twenty years, newly developed chemical sensor systems (so-called “electronic noses”) have odour analyses made possible. This paper describes the applications of these systems for microbial detection in different fields such as medicine and the food industry, where fast detection methods are essential for appropriate management of health care. Several groups have employed different electronic noses for classification and quantification of bacteria and fungi to obtain accurate med...

  2. Detecting aroma changes of local flavored green tea (Camellia sinensis) using electronic nose

    Science.gov (United States)

    Ralisnawati, D.; Sukartiko, A. C.; Suryandono, A.; Triyana, K.

    2018-03-01

    Indonesia is currently the sixth largest tea producer in the world. However, consumption of the product in the country was considered low. Besides tea, the country also has various local flavor ingredients that are potential to be developed. The addition of local flavored ingredients such as ginger, lemon grass, and lime leaves on green tea products is gaining acceptance from consumers and producers. The aroma of local flavored green tea was suspected to changes during storage, while its sensory testing has some limitations. Therefore, the study aimed to detect aroma changes of local flavors added in green tea using electronic nose (e-nose), an instrument developed to mimic the function of the human nose. The test was performed on a four-gram sample. The data was collected with 120 seconds of sensing time and 60 seconds of blowing time. Principal Component Analysis (PCA) was used to find out the aroma changes of local flavored green tea during storage. We observed that electronic nose could detect aroma changes of ginger flavored green tea from day 0 to day 6 with variance percentage 99.6%. Variance proportion of aroma changes of lemon grass flavored green tea from day 0 to day 6 was 99.3%. Variance proportion of aroma changes of lime leaves flavored green tea from day 0 to day 6 was 99.4%.

  3. Training and Validating a Portable Electronic Nose for Lung Cancer Screening.

    Science.gov (United States)

    van de Goor, Rens; van Hooren, Michel; Dingemans, Anne-Marie; Kremer, Bernd; Kross, Kenneth

    2018-05-01

    Profiling volatile organic compounds in exhaled breath enables the diagnosis of several types of cancer. In this study we investigated whether a portable point-of-care version of an electronic nose (e-nose) (Aeonose, [eNose Company, Zutphen, the Netherlands]) is able to discriminate between patients with lung cancer and healthy controls on the basis of their volatile organic compound pattern. In this study, we used five e-nose devices to collect breath samples from patients with lung cancer and healthy controls. A total of 60 patients with lung cancer and 107 controls exhaled through an e-nose for 5 minutes. Patients were assigned either to a training group for building an artificial neural network model or to a blinded control group for validating this model. For differentiating patients with lung cancer from healthy controls, the results showed a diagnostic accuracy of 83% with a sensitivity of 83%, specificity of 84%, and area under the curve of 0.84. Results for the blinded group showed comparable results, with a sensitivity of 88%, specificity of 86%, and diagnostic accuracy of 86%. This feasibility study showed that this portable e-nose can properly differentiate between patients with lung cancer and healthy controls. This result could have important implications for future lung cancer screening. Further studies with larger cohorts, including also more participants with early-stage tumors, should be performed to increase the robustness of this noninvasive diagnostic tool and to determine its added value in the diagnostic chain for lung cancer. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  4. Using the Electronic Nose to Identify Airway Infection during COPD Exacerbations.

    Directory of Open Access Journals (Sweden)

    Hanaa Shafiek

    Full Text Available The electronic nose (e-nose detects volatile organic compounds (VOCs in exhaled air. We hypothesized that the exhaled VOCs print is different in stable vs. exacerbated patients with chronic obstructive pulmonary disease (COPD, particularly if the latter is associated with airway bacterial infection, and that the e-nose can distinguish them.Smell-prints of the bacteria most commonly involved in exacerbations of COPD (ECOPD were identified in vitro. Subsequently, we tested our hypothesis in 93 patients with ECOPD, 19 of them with pneumonia, 50 with stable COPD and 30 healthy controls in a cross-sectional case-controlled study. Secondly, ECOPD patients were re-studied after 2 months if clinically stable. Exhaled air was collected within a Tedlar bag and processed by a Cynarose 320 e-nose. Breath-prints were analyzed by Linear Discriminant Analysis (LDA with "One Out" technique and Sensor logic Relations (SLR. Sputum samples were collected for culture.ECOPD with evidence of infection were significantly distinguishable from non-infected ECOPD (p = 0.018, with better accuracy when ECOPD was associated to pneumonia. The same patients with ECOPD were significantly distinguishable from stable COPD during follow-up (p = 0.018, unless the patient was colonized. Additionally, breath-prints from COPD patients were significantly distinguished from healthy controls. Various bacteria species were identified in culture but the e-nose was unable to identify accurately the bacteria smell-print in infected patients.E-nose can identify ECOPD, especially if associated with airway bacterial infection or pneumonia.

  5. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath

    Science.gov (United States)

    AD Wilson

    2014-01-01

    The application of electronic-nose (E-nose) technologies in forensic science is a recent new development following a long history of progress in the development of diverse applications in the related biomedical and pharmaceutical fields. Data from forensic analyses must satisfy the needs and requirements of both the scientific and legal communities. The type of data...

  6. Advances in electronic-nose technologies for the detection of volatile biomarker metabolites in the human breath

    Science.gov (United States)

    Alphus D. Wilson

    2015-01-01

    Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...

  7. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose.

    Science.gov (United States)

    Esfahani, Siavash; Sagar, Nidhi M; Kyrou, Ioannis; Mozdiak, Ella; O'Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D; Arasaradnam, Ramesh P; Covington, James A

    2016-01-25

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose--an instrument designed to replicate the biological olfactory system. Of the possible biological media available to "sniff", urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at -80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at -80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry--a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life.

  8. Integration of electronic nose technology with spirometry: validation of a new approach for exhaled breath analysis.

    Science.gov (United States)

    de Vries, R; Brinkman, P; van der Schee, M P; Fens, N; Dijkers, E; Bootsma, S K; de Jongh, F H C; Sterk, P J

    2015-10-15

    New 'omics'-technologies have the potential to better define airway disease in terms of pathophysiological and clinical phenotyping. The integration of electronic nose (eNose) technology with existing diagnostic tests, such as routine spirometry, can bring this technology to 'point-of-care'. We aimed to determine and optimize the technical performance and diagnostic accuracy of exhaled breath analysis linked to routine spirometry. Exhaled breath was collected in triplicate in healthy subjects by an eNose (SpiroNose) based on five identical metal oxide semiconductor sensor arrays (three arrays monitoring exhaled breath and two reference arrays monitoring ambient air) at the rear end of a pneumotachograph. First, the influence of flow, volume, humidity, temperature, environment, etc, was assessed. Secondly, a two-centre case-control study was performed using diagnostic and monitoring visits in day-to-day clinical care in patients with a (differential) diagnosis of asthma, chronic obstructive pulmonary disease (COPD) or lung cancer. Breathprint analysis involved signal processing, environment correction based on alveolar gradients and statistics based on principal component (PC) analysis, followed by discriminant analysis (Matlab2014/SPSS20). Expiratory flow showed a significant linear correlation with raw sensor deflections (R(2)  =  0.84) in 60 healthy subjects (age 43  ±  11 years). No correlation was found between sensor readings and exhaled volume, humidity and temperature. Exhaled data after environment correction were highly reproducible for each sensor array (Cohen's Kappa 0.81-0.94). Thirty-seven asthmatics (41  ±  14.2 years), 31 COPD patients (66  ±  8.4 years), 31 lung cancer patients (63  ±  10.8 years) and 45 healthy controls (41  ±  12.5 years) entered the cross-sectional study. SpiroNose could adequately distinguish between controls, asthma, COPD and lung cancer patients with cross-validation values

  9. Detection of Off-Flavor in Catfish Using a Conducting Polymer Electronic-Nose Technology

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2013-11-01

    Full Text Available The Aromascan A32S conducting polymer electronic nose was evaluated for the capability of detecting the presence of off-flavor malodorous compounds in catfish meat fillets to assess meat quality for potential merchantability. Sensor array outputs indicated that the aroma profiles of good-flavor (on-flavor and off-flavor fillets were strongly different as confirmed by a Principal Component Analysis (PCA and a Quality Factor value (QF > 7.9 indicating a significant difference at (P < 0.05. The A32S e-nose effectively discriminated between good-flavor and off-flavor catfish at high levels of accuracy (>90% and with relatively low rates (≤5% of unknown or indecisive determinations in three trials. This A32S e-nose instrument also was capable of detecting the incidence of mild off-flavor in fillets at levels lower than the threshold of human olfactory detection. Potential applications of e-nose technologies for pre- and post-harvest management of production and meat-quality downgrade problems associated with catfish off-flavor are discussed.

  10. Valid Probabilistic Predictions for Ginseng with Venn Machines Using Electronic Nose

    Directory of Open Access Journals (Sweden)

    You Wang

    2016-07-01

    Full Text Available In the application of electronic noses (E-noses, probabilistic prediction is a good way to estimate how confident we are about our prediction. In this work, a homemade E-nose system embedded with 16 metal-oxide semi-conductive gas sensors was used to discriminate nine kinds of ginsengs of different species or production places. A flexible machine learning framework, Venn machine (VM was introduced to make probabilistic predictions for each prediction. Three Venn predictors were developed based on three classical probabilistic prediction methods (Platt’s method, Softmax regression and Naive Bayes. Three Venn predictors and three classical probabilistic prediction methods were compared in aspect of classification rate and especially the validity of estimated probability. A best classification rate of 88.57% was achieved with Platt’s method in offline mode, and the classification rate of VM-SVM (Venn machine based on Support Vector Machine was 86.35%, just 2.22% lower. The validity of Venn predictors performed better than that of corresponding classical probabilistic prediction methods. The validity of VM-SVM was superior to the other methods. The results demonstrated that Venn machine is a flexible tool to make precise and valid probabilistic prediction in the application of E-nose, and VM-SVM achieved the best performance for the probabilistic prediction of ginseng samples.

  11. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    International Nuclear Information System (INIS)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-01-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance. (paper)

  12. Screening Cereals Quality by Electronic Nose: the Example of Mycotoxins Naturally Contaminated Maize and Durum Wheat

    Science.gov (United States)

    Campagnoli, Anna; Dell'Orto, Vittorio; Savoini, Giovanni; Cheli, Federica

    2009-05-01

    Mycotoxins represent an heterogeneous group of toxic compounds from fungi metabolism. Due to the frequent occurrence of mycotoxins in cereals commodities the develop of cost/effective screening methods represent an important topic to ensure food and feed safety. In the presented study a commercial electronic nose constituted by ten MOS (Metal Oxide Sensors) was applied to verify the possibility of discriminating between mycotoxins contaminated and non-contaminated cereals. The described analytical approach was able to discriminate contaminated and non-contaminated samples both in the case of aflatoxins infected maize and deoxynivalenol infected durum wheat samples. In the case of maize data two sensors from the array revealed a partial relation with the level of aflatoxins. These results could be promising for a further improvement of electronic nose application in order to develop a semi-quantitative screening approach to mycotoxins contamination.

  13. Quantitative analysis of different volatile organic compounds using an improved electronic nose

    Science.gov (United States)

    Gao, Daqi; Ji, Jiuming; Gong, Jiayu; Cai, Chaoqian

    2012-10-01

    This paper sets up an improved electronic nose with an automatic sampling mode, large volumetric vapors and constant temperature for headspace vapors and gas sensor array. In order to facilitate the fast recovery and good repeatability of gas sensors, the steps taken include (A) short-time contact with odors measured; (B) long-time purification using environmental air; (C) exact calibration using clean air before sampling. We employ multiple single-output perceptrons to discriminate and quantify multiple kinds of odors. This task is first regarded as multiple two-class discrimination problems and then multiple quantification problems, and accomplished by multiple single-output perceptrons followed by multiple single-output perceptrons. The experimental results for measuring and quantifying 12 kinds of volatile organic compounds with changing concentrations show that the type of electronic nose with a hierarchical perceptron model has a simple structure, easy operation, good repeatability and good discrimination and quantification performance.

  14. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety.

    Science.gov (United States)

    Onodera, Takeshi; Toko, Kiyoshi

    2014-09-05

    This review describes an "electronic dog nose" based on a surface plasmon resonance (SPR) sensor and an antigen-antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  15. Electronic Nose to Determine the Maturity Index of the Tree Tomato (Cyphomandra Betacea Sendt

    Directory of Open Access Journals (Sweden)

    Durán-Acevedo Cristhian Manuel

    2014-07-01

    Full Text Available This paper presents the development of an Electronic Nose for nondestructive monitoring of tree tomato ripening process (Cyphomandra Betacea Sendt. An array of 16 chemical gas sensors was arranged for the detection of three ripeness levels of tree types of tomato (green, ripe and overripe. A Probabilistic Neural Network (PNN as variable selection technique (Simulated Annealing was coupled to improve the result and the PCA (Principal Component Analysis technique was applied to discriminate each one of volatile compounds. A number of measures for physicochemical tests were analyzed with the goal of evaluating the physical, chemical and sensory properties (i.e, pH, acidity and Brix of the product, and the results of the Electronic Nose were compared. The olfactory system was able to classify the samples of tree tomato in three different stages with very high accuracy, to reach a success rate 99.886% in classification.

  16. Electronic Nose Characterization of the Quality Parameters of Freeze-Dried Bacteria

    Science.gov (United States)

    Capuano, R.; Santonico, M.; Martinelli, E.; Paolesse, R.; Passot, S.; Fonseca, F.; Cenard, S.; Trelea, C.; Di Natale, C.

    2011-09-01

    Freeze-drying is the method of choice for preserving heat sensitive biological products such as microorganisms. The development of a fast analytical method for evaluating the properties of the dehydrated bacteria is then necessary for a proper utilization of the product in several food processes. In this paper, dried bacteria headspace is analyzed by a GC-MS and an electronic nose. Results indicate that headspace contains enough information to assess the products quality.

  17. Electronic Nose Breathprints Are Independent of Acute Changes in Airway Caliber in Asthma

    Directory of Open Access Journals (Sweden)

    Jan van der Maten

    2010-10-01

    Full Text Available Molecular profiling of exhaled volatile organic compounds (VOC by electronic nose technology provides breathprints that discriminate between patients with different inflammatory airway diseases, such as asthma and COPD. However, it is unknown whether this is determined by differences in airway caliber. We hypothesized that breathprints obtained by electronic nose are independent of acute changes in airway caliber in asthma. Ten patients with stable asthma underwent methacholine provocation (Visit 1 and sham challenge with isotonic saline (Visit 2. At Visit 1, exhaled air was repetitively collected pre-challenge, after reaching the provocative concentration (PC20 causing 20% fall in forced expiratory volume in 1 second (FEV1 and after subsequent salbutamol inhalation. At Visit 2, breath was collected pre-challenge, post-saline and post-salbutamol. At each occasion, an expiratory vital capacity was collected after 5 min of tidal breathing through an inspiratory VOC-filter in a Tedlar bag and sampled by electronic nose (Cyranose 320. Breathprints were analyzed with principal component analysis and individual factors were compared with mixed model analysis followed by pairwise comparisons. Inhalation of methacholine led to a 30.8 ± 3.3% fall in FEV1 and was followed by a significant change in breathprint (p = 0.04. Saline inhalation did not induce a significant change in FEV1, but altered the breathprint (p = 0.01. However, the breathprint obtained after the methacholine provocation was not significantly different from that after saline challenge (p = 0.27. The molecular profile of exhaled air in patients with asthma is altered by nebulized aerosols, but is not affected by acute changes in airway caliber. Our data demonstrate that breathprints by electronic nose are not confounded by the level of airway obstruction.

  18. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  19. Electronic Discharge Letter Mobile App

    NARCIS (Netherlands)

    Lezcano, Leonardo; Triana, Michel; Ternier, Stefaan; Hartkopf, Kathleen; Stieger, Lina; Schroeder, Hanna; Sopka, Sasa; Drachsler, Hendrik; Maher, Bridget; Henn, Patrick; Orrego, Carola; Specht, Marcus

    2014-01-01

    The electronic discharge letter mobile app takes advantage of Near Field Communication (NFC) within the PATIENT project and a related post-doc study. NFC enabled phones to read passive RFID tags, but can also use this short-range wireless technology to exchange (small) messages. NFC in that sense

  20. Pressure-driven fast reaction and recovery of peptide receptor for an electronic nose application

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yong Kyoung [Department of Electrical Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Sang-Myung [Department of Chemical Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo, E-mail: kshwang@kist.re.kr, E-mail: jhlee@kw.ac.kr [Center for Biomicrosystems, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Hoon Lee, Jeong, E-mail: kshwang@kist.re.kr, E-mail: jhlee@kw.ac.kr [Department of Electrical Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    2014-02-24

    Combining a highly sensitive sensor platform with highly selective recognition elements is essential for micro/nanotechnology-based electronic nose applications. Particularly, the regeneration sensor surface and its conditions are key issues for practical e-nose applications. We propose a highly sensitive piezoelectric-driven microcantilever array chip with highly selective peptide receptors. By utilizing the peptide receptor, which was discovered by a phase display screening process, we immobilized a dinitrotoluene (DNT) specific peptide as well as a DNT nonspecific peptide on the surface of the cantilever array. The delivery of DNT gas via pressure-driven flow led to a greater instant response of ∼30 Hz, compared to diffusion only (∼15 Hz for 15 h). Using a simple pressure-driven air flow of ∼50 sccm, we confirmed that a ratio of ∼70% of the specific-bounded sites from DNT gas molecules could be regenerated, showing re-usability of the peptide receptor in on-site monitoring for electronic nose applications.

  1. Validation of honey-bee smelling profile by using a commercial electronic nose

    Directory of Open Access Journals (Sweden)

    Ana R. Correa

    2017-09-01

    Full Text Available Honey is a natural sweetener and its quality labels are associated to its botanical or geographical origin, which is being established by palynological and sensorial analysis. The use of fast and non-invasive techniques such as an electronic nose can become an alternative for honey classification. In this study, the operational parameters of a commercial electronic nose were validated to determine the honey odor profile. A central composite design with five factors, three levels and 28 assays was used, varying sample amounts (1, 2 and 3 g, incubation temperature (30, 40 and 50 °C, incubation time 30 min, gas flow (50, 150 and 250 mL/min and injection time (100, 200 and 300 s. The commercial nose had ten sensors. Repeatability was evaluated with a coefficient of variation of 10 %. The response surface methodology was used and the optimal operating conditions were: 3 g of sample, incubation at 50 °C for 17 min, gas flow of 100 mL/min and sampling time of 150 s. Finally, these parameters were used to analyze 19 samples of honey, which were classified according to their odor profiles, showing that it can be a useful tool to classify honey.

  2. Gas Classification Using Combined Features Based on a Discriminant Analysis for an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Sang-Il Choi

    2016-01-01

    Full Text Available This paper proposes a gas classification method for an electronic nose (e-nose system, for which combined features that have been configured through discriminant analysis are used. First, each global feature is extracted from the entire measurement section of the data samples, while the same process is applied to the local features of the section that corresponds to the stabilization, exposure, and purge stages. The discriminative information amounts in the individual features are then measured based on the discriminant analysis, and the combined features are subsequently composed by selecting the features that have a large amount of discriminative information. Regarding a variety of volatile organic compound data, the results of the experiment show that, in a noisy environment, the proposed method exhibits classification performance that is relatively excellent compared to the other feature types.

  3. Calibration transfer between electronic nose systems for rapid In situ measurement of pulp and paper industry emissions

    International Nuclear Information System (INIS)

    Deshmukh, Sharvari; Kamde, Kalyani; Jana, Arun; Korde, Sanjivani; Bandyopadhyay, Rajib; Sankar, Ravi; Bhattacharyya, Nabarun; Pandey, R.A.

    2014-01-01

    Highlights: • E-nose developed for obnoxious emissions measurement at pulp and paper industrial site. • ANN model developed for prediction of (CH 3 ) 2 S, (CH 3 ) 2 S 2 , CH 3 SH and H 2 S concentration. • Calibration transfer methodology developed for transfer between two e-nose instruments. • Box–Behnken design and robust regression used for calibration transfer. • Results show effective transfer of training model from one e-nose system to other. - Abstract: Electronic nose systems when deployed in network mesh can effectively provide a low budget and onsite solution for the industrial obnoxious gaseous measurement. For accurate and identical prediction capability by all the electronic nose systems, a reliable calibration transfer model needs to be implemented in order to overcome the inherent sensor array variability. In this work, robust regression (RR) is used for calibration transfer between two electronic nose systems using a Box–Behnken (BB) design. Out of the two electronic nose systems, one was trained using industrial gas samples by four artificial neural network models, for the measurement of obnoxious odours emitted from pulp and paper industries. The emissions constitute mainly of hydrogen sulphide (H 2 S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) in different proportions. A Box–Behnken design consisting of 27 experiment sets based on synthetic gas combinations of H 2 S, MM, DMS and DMDS, were conducted for calibration transfer between two identical electronic nose systems. Identical sensors on both the systems were mapped and the prediction models developed using ANN were then transferred to the second system using BB–RR methodology. The results showed successful transmission of prediction models developed for one system to other system, with the mean absolute error between the actual and predicted concentration of analytes in mg L −1 after calibration transfer (on second system) being 0.076, 0

  4. A processing architecture for associative short-term memory in electronic noses

    Science.gov (United States)

    Pioggia, G.; Ferro, M.; Di Francesco, F.; DeRossi, D.

    2006-11-01

    Electronic nose (e-nose) architectures usually consist of several modules that process various tasks such as control, data acquisition, data filtering, feature selection and pattern analysis. Heterogeneous techniques derived from chemometrics, neural networks, and fuzzy rules used to implement such tasks may lead to issues concerning module interconnection and cooperation. Moreover, a new learning phase is mandatory once new measurements have been added to the dataset, thus causing changes in the previously derived model. Consequently, if a loss in the previous learning occurs (catastrophic interference), real-time applications of e-noses are limited. To overcome these problems this paper presents an architecture for dynamic and efficient management of multi-transducer data processing techniques and for saving an associative short-term memory of the previously learned model. The architecture implements an artificial model of a hippocampus-based working memory, enabling the system to be ready for real-time applications. Starting from the base models available in the architecture core, dedicated models for neurons, maps and connections were tailored to an artificial olfactory system devoted to analysing olive oil. In order to verify the ability of the processing architecture in associative and short-term memory, a paired-associate learning test was applied. The avoidance of catastrophic interference was observed.

  5. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Directory of Open Access Journals (Sweden)

    Marta Ferreiro-González

    2016-05-01

    Full Text Available Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose has been developed for the analysis of Ignitable Liquid Residues (ILRs. The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA and linear discriminant analysis (LDA were applied to the MS data (45–200 m/z to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin were used to ignite different substrates (wood, cotton, cork, paper and paperboard. A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses.

  6. A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose

    Directory of Open Access Journals (Sweden)

    Mohammad Mizanur Rahman

    2017-09-01

    Full Text Available Electronic noses (E-Noses are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor (k-NN, support vector machine (SVM, and multilayer perceptron neural network (MLPNN, are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN and generalized regression neural network (GRNN with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms.

  7. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    Science.gov (United States)

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  8. Headspace Analysis of Philippine Civet Coffee Beans Using Gas Chromatography-Mass Spectrometry and Electronic Nose

    Science.gov (United States)

    Ongo, E.; Sevilla, F.; Antonelli, A.; Sberveglieri, G.; Montevecchi, G.; Sberveglieri, V.; de Paola, E. L.; Concina, I.; Falasconi, M.

    2011-11-01

    Civet coffee, the most expensive and best coffee in the world, is an economically important export product of the Philippines. With a growing threat of food adulteration and counterfeiting, a need for quality authentication is essential to protect the integrity and strong market value of Philippine civet coffee. At present, there is no internationally accepted method of verifying whether a bean is an authentic civet coffee. This study presented a practical and promising approach to identify and establish the headspace qualitative profile of Philippine civet coffee using electronic nose (E-nose) and gas chromatography-mass spectrometry (GC-MS). E-nose analysis revealed that aroma characteristic is one of the most important quality indicators of civet coffee. The findings were supported by GC-MS analysis. Principal component analysis (PCA) exhibited a clearly separated civet coffees from their control beans. The chromatographic fingerprints indicated that civet coffees differed with their control beans in terms of composition and concentration of individual volatile constituents.

  9. High electron mobility InN

    International Nuclear Information System (INIS)

    Jones, R. E.; Li, S. X.; Haller, E. E.; van Genuchten, H. C. M.; Yu, K. M.; Ager, J. W. III; Liliental-Weber, Z.; Walukiewicz, W.; Lu, H.; Schaff, W. J.

    2007-01-01

    Irradiation of InN films with 2 MeV He + ions followed by thermal annealing below 500 deg. C creates films with high electron concentrations and mobilities, as well as strong photoluminescence. Calculations show that electron mobility in irradiated samples is limited by triply charged donor defects. Subsequent thermal annealing removes a fraction of the defects, decreasing the electron concentration. There is a large increase in electron mobility upon annealing; the mobilities approach those of the as-grown films, which have 10 to 100 times smaller electron concentrations. Spatial ordering of the triply charged defects is suggested to cause the unusual increase in electron mobility

  10. Identification of Four Wood Species by an Electronic Nose and by LIBS

    Directory of Open Access Journals (Sweden)

    Juliana R. Cordeiro

    2012-01-01

    Full Text Available This paper presents two complementary methods capable of identifying four wood species (Cedrela fissilis, Ocotea porosa, Hymenolobium petraeum, and Aspidosperma subincanum both by their volatile organic compounds and by the presence of 10 chemical elements: Al, B, Ca, Mg, Zn, Cu, Mn, Fe, Na, and Si. The volatile compounds were detected by an electronic nose formed by an array of three different conductive polymer gas sensors. The elemental determination was made by laser-induced breakdown spectrometry (LIBS. The emissions measured were treated by principal component analysis (PCA. Leave-one-out analysis showed a rate of hits of 100%.

  11. Identification Of Geographical Origin Of Coffee Before And After Roasting By Electronic Noses

    Science.gov (United States)

    Sberveglieri, V.; Concina, I.; Falasconi, M.; Ongo, E.; Pulvirenti, A.; Fava, P.

    2011-09-01

    Geographical origin traceability of food is a relevant issue for both producers' business protection and customers' rights safeguard. Differentiation of coffees on the basis of geographical origin is still a challenging issue, though possible by means of chemical techniques [1]. Between the most widely consumed beverage, coffee is a valuable one, with an aroma constituted by hundreds of volatiles [2]. Since the final global volatile composition is also determined by the cultivation climatic conditions, Electronic Noses (ENs) could be interesting candidates for distinguishing the geographical provenience by exploiting differences in chemical volatile profile. The present investigation is directed toward the characterization of green and roasted coffees samples according to their geographical origin.

  12. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  13. Application of the Electronic Nose Technique to Differentiation between Model Mixtures with COPD Markers

    Directory of Open Access Journals (Sweden)

    Jacek Namieśnik

    2013-04-01

    Full Text Available The paper presents the potential of an electronic nose technique in the field of fast diagnostics of patients suspected of Chronic Obstructive Pulmonary Disease (COPD. The investigations were performed using a simple electronic nose prototype equipped with a set of six semiconductor sensors manufactured by FIGARO Co. They were aimed at verification of a possibility of differentiation between model reference mixtures with potential COPD markers (N,N-dimethylformamide and N,N-dimethylacetamide. These mixtures contained volatile organic compounds (VOCs such as acetone, isoprene, carbon disulphide, propan-2-ol, formamide, benzene, toluene, acetonitrile, acetic acid, dimethyl ether, dimethyl sulphide, acrolein, furan, propanol and pyridine, recognized as the components of exhaled air. The model reference mixtures were prepared at three concentration levels—10 ppb, 25 ppb, 50 ppb v/v—of each component, except for the COPD markers. Concentration of the COPD markers in the mixtures was from 0 ppb to 100 ppb v/v. Interpretation of the obtained data employed principal component analysis (PCA. The investigations revealed the usefulness of the electronic device only in the case when the concentration of the COPD markers was twice as high as the concentration of the remaining components of the mixture and for a limited number of basic mixture components.

  14. A Novel Feature Extraction Approach Using Window Function Capturing and QPSO-SVM for Enhancing Electronic Nose Performance

    Directory of Open Access Journals (Sweden)

    Xiuzhen Guo

    2015-06-01

    Full Text Available In this paper, a novel feature extraction approach which can be referred to as moving window function capturing (MWFC has been proposed to analyze signals of an electronic nose (E-nose used for detecting types of infectious pathogens in rat wounds. Meanwhile, a quantum-behaved particle swarm optimization (QPSO algorithm is implemented in conjunction with support vector machine (SVM for realizing a synchronization optimization of the sensor array and SVM model parameters. The results prove the efficacy of the proposed method for E-nose feature extraction, which can lead to a higher classification accuracy rate compared to other established techniques. Meanwhile it is interesting to note that different classification results can be obtained by changing the types, widths or positions of windows. By selecting the optimum window function for the sensor response, the performance of an E-nose can be enhanced.

  15. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose: a pilot study.

    Science.gov (United States)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-06-16

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose (e-nose) could fit this profile but has never been tested in this setting before. In a single-center registered trial (NTR 4601) patients admitted with AECOPD were tested with the Aeonose(®) electronic nose, and a diagnosis of viral or bacterial infection was obtained by bacterial culture on sputa and viral PCR on nose swabs. A neural network with leave-10%-out cross-validation was used to assess the e-nose data. Forty three patients were included. In the bacterial infection model, 22 positive cases were tested versus the negatives; and similarly 18 positive cases were tested in the viral infection model. The Aeonose was able to distinguish between COPD-subjects suffering from a viral infection and COPD patients without infection, showing an area under the curve (AUC) of 0.74. Similarly, for bacterial infections, an AUC of 0.72 was obtained. The Aeonose e-nose yields promising results in 'smelling' the presence or absence of a viral or bacterial respiratory infection during an acute exacerbation of COPD. Validation of these results using a new and large cohort is required before introduction into clinical practice.

  16. Advances in Electronic-Nose Technologies for the Detection of Volatile Biomarker Metabolites in the Human Breath

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2015-03-01

    Full Text Available Recent advancements in the use of electronic-nose (e-nose devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to point-of-care clinical disease diagnoses. This exciting new area of electronic disease detection and diagnosis promises to yield much faster and earlier detection of human diseases and disorders, allowing earlier, more effective treatments, resulting in more rapid patient recovery from various afflictions. E-nose devices are particularly suited for the field of disease diagnostics, because they are sensitive to a wide range of volatile organic compounds (VOCs and can effectively distinguish between different complex gaseous mixtures via analysis of electronic aroma sensor-array output profiles of volatile metabolites present in the human breath. This review provides a summary of some recent developments of electronic-nose technologies, particularly involving breath analysis, with the potential for providing many new diagnostic applications for the detection of specific human diseases associated with different organs in the body, detectable from e-nose analyses of aberrant disease-associated VOCs present in air expired from the lungs.

  17. Exhaled breath analysis using electronic nose in cystic fibrosis and primary ciliary dyskinesia patients with chronic pulmonary infections

    DEFF Research Database (Denmark)

    Joensen, Odin; Paff, Tamara; Haarman, Eric G

    2014-01-01

    The current diagnostic work-up and monitoring of pulmonary infections may be perceived as invasive, is time consuming and expensive. In this explorative study, we investigated whether or not a non-invasive exhaled breath analysis using an electronic nose would discriminate between cystic fibrosis...... (CF) and primary ciliary dyskinesia (PCD) with or without various well characterized chronic pulmonary infections. We recruited 64 patients with CF and 21 with PCD based on known chronic infection status. 21 healthy volunteers served as controls. An electronic nose was employed to analyze exhaled......, this method significantly discriminates CF patients suffering from a chronic pulmonary P. aeruginosa (PA) infection from CF patients without a chronic pulmonary infection. Further studies are needed for verification and to investigate the role of electronic nose technology in the very early diagnostic workup...

  18. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Siavash Esfahani

    2016-01-01

    Full Text Available The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose. It was discovered that gas emissions (concentration and diversity reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life.

  19. Variation in Gas and Volatile Compound Emissions from Human Urine as It Ages, Measured by an Electronic Nose

    Science.gov (United States)

    Esfahani, Siavash; Sagar, Nidhi M.; Kyrou, Ioannis; Mozdiak, Ella; O’Connell, Nicola; Nwokolo, Chuka; Bardhan, Karna D.; Arasaradnam, Ramesh P.; Covington, James A.

    2016-01-01

    The medical profession is becoming ever more interested in the use of gas-phase biomarkers for disease identification and monitoring. This is due in part to its rapid analysis time and low test cost, which makes it attractive for many different clinical arenas. One technology that is showing promise for analyzing these gas-phase biomarkers is the electronic nose—an instrument designed to replicate the biological olfactory system. Of the possible biological media available to “sniff”, urine is becoming ever more important as it is easy to collect and to store for batch testing. However, this raises the question of sample storage shelf-life, even at −80 °C. Here we investigated the effect of storage time (years) on stability and reproducibility of total gas/vapour emissions from urine samples. Urine samples from 87 patients with Type 2 Diabetes Mellitus were collected over a four-year period and stored at −80 °C. These samples were then analyzed using FAIMS (field-asymmetric ion mobility spectrometry—a type of electronic nose). It was discovered that gas emissions (concentration and diversity) reduced over time. However, there was less variation in the initial nine months of storage with greater uniformity and stability of concentrations together with tighter clustering of the total number of chemicals released. This suggests that nine months could be considered a general guide to a sample shelf-life. PMID:26821055

  20. Towards an Electronic Dog Nose: Surface Plasmon Resonance Immunosensor for Security and Safety

    Directory of Open Access Journals (Sweden)

    Takeshi Onodera

    2014-09-01

    Full Text Available This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol, dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.

  1. Validation of exhaled volatile organic compounds analysis using electronic nose as index of COPD severity

    Directory of Open Access Journals (Sweden)

    Finamore P

    2018-05-01

    Full Text Available Panaiotis Finamore,1 Claudio Pedone,1 Simone Scarlata,1 Alessandra Di Paolo,1 Simone Grasso,2 Marco Santonico,2 Giorgio Pennazza,2 Raffaele Antonelli Incalzi1 1Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy; 2Unit of Electronics for Sensor Systems, Campus Bio-Medico di Roma University, Rome, Italy Aim: Six-minute walking test distance (6MWD and body mass index, obstruction, dyspnea and exercise (BODE index are measures of functional status in COPD patients, but require space, time and patient’s compliance. Exhaled volatile organic compounds (VOCs analysis via electronic nose is a quick and easy method that has already been used to discriminate COPD phenotypes. The aim of this study is to evaluate whether VOCs analysis can predict functional status and its variation over time in COPD patients.Methods: A monocentric prospective study with 1 year of follow-up was carried out. All patients underwent pulmonary function tests, arterial gas analysis, bioimpedance analysis, 6-minute walking test, and VOCs collection. Exhaled breath was collected with Pneumopipe® and analyzed using BIONOTE electronic nose. Outcomes prediction was performed by k-fold cross-validated partial least square discriminant analysis: accuracy, sensitivity and specificity as well as Cohen’s kappa for agreement were calculated.Results: We enrolled 63 patients, 60.3% men, with a mean age of 71 (SD: 8 years, median BODE index of 1 (interquartile range: 0–3 and mean 6MWD normalized by squared height (n6MWD of 133.5 (SD: 42 m/m2. The BIONOTE predicted baseline BODE score (dichotomized as BODE score <3 or ≥3 with an accuracy of 86% and quartiles of n6MWD with an accuracy of 79%. n6MWD decline more than the median value after 1 year was predicted with an accuracy of 86% by BIONOTE, 52% by Global Initiative for Chronic Obstructive Lung Disease (GOLD class and 78% by combined BIONOTE and GOLD class.Conclusion: Exhaled VOCs analysis identifies classes of BODE

  2. Volatile Discrimination of Irradiated and Fumigated White Ginseng Powders at Different Storage Times and Temperatures Using the Electronic Nose

    International Nuclear Information System (INIS)

    Kwon, J.H.; Shin, J.A.; Lee, K.T.

    2006-01-01

    The pattern of volatile emissions from white ginseng powders (WGP) that were treated with selected preservatives was investigated during 5-months of storage (at-10 and 25℃) by an electronic nose system equipped with 12 metal-oxide sensors. WGP were treated with gamma radiation at 5 kGy, commercial methyl bromide (MeBr), and phosphine fumigations. Electronic nose differentiated the volatile patterns of the WGP with each different preservative treatment. In addition, each volatile pattern was affected by both storage time (1, 2 and 5 months) and temperature (-10 and 25℃)

  3. Development of fabric-based chemical gas sensors for use as wearable electronic noses.

    Science.gov (United States)

    Seesaard, Thara; Lorwongtragool, Panida; Kerdcharoen, Teerakiat

    2015-01-16

    Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose). The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP)/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  4. Development of Fabric-Based Chemical Gas Sensors for Use as Wearable Electronic Noses

    Directory of Open Access Journals (Sweden)

    Thara Seesaard

    2015-01-01

    Full Text Available Novel gas sensors embroidered into fabric substrates based on polymers/ SWNT-COOH nanocomposites were proposed in this paper, aiming for their use as a wearable electronic nose (e-nose. The fabric-based chemical gas sensors were fabricated by two main processes: drop coating and embroidery. Four potential polymers (PVC, cumene-PSMA, PSE and PVP/functionalized-SWCNT sensing materials were deposited onto interdigitated electrodes previously prepared by embroidering conductive thread on a fabric substrate to make an optimal set of sensors. After preliminary trials of the obtained sensors, it was found that the sensors yielded a electrical resistance in the region of a few kilo-Ohms. The sensors were tested with various volatile compounds such as ammonium hydroxide, ethanol, pyridine, triethylamine, methanol and acetone, which are commonly found in the wastes released from the human body. These sensors were used to detect and discriminate between the body odors of different regions and exist in various forms such as the urine, armpit and exhaled breath odor. Based on a simple pattern recognition technique, we have shown that the proposed fabric-based chemical gas sensors can discriminate the human body odor from two persons.

  5. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Özbilge Hatice

    2010-11-01

    Full Text Available Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument. Method Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance. Results We have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and

  6. A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges

    International Nuclear Information System (INIS)

    Gruber, Jonas; Nascimento, Henry M.; Yamauchi, Elaine Y.; Li, Rosamaria W.C.; Esteves, Carlos H.A.; Rehder, Gustavo P.; Gaylarde, Christine C.; Shirakawa, Márcia A.

    2013-01-01

    We describe the construction of an electronic nose, comprising four chemiresistive sensors formed by the deposition of thin conductive polymer films onto interdigitated electrodes, attached to a personal computer via a data acquisition board. This e-nose was used to detect biodeterioration of oranges colonized by Penicillium digitatum. Significant responses were obtained after only 24 h of incubation i.e. at an early stage of biodeterioration, enabling remedial measures to be taken in storage facilities and efficiently distinguishing between good and poor quality fruits. The instrument has a very low analysis time of 40 s. - Highlights: • Early detection of Penicillium digitatum in oranges • Low cost electronic nose based on conductive polymers • Efficient distinction between good and poor quality fruits

  7. A conductive polymer based electronic nose for early detection of Penicillium digitatum in post-harvest oranges

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Jonas, E-mail: jogruber@iq.usp.br [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Nascimento, Henry M. [Sociedade Brasileira de Microbiologia, São Paulo, SP (Brazil); Yamauchi, Elaine Y. [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Li, Rosamaria W.C. [Centro Universitário Estácio Radial São Paulo, São Paulo, SP (Brazil); Esteves, Carlos H.A. [Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CEP 05508-000 São Paulo, SP (Brazil); Rehder, Gustavo P. [Escola Politécnica, Universidade de São Paulo, São Paulo, SP (Brazil); Gaylarde, Christine C. [University of Portsmouth, Portsmouth (United Kingdom); Shirakawa, Márcia A. [Escola Politécnica, Universidade de São Paulo, São Paulo, SP (Brazil)

    2013-07-01

    We describe the construction of an electronic nose, comprising four chemiresistive sensors formed by the deposition of thin conductive polymer films onto interdigitated electrodes, attached to a personal computer via a data acquisition board. This e-nose was used to detect biodeterioration of oranges colonized by Penicillium digitatum. Significant responses were obtained after only 24 h of incubation i.e. at an early stage of biodeterioration, enabling remedial measures to be taken in storage facilities and efficiently distinguishing between good and poor quality fruits. The instrument has a very low analysis time of 40 s. - Highlights: • Early detection of Penicillium digitatum in oranges • Low cost electronic nose based on conductive polymers • Efficient distinction between good and poor quality fruits.

  8. Electronic nose as an innovative tool for the diagnosis of grapevine crown gall

    Energy Technology Data Exchange (ETDEWEB)

    Blasioli, S., E-mail: sonia.blasioli@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy); Biondi, E., E-mail: erbiondi@tin.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy); Braschi, I., E-mail: ilaria.braschi@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy); Mazzucchi, U., E-mail: umberto.mazzucchi@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy); Bazzi, C., E-mail: carlo.bazzi@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy); Gessa, C.E., E-mail: carloemanuele.gessa@unibo.it [Dipartimento di Scienze e Tecnologie Agroambientali, Universita di Bologna, V.le Fanin, 44, 40127 Bologna (Italy)

    2010-07-05

    For the first time, a portable electronic nose was used to discriminate between healthy and galled grapevines, experimentally inoculated with two tumourigenic strains of Agrobacterium vitis. The volatile profile of target cutting samples was analysed by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry. Spectra from tumoured samples revealed the presence of styrene which is compatible with decarboxylation of cinnamic acid involved in secondary metabolism of plants. Principal Component Analysis confirmed the difference in volatile profiles of infected vines and their healthy controls. Linear Discriminant Analysis allowed the correct discrimination between healthy and galled grapevines (83.3%, cross-validation). Although a larger number of samples should be analysed to create a more robust model, our results give novel interesting clues to go further with research on the diagnostic potential of this innovative system associated with multi-dimensional chemometric techniques.

  9. Development of an electronic nose sensing platform for undergraduate education in nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Daniel V; Burek, Michael J; Iutzi, Ryan M; Mracek, James A; Hesjedal, Thorsten, E-mail: thesjeda@uwaterloo.ca [Nanotechnology Engineering Program and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1 (Canada)

    2011-05-15

    The teaching of the different aspects of a sensor system, with a focus on the involved nanotechnology, is a challenging, yet important task. We present the development of an electronic nose system that utilizes a nanoscale amperometric sensing mechanism for gas mixtures. The fabrication of the system makes use of a basic microfabrication facility, as well as an undergraduate chemistry laboratory for material synthesis and preparation. The sensing device consists of an array of cross-reactive sensors composed of metal-oxide semiconducting nanoparticles. Each sensor in the array produces a unique response in the presence of a target gas, allowing the sensor to determine the identity and concentration of multiple gases in a mixture. The educational aspects include microheater simulation and fabrication, design and fabrication of interdigitated electrodes, development of interfacing circuitry and software, development and calibration of a sensory array, sol-gel processing of nanoparticle films and their characterization, and details of the fundamental chemical sensing mechanism.

  10. Molecular modeling of interactions in electronic nose sensors for environmental monitoring

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Yen, S. -P. S.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a study aimed at understanding analyte interactions with sensors made from polymer-carbon black composite films. The sensors are used in an Electronic Nose (ENose) which is used for monitoring the breathing air quality in human habitats. The model mimics the experimental conditions of the composite film deposition and formation and was developed using molecular modeling and simulation tools. The Dreiding 2.21 Force Field was used for the polymer and analyte molecules while graphite parameters were assigned to the carbon black atoms. The polymer considered for this work is methyl vinyl ether / maleic acid copolymer. The target analytes include both inorganic (NH3) and organic (methanol) types of compound. Results indicate different composite-analyte interaction behavior.

  11. Monitoring space shuttle air quality using the Jet Propulsion Laboratory electronic nose

    Science.gov (United States)

    Ryan, Margaret Amy; Zhou, Hanying; Buehler, Martin G.; Manatt, Kenneth S.; Mowrey, Victoria S.; Jackson, Shannon P.; Kisor, Adam K.; Shevade, Abhijit V.; Homer, Margie L.

    2004-01-01

    A miniature electronic nose (ENose) has been designed and built at the Jet Propulsion Laboratory (JPL), Pasadena, CA, and was designed to detect, identify, and quantify ten common contaminants and relative humidity changes. The sensing array includes 32 sensing films made from polymer carbon-black composites. Event identification and quantification were done using the Levenberg-Marquart nonlinear least squares method. After successful ground training, this ENose was used in a demonstration experiment aboard STS-95 (October-November, 1998), in which the ENose was operated continuously for six days and recorded the sensors' response to the air in the mid-deck. Air samples were collected daily and analyzed independently after the flight. Changes in shuttle-cabin humidity were detected and quantified by the JPL ENose; neither the ENose nor the air samples detected any of the contaminants on the target list. The device is microgravity insensitive.

  12. Calibration transfer between electronic nose systems for rapid In situ measurement of pulp and paper industry emissions

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Sharvari [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata (India); Kamde, Kalyani [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Jana, Arun [Center for Development of Advance Computing, Kolkata (India); Korde, Sanjivani [CSIR-National Environmental Engineering and Research Institute, Nagpur (India); Bandyopadhyay, Rajib [Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata (India); Sankar, Ravi [Center for Development of Advance Computing, Kolkata (India); Bhattacharyya, Nabarun, E-mail: nabarun.bhattacharya@cdac.in [Center for Development of Advance Computing, Kolkata (India); Pandey, R.A., E-mail: ra_pandey@neeri.res.in [CSIR-National Environmental Engineering and Research Institute, Nagpur (India)

    2014-09-02

    Highlights: • E-nose developed for obnoxious emissions measurement at pulp and paper industrial site. • ANN model developed for prediction of (CH{sub 3}){sub 2}S, (CH{sub 3}){sub 2}S{sub 2}, CH{sub 3}SH and H{sub 2}S concentration. • Calibration transfer methodology developed for transfer between two e-nose instruments. • Box–Behnken design and robust regression used for calibration transfer. • Results show effective transfer of training model from one e-nose system to other. - Abstract: Electronic nose systems when deployed in network mesh can effectively provide a low budget and onsite solution for the industrial obnoxious gaseous measurement. For accurate and identical prediction capability by all the electronic nose systems, a reliable calibration transfer model needs to be implemented in order to overcome the inherent sensor array variability. In this work, robust regression (RR) is used for calibration transfer between two electronic nose systems using a Box–Behnken (BB) design. Out of the two electronic nose systems, one was trained using industrial gas samples by four artificial neural network models, for the measurement of obnoxious odours emitted from pulp and paper industries. The emissions constitute mainly of hydrogen sulphide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS) in different proportions. A Box–Behnken design consisting of 27 experiment sets based on synthetic gas combinations of H{sub 2}S, MM, DMS and DMDS, were conducted for calibration transfer between two identical electronic nose systems. Identical sensors on both the systems were mapped and the prediction models developed using ANN were then transferred to the second system using BB–RR methodology. The results showed successful transmission of prediction models developed for one system to other system, with the mean absolute error between the actual and predicted concentration of analytes in mg L{sup −1} after calibration

  13. Diagnosing viral and bacterial respiratory infections in acute COPD exacerbations by an electronic nose : a pilot study

    NARCIS (Netherlands)

    van Geffen, Wouter H; Bruins, Marcel; Kerstjens, Huib A M

    2016-01-01

    Respiratory infections, viral or bacterial, are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). A rapid, point-of-care, and easy-to-use tool distinguishing viral and bacterial from other causes would be valuable in routine clinical care. An electronic nose

  14. ``Low-cost Electronic nose evaluated on Thai-herb of Northern-Thailand samples using multivariate analysis methods''

    Science.gov (United States)

    na ayudhaya, Paisarn Daungjak; Klinbumrung, Arrak; Jaroensutasinee, Krisanadej; Pratontep, Sirapat; Kerdcharoen, Teerakiat

    2009-05-01

    In case of species of natural and aromatic plant originated from the northern Thailand, sensory characteristics, especially odours, have unique identifiers of herbs. The instruments sensory analysis have performed by several of differential of sensing, so call `electronic nose', to be a significantly and rapidly for chemometrics. The signal responses of the low cost electronic nose were evaluated by principal component analysis (PCA). The aims of this paper evaluated various of Thai-herbs grown in Northern of Thailand as data preprocessing tools of the Low-cost electronic nose (enNU-PYO1). The essential oil groups of Thai herbs such as Garlic, Lemongrass, Shallot (potato onion), Onion, Zanthoxylum limonella (Dennst.) Alston (Thai name is Makaen), and Kaffir lime leaf were compared volatilized from selected fresh herbs. Principal component analysis of the original sensor responses did clearly distinguish either all samples. In all cases more than 97% for cross-validated group were classified correctly. The results demonstrated that it was possible to develop in a model to construct a low-cost electronic nose to provide measurement of odoriferous herbs.

  15. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform.

    Science.gov (United States)

    Wei, Zhebo; Xiao, Xize; Wang, Jun; Wang, Hui

    2017-10-31

    In this study, a portable electronic nose (E-nose) was self-developed to identify rice wines with different marked ages-all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP) and the aftertaste information obtained phase (AIOP). The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA), locally linear embedding (LLE) and linear discriminant analysis (LDA) were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR) and support vector machine (SVM) were applied for the predictions of marked ages and SVM (R² = 0.9942) worked much better than PLSR.

  16. Identification of the Rice Wines with Different Marked Ages by Electronic Nose Coupled with Smartphone and Cloud Storage Platform

    Directory of Open Access Journals (Sweden)

    Zhebo Wei

    2017-10-01

    Full Text Available In this study, a portable electronic nose (E-nose was self-developed to identify rice wines with different marked ages—all the operations of the E-nose were controlled by a special Smartphone Application. The sensor array of the E-nose was comprised of 12 MOS sensors and the obtained response values were transmitted to the Smartphone thorough a wireless communication module. Then, Aliyun worked as a cloud storage platform for the storage of responses and identification models. The measurement of the E-nose was composed of the taste information obtained phase (TIOP and the aftertaste information obtained phase (AIOP. The area feature data obtained from the TIOP and the feature data obtained from the TIOP-AIOP were applied to identify rice wines by using pattern recognition methods. Principal component analysis (PCA, locally linear embedding (LLE and linear discriminant analysis (LDA were applied for the classification of those wine samples. LDA based on the area feature data obtained from the TIOP-AIOP proved a powerful tool and showed the best classification results. Partial least-squares regression (PLSR and support vector machine (SVM were applied for the predictions of marked ages and SVM (R2 = 0.9942 worked much better than PLSR.

  17. Is it possible to rapidly and noninvasively identify different plants from Asteraceae using electronic nose with multiple mathematical algorithms?

    Directory of Open Access Journals (Sweden)

    Hui-Qin Zou

    2015-12-01

    Full Text Available Many plants originating from the Asteraceae family are applied as herbal medicines and also beverage ingredients in Asian areas, particularly in China. However, they may be confused due to their similar odor, especially when ground into powder, losing their typical macroscopic characteristics. In this paper, 11 different multiple mathematical algorithms, which are commonly used in data processing, were utilized and compared to analyze the electronic nose (E-nose response signals of different plants from Asteraceae family. Results demonstrate that three-dimensional plot scatter figure of principal component analysis with less extracted components could offer the identification results more visually; simultaneously, all nine kinds of artificial neural network could give classification accuracies at 100%. This paper presents a rapid, accurate, and effective method to distinguish Asteraceae plants based on their response signals in E-nose. It also gives insights to further studies, such as to find unique sensors that are more sensitive and exclusive to volatile components in Chinese herbal medicines and to improve the identification ability of E-nose. Screening sensors made by other novel materials would be also an interesting way to improve identification capability of E-nose.

  18. Electronic nose with a new feature reduction method and a multi-linear classifier for Chinese liquor classification

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng; Zeng, Ming; Li, Wei; Ma, Shugen [Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-05-15

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classification rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.

  19. Electronic nose with a new feature reduction method and a multi-linear classifier for Chinese liquor classification

    International Nuclear Information System (INIS)

    Jing, Yaqi; Meng, Qinghao; Qi, Peifeng; Zeng, Ming; Li, Wei; Ma, Shugen

    2014-01-01

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classification rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively

  20. INTERFACE ELECTRONIC MEDICAL CARD ON MOBILE DEVICE

    Directory of Open Access Journals (Sweden)

    Y. L. Nechyporenko

    2013-05-01

    Full Text Available The concept designed by electronic medical card for heterogeneous environment of medical information systems at various levels. Appropriate model and technical solution. Done evaluating operating systems for mobile devices. Designed and produced by the project mobile application on Android OS as an electronic medical record on a Tablet PC Acer.

  1. An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD.

    Science.gov (United States)

    Dragonieri, Silvano; Annema, Jouke T; Schot, Robert; van der Schee, Marc P C; Spanevello, Antonio; Carratú, Pierluigi; Resta, Onofrio; Rabe, Klaus F; Sterk, Peter J

    2009-05-01

    Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish the VOCs pattern in exhaled breath of lung cancer patients from healthy controls. We hypothesized that an electronic nose can discriminate patients with lung cancer from COPD patients and healthy controls by analyzing the VOC-profile in exhaled breath. 30 subjects participated in a cross-sectional study: 10 patients with non-small cell lung cancer (NSCLC, [age 66.4+/-9.0, FEV(1) 86.3+/-20.7]), 10 patients with COPD (age 61.4+/-5.5, FEV(1) 70.0+/-14.8) and 10 healthy controls (age 58.3+/-8.1, FEV(1) 108.9+/-14.6). After 5 min tidal breathing through a non-rebreathing valve with inspiratory VOC-filter, subjects performed a single vital capacity maneuver to collect dried exhaled air into a Tedlar bag. The bag was connected to the electronic nose (Cyranose 320) within 10 min, with VOC-filtered room air as baseline. The smellprints were analyzed by onboard statistical software. Smellprints from NSCLC patients clustered distinctly from those of COPD subjects (cross validation value [CVV]: 85%; M-distance: 3.73). NSCLC patients could also be discriminated from healthy controls in duplicate measurements (CVV: 90% and 80%, respectively; M-distance: 2.96 and 2.26). VOC-patterns of exhaled breath discriminates patients with lung cancer from COPD patients as well as healthy controls. The electronic nose may qualify as a non-invasive diagnostic tool for lung cancer in the future.

  2. Gestão de odores: fundamentos do Nariz Eletrônico Odor management: fundamentals of Electronic Nose

    Directory of Open Access Journals (Sweden)

    Henrique de Melo Lisboa

    2009-03-01

    Full Text Available Narizes Eletrônicos têm sido desenvolvidos para detecção automática e classificação de odores, vapores e gases. São instrumentos capazes de medir a concentração ou intensidade odorante de modo similar a um olfatômetro, mas sem as limitações inerentes ao uso de painéis humanos, o que é altamente desejável. Um Nariz Eletrônico é geralmente composto por um sistema de sensores químicos e um sistema eletrônico associado à inteligência artificial para reconhecimento. Têm sido aplicados em muitas áreas, tais como análise de alimentos, controles ambientais e diagnósticos médicos. Do ponto de vista ambiental, sistemas de Narizes Eletrônicos vêm sendo usados para monitorar a qualidade do ar, detectar fontes e quantificar emissões odorantes. Este artigo pretende apresentar os fundamentos dos Narizes Eletrônicos.Electronic noses have been developed for automatic detection and classification of odors, vapors and gases. They are instruments capable to identify odors as the human nose does, and measure the odor concentration or intensity according to similar metrics as an olfactometer, but without the inherent limitations of human panels. An Electronic Nose is generally composed of a matrix of chemical sensors and computer based system for odor recognition and classification. It has been applied in many areas, such as food quality analysis, explosives detection, environmental monitoring and medical diagnosis. In the ambient environment, systems of Electronic Noses have been used to monitor the quality of air and to detect and quantify odor sources and emissions. This article intends to present the fundamentals and main characteristics of Electronic Noses.

  3. A Novel Method for the Discrimination of Semen Arecae and Its Processed Products by Using Computer Vision, Electronic Nose, and Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Min Xu

    2015-01-01

    Full Text Available Areca nut, commonly known locally as Semen Arecae (SA in China, has been used as an important Chinese herbal medicine for thousands of years. The raw SA (RAW is commonly processed by stir-baking to yellow (SBY, stir-baking to dark brown (SBD, and stir-baking to carbon dark (SBC for different clinical uses. In our present investigation, intelligent sensory technologies consisting of computer vision (CV, electronic nose (E-nose, and electronic tongue (E-tongue were employed in order to develop a novel and accurate method for discrimination of SA and its processed products. Firstly, the color parameters and electronic sensory responses of E-nose and E-tongue of the samples were determined, respectively. Then, indicative components including 5-hydroxymethyl furfural (5-HMF and arecoline (ARE were determined by HPLC. Finally, principal component analysis (PCA and discriminant factor analysis (DFA were performed. The results demonstrated that these three instruments can effectively discriminate SA and its processed products. 5-HMF and ARE can reflect the stir-baking degree of SA. Interestingly, the two components showed close correlations to the color parameters and sensory responses of E-nose and E-tongue. In conclusion, this novel method based on CV, E-nose, and E-tongue can be successfully used to discriminate SA and its processed products.

  4. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose

    Energy Technology Data Exchange (ETDEWEB)

    Berna, Amalia Z., E-mail: Amalia.Berna@csiro.au [CSIRO Entomology and Food Futures Flagship, PO Box 1700, Canberra, ACT 2601 (Australia); Trowell, Stephen [CSIRO Entomology and Food Futures Flagship, PO Box 1700, Canberra, ACT 2601 (Australia); Clifford, David [CSIRO Mathematical and Information Sciences, Locked Bag 17, North Ryde, NSW 1670 (Australia); Cynkar, Wies; Cozzolino, Daniel [The Australian Wine Research Institute, Waite Road, Urrbrae, PO Box 197, Adelaide, SA 5064 (Australia)

    2009-08-26

    Analysis of 34 Sauvignon Blanc wine samples from three different countries and six regions was performed by gas chromatography-mass spectrometry (GC-MS). Linear discriminant analysis (LDA) showed that there were three distinct clusters or classes of wines with different aroma profiles. Wines from the Loire region in France and Australian wines from Tasmania and Western Australia were found to have similar aroma patterns. New Zealand wines from the Marlborough region as well as the Australian ones from Victoria were grouped together based on the volatile composition. Wines from South Australia region formed one discrete class. Seven analytes, most of them esters, were found to be the relevant chemical compounds that characterized the classes. The grouping information obtained by GC-MS, was used to train metal oxide based electronic (MOS-Enose) and mass spectrometry based electronic (MS-Enose) noses. The combined use of solid phase microextraction (SPME) and ethanol removal prior to MOS-Enose analysis, allowed an average error of prediction of the regional origins of Sauvignon Blanc wines of 6.5% compared to 24% when static headspace (SHS) was employed. For MS-Enose, the misclassification rate was higher probably due to the requirement to delimit the m/z range considered.

  5. Geographical origin of Sauvignon Blanc wines predicted by mass spectrometry and metal oxide based electronic nose

    International Nuclear Information System (INIS)

    Berna, Amalia Z.; Trowell, Stephen; Clifford, David; Cynkar, Wies; Cozzolino, Daniel

    2009-01-01

    Analysis of 34 Sauvignon Blanc wine samples from three different countries and six regions was performed by gas chromatography-mass spectrometry (GC-MS). Linear discriminant analysis (LDA) showed that there were three distinct clusters or classes of wines with different aroma profiles. Wines from the Loire region in France and Australian wines from Tasmania and Western Australia were found to have similar aroma patterns. New Zealand wines from the Marlborough region as well as the Australian ones from Victoria were grouped together based on the volatile composition. Wines from South Australia region formed one discrete class. Seven analytes, most of them esters, were found to be the relevant chemical compounds that characterized the classes. The grouping information obtained by GC-MS, was used to train metal oxide based electronic (MOS-Enose) and mass spectrometry based electronic (MS-Enose) noses. The combined use of solid phase microextraction (SPME) and ethanol removal prior to MOS-Enose analysis, allowed an average error of prediction of the regional origins of Sauvignon Blanc wines of 6.5% compared to 24% when static headspace (SHS) was employed. For MS-Enose, the misclassification rate was higher probably due to the requirement to delimit the m/z range considered.

  6. Pattern Classification Using an Olfactory Model with PCA Feature Selection in Electronic Noses: Study and Application

    Directory of Open Access Journals (Sweden)

    Junbao Zheng

    2012-03-01

    Full Text Available Biologically-inspired models and algorithms are considered as promising sensor array signal processing methods for electronic noses. Feature selection is one of the most important issues for developing robust pattern recognition models in machine learning. This paper describes an investigation into the classification performance of a bionic olfactory model with the increase of the dimensions of input feature vector (outer factor as well as its parallel channels (inner factor. The principal component analysis technique was applied for feature selection and dimension reduction. Two data sets of three classes of wine derived from different cultivars and five classes of green tea derived from five different provinces of China were used for experiments. In the former case the results showed that the average correct classification rate increased as more principal components were put in to feature vector. In the latter case the results showed that sufficient parallel channels should be reserved in the model to avoid pattern space crowding. We concluded that 6~8 channels of the model with principal component feature vector values of at least 90% cumulative variance is adequate for a classification task of 3~5 pattern classes considering the trade-off between time consumption and classification rate.

  7. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  8. Early detection of fungal contamination on green coffee by a MOX sensors based Electronic Nose

    International Nuclear Information System (INIS)

    Sberveglieri, V.; Pulvirenti, A.; Fava, P.; Concina, I.; Falasconi, M.; Gobbi, E.

    2011-01-01

    Fungal growth can occur on green coffee beans along all the distribution chain, eventually bringing on health hazards to consumers, because of the production of toxic metabolites (mycotoxins). Besides, the sensorial contamination due to volatiles by-products of fungal metabolism could cause defects on coffee also after roasting. Therefore, it is necessary to devise strategies to detect and quantify fungal infection and toxin production at early stages of the food chain. One of the most promising techniques is the analysis of volatile compounds in the headspace gas surrounding the samples. The aim of this work was to verify the ability of the Electronic Nose (EN EOS 835 ) to early detect the microbial contamination of Arabica green coffee. This EN is equipped with Metal Oxide Semiconductor sensor array. Gas chromatography coupled to mass spectrometry (GC-MS) analysis of the static headspace of non-contaminated Arabica green coffee samples was carried out to confirm the EN ability to provide satisfactory indications about the presence of contamination.

  9. Identification by microscopy and MS-based electronic nose of a fraudulent addition to maize gluten

    Directory of Open Access Journals (Sweden)

    Frick G.

    2009-01-01

    Full Text Available Classical and chemometric methods have been used to detect falsified maize gluten products. Microscopic observations (numerous starch grains, seed envelopes and wheat bran fragments clearly showed the presence of atypical maize gluten particles in samples with otherwise normal crude protein levels (≥ 60% and the usual gold-yellow color. Chemical analyses in a few samples confirmed the presence of urea (19 to 174 g.kg-1, melamine (0 to 20 g.kg-1, and cyanuric acid (0 to 10 g.kg-1 coping for the low levels of methionine (0 to 13 g.kg-1 in incriminated products (genuine maize gluten methionine level ≥ 16 g.kg-1. Furthermore, a fast technique (an electronic nose based on mass spectrometry detection also proved to be reliable for the identification of falsified maize gluten products: 100% correct classification of model and unknown samples was achieved with principal component analysis. As a consequence of these results, the Swiss feed-inspection authority blocked the import, or restricted the use, of 2,500 tons of the falsified products.

  10. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    Science.gov (United States)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  11. Rapid identification of pork for halal authentication using the electronic nose and gas chromatography mass spectrometer with headspace analyzer.

    Science.gov (United States)

    Nurjuliana, M; Che Man, Y B; Mat Hashim, D; Mohamed, A K S

    2011-08-01

    The volatile compounds of pork, other meats and meat products were studied using an electronic nose and gas chromatography mass spectrometer with headspace analyzer (GCMS-HS) for halal verification. The zNose™ was successfully employed for identification and differentiation of pork and pork sausages from beef, mutton and chicken meats and sausages which were achieved using a visual odor pattern called VaporPrint™, derived from the frequency of the surface acoustic wave (SAW) detector of the electronic nose. GCMS-HS was employed to separate and analyze the headspace gasses from samples into peaks corresponding to individual compounds for the purpose of identification. Principal component analysis (PCA) was applied for data interpretation. Analysis by PCA was able to cluster and discriminate pork from other types of meats and sausages. It was shown that PCA could provide a good separation of the samples with 67% of the total variance accounted by PC1. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biofiltration of composting gases using different municipal solid waste-pruning residue composts: monitoring by using an electronic nose.

    Science.gov (United States)

    López, R; Cabeza, I O; Giráldez, I; Díaz, M J

    2011-09-01

    The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Close-To-Practice Assessment Of Meat Freshness With Metal Oxide Sensor Microarray Electronic Nose

    International Nuclear Information System (INIS)

    Musatov, V. Yu.; Sysoev, V. V.; Sommer, M.; Kiselev, I.

    2009-01-01

    In this report we estimate the ability of KAMINA e-nose, based on a metal oxide sensor (MOS) microarray and Linear Discriminant Analysis (LDA) pattern recognition, to evaluate meat freshness. The received results show that, 1) one or two exposures of standard meat samples to the e-nose are enough for the instrument to recognize the fresh meat prepared by the same supplier with 100% probability; 2) the meat samples of two kinds, stored at 4 deg. C and 25 deg. C, are mutually recognized at early stages of decay with the help of the LDA model built independently under the e-nose training to each kind of meat; 3) the 3-4 training cycles of exposure to meat from different suppliers are necessary for the e-nose to build a reliable LDA model accounting for the supplier factor. This study approves that the MOS e-nose is ready to be currently utilised in food industry for evaluation of product freshness. The e-nose performance is characterized by low training cost, a confident recognition power of various product decay conditions and easy adjustment to changing conditions.

  14. Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose.

    Science.gov (United States)

    Olsson, J; Börjesson, T; Lundstedt, T; Schnürer, J

    2002-02-05

    Mycotoxin contamination of cereal grains can be detected and quantified using complex extraction procedures and analytical techniques. Normally, the grain odour, i.e. the presence of non-grain volatile metabolites, is used for quality classification of grain. We have investigated the possibility of using fungal volatile metabolites as indicators of mycotoxins in grain. Ten barley samples with normal odour, and 30 with some kind of off-odour were selected from Swedish granaries. The samples were evaluated with regard to moisture content, fungal contamination, ergosterol content, and levels of ochratoxin A (OA) and deoxynivalenol (DON). Volatile compounds were also analysed using both an electronic nose and gas chromatography combined with mass spectrometry (GC-MS). Samples with normal odour had no detectable ochratoxin A and average DON contents of 16 microg kg(-1) (range 0-80), while samples with off-odour had average OA contents of 76 microg kg(-1) (range 0-934) and DON contents of 69 microg kg(-1) (range 0-857). Data were evaluated by multivariate data analysis using projection methods such as principal component analysis (PCA) and partial least squares (PLS). The results show that it was possible to classify the OA level as below or above the maximum limit of 5 microg kg(-1) cereal grain established by the Swedish National Food Administration, and that the DON level could be estimated using PLS. Samples with OA levels below 5 microg kg(-1) had higher concentration of aldehydes (nonanal, 2-hexenal) and alcohols (1-penten-3-ol, 1-octanol). Samples with OA levels above 5 microg kg(-1) had higher concentrations of ketones (2-hexanone, 3-octanone). The GC-MS system predicted OA concentrations with a higher accuracy than the electronic nose, since the GC-MS misclassified only 3 of 37 samples and the electronic nose 7 of 37 samples. No correlation was found between odour and OA level, as samples with pronounced or strong off-odours had OA levels both below and above 5

  15. Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometry.

    Science.gov (United States)

    Vinaixa, Maria; Marín, Sonia; Brezmes, Jesús; Llobet, Eduard; Vilanova, Xavier; Correig, Xavier; Ramos, Antonio; Sanchis, Vicent

    2004-10-06

    This paper presents the design, optimization, and evaluation of a mass spectrometry-based electronic nose (MS e-nose) for early detection of unwanted fungal growth in bakery products. Seven fungal species (Aspergillus flavus, Aspergillus niger, Eurotium amstelodami, Eurotium herbariorum, Eurotium rubrum, Eurotium repens, and Penicillium corylophillum) were isolated from bakery products and used for the study. Two sampling headspace techniques were tested: static headspace (SH) and solid-phase microextraction (SPME). Cross-validated models based on principal component analysis (PCA), coupled to discriminant function analysis (DFA) and fuzzy ARTMAP, were used as data treatment. When attempting to discriminate between inoculated and blank control vials or between genera or species of in vitro growing cultures, sampling based on SPME showed better results than those based on static headspace. The SPME-MS-based e-nose was able to predict fungal growth with 88% success after 24 h of inoculation and 98% success after 48 h when changes were monitored in the headspace of fungal cultures growing on bakery product analogues. Prediction of the right fungal genus reached 78% and 88% after 24 and 96 h, respectively.

  16. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    Directory of Open Access Journals (Sweden)

    Cheng-Chun Wu

    2016-10-01

    Full Text Available An electronic nose (E-Nose is one of the applications for surface acoustic wave (SAW sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS readout application-specific integrated circuit (ASIC based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  17. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation.

    Science.gov (United States)

    Valdez, Luis F; Gutiérrez, Juan Manuel

    2016-10-20

    In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS) array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status). The data analysis tools used were Principal Components Analysis (PCA) and Artificial Neural Networks (ANNs). The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc), 0.86 precision (Prc), 0.84 sensitivity (Sen) and 0.99 specificity (Spe) for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies.

  18. Chocolate Classification by an Electronic Nose with Pressure Controlled Generated Stimulation

    Directory of Open Access Journals (Sweden)

    Luis F. Valdez

    2016-10-01

    Full Text Available In this work, we will analyze the response of a Metal Oxide Gas Sensor (MOGS array to a flow controlled stimulus generated in a pressure controlled canister produced by a homemade olfactometer to build an E-nose. The built E-nose is capable of chocolate identification between the 26 analyzed chocolate bar samples and four features recognition (chocolate type, extra ingredient, sweetener and expiration date status. The data analysis tools used were Principal Components Analysis (PCA and Artificial Neural Networks (ANNs. The chocolate identification E-nose average classification rate was of 81.3% with 0.99 accuracy (Acc, 0.86 precision (Prc, 0.84 sensitivity (Sen and 0.99 specificity (Spe for test. The chocolate feature recognition E-nose gives a classification rate of 85.36% with 0.96 Acc, 0.86 Prc, 0.85 Sen and 0.96 Spe. In addition, a preliminary sample aging analysis was made. The results prove the pressure controlled generated stimulus is reliable for this type of studies.

  19. Performance Comparison of Fuzzy ARTMAP and LDA in Qualitative Classification of Iranian Rosa damascena Essential Oils by an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Abbas Gorji-Chakespari

    2016-05-01

    Full Text Available Quality control of essential oils is an important topic in industrial processing of medicinal and aromatic plants. In this paper, the performance of Fuzzy Adaptive Resonant Theory Map (ARTMAP and linear discriminant analysis (LDA algorithms are compared in the specific task of quality classification of Rosa damascene essential oil samples (one of the most famous and valuable essential oils in the world using an electronic nose (EN system based on seven metal oxide semiconductor (MOS sensors. First, with the aid of a GC-MS analysis, samples of Rosa damascene essential oils were classified into three different categories (low, middle, and high quality, classes C1, C2, and C3, respectively based on the total percent of the most crucial qualitative compounds. An ad-hoc electronic nose (EN system was implemented to sense the samples and acquire signals. Forty-nine features were extracted from the EN sensor matrix (seven parameters to describe each sensor curve response. The extracted features were ordered in relevance by the intra/inter variance criterion (Vr, also known as the Fisher discriminant. A leave-one-out cross validation technique was implemented for estimating the classification accuracy reached by both algorithms. Success rates were calculated using 10, 20, 30, and the entire selected features from the response of the sensor array. The results revealed a maximum classification accuracy of 99% when applying the Fuzzy ARTMAP algorithm and 82% for LDA, using the first 10 features in both cases. Further classification results explained that sub-optimal performance is likely to occur when all the response features are applied. It was found that an electronic nose system employing a Fuzzy ARTMAP classifier could become an accurate, easy, and inexpensive alternative tool for qualitative control in the production of Rosa damascene essential oil.

  20. Sensory methods and electronic nose as innovative tools for the evaluation of the aroma transfer properties of food plastic bags.

    Science.gov (United States)

    Torri, Luisa; Piochi, Maria

    2016-07-01

    Despite the key role of the sensory quality for food acceptance, the aroma transfer properties of food packaging materials have not yet been studied using sensory approaches. This research investigated the suitability of sensory and electronic nose methods to evaluate the aroma transfer properties of plastic materials that come in contact with food. Four (W, X, Y, and Z) commercial freezer bags (polyethylene) for domestic uses were compared. The degree of the aroma transfer through the materials was estimated as the sensory contamination of an odor absorber food (bread) by an odor releaser food (onion), separated by the bags and stored under frozen conditions. Bread samples were analyzed by means of an electronic nose, and 42 assessors used three different sensory methods (triangle, scoring, and partial sorted Napping tests). From the triangle test, none of the plastic bags acted as a complete aroma barrier, showing a sensory contamination of bread stored in all four materials. Partial sorting Napping results clearly described the sensory contamination of bread as "onion flavor", due to the aroma transfer from the odor releaser food to the odor absorber food through the plastic bag. Scoring tests showed significant (pbags, revealing the highest aroma permeation for W (3.1±0.1), the lowest aroma transfer for X and Y (2.0±0.1), and intermediate aroma transfer properties for Z (2.6±0.1). Electronic nose data were in good agreement with the sensory responses, and a high correlation with the scoring data was observed (R 2 =0.988). The presented approaches had suitable results to provide meaningful information on the aroma transfer properties of freezer plastic bags, and could advantageously be applied in the future for analyzing other finished food containers (e.g. plastic trays, boxes, etc.) or packaging materials of a different nature (multilayer plastic films, biodegradable materials, composites, etc.). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Efficient electronic entanglement concentration assisted by single mobile electrons

    International Nuclear Information System (INIS)

    Sheng Yu-Bo; Zhou Lan

    2013-01-01

    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing

  2. The prediction of food additives in the fruit juice based on electronic nose with chemometrics.

    Science.gov (United States)

    Qiu, Shanshan; Wang, Jun

    2017-09-01

    Food additives are added to products to enhance their taste, and preserve flavor or appearance. While their use should be restricted to achieve a technological benefit, the contents of food additives should be also strictly controlled. In this study, E-nose was applied as an alternative to traditional monitoring technologies for determining two food additives, namely benzoic acid and chitosan. For quantitative monitoring, support vector machine (SVM), random forest (RF), extreme learning machine (ELM) and partial least squares regression (PLSR) were applied to establish regression models between E-nose signals and the amount of food additives in fruit juices. The monitoring models based on ELM and RF reached higher correlation coefficients (R 2 s) and lower root mean square errors (RMSEs) than models based on PLSR and SVM. This work indicates that E-nose combined with RF or ELM can be a cost-effective, easy-to-build and rapid detection system for food additive monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Odor Profile of Different Varieties of Extra-Virgin Olive Oil During Deep Frying Using an Electronic Nose and SPME-GC-FID

    Science.gov (United States)

    Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe

    2011-09-01

    The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.

  4. Quality-grade evaluation of petroleum waxes using an electronic nose with a TGS gas sensor array

    International Nuclear Information System (INIS)

    Wang, Ji; Gao, Daqi; Wang, Zejian

    2015-01-01

    In this paper, the potential of an improved electronic nose to discriminate the quality of petroleum waxes based on their volatile profile was analyzed. Two datasets at 25 and 50 °C were collected from an experiment in order to compare influence by temperature. More fine-grained levels were further labeled for classification to meet various purposes. As petroleum waxes with lower odor levels are more difficult and important to identify than those with higher odor levels, we focus on the discrimination task for low-level ones. Principal component analysis was used for dimensionality reduction and data visualization. k-nearest neighbors, support vector machine, and multilayer perceptron were employed to classify among different qualities of petroleum waxes. The leave-one-out cross-validation method was employed due to the small sample sizes. Results showed good performance on both datasets, and at a temperature of 50 °C all pattern recognition methods showed improved classification rates. The improved electronic nose can potentially be applied to discriminate the quality of petroleum wax. (paper)

  5. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Cynkar, Wies, E-mail: wies.cynkar@awri.com.au [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia); Dambergs, Robert [Australian Wine Research Institute, Tasmanian Institute of Agricultural Research, University of Tasmania, Private Bag 98, Hobart Tasmania 7001 (Australia); Smith, Paul; Cozzolino, Daniel [Australian Wine Research Institute, PO Box 197, Glen Osmond, SA 5064 (Australia)

    2010-02-15

    Rapid methods employing instruments such as electronic noses (EN) or gas sensors are used in the food and beverage industries to monitor and assess the composition and quality of products. Similar to other food industries, the wine industry has a clear need for simple, rapid and cost effective techniques for objectively evaluating the quality of grapes, wine and spirits. In this study a mass spectrometry based electronic nose (MS-EN) instrument combined with chemometrics was used to predict the geographical origin of Tempranillo wines produced in Australia and Spain. The MS-EN data generated were analyzed using principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) with full cross validation (leave-one-out method). The SLDA classified correctly 86% of the samples while PLS-DA 85% of Tempranillo wines according to their geographical origin. The relative benefits of using MS-EN will provide capability for rapid screening of wines. However, this technique does not provide the identification and quantitative determination of individual compounds responsible for the different aroma notes in the wine.

  6. Both gas chromatography and an electronic nose reflect chemical polymorphism of juniper shrubs browsed or avoided by sheep.

    Science.gov (United States)

    Markó, Gábor; Novák, Ildikó; Bernáth, Jeno; Altbäcker, Vilmos

    2011-07-01

    Chemical polymorphism may contribute to variation in browsing damage by mammalian herbivores. Earlier, we demonstrated that essential oil concentration in juniper, Juniperus communis, was negatively associated with herbivore browsing. The aim of the present study was to characterize the volatile chemical composition of browsed and non-browsed J. communis. By using either gas chromatography with flame ionization detection (GC-FID) or an electronic nose device, we could separate sheep-browsed or non-browsed juniper shrubs by their essential oil pattern and complex odor matrix. The main components of the essential oil from J. communis were monoterpenes. We distinguished three chemotypes, dominated either by α-pinene, sabinene, or δ-3-carene. Shrubs belonging to the α-pinene- or sabinene-dominated groups were browsed, whereas all individuals with the δ-3-carene chemotype were unused by the local herbivores. The electronic nose also separated the browsed and non-browsed shrubs indicating that their odor matrix could guide sheep browsing. Responses of sheep could integrate the post-ingestive effects of plant secondary metabolites with sensory experience that stems from odor-phytotoxin interactions. Chemotype diversity could increase the survival rate in the present population of J. communis as certain shrubs could benefit from relatively better chemical protection against the herbivores.

  7. Classification of Tempranillo wines according to geographic origin: Combination of mass spectrometry based electronic nose and chemometrics

    International Nuclear Information System (INIS)

    Cynkar, Wies; Dambergs, Robert; Smith, Paul; Cozzolino, Daniel

    2010-01-01

    Rapid methods employing instruments such as electronic noses (EN) or gas sensors are used in the food and beverage industries to monitor and assess the composition and quality of products. Similar to other food industries, the wine industry has a clear need for simple, rapid and cost effective techniques for objectively evaluating the quality of grapes, wine and spirits. In this study a mass spectrometry based electronic nose (MS-EN) instrument combined with chemometrics was used to predict the geographical origin of Tempranillo wines produced in Australia and Spain. The MS-EN data generated were analyzed using principal components analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise linear discriminant analysis (SLDA) with full cross validation (leave-one-out method). The SLDA classified correctly 86% of the samples while PLS-DA 85% of Tempranillo wines according to their geographical origin. The relative benefits of using MS-EN will provide capability for rapid screening of wines. However, this technique does not provide the identification and quantitative determination of individual compounds responsible for the different aroma notes in the wine.

  8. Discrimination of volatiles of refined and whole wheat bread containing red and white wheat bran using an electronic nose.

    Science.gov (United States)

    Sapirstein, Harry D; Siddhu, Silvi; Aliani, Michel

    2012-11-01

    The principal objective of this study was to evaluate the capability of electronic (E) nose technology to discriminate refined and whole wheat bread made with white or red wheat bran according to their headspace volatiles. Whole wheat flour was formulated with a common refined flour from hard red spring wheat, blended at the 15% replacement level with bran milled from representative samples of one hard red and 2 hard white wheats. A commercial formula was used for breadmaking. Results varied according to the nature of the sample, that is, crust, crumb, or whole slices. Bread crust and crumb were completely discriminated. Crumb of whole wheat bread made with red bran was distinct from other bread types. When misclassified, whole wheat bread crumb with white bran was almost invariably identified as refined flour bread crumb. Using crust as the basis for comparisons, the largest difference in volatiles was between refined flour bread and whole wheat bread as a group. When refined flour bread crust was misclassified, samples tended to be confused with whole white wheat crust. Samples prepared from whole bread slices were poorly discriminated in general. E-nose results indicated that whole wheat bread formulated with white bran was more similar in volatile makeup to refined flour bread compared to whole wheat bread made with red bran. The E-nose appears to be very capable to accommodate differentiation of bread volatiles whose composition varies due to differences in flour or bran type. Consumer preference of bread made using refined flour in contrast to whole wheat flour is partly due to the different aroma of whole wheat bread. This study used an electronic nose to analyze bread volatiles, and showed that whole wheat bread incorporating white bran was different from counterpart bread made using red bran, and was closer in volatile makeup to "white" bread made without bran. Commercial millers and bakers can take advantage of these results to formulate whole wheat flour

  9. Thermo-oxidation in Arauco and Arbequina Extra-virgin Olive Oil. Changes in Odour using and Electronic Nose and SPME-GC-FID

    Directory of Open Access Journals (Sweden)

    Valeria Messina

    2010-06-01

    Full Text Available Changes in odour of Arauco and Arbequina extra-virgin olive oil were monitored during frying by electronic nose and solid-phase microextraction–gas chromatography methodologies. Electronic nose data and volatile compounds were analyzed at intervals of 60 min (t60 during 180 min of frying (t180. Principal components analysis applied to electronic nose data showed one component, PC1 which accounted 96.3 % of the total odour variation. SnO2 sensors had a positive correlation with PC1. Arauco variety corresponding to frying t120 and t180 had the highest positive correlation with PC1. Analysis of variance results for volatile compounds showed an increase on production for: 3-methyl butanal, n-pentanal, n-hexanal, n-heptanal and n-nonanal at 60 min of frying for both varieties.

  10. Is mobile learning a substitute for electronic learning?

    OpenAIRE

    Sitthiworachart, Jirarat; Joy, Mike

    2008-01-01

    Mobile learning is widely regarded as the next generation of learning technologies, and refers to the use of mobile devices in education to enhance learning activities. The increasing use of mobile devices has encouraged research into the capabilities of mobile learning systems. Many questions arise about mobile learning, such as whether mobile learning can be a substitute for electronic learning, what the potential benefits and problems of utilizing mobile devices in education are, and what ...

  11. A Wireless and Portable Electronic Nose to Differentiate Musts of Different Ripeness Degree and Grape Varieties

    Directory of Open Access Journals (Sweden)

    Manuel Aleixandre

    2015-04-01

    Full Text Available Two novel applications using a portable and wireless sensor system (e-nose for the wine producing industry—The recognition and classification of musts coming from different grape ripening times and from different grape varieties—Are reported in this paper. These applications are very interesting because a lot of varieties of grapes produce musts with low and similar aromatic intensities so they are very difficult to distinguish using a sensory panel. Therefore the system could be used to monitor the ripening evolution of the different types of grapes and to assess some useful characteristics, such as the identification of the grape variety origin and to prediction of the wine quality. Ripening grade of collected samples have been also evaluated by classical analytical techniques, measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA and Probable Grade Alcoholic (PGA. The measurements were carried out for two different harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga and white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc grape musts coming from the experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA and Probabilistic Neural Networks (PNN have been used to analyse the obtained data by e-nose. In addition, and the Canonical Correlation Analysis (CCA method has been carried out to correlate the results obtained by both technologies.

  12. Non-destructive flavour evaluation of red onion (Allium cepa L.) ecotypes: an electronic-nose-based approach.

    Science.gov (United States)

    Russo, Mariateresa; di Sanzo, Rosa; Cefaly, Vittoria; Carabetta, Sonia; Serra, Demetrio; Fuda, Salvatore

    2013-11-15

    This work reports preliminary results on the potential of a metal oxide sensor (MOS)-based electronic nose, as a non-destructive method to discriminate three "Tropea Red Onion" PGI ecotypes (TrT, TrMC and TrA) from each other and the common red onion (RO), which is usually used to counterfeit. The signals from the sensor array were processed using a canonical discriminant function analysis (DFA) pattern recognition technique. The DFA on onion samples showed a clear separation among the four onion groups with an overall correct classification rate (CR) of 97.5%. Onion flavour is closely linked to pungency and thus to the pyruvic acid content. The e-nose analysis results are in good agreement with pyruvic acid analysis. This work demonstrated that artificial olfactory systems have potential for use as an innovative, rapid and specific non-destructive technique, and may provide a method to protect food products against counterfeiting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Evaluation of coffee roasting degree by using electronic nose and artificial neural network for off-line quality control.

    Science.gov (United States)

    Romani, Santina; Cevoli, Chiara; Fabbri, Angelo; Alessandrini, Laura; Dalla Rosa, Marco

    2012-09-01

    An electronic nose (EN) based on an array of 10 metal oxide semiconductor sensors was used, jointly with an artificial neural network (ANN), to predict coffee roasting degree. The flavor release evolution and the main physicochemical modifications (weight loss, density, moisture content, and surface color: L*, a*), during the roasting process of coffee, were monitored at different cooking times (0, 6, 8, 10, 14, 19 min). Principal component analysis (PCA) was used to reduce the dimensionality of sensors data set (600 values per sensor). The selected PCs were used as ANN input variables. Two types of ANN methods (multilayer perceptron [MLP] and general regression neural network [GRNN]) were used in order to estimate the EN signals. For both neural networks the input values were represented by scores of sensors data set PCs, while the output values were the quality parameter at different roasting times. Both the ANNs were able to well predict coffee roasting degree, giving good prediction results for both roasting time and coffee quality parameters. In particular, GRNN showed the highest prediction reliability. Actually the evaluation of coffee roasting degree is mainly a manned operation, substantially based on the empirical final color observation. For this reason it requires well-trained operators with a long professional skill. The coupling of e-nose and artificial neural networks (ANNs) may represent an effective possibility to roasting process automation and to set up a more reproducible procedure for final coffee bean quality characterization. © 2012 Institute of Food Technologists®

  14. Volatile aroma components and MS-based electronic nose profiles of dogfruit (Pithecellobium jiringa and stink bean (Parkia speciosa

    Directory of Open Access Journals (Sweden)

    Yonathan Asikin

    2018-01-01

    Full Text Available Dogfruit (Pithecellobium jiringa and stink bean (Parkia speciosa are two typical smelly legumes from Southeast Asia that are widely used in the cuisines of this region. Headspace/gas chromatography/flame ionization detection analysis and mass spectrometry (MS-based electronic nose techniques were applied to monitor ripening changes in the volatile flavor profiles of dogfruit and stink bean. Compositional analysis showed that the ripening process greatly influenced the composition and content of the volatile aroma profiles of these two smelly food materials, particularly their alcohol, aldehyde, and sulfur components. The quantity of predominant hexanal in stink bean significantly declined (P < 0.05 during the ripening process, whereas the major volatile components of dogfruit changed from 3-methylbutanal and methanol in the unripe state to acetaldehyde and ethanol in the ripe bean. Moreover, the amount of the typical volatile flavor compound 1,2,4-trithiolane significantly increased (P < 0.05 in both ripened dogfruit and stink bean from 1.70 and 0.93%, to relative amounts of 19.97 and 13.66%, respectively. MS-based nose profiling gave further detailed differentiation of the volatile profiles of dogfruit and stink bean of various ripening stages through multivariate statistical analysis, and provided discriminant ion masses, such as m/z 41, 43, 58, 78, and 124, as valuable “digital fingerprint” dataset that can be used for fast flavor monitoring of smelly food resources.

  15. SU-F-T-81: Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L; Fan, J; Eldib, A; Price, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Treating nose skin with an electron beam is of a substantial challenge due to uneven nose surfaces and tissue heterogeneity, and consequently could have a great uncertainty of dose accuracy on the target. This work explored the method using Monte Carlo (MC)-based energy and intensity modulated electron radiotherapy (MERT), which would be delivered with a photon MLC in a standard medical linac (Artiste). Methods: The traditional treatment on the nose skin involves the usage of a bolus, often with a single energy electron beam. This work avoided using the bolus, and utilized mixed energies of electron beams. An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. A clinical case of the nose skin, which was previously treated with a single 9 MeV electron beam, was replanned with the MERT method. The resultant dose distributions were compared with the plan previously clinically used. The dose volume histogram of the MERT plan is calculated to examine the coverage of the planning target volume (PTV) and critical structure doses. Results: The target coverage and conformality in the MERT plan are improved as compared to the conventional plan. The MERT can provide more sufficient target coverage and less normal tissue dose underneath the nose skin. Conclusion: Compared to the conventional treatment technique, using MERT for the nose skin treatment has shown the dosimetric advantages in the PTV coverage and conformality. In addition, this technique eliminates the necessity of the cutout and bolus, which makes the treatment more efficient and accurate.

  16. Improved algorithms for the classification of rough rice using a bionic electronic nose based on PCA and the Wilks distribution.

    Science.gov (United States)

    Xu, Sai; Zhou, Zhiyan; Lu, Huazhong; Luo, Xiwen; Lan, Yubin

    2014-03-19

    Principal Component Analysis (PCA) is one of the main methods used for electronic nose pattern recognition. However, poor classification performance is common in classification and recognition when using regular PCA. This paper aims to improve the classification performance of regular PCA based on the existing Wilks Λ-statistic (i.e., combined PCA with the Wilks distribution). The improved algorithms, which combine regular PCA with the Wilks Λ-statistic, were developed after analysing the functionality and defects of PCA. Verification tests were conducted using a PEN3 electronic nose. The collected samples consisted of the volatiles of six varieties of rough rice (Zhongxiang1, Xiangwan13, Yaopingxiang, WufengyouT025, Pin 36, and Youyou122), grown in same area and season. The first two principal components used as analysis vectors cannot perform the rough rice varieties classification task based on a regular PCA. Using the improved algorithms, which combine the regular PCA with the Wilks Λ-statistic, many different principal components were selected as analysis vectors. The set of data points of the Mahalanobis distance between each of the varieties of rough rice was selected to estimate the performance of the classification. The result illustrates that the rough rice varieties classification task is achieved well using the improved algorithm. A Probabilistic Neural Networks (PNN) was also established to test the effectiveness of the improved algorithms. The first two principal components (namely PC1 and PC2) and the first and fifth principal component (namely PC1 and PC5) were selected as the inputs of PNN for the classification of the six rough rice varieties. The results indicate that the classification accuracy based on the improved algorithm was improved by 6.67% compared to the results of the regular method. These results prove the effectiveness of using the Wilks Λ-statistic to improve the classification accuracy of the regular PCA approach. The results

  17. Mining Data of Noisy Signal Patterns in Recognition of Gasoline Bio-Based Additives using Electronic Nose

    Directory of Open Access Journals (Sweden)

    Osowski Stanisław

    2017-03-01

    Full Text Available The paper analyses the distorted data of an electronic nose in recognizing the gasoline bio-based additives. Different tools of data mining, such as the methods of data clustering, principal component analysis, wavelet transformation, support vector machine and random forest of decision trees are applied. A special stress is put on the robustness of signal processing systems to the noise distorting the registered sensor signals. A special denoising procedure based on application of discrete wavelet transformation has been proposed. This procedure enables to reduce the error rate of recognition in a significant way. The numerical results of experiments devoted to the recognition of different blends of gasoline have shown the superiority of support vector machine in a noisy environment of measurement.

  18. Rapid direct analysis to discriminate geographic origin of extra virgin olive oils by flash gas chromatography electronic nose and chemometrics.

    Science.gov (United States)

    Melucci, Dora; Bendini, Alessandra; Tesini, Federica; Barbieri, Sara; Zappi, Alessandro; Vichi, Stefania; Conte, Lanfranco; Gallina Toschi, Tullia

    2016-08-01

    At present, the geographical origin of extra virgin olive oils can be ensured by documented traceability, although chemical analysis may add information that is useful for possible confirmation. This preliminary study investigated the effectiveness of flash gas chromatography electronic nose and multivariate data analysis to perform rapid screening of commercial extra virgin olive oils characterized by a different geographical origin declared in the label. A comparison with solid phase micro extraction coupled to gas chromatography mass spectrometry was also performed. The new method is suitable to verify the geographic origin of extra virgin olive oils based on principal components analysis and discriminant analysis applied to the volatile profile of the headspace as a fingerprint. The selected variables were suitable in discriminating between "100% Italian" and "non-100% Italian" oils. Partial least squares discriminant analysis also allowed prediction of the degree of membership of unknown samples to the classes examined. Copyright © 2016. Published by Elsevier Ltd.

  19. Thermal electron mobilities in low density gaseous mixtures

    International Nuclear Information System (INIS)

    Dmitriev, O.W.; Tchorzewska, W.; Szamrej, I.; Forys, M.

    1992-01-01

    A new method of obtaining thermal electron mobilities from experimental dependencies observed in the electron swarm is described; the method is suitable for both electron accepting and non-accepting systems. The electron mobilities for CO 2 , CH 4 C 2 H 6 as well as for N 2 , Ar, Xe, Kr and their mixtures with carbon dioxide are obtained. (Author)

  20. Characterization of Volatile Compounds in Chilled Cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose

    NARCIS (Netherlands)

    Olafsdottir, G.; Jonsdottir, R.; Lauzon, H.L.; Luten, J.B.; Kristbergsson, K.

    2005-01-01

    Volatile compounds in cod fillets packed in Styrofoam boxes were analyzed during chilled storage (0.5 C) by gas chromatography (GC)-mass spectrometry and GC-olfactometry to screen potential quality indicators present in concentrations high enough for detection by an electronic nose. Photobacterium

  1. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  2. Advanced methods for teaching electronic-nose technologies to diagnosticians and clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    Electronic-detection technologies and instruments increasingly are being utilized in the biomedical field to perform a wide variety of clinical operations and laboratory analyses to facilitate the delivery of health care to patients. The introduction of improved electronic instruments for diagnosing diseases and for administering treatments has required new training of...

  3. Discrimination and characterization of strawberry juice based on electronic nose and tongue: comparison of different juice processing approaches by LDA, PLSR, RF, and SVM.

    Science.gov (United States)

    Qiu, Shanshan; Wang, Jun; Gao, Liping

    2014-07-09

    An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.

  4. SU-E-T-632: Preliminary Study On Treating Nose Skin Using Energy and Intensity Modulated Electron Beams with Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Jin, L; Eldib, A; Li, J; Price, R; Ma, C

    2015-01-01

    Purpose: Uneven nose surfaces and air cavities underneath and the use of bolus present complexity and dose uncertainty when using a single electron energy beam to plan treatments of nose skin with a pencil beam-based planning system. This work demonstrates more accurate dose calculation and more optimal planning using energy and intensity modulated electron radiotherapy (MERT) delivered with a pMLC. Methods: An in-house developed Monte Carlo (MC)-based dose calculation/optimization planning system was employed for treatment planning. Phase space data (6, 9, 12 and 15 MeV) were used as an input source for MC dose calculations for the linac. To reduce the scatter-caused penumbra, a short SSD (61 cm) was used. Our previous work demonstrates good agreement in percentage depth dose and off-axis dose between calculations and film measurement for various field sizes. A MERT plan was generated for treating the nose skin using a patient geometry and a dose volume histogram (DVH) was obtained. The work also shows the comparison of 2D dose distributions between a clinically used conventional single electron energy plan and the MERT plan. Results: The MERT plan resulted in improved target dose coverage as compared to the conventional plan, which demonstrated a target dose deficit at the field edge. The conventional plan showed higher dose normal tissue irradiation underneath the nose skin while the MERT plan resulted in improved conformity and thus reduces normal tissue dose. Conclusion: This preliminary work illustrates that MC-based MERT planning is a promising technique in treating nose skin, not only providing more accurate dose calculation, but also offering an improved target dose coverage and conformity. In addition, this technique may eliminate the necessity of bolus, which often produces dose delivery uncertainty due to the air gaps that may exist between the bolus and skin

  5. Electronic Payments using Mobile Communication Devices

    NARCIS (Netherlands)

    Waaij, B.D. van der; Siljee, B.I.J.; Broekhuijsen, B.J.; Ponsioen, C.; Maas, A.; Aten, R.M.; Hoepman, J.H.; Loon, J.H. van; Smit, M.

    2009-01-01

    A method of making a payment uses a first mobile communication device (1) and a second mobile communication device (2), each mobile communication device being provided with a respective near field communication unit (11, 21) and at least one of the mobile communication devices being provided with an

  6. Theoretical and practical considerations for teaching diagnostic electronic-nose technologies to clinical laboratory technicians

    Science.gov (United States)

    Alphus D. Wilson

    2012-01-01

    The rapid development of new electronic technologies and instruments, utilized to perform many current clinical operations in the biomedical field, is changing the way medical health care is delivered to patients. The majority of test results from laboratory analyses, performed with these analytical instruments often prior to clinical examinations, are frequently used...

  7. Analyzing the flavor compounds in Chinese traditional fermented shrimp pastes by HS-SPME-GC/MS and electronic nose

    Science.gov (United States)

    Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu

    2017-04-01

    Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.

  8. Innovative Mobile Platform Developments for Electronic Services Design and Delivery

    DEFF Research Database (Denmark)

    Scupola, Ada

    In the ever-growing world of technology, it is becoming more important to understand the developments of new electronic services and mobile applications. Innovative Mobile Platform Developments for Electronic Services Design, and Delivery is a comprehensive look at all aspects of production manag...

  9. Changes in the aromatic profile of espresso coffee as a function of the grinding grade and extraction time: a study by the electronic nose system.

    Science.gov (United States)

    Severini, C; Ricci, I; Marone, M; Derossi, A; De Pilli, T

    2015-03-04

    The changes in chemical attributes and aromatic profile of espresso coffee (EC) were studied taking into account the extraction time and grinding level as independent variables. Particularly, using an electronic nose system, the changes of the global aromatic profile of EC were highlighted. The results shown as the major amounts of organic acids, solids, and caffeine were extracted in the first 8 s of percolation. The grinding grade significantly affected the quality of EC probably as an effect of the particle size distribution and the percolation pathways of water through the coffee cake. The use of an electronic nose system allowed us to discriminate the fractions of the brew as a function of the percolation time and also the regular coffee obtained from different grinding grades. Particularly, the aromatic profile of a regular coffee (25 mL) was significantly affected by the grinding level of the coffee grounds and percolation time, which are two variables under the control of the bar operator.

  10. Quasi Real Time Data Analysis for Air Quality Monitoring with an Electronic Nose

    Science.gov (United States)

    Zhou, Hanying; Shevade, Abhijit V.; Pelletier, Christine C.; Homer, Margie L.; Ryan, M. Amy

    2006-01-01

    Cabin Air Quality Monitoring: A) Functions; 1) Incident monitor for targeted contaminants exceeding targeted concentrations. Identify and quantify. 2) Monitor for presence of compounds associated with fires or overheating electronics. 3) Monitor clean-up process. B) Characteristics; 1) Low mass, low power device. 2) Requires little crew time for maintenance and calibration. 3) Detects, identifies and quantifies selected chemical species at or below 24 hour SMAC.

  11. Studies on the aroma of different species and strains of Pleurotus measured by GC/MS, sensory analysis and electronic nose

    OpenAIRE

    Renata Zawirska-Wojtasiak; Marek Siwulski; Sylwia Mildner-Szkudlarz; Erwin Wąsowicz

    2009-01-01

    The aroma of several strains of Pleurotus ostreatus, Pleurotus citrinopileatus and Pleurotus djamor was studied by GC/MS. Three main mushrooms aroma constituents: 3-octanol, 3-octanone and 1-octen-3-ol were taken into account for quantitative measurements. The highest amount of 1-octen-3-ol was recorded in P. ostreatus, while considerably lower amounts in P. citrinopileatus. Sensory profile analysis as well as the electronic nose also varied between the three species of Pleurotus. Chiral gas ...

  12. Determining degree of roasting in cocoa beans by artificial neural network (ANN)-based electronic nose system and gas chromatography/mass spectrometry (GC/MS).

    Science.gov (United States)

    Tan, Juzhong; Kerr, William L

    2018-08-01

    Roasting is a critical step in chocolate processing, where moisture content is decreased and unique flavors and texture are developed. The determination of the degree of roasting in cocoa beans is important to ensure the quality of chocolate. Determining the degree of roasting relies on human specialists or sophisticated chemical analyses that are inaccessible to small manufacturers and farmers. In this study, an electronic nose system was constructed consisting of an array of gas sensors and used to detect volatiles emanating from cocoa beans roasted for 0, 20, 30 and 40 min. The several signals were used to train a three-layer artificial neural network (ANN). Headspace samples were also analyzed by gas chromatography/mass spectrometry (GC/MS), with 23 select volatiles used to train a separate ANN. Both ANNs were used to predict the degree of roasting of cocoa beans. The electronic nose had a prediction accuracy of 94.4% using signals from sensors TGS 813, 826, 822, 830, 830, 2620, 2602 and 2610. In comparison, the GC/MS predicted the degree of roasting with an accuracy of 95.8%. The electronic nose system is able to predict the extent of roasting, as well as a more sophisticated approach using GC/MS. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  14. Electron-electron scattering and mobilities in semiconductors and quantum wells

    International Nuclear Information System (INIS)

    Lyo, S.K.

    1986-01-01

    The effect of electron-electron scattering on the mobility in semiconductors and semiconductor quantum wells is examined. A general exact formula is derived for the mobility, when the electron-electron collision rate is much faster than other scattering rates such as those by ionized impurities and phonons. In this limit, the transport relaxation rate is independent of the carrier's energy and contributions to the inverse mobility from individual scattering mechanism add up. The mobility becomes significantly reduced from its value in the absence of electron-electron scattering. When the collision rates are not necessarily dominated by electron-electron scattering, the mobility is calculated by the Kohler-Sondheimer variational method in the presence of ionized-impurity scattering and acoustic-phonon scattering in a nondegenerate two-dimensional quantum well

  15. Cross-field Mobility in a Pure Electron Plasma

    International Nuclear Information System (INIS)

    Fossum, E.C.; King, L.B.

    2006-01-01

    An electron trapping apparatus was constructed in order to study electron dynamics in the defining electric and magnetic field of a Hall-effect thruster. The approach presented here decouples the cross-field mobility from plasma effects by conducting measurements on a pure electron plasma in a highly controlled environment. Dielectric walls are removed completely eliminating all wall effect; thus, electrons are confined solely by a radial magnetic field and a crossed, independently-controlled, axial electric field that induces the closed-drift azimuthal Hall current. Electron trajectories and cross-field mobility were examined in response to electric and magnetic field strength and background neutral density

  16. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  17. The Future of the Mobile Payment as Electronic Payment System

    OpenAIRE

    Bezovski, Zlatko

    2016-01-01

    The development of the Internet and the arrival of e-commerce fostered digitalization in the payment processes by providing a variety of electronic payment options including payment cards (credit and debit), digital and mobile wallets, electronic cash, contactless payment methods etc. Mobile payment services with their increasing popularity are presently under the phase of transition, heading towards a promising future of tentative possibilities along with the innovation in technology. In thi...

  18. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC-MS combined with HS-SPME and discrimination with electronic nose.

    Science.gov (United States)

    Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei

    2017-01-01

    Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.

  19. Application of multi-way analysis to UV-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, N. [Department of Condensed Matter Physics, Faculty of Sciences, University of Valladolid, 47011 Valladolid (Spain); Department of Inorganic Chemistry, Escuela de Ingenierias Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid (Spain); Rodriguez-Mendez, M.L. [Department of Inorganic Chemistry, Escuela de Ingenierias Industriales, University of Valladolid, Paseo del Cauce, 59, 47011 Valladolid (Spain); Leardi, R. [Department of Pharmaceutical and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno 13, I-16147 8 Genoa (Italy); Oliveri, P., E-mail: oliveri@dictfa.unige.it [Department of Pharmaceutical and Food Chemistry and Technology, University of Genoa, Via Brigata Salerno 13, I-16147 8 Genoa (Italy); Hernando-Esquisabel, D.; Iniguez-Crespo, M. [Gobierno de la Rioja, Consejeria de Agricultura y Alimentacion, Estacion Enologica, Breton de los Herreros 4, 26200 Haro, La Rioja (Spain); Saja, J.A. de [Department of Condensed Matter Physics, Faculty of Sciences, University of Valladolid, 47011 Valladolid (Spain)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Wine samples were analytically characterised according to their ageing process. Black-Right-Pointing-Pointer Signals from a sensor-based electronic nose were fused with GC-MS and UV-visible data. Black-Right-Pointing-Pointer The study involved 6 periodical determinations of 20 variables on 6 different wines. Black-Right-Pointing-Pointer Multi-way analysis allowed to efficiently extract the maximum information from data. Black-Right-Pointing-Pointer Multi-way methods represent the most suitable tool for processing three-mode data. - Abstract: In this study, a multi-way method (Tucker3) was applied to evaluate the performance of an electronic nose for following the ageing of red wines. The odour evaluation carried out with the electronic nose was combined with the quantitative analysis of volatile composition performed by GC-MS, and colour characterisation by UV-visible spectroscopy. Thanks to Tucker3, it was possible to understand connections among data obtained from these three different systems and to estimate the effect of different sources of variability on wine evaluation. In particular, the application of Tucker3 supplied a global visualisation of data structure, which was very informative to understand relationships between sensors responses and chemical composition of wines. The results obtained indicate that the analytical methods employed are useful tools to follow the wine ageing process, to differentiate wine samples according to ageing type (either in barrel or in stainless steel tanks with the addition of small oak wood pieces) and to the origin (French or American) of the oak wood. Finally, it was possible to designate the volatile compounds which play a major role in such a characterisation.

  20. Application of multi-way analysis to UV–visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation

    International Nuclear Information System (INIS)

    Prieto, N.; Rodriguez-Méndez, M.L.; Leardi, R.; Oliveri, P.; Hernando-Esquisabel, D.; Iñiguez-Crespo, M.; Saja, J.A. de

    2012-01-01

    Highlights: ► Wine samples were analytically characterised according to their ageing process. ► Signals from a sensor-based electronic nose were fused with GC–MS and UV–visible data. ► The study involved 6 periodical determinations of 20 variables on 6 different wines. ► Multi-way analysis allowed to efficiently extract the maximum information from data. ► Multi-way methods represent the most suitable tool for processing three-mode data. - Abstract: In this study, a multi-way method (Tucker3) was applied to evaluate the performance of an electronic nose for following the ageing of red wines. The odour evaluation carried out with the electronic nose was combined with the quantitative analysis of volatile composition performed by GC–MS, and colour characterisation by UV–visible spectroscopy. Thanks to Tucker3, it was possible to understand connections among data obtained from these three different systems and to estimate the effect of different sources of variability on wine evaluation. In particular, the application of Tucker3 supplied a global visualisation of data structure, which was very informative to understand relationships between sensors responses and chemical composition of wines. The results obtained indicate that the analytical methods employed are useful tools to follow the wine ageing process, to differentiate wine samples according to ageing type (either in barrel or in stainless steel tanks with the addition of small oak wood pieces) and to the origin (French or American) of the oak wood. Finally, it was possible to designate the volatile compounds which play a major role in such a characterisation.

  1. Development of mobile platform integrated with existing electronic medical records.

    Science.gov (United States)

    Kim, YoungAh; Kim, Sung Soo; Kang, Simon; Kim, Kyungduk; Kim, Jun

    2014-07-01

    This paper describes a mobile Electronic Medical Record (EMR) platform designed to manage and utilize the existing EMR and mobile application with optimized resources. We structured the mEMR to reuse services of retrieval and storage in mobile app environments that have already proven to have no problem working with EMRs. A new mobile architecture-based mobile solution was developed in four steps: the construction of a server and its architecture; screen layout and storyboard making; screen user interface design and development; and a pilot test and step-by-step deployment. This mobile architecture consists of two parts, the server-side area and the client-side area. In the server-side area, it performs the roles of service management for EMR and documents and for information exchange. Furthermore, it performs menu allocation depending on user permission and automatic clinical document architecture document conversion. Currently, Severance Hospital operates an iOS-compatible mobile solution based on this mobile architecture and provides stable service without additional resources, dealing with dynamic changes of EMR templates. The proposed mobile solution should go hand in hand with the existing EMR system, and it can be a cost-effective solution if a quality EMR system is operated steadily with this solution. Thus, we expect this example to be shared with hospitals that currently plan to deploy mobile solutions.

  2. Detection of Helicobacter pylori infection by examination of human breath odor using electronic nose Bloodhound-214ST

    Science.gov (United States)

    Shnayder, E. P.; Moshkin, M. P.; Petrovskii, D. V.; Shevela, A. I.; Babko, A. N.; Kulikov, V. G.

    2009-05-01

    Our aim was to examine the possibility of use e-nose Bloodhound-214ST to determine presence or absence of H. pylori infection using exhalation samples of patients. Breath samples were collected twice: at baseline and after oral administration of 500 mg of urea. H. pylori status of patients was confirmed by antral biopsy. Using two approaches for the data analysis we showed the possibility to distinguish H. pylori free and infected patients.

  3. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2014-10-01

    Full Text Available In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS spectrometer. Firstly, principal component analysis (PCA and independent component analysis (ICA were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  5. Application of multi-way analysis to UV-visible spectroscopy, gas chromatography and electronic nose data for wine ageing evaluation.

    Science.gov (United States)

    Prieto, N; Rodriguez-Méndez, M L; Leardi, R; Oliveri, P; Hernando-Esquisabel, D; Iñiguez-Crespo, M; de Saja, J A

    2012-03-16

    In this study, a multi-way method (Tucker3) was applied to evaluate the performance of an electronic nose for following the ageing of red wines. The odour evaluation carried out with the electronic nose was combined with the quantitative analysis of volatile composition performed by GC-MS, and colour characterisation by UV-visible spectroscopy. Thanks to Tucker3, it was possible to understand connections among data obtained from these three different systems and to estimate the effect of different sources of variability on wine evaluation. In particular, the application of Tucker3 supplied a global visualisation of data structure, which was very informative to understand relationships between sensors responses and chemical composition of wines. The results obtained indicate that the analytical methods employed are useful tools to follow the wine ageing process, to differentiate wine samples according to ageing type (either in barrel or in stainless steel tanks with the addition of small oak wood pieces) and to the origin (French or American) of the oak wood. Finally, it was possible to designate the volatile compounds which play a major role in such a characterisation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. A Local Weighted Nearest Neighbor Algorithm and a Weighted and Constrained Least-Squared Method for Mixed Odor Analysis by Electronic Nose Systems

    Directory of Open Access Journals (Sweden)

    Jyuo-Min Shyu

    2010-11-01

    Full Text Available A great deal of work has been done to develop techniques for odor analysis by electronic nose systems. These analyses mostly focus on identifying a particular odor by comparing with a known odor dataset. However, in many situations, it would be more practical if each individual odorant could be determined directly. This paper proposes two methods for such odor components analysis for electronic nose systems. First, a K-nearest neighbor (KNN-based local weighted nearest neighbor (LWNN algorithm is proposed to determine the components of an odor. According to the component analysis, the odor training data is firstly categorized into several groups, each of which is represented by its centroid. The examined odor is then classified as the class of the nearest centroid. The distance between the examined odor and the centroid is calculated based on a weighting scheme, which captures the local structure of each predefined group. To further determine the concentration of each component, odor models are built by regressions. Then, a weighted and constrained least-squares (WCLS method is proposed to estimate the component concentrations. Experiments were carried out to assess the effectiveness of the proposed methods. The LWNN algorithm is able to classify mixed odors with different mixing ratios, while the WCLS method can provide good estimates on component concentrations.

  7. Discrimination Method of the Volatiles from Fresh Mushrooms by an Electronic Nose Using a Trapping System and Statistical Standardization to Reduce Sensor Value Variation

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    2013-11-01

    Full Text Available Electronic noses have the benefit of obtaining smell information in a simple and objective manner, therefore, many applications have been developed for broad analysis areas such as food, drinks, cosmetics, medicine, and agriculture. However, measurement values from electronic noses have a tendency to vary under humidity or alcohol exposure conditions, since several types of sensors in the devices are affected by such variables. Consequently, we show three techniques for reducing the variation of sensor values: (1 using a trapping system to reduce the infering components; (2 performing statistical standardization (calculation of z-score; and (3 selecting suitable sensors. With these techniques, we discriminated the volatiles of four types of fresh mushrooms: golden needle (Flammulina velutipes, white mushroom (Agaricus bisporus, shiitake (Lentinus edodes, and eryngii (Pleurotus eryngii among six fresh mushrooms (hen of the woods (Grifola frondosa, shimeji (Hypsizygus marmoreus plus the above mushrooms. Additionally, we succeeded in discrimination of white mushroom, only comparing with artificial mushroom flavors, such as champignon flavor and truffle flavor. In conclusion, our techniques will expand the options to reduce variations in sensor values.

  8. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    International Nuclear Information System (INIS)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-01-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature. - Highlights: ► Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS) was developed to study electron attachment reaction. ► The rate constants of electron attachment to CCl 4 and CHCl 3 were determined. ► The present experimental results are in good agreement with the previously reported data.

  9. Pressure effects on electron reactions and mobility in nonpolar liquids

    International Nuclear Information System (INIS)

    Holroyd, R.A.; Nishikawa, Masaru

    2002-01-01

    High pressure studies have elucidated the mechanisms of both electron reactions and electron transport in nonpolar liquids and provided information about the partial molar volumes of ions and electrons. The very large volume changes associated with electron attachment reactions have been explained as due to electrostriction by the ions, calculated with a continuum model, but modified to include the formation of a glassy shell of solvent molecules around the ion. The mobilities of electrons in cases where the electron is trapped can now be understood by comparing the trap cavity volume with the volume of electrostriction of the solvent around the cavity. In cases where the electron is quasi-free the compressibility dependent potential fluctuations are shown to be important. The isothermal compressibility is concluded to be the single most important parameter determining the behavior of excess electrons in liquids

  10. Comparison of an Electronic Nose Based on Ultrafast Gas Chromatography, Comprehensive Two-Dimensional Gas Chromatography, and Sensory Evaluation for an Analysis of Type of Whisky

    Directory of Open Access Journals (Sweden)

    Paulina Wiśniewska

    2017-01-01

    Full Text Available Whisky is one of the most popular alcoholic beverages. There are many types of whisky, for example, Scotch, Irish, and American whisky (called bourbon. The whisky market is highly diversified, and, because of this, it is important to have a method which would enable rapid quality evaluation and authentication of the type of whisky. The aim of this work was to compare 3 methods: an electronic nose based on the technology of ultrafast gas chromatography (Fast-GC, comprehensive two-dimensional gas chromatography (GC × GC, and sensory evaluation. The selected whisky brands included 6 blended whiskies from Scotland, 4 blended whiskies from Ireland, and 4 bourbons produced in the USA. For data analysis, peak heights of chromatograms were used. The panelists who took part in sensory evaluations included 4 women and 4 men. The obtained data were analyzed by 2 chemometric methods: partial least squares discriminant analysis (PLS-DA and discrimination function analysis (DFA. E-nose and GC × GC allowed for differentiation between whiskies by type. Sensory analysis did not allow for differentiation between whiskies by type, but it allowed giving consumer preferences.

  11. Electron mobility enhancement in (100) oxygen-inserted silicon channel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nuo; King Liu, Tsu-Jae [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Takeuchi, Hideki; Hytha, Marek; Cody, Nyles W.; Stephenson, Robert J.; Mears, Robert J. [Mears Technologies, Inc., Wellesley Hills, Massachusetts 02481 (United States); Kwak, Byungil; Cha, Seon Yong [SK Hynix, Icheon-si, Gyeonggi-do 467-701 (Korea, Republic of)

    2015-09-21

    High performance improvement (+88% in peak G{sub m} and >30% in linear and saturation region drain currents) was observed for N-MOSFETs with Oxygen-Inserted (OI) Si channel. From TCAD analysis of the C-V measurement data, the improvement was confirmed to be due to electron mobility enhancement of the OI Si channel (+75% at N{sub inv} = 4.0 × 10{sup 12} cm{sup −2} and +25% at N{sub inv} = 8.0 × 10{sup 12} cm{sup −2}). Raman and high-resolution Rutherford backscattering measurements confirmed that negligible strain is induced in the OI Si layer, and hence, it cannot be used to explain the origin of mobility improvement. Poisson-Schrödinger based quantum mechanical simulation was performed, taking into account phonon, surface roughness and Coulomb scatterings. The OI layer was modeled as a “quasi barrier” region with reference to the Si conduction band edge to confine inversion electrons. Simulation explains the measured electron mobility enhancement as the confinement effect of inversion electrons while the formation of an super-steep retrograde well doping profile in the channel (as a result of dopant diffusion blocking effect accompanied by introduction of the OI layer) also contributes 50%–60% of the mobility improvement.

  12. The Internet in Connecting Electronics Health Record Mobile Clients

    Czech Academy of Sciences Publication Activity Database

    Hanzlíček, Petr; Špidlen, Josef; Zvárová, Jana

    2002-01-01

    Roč. 10, č. 6 (2002), s. 502-503 ISSN 0928-7329. [Mednet 2002. Qualit-e-Health. World Conference on the Internet in Medicine /7./. 04.12.2002-07.12.2002, Amsterdam] Institutional research plan: AV0Z1030915 Keywords : distributed electronic health record * mobile health data access Subject RIV: BD - Theory of Information

  13. Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce[Gamma irradiation; Fermented anchovy; Color; Flavor compounds; Electronic nose; Sensory evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Ahn, Hyun Joo; Yook, Hong Sun; Kim, Kyong Soo; Rhee, Moon Soo; Ryu, Gi Hyung; Byun, Myung Woo E-mail: mwbyun@kaeri.re.kr

    2004-02-01

    Color, flavor, and sensory characteristics of irradiated salted and fermented anchovy sauce were investigated. The filtrate of salted and fermented anchovy was irradiated at 0, 2.5, 5, 7.5, and 10 kGy. After irradiation, Hunter's color values were increased, however, the color values were gradually decreased in all samples during storage. Amount of the aldehydes, esters, ketones, S-containing compounds, and the other groups were increased up to 7.5 kGy irradiation, then decreased at 10 kGy (P<0.05), while the alcohols and furan groups were increased by irradiation. Different odor patterns were observed among samples using electronic nose system analysis. Gamma-irradiated samples showed better sensory score and the quality was sustained during storage. In conclusion, gamma irradiation of salted and fermented anchovy sauce could improve its sensory quality by reducing typical fishy smell.

  14. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  15. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  17. Organic High Electron Mobility Transistors Realized by 2D Electron Gas.

    Science.gov (United States)

    Zhang, Panlong; Wang, Haibo; Yan, Donghang

    2017-09-01

    A key breakthrough in inorganic modern electronics is the energy-band engineering that plays important role to improve device performance or develop novel functional devices. A typical application is high electron mobility transistors (HEMTs), which utilizes 2D electron gas (2DEG) as transport channel and exhibits very high electron mobility over traditional field-effect transistors (FETs). Recently, organic electronics have made very rapid progress and the band transport model is demonstrated to be more suitable for explaining carrier behavior in high-mobility crystalline organic materials. Therefore, there emerges a chance for applying energy-band engineering in organic semiconductors to tailor their optoelectronic properties. Here, the idea of energy-band engineering is introduced and a novel device configuration is constructed, i.e., using quantum well structures as active layers in organic FETs, to realize organic 2DEG. Under the control of gate voltage, electron carriers are accumulated and confined at quantized energy levels, and show efficient 2D transport. The electron mobility is up to 10 cm 2 V -1 s -1 , and the operation mechanisms of organic HEMTs are also argued. Our results demonstrate the validity of tailoring optoelectronic properties of organic semiconductors by energy-band engineering, offering a promising way for the step forward of organic electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of mobile electron beam plant for environmental applications

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kang, Wongu; Choi, Jang Seung; Jeong, Kwang-Young

    2016-01-01

    Due to the necessity of pilot scale test facility for continuous treatment of wastewater and gases on site, a mobile electron beam irradiation system mounted on a trailer has developed. This mobile electron beam irradiation system is designed for the individual field application with self-shielded structure of steel plate and lead block which will satisfy the required safety figures of International Commission on Radiological Protection (ICRP). Shielding of a mobile electron accelerator of 0.7 MeV, 30 mA has been designed and examined by Monte Carlo technique. Based on a 3-D model of electron accelerator shielding which is designed with steel and lead shield, radiation leakage was examined using the Monte Carlo N-Particle Transport (MCNP) Code. Simulations with two different versions (version 4c2 and version 5) of MCNP code showed agreements within statistical uncertainties, and the highest leakage expected is 5.5061×10 −01 (1±0.0454) μSv/h, which is far below the tolerable radiation dose limit for occupational workers. This unit could treat up to 500 m 3 of liquid waste per day at 2 kGy or 10,000 N m 3 of gases per hour at 15 kGy. - Highlights: • A mobile electron beam irradiation system mounted on a trailer has developed. • It is designed for treatment of wastewater and flue gas on site. • Shielding of 0.7 MeV, 30 mA accelerator has done by a Monte Carlo technique. • It can treat up to 500 m 3 /d of liquid waste at 2 kGy or 10,000 N m 3 /h of gas at 15 kGy.

  19. Intrinsic mobility limit for anisotropic electron transport in Alq3.

    Science.gov (United States)

    Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R

    2008-03-21

    Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.

  20. Theoretical modeling of electron mobility in superfluid {sup 4}He

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, Frédéric; Bonifaci, Nelly [G2ELab-GreEn-ER, Equipe MDE, 21 Avenue des Martyrs, CS 90624, 38031 Grenoble Cedex 1 (France); Haeften, Klaus von [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Eloranta, Jussi, E-mail: Jussi.Eloranta@csun.edu [Department of Chemistry and Biochemistry, California State University at Northridge, 18111 Nordhoff St., Northridge, California 91330 (United States)

    2016-07-28

    The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavity sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.

  1. 77 FR 15390 - Certain Mobile Electronic Devices Incorporating Haptics; Receipt of Amended Complaint...

    Science.gov (United States)

    2012-03-15

    ... INTERNATIONAL TRADE COMMISSION [DN 2875] Certain Mobile Electronic Devices Incorporating Haptics.... International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received an amended complaint entitled Certain Mobile Electronic Devices...

  2. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  3. Calculation of the mobility of electrons injected in liquid argon

    International Nuclear Information System (INIS)

    Ascarelli, G.

    1986-01-01

    A model calculation is carried out in which we evaluate the mobility of electrons injected in liquid argon. Scattering by both phonons and static density fluctuations is taken into account. The calculation for the mobility limited by phonon scattering differs from the usual calculation in crystals by considering both the local changes in the deformation potential and the changes of the amplitude of the phonons that are caused by the existence of density fluctuations. The calculation of the mobility limited by scattering from density fluctuations is carried out with the assumption that they give rise to a square-well (or barrier) potential that will scatter the electrons. The above perturbation ΔV 0 is related to a density fluctuation Δn by ΔV 0 = V 0 (n-bar+Δn)-V 0 (n-bar). The scattering volumes Ω, where the density fluctuation Δn is located, are weighted by exp(-r/xi) where xi is the correlation length and r is the radius of Ω. The magnitude of the different density fluctuations is weighted by exp[-(Δn) 2 Ω/2nS(0)], where S(0) = nk/sub B/TK/sub T/, K/sub T/ is the isothermal compressibility. The calculation of the mean free path is carried out using partial waves. Both scattering mechanisms, scattering by phonons and static density fluctuations, give comparable contributions to the mobility

  4. Kinase detection with gallium nitride based high electron mobility transistors.

    Science.gov (United States)

    Makowski, Matthew S; Bryan, Isaac; Sitar, Zlatko; Arellano, Consuelo; Xie, Jinqiao; Collazo, Ramon; Ivanisevic, Albena

    2013-07-01

    A label-free kinase detection system was fabricated by the adsorption of gold nanoparticles functionalized with kinase inhibitor onto AlGaN/GaN high electron mobility transistors (HEMTs). The HEMTs were operated near threshold voltage due to the greatest sensitivity in this operational region. The Au NP/HEMT biosensor system electrically detected 1 pM SRC kinase in ionic solutions. These results are pertinent to drug development applications associated with kinase sensing.

  5. Patterning of high mobility electron gases at complex oxide interfaces

    DEFF Research Database (Denmark)

    Trier, Felix; Prawiroatmodjo, G. E. D. K.; von Soosten, Merlin

    2015-01-01

    Oxide interfaces provide an opportunity for electronics. However, patterning of electron gases at complex oxide interfaces is challenging. In particular, patterning of complex oxides while preserving a high electron mobility remains underexplored and inhibits the study of quantum mechanical effects...... of amorphous-LSM (a-LSM) thin films, which acts as a hard mask during subsequent depositions. Strikingly, the patterned modulation-doped interface shows electron mobilities up to ∼8 700 cm2/V s at 2 K, which is among the highest reported values for patterned conducting complex oxide interfaces that usually...... where extended electron mean free paths are paramount. This letter presents an effective patterning strategy of both the amorphous-LaAlO3/SrTiO3 (a-LAO/STO) and modulation-doped amorphous-LaAlO3/La7/8Sr1/8MnO3/SrTiO3 (a-LAO/LSM/STO) oxide interfaces. Our patterning is based on selective wet etching...

  6. 77 FR 18860 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Notice of Receipt of Complaint...

    Science.gov (United States)

    2012-03-28

    ... INTERNATIONAL TRADE COMMISSION [DN 2885] Certain Consumer Electronics, Including Mobile Phones and.... International Trade Commission has received a complaint entitled Certain Consumer Electronics, Including Mobile... electronics, including mobile phones and tablets. The complaint names as respondents ASUSTeK Computer, Inc. of...

  7. Love Acoustic Wave-Based Devices and Molecularly-Imprinted Polymers as Versatile Sensors for Electronic Nose or Tongue for Cancer Monitoring

    Directory of Open Access Journals (Sweden)

    Corinne Dejous

    2016-06-01

    Full Text Available Cancer is a leading cause of death worldwide and actual analytical techniques are restrictive in detecting it. Thus, there is still a challenge, as well as a need, for the development of quantitative non-invasive tools for the diagnosis of cancers and the follow-up care of patients. We introduce first the overall interest of electronic nose or tongue for such application of microsensors arrays with data processing in complex media, either gas (e.g., Volatile Organic Compounds or VOCs as biomarkers in breath or liquid (e.g., modified nucleosides as urinary biomarkers. Then this is illustrated with a versatile acoustic wave transducer, functionalized with molecularly-imprinted polymers (MIP synthesized for adenosine-5′-monophosphate (AMP as a model for nucleosides. The device including the thin film coating is described, then static measurements with scanning electron microscopy (SEM and electrical characterization after each step of the sensitive MIP process (deposit, removal of AMP template, capture of AMP target demonstrate the thin film functionality. Dynamic measurements with a microfluidic setup and four targets are presented afterwards. They show a sensitivity of 5 Hz·ppm−1 of the non-optimized microsensor for AMP detection, with a specificity of three times compared to PMPA, and almost nil sensitivity to 3′AMP and CMP, in accordance with previously published results on bulk MIP.

  8. Ultimate response time of high electron mobility transistors

    International Nuclear Information System (INIS)

    Rudin, Sergey; Rupper, Greg; Shur, Michael

    2015-01-01

    We present theoretical studies of the response time of the two-dimensional gated electron gas to femtosecond pulses. Our hydrodynamic simulations show that the device response to a short pulse or a step-function signal is either smooth or oscillating time-decay at low and high mobility, μ, values, respectively. At small gate voltage swings, U 0  = U g  − U th , where U g is the gate voltage and U th is the threshold voltage, such that μU 0 /L < v s , where L is the channel length and v s is the effective electron saturation velocity, the decay time in the low mobility samples is on the order of L 2 /(μU 0 ), in agreement with the analytical drift model. However, the decay is preceded by a delay time on the order of L/s, where s is the plasma wave velocity. This delay is the ballistic transport signature in collision-dominated devices, which becomes important during very short time periods. In the high mobility devices, the period of the decaying oscillations is on the order of the plasma wave velocity transit time. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet the requirements for applications as terahertz detectors, mixers, delay lines, and phase shifters in ultra high-speed wireless communication circuits

  9. Learning to locate an odour source with a mobile robot

    OpenAIRE

    Duckett, T.; Axelsson, M.; Saffiotti, A.

    2001-01-01

    We address the problem of enabling a mobile robot to locate a stationary odour source using an electronic nose constructed from gas sensors. On the hardware side, we use a stereo nose architecture consisting of two parallel chambers, each containing an identical set of sensors. On the software side, we use a recurrent artificial neural network to learn the direction to a stationary source from a time series of sensor readings. This contrasts with previous approaches, that rely on the existenc...

  10. Electron mobility variance in the presence of an electric field: Electron-phonon field-induced tunnel scattering

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2012-01-01

    The problem of electron mobility variance is discussed. It is established that in equilibrium semiconductors the mobility variance is infinite. It is revealed that the cause of the mobility variance infinity is the threshold of phonon emission. The electron-phonon interaction theory in the presence of an electric field is developed. A new mechanism of electron scattering, called electron-phonon field-induced tunnel (FIT) scattering, is observed. The effect of the electron-phonon FIT scattering is explained in terms of penetration of the electron wave function into the semiconductor band gap in the presence of an electric field. New and more general expressions for the electron-non-polar optical phonon scattering probability and relaxation time are obtained. The results show that FIT transitions have principle meaning for the mobility fluctuation theory: mobility variance becomes finite.

  11. Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons

    International Nuclear Information System (INIS)

    Čisárová, Jana; Strečka, Jozef

    2014-01-01

    Exact solution of a coupled spin–electron linear chain composed of localized Ising spins and mobile electrons is found. The investigated spin–electron model is exactly solvable by the use of a transfer-matrix method after tracing out the degrees of freedom of mobile electrons delocalized over a couple of interstitial (decorating) sites. The exact ground-state phase diagram reveals an existence of five phases with different number of mobile electrons per unit cell, two of which are ferromagnetic, two are paramagnetic and one is antiferromagnetic. We have studied in particular the dependencies of compressibility and specific heat on temperature and electron density. - Highlights: • A coupled spin–electron chain composed of Ising spins and mobile electrons is exactly solved. • Quantum paramagnetic, ferromagnetic and antiferromagnetic ground states are found. • A compressibility shows a non-monotonous dependence on temperature and electron density. • Thermal dependences of specific heat display two distinct peaks

  12. Managing of gas sensing characteristic of a reduced graphene oxide based gas sensor by the change in synthesis condition: A new approach for electronic nose design

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Hamedsoltani, Leyla [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    Natural graphite was oxidized and exfoliated via two different methods, leading to two types of graphene oxide (GO) materials. The obtained materials were reduced by three different reducing agents including: hydrazine hydrate, ascorbic acid and sodium borohydride, giving thus six kinds of reduced graphene oxide (RGO) materials. The obtained materials were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The RGOs were then used to fabricate different gas sensors and their electrical resistances were recorded upon exposing to various volatile organic compounds vapors (VOCs). Gas sensing selectivity of each RGO was significantly affected by the synthesis condition. The RGO-based sensor array was fabricated and its capability for discrimination of seven kinds of VOCs was evaluated, utilizing principal component analysis and cluster analysis methods. Loading plot indicated that the presence of five RGO-based sensors could effectively discriminate the aimed vapors. The electronic nose, containing five kinds of RGOs, was used for the classification of seven kinds of VOCs at their different concentrations. - Highlights: • Two oxidation procedures and three reducing agents were utilized to produce six kinds of RGOs. • The synthesized different RGOs exhibited significantly different sensing behaviors. • Seven kinds of organic vapors were chosen for the evaluation of discrimination power of EN. • Using PCA, it was found that seven of six RFGOs were appropriate number to use in final EN. • The developed EN was capable of properly discrimination of tested vapors.

  13. A novel method to quantify the activity of alcohol acetyltransferase Using a SnO2-based sensor of electronic nose.

    Science.gov (United States)

    Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2016-07-15

    Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Accounting of inter-electron correlations in the model of mobile electron shells

    International Nuclear Information System (INIS)

    Panov, Yu.D.; Moskvin, A.S.

    2000-01-01

    One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru

  15. Qualitative characteristics and comparison of volatile fraction of vodkas made from different botanical materials by comprehensive two-dimensional gas chromatography and the electronic nose based on the technology of ultra-fast gas chromatography.

    Science.gov (United States)

    Wiśniewska, Paulina; Śliwińska, Magdalena; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2017-03-01

    Vodka is a spirit-based beverage made from ethyl alcohol of agricultural origin. At present, increasingly more vodka brands have labels that specify the botanical origin of the product. Until now, the techniques for distinguishing between vodkas of different botanical origin have been costly, time-consuming and insufficient for making a distinction between vodka produced from similar raw materials. Therefore, it is of utmost importance to find a fast and relatively inexpensive technique for conducting such tests. In the present study, we employed comprehensive two-dimensional gas chromatography (GC×GC) and an electronic nose based on the technology of ultra-fast GC with chemometric methods such as partial least square discriminant analysis, discriminant function analysis and soft independent modeling of class analogy. Both techniques allow a distinction between the vodkas produced from different raw materials. In the case of GC×GC, the differences between vodkas were more noticeable than in the analysis by electronic nose; however, the electronic nose allowed the significantly faster analysis of vodkas. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. First-principles method for electron-phonon coupling and electron mobility

    DEFF Research Database (Denmark)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n-type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full......-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part...... of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene...

  17. Charge fluctuations in high-electron-mobility transistors: a review

    International Nuclear Information System (INIS)

    Green, F.

    1993-01-01

    The quasi-two-dimensional carrier population, free to move within a near-perfect crystalline matrix, is the key to remarkable improvements in signal gain, current density and quiet operation. Current-fluctuation effects are central to all of these properties. Some of these are easily understood within linear-response theory, but other fluctuation phenomena are less tractable. In particular, nonequilibrium noise poses significant theoretical challenges, both descriptive and predictive. This paper examines a few of the basic physical issues which motivate device-noise theory. The structure and operation of high-electron-mobility transistor are first reviewed. The recent nonlinear fluctuation theory of Stanton and Wilkins (1987) help to identify at least some of the complicated noise physics which can arise when carriers in GaAs-like conduction bands are subjected to high fields. Simple examples of fluctuation-dominated behaviour are discussed, with numerical illustrations. 20 refs., 9 figs

  18. A Mobile Nanoscience and Electron Microscopy Outreach Program

    Science.gov (United States)

    Coffey, Tonya; Kelley, Kyle

    2013-03-01

    We have established a mobile nanoscience laboratory outreach program in Western NC that puts scanning electron microscopy (SEM) directly in the hands of K-12 students and the general public. There has been a recent push to develop new active learning materials to educate students at all levels about nanoscience and nanotechnology. Previous projects, such as Bugscope, nanoManipulator, or SPM Live! allowed remote access to advanced microscopies. However, placing SEM directly in schools has not often been possible because the cost and steep learning curve of these technologies were prohibitive, making this project quite novel. We have developed new learning modules for a microscopy outreach experience with a tabletop SEM (Hitachi TM3000). We present here an overview of our outreach and results of the assessment of our program to date.

  19. High electron mobility in Ga(In)NAs films grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Miyashita, Naoya; Ahsan, Nazmul; Monirul Islam, Muhammad; Okada, Yoshitaka; Inagaki, Makoto; Yamaguchi, Masafumi

    2012-01-01

    We report the highest mobility values above 2000 cm 2 /Vs in Si doped GaNAs film grown by molecular beam epitaxy. To understand the feature of the origin which limits the electron mobility in GaNAs, temperature dependences of mobility were measured for high mobility GaNAs and referential low mobility GaInNAs. Temperature dependent mobility for high mobility GaNAs is similar to the GaAs case, while that for low mobility GaInNAs shows large decrease in lower temperature region. The electron mobility of high quality GaNAs can be explained by intrinsic limiting factor of random alloy scattering and extrinsic factor of ionized impurity scattering.

  20. Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus).

    Science.gov (United States)

    Popper, A N

    1978-09-01

    The anatomy and ultrastructure of the sacculus, lagena, and utriculus of the ear of Polypterus bichir and Scaphirhynchus platorynchus were studied using the scanning electron microscope. The otolithic organs each contain a single dense calcareous otolith in close contact with a sensory epithelium (macula). The maculae have sensory hair cells typical of those found in other vertebrates, surrounded by microvilli-covered supporting cells. The hair cells on each macula are divided into several groups, with all of the cells in each group morphologically polarized in the same direction. The cells of the utricular macula in both species are divided into opposing groups in a pattern similar to that found in other vertebrates. The saccular and lagenar maculae are located in a single large chamber in both species. In Scaphirhychus the two maculae are on the same plane, while in Polypterus they are at right angles to one another. The hair cells on the saccular maculae of both species are divided into two oppositely oriented groups. In Scaphirhynchus the cells on the posterior half of the macula are oriented dorsally on the dorsal half of the macula and ventrally on the ventral half. The anterior region of the macula is rotated and the cells of the dorsal and ventral groups are shifted so that they are oriented on the animal's horizon plane. A similar pattern is found in Polypterus, except that this macula is shaped like a "J" with the vertical portion of the J having horizontal cells and the bottom portion vertical cells. The lagenar maculae in both species have dorsally oriented cells on the anterior side of the macula and ventrally oriented cells on the posterior half of the macula. While these data are not sufficient for clarifying the taxonomic relationship between the two species studied, it is clear that the ears in these species have a number of significant differences from the teleost ear that could have functional and/or taxonomic significance.

  1. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    International Nuclear Information System (INIS)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Im, Hyunsik

    2014-01-01

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  2. 77 FR 24514 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Institution of Investigation...

    Science.gov (United States)

    2012-04-24

    ..., Including Mobile Phones and Tablets; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S... mobile phones and tablets, by reason of infringement of certain claims of U.S. Patent No. 5,854,893... after importation of certain consumer electronics, including mobile phones and tablets, that infringe...

  3. Description of a Mobile-based Electronic Informed Consent System Development.

    Science.gov (United States)

    Hwang, Min-A; Kwak, In Ja

    2015-01-01

    Seoul National University Hospital constructed and implemented a computer-based informed consent system in December 2011. As of 2013, 30% of the informed consents were still filled out manually on paper. Patients and medical staff continuously suggested the implementation of a system for electronic informed consent using portable devices. Therefore, a mobile-based system for electronic informed consent was developed in 2013 to prevent the issues that arise with computer-based systems and paper informed consent. The rate of filling out electronic informed consent increased from 69% to 95% following the implementation of the mobile-based electronic informed consent. This construction of a mobile-based electronic informed consent system would be a good reference point for the development of a mobile-based Electronic Medical Record and for various mobile system environments in medical institutions.

  4. 76 FR 41522 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-07-14

    ... Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components.... 1337, in the importation, sale for importation and sale within the United States after importation of certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...

  5. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Amit; Sangwan, S. [UIET, Panjab University, Chandigarh (India); Roy, J. N., E-mail: amit_chaudhry01@yahoo.com [Solar Semiconductro Pvt. Ltd, Hyderabad (India)

    2011-05-15

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  6. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    Chaudhry, Amit; Sangwan, S.; Roy, J. N.

    2011-01-01

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  7. A Prototype User Interface for a Mobile Electronic Clinical Note Data Entry System

    OpenAIRE

    Zafar, Atif; Lehto, Mark; Kim, Jongseo

    2005-01-01

    Recent advances in mobile computing technologies have made electronic medical records (EMRs) on handheld devices an attractive possibility. However, data entry paradigms popular on desktop machines do not translate well to mobile devices1,2. Based on a review of the literature on mobile device usability1–4, we built a prototype user interface for mobile EMRs and held focus groups with clinician users whose feedback provided useful insight about design choices, functionality and...

  8. 77 FR 27078 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-05-08

    ... Phones and Tablet Computers, and Components Thereof; Notice of Receipt of Complaint; Solicitation of... entitled Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof... the United States after importation of certain electronic devices, including mobile phones and tablet...

  9. Mobilities of slow electrons in low- and high-pressure gases and liquids

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1975-01-01

    Mobilities of slow (thermal and epithermal) electrons in low- (less than or approximately 500 Torr) and high- (approximately 500 to approximately 34,111 Torr) pressure gases are discussed and are related to the molecular structure and to the mobilities of thermal electrons in liquid media

  10. 77 FR 49458 - Certain Mobile Electronic Devices Incorporating Haptics; Amendment of the Complaint and Notice of...

    Science.gov (United States)

    2012-08-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices.... 1337 in the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics, by reason of the infringement of claims of six...

  11. 78 FR 23593 - Certain Mobile Electronic Devices Incorporating Haptics; Termination of Investigation

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices... the importation, sale for importation, and sale within the United States after importation of certain mobile electronic devices incorporating haptics that infringe certain claims of six Immersion patents. 77...

  12. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, Sanyam, E-mail: bajaj.10@osu.edu; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Reza, Shahed; Chumbes, Eduardo M. [Raytheon Integrated Defense Systems, Andover, Massachusetts 01810 (United States); Khurgin, Jacob [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Material Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  13. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Bajaj, Sanyam; Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-01-01

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10 7  cm/s at a low sheet charge density of 7.8 × 10 11  cm −2 . An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs

  14. Electrorecycling of Critical and Value Metals from Mobile Electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lister, Tedd E.; Wang, Peming; Anderko, Andre

    2014-09-01

    Mobile electronic devices such as smart phones and tablets are a significant source of valuable metals that should be recycled. Each year over a billion devices are sold world-wide and the average life is only a couple years. Value metals in phones are gold, palladium, silver, copper, cobalt and nickel. Devices now contain increasing amounts of rare earth elements (REE). In recent years the supply chain for REE has moved almost exclusively to China. They are contained in displays, speakers and vibrators within the devices. By US Department of Energy (DOE) classification, specific REEs (Nd, Dy, Eu, Tb and Y) are considered critical while others (Ce, La and Pr) are deemed near critical. Effective recycling schemes should include the recovery of these critical materials. By including more value materials in a recovery scheme, more value can be obtained by product diversification and less waste metals remains to be disposed of. REEs are mined as a group such that when specific elements become critical significantly more ore must be processed to capture the dilute but valuable critical elements. Targeted recycling of items containing the more of the less available critical materials could address their future criticality. This presentation will describe work in developing aqueous electrochemistry-based schemes for recycling metals from scrap mobile electronics. The electrorecycling process generates oxidizing agents at an anode while reducing dissolved metals at the cathode. E vs pH diagrams and metals dissolution experiments are used to assess effectiveness of various solution chemistries. Although several schemes were envisioned, a two stages process has been the focus of work: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using simulated metal mixtures. Both Cu and Ag were recovered at ~ 97% using Fe+3 while

  15. 78 FR 13895 - Certain Consumer Electronics, Including Mobile Phones and Tablets; Commission Determination Not...

    Science.gov (United States)

    2013-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-839] Certain Consumer Electronics... importation of certain consumer electronics, including mobile phones and tablets, by reason of infringement of..., Washington (collectively, ``HTC''); LG Electronics, Inc. of Seoul, Republic of Korea, LG Electronics U.S.A...

  16. Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Singh, Seema; Ojha, Bharti; Shrivastava, R.G.

    1996-01-01

    A theoretical study is made on the mobile interstitial and mobile electron models of mechano-induced luminescence in coloured alkali halide crystals. Equations derived indicate that the mechanoluminescence intensity should depend on several factors like strain rate, applied stress, temperature, density of F-centres and volume of crystal. The equations also involve the efficiency and decay time of mechanoluminescence. Results of mobile interstitial and mobile electron models are compared with the experimental observations, which indicated that the latter is more suitable as compared to the former. From the temperature dependence of ML, the energy gaps between the dislocation band and ground state of F-centre is calculated which are 0.08, 0.072 and 0.09 eV for KCl, KBr and NaCl crystals, respectively. The theory predicts that the decay of ML intensity is related to the process of stress relaxation in crystals. (author). 33 refs., 5 figs., 1 tab

  17. Plant Pest Detection Using an Artificial Nose System: A Review

    Directory of Open Access Journals (Sweden)

    Shaoqing Cui

    2018-01-01

    Full Text Available This paper reviews artificial intelligent noses (or electronic noses as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage. Volatile organic compounds (VOCs emitted from plants, which provide functional information about the plant’s growth, defense, and health status, allow for the possibility of using noninvasive detection to monitor plants status. Electronic noses are comprised of a sensor array, signal conditioning circuit, and pattern recognition algorithms. Compared with traditional gas chromatography–mass spectrometry (GC-MS techniques, electronic noses are noninvasive and can be a rapid, cost-effective option for several applications. However, using electronic noses for plant pest diagnosis is still in its early stages, and there are challenges regarding sensor performance, sampling and detection in open areas, and scaling up measurements. This review paper introduces each element of electronic nose systems, especially commonly used sensors and pattern recognition methods, along with their advantages and limitations. It includes a comprehensive comparison and summary of applications, possible challenges, and potential improvements of electronic nose systems for different plant pest diagnoses.

  18. Plant Pest Detection Using an Artificial Nose System: A Review.

    Science.gov (United States)

    Cui, Shaoqing; Ling, Peter; Zhu, Heping; Keener, Harold M

    2018-01-28

    This paper reviews artificial intelligent noses (or electronic noses) as a fast and noninvasive approach for the diagnosis of insects and diseases that attack vegetables and fruit trees. The particular focus is on bacterial, fungal, and viral infections, and insect damage. Volatile organic compounds (VOCs) emitted from plants, which provide functional information about the plant's growth, defense, and health status, allow for the possibility of using noninvasive detection to monitor plants status. Electronic noses are comprised of a sensor array, signal conditioning circuit, and pattern recognition algorithms. Compared with traditional gas chromatography-mass spectrometry (GC-MS) techniques, electronic noses are noninvasive and can be a rapid, cost-effective option for several applications. However, using electronic noses for plant pest diagnosis is still in its early stages, and there are challenges regarding sensor performance, sampling and detection in open areas, and scaling up measurements. This review paper introduces each element of electronic nose systems, especially commonly used sensors and pattern recognition methods, along with their advantages and limitations. It includes a comprehensive comparison and summary of applications, possible challenges, and potential improvements of electronic nose systems for different plant pest diagnoses.

  19. Electron mobility in nonpolar liquids: the effect of molecular structure, temperature and electric field

    International Nuclear Information System (INIS)

    Schmidt, W.F.

    1977-01-01

    A survey is given on the mobility of excess electrons in liquid hydrocarbons and related compounds. It was found that the mobility is strongly influenced by the molecular structure of the liquid, by the temperature, and by the electric field strength. The mobility in hydrocarbons increases as the shape of the molecule approaches a sphere. The temperature coefficient is positive in most liquids over a limited temperature although exceptions have been observed in liquid methane. The field dependence of the mobility in high mobility liquids (>10 cm 2 V -1 s -1 ) showed a decrease of the mobility at higher field strengths while in low mobility liquids ( 2 V -1 s -1 ) it showed an increase. These results are discussed on the basis of the extended and the localized electron models. The predictions of these theories are compared with the experimental results and conclusions on the validity of the underlying assumptions are drawn. (author)

  20. Thermal Investigation of Three-Dimensional GaN-on-SiC High Electron Mobility Transistors

    Science.gov (United States)

    2017-07-01

    University of L’Aquila, (2011). 23 Rao, H. & Bosman, G. Hot-electron induced defect generation in AlGaN/GaN high electron mobility transistors. Solid...AFRL-RY-WP-TR-2017-0143 THERMAL INVESTIGATION OF THREE- DIMENSIONAL GaN-on-SiC HIGH ELECTRON MOBILITY TRANSISTORS Qing Hao The University of Arizona...clarification memorandum dated 16 Jan 09. This report is available to the general public, including foreign nationals. Copies may be obtained from the

  1. Empirical electron cross-field mobility in a Hall effect thruster

    International Nuclear Information System (INIS)

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-01-01

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B 2 or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B 2 or 1/B mobility laws for discharge voltages in the 500-700 V range.

  2. Theoretical interpretation of the electron mobility behavior in InAs nanowires

    International Nuclear Information System (INIS)

    Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Martínez-Blanque, C.; Gámiz, F.

    2014-01-01

    This work studies the electron mobility in InAs nanowires (NWs), by solving the Boltzmann Transport Equation under the Momentum Relaxation Time approximation. The numerical solver takes into account the contribution of the main scattering mechanisms present in III-V compound semiconductors. It is validated against experimental field effect-mobility results, showing a very good agreement. The mobility dependence on the nanowire diameter and carrier density is analyzed. It is found that surface roughness and polar optical phonons are the scattering mechanisms that mainly limit the mobility behavior. Finally, we explain the origin of the oscillations observed in the mobility of small NWs at high electric fields.

  3. Theoretical interpretation of the electron mobility behavior in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A.; Tienda-Luna, I. M.; Martínez-Blanque, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Facultad de Ciencias, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada (Spain)

    2014-11-07

    This work studies the electron mobility in InAs nanowires (NWs), by solving the Boltzmann Transport Equation under the Momentum Relaxation Time approximation. The numerical solver takes into account the contribution of the main scattering mechanisms present in III-V compound semiconductors. It is validated against experimental field effect-mobility results, showing a very good agreement. The mobility dependence on the nanowire diameter and carrier density is analyzed. It is found that surface roughness and polar optical phonons are the scattering mechanisms that mainly limit the mobility behavior. Finally, we explain the origin of the oscillations observed in the mobility of small NWs at high electric fields.

  4. Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.

    Science.gov (United States)

    Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang

    2017-11-01

    Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Foreign body in the nose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000037.htm Foreign body in the nose To use the sharing features ... in a normal attempt to explore their own bodies. Objects placed in the nose may include food, ...

  6. 75 FR 32984 - Policy on the Retention of Supporting Documents and the Use of Electronic Mobile Communication...

    Science.gov (United States)

    2010-06-10

    ...-0168] Policy on the Retention of Supporting Documents and the Use of Electronic Mobile Communication... changes regarding the retention of supporting documents and the use of electronic mobile communication... electronic mobile communication/tracking records to be supporting documents, as they record the time, date...

  7. Growth parameter optimization and interface treatment for enhanced electron mobility in heavily strained GaInAs/AlInAs high electron mobility transistor structures

    International Nuclear Information System (INIS)

    Fedoryshyn, Yuriy; Ostinelli, Olivier; Alt, Andreas; Pallin, Angel; Bolognesi, Colombo R.

    2014-01-01

    The optimization of heavily strained Ga 0.25 In 0.75 As/Al 0.48 In 0.52 As high electron mobility transistor structures is discussed in detail. The growth parameters and the channel layer interfaces were optimized in order to maximize the mobility of the two-dimensional electron gas. Structures composed of an 11 nm thick channel layer and a 4 nm thick spacer layer exhibited electron mobilities as high as 15 100 cm 2 /Vs and 70 000 cm 2 /Vs at 300 and 77 K, respectively, for channels including InAs strained layers. The sheet carrier density was kept above 2.5 × 10 12  cm −2 throughout the entire study

  8. Increase in electron mobility of InGaAs/InP composite channel high electron mobility transistor structure due to SiN passivation

    International Nuclear Information System (INIS)

    Liu Yuwei; Wang Hong; Radhakrishnan, K.

    2007-01-01

    The influence of silicon nitride passivation on electron mobility of InGaAs/InP composite channel high electron mobility transistor structure has been studied. Different from the structures with single InGaAs channel, an increase in effective mobility μ e with a negligible change of sheet carrier density n s after SiN deposition is clearly observed in the composite channel structures. The enhancement of μ e could be explained under the framework of electrons transferring from the InP sub-channel into InGaAs channel region due to the energy band bending at the surface region caused by SiN passivation, which is further confirmed by low temperature photoluminescence measurements

  9. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    Science.gov (United States)

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  10. Electron-capture process and ion mobility spectra in plasma chromatography

    International Nuclear Information System (INIS)

    Karasek, F.W.; Spangler, G.E.

    1981-01-01

    The basic principles of plasma chromatography are introduced and ion mobility relationships presented. The relationships of plasma chromatography to electron-capture detector mechanisms are discussed, including electron energy considerations and electron-capture reactions. A number of experimental studies by plasma chromatography are described. (C.F.)

  11. Electromagnetic interference of mobile phones with electronic implants

    International Nuclear Information System (INIS)

    Kainz, W.

    2000-03-01

    Chapter 1:Interference matrix: The objective of Chapter 1 was to give an overview of the implants used at present and their electromagnetic compatibility (EMC). The evaluation of the available literature provides an estimate of the probability of electronic implants being influenced by various interference sources. A literature search at the AKH (Allgemeines Krankenhaus) in Vienna and at the Technical University of Vienna in the FIZ (Fach-Informations-Zentrum) -Biomedizinische Technik, Medline, Pascal Biomed, CC Search und Embase databases yielded 236 relevant publications. At present 12 different implants are used: pacemaker, defibrillator, cochlear and brain-stem implants, neurostimulators, spinal-cord stimulators, spinal-fusion stimulators, telemetry systems, artificial hearts, drug-delivery systems, neurological pulse generators, visual prosthetics and implantable patient chips. The frequency with which they are used and the EMC on exposure to the various interference sources was summarized. Publications on EMC were found only for the first six implant types and only for 30% of the possible combinations of implant type and interference source. Based on the number of the implants examined, the probability of interference was calculated and summarized in the interference matrix. Chapter 2:Measurements on the phantom: No publication on the electromagnetic compatibility of neurological pulse generators (NPG) could be found. This implant has been used increasingly in the last few years to treat Parkinson's disease. A phantom was built to examine this implant at 900 MHz. The electromagnetic compatibility was measured by exposing the NPG to the fields of ten different 900 MHz GSM mobile phones. Every mobile phone was tested in three different positions relative to the phantom, with four electrode configurations and four stimulation parameters. No interference was found even at a maximum transmit power of 2 watts. Further tests with half-wave dipoles and increased

  12. 77 FR 34063 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2012-06-08

    ... Phones and Tablet Computers, and Components Thereof Institution of Investigation AGENCY: U.S... the United States after importation of certain electronic devices, including mobile phones and tablet... mobile phones and tablet computers, and components thereof that infringe one or more of claims 1-3 and 5...

  13. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Science.gov (United States)

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  14. Research on mobile electronic commerce security technology based on WPKI

    Science.gov (United States)

    Zhang, Bo

    2013-07-01

    Through the in-depth study on the existing mobile e-commerce and WAP protocols, this paper presents a security solution of e-commerce system based on WPKI, and describes its implementation process and specific implementation details. This solution uniformly distributes the key used by the various participating entities , to fully ensure the confidentiality, authentication, fairness and integrity of mobile e-commerce payments, therefore has some pract ical value for improving the security of e-commerce system.

  15. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi

    KAUST Repository

    Hou, Zhipeng; Wang, Wenhong; Xu, Guizhou; Zhang, Xiaoming; Wei, Zhiyang; Shen, Shipeng; Liu, Enke; Yao, Yuan; Chai, Yisheng; Sun, Young; Xi, Xuekui; Wang, Wenquan; Liu, Zhongyuan; Wu, Guangheng; Zhang, Xixiang

    2015-01-01

    Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magnetoelectric devices. Here, we report on an electron-hole

  16. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  17. The quasi-ballistic model of electron mobility in liquid hydrocarbons

    International Nuclear Information System (INIS)

    Mozumder, A.

    1996-01-01

    A phenomenological theory of low-mobility liquid hydrocarbons is developed which includes electron ballistic motion in the quasi-free state, in competition with diffusion and trapping. For most low-mobility liquids the theory predicts consistently the effective mobility and activation energy, in agreement with experiments, using quasi-free mobility and trap density respectively as ∼ 100 cm 2 v -1 s -1 and ∼ 10 19 cm -3 . Field dependence of mobility if theoretically of quadratic type for relatively small fields, agreeing approximately with experimental data for n-hexane. Electron scavenging with ''good'' scavengers occurs via the quasi-free state at nearly diffusion-controlled rate; however the effect of large mean free path is seen clearly. (author)

  18. Surface roughness induced electron mobility degradation in InAs nanowires

    International Nuclear Information System (INIS)

    Wang Fengyun; Yip, Sen Po; Han, Ning; Fok, KitWa; Lin, Hao; Hou, Jared J; Dong, Guofa; Hung, Tak Fu; Chan, K S; Ho, Johnny C

    2013-01-01

    In this work, we present a study of the surface roughness dependent electron mobility in InAs nanowires grown by the nickel-catalyzed chemical vapor deposition method. These nanowires have good crystallinity, well-controlled surface morphology without any surface coating or tapering and an excellent peak field-effect mobility up to 15 000 cm 2 V −1 s −1 when configured into back-gated field-effect nanowire transistors. Detailed electrical characterizations reveal that the electron mobility degrades monotonically with increasing surface roughness and diameter scaling, while low-temperature measurements further decouple the effects of surface/interface traps and phonon scattering, highlighting the dominant impact of surface roughness scattering on the electron mobility for miniaturized and surface disordered nanowires. All these factors suggest that careful consideration of nanowire geometries and surface condition is required for designing devices with optimal performance. (paper)

  19. Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq{sub 3} in OLED

    Energy Technology Data Exchange (ETDEWEB)

    Mu Haichuan; White, Dan; Sharpton, Buck [Office of Electronic Miniaturization, University of Alaska at Fairbanks, AK 99701 (United States); Klotzkin, David [Department of Electrical and Computer Engineering and Computer Sciences, University of Cincinnati, Cincinnati, OH 45221 (United States); De Silva, Ajith; Wagner, Hans Peter [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States)], E-mail: fnhm@uaf.edu

    2008-12-07

    The correlation of electroluminescence (EL), photoluminescence (PL) and electron mobility were investigated over temperature from 60 to 300 K in small-molecule organic light emitting diode (OLED) structures. The devices consisted of ITO/PEDOT(50 nm)/TPD(50 nm)/Alq{sub 3}(60 nm)/LiF(1 nm)/Al(90 nm), and were fabricated with high-vacuum sublimation/evaporation in a cross-linked configuration. Electron mobility was measured using an ac analysis of the device optical modulation characteristics, while PL and EL were measured by measuring optical power out at fixed pump power of 1 mW, and analysis of dc brightness-voltage (L-V) characteristics, respectively. PL intensity and mobility had a clear maximum at around 220 K, while EL efficiency was constant below 220 K and decrease monotonically above. The reason for the temperature dependent EL, PL and electron mobility behaviour will be discussed.

  20. Evaluation of electron mobility in InSb quantum wells by means of percentage-impact

    International Nuclear Information System (INIS)

    Mishima, T. D.; Edirisooriya, M.; Santos, M. B.

    2014-01-01

    In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Our percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature

  1. Exploring the Use of Electronic Mobile Technologies among Distance Learners in Rural Communities for Safe and Disruptive Learning

    Science.gov (United States)

    Ntloedibe-Kuswani, Gomang Seratwa

    2013-01-01

    Several studies indicated the potential of electronic mobile technologies in reaching (safe learning) under-served communities and engaging (disruptive learning) disadvantaged peoples affording them learning experiences. However, the potential benefits of (electronic mobile learning) e-mobile learning have not been well understood from the…

  2. The average Indian female nose.

    Science.gov (United States)

    Patil, Surendra B; Kale, Satish M; Jaiswal, Sumeet; Khare, Nishant; Math, Mahantesh

    2011-12-01

    This study aimed to delineate the anthropometric measurements of the noses of young women of an Indian population and to compare them with the published ideals and average measurements for white women. This anthropometric survey included a volunteer sample of 100 young Indian women ages 18 to 35 years with Indian parents and no history of previous surgery or trauma to the nose. Standardized frontal, lateral, oblique, and basal photographs of the subjects' noses were taken, and 12 standard anthropometric measurements of the nose were determined. The results were compared with published standards for North American white women. In addition, nine nasal indices were calculated and compared with the standards for North American white women. The nose of Indian women differs significantly from the white nose. All the nasal measurements for the Indian women were found to be significantly different from those for North American white women. Seven of the nine nasal indices also differed significantly. Anthropometric analysis suggests differences between the Indian female nose and the North American white nose. Thus, a single aesthetic ideal is inadequate. Noses of Indian women are smaller and wider, with a less projected and rounded tip than the noses of white women. This study established the nasal anthropometric norms for nasal parameters, which will serve as a guide for cosmetic and reconstructive surgery in Indian women.

  3. Electron drift time in silicon drift detectors: A technique for high precision measurement of electron drift mobility

    International Nuclear Information System (INIS)

    Castoldi, A.; Rehak, P.

    1995-01-01

    This paper presents a precise absolute measurement of the drift velocity and mobility of electrons in high resistivity silicon at room temperature. The electron velocity is obtained from the differential measurement of the drift time of an electron cloud in a silicon drift detector. The main features of the transport scheme of this class of detectors are: the high uniformity of the electron motion, the transport of the signal electrons entirely contained in the high-purity bulk, the low noise timing due to the very small anode capacitance (typical value 100 fF), and the possibility to measure different drift distances, up to the wafer diameter, in the same semiconductor sample. These features make the silicon drift detector an optimal device for high precision measurements of carrier drift properties. The electron drift velocity and mobility in a 10 kΩ cm NTD n-type silicon wafer have been measured as a function of the electric field in the range of possible operation of a typical drift detector (167--633 V/cm). The electron ohmic mobility is found to be 1394 cm 2 /V s. The measurement precision is better than 1%. copyright 1995 American Institute of Physics

  4. Electric field dependence of the electron mobility in bulk wurtzite ZnO

    Indian Academy of Sciences (India)

    Electric field dependence of the electron mobility in bulk wurtzite ZnO. K ALFARAMAWI ... tion to ultraviolet light emitters, gas sensors, surface acoustic wave devices and ..... Dorkel J M and Leturcq P H 1981 Solid-State Electron. 24 8211.

  5. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-09-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are...

  6. 78 FR 49764 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-08-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review n... for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc...

  7. 78 FR 72712 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-12-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov...

  8. Intrinsic Electron Mobility Limits in beta-Ga2O3

    OpenAIRE

    Ma, Nan; Tanen, Nicholas; Verma, Amit; Guo, Zhi; Luo, Tengfei; Huili; Xing; Jena, Debdeep

    2016-01-01

    By systematically comparing experimental and theoretical transport properties, we identify the polar optical phonon scattering as the dominant mechanism limiting electron mobility in beta-Ga2O3 to lower than 200 cm2/Vs at 300 K for donor doping densities lower than 1018 cm-3. In spite of similar electron effective mass of beta-Ga2O3 to GaN, the electron mobility is 10x lower because of a massive Frohlich interaction, due to the low phonon energies stemming from the crystal structure and stron...

  9. Fundamental limits on the electron mobility of β-Ga2O3.

    Science.gov (United States)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G

    2017-06-14

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga 2 O 3 . We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi's golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga 2 O 3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga 2 O 3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 10 17 to 10 20 cm -3 . We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 10 19 cm -3 . We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  10. Fundamental limits on the electron mobility of β-Ga2O3

    Science.gov (United States)

    Kang, Youngho; Krishnaswamy, Karthik; Peelaers, Hartwin; Van de Walle, Chris G.

    2017-06-01

    We perform first-principles calculations to investigate the electronic and vibrational spectra and the electron mobility of β-Ga2O3. We calculate the electron-phonon scattering rate of the polar optical phonon modes using the Vogl model in conjunction with Fermi’s golden rule; this enables us to fully take the anisotropic phonon spectra of the monoclinic lattice of β-Ga2O3 into account. We also examine the scattering rate due to ionized impurities or defects using a Yukawa-potential-based model. We consider scattering due to donor impurities, as well as the possibility of compensation by acceptors such as Ga vacancies. We then calculate the room-temperature mobility of β-Ga2O3 using the Boltzmann transport equation within the relaxation time approximation, for carrier densities in the range from 1017 to 1020 cm-3. We find that the electron-phonon interaction dominates the mobility for carrier densities of up to 1019 cm-3. We also find that the intrinsic anisotropy in the mobility is small; experimental findings of large anisotropy must therefore be attributed to other factors. We attribute the experimentally observed reduction of the mobility with increasing carrier density to increasing levels of compensation, which significantly affect the mobility.

  11. Nose: Applied aspects in dermatology

    Directory of Open Access Journals (Sweden)

    Dammaningala Venkataramaiah Lakshmi

    2016-01-01

    Full Text Available Nose is the most prominent part of the mid-face and has important physiological, aesthetic and psychological functions. Skin diseases on the nose are commonly seen by dermatologists, otorhinolaryngologists, and plastic surgeons. Because of its exposed, highly visible localization, lesions on the skin of the nose are often noticed by patients themselves, typically very early in the course of the disease. Similarly, the dermatological lexicon is well known with descriptive terminologies, synonyms, acronyms, eponyms, toponyms, misnomers. We have tried to compile the anatomical applications of nose in cosmetology and dermatosurgery subspecialities with nasal eponyms and signs encountered in clinical dermatology that would be helpful for residents.

  12. Charge carrier mobility and electronic properties of Al(Op3: impact of excimer formation

    Directory of Open Access Journals (Sweden)

    Andrea Magri

    2015-05-01

    Full Text Available We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olatealuminium(III (Al(Op3 both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op3 into organic thin film transistors (TFTs was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement.

  13. Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A. [Department of Physics, Syracuse University, Syracuse, New York 13244 (United States); Yang, Mengjin; Zhu, Kai [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L. [Iowa State University, Ames, Iowa 50011 (United States)

    2016-04-25

    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm{sup 2}/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4–0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  14. Weak coupling theory of the ripplon limited mobility of a 2-D electron lattice

    International Nuclear Information System (INIS)

    Dahm, A.J.; Mehrotra, R.

    1981-01-01

    The one ripplon-n phonon scattering contribution to the mobility of a 2D electron lattice supported by a liquid helium substrate is calculated in first order perturbation theory to all orders of n in the weak coupling limit. The Debye Waller factor is shown to limit the momentum transfer at large ripplon wave-vectors and high temperatures causing a minimum in the mobility as a function of temperature. (orig.)

  15. Electron mobility in supercritical pentanes as a function of density and temperature

    International Nuclear Information System (INIS)

    Itoh, Kengo; Nakagawa, Kazumichi; Nishikawa, Masaru

    1988-01-01

    The excess electron mobility in supercritical n-, iso- and neopentane was measured isothermally as a function of density. The density-normalized mobility μN in all three isomers goes through a minimum at a density below the respective critical densities, and the mobility is quite temperature-dependent in this region, then goes through a minimum. The μN behavior around the minimum in n-pentane is well accounted for by the Cohen-Lekner model with the structure factor S(K) estimated from the speed of sound, while that in iso- and neopentane is not. (author)

  16. A Survey on the Reliability of Power Electronics in Electro-Mobility Applications

    DEFF Research Database (Denmark)

    Gadalla, Brwene Salah Abdelkarim; Schaltz, Erik; Blaabjerg, Frede

    2015-01-01

    Reliability is an important issue in the field of power electronics since most of the electrical energy is today processed by power electronics. In most of the electro-mobility applications, e.g. electric and hybridelectric vehicles, power electronic are commonly used in very harsh environment...... and extending the service lifetime as well. Research within power electronics is of high interest as it has an important impact in the industry of the electro-mobility applications. According to the aforementioned explanations, this paper will provide an overview of the common factors (thermal cycles, power...... cycles, vibrations, voltage stress and current ripple stress) affecting the reliability of power electronics in electromobility applications. Also, the researchers perspective is summarized from 2001 to 2015....

  17. The unexpected beneficial effect of the L-valley population on the electron mobility of GaAs nanowires

    International Nuclear Information System (INIS)

    Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Gámiz, F.

    2015-01-01

    The impact of the L-valley population on the transport properties of GaAs cylindrical nanowires (NWs) is analyzed by numerically calculating the electron mobility under the momentum relaxation time approximation. In spite of its low contribution to the electron mobility (even for high electron populations in small NWs), it is demonstrated to have a beneficial effect, since it significantly favours the Γ-valley mobility by screening the higher Γ-valley energy subbands

  18. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi

    KAUST Repository

    Hou, Zhipeng

    2015-12-18

    Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magnetoelectric devices. Here, we report on an electron-hole-compensated half-Heusler semimetal LuPtBi that exhibits an extremely high electron mobility of up to 79000cm2/Vs with a nonsaturating positive MR as large as 3200% at 2 K. Remarkably, the mobility at 300 K is found to exceed 10500cm2/Vs, which is among the highest values reported in three-dimensional bulk materials thus far. The clean Shubnikov–de Haas quantum oscillation observed at low temperatures and the first-principles calculations together indicate that the high electron mobility is due to a rather small effective carrier mass caused by the distinctive band structure of the crystal. Our findings provide a different approach for finding large, high-mobility MR materials by designing an appropriate Fermi surface topology starting from simple electron-hole-compensated semimetals.

  19. ELECTRONIC SERVICE QUALITY ON MOBILE APPLICATION OF ONLINE TRANSPORTATION SERVICES

    Directory of Open Access Journals (Sweden)

    Abu Amar Fauzi

    2018-04-01

    Full Text Available Penelitian ini memiliki dua tujuan utama. Tujuan pertama adalah untuk menguraikan dimensi kualitas layanan elektronik pada aplikasi mobile layanan transportasi online yaitu Go-Jek, Grab, dan Uber di Indonesia. Tujuan kedua adalah untuk menguji hubungan kualitas layanan elektronik dengan kepuasan konsumen dan niat membeli kembali. Pengumpulan data dari kuesioner online sebanyak 149 responden digunakan untuk meneliti model penelitian. Data responden tersebut kemudian dianalisis menggunakan (PLS-SEM. Hasil penelitian menunjukkan bahwa semua dimensi kualitas layanan elektronik yaitu kualitas informasi, desain aplikasi, metode pembayaran, dan keamanan dan privasi secara positif mempengaruhi kepuasan pelanggan. Sementara itu, kepuasan pelanggan secara signifikan berpengaruh langsung pada niat beli kembali. Selanjutnya, bagian terakhir akan mendiskusikan implikasi praktis dari hasil penelitian.

  20. Development of mobile electronic health records application in a secondary general hospital in Korea.

    Science.gov (United States)

    Choi, Wookjin; Park, Min Ah; Hong, Eunseok; Kim, Sunhyu; Ahn, Ryeok; Hong, Jungseok; Song, Seungyeol; Kim, Tak; Kim, Jeongkeun; Yeo, Seongwoon

    2013-12-01

    The recent evolution of mobile devices has opened new possibilities of providing strongly integrated mobile services in healthcare. The objective of this paper is to describe the decision driver, development, and implementation of an integrated mobile Electronic Health Record (EHR) application at Ulsan University Hospital. This application helps healthcare providers view patients' medical records and information without a stationary computer workstation. We developed an integrated mobile application prototype that aimed to improve the mobility and usability of healthcare providers during their daily medical activities. The Android and iOS platform was used to create the mobile EHR application. The first working version was completed in 5 months and required 1,080 development hours. The mobile EHR application provides patient vital signs, patient data, text communication, and integrated EHR. The application allows our healthcare providers to know the status of patients within and outside the hospital environment. The application provides a consistent user environment on several compatible Android and iOS devices. A group of 10 beta testers has consistently used and maintained our copy of the application, suggesting user acceptance. We are developing the integrated mobile EHR application with the goals of implementing an environment that is user-friendly, implementing a patient-centered system, and increasing the hospital's competitiveness.

  1. Scattering and mobility in indium gallium arsenide channel, pseudomorphic high electron mobility transistors (InGaAs pHEMTs)

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1999-03-01

    Extensive transport measurements have been completed on deep and shallow-channelled InGaAs p-HEMTs of varying growth temperature, indium content, spacer thickness and doping density, with a view to a thorough characterisation, both in the metallic and the localised regimes. Particular emphasis was given to MBE grown layers, with characteristics applicable for device use, but low measurement temperatures were necessary to resolve the elastic scattering mechanisms. Measurements made in the metallic regime included transport and quantum mobility - the former over a range of temperatures between 1.5K to 300K. Conductivity measurements were also acquired in the strong localisation regime between about 1.5K and 100K. Experimentally determined parameters were tested for comparison with those predicted by an electrostatic model. Excellent agreement was obtained for carrier density. Other parameters were less well predicted, but the relevant experimental measurements, including linear depletion of the 2DEG, were sensitive to any excess doping above a 'critical' value determined by the model. At low temperature (1.5K), it was found that in all samples tested, transport mobility was strongly limited at all carrier densities by a large q mechanism, possibly intrinsic to the channel. This was ascribed either to scattering by the long-range potentials arising from the indium concentration fluctuations or fluctuations in the thickness of the channel layer. This mechanism dominates the transport at low carrier densities for all samples, but at high carrier density, an additional mechanism is significant for samples with the thinnest spacers tested (2.5nm). This is ascribed to direct electron interaction with the states of the donor layer, and produces a characteristic transport mobility peak. At higher carrier densities, past the peak, quantum mobility was found only to increase monotonically in value. Remote ionised impurity scattering while significant, particularly for samples

  2. Seeing smells: development of an optoelectronic nose

    Directory of Open Access Journals (Sweden)

    Kenneth S. Suslick

    2007-06-01

    Full Text Available The development of an array of chemically-responsive dyes on a porous membrane and in its use as a general sensor for odors and volatile organic compounds (VOCs is reviewed. These colorimetric sensor arrays (CSA act as an "optoelectronic nose" by using an array of multiple dyes whose color changes are based on the full range of intermolecular interactions. The CSA is digitally imaged before and after exposure and the resulting difference map provides a digital fingerprint for any VOC or mixture of odorants. The result is an enormous increase in discriminatory power among odorants compared to prior electronic nose technologies. For the detection of biologically important analytes, including amines, carboxylic acids, and thiols, high sensitivities (ppbv have been demonstrated. The array is essentially non-responsive to changes in humidity due to the hydrophobicity of the dyes and membrane.

  3. Excess electron mobility in ethane. Density, temperature, and electric field effects

    International Nuclear Information System (INIS)

    Doeldissen, W.; Schmidt, W.F.; Bakale, G.

    1980-01-01

    The excess electron mobility in liquid ethane was measured under orthobaric conditions as a function of temperature and electric field strength up to the critical temperature at 305.33 K. The low field mobility was found to rise strongly with temperature and exhibits a maximum value of 44 cm 2 V -1 s -1 at 2 0 below the critical temperature. At temperatures above 260 K the electron drift velocity shows a sublinear field dependence at high values of the electric field strength. These observations lead to the supposition that in liquid ethane a transition from transport via localized states to transport in extended states occurs. Measurements were also performed in fluid ethane at densities from 2.4 to 12.45 mol L -1 and temperatures from 290 to 340 K. On isochores in the vicinity of the critical density, an increase of the low field mobility with temperature was observed. This effect was found to disappear both at low (rho = 2.4 mol L -1 ) and high densities (rho greater than or equal to 9.2 mol L -1 ). In this density range, a sublinear field dependence of the drift velocities at high field strengths was noted. The critical velocity associated with the appearance of hot electrons was observed to decrease with higher densities indicating a smaller fractional energy transfer in electron molecule collisions. A compilation of electron mobilities in gaseous and liquid ethane shows that, up to densitiesof rho = 9.5 mol L -1 , μ proportional to n -1 is fulfilled if temperature effects are ignored. At intermediate densities, 9 mol L -1 -1 , a density dependence of μ proportional to rho -5 is found followed by a stronger mobility decrease toward the triple point. Positive ion mobilities measured under orthobaric conditions followed Walden's rule

  4. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  5. The use of mobile learning application to the fundament of digital electronics course

    Science.gov (United States)

    Rakhmawati, L.; Firdha, A.

    2018-01-01

    A new trend in e-learning is known as Mobile Learning. Learning through mobile phones have become part of the educative process. Thus, the purposes of this study are to develop a mobile application for the Fundament of Digital Electronics course that consists of number systems operation, logic gates, and Boolean Algebra, and to assess the readiness, perceptions, and effectiveness of students in the use of mobile devices for learning in the classroom. This research uses Research and Development (R&D) method. The design used in this research, by doing treatment in one class and observing by using Android-based mobile application instructional media. The result obtained from this research shows that the test has 80 % validity aspect, 82 % of the user from senior high school students gives a positive response in using the application of mobile learning, and based on the result of post-test, 90, 90% students passed the exam. At last, it can be concluded that the use of the mobile learning application makes the learning process more effective when it is used in the teaching-learning process.

  6. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.K.; Kim, Y.R.; Zommer, N.

    2012-01-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  7. Treatment Of Wastewater For Reuse With Mobile Electron Beam Plant

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Kim, J. K.; Kim, Y. R. [EB TECH Co., Ltd., Daejeon (Korea, Republic of); Zommer, N. [Pele Inc., Milpitas Californaa (United States)

    2012-07-01

    The use of alternative disinfectants to chlorine for the wastewater treatment has received increasing attention in recent years to treat either liquid or solids streams within wastewater treatment plants for pathogens and trace organics (TOrCs). Although several technologies have come to the forefront as an alternative to chlorine (e.g., ultraviolet [UV] and hydrogen peroxide), the majority of these technologies are chemically based, with the exception of UV. An attractive physical disinfection approach is by electron beam (EB) irradiation. EB treatment of wastewater leads to their purification from various pollutants. It is caused by the decomposition of pollutants as a result of their reactions with highly reactive species formed from water radiolysis: hydrated electron, OH free radical and H atom [Pikaev (1986)]. Sometimes methods such as EB with biological treatment, adsorption and others improve the effect of EB treatment of the wastewater purification. In the process of EB treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. At sufficiently high absorbed doses these transformations can result in complete decomposition (removal) of the substance. Under real conditions, i.e., at rather high content of pollutants in a wastewater and economically acceptable doses, partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages, efficiency of the process being notably influenced by irradiation conditions and wastewater composition [Woods and Pikaev (1994)]. (author)

  8. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    International Nuclear Information System (INIS)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian

    2014-01-01

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered. (orig.)

  9. Resonance scattering and low-temperature electron mobility in HgTe-based gapless solid solutions

    International Nuclear Information System (INIS)

    Raikh, M.Eh.; Ehfros, A.L.

    1986-01-01

    Low-temperature electron mobility in a gapless semiconductor conditioned by electron resonance scattering on neutral acceptors, the levels of which are located in narrow vicinity near the Fermi level, is calculated. Mobility turns to be inverse proportional to density of acceptor states at the Fermi level. If donor concentration is rather high, then presence of a Coulomb gap at the Fermi level in the density of acceptor states conditioned by long-range character of Coulomb interaction should be taken into account for calculation of mobility. The Fermi level is placed in the tail of the acceptor state density at rather low donor concentration, and the Coulomb gap is absent at the Fermi level. A case of high acceptor concentration, when the acceptor states are delocalized at the Fermi level, is also considered

  10. Electron mobility of two-dimensional electron gas in InGaN heterostructures: Effects of alloy disorder and random dipole scatterings

    Science.gov (United States)

    Hoshino, Tomoki; Mori, Nobuya

    2018-04-01

    InGaN has a smaller electron effective mass and is expected to be used as a channel material for high-electron-mobility transistors. However, it is an alloy semiconductor with a random distribution of atoms, which introduces additional scattering mechanisms: alloy disorder and random dipole scatterings. In this work, we calculate the electron mobility in InGaN- and GaN-channel high-electron-mobility transistors (HEMTs) while taking into account acoustic deformation potential, polar optical phonon, alloy disorder, and random dipole scatterings. For InGaN-channel HEMTs, we find that not only alloy disorder but also random dipole scattering has a strong impact on the electron mobility and it significantly decreases as the In mole fraction of the channel increases. Our calculation also shows that the channel thickness w dependence of the mobility is rather weak when w > 1 nm for In0.1Ga0.9N-channel HEMTs.

  11. 78 FR 63492 - Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof...

    Science.gov (United States)

    2013-10-24

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-847] Certain Electronic Devices, Including Mobile Phones and Tablet Computers, and Components Thereof; Notice of Request for Statements on the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is...

  12. Electric field dependence of the electron mobility in bulk wurtzite ZnO

    Indian Academy of Sciences (India)

    ZnO) material is studied. The low-field electron mobility is calculated as a function of doping concentration and lattice temperature. The results show that above nearly 50 K the electrical conduction is governed by activation through the bulk ...

  13. 77 FR 20847 - Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to...

    Science.gov (United States)

    2012-04-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-834] Certain Mobile Electronic Devices Incorporating Haptics; Institution of Investigation Pursuant to 19 U.S.C. 1337 AGENCY: U.S. International Trade.... International Trade Commission on February 7, 2012, and an amended complaint was filed with the U.S...

  14. Theory of insulated gate field effect transistor with negative differential electron mobility

    International Nuclear Information System (INIS)

    Furman, A.S.

    1995-09-01

    We study the consequences of negative differential electron mobility in FETs using the field model and the gradual channel approximation. We find that the FET may show convective or absolute instability. The fluctuations growths is governed by diffusion law with negative effective diffusion coefficient. (author). 4 refs, 2 figs

  15. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  16. Mobile Arbeitswelten und Soziale Gestaltung: Electronic Mobility: Thesen und Empfehlungen. Vortrag gehalten auf dem Kongress "e-mobility - Mobile Arbeitswelten" 2005, Berlin

    OpenAIRE

    Rump, J.; Balfanz, D.; Porak, A.; Schröter, W.

    2005-01-01

    Die Arbeitswelten der Informations- und Wissensgesellschaft befinden sich bereits seit längerer Zeit im Wandel. Das Internet sowie neue Technologien der Mobiltelefonie und der mobilen Datenübertragung ermöglichen den ubiquitären Einsatz von Lösungen, welche helfen, das Arbeitsleben der Menschen mobil, flexibel und vernetzt zu gestalten. Zugleich wird das (Arbeits-)Leben dadurch jedoch unsteter, unsicherer" und unberechenbarer. Tatsache ist, dass der Einsatz neuer mobiler Technologien die Rahm...

  17. The electron mobility and thermoelectric power in InSb at atmospheric and hydrostatic pressures

    International Nuclear Information System (INIS)

    Litwin-Staszewska, E.; Piotrzkowski, R.; Szymanska, W.

    1981-01-01

    First, theoretical calculations of electron mobility and thermoelectric power in n-type InSb are reported at liquid nitrogen and room temperatures. All the scattering mechanisms of importance in InSb are taken into account. The calculations based upon a variational solution of the Boltzmann equation are compared with experimental results over the whole available range of electron concentrations. Good agreement between theoretical and experimental results is obtained using the value of deformation potential constant C = 14.6 eV. Secondly, both, experimental and theoretical investigations are made of mobility in InSb under hydrostatic pressure at 77 K within a wide range of electron concentrations. The smallest electron concentrations obtained by freezing the conduction electrons on the metastable states are of order of 1x10 12 cm -3 . Also for those smallest concentration it is possible to describe theoretically the dependence of mobility on the hydrostatic pressure using the same set of parameters as previously, and assuming some compensation of donors by acceptors. (author)

  18. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles

    DEFF Research Database (Denmark)

    Katz, Jordan E; Zhang, Xiaoyi; Attenkofer, Klaus

    2012-01-01

    Electron mobility within iron (oxyhydr)oxides enables charge transfer between widely separated surface sites. There is increasing evidence that this internal conduction influences the rates of interfacial reactions and the outcomes of redox-driven phase transformations of environmental interest....... To determine the links between crystal structure and charge-transport efficiency, we used pump-probe spectroscopy to study the dynamics of electrons introduced into iron(III) (oxyhydr)oxide nanoparticles via ultrafast interfacial electron transfer. Using time-resolved x-ray spectroscopy and ab initio...

  19. Strain engineering on electronic structure and carrier mobility in monolayer GeP3

    Science.gov (United States)

    Zeng, Bowen; Long, Mengqiu; Zhang, Xiaojiao; Dong, Yulan; Li, Mingjun; Yi, Yougen; Duan, Haiming

    2018-06-01

    Using density functional theory coupled with the Boltzmann transport equation with relaxation time approximation, we have studied the strain effect on the electronic structure and carrier mobility of two-dimensional monolayer GeP3. We find that the energies of valence band maximum and conduction band minimum are nearly linearly shifted with a biaxial strain in the range of  ‑4% to 6%, and the band structure experiences a remarkable transition from semiconductor to metal with the appropriate compression (‑5% strain). Under biaxial strain, the mobility of the electron and hole in monolayer GeP3 reduces and increases by more than one order of magnitude, respectively. It is suggested that it is possible to perform successive transitions from an n-type semiconductor (‑4% strain) to a good performance p-semiconductor (+6% strain) by applying strain in monolayer GeP3, which is potentially useful for flexible electronics and nanosized mechanical sensors.

  20. [The crooked nose: correction of dorsal and caudal septal deviations].

    Science.gov (United States)

    Foda, H M T

    2010-09-01

    The deviated nose represents a complex cosmetic and functional problem. Septal surgery plays a central role in the successful management of the externally deviated nose. This study included 800 patients seeking rhinoplasty to correct external nasal deviations; 71% of these suffered from variable degrees of nasal obstruction. Septal surgery was necessary in 736 (92%) patients, not only to improve breathing, but also to achieve a straight, symmetric external nose. A graduated surgical approach was adopted to allow correction of the dorsal and caudal deviations of the nasal septum without weakening its structural support to the nasal dorsum or nasal tip. The approach depended on full mobilization of deviated cartilage, followed by straightening of the cartilage and its fixation in the corrected position by using bony splinting grafts through an external rhinoplasty approach.

  1. Electron mobility in few-layer MoxW1-xS2

    International Nuclear Information System (INIS)

    Chandrasekar, Hareesh; Nath, Digbijoy N

    2015-01-01

    Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer Mo x W 1−x S 2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi’s golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in Mo x W 1−x S 2 . While impurity scattering limits the mobility for low carrier densities (<2–4×10 12 cm −2 ), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in Mo x W 1−x S 2 . The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in Mo x W 1−x S 2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS 2 and WS 2 . (paper)

  2. Effect of the hydrostatic pressure on the electron mobility in delta-doped systems

    Energy Technology Data Exchange (ETDEWEB)

    Oubram, O; Mora-Ramos, M E; Gaggero-Sager, L M, E-mail: 1gaggero@uaem.m [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico)

    2009-05-01

    The influence of hydrostatic pressure on the electron states and low-temperature mobility in n-type GaAs delta-doped single quantum wells is studied. Values of hydrostatic pressure consider are below the so-called GAMMA-X crossover, keeping all attention in the electronic properties at the Brillouin zone center. The effect of the pressure on the electron mobility is described via a relative quantity that is proportional to the ratio between P not = 0 and zero pressure results. Calculation is performed using an analytical description of the potential energy function profile, based on the Thomas-Fermi approach, taking explicitly into account the dependence upon P of the main input parameters: effective masses and dielectric constant. The relative mobility increases for higher values of P. The cases of zero and finite -although small- temperature are studied, showing that the influence of T is mainly to lower the values of the relative mobility in the entire range of P considered. Numerical results are reported for a two-dimensional density of ionized impurities equals to 7.5 x 10{sup 12} cm{sup -2}.

  3. Telesne spremembe med nosečnostjo

    OpenAIRE

    Predikaka, Sandra

    2014-01-01

    POVZETEK Nosečnost spremljajo obsežne fiziološke spremembe, ki se pojavijo že zgodaj po zanositvi. Pogosto se to zgodi, še preden se ženska zave, da je noseča. Nosečnost ni bolezen, ampak je »drugo stanje«, na to stanje se je potrebno pripraviti, saj le zdrava nosečnost prinese zdravega in primerno razvitega otroka. Namen raziskave je bil ugotoviti, kako nosečnice gledajo na telesne spremembe v nosečnosti in kako to vpliva na njihovo zadovoljstvo. Anketirali smo 100 nosečnic, ki so obi...

  4. Stuffy or runny nose - children

    Science.gov (United States)

    ... than 10 days, or produces yellow-green or gray mucus Symptoms that last more than 3 weeks ... baby or infant has a fever Images Throat anatomy Runny and stuffy nose References McGann KA, Long SS. ...

  5. Stuffy or runny nose - adult

    Science.gov (United States)

    ... than 10 days, or produces yellow-green or gray mucus Nasal discharge following a head injury Symptoms ... nose; Postnasal drip; Rhinorrhea; Nasal congestion Images Throat anatomy References Bachert C, Calus L, Gevaert P. Rhinosinusitis ...

  6. High mobility 2D electron gas in CdTe/CdMgTe heterostructures

    International Nuclear Information System (INIS)

    Karczewski, G.; Jaroszynski, J.; Kurowski, M.; Barcz, A.; Wojtowicz, T.; Kossut, J.

    1997-01-01

    We report on iodine doping of molecular beam epitaxy (MBE)-grown Cd(Mn)Te quasi-bulk films and modulation-doped CdTe/Cd 1-y Mg y Te two-dimensional (2D) single quantum well structures. Modulation doping with iodine of CdTe/Cd 1-y Mg y Te structures resulted in fabrication of a 2D electron gas with mobility exceeding 10 5 cm 2 /(Vs). This is the highest mobility reported in wide-gap II-VI materials

  7. Electron mobility on the surface of liquid Helium: influence of surface level atoms and depopulation of lowest subbands

    International Nuclear Information System (INIS)

    Grigoriev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-01-01

    The temperature dependence of electron mobility is examined. We calculate the contribution to the electron scattering rate from the surface level atoms (SLAs), proposed in [10]. This contribution is substantial at low temperatures T < 0.5, when the He vapor concentration is exponentially small. We also study the effect of depopulation of the lowest energy subband, which leads to an increase in the electron mobility at high temperature. The results explain certain long-standing discrepancies between the existing theory and experiment on electron mobility on the surface of liquid helium

  8. Mobilities

    DEFF Research Database (Denmark)

    to social networks, personal identities, and our relationship to the built environment. The omnipresence of mobilities within everyday life, high politics, technology, and tourism (to mention but a few) all point to a key insight harnessed by the ‘mobilities turn’. Namely that mobilities is much more than......The world is on the move. This is a widespread understanding by many inhabitants of contemporary society across the Globe. But what does it actually mean? During over one decade the ‘mobilities turn’ within the social sciences have provided a new set of insights into the repercussions of mobilities...... and environmental degradation. The spaces and territories marked by mobilities as well as the sites marked by the bypassing of such are explored. Moreover, the architectural and technological dimensions to infrastructures and sites of mobilities will be included as well as the issues of power, social exclusion...

  9. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Tan Ren-Bing; Qin Hua; Zhang Xiao-Yu; Xu Wen

    2013-01-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density)

  10. DEVELOPING OF ELECTRONIC TEACHING MATERIAL BASED ON MOBILE LEARNING IN THE WAVE SUBJECTS

    Directory of Open Access Journals (Sweden)

    D. H. Rif’ati

    2015-07-01

    Full Text Available In the advanced and modern era, technological sophistication led to learning which initially runs, in which teachers and students meet each other and communicate in the classroom, can be implemented through of information technology. Along with the development of information, where books and teachers who initially as a primary source of learning, are now beginning to experience growth from the internet. Mobile learning defined as mobile devices that are used in the learning process. The wave course is one of subject that must be taken by students of physics education in the third semester. This course emphasizes the concepts of wave were reviewed mathematically and the phenomenon that occurs in everyday life. Mobile learning developed in this study in the form of electronic teaching materials on subjects of waves. The aim of this study was to develop electronic teaching material in the form of mobile learning. The sample of this study is 80 students in the third semester students who are taking waves courses. The results show that mobile learning that has been developed has score 3.8 and included valid criteria. Pada era yang serba maju dan modern, kecanggihan teknologi menyebabkan pembelajaran yang awalnya berjalan satu arah, dimana guru dan siswa saling bertemu dan berkomunikasi di dalam kelas, dapat dilaksanakan melalui bantuan teknologi.informasi. Seiring dengan perkembangan informasi, buku dan guru yang awalnya sebagai sumber belajar utama, saat ini sudah mulai mengalami perkembangan dimana sumber belajar yang berasal dari internet sudah mulai sering dimanfaatkan dalam proses pembelajaran. Mobile larning didefinisikan sebagai perangkat mobile yang dipergunakan dalam proses belajar mengajar. Mata kuliah gelombang sendiri merupakan salah satu mata kuliah yang wajib ditempuh oleh mahasiswa program studi pendidikan fisika semester 3. Mata kuliah ini menekankan pada konsep gelombang yang ditinjau secara matematis dan fenomenanya yang terjadi

  11. Enhanced mobility in vertically scaled N-polar high-electron-mobility transistors using GaN/InGaN composite channels

    Science.gov (United States)

    Li, Haoran; Wienecke, Steven; Romanczyk, Brian; Ahmadi, Elaheh; Guidry, Matthew; Zheng, Xun; Keller, Stacia; Mishra, Umesh K.

    2018-02-01

    A GaN/InGaN composite channel design for vertically scaled N-polar high-electron-mobility transistor (HEMT) structures is proposed and demonstrated by metal-organic chemical vapor deposition. In a conventional N-polar HEMT structure, as the channel thickness (tch) decreases, the sheet charge density (ns) decreases, the electric field in the channel increases, and the centroid of the two-dimensional electron gas (2DEG) moves towards the back-barrier/channel interface, resulting in stronger scattering and lower electron mobility (μ). In this study, a thin InGaN layer was introduced in-between the channel and the AlGaN cap to increase the 2DEG density and reduce the electric field in the channel and therefore increase the electron mobility. The dependence of μ on the InGaN thickness (tInGaN) and the indium composition (xIn) was investigated for different channel thicknesses. With optimized tInGaN and xIn, significant improvements in electron mobility were observed. For a 6 nm channel HEMT structure, the electron mobility increased from 606 to 1141 cm2/(V.s) when the 6 nm thick pure GaN channel was replaced by the 4 nm GaN/2 nm In0.1Ga0.9N composite channel.

  12. Density induced crossover of electron mobilities in fluid C3 hydrocarbons; liquid phase behavior

    International Nuclear Information System (INIS)

    Gee, N.; Freeman, G.R.

    1980-01-01

    At n = 2 x 10 20 mol/cm 3 in the saturated vapors, the density normalized mobility (μn) of electrons equalled 2.4 x 10 23 mol/cmVs in cyclopropane, 1.5 x 10 23 in propane and 5.4 x 10 22 in propene. In cyclopropane and propene μn decreased due to quasilocalization at n > 4 x 10 20 mol/cm 3 . In propane quasilocalization occurred at n > 8 x 10 20 mol/cm 3 . The more extensive quasilocalization in cyclopropane caused mobilities to be lower than those in propane at the same density when the densities were greater than 1.3 x 10 21 mol/cm 3 . In propylene, μn remained below those in the other compounds at all gas densities. In the liquid phase the mobilities were affected more by the changes of temperature than by those of density. The mobilities at a given temperature decreased in the order propane > propene > cyclopropane. It is curious that the electron traps are deeper in cyclopropane than in propene. The energies of both thermal and optical excitation of solvated electrons may be expressed by equations of the form E 0 = E(0) - aT over considerable ranges of temperature T. The thermal value of a/E(0) is 1.7 x 10 -3 K -1 in many hydrocarbons, estimated from the mobilities. The equivalent ratio of the optical parameters also equals 1.7 x 10 -3 K -1 in ethers and in ammonia. (author)

  13. High Thermoelectric Power Factor of High-Mobility 2D Electron Gas.

    Science.gov (United States)

    Ohta, Hiromichi; Kim, Sung Wng; Kaneki, Shota; Yamamoto, Atsushi; Hashizume, Tamotsu

    2018-01-01

    Thermoelectric conversion is an energy harvesting technology that directly converts waste heat from various sources into electricity by the Seebeck effect of thermoelectric materials with a large thermopower ( S ), high electrical conductivity (σ), and low thermal conductivity (κ). State-of-the-art nanostructuring techniques that significantly reduce κ have realized high-performance thermoelectric materials with a figure of merit ( ZT = S 2 ∙σ∙ T ∙κ -1 ) between 1.5 and 2. Although the power factor (PF = S 2 ∙σ) must also be enhanced to further improve ZT , the maximum PF remains near 1.5-4 mW m -1 K -2 due to the well-known trade-off relationship between S and σ. At a maximized PF, σ is much lower than the ideal value since impurity doping suppresses the carrier mobility. A metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) structure on an AlGaN/GaN heterostructure is prepared. Applying a gate electric field to the MOS-HEMT simultaneously modulates S and σ of the high-mobility electron gas from -490 µV K -1 and ≈10 -1 S cm -1 to -90 µV K -1 and ≈10 4 S cm -1 , while maintaining a high carrier mobility (≈1500 cm 2 V -1 s -1 ). The maximized PF of the high-mobility electron gas is ≈9 mW m -1 K -2 , which is a two- to sixfold increase compared to state-of-the-art practical thermoelectric materials.

  14. k-Space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor heterostructures

    OpenAIRE

    Lev, L. L.; Maiboroda, I. O.; Husanu, M. -A.; Grichuk, E. S.; Chumakov, N. K.; Ezubchenko, I. S.; Chernykh, I. A.; Wang, X.; Tobler, B.; Schmitt, T.; Zanaveskin, M. L.; Valeyev, V. G.; Strocov, V. N.

    2018-01-01

    Nanostructures based on buried interfaces and heterostructures are at the heart of modern semiconductor electronics as well as future devices utilizing spintronics, multiferroics, topological effects and other novel operational principles. Knowledge of electronic structure of these systems resolved in electron momentum k delivers unprecedented insights into their physics. Here, we explore 2D electron gas formed in GaN/AlGaN high-electron-mobility transistor (HEMT) heterostructures with an ult...

  15. Electronic waste recovery in Finland: Consumers' perceptions towards recycling and re-use of mobile phones.

    Science.gov (United States)

    Ylä-Mella, Jenni; Keiski, Riitta L; Pongrácz, Eva

    2015-11-01

    This paper examines consumers' awareness and perceptions towards mobile phone recycling and re-use. The results are based on a survey conducted in the city of Oulu, Finland, and analysed in the theoretical framework based on the theories of planned behaviour (TPB) and value-belief-norm (VBN). The findings indicate that consumers' awareness of the importance and existence of waste recovery system is high; however, awareness has not translated to recycling behaviour. The survey reveals that 55% of respondents have two or more unused mobile phones at homes. The more phones stored at homes, the more often reasons 'I don't know where to return' and/or 'have not got to do it yet' were mentioned. This indicates that proximity and the convenience of current waste management system are inadequate in promoting the return of small waste electrical and electronic equipment (WEEE). To facilitate re-use, and the highest level of recovery, consumers will need to be committed to return end-of-use electronics to WEEE collection centres without delays. Further, the supply and demand of refurbished mobile phones do not meet at this moment in Finland due to consumer's storing habits versus expectations of recent features under guarantee and unrealistic low prizes. The study also points out that, in order to change current storing habits of consumers, there is an explicit need for more information and awareness on mobile phone collection in Finland, especially on regarding retailers' take-back. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Density dependence of electron mobility in the accumulation mode for fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Naumova, O. V., E-mail: naumova@isp.nsc.ru; Zaitseva, E. G.; Fomin, B. I.; Ilnitsky, M. A.; Popov, V. P. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-10-15

    The electron mobility µ{sub eff} in the accumulation mode is investigated for undepleted and fully depleted double-gate n{sup +}–n–n{sup +} silicon-on-insulator (SOI) metal–oxide–semiconductor field-effect transistors (MOSFET). To determine the range of possible values of the mobility and the dominant scattering mechanisms in thin-film structures, it is proposed that the field dependence of the mobility µ{sub eff} be replaced with the dependence on the density N{sub e} of induced charge carriers. It is shown that the dependences µ{sub eff}(N{sub e}) can be approximated by the power functions µ{sub eff}(N{sub e}) ∝ N{sub e}{sup -n}, where the exponent n is determined by the chargecarrier scattering mechanism as in the mobility field dependence. The values of the exponent n in the dependences µ{sub eff}(N{sub e}) are determined when the SOI-film mode near one of its surfaces varies from inversion to accumulation. The obtained results are explained from the viewpoint of the electron-density redistribution over the SOI-film thickness and changes in the scattering mechanisms.

  17. Effect of field-dependent mobility on the escape probability. I. Electrons photoinjected in neopentane

    International Nuclear Information System (INIS)

    Mozumder, A.; Carmichael, I.

    1978-01-01

    A general procedure is described for calculating the escape probability of an electron against neutralization in the presence of an external field after it has been ejected into a dielectric liquid from a planar surface. The present paper utilizes the field-dependent electron mobility measurement in neopentane by Bakale and Schmidt. The calculated escape probability, upon averaging over the initial distribution, is compared with the current efficiency measurement of Holroyd et al. The median thermalization legnth, inferred from this comparison, depends in general upon the assumed form of initial distribution. It is less than the value obtained when the field dependence of the mobility is ignored but greater than that applicable to the high energy irradiation case. A plausible explanation is offered

  18. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements

    International Nuclear Information System (INIS)

    Basu, I.; Chen, M.; Loeck, M.; Al-Samman, T.; Molodov, D.A.

    2016-01-01

    One of the key aspects influencing microstructural design pathways in metallic systems is grain boundary motion. The present work introduces a method by means of which direct measurement of grain boundary mobility vs. misorientation dependence is made possible. The technique utilizes datasets acquired by means of serial electron backscatter diffraction (EBSD) measurements. The experimental EBSD measurements are collectively analyzed, whereby datasets were used to obtain grain boundary mobility and grain aspect ratio with respect to grain boundary misorientation. The proposed method is further validated using cellular automata (CA) simulations. Single crystal aluminium was cold rolled and scratched in order to nucleate random orientations. Subsequent annealing at 300 °C resulted in grains growing, in the direction normal to the scratch, into a single deformed orientation. Growth selection was observed, wherein the boundaries with misorientations close to Σ7 CSL orientation relationship (38° 〈111〉) migrated considerably faster. The obtained boundary mobility distribution exhibited a non-monotonic behavior with a maximum corresponding to misorientation of 38° ± 2° about 〈111〉 axes ± 4°, which was 10–100 times higher than the mobility values of random high angle boundaries. Correlation with the grain aspect ratio values indicated a strong growth anisotropy displayed by the fast growing grains. The observations have been discussed in terms of the influence of grain boundary character on grain boundary motion during recrystallization. - Highlights: • Statistical microstructure method to measure grain boundary mobility during recrystallization • Method implementation independent of material or crystal structure • Mobility of the Σ7 boundaries in 5N Al was calculated as 4.7 × 10"–"8 m"4/J ⋅ s. • Pronounced growth selection in the recrystallizing nuclei in Al • Boundary mobility values during recrystallization 2–3 orders of magnitude

  19. Integration of a mobile-integrated therapy with electronic health records: lessons learned.

    Science.gov (United States)

    Peeples, Malinda M; Iyer, Anand K; Cohen, Joshua L

    2013-05-01

    Responses to the chronic disease epidemic have predominantly been standardized in their approach to date. Barriers to better health outcomes remain, and effective management requires patient-specific data and disease state knowledge be presented in methods that foster clinical decision-making and patient self-management. Mobile technology provides a new platform for data collection and patient-provider communication. The mobile device represents a personalized platform that is available to the patient on a 24/7 basis. Mobile-integrated therapy (MIT) is the convergence of mobile technology, clinical and behavioral science, and scientifically validated clinical outcomes. In this article, we highlight the lessons learned from functional integration of a Food and Drug Administration-cleared type 2 diabetes MIT into the electronic health record (EHR) of a multiphysician practice within a large, urban, academic medical center. In-depth interviews were conducted with integration stakeholder groups: mobile and EHR software and information technology teams, clinical end users, project managers, and business analysts. Interviews were summarized and categorized into lessons learned using the Architecture for Integrated Mobility® framework. Findings from the diverse stakeholder group of a MIT-EHR integration project indicate that user workflow, software system persistence, environment configuration, device connectivity and security, organizational processes, and data exchange heuristics are key issues that must be addressed. Mobile-integrated therapy that integrates patient self-management data with medical record data provides the opportunity to understand the potential benefits of bidirectional data sharing and reporting that are most valuable in advancing better health and better care in a cost-effective way that is scalable for all chronic diseases. © 2013 Diabetes Technology Society.

  20. Social influence model and electronic word of mouth: PC versus mobile internet

    OpenAIRE

    Okazaki, Shintaro

    2009-01-01

    Compared with laptop or desktop computers, mobile devices offer greater flexibility in time and space, thus enabling consumers to be connected online more continually. In addition, their small size, portability and ease of use with location-based capabilities facilitate sending and receiving timely information in the right place. Drawing upon a social influence model proposed by Dholakia et al. (2004), this paper proposes a causal model for consumer participation in electronic ...

  1. Analysis of Proton Radiation Effects on Gallium Nitride High Electron Mobility Transistors

    Science.gov (United States)

    2017-03-01

    non - ionizing proton radiation damage effects at different energy levels on a GaN-on-silicon high electron mobility transistor...DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) In this work, a physics-based simulation of non - ionizing proton radiation damage effects at different...Polarization . . . . . . . . . . . . . . 6 2.3 Non - Ionizing Radiation Damage Effects . . . . . . . . . . . . . . . 10 2.4 Non - Ionizing Radiation Damage in

  2. Analysis about the development of mobile electronic commerce: An application of production possibility frontier model

    OpenAIRE

    Uesugi, Shiro; Okada, Hitoshi

    2012-01-01

    This study aims to further develop our previous research on production possibility frontier model (PPFM). An application of model to provide analysis on the mobile commerce survey for which data was collected in Japan und Thailand is presented. PPFM looks into the consumer behaviors as the results form the perception on the relationship between Convenience and Privacy Concerns of certain electronic commerce services. From the data of consumer surveys, PPFM is expected to provide practical sol...

  3. Electronic white cane with GPS radar-based concept as blind mobility enhancement without distance limitation

    Science.gov (United States)

    Halim, Suharsono; Handafiah, Finna; Aprilliyani, Ria; Udhiarto, Arief

    2018-02-01

    The Indonesian Ministry of Social Affairs, in July 2012, informed that the number of blind in Indonesia has been the largest among to the people with other disabilities. The most common tools utilized to help the blind was a conventional cane which has limited features and therefore it was difficult to be used as a mobilization tools. Moreover, the conventional cane cannot assist them or their family when the blind gets lost. In this research, we designed and implemented an electronic white cane with the concept of radar and global positioning system (GPS). The purpose of this research was to design and develop an electronic white cane which can enhance the mobility of the blind without distance coverage limitation. Utilizing ultrasonic sensors as a distance measurement and a servo motor as an actuator, the produced radar system is able to map an area with maximum distance and coverage angle of 5 meters and 180° respectively. The blind senses the obstacle around them from the vibration generated by five vibration motors. The vibration becomes more intense when the obstacle is detected closer. In addition, we implemented a GPS to monitor the blind's position and allow their family to find them easily when the blind need a help. Based on the tests performed, we have successfully developed an electronic white cane that can be a solution to improve the blind's mobility.

  4. Study of electron mobility in small molecular SAlq by transient electroluminescence method

    Science.gov (United States)

    Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Kamalasanan, M. N.; Tandon, R. P.

    2007-12-01

    The study of electron mobility of bis(2-methyl 8-hydroxyquinoline) (triphenyl siloxy) aluminium (SAlq) by transient electroluminescence (EL) is presented. An EL device is fabricated in bilayer, ITO/N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD)/SAlq/LiF/Al configuration. The temporal evaluation of the EL with respect to the step voltage pulse is characterized by a delay time followed by a fast initial rise, which is followed by a slower rise. The delay time between the applied electrical pulse and the onset of EL is correlated with the carrier mobility (electron in our case). Transient EL studies for SAlq have been carried out at different temperatures and different applied electric fields. The electron mobility in SAlq is found to be field and temperature dependent and calculated to be 6.9 × 10-7 cm2 V-1 s-1 at 2.5 × 106 V cm-1 and 308 K. The EL decays immediately as the voltage is turned off and does not depend on the amplitude of the applied voltage pulse or dc offset.

  5. Effect of electron-electron interaction on cyclotron resonance in high-mobility InAs/AlSb quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru; Gavrilenko, V. I. [Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105 (Russian Federation); Lobachevsky State University, 23 Prospekt Gagarina, 603950 Nizhny Novgorod (Russian Federation); Ikonnikov, A. V. [Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105 (Russian Federation); Orlita, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-G), CNRS, 25 rue des Martyrs, B.P. 166, 38042 Grenoble (France); Sadofyev, Yu. G. [P.N. Lebedev Physical Institute, Russian Academy of Sciences, Moscow 119991, GSP-1, 53 Leninskiy Prospect (Russian Federation); Goiran, M. [Laboratoire National des Champs Magnétiques Intenses (LNCMI-T), CNRS, 143 Avenue de Rangueil, 31400 Toulouse (France); Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221, GIS-TERALAB, Universite Montpellier II, 34095 Montpellier (France)

    2015-03-21

    We report observation of electron-electron (e-e) interaction effect on cyclotron resonance (CR) in InAs/AlSb quantum well heterostructures. High mobility values allow us to observe strongly pronounced triple splitting of CR line at noninteger filling factors of Landau levels ν. At magnetic fields, corresponding to ν > 4, experimental values of CR energies are in good agreement with single-electron calculations on the basis of eight-band k ⋅ p Hamiltonian. In the range of filling factors 3 < ν < 4 pronounced, splitting of CR line, exceeding significantly the difference in single-electron CR energies, is discovered. The strength of the splitting increases when occupation of the partially filled Landau level tends to a half, being in qualitative agreement with previous prediction by MacDonald and Kallin [Phys. Rev. B 40, 5795 (1989)]. We demonstrate that such behaviour of CR modes can be quantitatively described if one takes into account both electron correlations and the mixing between conduction and valence bands in the calculations of matrix elements of e-e interaction.

  6. Effect of temperature and pressure on excess electron mobility in n-hexane, 2,2,4-trimethylpentane, and tetramethylsilane

    International Nuclear Information System (INIS)

    Munoz, R.C.; Holroyd, R.A.

    1986-01-01

    Measurements of excess electron mobility are reported for liquid n-hexane, 2,2,4-trimethylpentane, and tetramethylsilane for pressures from 1 to 2500 bar and for temperatures from 18 to 120 0 C. For tetramethylsilane, a liquid that exhibits a high electron mobility, the mobility at constant density is proportional to T/sup -0.9/ between 25 and 100 0 C. The results are compared with the Basak--Cohen deformation potential theory. For n-hexane, where the mobility is low, Arrhenius behavior is observed. The isochoric activation energy increases with density. The results in this case are consistent with both the two-state and hopping models. In 2,2,4-trimethylpentane the mobility increases with increasing pressure at room temperature and decreases at high temperature. At 2500 bar and at intermediate temperatures (70--80 0 C) the mobility is approximately constant

  7. Tunable electron heating induced giant magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system.

    Science.gov (United States)

    Wang, Zhuo; Samaraweera, R L; Reichl, C; Wegscheider, W; Mani, R G

    2016-12-07

    Electron-heating induced by a tunable, supplementary dc-current (I dc ) helps to vary the observed magnetoresistance in the high mobility GaAs/AlGaAs 2D electron system. The magnetoresistance at B = 0.3 T is shown to progressively change from positive to negative with increasing I dc , yielding negative giant-magnetoresistance at the lowest temperature and highest I dc . A two-term Drude model successfully fits the data at all I dc and T. The results indicate that carrier heating modifies a conductivity correction σ 1 , which undergoes sign reversal from positive to negative with increasing I dc , and this is responsible for the observed crossover from positive- to negative- magnetoresistance, respectively, at the highest B.

  8. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-06-02

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players... rendered asserted claim 5 invalid. The ALJ concluded that an industry exists within the United States that...

  9. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-07-12

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission....S.C. 1337) in the importation into the United States, the sale for importation, and the sale within the United States after importation of certain electronic devices, including mobile phones, portable...

  10. Local imaging of high mobility two-dimensional electron systems with virtual scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccione, M. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Bartel, J.; Goldhaber-Gordon, D. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States); Sciambi, A. [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Pfeiffer, L. N.; West, K. W. [Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-11-03

    Correlated electron states in high mobility two-dimensional electron systems (2DESs), including charge density waves and microemulsion phases intermediate between a Fermi liquid and Wigner crystal, are predicted to exhibit complex local charge order. Existing experimental studies, however, have mainly probed these systems at micron to millimeter scales rather than directly mapping spatial organization. Scanning probes should be well-suited to study the spatial structure of these states, but high mobility 2DESs are found at buried semiconductor interfaces, beyond the reach of conventional scanning tunneling microscopy. Scanning techniques based on electrostatic coupling to the 2DES deliver important insights, but generally with resolution limited by the depth of the 2DES. In this letter, we present our progress in developing a technique called “virtual scanning tunneling microscopy” that allows local tunneling into a high mobility 2DES. Using a specially designed bilayer GaAs/AlGaAs heterostructure where the tunnel coupling between two separate 2DESs is tunable via electrostatic gating, combined with a scanning gate, we show that the local tunneling can be controlled with sub-250 nm resolution.

  11. M&E-NetPay: A Micropayment System for Mobile and Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Xiaodi Huang

    2016-08-01

    Full Text Available As an increasing number of people purchase goods and services online, micropayment systems are becoming particularly important for mobile and electronic commerce. We have designed and developed such a system called M&E-NetPay (Mobile and Electronic NetPay. With open interoperability and mobility, M&E-NetPay uses web services to connect brokers and vendors, providing secure, flexible and reliable credit services over the Internet. In particular, M&E-NetPay makes use of a secure, inexpensive and debit-based off-line protocol that allows vendors to interact only with customers, after validating coins. The design of the architecture and protocol of M&E-NetPay are presented, together with the implementation of its prototype in ringtone and wallpaper sites. To validate our system, we have conducted its evaluations on performance, usability and heuristics. Furthermore, we compare our system to the CORBA-based (Common Object Request Broker Architecture off-line micro-payment systems. The results have demonstrated that M&E-NetPay outperforms the .NET-based M&E-NetPay system in terms of performance and user satisfaction.

  12. Quasifree electron mobility by the method of partial waves in liquid hydrocarbons and in fluid argon

    International Nuclear Information System (INIS)

    Vertes, A.

    1983-01-01

    Applicability of the fluctuation model was tested in the case of n-hexane, n-pentane, c-hexane, 2,2-dimethylbutane, 2,2,4,4-tetramethylpentane, iso-octane, and neopentane. In our model, the quasifree electrons have been assumed to be scattered by the conduction state energy fluctuations of the liquid. These fluctuations are, in turn, described as a consequence of density fluctuations. The scattering potential is supposed to be square well like and the cross section is calculated in terms of partial waves. Averages due to the density fluctuations and the electron kinetic energy distribution are determined numerically. Except for the first three materials, the calculation reproduced the experimental mobilities with reasonable values of the square well radius, which is the only fitting parameters. Further extension of the description concerning the density dependence of the low field mobility of fluid argon has been performed. The estimated fluctuation size as a function of density increases monotonically at the minimum of the mobility in accordance with the monotonic behavior of the isothermal compressibility in the same region

  13. Understanding Colds: Anatomy of the Nose

    Science.gov (United States)

    ... Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose contains shelf-like ... white). Soft tissue, such as the eye, is gray. The maxillary sinus of adults has a volume ...

  14. Electron mobility limited by optical phonons in wurtzite InGaN/GaN core-shell nanowires

    Science.gov (United States)

    Liu, W. H.; Qu, Y.; Ban, S. L.

    2017-09-01

    Based on the force-balance and energy-balance equations, the optical phonon-limited electron mobility in InxGa1-xN/GaN core-shell nanowires (CSNWs) is discussed. It is found that the electrons tend to distribute in the core of the CSNWs due to the strong quantum confinement. Thus, the scattering from first kind of the quasi-confined optical (CO) phonons is more important than that from the interface (IF) and propagating (PR) optical phonons. Ternary mixed crystal and size effects on the electron mobility are also investigated. The results show that the PR phonons exist while the IF phonons disappear when the indium composition x < 0.047, and vice versa. Accordingly, the total electron mobility μ first increases and then decreases with indium composition x, and reaches a peak value of approximately 3700 cm2/(V.s) when x = 0.047. The results also show that the mobility μ increases as increasing the core radius of CSNWs due to the weakened interaction between the electrons and CO phonons. The total electron mobility limited by the optical phonons exhibits an obvious enhancement as decreasing temperature or increasing line electron density. Our theoretical results are expected to be helpful to develop electronic devices based on CSNWs.

  15. [Design and Implementation of a Mobile Operating Room Information Management System Based on Electronic Medical Record].

    Science.gov (United States)

    Liu, Baozhen; Liu, Zhiguo; Wang, Xianwen

    2015-06-01

    A mobile operating room information management system with electronic medical record (EMR) is designed to improve work efficiency and to enhance the patient information sharing. In the operating room, this system acquires the information from various medical devices through the Client/Server (C/S) pattern, and automatically generates XML-based EMR. Outside the operating room, this system provides information access service by using the Browser/Server (B/S) pattern. Software test shows that this system can correctly collect medical information from equipment and clearly display the real-time waveform. By achieving surgery records with higher quality and sharing the information among mobile medical units, this system can effectively reduce doctors' workload and promote the information construction of the field hospital.

  16. Emerging technologies to power next generation mobile electronic devices using solar energy

    Institute of Scientific and Technical Information of China (English)

    Dewei JIA; Yubo DUAN; Jing LIU

    2009-01-01

    Mobile electronic devices such as MP3, mobile phones, and wearable or implanted medical devices have already or will soon become a necessity in peoples' lives.However, the further development of these devices is restricted not only by the inconvenient charging process of the power module, but also by the soaring prices of fossil fuel and its downstream chain of electricity manipulation.In view of the huge amount of solar energy fueling the world biochemically and thermally, a carry-on electricity harvester embedded in portable devices is emerging as a most noteworthy research area and engineering practice for a cost efficient solution. Such a parasitic problem is intrinsic in the next generation portable devices. This paper is dedicated to presenting an overview of the photovoltaic strategy in the chain as a reference for researchers and practitioners committed to solving the problem.

  17. Density and temperature effects on electron mobilities in gaseous, critical and liquid n-hexane, cyclohexane, and cyclopentane

    International Nuclear Information System (INIS)

    Huang, S.S.-S.; Freeman, G.R.

    1978-01-01

    In the low density vapors the density normalized mobilities μn of thermal electrons decreased in the order n-hexane > cyclopentane > cyclohexane. Mobilities in the critical fluids were 16 cm 2 /V s in n-hexane, 23 in cyclohexane, and 22 in cyclopentane. Mobilities in the liquids were independent of field up to the highest value used, which was 1.5 Td in the hexanes and 0.9 Td in cyclopentane. The mobilities and their temperature dependences were interpreted in terms of a model

  18. Effectiveness of mobile electronic devices in weight loss among overweight and obese populations: a systematic review and meta-analysis.

    Science.gov (United States)

    Khokhar, Bushra; Jones, Jessica; Ronksley, Paul E; Armstrong, Marni J; Caird, Jeff; Rabi, Doreen

    2014-01-01

    Mobile electronic devices, such as mobile phones and PDAs, have emerged as potentially useful tools in the facilitation and maintenance of weight loss. While RCTs have demonstrated a positive impact of mobile interventions, the extent to which mobile electronic devices are more effective than usual care methods is still being debated. Electronic databases were systematically searched for RCTs evaluating the effectiveness of mobile electronic device interventions among overweight and obese adults. Weighted mean difference for change in body weight was the primary outcome. The search strategy yielded 559 citations and of the 108 potentially relevant studies, six met the criteria. A total of 632 participants were included in the six studies reporting a mean change in body weight. Using a random-effects model, the WMD for the effect of using mobile electronic devices on reduction in body weight was -1.09 kg (95% CI -2.12, -0.05). When stratified by the type of mobile electronic device used, it suggests that interventions using mobile phones were effective at achieving weight loss, WMD = -1.78 kg (95% CI -2.92, -0.63). This systematic review and meta-analysis suggests that mobile electronic devices have the potential to facilitate weight loss in overweight and obese populations, but further work is needed to understand if these interventions have sustained benefit and how we can make these mHealth tools most effective on a large scale. As the field of healthcare increasingly utilizes novel mobile technologies, the focus must not be on any one specific device but on the best possible use of these tools to measure and understand behavior. As mobile electronic devices continue to increase in popularity and the associated technology continues to advance, the potential for the use of mobile devices in global healthcare is enormous. More RCTs with larger sample sizes need to be conducted to look at the cost-effectiveness, technical and financial feasibility of adapting such m

  19. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  20. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  1. The operation cutoff frequency of high electron mobility transistor measured by terahertz method

    International Nuclear Information System (INIS)

    Zhu, Y. M.; Zhuang, S. L.

    2014-01-01

    Commonly, the cutoff frequency of high electron mobility transistor (HEMT) can be measured by vector network analyzer (VNA), which can only measure the sample exactly in low frequency region. In this paper, we propose a method to evaluate the cutoff frequency of HEMT by terahertz (THz) technique. One example shows the cutoff frequency of our HEMT is measured at ∼95.30 GHz, which is reasonable agreement with that estimated by VNA. It is proved THz technology a potential candidate for the substitution of VNA for the measurement of high-speed devices even up to several THz.

  2. Molecular origin of differences in hole and electron mobility in amorphous Alq3--a multiscale simulation study.

    Science.gov (United States)

    Fuchs, Andreas; Steinbrecher, Thomas; Mommer, Mario S; Nagata, Yuki; Elstner, Marcus; Lennartz, Christian

    2012-03-28

    In order to determine the molecular origin of the difference in electron and hole mobilities of amorphous thin films of Alq(3) (meridional Alq(3) (tris(8-hydroxyquinoline) aluminium)) we performed multiscale simulations covering quantum mechanics, molecular mechanics and lattice models. The study includes realistic disordered morphologies, polarized site energies to describe diagonal disorder, quantum chemically calculated transfer integrals for the off-diagonal disorder, inner sphere reorganization energies and an approximative scheme for outer sphere reorganization energies. Intermolecular transfer rates were calculated via Marcus-theory and mobilities were simulated via kinetic Monte Carlo simulations and by a Master Equation approach. The difference in electron and hole mobility originates from the different localization of charge density in the radical anion (more delocalized) compared to the radical cation (more confined). This results in higher diagonal disorder for holes and less favourable overlap properties for the hole transfer integrals leading to an overall higher electron mobility.

  3. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  4. Exploring the factors that influence physician technostress from using mobile electronic medical records.

    Science.gov (United States)

    Liu, Chung-Feng; Cheng, Tain-Junn; Chen, Chin-Tung

    2017-10-25

    This paper proposes an integrated model for investigating how physicians' perceived individual and technology characteristics affect their technological stress (technostress) that is derived from using mobile electronic medical records (MEMRs). Individual characteristics comprise constructs of mobile self-efficacy and technology dependence, whereas perceived technology characteristics comprise constructs of perceived usefulness, complexity, and reliability. We employed the survey method to collect 158 valid questionnaires from physicians working at three branch hospitals to determine perceptions regarding MEMRs, yielding a response rate of 33.62%. Partial least squares, a structural equation modeling technique, was used for model examination and hypothesis testing. The results show that physicians have a low perception of MEMR dependence and technostress. Furthermore, physicians' perceived MEMR technology dependency, mobile self-efficacy, and complexity were proven to significantly affect physician technostress when using MEMRs, whereas perceived usefulness and reliability were not. The explanatory power of the research model reached 67.8%. The results of this study provide valuable insights and significant knowledge for technostress in health care, particularly from academic and practical perspectives.

  5. N-polar GaN epitaxy and high electron mobility transistors

    International Nuclear Information System (INIS)

    Wong, Man Hoi; Keller, Stacia; Dasgupta, Nidhi Sansaptak; Denninghoff, Daniel J; Kolluri, Seshadri; Brown, David F; Lu, Jing; Fichtenbaum, Nicholas A; Ahmadi, Elaheh; DenBaars, Steven P; Speck, James S; Mishra, Umesh K; Singisetti, Uttam; Chini, Alessandro; Rajan, Siddharth

    2013-01-01

    This paper reviews the progress of N-polar (0001-bar) GaN high frequency electronics that aims at addressing the device scaling challenges faced by GaN high electron mobility transistors (HEMTs) for radio-frequency and mixed-signal applications. Device quality (Al, In, Ga)N materials for N-polar heterostructures are developed using molecular beam epitaxy and metalorganic chemical vapor deposition. The principles of polarization engineering for designing N-polar HEMT structures will be outlined. The performance, scaling behavior and challenges of microwave power devices as well as highly-scaled depletion- and enhancement-mode devices employing advanced technologies including self-aligned processes, n+ (In,Ga)N ohmic contact regrowth and high aspect ratio T-gates will be discussed. Recent research results on integrating N-polar GaN with Si for prospective novel applications will also be summarized. (invited review)

  6. Botulinum toxin detection using AlGaN /GaN high electron mobility transistors

    Science.gov (United States)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Tseng, Y.; Pearton, S. J.; Ramage, J.; Hooten, D.; Dabiran, A.; Chow, P. P.; Ren, F.

    2008-12-01

    Antibody-functionalized, Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect botulinum toxin. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when the target toxin in a buffer was added to the antibody-immobilized surface. We could detect a range of concentrations from 1to10ng/ml. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN /GaN HEMTs for botulinum toxin detection.

  7. Electron mobility and saturation of ion yield in 2,2,4,4-tetramethylpentane

    International Nuclear Information System (INIS)

    Poffenberger, P.R.; Astbury, A.; Fincke-Keeler, M.; Keeler, R.K.; Li, Y.; Robertson, L.P.; Rosvick, M.; Schenk, P.; Oram, C.; Sobie, R.

    1993-01-01

    The electron drift mobility μ and zero field free ion yield G fi 0 have been measured for liquid 2,2,4,4-tetramethylpentane using a waveform analysis. The saturation of the ion yield for highly ionizing radiation has also been investigated and parameterized using the Birks' equation. The results obtained are μ=26.3±0.8 cm 2 /V s, G fi 0 =0.743±0.029 electrons/100 eV, and a Birks' factor ranging from kB=0.222±0.014 cm/MeV at 604 V/cm to kB=0.141±0.021 cm/MeV at 3625 V/cm. (orig.)

  8. Collaborative Research Centre 694 “Integration of electronic components into mobile systems”-Motivation and survey

    Science.gov (United States)

    Weckenmann, Albert; Schmidt, Lorenz-Peter; Bookjans, Martin

    Within the collaborative research centre 694 'Integration of electronic components into mobile systems' intelligent mechatronic systems are explored for application at the place of action. Especially in the automotive sector highest requirements on system safety are combined with an enormous importance of the production for the whole national economy. Therefore the collaborative research centre is led by the vision to integrate electronic components in sensors and actors of mobile systems. About 30 scientists at nine participating academic and non-academic institutions in Erlangen explore mechatronic solutions for the requirements on manufacturing processes, electronic systems and quality management techniques within the car of the future.

  9. Double pulse doped InGaAs/AlGaAs/GaAs pseudomorphic high-electron-mobility transistor heterostructures

    International Nuclear Information System (INIS)

    Egorov, A. Yu.; Gladyshev, A. G.; Nikitina, E. V.; Denisov, D. V.; Polyakov, N. K.; Pirogov, E. V.; Gorbazevich, A. A.

    2010-01-01

    Double pulse doped (δ-doped) InGaAs/AlGaAs/GaAs pseudomorphic high-electron-mobility transistor (HEMT) heterostructures were grown by molecular-beam epitaxy using a multiwafer technological system. The room-temperature electron mobility was determined by the Hall method as 6550 and 6000 cm 2 /(V s) at sheet electron densities of 3.00 x 10 12 and 3.36 x 10 12 cm -2 , respectively. HEMT heterostructures fabricated in a single process feature high uniformity of structural and electrical characteristics over the entire area of wafers 76.2 mm in diameter and high reproducibility of characteristics from process to process.

  10. Intraoperative radiation therapy using mobile electron linear accelerators: Report of AAPM Radiation Therapy Committee Task Group No. 72

    International Nuclear Information System (INIS)

    Sam Beddar, A.; Biggs, Peter J.; Chang Sha; Ezzell, Gary A.; Faddegon, Bruce A.; Hensley, Frank W.; Mills, Michael D.

    2006-01-01

    Intraoperative radiation therapy (IORT) has been customarily performed either in a shielded operating suite located in the operating room (OR) or in a shielded treatment room located within the Department of Radiation Oncology. In both cases, this cancer treatment modality uses stationary linear accelerators. With the development of new technology, mobile linear accelerators have recently become available for IORT. Mobility offers flexibility in treatment location and is leading to a renewed interest in IORT. These mobile accelerator units, which can be transported any day of use to almost any location within a hospital setting, are assembled in a nondedicated environment and used to deliver IORT. Numerous aspects of the design of these new units differ from that of conventional linear accelerators. The scope of this Task Group (TG-72) will focus on items that particularly apply to mobile IORT electron systems. More specifically, the charges to this Task Group are to (i) identify the key differences between stationary and mobile electron linear accelerators used for IORT (ii) describe and recommend the implementation of an IORT program within the OR environment, (iii) present and discuss radiation protection issues and consequences of working within a nondedicated radiotherapy environment, (iv) describe and recommend the acceptance and machine commissioning of items that are specific to mobile electron linear accelerators, and (v) design and recommend an efficient quality assurance program for mobile systems

  11. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  12. Prospective Study of the Surgical Techniques Used in Primary Rhinoplasty on the Caucasian Nose and Comparison of the Preoperative and Postoperative Anthropometric Nose Measurements

    Science.gov (United States)

    Berger, Cezar Augusto Sarraf; Freitas, Renato da Silva; Malafaia, Osvaldo; Pinto, José Simão de Paula; Macedo Filho, Evaldo Dacheux; Mocellin, Marcos; Fagundes, Marina Serrato Coelho

    2014-01-01

    Introduction The knowledge and study of surgical techniques and anthropometric measurements of the nose make possible a qualitative and quantitative analysis of surgical results. Objective Study the main technique used in rhinoplasty on Caucasian noses and compare preoperative and postoperative anthropometric measurements of the nose. Methods A prospective study with 170 patients was performed at a private hospital. Data were collected using the Electronic System Integrated of Protocols software (Sistema Integrado de Protocolos Eletrônicos, SINPE©). The surgical techniques used in the nasal dorsum and tip were evaluated. Preoperative and 12-month follow-up photos as well as the measurements compared with the ideal aesthetic standard of a Caucasian nose were analyzed objectively. Student t test and standard deviation test were applied. Results There was a predominance of endonasal access (94.4%). The most common dorsum technique was hump removal (33.33%), and the predominance of sutures (24.76%) was observed on the nasal tip, with the lateral intercrural the most frequent (32.39%). Comparison between preoperative and postoperative photos found statistically significant alterations on the anthropometric measurements of the noses. Conclusion The main surgical techniques on Caucasian noses were evaluated, and a great variety was found. The evaluation of anthropometric measurements of the nose proved the efficiency of the performed procedures. PMID:25992149

  13. Prospective Study of the Surgical Techniques Used in Primary Rhinoplasty on the Caucasian Nose and Comparison of the Preoperative and Postoperative Anthropometric Nose Measurements

    Directory of Open Access Journals (Sweden)

    Berger, Cezar Augusto Sarraf

    2014-12-01

    Full Text Available Introduction The knowledge and study of surgical techniques and anthropometric measurements of the nose make possible a qualitative and quantitative analysis of surgical results. Objective Study the main technique used in rhinoplasty on Caucasian noses and compare preoperative and postoperative anthropometric measurements of the nose. Methods A prospective study with 170 patients was performed at a private hospital. Data were collected using the Electronic System Integrated of Protocols software (Sistema Integrado de Protocolos Eletrônicos, SINPE©. The surgical techniques used in the nasal dorsum and tip were evaluated. Preoperative and 12-month follow-up photos as well as the measurements compared with the ideal aesthetic standard of a Caucasian nose were analyzed objectively. Student t test and standard deviation test were applied. Results There was a predominance of endonasal access (94.4%. The most common dorsum technique was hump removal (33.33%, and the predominance of sutures (24.76% was observed on the nasal tip, with the lateral intercrural the most frequent (32.39%. Comparison between preoperative and postoperative photos found statistically significant alterations on the anthropometric measurements of the noses. Conclusion The main surgical techniques on Caucasian noses were evaluated, and a great variety was found. The evaluation of anthropometric measurements of the nose proved the efficiency of the performed procedures.

  14. Discrimination between Pseudogymnoascus destructans, other dermatophytes of cave-dwelling bats, and related innocuous keratinophilic fungi based on electronic-nose/GC signatures of VOC-metabolites produced in culture

    Science.gov (United States)

    Alphus Dan Wilson; Lisa Beth Forse

    2017-01-01

    White-nose syndrome (WNS), caused by the fungal dermatophyte (Pseudogymnoascus destructans), is considered the most important disease affecting hibernating bats in North America. The identification of dermatophytic fungi, isolated from the skins of cave-dwelling bat species, is necessary to distinguish pathogenic (disease-causing) microbes from those that are innocuous...

  15. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    Directory of Open Access Journals (Sweden)

    R. K. Nayak

    2015-11-01

    Full Text Available We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/AlxGa1-xAs barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip in mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.

  16. Structural properties of silver nanoparticle agglomerates based on transmission electron microscopy: relationship to particle mobility analysis

    International Nuclear Information System (INIS)

    Shin, Weon Gyu; Wang Jing; Mertler, Michael; Sachweh, Bernd; Fissan, Heinz; Pui, David Y. H.

    2009-01-01

    In this work, the structural properties of silver nanoparticle agglomerates generated using condensation and evaporation method in an electric tube furnace followed by a coagulation process are analyzed using Transmission Electron Microscopy (TEM). Agglomerates with mobility diameters of 80, 120, and 150 nm are sampled using the electrostatic method and then imaged by TEM. The primary particle diameter of silver agglomerates was 13.8 nm with a standard deviation of 2.5 nm. We obtained the relationship between the projected area equivalent diameter (d pa ) and the mobility diameter (d m ), i.e., d pa = 0.92 ± 0.03 d m for particles from 80 to 150 nm. We obtained fractal dimensions of silver agglomerates using three different methods: (1) D f = 1.84 ± 0.03, 1.75 ± 0.06, and 1.74 ± 0.03 for d m = 80, 120, and 150 nm, respectively from projected TEM images using a box counting algorithm; (2) fractal dimension (D fL ) = 1.47 based on maximum projected length from projected TEM images using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633; and (3) mass fractal-like dimension (D fm ) = 1.71 theoretically derived from the mobility analysis proposed by Lall and Friedlander (2006) J Aerosol Sci 37:260-271. We also compared the number of primary particles in agglomerate and found that the number of primary particles obtained from the projected surface area using an empirical equation proposed by Koylu et al. (1995) Combust Flame 100:621-633 is larger than that from using the relationship, d pa = 0.92 ± 0.03 d m or from using the mobility analysis.

  17. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities.

    Science.gov (United States)

    Lee, Junghoon; Han, A-Reum; Kim, Jonggi; Kim, Yiho; Oh, Joon Hak; Yang, Changduk

    2012-12-26

    There is a fast-growing demand for polymer-based ambipolar thin-film transistors (TFTs), in which both n-type and p-type transistor operations are realized in a single layer, while maintaining simplicity in processing. Research progress toward this end is essentially fueled by molecular engineering of the conjugated backbones of the polymers and the development of process architectures for device fabrication, which has recently led to hole and electron mobilities of more than 1.0 cm(2) V(-1) s(-1). However, ambipolar polymers with even higher performance are still required. By taking into account both the conjugated backbone and side chains of the polymer component, we have developed a dithienyl-diketopyrrolopyrrole (TDPP) and selenophene containing polymer with hybrid siloxane-solubilizing groups (PTDPPSe-Si). A synergistic combination of rational polymer backbone design, side-chain dynamics, and solution processing affords an enormous boost in ambipolar TFT performance, resulting in unprecedentedly high hole and electron mobilities of 3.97 and 2.20 cm(2) V(-1) s(-1), respectively.

  18. Data mining technique for a secure electronic payment transaction using MJk-RSA in mobile computing

    Science.gov (United States)

    G. V., Ramesh Babu; Narayana, G.; Sulaiman, A.; Padmavathamma, M.

    2012-04-01

    Due to the evolution of the Electronic Learning (E-Learning), one can easily get desired information on computer or mobile system connected through Internet. Currently E-Learning materials are easily accessible on the desktop computer system, but in future, most of the information shall also be available on small digital devices like Mobile, PDA, etc. Most of the E-Learning materials are paid and customer has to pay entire amount through credit/debit card system. Therefore, it is very important to study about the security of the credit/debit card numbers. The present paper is an attempt in this direction and a security technique is presented to secure the credit/debit card numbers supplied over the Internet to access the E-Learning materials or any kind of purchase through Internet. A well known method i.e. Data Cube Technique is used to design the security model of the credit/debit card system. The major objective of this paper is to design a practical electronic payment protocol which is the safest and most secured mode of transaction. This technique may reduce fake transactions which are above 20% at the global level.

  19. Electron mobility in supercritical ethane as a function of density and temperature

    International Nuclear Information System (INIS)

    Nishikawa, M.; Holroyd, R.A.; Sowada, U.

    1980-01-01

    The electron mobility is reported for ethane as a function of density at various temperatures above T/sub c/. The high pressure cell used permits measurements to 200 atm. Our analysis shows that theory is consistent with the ethane mobility results at low and intermediate densities. At densities less than 1 x 10 21 molecules/cm 3 electrons are scattered by isolated ethane molecules and the Lorentz equation is valid. At intermediate densities, μ/sub e/ correlates with the square of the velocity of sound, indicating that in dense fluids the adiabatic compressibility must be included. The data are consistent with a modified Cohen--Lekner equation, and the minimum in μ/sub e/N observed at densities just below d/sub c/ is qualitatively accounted for by changes in the adiabatic compressibility. Thus the concept of quasilocalization, suggested by others to qualitatively explain such minima, is unnecessary here. At higher densities an additional, unspecified, scattering mechanism becomes important

  20. Electronic Patient Reported Outcomes in Paediatric Oncology - Applying Mobile and Near Field Communication Technology.

    Science.gov (United States)

    Duregger, Katharina; Hayn, Dieter; Nitzlnader, Michael; Kropf, Martin; Falgenhauer, Markus; Ladenstein, Ruth; Schreier, Günter

    2016-01-01

    Electronic Patient Reported Outcomes (ePRO) gathered using telemonitoring solutions might be a valuable source of information in rare cancer research. The objective of this paper was to develop a concept and implement a prototype for introducing ePRO into the existing neuroblastoma research network by applying Near Field Communication and mobile technology. For physicians, an application was developed for registering patients within the research network and providing patients with an ID card and a PIN for authentication when transmitting telemonitoring data to the Electronic Data Capture system OpenClinica. For patients, a previously developed telemonitoring system was extended by a Simple Object Access Protocol (SOAP) interface for transmitting nine different health parameters and toxicities. The concept was fully implemented on the front-end side. The developed application for physicians was prototypically implemented and the mobile application of the telemonitoring system was successfully connected to OpenClinica. Future work will focus on the implementation of the back-end features.

  1. Electron mobility in the inversion layers of fully depleted SOI films

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. G., E-mail: ZaytsevaElza@yandex.ru; Naumova, O. V.; Fomin, B. I. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2017-04-15

    The dependences of the electron mobility μ{sub eff} in the inversion layers of fully depleted double–gate silicon-on-insulator (SOI) metal–oxide–semiconductor (MOS) transistors on the density N{sub e} of induced charge carriers and temperature T are investigated at different states of the SOI film (inversion–accumulation) from the side of one of the gates. It is shown that at a high density of induced charge carriers of N{sub e} > 6 × 10{sup 12} cm{sup –2} the μeff(T) dependences allow the components of mobility μ{sub eff} that are related to scattering at surface phonons and from the film/insulator surface roughness to be distinguished. The μ{sub eff}(N{sub e}) dependences can be approximated by the power functions μ{sub eff}(N{sub e}) ∝ N{sub e}{sup −n}. The exponents n in the dependences and the dominant mechanisms of scattering of electrons induced near the interface between the SOI film and buried oxide are determined for different N{sub e} ranges and film states from the surface side.

  2. Correlation Between Two-Dimensional Electron Gas Mobility and Crystal Quality in AlGaN/GaN High-Electron-Mobility Transistor Structure Grown on 4H-SiC.

    Science.gov (United States)

    Heo, Cheon; Jang, Jongjin; Lee, Kyngjae; So, Byungchan; Lee, Kyungbae; Ko, Kwangse; Nam, Okhyun

    2017-01-01

    We investigated the correlation between the crystal quality and two-dimensional electron gas (2DEG) mobility of an AlGaN/GaN high-electron-mobility transistor (HEMT) structure grown by metal-organic chemical vapor deposition. For the structure with an AlN nucleation layer grown at 1100 °C, the 2DEG mobility and sheet carrier density were 1627 cm²/V·s and 3.23 × 10¹³ cm⁻², respectively, at room temperature. Further, it was confirmed that the edge dislocation density of the GaN buffer layer was related to the 2DEG mobility and sheet carrier density in the AlGaN/GaN HEMT.

  3. Optical phonon scattering on electronic mobility in Al2O3/AlGaN/AlN/GaN heterostructures

    Science.gov (United States)

    Zhou, X. J.; Qu, Y.; Ban, S. L.; Wang, Z. P.

    2017-12-01

    Considering the built-in electric fields and the two-mode property of transverse optical phonons in AlGaN material, the electronic eigen-energies and wave functions are obtained by solving Schrödinger equation with the finite difference method. The dispersion relations and potentials of the optical phonons are given by the transfer matrix method. The mobility of the two dimensional electron gas influenced by the optical phonons in Al2O3/AlGaN/AlN/GaN heterostructures is investigated based on the theory of Lei-Ting force balance equation. It is found that the scattering from the half-space phonons is the main factor affecting the electronic mobility, and the influence of the other phonons can be ignored. The results show that the mobility decreases with increasing the thicknesses of Al2O3 and AlN layers, but there is no definite relationship between the mobility and the thickness of AlGaN barrier. The mobility is obviously reduced by increasing Al component in AlGaN crystal to show that the effect of ternary mixed crystals is important. It is also found that the mobility increases first and then decreases as the increment of the fixed charges, but decreases always with increasing temperature. The heterostructures constructed here can be good candidates as metal-oxide-semiconductor high-electron-mobility-transistors since they have higher electronic mobility due to the influence from interface phonons weakened by the AlN interlayer.

  4. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.

    Science.gov (United States)

    Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D

    2017-03-01

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  5. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution

    KAUST Repository

    Faber, Hendrik

    2017-04-28

    Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

  6. Study of point defect mobilities in zirconium during electron irradiation in a HVEM

    International Nuclear Information System (INIS)

    Griffiths, M.

    1993-01-01

    A high voltage electron microscope (HVEM) was used to investigate the nature of intrinsic point defects in α-Zr by direct observation of dislocation climb and cavity growth or shrinkage. The material used was Marz-grade Zr that had been pre-irradiated with neutrons at about 740 K in the Dounreay Fast Reactor. Dislocation loops of vacancy character that had been produced during the neutron irradiation were studied by further irradiation with electrons in the HVEM. Growth of the loops was observed at temperatures as low as 230 K, indicating that, under the conditions of the experiment, some vacancy-type defects were mobile in the temperature regime 230 K-300 K. The nature of these defects is unknown. One possibility is that these defects are not intrinsic in nature, but may be vacancy-Fe complexes. In addition to the climb of dislocation loops, c-component network dislocations and cavities were also studied. Basal plane climb of the network dislocations was observed at 573 K, but was not readily apparent at 320 K. This suggests that preferred climb planes (and possibly loop habit planes) are sensitive to temperature. Cavities that were already in the foil after neutron irradiation or were induced by electron irradiation grew along the c-axis and shrank along a-directions during electron irradiation. This radiation-induced shape change of the cavities strongly suggests the existence of a diffusional anisotropy difference between interstitials and vacancies in α-Zr. (Author) 14 figs., 22 refs

  7. Electron mobilities of n-type organic semiconductors from time-dependent wavepacket diffusion method: pentacenequinone derivatives.

    Science.gov (United States)

    Zhang, WeiWei; Zhong, XinXin; Zhao, Yi

    2012-11-26

    The electron mobilities of two n-type pentacenequinone derivative organic semiconductors, 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ5) and 1,4,8,11-tetraaza-6,13-pentacenequinone (TAPQ7), are investigated with use of the methods of electronic structure and quantum dynamics. The electronic structure calculations reveal that the two key parameters for the control of electron transfer, reorganization energy and electronic coupling, are similar for these two isomerization systems, and the charge carriers essentially display one-dimensional transport properties. The mobilities are then calculated by using the time-dependent wavepacket diffusion approach in which the dynamic fluctuations of the electronic couplings are incorporated via their correlation functions obtained from molecular dynamics simulations. The predicted mobility of TAPQ7 crystal is about six times larger than that of TAPQ5 crystal. Most interestingly, Fermi's golden rule predicts the mobilities very close to those from the time-dependent wavepacket diffusion method, even though the electronic couplings are explicitly large enough to make the perturbation theory invalid. The possible reason is analyzed from the dynamic fluctuations.

  8. Multisubband electron mobility in a parabolic quantum well structure under the influence of an applied electric field

    International Nuclear Information System (INIS)

    Sahoo, N.; Sahu, T.

    2014-01-01

    We study the multisubband electron mobility in a barrier delta doped Al x Ga 1−x As parabolic quantum well structure under the influence of an applied electric field perpendicular to the interface plane. We consider the alloy fraction x = 0.3 for barriers and vary x from 0.0 to 0.1 for the parabolic well. Electrons diffuse into the well and confine within the triangular like potentials near the interfaces due to Coulomb interaction with ionized donors. The parabolic structure potential, being opposite in nature, partly compensates the Coulomb potential. The external electric field further amends the potential structure leading to an asymmetric potential profile. Accordingly the energy levels, wave functions and occupation of subbands change. We calculate low temperature electron mobility as a function of the electric field and show that when two subbands are occupied, the mobility is mostly dominated by ionised impurity scattering mediated by intersubband effects. As the field increases transition from double subband to single subband occupancy occurs. A sudden enhancement in mobility is obtained due to curtailment of intersubband effects. Thereafter the mobility is governed by both impurity and alloy disorder scatterings. Our analysis of mobility as a function of the electric field for different structural parameters shows interesting results. (semiconductor physics)

  9. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

    Science.gov (United States)

    Ji, Liping; Shi, Juan; Zhang, Z. Y.; Wang, Jun; Zhang, Jiachi; Tao, Chunlan; Cao, Haining

    2018-01-01

    Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2-MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

  10. On-site installation and shielding of a mobile electron accelerator for radiation processing

    International Nuclear Information System (INIS)

    Catana, D.; Panaitescu, J.; Axinescu, S.; Manolache, D.; Matei, C.; Corcodel, C.; Ulmeanu, M..; Bestea, V.

    1995-01-01

    The development of radiation processing of some bulk products, e.g. grains or potatoes, would be sustained if the irradiation had been carried out at the place of storage, i.e. silo. A promising solution is proposed consisting of a mobile electron accelerator, installed on a couple of trucks and traveling from one customer to another. The energy of the accelerated electrons was chosen at 5 MeV, with 10 to 50 kW beam power. The irradiation is possible either with electrons or with bremsstrahlung. A major problem of the above solution is the provision of adequate shielding at the customer, with a minimum investment cost. Plans for a bunker are presented, which houses the truck carrying the radiation head. The beam is vertical downwards, through the truck floor, through a transport pipe and a scanning horn. The irradiation takes place in a pit, where the products are transported through a belt. The belt path is so chosen as to minimize openings in the shielding. Shielding calculations are presented supposing a working regime with 5 MeV bremsstrahlung. Leakage and scattered radiation are taken into account. (orig.)

  11. On-site installation and shielding of a mobile electron accelerator for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Catana, D. [Institutul de Fizica Atomica, Bucharest (Romania); Panaitescu, J. [Institutul de Fizica Atomica, Bucharest (Romania); Axinescu, S. [Institutul de Fizica Atomica, Bucharest (Romania); Manolache, D. [Institutul de Fizica Atomica, Bucharest (Romania); Matei, C. [Institutul de Fizica Atomica, Bucharest (Romania); Corcodel, C. [Institutul de Fizica Atomica, Bucharest (Romania); Ulmeanu, M.. [Institutul de Fizica Atomica, Bucharest (Romania); Bestea, V. [Institutul de Fizica Atomica, Bucharest (Romania)

    1995-05-01

    The development of radiation processing of some bulk products, e.g. grains or potatoes, would be sustained if the irradiation had been carried out at the place of storage, i.e. silo. A promising solution is proposed consisting of a mobile electron accelerator, installed on a couple of trucks and traveling from one customer to another. The energy of the accelerated electrons was chosen at 5 MeV, with 10 to 50 kW beam power. The irradiation is possible either with electrons or with bremsstrahlung. A major problem of the above solution is the provision of adequate shielding at the customer, with a minimum investment cost. Plans for a bunker are presented, which houses the truck carrying the radiation head. The beam is vertical downwards, through the truck floor, through a transport pipe and a scanning horn. The irradiation takes place in a pit, where the products are transported through a belt. The belt path is so chosen as to minimize openings in the shielding. Shielding calculations are presented supposing a working regime with 5 MeV bremsstrahlung. Leakage and scattered radiation are taken into account. (orig.).

  12. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-01-01

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K

  13. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K. W.; Zhang, Hongfeng; Zhang, Yi

    2016-01-01

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand) relationships. PMID:26999155

  14. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM of Mobile Sensor Computing Applications

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2016-03-01

    Full Text Available As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human–computer interaction (HCI issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users’ compound attitudes (i.e., affective attitudes, cognitive attitude, engagement and electronic word of mouth (eWOM behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user’s compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user—product (brand relationships.

  15. The Impacts of Attitudes and Engagement on Electronic Word of Mouth (eWOM) of Mobile Sensor Computing Applications.

    Science.gov (United States)

    Zhao, Yu; Liu, Yide; Lai, Ivan K W; Zhang, Hongfeng; Zhang, Yi

    2016-03-18

    As one of the latest revolutions in networking technology, social networks allow users to keep connected and exchange information. Driven by the rapid wireless technology development and diffusion of mobile devices, social networks experienced a tremendous change based on mobile sensor computing. More and more mobile sensor network applications have appeared with the emergence of a huge amount of users. Therefore, an in-depth discussion on the human-computer interaction (HCI) issues of mobile sensor computing is required. The target of this study is to extend the discussions on HCI by examining the relationships of users' compound attitudes (i.e., affective attitudes, cognitive attitude), engagement and electronic word of mouth (eWOM) behaviors in the context of mobile sensor computing. A conceptual model is developed, based on which, 313 valid questionnaires are collected. The research discusses the level of impact on the eWOM of mobile sensor computing by considering user-technology issues, including the compound attitude and engagement, which can bring valuable discussions on the HCI of mobile sensor computing in further study. Besides, we find that user engagement plays a mediating role between the user's compound attitudes and eWOM. The research result can also help the mobile sensor computing industry to develop effective strategies and build strong consumer user-product (brand) relationships.

  16. Quantum discord and classical correlation signatures of mobility edges in one-dimensional aperiodic single-electron systems

    International Nuclear Information System (INIS)

    Gong, Longyan; Zhu, Hao; Zhao, Shengmei; Cheng, Weiwen; Sheng, Yubo

    2012-01-01

    We investigate numerically the quantum discord and the classical correlation in a one-dimensional slowly varying potential model and a one-dimensional Soukoulis–Economou ones, respectively. There are well-defined mobility edges in the slowly varying potential model, while there are discrepancies on mobility edges in the Soukoulis–Economou ones. In the slowly varying potential model, we find that extended and localized states can be distinguished by both the quantum discord and the classical correlation. There are sharp transitions in the quantum discord and the classical correlation at mobility edges. Based on these, we study “mobility edges” in the Soukoulis–Economou model using the quantum discord and the classical correlation, which gives another perspectives for these “mobility edges”. All these provide us good quantities, i.e., the quantum discord and the classical correlation, to reflect mobility edges in these one-dimensional aperiodic single-electron systems. Moreover, our studies propose a consistent interpretation of the discrepancies between previous numerical results about the Soukoulis–Economou model. -- Highlights: ► Quantum discord and classical correlation can signal mobility edges in two models. ► An interpretation for mobility edges in the Soukoulis–Economou model is proposed. ► Quantum discord and classical correlation can reflect well localization properties.

  17. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    Science.gov (United States)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  18. Key-Insulated Undetachable Digital Signature Scheme and Solution for Secure Mobile Agents in Electronic Commerce

    Directory of Open Access Journals (Sweden)

    Yang Shi

    2016-01-01

    Full Text Available Considering the security of both the customers’ hosts and the eShops’ servers, we introduce the idea of a key-insulated undetachable digital signature, enabling mobile agents to generate undetachable digital signatures on remote hosts with the key-insulated property of the original signer’s signing key. From the theoretical perspective, we provide the formal definition and security notion of a key-insulated undetachable digital signature. From the practical perspective, we propose a concrete scheme to secure mobile agents in electronic commerce. The scheme is mainly focused on protecting the signing key from leakage and preventing the misuse of the signature algorithm on malicious servers. Agents do not carry the signing key when they generate digital signatures on behalf of the original signer, so the key is protected on remote servers. Furthermore, if a hacker gains the signing key of the original signer, the hacker is still unable to forge a signature for any time period other than the key being accessed. In addition, the encrypted function is combined with the original signer’s requirement to prevent the misuse of signing algorithm. The scheme is constructed on gap Diffie–Hellman groups with provable security, and the performance testing indicates that the scheme is efficient.

  19. A New XOR Structure Based on Resonant-Tunneling High Electron Mobility Transistor

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Sharifi

    2009-01-01

    Full Text Available A new structure for an exclusive-OR (XOR gate based on the resonant-tunneling high electron mobility transistor (RTHEMT is introduced which comprises only an RTHEMT and two FETs. Calculations are done by utilizing a new subcircuit model for simulating the RTHEMT in the SPICE simulator. Details of the design, input, and output values and margins, delay of each transition, maximum operating frequency, static and dynamic power dissipations of the new structure are discussed and calculated and the performance is compared with other XOR gates which confirm that the presented structure has a high performance. Furthermore, to the best of authors' knowledge, it has the least component count in comparison to the existing structures.

  20. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  1. AlGaN/GaN High Electron Mobility Transistors with Multi-MgxNy/GaN Buffer

    OpenAIRE

    Chang, P. C.; Lee, K. H.; Wang, Z. H.; Chang, S. J.

    2014-01-01

    We report the fabrication of AlGaN/GaN high electron mobility transistors with multi-MgxNy/GaN buffer. Compared with conventional HEMT devices with a low-temperature GaN buffer, smaller gate and source-drain leakage current could be achieved with this new buffer design. Consequently, the electron mobility was larger for the proposed device due to the reduction of defect density and the corresponding improvement of crystalline quality as result of using the multi-MgxNy/GaN buffer.

  2. AlGaN/GaN High Electron Mobility Transistors with Multi-MgxNy/GaN Buffer

    Directory of Open Access Journals (Sweden)

    P. C. Chang

    2014-01-01

    Full Text Available We report the fabrication of AlGaN/GaN high electron mobility transistors with multi-MgxNy/GaN buffer. Compared with conventional HEMT devices with a low-temperature GaN buffer, smaller gate and source-drain leakage current could be achieved with this new buffer design. Consequently, the electron mobility was larger for the proposed device due to the reduction of defect density and the corresponding improvement of crystalline quality as result of using the multi-MgxNy/GaN buffer.

  3. Doping dependence and anisotropy of minority electron mobility in molecular beam epitaxy-grown p type GaInP

    Energy Technology Data Exchange (ETDEWEB)

    Haegel, N. M.; Christian, T.; Norman, A. G.; Mascarenhas, A. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Scandrett, C. [Naval Postgraduate School, Monterey, California 93943 (United States); Misra, Pranob; Liu, Ting; Sukiasyan, Arsen; Pickett, Evan; Yuen, Homan [Solar Junction, Inc., San Jose, California 95131 (United States)

    2014-11-17

    Direct imaging of minority electron transport via the spatially resolved recombination luminescence signature has been used to determine carrier diffusion lengths in GaInP as a function of doping. Minority electron mobility values are determined by performing time resolved photoluminescence measurements of carrier lifetime on the same samples. Values at 300 K vary from ∼2000 to 400 cm{sup 2}/V s and decrease with increasing doping. Anisotropic diffusion lengths and strongly polarized photoluminescence are observed, resulting from lateral composition modulation along the [110] direction. We report anisotropic mobility values associated with carrier transport parallel and perpendicular to the modulation direction.

  4. Electronic Reading and Digital Library Technologies: Understanding Learner Expectation and Usage Intent for Mobile Learning

    Science.gov (United States)

    Hyman, Jack A.; Moser, Mary T.; Segala, Laura N.

    2014-01-01

    Mobile information technology is changing the education landscape by offering learners the opportunity to engage in asynchronous, ubiquitous instruction. While there is a proliferation of mobile content management systems being developed for the mobile Web and stand-alone mobile applications, few studies have addressed learner expectations and…

  5. A review of electronic medical record keeping on mobile medical service trips in austere settings.

    Science.gov (United States)

    Dainton, Christopher; Chu, Charlene H

    2017-02-01

    Electronic medical records (EMRs) may address the need for decision and language support for Western clinicians on mobile medical service trips (MSTs) in low resource settings abroad, while providing improved access to records and data management. However, there has yet to be a review of this emerging technology used by MSTs in low-resource settings. The aim of this study is to describe EMR systems designed specifically for use by mobile MSTs in remote settings, and accordingly, determine new opportunities for this technology to improve quality of healthcare provided by MSTs. A MEDLINE, EMBASE, and Scopus/IEEE search and supplementary Google search were performed for EMR systems specific to mobile MSTs. Information was extracted regarding EMR name, organization, scope of use, platform, open source coding, commercial availability, data integration, and capacity for linguistic and decision support. Missing information was requested by email. After screening of 122 abstracts, two articles remained that discussed deployment of EMR systems in MST settings (iChart, SmartList To Go), and thirteen additional EMR systems were found through the Google search. Of these, three systems (Project Buendia, TEBOW, and University of Central Florida's internally developed EMR) are based on modified versions of Open MRS software, while three are smartphone apps (QuickChart EMR, iChart, NotesFirst). Most of the systems use a local network to manage data, while the remaining systems use opportunistic cloud synchronization. Three (TimmyCare, Basil, and Backpack EMR) contain multilingual user interfaces, and only one (QuickChart EMR) contained MST-specific clinical decision support. There have been limited attempts to tailor EMRs to mobile MSTs. Only Open MRS has a broad user base, and other EMR systems should consider interoperability and data sharing with larger systems as a priority. Several systems include tablet compatibility, or are specifically designed for smartphone, which may be

  6. Transformational Electronics: Towards Flexible Low-Cost High Mobility Channel Materials

    KAUST Repository

    Nassar, Joanna M.

    2014-05-01

    For the last four decades, Si CMOS technology has been advancing with Moore’s law prediction, working itself down to the sub-20 nm regime. However, fundamental problems and limitations arise with the down-scaling of transistors and thus new innovations needed to be discovered in order to further improve device performance without compromising power consumption and size. Thus, a lot of studies have focused on the development of new CMOS compatible architectures as well as the discovery of new high mobility channel materials that will allow further miniaturization of CMOS transistors and improvement of device performance. Pushing the limits even further, flexible and foldable electronics seem to be the new attractive topic. By being able to make our devices flexible through a CMOS compatible process, one will be able to integrate hundreds of billions of more transistors in a small volumetric space, allowing to increase the performance and speed of our electronics all together with making things thinner, lighter, smaller and even interactive with the human skin. Thus, in this thesis, we introduce for the first time a cost-effective CMOS compatible approach to make high-k/metal gate devices on flexible Germanium (Ge) and Silicon-Germanium (SiGe) platforms. In the first part, we will look at the various approaches in the literature that has been developed to get flexible platforms, as well as we will give a brief overview about epitaxial growth of Si1-xGex films. We will also examine the electrical properties of the Si1-xGex alloys up to Ge (x=1) and discuss how strain affects the band structure diagram, and thus the mobility of the material. We will also review the material growth properties as well as the state-of-the-art results on high mobility metal-oxide semiconductor capacitors (MOSCAPs) using strained SiGe films. Then, we will introduce the flexible process that we have developed, based on a cost-effective “trench-protect-release-reuse” approach, utilizing

  7. Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode high-electron-mobility transistor

    International Nuclear Information System (INIS)

    Quan Si; Hao Yue; Ma Xiao-Hua; Yu Hui-You

    2011-01-01

    AlGaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60 Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transconductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance-voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of G p /ω data yields the trap densities D T = (1 − 3) × 10 12 cm −2 · eV −1 and D T = (0.2 − 0.8) × 10 12 cm −2 · eV −1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60 Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment. (interdisciplinary physics and related areas of science and technology)

  8. High electron mobility recovery in AlGaN/GaN 2DEG channels regrown on etched surfaces

    International Nuclear Information System (INIS)

    Chan, Silvia H; DenBaars, Steven P; Keller, Stacia; Tahhan, Maher; Li, Haoran; Romanczyk, Brian; Mishra, Umesh K

    2016-01-01

    This paper reports high two-dimensional electron gas mobility attained from the regrowth of the AlGaN gating layer on ex situ GaN surfaces. To repair etch-damaged GaN surfaces, various pretreatments were conducted via metalorganic chemical vapor deposition, followed by a regrown AlGaN/GaN mobility test structure to evaluate the extent of recovery. The developed treatment process that was shown to significantly improve the electron mobility consisted of a N 2  + NH 3 pre-anneal plus an insertion of a 4 nm or thicker GaN interlayer prior to deposition of the AlGaN gating layer. Using the optimized process, a high electron mobility transistor (HEMT) device was fabricated which exhibited a high mobility of 1450 cm 2 V −1 s −1 (R sh  = 574 ohm/sq) and low dispersion characteristics. The additional inclusion of an in situ Al 2 O 3 dielectric into the regrowth process for MOS-HEMTs still preserved the transport properties near etch-impacted areas. (paper)

  9. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    International Nuclear Information System (INIS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures

  10. High Magnetic Field in THz Plasma Wave Detection by High Electron Mobility Transistors

    Science.gov (United States)

    Sakowicz, M.; Łusakowski, J.; Karpierz, K.; Grynberg, M.; Valusis, G.

    The role of gated and ungated two dimensional (2D) electron plasma in THz detection by high electron mobility transistors (HEMTs) was investigated. THz response of GaAs/AlGaAs and GaN/AlGaN HEMTs was measured at 4.4K in quantizing magnetic fields with a simultaneous modulation of the gate voltage UGS. This allowed us to measure both the detection signal, S, and its derivative dS/dUGS. Shubnikov - de-Haas oscillations (SdHO) of both S and dS/dUGS were observed. A comparison of SdHO observed in detection and magnetoresistance measurements allows us to associate unambiguously SdHO in S and dS/dUGS with the ungated and gated parts of the transistor channel, respectively. This allows us to conclude that the entire channel takes part in the detection process. Additionally, in the case of GaAlAs/GaAs HEMTs, a structure related to the cyclotron resonance transition was observed.

  11. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    Science.gov (United States)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  12. Piezotronic effect tuned AlGaN/GaN high electron mobility transistor

    Science.gov (United States)

    Jiang, Chunyan; Liu, Ting; Du, Chunhua; Huang, Xin; Liu, Mengmeng; Zhao, Zhenfu; Li, Linxuan; Pu, Xiong; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    The piezotronic effect utilizes strain-induced piezoelectric polarization charges to tune the carrier transportation across the interface/junction. We fabricated a high-performance AlGaN/GaN high electron mobility transistor (HEMT), and the transport property was proven to be enhanced by applying an external stress for the first time. The enhanced source-drain current was also observed at any gate voltage and the maximum enhancement of the saturation current was up to 21% with 15 N applied stress (0.18 GPa at center) at -1 V gate voltage. The physical mechanism of HEMT with/without external compressive stress conditions was carefully illustrated and further confirmed by a self-consistent solution of the Schrödinger-Poisson equations. This study proves the cause-and-effect relationship between the piezoelectric polarization effect and 2D electron gas formation, which provides a tunable solution to enhance the device performance. The strain tuned HEMT has potential applications in human-machine interface and the security control of the power system.

  13. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Science.gov (United States)

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  14. Development of an electronic medical report delivery system to 3G GSM mobile (cellular) phones for a medical imaging department.

    Science.gov (United States)

    Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael

    2007-01-01

    Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.

  15. High mobility two-dimensional electron gases in nitride heterostructures with high Al composition AlGaN alloy barriers

    International Nuclear Information System (INIS)

    Li Guowang; Cao Yu; Xing Huili Grace; Jena, Debdeep

    2010-01-01

    We report high-electron mobility nitride heterostructures with >70% Al composition AlGaN alloy barriers grown by molecular beam epitaxy. Direct growth of such AlGaN layers on GaN resulted in hexagonal trenches and a low mobility polarization-induced charge. By applying growth interruption at the heterojunction, the surface morphology improved dramatically and the room temperature two-dimensional electron gas (2DEG) mobility increased by an order of magnitude, exceeding 1300 cm 2 /V s. The 2DEG density was tunable at 0.4-3.7x10 13 /cm 2 by varying the total barrier thickness (t). Surface barrier heights of the heterostructures were extracted and exhibited dependence on t.

  16. The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires

    International Nuclear Information System (INIS)

    Joyce, Hannah J; Baig, Sarwat A; Parkinson, Patrick; Davies, Christopher L; Boland, Jessica L; Herz, Laura M; Johnston, Michael B; Tan, H Hoe; Jagadish, Chennupati

    2017-01-01

    Bare unpassivated GaAs nanowires feature relatively high electron mobilities (400–2100 cm 2 V −1 s −1 ) and ultrashort charge carrier lifetimes (1–5 ps) at room temperature. These two properties are highly desirable for high speed optoelectronic devices, including photoreceivers, modulators and switches operating at microwave and terahertz frequencies. When engineering these GaAs nanowire-based devices, it is important to have a quantitative understanding of how the charge carrier mobility and lifetime can be tuned. Here we use optical-pump–terahertz-probe spectroscopy to quantify how mobility and lifetime depend on the nanowire surfaces and on carrier density in unpassivated GaAs nanowires. We also present two alternative frameworks for the analysis of nanowire photoconductivity: one based on plasmon resonance and the other based on Maxwell–Garnett effective medium theory with the nanowires modelled as prolate ellipsoids. We find the electron mobility decreases significantly with decreasing nanowire diameter, as charge carriers experience increased scattering at nanowire surfaces. Reducing the diameter from 50 nm to 30 nm degrades the electron mobility by up to 47%. Photoconductivity dynamics were dominated by trapping at saturable states existing at the nanowire surface, and the trapping rate was highest for the nanowires of narrowest diameter. The maximum surface recombination velocity, which occurs in the limit of all traps being empty, was calculated as 1.3  ×  10 6 cm s −1 . We note that when selecting the optimum nanowire diameter for an ultrafast device, there is a trade-off between achieving a short lifetime and a high carrier mobility. To achieve high speed GaAs nanowire devices featuring the highest charge carrier mobilities and shortest lifetimes, we recommend operating the devices at low charge carrier densities. (paper)

  17. Room temperature formation of high-mobility two-dimensional electron gases at crystalline complex oxide interfaces

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Bovet, N.; Kasama, Takeshi

    2014-01-01

    Well-controlled sub-unit-cell layer-bylayer epitaxial growth of spinel alumina is achieved at room temperature on a TiO2-terminated SrTiO3 single-crystalline substrate. By tailoring the interface redox reaction, 2D electron gases with mobilities exceeding 3000 cm 2 V−1 s−1 are achieved at this no...

  18. The relation between use of mobile electronic devices and bedtime restistance, sleep duration, and daytime sleepiness among preschoolers

    NARCIS (Netherlands)

    Nathanson, A.I.; Beyens, I.

    2018-01-01

    This study investigated the relation between preschoolers’ mobile electronic device (MED) use and sleep disturbances. A national sample of 402 predominantly college-educated and Caucasian mothers of 3–5-year-olds completed a survey assessing their preschoolers’ MED use, bedtime resistance, sleep

  19. Characterising thermal resistances and capacitances of GaN high-electron-mobility transistors through dynamic electrothermal measurements

    DEFF Research Database (Denmark)

    Wei, Wei; Mikkelsen, Jan H.; Jensen, Ole Kiel

    2014-01-01

    This study presents a method to characterise thermal resistances and capacitances of GaN high-electron-mobility transistors (HEMTs) through dynamic electrothermal measurements. A measured relation between RF gain and the channel temperature (Tc) is formed and used for indirect measurements...

  20. Effects of SiNx on two-dimensional electron gas and current collapse of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Fan, Ren; Zhi-Biao, Hao; Lei, Wang; Lai, Wang; Hong-Tao, Li; Yi, Luo

    2010-01-01

    SiN x is commonly used as a passivation material for AlGaN/GaN high electron mobility transistors (HEMTs). In this paper, the effects of SiN x passivation film on both two-dimensional electron gas characteristics and current collapse of AlGaN/GaN HEMTs are investigated. The SiN x films are deposited by high- and low-frequency plasma-enhanced chemical vapour deposition, and they display different strains on the AlGaN/GaN heterostructure, which can explain the experiment results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. The effect of charged quantum dots on the mobility of a two-dimensional electron gas: How important is the Coulomb scattering?

    International Nuclear Information System (INIS)

    Kurzmann, A.; Beckel, A.; Lorke, A.; Geller, M.; Ludwig, A.; Wieck, A. D.

    2015-01-01

    We have investigated the influence of a layer of charged self-assembled quantum dots (QDs) on the mobility of a nearby two-dimensional electron gas (2DEG). Time-resolved transconductance spectroscopy was used to separate the two contributions of the change in mobility, which are: (i) The electrons in the QDs act as Coulomb scatterers for the electrons in the 2DEG. (ii) The screening ability and, hence, the mobility of the 2DEG decreases when the charge carrier density is reduced by the charged QDs, i.e., the mobility itself depends on the charge carrier concentration. Surprisingly, we find a negligible influence of the Coulomb scattering on the mobility for a 2DEG, separated by a 30 nm tunneling barrier to the layer of QDs. This means that the mobility change is completely caused by depletion, i.e., reduction of the charge carrier density in the 2DEG, which indirectly influences the mobility

  2. 21 CFR 868.6225 - Nose clip.

    Science.gov (United States)

    2010-04-01

    ... ANESTHESIOLOGY DEVICES Miscellaneous § 868.6225 Nose clip. (a) Identification. A nose clip is a device intended to close a patient's external nares (nostrils) during diagnostic or therapeutic procedures. (b... from the current good manufacturing practice requirements of the quality system regulation in part 820...

  3. Fabrication of enhancement-mode AlGaN/GaN high electron mobility transistors using double plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong-Won, E-mail: jwlim@etri.re.kr [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Ahn, Ho-Kyun; Kim, Seong-il; Kang, Dong-Min; Lee, Jong-Min; Min, Byoung-Gue; Lee, Sang-Heung; Yoon, Hyung-Sup; Ju, Chull-Won; Kim, Haecheon; Mun, Jae-Kyoung; Nam, Eun-Soo [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Park, Hyung-Moo [Photonic/Wireless Convergence Components Dept., IT Materials and Components Lab., Electronics and Telecommunications Research Institute, Daejeon 305-700 (Korea, Republic of); Division of Electronics and Electrical Engineering, Dongguk University, Seoul (Korea, Republic of)

    2013-11-29

    We report the fabrication and DC and microwave characteristics of 0.5 μm AlGaN/GaN high electron mobility transistors using double plasma treatment process. Silicon nitride layers 700 and 150 Å thick were deposited by plasma-enhanced chemical vapor deposition at 260 °C to protect the device and to define the gate footprint. The double plasma process was carried out by two different etching techniques to obtain enhancement-mode AlGaN/GaN high electron mobility transistors with 0.5 μm gate lengths. The enhancement-mode AlGaN/GaN high electron mobility transistor was prepared in parallel to the depletion-mode AlGaN/GaN high electron mobility transistor device on one wafer. Completed double plasma treated 0.5 μm AlGaN/GaN high electron mobility transistor devices fabricated by dry etching exhibited a peak transconductance, gm, of 330 mS/mm, a breakdown voltage of 115 V, a current-gain cutoff frequency (f{sub T}) of 18 GHz, and a maximum oscillation frequency (f{sub max}) of 66 GHz. - Highlights: • The double plasma process was carried out by two different etching techniques. • Double plasma treated device exhibited a transconductance of 330 mS/mm. • Completed 0.5 μm gate device exhibited a current-gain cutoff frequency of 18 GHz. • The off-state breakdown voltage of 115 V for 0.5 μm gate device was obtained. • Continuous-wave output power density of 4.3 W/mm was obtained at 2.4 GHz.

  4. Fabrication of enhancement-mode AlGaN/GaN high electron mobility transistors using double plasma treatment

    International Nuclear Information System (INIS)

    Lim, Jong-Won; Ahn, Ho-Kyun; Kim, Seong-il; Kang, Dong-Min; Lee, Jong-Min; Min, Byoung-Gue; Lee, Sang-Heung; Yoon, Hyung-Sup; Ju, Chull-Won; Kim, Haecheon; Mun, Jae-Kyoung; Nam, Eun-Soo; Park, Hyung-Moo

    2013-01-01

    We report the fabrication and DC and microwave characteristics of 0.5 μm AlGaN/GaN high electron mobility transistors using double plasma treatment process. Silicon nitride layers 700 and 150 Å thick were deposited by plasma-enhanced chemical vapor deposition at 260 °C to protect the device and to define the gate footprint. The double plasma process was carried out by two different etching techniques to obtain enhancement-mode AlGaN/GaN high electron mobility transistors with 0.5 μm gate lengths. The enhancement-mode AlGaN/GaN high electron mobility transistor was prepared in parallel to the depletion-mode AlGaN/GaN high electron mobility transistor device on one wafer. Completed double plasma treated 0.5 μm AlGaN/GaN high electron mobility transistor devices fabricated by dry etching exhibited a peak transconductance, gm, of 330 mS/mm, a breakdown voltage of 115 V, a current-gain cutoff frequency (f T ) of 18 GHz, and a maximum oscillation frequency (f max ) of 66 GHz. - Highlights: • The double plasma process was carried out by two different etching techniques. • Double plasma treated device exhibited a transconductance of 330 mS/mm. • Completed 0.5 μm gate device exhibited a current-gain cutoff frequency of 18 GHz. • The off-state breakdown voltage of 115 V for 0.5 μm gate device was obtained. • Continuous-wave output power density of 4.3 W/mm was obtained at 2.4 GHz

  5. Improved DC performance of AlGaN/GaN high electron mobility transistors using hafnium oxide for surface passivation

    International Nuclear Information System (INIS)

    Liu, Chang; Chor, Eng Fong; Tan, Leng Seow

    2007-01-01

    Improved DC performance of AlGaN/GaN high electron mobility transistors (HEMTs) have been demonstrated using reactive-sputtered hafnium oxide (HfO 2 ) thin film as the surface passivation layer. Hall data indicate a significant increase in the product of sheet carrier concentration (n s ) and electron mobility (μ n ) in the HfO 2 -passivated HEMTs, compared to the unpassivated HEMTs. This improvement in electron carrier characteristics gives rise to a 22% higher I Dmax and an 18% higher g mmax in HEMTs with HfO 2 passivation relative to the unpassivated devices. On the other hand, I gleak of the HEMTs decreases by nearly one order of magnitude when HfO 2 passivation is applied. In addition, drain current is measured in the subthreshold regime. Compared to the unpassivated HEMTs, HfO 2 -passivated HEMTs exhibit a much smaller off-state I D , indicating better turn-off characteristics

  6. Electron Mobilities and Effective Masses in InGaAs/InAlAs HEMT Structures with High In Content

    Science.gov (United States)

    Yuzeeva, N. A.; Sorokoumova, A. V.; Lunin, R. A.; Oveshnikov, L. N.; Galiev, G. B.; Klimov, E. A.; Lavruchin, D. V.; Kulbachinskii, V. A.

    2016-12-01

    InxGa_{1-{x}}As/InyAl_{1-{y}}As HEMT structures {δ}-doped by Si were grown by molecular beam epitaxy on InP substrate. We investigated the influence of the In content on the electron mobilities and effective masses in dimensionally quantized subbands. The electron effective masses were determined by the temperature dependence of the amplitude of the Shubnikov-de Haas effect at 1.6 and 4.2 K. We found that the more the In content in quantum well (QW), the less the electron effective masses. The mobilities are higher in HEMT structures with wider and deeper QW. The energy band diagrams were calculated by using Vegard's law for basic parameters. The calculated band diagrams are in a good agreement with the experimental data of photoluminescence spectra.

  7. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  8. Thermal instability and the growth of the InGaAs/AlGaAs pseudomorphic high electron mobility transistor system

    International Nuclear Information System (INIS)

    Pellegrino, Joseph G.; Qadri, Syed B.; Mahadik, Nadeemullah A.; Rao, Mulpuri V.; Tseng, Wen F.; Thurber, Robert; Gajewski, Donald; Guyer, Jonathan

    2007-01-01

    The effects of temperature overshoot during molecular beam epitaxy growth on the transport properties of conventionally and delta-doped pseudomorphic high electron mobility transistor (pHEMT) structures have been examined. A diffuse reflectance spectroscopy (DRS)-controlled versus a thermocouple (TC)-controlled, growth scheme is compared. Several advantages of the DRS-grown pHEMTs over the TC-controlled version were observed. Modest improvements in mobility, on the order of 2%-3%, were observed in addition to a 20% reduction in carrier freeze-out for the DRS-grown pHEMTs at 77 K

  9. A mobile and asynchronous electronic data capture system for epidemiologic studies.

    Science.gov (United States)

    Meyer, Jens; Fredrich, Daniel; Piegsa, Jens; Habes, Mohamad; van den Berg, Neeltje; Hoffmann, Wolfgang

    2013-06-01

    A Central Data Management (CDM) system based on electronic data capture (EDC) software and study specific databases is an essential component for assessment and management of large data volumes in epidemiologic studies. Conventional CDM systems using web applications for data capture depend on permanent access to a network. However, in many study settings permanent network access cannot be guaranteed, e.g. when participants/patients are visited in their homes. In such cases a different concept for data capture is needed. The utilized EDC software must be able to ensure data capture as stand-alone instance and to synchronize captured data with the server at a later point in time. This article describes the design of the mobile information capture (MInCa) system an EDC software meeting these requirements. In particular, we focus on client and server design, data synchronization, and data privacy as well as data security measures. The MInCa software has already proven its efficiency in epidemiologic studies revealing strengths and weaknesses concerning both concept and practical application which will be addressed in this article. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. ADDED VALUE-BASED APROACH TO ANALYZE ELECTRONIC COMMERCE AND MOBILE COMMERCE BUSINESS MODELS

    Directory of Open Access Journals (Sweden)

    Moritz Weizmann

    2004-03-01

    Full Text Available

    Se propone aplicar la teoría del valor informacional agregado (Theory of Informational Added Values, IAV al Electronic Commerce (EC y al Mobile Commerce (MC. El trabajo presentado es una propuesta para acercarse a modelos de negocio, con el foco de criterios típicos de evaluación para modelos de negocio de Internet y del MC. Es también conveniente para comparar modelos de negocio distintos y para poner el valor añadido para los participantes en un contexto. De esta manera, se establecen criterios objetivos que reducen la subjetividad y permiten hacer ciertas predicciones. El artículo termina con un análisis crítico del estado del arte y un comentario sobre las perspectivas futuras.

  11. Stability of a mobile electron linear accelerator system for intraoperative radiation therapy

    International Nuclear Information System (INIS)

    Beddar, A. Sam

    2005-01-01

    The flexibility of mobile electron accelerators, which are designed to be transported to an operating room and plugged into a normal 3-phase outlet, make them ideal for use in intraoperative radiation therapy. However, their transportability may cause trepidation among potential users, who may question the stability of such an accelerator over a period of use. In order to address this issue, we have studied the short-term stability of the Mobetron system over 20 daily quality assurance trials. Variations in output generally varied within ±2% for the four energies produced by the unit (4, 6, 9, and 12 MeV) and changes in energy produced an equivalent shift of less than 1 mm on the depth-dose curve. Hours of inactivity, with the Mobetron powered on for use either throughout the day or overnight, led to variations in output of about 1%. Finally, we have tested the long-term stability of the absolute dose output of the Mobetron, which showed a change of about 1% per year

  12. AUTOMATED IRRIGATION SYSTEM CONSTITUTED OF ELECTRONIC ELEMENTS, MOBILE DEVICE AND THE CONSTRUCTION OF SPRINKLER

    Directory of Open Access Journals (Sweden)

    Alma Delia González

    2017-12-01

    Full Text Available This document presents the development of an automated irrigation system, which consisted of a sprinkler that has a range of 16 meters in diameter using only sprinklers per one hectare of land, water pump, hose, water containers, electro valves, relays, electronic components such as humidity and temperature sensor, ultrasonic sensor, LCD screen, microcontroller (Arduino Mega, for communication a bluetooth module and a mobile device (Android. The agile methodology used was Extreme XP Programming, following its 4 phases, planning, design, development and testing. With this an automated irrigation system was used that was developed to monitor temperature, humidity and to generate a saving in the water thanks to the census of the container of the same, as well as the reduction of maintenance costs, this can be activated or deactivated by the user regardless of the conditions. The system complies with the characteristics of a utility model, because these models are all those objects, tools, appliances or tools that, as a result of a change in their layout, configuration, structure or form, present a different function with respect to the parts that integrate it or advantages in terms of its usefulness and thanks to the search carried out in IMPI. In the study of the state of the art the search was made in the data bases of Mexico in SIGA (Information System of the Gazette of the Industrial Property and internationally in Thomson, the results showed that there were similar sy

  13. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor

    Science.gov (United States)

    Hou, H. W.; Liu, Z.; Teng, J. H.; Palacios, T.; Chua, S. J.

    2017-04-01

    In this work, a high temperature THz detector based on a GaN high electron mobility transistor (HEMT) with nano antenna structures was fabricated and demonstrated to be able to work up to 200 °C. The THz responsivity and noise equivalent power (NEP) of the device were characterized at 0.14 THz radiation over a wide temperature range from room temperature to 200 °C. A high responsivity Rv of 15.5 and 2.7 kV/W and a low NEP of 0.58 and 10 pW/Hz0.5 were obtained at room temperature and 200 °C, respectively. The advantages of the GaN HEMT over other types of field effect transistors for high temperature terahertz detection are discussed. The physical mechanisms responsible for the temperature dependence of the responsivity and NEP of the GaN HEMT are also analyzed thoroughly.

  14. Isolated photosystem I reaction centers on a functionalized gated high electron mobility transistor.

    Science.gov (United States)

    Eliza, Sazia A; Lee, Ida; Tulip, Fahmida S; Mostafa, Salwa; Greenbaum, Elias; Ericson, M Nance; Islam, Syed K

    2011-09-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale (~6 nm) reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs. © 2011 IEEE

  15. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Eliza, Sazia A. [University of Tennessee, Knoxville (UTK); Lee, Ida [ORNL; Tulip, Fahmida S [ORNL; Islam, Syed K [University of Tennessee, Knoxville (UTK); Mostafa, Salwa [University of Tennessee, Knoxville (UTK); Greenbaum, Elias [ORNL; Ericson, Milton Nance [ORNL

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  16. Ab-initio Study of the Electron Mobility in a Functionalized UiO-66 Metal Organic Framework

    Science.gov (United States)

    Musho, Terence D.; Yasin, Alhassan S.

    2018-03-01

    This study leverages density functional theory accompanied with Boltzmann transport equation approaches to investigate the electronic mobility as a function of inorganic substitution and functionalization in a thermally stable UiO-66 metal-organic framework (MOF). The MOFs investigated are based on Zr-UiO-66 MOF with three functionalization groups of benzene dicarboxylate (BDC), BDC functionalized with an amino group (BDC + NH_2 ) and a nitro group (BDC + NO_2 ). The design space of this study is bound by UiO-66(M)-R, [M=Zr , Ti, Hf; R=BDC , BDC+NO_2 , BDC+NH_2 ]. The elastic modulus was not found to vary significantly over the structural modification of the design space for either functionalization or inorganic substitution. However, the electron-phonon scattering potential was found to be controllable by up to 30% through controlled inorganic substitution in the metal clusters of the MOF structure. The highest electron mobility was predicted for a UiO-66(Hf_5Zr_1 ) achieving a value of approximately 1.4× 10^{-3} cm^2 /V s. It was determined that functionalization provides a controlled method of modulating the charge density, while inorganic substitution provides a controlled method of modulating the electronic mobility. Within the proposed design space the electrical conductivity was able to be increased by approximately three times the base conductivity through a combination of inorganic substitution and functionalization.

  17. Computational Search for Two-Dimensional MX2 Semiconductors with Possible High Electron Mobility at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zhishuo Huang

    2016-08-01

    Full Text Available Neither of the two typical two-dimensional materials, graphene and single layer MoS 2 , are good enough for developing semiconductor logical devices. We calculated the electron mobility of 14 two-dimensional semiconductors with composition of MX 2 , where M (=Mo, W, Sn, Hf, Zr and Pt are transition metals, and Xs are S, Se and Te. We approximated the electron phonon scattering matrix by deformation potentials, within which long wave longitudinal acoustical and optical phonon scatterings were included. Piezoelectric scattering in the compounds without inversion symmetry is also taken into account. We found that out of the 14 compounds, WS 2 , PtS 2 and PtSe 2 are promising for logical devices regarding the possible high electron mobility and finite band gap. Especially, the phonon limited electron mobility in PtSe 2 reaches about 4000 cm 2 ·V - 1 ·s - 1 at room temperature, which is the highest among the compounds with an indirect bandgap of about 1.25 eV under the local density approximation. Our results can be the first guide for experiments to synthesize better two-dimensional materials for future semiconductor devices.

  18. Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3

    Directory of Open Access Journals (Sweden)

    Koustav Ganguly

    2017-05-01

    Full Text Available The recently discovered high room temperature mobility in wide band gap semiconducting BaSnO3 is of exceptional interest for perovskite oxide heterostructures. Critical open issues with epitaxial films include determination of the optimal dopant and understanding the mobility-electron density (μ-n relation. These are addressed here through a transport study of BaSnO3(001 films with oxygen vacancy doping controlled via variable temperature vacuum annealing. Room temperature n can be tuned from 5 × 1019 cm−3 to as low as 2 × 1017 cm−3, which is shown to drive a weak- to strong-localization transition, a 104-fold increase in resistivity, and a factor of 28 change in μ. The data reveal μ ∝ n0.65 scaling over the entire n range probed, important information for understanding mobility-limiting scattering mechanisms.

  19. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se

    Science.gov (United States)

    Wu, Jinxiong; Yuan, Hongtao; Meng, Mengmeng; Chen, Cheng; Sun, Yan; Chen, Zhuoyu; Dang, Wenhui; Tan, Congwei; Liu, Yujing; Yin, Jianbo; Zhou, Yubing; Huang, Shaoyun; Xu, H. Q.; Cui, Yi; Hwang, Harold Y.; Liu, Zhongfan; Chen, Yulin; Yan, Binghai; Peng, Hailin

    2017-07-01

    High-mobility semiconducting ultrathin films form the basis of modern electronics, and may lead to the scalable fabrication of highly performing devices. Because the ultrathin limit cannot be reached for traditional semiconductors, identifying new two-dimensional materials with both high carrier mobility and a large electronic bandgap is a pivotal goal of fundamental research. However, air-stable ultrathin semiconducting materials with superior performances remain elusive at present. Here, we report ultrathin films of non-encapsulated layered Bi2O2Se, grown by chemical vapour deposition, which demonstrate excellent air stability and high-mobility semiconducting behaviour. We observe bandgap values of ˜0.8 eV, which are strongly dependent on the film thickness due to quantum-confinement effects. An ultrahigh Hall mobility value of >20,000 cm2 V-1 s-1 is measured in as-grown Bi2O2Se nanoflakes at low temperatures. This value is comparable to what is observed in graphene grown by chemical vapour deposition and at the LaAlO3-SrTiO3 interface, making the detection of Shubnikov-de Haas quantum oscillations possible. Top-gated field-effect transistors based on Bi2O2Se crystals down to the bilayer limit exhibit high Hall mobility values (up to 450 cm2 V-1 s-1), large current on/off ratios (>106) and near-ideal subthreshold swing values (˜65 mV dec-1) at room temperature. Our results make Bi2O2Se a promising candidate for future high-speed and low-power electronic applications.

  20. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    Science.gov (United States)

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  1. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    International Nuclear Information System (INIS)

    Chowdhury, Subhra; Biswas, Dhrubes; Chattaraj, Swarnabha

    2015-01-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current–voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure. (paper)

  2. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures

    International Nuclear Information System (INIS)

    Dabiran, A. M.; Wowchak, A. M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Chow, P. P.; Look, D. C.

    2008-01-01

    Low defect AlN/GaN high electron mobility transistor (HEMT) structures, with very high values of electron mobility (>1800 cm 2 /V s) and sheet charge density (>3x10 13 cm -2 ), were grown by rf plasma-assisted molecular beam epitaxy (MBE) on sapphire and SiC, resulting in sheet resistivity values down to ∼100 Ω/□ at room temperature. Fabricated 1.2 μm gate devices showed excellent current-voltage characteristics, including a zero gate saturation current density of ∼1.3 A/mm and a peak transconductance of ∼260 mS/mm. Here, an all MBE growth of optimized AlN/GaN HEMT structures plus the results of thin-film characterizations and device measurements are presented

  3. The role of septal surgery in management of the deviated nose.

    Science.gov (United States)

    Foda, Hossam M T

    2005-02-01

    The deviated nose represents a complex cosmetic and functional problem. Septal surgery plays a central role in the successful management of the externally deviated nose. This study included 260 patients seeking rhinoplasty to correct external nasal deviations; 75 percent of them had various degrees of nasal obstruction. Septal surgery was necessary in 232 patients (89 percent), not only to improve breathing but also to achieve a straight, symmetrical, external nose as well. A graduated surgical approach was adopted to allow correction of the dorsal and caudal deviations of the nasal septum without weakening its structural support to the dorsum or nasal tip. The approach depended on full mobilization of deviated cartilage, followed by straightening of the cartilage and its fixation in the corrected position by using bony splinting grafts through an external rhinoplasty approach.

  4. Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces via charge transfer induced modulation doping

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Trier, Felix; Wijnands, T.

    2015-01-01

    as applied research of complex oxides. Here, we inserted a single unit cell insulating layer of polar La1-xSrxMnO3 (x=0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 created at room temperature. We find that the electron mobility of the interfacial 2DEG is enhanced by more...

  5. Using mobile electronic devices to deliver educational resources in developing countries.

    Science.gov (United States)

    Mazal, Jonathan Robert; Ludwig, Rebecca

    2015-01-01

    Developing countries have far fewer trained radiography professionals than developed countries, which exacerbates the limited access to imaging services. The lack of trained radiographers reflects, in part, limited availability of radiographer-specific educational resources. Historically, organizations that provided such resources in the developing world faced challenges related to the limited stock of current materials as well as expenses associated with shipping and delivery. Four mobile electronic devices (MEDs) were loaded with educational content (e-books, PDFs, and digital applications) spanning major radiography topics. The MEDs were distributed to 4 imaging departments in Ghana, India, Nepal, and Nigeria based on evidence of need for radiography-specific resources, as revealed by survey responses. A cost comparison of postal delivery vs digital delivery of educational content was performed. The effectiveness of delivering additional content via Wi-Fi transmission also was evaluated. Feedback was solicited on users' experience with the MEDs as a delivery tool for educational content. An initial average per e-book expense of $30.05, which included the cost of the device, was calculated for the MED delivery method compared with $15.56 for postal delivery of printed materials. The cost of the MED delivery method was reduced to an average of $10.05 for subsequent e-book deliveries. Additional content was successfully delivered via Wi-Fi transmission to all recipients during the 3-month follow-up period. Overall user feedback on the experience was positive, and ideas for enhancing the MED-based method were identified. Using MEDs to deliver radiography-specific educational content appears to be more cost effective than postal delivery of printed materials on a long-term basis. MEDs are more efficient for providing updates to educational materials. Customization of content to department needs, and using projector devices could enhance the usefulness of MEDs for

  6. SU-F-T-80: A Mobile Application for Intra-Operative Electron Radiotherapy Treatment Planning

    International Nuclear Information System (INIS)

    Williams, C; Crowley, E; Wolfgang, J

    2016-01-01

    Purpose: Intraoperative electron radiotherapy (IORT) poses a unique set of challenges for treatment planning. Planning must be performed in a busy operating room environment over a short timeframe often with little advance knowledge of the treatment depth or applicator size. Furthermore, IORT accelerators can have a large number of possible applicators, requiring extensive databooks that must be searched for the appropriate dosimetric parameters. The goal of this work is to develop a software tool to assist in the planning process that is suited to the challenges faced in the IORT environment. Methods: We developed a mobile application using HTML5 and Javascript that can be deployed to tablet devices suitable for use in the operating room. The user selects the desired treatment parameters cone diameter, bevel angle, and energy (a total of 141 datasets) and desired bolus. The application generates an interactive display that allows the user to dynamically select points on the depth-dose curve and to visualize the shape of the corresponding isodose contours. The user can indicate a prescription isodose line or depth. The software performs a monitor unit calculation and generates a PDF report. Results: We present our application, which is now used routinely in our IORT practice. It has been employed successfully in over 23 cases. The interactivity of the isodose distributions was found to be of particular use to physicians who are less-frequent IORT users, as well as for the education of residents and trainees. Conclusion: This software has served as a useful tool in IORT planning, and demonstrates the need for treatment planning tools that are designed for the specialized challenges encountered in IORT. This software is the subject of a license agreement with the IntraOp Medical Corporation. This software is the subject of a license agreement between Massachusetts General Hospital / Partners Healthcare and the IntraOp Medical Corporation. CLW is consulting on

  7. An ultra-thin miniature loop heat pipe cooler for mobile electronics

    International Nuclear Information System (INIS)

    Zhou, Guohui; Li, Ji; Lv, Lucang

    2016-01-01

    Highlights: • A 1.2 mm thick miniature loop heat pipe was developed. • The mLHP can manage a wide range of heat loads at natural convection. • A minimum mLHP thermal resistance of 0.111 °C/W was achieved at 11 W. • The proposed mLHP is a promising solution for cooling mobile electronics. - Abstract: In this paper, we present a miniature loop heat pipe (mLHP) employing a 1.2 mm thick flat evaporator and a vapor line, liquid line and condenser with a 1.0 mm thickness. The mLHP employs an internal wick structure fabricated of sintered fine copper mesh, comprised of a primary wick structure in the evaporator to provide the driving force for circulating the working fluid, and a secondary wick inside the liquid line to promote the flow of condensed working fluid back to the evaporator. All tests were conducted under air natural convection at an ambient temperature of 24 ± 1 °C. The proposed mLHP demonstrated stable start-up behavior at a low heat load of 2 W in the horizontal orientation with an evaporator temperature of 43.9 °C and efficiently dissipates a maximum heat load of 12 W without dry-out occurring. A minimum mLHP thermal resistance of 0.111 °C/W was achieved at a heat load of 11 W in a gravity favorable operation mode, at which the evaporator temperature was about 97.2 °C. In addition, an analytical analysis was conducted, and the devised equation could be used to evaluate the performance of the mLHP.

  8. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    International Nuclear Information System (INIS)

    Ciocca, Mario; Cantone, Marie-Claire; Veronese, Ivan; Cattani, Federica; Pedroli, Guido; Molinelli, Silvia; Vitolo, Viviana; Orecchia, Roberto

    2012-01-01

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42–216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy

  9. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    Science.gov (United States)

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  10. SU-F-T-80: A Mobile Application for Intra-Operative Electron Radiotherapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C [Brigham and Women’s Hospital & Dana Farber Cancer Institute, Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Crowley, E; Wolfgang, J [Harvard Medical School, Boston, MA (United States); Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: Intraoperative electron radiotherapy (IORT) poses a unique set of challenges for treatment planning. Planning must be performed in a busy operating room environment over a short timeframe often with little advance knowledge of the treatment depth or applicator size. Furthermore, IORT accelerators can have a large number of possible applicators, requiring extensive databooks that must be searched for the appropriate dosimetric parameters. The goal of this work is to develop a software tool to assist in the planning process that is suited to the challenges faced in the IORT environment. Methods: We developed a mobile application using HTML5 and Javascript that can be deployed to tablet devices suitable for use in the operating room. The user selects the desired treatment parameters cone diameter, bevel angle, and energy (a total of 141 datasets) and desired bolus. The application generates an interactive display that allows the user to dynamically select points on the depth-dose curve and to visualize the shape of the corresponding isodose contours. The user can indicate a prescription isodose line or depth. The software performs a monitor unit calculation and generates a PDF report. Results: We present our application, which is now used routinely in our IORT practice. It has been employed successfully in over 23 cases. The interactivity of the isodose distributions was found to be of particular use to physicians who are less-frequent IORT users, as well as for the education of residents and trainees. Conclusion: This software has served as a useful tool in IORT planning, and demonstrates the need for treatment planning tools that are designed for the specialized challenges encountered in IORT. This software is the subject of a license agreement with the IntraOp Medical Corporation. This software is the subject of a license agreement between Massachusetts General Hospital / Partners Healthcare and the IntraOp Medical Corporation. CLW is consulting on

  11. White-Nose Syndrome of bats

    Science.gov (United States)

    Jessie A. Glaeser; Martin J. Pfeiffer; Daniel L. Lindner

    2016-01-01

    Devastating. Catastrophic. Unprecedented. This is how white-nose syndrome of bats (WNS) is characterized. It is one of the deadliest wildlife diseases ever observed and could have significant impacts on outdoor recreation, agriculture and wildlife management.

  12. Your Nose, the Guardian of Your Lungs

    Science.gov (United States)

    ... more susceptible to germs and pollens. Many anti-anxiety medications also have a drying effect on the nose and throat. Birth control pills, blood pressure medicines called beta-blockers, and Viagra can cause increased nasal congestion. Eye ...

  13. Improving crystallization and electron mobility of indium tin oxide by carbon dioxide and hydrogen dual-step plasma treatment

    Science.gov (United States)

    Wang, Fengyou; Du, Rongchi; Ren, Qianshang; Wei, Changchun; Zhao, Ying; Zhang, Xiaodan

    2017-12-01

    Obtaining high conductivity indium tin oxide (ITO) films simultaneously with a "soft-deposited" (low temperature, low ions bombardment) and cost-efficient deposition process are critical aspect for versatile photo-electronic devices application. Usually, the low-cost "soft-deposited" process could be achieved via evaporation technique, but with scarifying the conductivity of the films. Here, we show a CO2 and H2 two-step plasma (TSP) post-treatment applied to ITO films prepared by reactive thermal evaporation (RTE), allows to meet the special trade-off between the deposition techniques and the electrical properties. Upon treatment, an increase in electron concentration and electron mobility is observed, which subsequently resulting a low sheet resistivity. The mobility reaches high values of 80.9 cm2/Vs for the TSP treated ∼100 nm thickness samples. From a combination of X-ray photoelectron spectroscopy and opto-electronic measurements, it demonstrated that: during the TSP process, the first-step CO2 plasma treatment could promote the crystallinity of the RTE ITO films. While the electron traps density at grain boundaries of polycrystalline RTE ITO films could be passivated by hydrogen atom during the second-step H2 plasma treatment. These results inspired that the TSP treatment process has significant application prospects owing to the outstanding electrical properties enhancement for "soft-deposited" RTE ITO films.

  14. Nosing Around: Play in Pigs

    Directory of Open Access Journals (Sweden)

    Kristina Horback

    2014-05-01

    Full Text Available The predominant method of measuring welfare in swine focuses on overt physical ailments, such as skin lesions, lameness, and body condition. An alternative metric for assessing welfare in swine can be to measure the frequency and duration of positive behavioral states, such as play. Given that play occurs only when an animal's primary needs (food, comfort, safety, etc. have been satisfied, it has been suggested that play may be a sensitive indicator for assessing the welfare of non-human animals. Play has primarily been described in young piglets and is assessed via the occurrence of specific play markers. These play markers include overt bursts of energy like scamper, or more subtle social behaviors like nose-to-body contact. This review describes four areas of play for swine: locomotor, object, sow-piglet, and, peer play. From sporadic leaping to combative wrestling, play behavior allows for the fine-tuning of reflexive behavior which can enhance physical development, enrich cognitive abilities, and facilitate the maintenance of social bonds.

  15. Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3

    DEFF Research Database (Denmark)

    Trier, Felix; Reich, K. V.; Christensen, Dennis Valbjørn

    2017-01-01

    Metallic LaAlO3/SrTiO3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, ns, is poorly understood. Here, we derive a simple expression for the three-dimensional electron density near the interface, n3D, as a function...

  16. Supporting Information Access in a Hospital Ward by a Context-Aware Mobile Electronic Patient Record

    DEFF Research Database (Denmark)

    Skov, Mikael B.; Høegh, Rune Thaarup

    2006-01-01

    Context-awareness holds promise for improving the utility of software products. Context-aware mobile systems encompass the ability to automatically discover and react to changes in an environment. Most contemporary context-aware mobile systems aim to support users in private situations, for example......Ward is to support nurses in conducting morning procedures in a hospital ward. MobileWard is context-aware as it is able to discover and react autonomously according to changes in the environment and since it integrates the ability to provide information and services to the user where the relevancy depends....... Implications and limitations of the proposed solution are further discussed....

  17. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  18. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  19. Determination of the band alignment of a-IGZO/a-IGMO heterojunction for high-electron mobility transistor application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi-Yu; Qian, Ling-Xuan; Liu, Xing-Zhao [School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu (China)

    2017-10-15

    In the past decade, amorphous InGaZnO thin film transistors (a-IGZO TFTs) have become a very promising candidate for application in flat panel displays (FPDs). However, it is difficult to break through the mobility bottleneck of a-IGZO TFTs to obtain mobilities higher than 100 cm{sup 2} V{sup -1} s{sup -1}, thus limiting their use in more advanced applications. Construction of a high-electron mobility transistor (HEMT) based on a heterojunction structure could provide a solution for this problem. In this work, the band alignment of a-IGZO and amorphous InGaMgO (a-IGMO) heterojunction has been investigated using X-ray photoelectron spectroscopy (XPS) and transmission spectra measurements. The valence band (ΔE{sub V}) and conduction band offsets (ΔE{sub C}) were determined as 0.09 and 0.83 eV, respectively. The ΔE{sub C} was large enough to construct a potential well that could favor the appearance of a two-dimensional electron gas (2DEG). Hence, the achievement of an HEMT based on a-IGZO/a-IGMO heterojunction can be expected. Moreover, band bending contributed greatly to such a large ΔE{sub C}, and thus to the formation of electrical confinement structure. Our findings suggest that a-IGZO/a-IGMO heterojunction is a potential candidate for constructing a HEMT and thus breaking through the mobility bottleneck of a-IGZO-based TFTs for the applications in next-generation electronic products. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Determination of the band alignment of a-IGZO/a-IGMO heterojunction for high-electron mobility transistor application

    International Nuclear Information System (INIS)

    Zhang, Yi-Yu; Qian, Ling-Xuan; Liu, Xing-Zhao

    2017-01-01

    In the past decade, amorphous InGaZnO thin film transistors (a-IGZO TFTs) have become a very promising candidate for application in flat panel displays (FPDs). However, it is difficult to break through the mobility bottleneck of a-IGZO TFTs to obtain mobilities higher than 100 cm"2 V"-"1 s"-"1, thus limiting their use in more advanced applications. Construction of a high-electron mobility transistor (HEMT) based on a heterojunction structure could provide a solution for this problem. In this work, the band alignment of a-IGZO and amorphous InGaMgO (a-IGMO) heterojunction has been investigated using X-ray photoelectron spectroscopy (XPS) and transmission spectra measurements. The valence band (ΔE_V) and conduction band offsets (ΔE_C) were determined as 0.09 and 0.83 eV, respectively. The ΔE_C was large enough to construct a potential well that could favor the appearance of a two-dimensional electron gas (2DEG). Hence, the achievement of an HEMT based on a-IGZO/a-IGMO heterojunction can be expected. Moreover, band bending contributed greatly to such a large ΔE_C, and thus to the formation of electrical confinement structure. Our findings suggest that a-IGZO/a-IGMO heterojunction is a potential candidate for constructing a HEMT and thus breaking through the mobility bottleneck of a-IGZO-based TFTs for the applications in next-generation electronic products. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermal decomposition of electronic wastes: Mobile phone case and other parts

    International Nuclear Information System (INIS)

    Molto, Julia; Egea, Silvia; Conesa, Juan Antonio; Font, Rafael

    2011-01-01

    Highlights: → Pyrolysis and combustion of different parts of mobile phones produce important quantities of CO and CO 2 . → Naphthalene is the most abundant PAH obtained in the thermal treatment of mobile phones. → Higher combustion temperature increases the chlorinated species evolved. - Abstract: Pyrolysis and combustion runs at 850 o C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.

  2. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

    KAUST Repository

    Lin, Yen-Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn; Anthopoulos, Thomas D.

    2015-01-01

    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

  3. High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

    KAUST Repository

    Lin, Yen-Hung

    2015-05-26

    High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

  4. High Electron Mobility Thin‐Film Transistors Based on Solution‐Processed Semiconducting Metal Oxide Heterojunctions and Quasi‐Superlattices

    Science.gov (United States)

    Lin, Yen‐Hung; Faber, Hendrik; Labram, John G.; Stratakis, Emmanuel; Sygellou, Labrini; Kymakis, Emmanuel; Hastas, Nikolaos A.; Li, Ruipeng; Zhao, Kui; Amassian, Aram; Treat, Neil D.; McLachlan, Martyn

    2015-01-01

    High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement. PMID:27660741

  5. Electron mobility and drift velocity in selectively doped InAlAs/InGaAs/InAlAs heterostructures

    International Nuclear Information System (INIS)

    Vasil’evskii, I. S.; Galiev, G. B.; Klimov, E. A.; Požela, K.; Požela, J.; Jucienė, V.; Sužiedėlis, A.; Žurauskienė, N.; Keršulis, S.; Stankevič, V.

    2011-01-01

    An increase in the electron mobility and drift velocity in high electric fields in quantum wells of selectively doped InAlAs/InGaAs/InAsAs heterostructures is obtained experimentally via controlling the composition of semiconductors forming the interface. The electron mobility at the interface in the In 0.8 Ga 0.2 As/In 0.7 Al 0.3 As metamorphic structure with a high molar fraction of In (0.7–0.8) is as high as 12.3 × 10 3 cm 2 V −1 s −1 at room temperature. An increase in the electron mobility by a factor of 1.1–1.4 is attained upon the introduction of thin (1–3 nm) InAs layers into a quantum well of selectively doped In 0.53 Ga 0.47 As/In 0.52 Al 0.48 As heterostructures. A maximal drift velocity attains 2.5 × 10 7 cm/s in electric fields of 2–5 kV/cm. The threshold field F th for the intervalley Γ-L electron transfer (the Gunn effect) in the InGaAs quantum well is higher than in the bulk material by a factor of 2.5–3. The effect of two- to threefold decrease in the threshold field F th in the InGaAs quantum well is established upon increasing the molar fraction of In in the InAlAs barrier, as well as upon the introduction of thin InAs inserts into the InGaAs quantum well.

  6. Characteristics in AlN/AlGaN/GaN Multilayer-Structured High-Electron-Mobility Transistors

    International Nuclear Information System (INIS)

    Gui-Zhou, Hu; Ling, Yang; Li-Yuan, Yang; Si, Quan; Shou-Gao, Jiang; Ji-Gang, Ma; Xiao-Hua, Ma; Yue, Hao

    2010-01-01

    A new multilayer-structured AlN/AlGaN/GaN heterostructure high-electron-mobility transistor (HEMT) is demonstrated. The AlN/AlGaN/GaN HEMT exhibits the maximum drain current density of 800 mA/mm and the maximum extrinsic transconductance of 170 mS/mm. Due to the increase of the distance between the gate and the two-dimensional electron-gas channel, the threshold voltage shifts slightly to the negative. The reduced drain current collapse and higher breakdown voltage are observed on this AlN/AlGaN/GaN HEMT. The current gain cut-off frequency and the maximum frequency of oscillation are 18.5 GHz and 29.0 GHz, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Anelastic relaxation study of the atom mobility in a Ag-Zn alloy under an electron flux

    International Nuclear Information System (INIS)

    Halbwachs, M.; Hillairet, J.; Beretz, D.; Cost, J.R.

    1976-01-01

    The transient phenomena occuring at flux setting of collapsing in a fcc AgZn (Ag 30%) alloy were directly investigated under electron irradiation. The atom mobility was measured from the inelastic relaxation associated with the reversible stress-induced short-order changes (Zener relaxation). The interstitial mobility can be evaluated with respect to that of the vacancy, that is 5x10 5 jumps/s at 40 deg C and corresponds to an activation energy of 0.54eV. It is about twenty times higher than that of the vacancy and may be described by an activation energy of 0.45+-0.04eV. Furthermore, the rate of free defect production is shown to be approximately equal to 6x10 -12 Frenkel pairs per second [fr

  8. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.; Mejia, I.; Hovarth, J.; Alshareef, Husam N.; Cha, D. K.; Ramirez-Bon, R.; Gnade, B. E.; Quevedo-Lopez, M. A.

    2010-01-01

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  9. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.

    2010-06-29

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  10. Enhanced Electron Mobility in Nonplanar Tensile Strained Si Epitaxially Grown on SixGe1-x Nanowires.

    Science.gov (United States)

    Wen, Feng; Tutuc, Emanuel

    2018-01-10

    We report the growth and characterization of epitaxial, coherently strained Si x Ge 1-x -Si core-shell nanowire heterostructure through vapor-liquid-solid growth mechanism for the Si x Ge 1-x core, followed by an in situ ultrahigh-vacuum chemical vapor deposition for the Si shell. Raman spectra acquired from individual nanowire reveal the Si-Si, Si-Ge, and Ge-Ge modes of the Si x Ge 1-x core and the Si-Si mode of the shell. Because of the compressive (tensile) strain induced by lattice mismatch, the core (shell) Raman modes are blue (red) shifted compared to those of unstrained bare Si x Ge 1-x (Si) nanowires, in good agreement with values calculated using continuum elasticity model coupled with lattice dynamic theory. A large tensile strain of up to 2.3% is achieved in the Si shell, which is expected to provide quantum confinement for electrons due to a positive core-to-shell conduction band offset. We demonstrate n-type metal-oxide-semiconductor field-effect transistors using Si x Ge 1-x -Si core-shell nanowires as channel and observe a 40% enhancement of the average electron mobility compared to control devices using Si nanowires due to an increased electron mobility in the tensile-strained Si shell.

  11. Influence of the number of layers on ultrathin CsSnI3 perovskite: from electronic structure to carrier mobility

    Science.gov (United States)

    Liu, Biao; Long, Mengqiu; Cai, Meng-Qiu; Yang, Junliang

    2018-03-01

    Inorganic halide perovskites have attracted great attention in recent years as promising materials for optoelectronic devices, with ultrathin inorganic halide perovskites showing excellent properties and great potential applications. Herein, the intrinsic electronic and optical properties of ultrathin cesium tin tri-iodide (CsSnI3) perovskite with a varying number of layers are explored using first-principles calculations. The results reveal that ultrathin CsSnI3 is a direct band gap semiconductor, and the band gap continues to increase to 1.83 eV from 1.28 eV as the number of layers is reduced to one layer from the bulk. By decreasing the number of layers, the effective mass of ultrathin CsSnI3 increases, and the optical absorption intensity along the x and y directions shows that the linear dichroism becomes stronger and stronger. Furthermore, the carrier mobilities (µ) can be predicted, and they show obvious in-plane anisotropy. The µ of the electrons is higher than that of the holes, and the electron mobility along the y direction is higher than that along the x direction. The layer thickness does not distinctly influence the µ. The difference in the atomic orbital distribution has the nature of obvious anisotropy in ultrathin CsSnI3. This work suggests that ultrathin inorganic perovskite could be a potential candidate for future nano-optoelectronic devices.

  12. Quantum corrections to conductivity observed at intermediate magnetic fields in a high mobility GaAs/AlGaAs 2-dimensional electron gas

    International Nuclear Information System (INIS)

    Taboryski, R.; Veje, E.; Lindelof, P.E.

    1990-01-01

    Magnetoresistance with the field perpendicular to the 2-dimensional electron gas in a high mobility GaAs/AlGaAs heterostructure at low temperatures is studied. At the lowest magnetic field we observe the weak localization. At magnetic fields, where the product of the mobility and the magnetic field is of the order of unity, the quantum correction to conductivity due to the electron-electron interaction is as a source of magnetoresistance. A consistent analysis of experiments in this regime is for the first time performed. In addition to the well known electron-electron term with the expected temperature dependence, we find a new type of temperature independent quantum correction, which varies logarithmically with mobility. (orig.)

  13. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications.

    Science.gov (United States)

    Makowski, M S; Kim, S; Gaillard, M; Janes, D; Manfra, M J; Bryan, I; Sitar, Z; Arellano, C; Xie, J; Collazo, R; Ivanisevic, A

    2013-02-18

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications.

  14. What Clinical Information Is Valuable to Doctors Using Mobile Electronic Medical Records and When?

    Science.gov (United States)

    Kim, Junetae; Lee, Yura; Lim, Sanghee; Kim, Jeong Hoon; Lee, Byungtae; Lee, Jae-Ho

    2017-10-18

    There has been a lack of understanding on what types of specific clinical information are most valuable for doctors to access through mobile-based electronic medical records (m-EMRs) and when they access such information. Furthermore, it has not been clearly discussed why the value of such information is high. The goal of this study was to investigate the types of clinical information that are most valuable to doctors to access through an m-EMR and when such information is accessed. Since 2010, an m-EMR has been used in a tertiary hospital in Seoul, South Korea. The usage logs of the m-EMR by doctors were gathered from March to December 2015. Descriptive analyses were conducted to explore the overall usage patterns of the m-EMR. To assess the value of the clinical information provided, the usage patterns of both the m-EMR and a hospital information system (HIS) were compared on an hourly basis. The peak usage times of the m-EMR were defined as continuous intervals having normalized usage values that are greater than 0.5. The usage logs were processed as an indicator representing specific clinical information using factor analysis. Random intercept logistic regression was used to explore the type of clinical information that is frequently accessed during the peak usage times. A total of 524,929 usage logs from 653 doctors (229 professors, 161 fellows, and 263 residents; mean age: 37.55 years; males: 415 [63.6%]) were analyzed. The highest average number of m-EMR usage logs (897) was by medical residents, whereas the lowest (292) was by surgical residents. The usage amount for three menus, namely inpatient list (47,096), lab results (38,508), and investigation list (25,336), accounted for 60.1% of the peak time usage. The HIS was used most frequently during regular hours (9:00 AM to 5:00 PM). The peak usage time of the m-EMR was early in the morning (6:00 AM to 10:00 AM), and the use of the m-EMR from early evening (5:00 PM) to midnight was higher than during regular

  15. The virtual nose: a 3-dimensional virtual reality model of the human nose.

    Science.gov (United States)

    Vartanian, A John; Holcomb, Joi; Ai, Zhuming; Rasmussen, Mary; Tardy, M Eugene; Thomas, J Regan

    2004-01-01

    The 3-dimensionally complex interplay of soft tissue, cartilaginous, and bony elements makes the mastery of nasal anatomy difficult. Conventional methods of learning nasal anatomy exist, but they often involve a steep learning curve. Computerized models and virtual reality applications have been used to facilitate teaching in a number of other complex anatomical regions, such as the human temporal bone and pelvic floor. We present a 3-dimensional (3-D) virtual reality model of the human nose. Human cadaveric axial cross-sectional (0.33-mm cuts) photographic data of the head and neck were used. With 460 digitized images, individual structures were traced and programmed to create a computerized polygonal model of the nose. Further refinements to this model were made using a number of specialized computer programs. This 3-D computer model of the nose was then programmed to operate as a virtual reality model. Anatomically correct 3-D model of the nose was produced. High-resolution images of the "virtual nose" demonstrate the nasal septum, lower lateral cartilages, middle vault, bony dorsum, and other structural details of the nose. Also, the model can be combined with a separate virtual reality model of the face and its skin cover as well as the skull. The user can manipulate the model in space, examine 3-D anatomical relationships, and fade superficial structures to reveal deeper ones. The virtual nose is a 3-D virtual reality model of the nose that is accurate and easy to use. It can be run on a personal computer or in a specialized virtual reality environment. It can serve as an effective teaching tool. As the first virtual reality model of the nose, it establishes a virtual reality platform from which future applications can be launched.

  16. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    Science.gov (United States)

    2015-09-01

    ABBREVIATIONS 2DEG two-dimensional electron gas AlGaN aluminum gallium nitride AlOx aluminum oxide CCD charged coupled device CTE coefficient of...frequency of FETs. Such a device may also be known as a heterojunction field-effect transistor (HFET), modulation-doped field-effect transistor (MODFET...electrons. This charge attracts electrons to the interface, forming the 2DEG channel. The HEMT includes a heterojunction of two semiconducting

  17. Pediatric Obesity and Ear, Nose, and Throat Disorders

    Science.gov (United States)

    ... Marketplace Find an ENT Doctor Near You Pediatric Obesity and Ear, Nose, and Throat Disorders Pediatric Obesity ... self-esteem, and isolation from their peers. Pediatric obesity and otolaryngic problems Otolaryngologists, or ear, nose, and ...

  18. Pediatric Obesity and Ear, Nose, and Throat Disorders

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Pediatric Obesity and Ear, Nose, and Throat Disorders Pediatric ... of self-esteem, and isolation from their peers. Pediatric obesity and otolaryngic problems Otolaryngologists, or ear, nose, ...

  19. Direct Growth of High Mobility and Low-Noise Lateral MoS2 -Graphene Heterostructure Electronics.

    Science.gov (United States)

    Behranginia, Amirhossein; Yasaei, Poya; Majee, Arnab K; Sangwan, Vinod K; Long, Fei; Foss, Cameron J; Foroozan, Tara; Fuladi, Shadi; Hantehzadeh, Mohammad Reza; Shahbazian-Yassar, Reza; Hersam, Mark C; Aksamija, Zlatan; Salehi-Khojin, Amin

    2017-08-01

    Reliable fabrication of lateral interfaces between conducting and semiconducting 2D materials is considered a major technological advancement for the next generation of highly packed all-2D electronic circuitry. This study employs seed-free consecutive chemical vapor deposition processes to synthesize high-quality lateral MoS 2 -graphene heterostructures and comprehensively investigated their electronic properties through a combination of various experimental techniques and theoretical modeling. These results show that the MoS 2 -graphene devices exhibit an order of magnitude higher mobility and lower noise metrics compared to conventional MoS 2 -metal devices as a result of energy band rearrangement and smaller Schottky barrier height at the contacts. These findings suggest that MoS 2 -graphene in-plane heterostructures are promising materials for the scale-up of all-2D circuitry with superlative electrical performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Significant performance enhancement in AlGaN/GaN high electron mobility transistor by high-κ organic dielectric

    International Nuclear Information System (INIS)

    Ze-Gao, Wang; Yuan-Fu, Chen; Cao, Chen; Ben-Lang, Tian; Fu-Tong, Chu; Xing-Zhao, Liu; Yan-Rong, Li

    2010-01-01

    The electrical properties of AlGaN/GaN high electron mobility transistor (HEMT) with and without high-κ organic dielectrics are investigated. The maximum drain current I D max and the maximum transconductance g m max of the organic dielectric/AlGaN/GaN structure can be enhanced by 74.5%, and 73.7% compared with those of the bare AlGaN/GaN HEMT, respectively. Both the threshold voltage V T and g m max of the dielectric/AlGaN/GaN HEMT are strongly dielectric-constant-dependent. Our results suggest that it is promising to significantly improve the performance of the AlGaN/GaN HEMT by introducing the high-κ organic dielectric. (condensed matter: electronic structure, electrical, magnetic, and optical properties)