WorldWideScience

Sample records for mo-doped bi2212 single

  1. Correlation between modulation structure and electronic inhomogeneity on Pb-doped Bi-2212 single crystals

    International Nuclear Information System (INIS)

    Sugimoto, A.; Kashiwaya, S.; Eisaki, H.; Yamaguchi, H.; Oka, K.; Kashiwaya, H.; Tsuchiura, H.; Tanaka, Y.

    2005-01-01

    The correlation between nanometer-size electronic states and surface structure is investigated by scanning tunneling microscopy/spectroscopy (STM/S) on Pb-doped Bi 2-x Pb x Sr 2 CaCu2O 8+y (Pb-Bi-2212) single crystals. The advantage of the Pb-Bi-2212 samples is that the modulation structure can be totally or locally suppressed depending on the Pb contents and annealing conditions. The superconducting gap (Δ) distribution on modulated Pb-Bi-2212 samples showed the lack of correlation with modulation structure except a slight reduction of superconducting island size for the b-axis direction. On the other hand, the optimal doped Pb-Bi-2212 (x = 0.6) samples obtained by reduced-annealing showed totally non-modulated structure in topography, however, the spatial distribution of Δ still showed inhomogeneity of which features were quite similar to those of modulated samples. These results suggest that the modulation structure is not the dominant origin of inhomogeneity although it modifies the streaky Δ structure sub-dominantly. From the gap structure variation around the border of narrow gap and broad gap regions, a trend of the coexistence of two separated phases i.e., superconducting phase and pseudogap like phase, is detected

  2. Zr, Hf, Mo and W-containing oxide phases as pinning additives in Bi-2212 superconductor

    International Nuclear Information System (INIS)

    Makarova, M.V.; Kazin, P.E.; Tretyakov, Yu.D.; Jansen, M.; Reissner, M.; Steiner, W.

    2005-01-01

    Phase formation was investigated in Bi-Sr-Ca-Cu-M-O (M = Mo, W) systems at 850-900 deg C. It was found that Sr 2 CaMO 6 phases were chemically compatible with Bi-2212. The composites Bi-2212-Sr 2 CaMO 6 and Bi-2212-SrAO 3 (A = Zr, Hf) were obtained from a sol-gel precursor using crystallisation from the melt. The materials consisted of Bi-2212 matrix and submicron or micron grains of the corresponding dispersed phase. T c was equal or exceeded that for undoped Bi-2212, reaching T c = 97 K in the Mo-containing composite. The composites exhibited enhanced pinning in comparison with similar prepared pure Bi-2212, especially at T = 60 K. The best pinning parameters were observed for the Bi-2212-Sr 2 CaWO 6 composite

  3. The degrees of tri-axial orientation in RE-doped Bi2212 powders aligned in a modulated rotation magnetic field

    International Nuclear Information System (INIS)

    Nagai, R.; Horii, S.; Maeda, T.; Haruta, M.; Shimoyama, J.

    2013-01-01

    Highlights: •Tri-axial magnetic alignment of Bi2212 with rare-earth (RE) doping was attempted. •Magnetization axes depended on the type of doped RE ions. •RE-doping increased degrees of inplane orientation and inplane magnetic anisotropy. -- Abstract: We report relationship between the degrees of tri-axial orientation and doping level of rare earth (RE) ions in Bi 2 Sr 2 (Ca 1−x RE x )Cu 2 O y (RE-doped Bi2212; RE = Dy, Ho, Er and Tm) powder samples aligned under a modulated rotation magnetic field (MRF) of 10 T. Tri-axial magnetic alignment of the RE-doped Bi2212 with x = 0–0.5 was achieved by single-ion magnetic anisotropy of RE 3+ and tri-axial magnetic anisotropy induced by modulation microstructure in a grain level. The degrees of in-plane and c-axis orientation with ∼3° were achieved for the case of the Tm-doped Bi2212 with x = 0.5. The findings in the present study give us important information for the fabrication of triaxially oriented Bi-based cuprate superconductor materials by the magneto-scientific process

  4. Stoichiometric transfer of material in the infrared pulsed laser deposition of yttrium doped Bi-2212 films

    International Nuclear Information System (INIS)

    De Vero, Jeffrey C.; Blanca, Glaiza Rose S.; Vitug, Jaziel R.; Garcia, Wilson O.; Sarmago, Roland V.

    2011-01-01

    Highlights: → This work describes the stoichiometric transfer of Y-doped Bi-2212 during IR-PLD. → As-deposited films show spheroidal morphology with similar composition as the target. Relatively flat and highly c-axis oriented films were obtained after heat treatment. → IR-PLD can be a viable technique in growing other high Tc superconducting materials. - Abstract: Films of Y-doped Bi-2212 were successfully grown on MgO (1 0 0) substrates by infrared pulsed laser deposition (IR-PLD). With post-heat treatments, smooth and highly c-axis oriented films were obtained. The average compositions of the films have the same stoichiometry as the target. Y content is also preserved on the grown films at all doping levels. The electrical properties of the grown Y-doped Bi-2212 films exhibit the expected electrical properties of the bulk Y-doped Bi-2212. This is attributed to the stoichiometric transfer of material by IR-PLD.

  5. Magnetic measurements on Tl-2212 and Bi-2212 single crystals: a comparative study

    International Nuclear Information System (INIS)

    Oussena, M.; Porter, S.; Volkozub, A.; De Groot, P.A.J.; Lanchester, P.C.; Ogborne, D.; Weller, M.T.; Balakrishnan, G.; Paul, D.McK.

    1994-01-01

    We have compared the magnetic behaviour of two identically shaped single crystals, Tl 2 Ba 2 CaCu 2 O 8 and Bi 2 Sr 2 CaCu 2 O 8 . The critical current density is found to decrease more rapidly with temperature in Bi-2212 although it is the highest in this material at low temperatures (T < 10K). I-V characteristic curves have been obtained from measurements of magnetic sweep rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl-2212 than in Bi-2212. Hence the Tl-2212 has a larger effective pinning. (orig.)

  6. Magnetic measurements on Tl-2212 and Bi-2212 single crystals: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oussena, M. (Physics Dept., Univ. of Southampton (United Kingdom)); Porter, S. (Physics Dept., Univ. of Southampton (United Kingdom)); Volkozub, A. (Physics Dept., Univ. of Southampton (United Kingdom)); De Groot, P.A.J. (Physics Dept., Univ. of Southampton (United Kingdom)); Lanchester, P.C. (Physics Dept., Univ. of Southampton (United Kingdom)); Ogborne, D. (Physics Dept., Univ. of Southampton (United Kingdom) Chemistry Dept., Univ. of Southampton (United Kingdom)); Weller, M.T. (Physics Dept., Univ. of Southampton (United Kingdom) Chemistry Dept., Univ. of Southampton (United Kingdom)); Balakrishnan, G. (Physics Dept., Univ. of Southampton (United Kingdom) Physics Dept., Univ. of Warwick, Coventry (United Kingdom)); Paul, D.McK. (Physics Dept., Univ. of Southampton (United Kingdom) Physics Dept., Univ. of Warwick, Coventry (United Kingdom))

    1994-02-01

    We have compared the magnetic behaviour of two identically shaped single crystals, Tl[sub 2]Ba[sub 2]CaCu[sub 2]O[sub 8] and Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8]. The critical current density is found to decrease more rapidly with temperature in Bi-2212 although it is the highest in this material at low temperatures (T < 10K). I-V characteristic curves have been obtained from measurements of magnetic sweep rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl-2212 than in Bi-2212. Hence the Tl-2212 has a larger effective pinning. (orig.)

  7. Study of Bi-2212 phase doped Sn(Pb) by means of pat

    International Nuclear Information System (INIS)

    Ma Qingzhu; Huang Xiaoqian; Xiong Xiaotao

    1997-01-01

    Investigation on the effect of Sn/Pb-doped Bi-2212 superconductors has been carried out by the simultaneous measurements of the spectra of positron annihilation lifetime and positron Doppler broadening, together with X-ray diffraction. The results of samples with different doping level show the occupation of Sn atoms on Bi sites. At weak doping level, Sn doping results in a enhancement of cooperation between layers and increment of superconducting transition temperature. At the strong doping level, Sn atoms occupy the sites of Cu-O layers, and at the same time, the other nonsuperconducting phases appear, which results in a decline of the superconducting transition temperature

  8. Doping dependence of low-energy quasiparticle excitations in superconducting Bi2212.

    Science.gov (United States)

    Ino, Akihiro; Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shinichi

    2013-12-05

    : The doping-dependent evolution of the d-wave superconducting state is studied from the perspective of the angle-resolved photoemission spectra of a high-Tc cuprate, Bi2Sr2CaCu2 O8+δ (Bi2212). The anisotropic evolution of the energy gap for Bogoliubov quasiparticles is parametrized by critical temperature and superfluid density. The renormalization of nodal quasiparticles is evaluated in terms of mass enhancement spectra. These quantities shed light on the strong coupling nature of electron pairing and the impact of forward elastic or inelastic scatterings. We suggest that the quasiparticle excitations in the superconducting cuprates are profoundly affected by doping-dependent screening.

  9. Single crystal growth of high-temperature superconductor Bi2.1Sr1.9Ca1.0Cu2.0AlyOx

    International Nuclear Information System (INIS)

    Gu, G.D.; Lin, Z.W.

    2000-01-01

    The effect of Al doping on the crystal growth of Bi-2212 was studied by a floating zone method. The results show that the planar solid-liquid interface breaks down into a cellular growth front while increasing Al doping in the rods of Bi 2.1 Sr 1.9 Ca 1.0 Cu 2.0 Al y O x . The size of the single crystals decreases with the increase in Al doping. The solubility limit for Al or the maximum Cu-site substitution by Al in the Bi-2212 crystals is less than y = 0.01. The majority of nominal Al doping in the rods forms an Al-rich phase in the grain boundaries of the single crystals. The superconductivity of as-grown Al-doped crystals decreases progressively with increasing Al doping in the rods, however, the T c for annealed Al-doped crystals does not change with increasing Al doping in the rods. The unchanged T c for annealed Al-doped Bi-2212 crystals either suggests that a small amount of Al substitution in the Cu site does not cause T c to drop significantly, or indicates that Al only enters the Bi-2212 crystals as an impurity, but does not substitute at the Cu site in the Bi-2212 crystals. (author)

  10. Types of defect ordering in undoped and lanthanum-doped Bi2201 single crystals

    International Nuclear Information System (INIS)

    Martovitsky, V. P.

    2006-01-01

    Undoped and lanthanum-doped Bi2201 single crystals having a perfect average structure have been comparatively studied by x-ray diffraction. The undoped Bi2201 single crystals exhibit very narrow satellite reflections; their half-width is five to six times smaller than that of Bi2212 single crystals grown by the same technique. This narrowness indicates three-dimensional defect ordering in the former crystals. The lanthanumdoped Bi2201 single crystals with x = 0.7 and T c = 8-10 K exhibit very broad satellite reflections consisting of two systems (modulations) misoriented with respect to each other. The modulation-vector components of these two modulations are found to be q 1 = 0.237b* + 0.277c* and q 2 = 0.238b* + 0.037c*. The single crystals having a perfect average structure and a homogeneous average distribution of doping lanthanum consist of 70-to 80-A-thick layers that alternate along the c axis and have two different types of modulated superlattice. The crystals having a less perfect average structure also consist of alternating layers, but they have different lanthanum concentrations. The low value of T c in the undoped Bi2201 single crystals (9.5 K) correlates with three-dimensional defect ordering in them, and an increase in T c to 33 K upon lanthanum doping can be related to a thin-layer structure of these crystals and to partial substitution of lanthanum for the bismuth positions

  11. Doping induced grain size reduction and photocatalytic performance enhancement of SrMoO{sub 4}:Bi{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunjian, E-mail: wangyunjianmail@163.com; Xu, Hui; Shao, Congying; Cao, Jing, E-mail: caojing@mail.ipc.ac.cn

    2017-01-15

    Graphical abstract: Photocatalytic performance of SrMoO{sub 4} was greatly improved by Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction. - Highlights: • An efficient SrMoO{sub 4} photocatalyst was fabricated by Bi{sup 3+} doping under hydrothermal condition. • Bi{sup 3+} doping effects, including crystalline size reduction, band gap narrowing, and lattice contraction were discovered in SrMoO{sub 4} nanomaterials. • The photocatalytic activity was great improved on account of Bi{sup 3+} doping effects. • Photoluminescence studies found that hydroxyl radical (·OH) is the main active species in the photocatalytic degradation process. - Abstract: Ion doping is one of the most effective ways to develop photocatalysts by creating impurity levels in the energy band structure. In this paper, novel Bi{sup 3+} doped SrMoO{sub 4} (SrMoO{sub 4}:Bi{sup 3+}) nanocrystals were prepared by a simple hydrothermal method. By systematic characterizations using x-ray diffraction, infrared spectra, UV–vis spectra, X-ray photoelectron spectroscopy and transmission electron microscopy, it is demonstrated that all the samples crystallized in a single phase of scheelite structure, and particle sizes of SrMoO{sub 4}:Bi{sup 3+} gradually decreased. The Bi{sup 3+} doped nanoparticles showed lattice contraction, and band-gap narrowing. The photocatalytic activity of the samples was measured by monitoring the degradation of methylene blue dye in an aqueous solution under UV-radiation exposure. It is found that SrMoO{sub 4}:Bi{sup 3+} showed excellent activity toward photodegradation of methylene blue solution under UV light irradiation compared to the pure SrMoO{sub 4}. These observations are interpreted in terms of the Bi{sup 3+} doping effects and the increased the surface active sites, which results in the improved the ratio of surface charge carrier transfer rate and reduced the electron–hole recombination rate. These

  12. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment

    Science.gov (United States)

    Shen, Tengming; Li, Pei; Ye, Liyang

    2018-01-01

    A robust and reliable heat treatment is crucial for developing superconducting magnets from several superconductors especially Bi-2212. An improper heat treatment may significantly reduce the critical current density Jc of a Bi-2212 superconducting coil, even to zero, since the Jc of Bi-2212 wires is sensitive to parameters of its heat treatment (partial melt processing). To provide an essential database for heat treating Bi-2212 coils, the dependence of Jc on heat treatment is studied systematically in 11 industrial Bi-2212 wires, revealing several common traits shared between these wires and outlier behaviors. The dependence of the Jc of Bi-2212 on heat treatment is rather complex, with many processing parameters affecting Jc, including the peak processing temperature Tp, the time at the peak temperature tp, the time in the melt tmelt, the rate at which Bi-2212 melt is initially cooled CR1, the rate at which the solidification of Bi-2212 melt occurs CR2, and the temperature Tq at which the cooling rate switches from CR1 to CR2. The role of these parameters is analyzed and clarified, in the perspective of heat treating a coil. Practical advices on heat treatment design are given. The ability of a Bi-2212 coil to follow the prescribed recipe decreases with increasing coil sizes. The size of a coil that can be properly heat treated is determined.

  13. Fluctuating Charge-Order in Optimally Doped Bi- 2212 Revealed by Momentum-resolved Electron Energy Loss Spectroscopy

    Science.gov (United States)

    Husain, Ali; Vig, Sean; Kogar, Anshul; Mishra, Vivek; Rak, Melinda; Mitrano, Matteo; Johnson, Peter; Gu, Genda; Fradkin, Eduardo; Norman, Michael; Abbamonte, Peter

    Static charge order is a ubiquitous feature of the underdoped cuprates. However, at optimal doping, charge-order has been thought to be completely suppressed, suggesting an interplay between the charge-ordering and superconducting order parameters. Using Momentum-resolved Electron Energy Loss Spectroscopy (M-EELS) we show the existence of diffuse fluctuating charge-order in the optimally doped cuprate Bi2Sr2CaCu2O8+δ (Bi-2212) at low-temperature. We present full momentum-space maps of both elastic and inelastic scattering at room temperature and below the superconducting transition with 4meV resolution. We show that the ``rods'' of diffuse scattering indicate nematic-like fluctuations, and the energy width defines a fluctuation timescale of 160 fs. We discuss the implications of fluctuating charge-order on the dynamics at optimal doping. This work was supported by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF-4542. An early prototype of the M-EELS instrument was supported by the DOE Center for Emergent Superconductivity under Award No. DE-AC02-98CH10886.

  14. Analysis of the residual strain change of Bi2212, Ag alloy and Ag during the heating and cooling process in Bi2212/Ag/Ag alloy composite wire

    International Nuclear Information System (INIS)

    Shin, J K; Ochiai, S; Okuda, H; Mukai, Y; Sugano, M; Sato, M; Oh, S S; Ha, D W; Kim, S C

    2008-01-01

    The residual strain change of Bi2212 and Ag during the cooling and heating process in the Bi2212/Ag/Ag alloy composite superconductor was studied. First, the residual strain of Bi2212 filaments at room temperature was measured by the x-ray diffraction method. Then, the Young's moduli of the constituents (Bi2212 filaments, Ag and Ag alloy) and yield strains of Ag and Ag alloy were estimated from the analysis of the measured stress-strain curve, based on the rule of mixtures. Also, the coefficient of thermal expansion of the Bi2212 filaments was estimated from the analysis of the measured thermal expansion curve of the composite wire. From the modeling analysis using the estimated property values and the residual strain of Bi2212 filaments, the changes of residual strain of Bi2212, Ag alloy and Ag with temperature during the cooling and heating process were revealed

  15. Effect of 520 MeV Kr{sup 20+} ion irradiation on the critical current density of Bi-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Terai, Takayuki; Ito, Yasuyuki [Tokyo Univ. (Japan). Faculty of Engineering; Kishio, Kouji

    1996-10-01

    Change in magnetic properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} (Bi-2212) single crystals due to Kr{sup 20+} ion irradiation is reported, focused on critical current density and irreversibility magnetic field. The Bi-2212 single crystal specimens (3x3x0.3 mm{sup 3}) were prepared by the floating zone method. Each specimen was irradiated with 520 MeV Kr{sup 20+} ions of 10{sup 10}-10{sup 11} cm{sup -2} in the fluence. Magnetic hysteresis was measured at 4.2K-60K with a vibrating sample magnetometer before and after irradiation. Very large enhancement was observed in critical current density and irreversibility magnetic field above 20K. (author)

  16. Fabrication of laminated Bi-2212/Ag multifilamentary tape

    Science.gov (United States)

    Yuan, D.-W.; Majer, W. J.; Francavilla, T. L.

    2000-03-01

    The powder-in-tube (PIT) process has been successfully used to make long lengths of Ag-sheathed oxide superconductors. A modified PIT approach is proposed to fabricate conductors with laminated Bi-2212 configurations. Ag/Bi-2212 tapes consisting of seven laminae were produced with various thicknesses ranging from 0.38 to 0.25 mm. The use of a turkshead was found to be beneficial, yielding tapes with good dimensional integrity and consistency. Critical current density (Jc ) values greater than 105 A cm-2 (0.01 T and Bicons/Journals/Common/perp" ALT="perp" ALIGN="TOP"/> tape surface) have been attained for tapes of different thicknesses. Nonetheless, Jc was found to be related to the average thickness of individual Bi-2212 lamina. It is believed that excessive cold working accounts for the decrease in Jc with decreasing size below a threshold value. The enhancement of Jc is attributed to the high Bi-2212 grain alignment along the Ag-oxide interfaces and uniform dimensions within the laminate conductors.

  17. Condensation energy density in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Kiuchi, Masaru; Haraguchi, Teruhisa; Imada, Takeki; Okamura, Kazunori; Okayasu, Satoru; Uchida, Satoshi; Shimoyama, Jun-ichi; Kishio, Kohji

    2006-01-01

    The relationship between the condensation energy density and the anisotropy parameter, γ a , has been derived for Bi-2212 superconductors in various anisotropic states by analysing the critical current density due to columnar defects introduced by heavy ion irradiation. The critical current density depended on the size of the defects, determined by the kind and irradiation energy of the ions. A significantly large critical current density of 17.0 MA cm -2 was obtained at 5 K and 0.1 T even for the defect density of a matching field of 1 T in a specimen irradiated with iodine ions. The dependence of the critical current density on the size of the defects agreed well with the prediction from the summation theory of pinning forces, and the condensation energy density could be obtained consistently from specimens irradiated with different ions. The condensation energy density obtained increased with decreasing γ a over the entire range of measurement temperature, and reached about 60% of the value for the most three-dimensional Y-123 observed by Civale et al at 5 K. This gives the reason for the very strong pinning in Bi-2212 superconductors at low temperatures. The thermodynamic critical field obtained decreased linearly with increasing temperature and extrapolated to zero at a certain characteristic temperature, T * , lower than the critical temperature, T c . T * , which seems to be associated with the superconductivity in the block layers, was highest for the optimally doped specimen. This shows that the superconductivity becomes more inhomogeneous as the doped state of a superconductor deviates from the optimum condition

  18. Magnetic properties and critical current density of bulk MgB2 polycrystalline with Bi-2212 addition

    International Nuclear Information System (INIS)

    Shen, T M; Li, G; Zhu, X T; Cheng, C H; Zhao, Y

    2005-01-01

    Bulk samples of MgB 2 were prepared with 0, 3, 5, and 10 wt% Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) particles, added using a simple solid-state reaction route in order to investigate the effect of inclusions of a material with higher T c than the superconducting matrix. The density, diamagnetic signal, and critical current density, J c , of the samples change significantly with the doping level. It is found that J c is significantly enhanced by the Bi-2212 addition. Microstructural analysis indicates that a small amount of Bi-2212 is decomposed into Cu 2 O and other impurity phases while a significant amount of unreacted Bi-2212 particles remains in MgB 2 matrix, and these act as effective pinning centres for vortices. The enhanced pinning force is mainly attributable to these highly dispersed inclusions inserted in the MgB 2 grains. Despite the effectiveness of the high-T c inclusions in increasing superconducting critical currents in our experiment, our results seem to demonstrate the superiority of attractive centres over repulsive ones. A pinning mechanism is proposed to account for the contribution of this type of pinning centre in MgB 2 superconductors. (rapid communication)

  19. Hydrothermal synthesis of B-doped Bi2MoO6 and its high photocatalytic performance for the degradation of Rhodamine B

    Science.gov (United States)

    Wang, Min; Han, Jin; Guo, Pengyao; Sun, Mingzhi; Zhang, Yu; Tong, Zhu; You, Meiyan; Lv, Chunmei

    2018-02-01

    B-doped Bi2MoO6 photocatalysts have been synthesized by a hydrothermal method using HBO3 as the doping source and the effect of B doping content on Bi2MoO6 structure and performance was studied. The samples were characterized with XPS, XRD, SEM, BET, UV-Vis DRS, and PL. The photocatalytic activity was evaluated by photocatalytic degradation of Rhodamine B (RhB) under visible light (λ ≥ 420 nm). The results show that all samples are orthorhombic structure. Doping Bi2MoO6 with B increases the amount of Bi5+ and oxygen vacancies, which led to stronger absorption in visible light region and lower band gap energy of the B-doped Bi2MoO6 but had little impact on morphology. B doping significantly improves the photocatalytic activity of Bi2MoO6 and the highest photocatalytic degradation rate is 89% when the initial molar ratio of B to Bi is 0.01.

  20. Narrow band gap and visible light-driven photocatalysis of V-doped Bi{sub 6}Mo{sub 2}O{sub 15} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jian; Qin, Chuanxiang; Huang, Yanlin [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Wang, Yaorong, E-mail: yrwang@suda.edu.cn [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Qin, Lin [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Seo, Hyo Jin, E-mail: hjseo@pknu.ac.kr [Department of Physics and Interdisciplinary Program of Biomedical, Mechanical & Electrical Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2017-02-28

    Highlights: • V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} was synthesized by the electrospinning preparation. • The band gap energy of Bi{sub 6}Mo{sub 2}O{sub 15} was greatly reduced by V-doping in the lattices. • V-doped Bi{sub 6}Mo{sub 2}O{sub 15} shows high activity in RhB degradation under visible light. • Crystal structure of Bi{sub 6}Mo{sub 2}O{sub 15} is favorable for high photocatalytic capacity. - Abstract: Pure and V{sup 5+}-doped Bi{sub 6}Mo{sub 2}O{sub 15} (3Bi{sub 2}O{sub 3}·2MoO{sub 3}) photocatalysts were synthesized through electrospinning, followed by low-temperature heat treatment. The samples developed into nanoparticles with an average size of approximately 50 nm. The crystalline phases were verified via X-ray powder diffraction measurements (XRD). The surface properties of the photocatalysts were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses. The UV–vis spectra showed that V doping in Bi{sub 6}Mo{sub 2}O{sub 15} shifted the optical absorption from the UV region to the visible-light wavelength region. The energy of the band gap of Bi{sub 6}Mo{sub 2}O{sub 15} was reduced by V doping in the lattices. The photocatalytic activities of the pure and V-doped Bi{sub 6}Mo{sub 2}O{sub 15} were tested through photodegradation of rhodamine B (RhB) dye solutions under visible light irradiation. Results showed that 20 mol% V-doped Bi{sub 6}Mo{sub 2}O{sub 15} achieved efficient photocatalytic ability. RhB could be degraded by V-doped Bi{sub 6}Mo{sub 2}O{sub 15} in 2 h. The photocatalytic activities and mechanisms were discussed according to the characteristics of the crystal structure and the results of EIS and XPS measurements.

  1. The modulation and reconstruction of a BiO layer of cuprate Bi2212

    International Nuclear Information System (INIS)

    Fan Wei; Zeng, Z

    2011-01-01

    Studies based on ab initio density functional theory show that the modulated structures of BiO surfaces of cuprate Bi2212 superconductors are spontaneously formed and closely related to the reconstructions of BiO surfaces. The reconstructions of BiO layers occur both on the surface and in the bulk, accompanied with the formations of BiO-zigzag chains and Bi 2 O 2 quadrilaterals. The structural modulations of the BiO surface are along the b axis, perpendicular to the BiO-zigzag chains along the a axis. Our calculations provide a unified understanding of the formation of modulating structures in Bi2212. Another interesting result is that electronic structures of BiO surfaces are significantly influenced by the CuO 2 layer beneath because of the structural modulations and reconstructions.

  2. Hydrothermal Synthesis, Characterization, and Optical Properties of Ce Doped Bi2MoO6 Nanoplates

    Directory of Open Access Journals (Sweden)

    Anukorn Phuruangrat

    2014-01-01

    Full Text Available Undoped and Ce doped Bi2MoO6 samples were synthesized by hydrothermal reaction at 180°C for 20 h. Phase, morphology, atomic vibration, and optical properties were characterized by X-ray powder diffraction (XRD, X-ray photoelectron spectroscopy (XPS, Raman spectrophotometry, Fourier transform infrared (FTIR spectroscopy, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and UV-visible spectroscopy. In this research, the products were orthorhombic Bi2MoO6 nanoplates with the growth direction along the [0b0], including the asymmetric and symmetric stretching and bending modes of Bi–O and Mo–O. Undoped and Ce doped Bi2MoO6 samples show a strong absorption in the UV region.

  3. Effect of Pb and Cr Substitutions on Phase Formation and Excess Conductivity of Bi-2212 Superconductor

    International Nuclear Information System (INIS)

    Khir, F. L. M.; Mohamed, Z.; Yusuf, A. A.; Yusof, M. I. M.; Yahya, A. K.

    2010-01-01

    The influence of Pb and Cr substitutions on the superconducting properties of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) superconductors is reported. The samples were prepared from Bi 2-x Pb x Sr 2 Ca 2-y Cr y Cu 3 O 10-δ (x = 0-0.3, y = 0-0.3) starting composition by the solid-state-reaction method. XRD analysis showed formation of pure Bi-2212 for (x = 0, y = 0), (x = 0.3, y = 0.2,) and (x = 0.3, y = 0.2,) starting compositions. Excess conductivity analysis based on Asmalazov-Larkin theory on single-phased Bi2212 samples showed 2D to 3D transition in superconducting fluctuation behavior (SFB) for all the samples. Highest 2D-3D transition temperature, T 2D-3D was observed at Pb and Cr substitutions of x = 0.3, and x = 0.2, respectively.

  4. Strain induced irreversible critical current degradation in highly dense Bi-2212 round wire

    CERN Document Server

    Bjoerstad, R; Rikel, M.O.; Ballarino, A; Bottura, L; Jiang, J; Matras, M; Sugano, M; Hudspeth, J; Di Michiel, M

    2015-01-01

    The strain induced critical current degradation of overpressure processed straight Bi 2212/Ag wires has been studied at 77 K in self-field. For the first time superconducting properties, lattice distortions, composite wire stress and strain have been measured simultaneously in a high energy synchrotron beamline. A permanent Ic degradation of 5% occurs when the wire strain exceeds 0.60%. At a wire strain of about 0.65% a drastic n value and Ic reduction occur, and the composite stress and the Bi-2212 lattice parameter reach a plateau, indicating Bi-2212 filament fracturing. The XRD measurements show that Bi-2212 exhibits linear elastic behaviour up to the irreversible strain limit.

  5. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs

    Science.gov (United States)

    Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran

    2018-06-01

    In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.

  6. A determination of the variation in the lattice parameters of Bi2Sr2CaCu2O8+x (Bi-2212) as a function of temperature and oxygen content

    International Nuclear Information System (INIS)

    Babaei pour, M.; Ross, D.K.

    2005-01-01

    The variation of the lattice parameters of Bi-2212 has been measured using a high-temperature neutron diffraction technique. The samples have been doped with oxygen at different pressures from 2 to 400 mbar and at different temperatures from room temperature to 750 deg. C. It was found that the lattice parameters of Bi-2212 were dependent on temperature and oxygen content, increasing with temperature but decreasing with oxygen content. The values derived for the thermal expansion coefficient in an oxygen partial pressure of 400 mbar were compared with previous data from powder diffraction measurements at comparable oxygen pressure

  7. Tape casting and partial melting of Bi-2212 thick films

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, D.; Lang, T.; Heeb, B. [Nichtmetallische Werkstoffe, Zuerich (Switzerland)] [and others

    1994-12-31

    To produce Bi-2212 thick films with high critical current densities tape casting and partial melting is a promising fabrication method. Bi-2212 powder and organic additives were mixed into a slurry and tape casted onto glass by the doctor blade tape casting process. The films were cut from the green tape and partially molten on Ag foils during heat treatment. We obtained almost single-phase and well-textured films over the whole thickness of 20 {mu}m. The orientation of the (a,b)-plane of the grains were parallel to the substrate with a misalignment of less than 6{degrees}. At 77K/OT a critical current density of 15`000 A/cm{sup 2} was reached in films of the dimension 1cm x 2cm x 20{mu}m (1{mu}V/cm criterion, resistively measured). At 4K/OT the highest value was 350`000 A/cm{sup 2} (1nV/cm criterion, magnetically measured).

  8. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Guner, S.B.; Celik, S.

    2016-01-01

    We present a detailed investigation of the effects of Bi 2 Sr 2 Ca 1 Cu 2 O 8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB 2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB 2 . Moreover, we present MgB 2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB 2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB 2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T c ) has slightly dropped from 37.8 K for the pure MgB 2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased. (orig.)

  9. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  10. Syntheses of the Bi(Pb)-2212 high-Tc superconductor through a novel oxide nitrate route

    International Nuclear Information System (INIS)

    Gibson, K; Ziegler, P; Meyer, H-J

    2004-01-01

    A novel route is presented for the syntheses of Bi 2 Sr 2 CaCu 2 O x (Bi-2212) and (Bi,Pb) 2 Sr 2 CaCu 2 O x (Bi,Pb-2212). Mixtures of oxides, nitrates and carbonates with approximate 2:2:1:2 metal ion compositions are dissolved in HNO 3 and dried at 200 deg. C in air. Afterwards they are reacted under their in situ generated NO x atmosphere in a closed reactor (Staurohr). This reaction forces the system to form the nitrate precursors (Bi,Sr,Ca) 2 O 2 NO 3 /CuO and (Bi,Pb,Sr,Ca) 2 O 2 NO 3 /CuO, respectively. In the final reaction stage these mixtures are converted into Bi(Pb)-2212 under NO x discharge in air. All important reaction stages and phase compositions are analysed by means of powder XRD

  11. Effects of Ti addition on LFZ Bi-2212 thin rods

    Directory of Open Access Journals (Sweden)

    Angurel, L. A.

    2003-06-01

    Full Text Available In order to reproduce previous results in Bi-2212 single crystals, the effects associated with the addition of Ti to the precursors of Laser Floating Zone textured Bi-2212 thin rods have been analyzed. It has been found that Ti induces a great number of nucleation centers in the molten zone and, in consequence, it reduces the grain size one order of magnitude. In addition, using the same growth conditions, the texture of the sample is strongly degraded. These microstructural changes strongly affect the superconducting properties showing that Ti addition destroys the network of low angle grain boundaries that are responsible for the high critical currents in these materials.

    Se ha analizado el efecto de la introducción de Ti en precursores de Bi-2212 para ser texturados mediante láser a través del método de zona flotante, todo ello debido a los resultados esperanzadores obtenidos en monocristales. Se ha encontrado que el Ti introduce un gran número de centros de nucleación en la zona fundida, por lo que se reducen las dimensiones de los granos en un orden de magnitud aproximadamente. Por otra parte, y utilizando las mismas condiciones de crecimiento, se observa que la textura de la muestra se degrada severamente, Estos cambios microestructurales afectan en gran medida a las propiedades superconductoras, demostrándose que la introducción de Ti destruye la red de fronteras de grano de bajo ángulo, que son las responsables en estos materiales de las altas corrientes criticas.

  12. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  13. Growth of high quality Bi2Sr2CaCu2Oy single crystals by the modified vertical Bridgman method

    International Nuclear Information System (INIS)

    Nagashima, O.; Tanaka, H.; Echizen, Y.; Kishida, S.

    2004-01-01

    We grew Bi 2 Sr 2 CaCu 2 O y (Bi-2212) single crystals by the modified vertical Bridgman (VB) method, and investigated their characteristics in order to clarify the optimum growth conditions for obtaining high-quality Bi-2212 single crystals. The Bi-2212 single crystals were grown changing pulling rates or using starting materials after pre-treatments. We found that the superconducting critical temperature (T c ) of the single crystal prepared at a slow growth rate of 0.25 mm/h was about 88 K and that the single crystals were a Bi-2212 single phase. Moreover, the single crystals grown using the starting materials pre-treated in Ar and O 2 atmospheres, had the T c of about 88 and 86 K, respectively. In addition, both of single crystals were Bi-2212 single phase

  14. Temperature behavior of the hole density of (Bi,Pb)-2212 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Aliakbar; Janowitz, Christoph; Dwelk, Helmut; Krapf, Alica; Manzke, Recardo [Institute of Physics, Humboldt University of Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Ariffin, Ahmad Kamal [Dept. of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia)

    2012-07-01

    One of the most puzzling anomalies of high-T{sub c} cuprates is the strong temperature dependence of the Hall coefficient (R{sub H}) and the hole density (n{sub H}). Gor'kov and Teitel'baum (GT) showed by using experimental data of La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO) that the number of holes per Cu atom, n{sub H}, changes with temperature according to n{sub H}(T,x)=n{sub 0}(x)+n{sub 1}(x)exp(-{Delta}(x)/T). To clarify the temperature dependence of n{sub H} we have determined n{sub H} by X-ray absorption spectra (XAS) at the CuL{sub 3} edge for nearly optimum and slightly underdoped (Bi,Pb)-2212 single crystals. Our results point out that the GT formula cannot fit our data and therefore must be extended to the three terms.

  15. Influence of anisotropy and pinning centers on critical current properties in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Haraguchi, T.; Takayama, S.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Yasuda, T.; Okayasu, S.; Uchida, S.; Shimoyama, J.; Kishio, K.

    2006-01-01

    The critical current density in Bi-2212 superconductors with various anisotropies irradiated by heavy ions was investigated in the medium temperature region to understand the effects of defect size and the anisotropy of the superconductor. It was found that the critical current density and the irreversibility field were larger for the specimen with larger defect and/or with smaller anisotropy. Introduction of stronger pinning centers and the optimization of the doping condition to improve the dimensionality are desired for further improvement of the critical current properties

  16. Stress-Strain Distribution Analysis in Bi2212 Subcable Based on Numerical Modeling and Experiment

    NARCIS (Netherlands)

    Qin, J.; Dai, C.; Wang, Q; Liu, P.; Liu, B.; Li, C.; Hao, Q.; Zhou, Chao

    2016-01-01

    There has been sustained interest in the development of the Bi2212/Ag round wire (RW) because of its unique potential for applications in high-field magnets (25 T or higher). The Bi2212 conductor is a round strand, which is a very favorable shape to produce multistage twisted cable-in-conduit

  17. submitter Comparison of microstructure, second phases and texture formation during melt processing of Bi-2212 mono- and multifilament wires

    CERN Document Server

    Kadar, J; Rikel, MO; Di Michiel, M; Huang, Y

    2016-01-01

    Based on simultaneous in situ high energy synchrotron micro-tomography and x-ray diffraction (XRD) measurements we compare the microstructural changes and the formation of second phases and texture during the processing of Bi-2212 round wires with 15 μm filament diameter (multifilament) and 650 μm filament diameter (monofilament) fabricated using identical Bi-2212 precursor. The monofilament tomograms show in unprecedented detail how the distributed porosity agglomerates well before Bi-2212 melting decomposition to form lenticular voids that completely interrupt the filament connectivity along the wire axis. When the Bi-2212 phase completely melts connectivity in the axial wire direction is established via the changes in the void morphology from the lenticular voids to bubbles that remain when Bi-2212 crystallises out of the melt. By measuring the attenuation of the monochromatic x-ray beam, the associated Bi-2212 mass density changes have been monitored during the entire heat cycle. The XRD results reveal ...

  18. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  19. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  20. Enhanced photocatalytic activity of Te-doped Bi{sub 2}MoO{sub 6} under visible light irradiation: Effective separation of photogenerated carriers resulted from inhomogeneous lattice distortion and improved electron capturing ability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuguang, E-mail: csustcsg@yahoo.com; Li, Yuhan; Wu, Zixu; Wu, Baoxin; Li, Haibin; Li, Fujin

    2017-05-15

    Te-doped Bi{sub 2}MoO{sub 6} photocatalyst was hydrothermally synthesized, and nonmetal atoms Te were homogeneously incorporated into Bi{sub 2}MoO{sub 6} lattice with the substitution of Te{sup 4+} to Mo{sup 6+}. With increasing Te-doping concentration in Bi{sub 2}MoO{sub 6}, no detectable band-gap narrowing but more and more severe inhomogeneous lattice distortions were determined. The activity of Bi{sub 2}MoO{sub 6} photocatalyst was evaluated through methylene blue degradation under visible light irradiation (λ>410 nm) and was greatly enhanced by Te-doping. When Te-doped Bi{sub 2}MoO{sub 6} was synthesized at Te/Mo molar ratio of 7.5%, a maximum first-order rate constant of methylene blue degradation was obtained. The inhomogeneous lattice distortion generated an internal dipole moment, and the holes generated with the substitution of Te{sup 4+} to Mo{sup 6+} acted as the capturing centers of photogenerated electrons, thus the effective separation of photogenerated carriers was facilitated to result in a relatively high concentration of holes on the surface of Te-doped Bi{sub 2}MoO{sub 6} to be favorable for the efficient methylene blue degradation. - Graphical abstract: With the substitution of Te{sup 4+} to Mo{sup 6+}, effective separation of photogenerated carriers resulted from inhomogeneous lattice distortion and improved electron capturing ability is achieved to be responsible for enhanced photocatalytic activity of Te-doped Bi{sub 2}MoO{sub 6}. - Highlights: • Nonmetal Te is incorporated into Bi{sub 2}MoO{sub 6} with the substitution of Te{sup 4+} to Mo{sup 6+}. • Revealing inhomogeneous lattice distortion and improved electron capturing ability. • Effective separation of photogenerated carriers in Te-doped Bi{sub 2}MoO{sub 6} is achieved. • The mechanism of methylene blue degradation over Te-doped Bi{sub 2}MoO{sub 6} is proposed.

  1. Influence of the oxygen partial pressure on the phase evolution during Bi-2212 wire melt processing

    CERN Document Server

    Scheuerlein, C.; Rikel, M.O.; Kadar, J.; Doerrer, C.; Di Michiel, M.; Ballarino, A.; Bottura, L.; Jiang, J.; Kametani, F.; Hellstrom, E.E.; Larbalestier, D.C.

    2016-01-01

    We have studied the influence of the oxygen partial pressure pO2 up to 5.5 bar on the phase changes that occur during melt processing of a state-of-the-art Bi-2212 multifilamentary wire. Phase changes have been monitored in situ by high energy synchrotron X-ray diffraction (XRD). We found that the stability of Bi-2212 phase is reduced with increasing pO2. For pO2>1 bar a significant amount of Bi-2212 phase decomposes upon heating in the range 400 to 650 °C. The extent of decomposition strongly increases with increasing pO2, and at pO2=5.5 bar Bi-2212 decomposes completely in the solid state. Textured Bi-2212 can be formed during solidification when pO2 is reduced to 0.45 bar when the precursor is molten. Since the formation of current limiting second phases is very sensitive to pO2 when it exceeds 1 bar, we recommend to reduce the oxygen partial pressure below the commonly used pO2=1 bar, in order to increase the pO2 margins and to make the overpressure process more robust.

  2. Preparation and characterization of Bi26-2xMn2xMo10O69-d and Bi26.4Mn0.6Mo10-2yMe2yO69-d (Me = V, Fe Solid Solutions

    Directory of Open Access Journals (Sweden)

    Z. A. Mikhaylovskaya

    2017-09-01

    Full Text Available Single phase samples of bismuth molybdate, Bi26Mo10O69, doped with Mn on the bismuth sublattice and V, Fe on the molybdenum sublattice were found to crystallize in the triclinic Bi26Mo10O69 structure at low doping levels and in the monoclinic Bi26Mo10O69 structure - at higher dopant concentration. The assumption that all Mn ions have an oxidation state of +2 was confirmed by means of magnetic measurement results analysis using Curie-Weiss law. Conductivity was investigated using impedance spectroscopy. The conductivity of Bi26.4Mn0.6Mo9.6Fe0.4O69-d was 1.2*10-2 S*cm-1 at 973 K and 2.2*10-4 S*cm-1 at 623 K, and the conductivity of Bi26.4Mn0.6Mo9.2V0.8O69-d was 2.2*10-3 S*cm-1 at 973 K and 2.2*10-5 S*cm-1 at 623 K.

  3. Efecto de la adición de Ag en Bi-2212 texturado mediante laser

    Directory of Open Access Journals (Sweden)

    Mora, M.

    2005-08-01

    Full Text Available The addition of Ag into Bi-2212 compounds has demonstrated to be a suitable method to improve both, the thermal and mechanical properties as well as the electrical ones. The final properties have been found to be in strong dependence of Ag content and the processing technique. In the present work the influence of Ag addition on Bi-2212 bulk materials grown from the melt, using a laser floating zone melting technique, has been studied. Samples with different Ag contents (0 to 40 wt.% were prepared for this work. The Bi-2212 + x wt.% Ag powders have been prepared by a sol-gel method via nitrates to assure total cation solution, small particle size and good homogeneity in the mixture. Cylindrical precursors, fabricated from these powders, were used as feed in a LFZ melting installation to obtain textured Bi-2212/Ag composites. The effect of the Ag addition on the microstructure is analysed as a function of Ag content. The changes on the microstructure are also correlated with the mechanical and superconducting properties.

    La incorporación de Ag en los compuestos de Bi-2212 ha demostrado ser un método adecuado para mejorar tanto las propiedades mecánicas, térmicas como eléctricas de estos materiales. Las propiedades finales dependen fuertemente de la cantidad de Ag añadida al sistema pero también del tipo de procesado que sufre. En el presente trabajo se realiza un estudio del efecto de la adición de Ag en materiales masivos Bi-2212 texturados mediante fusión zonal inducida por láser, con el objetivo de comprender el efecto de la adición de Ag en sistemas Bi-2212 que pasan totalmente por un fundido. Para ello se preparon muestras con diferentes contenidos en Ag (hasta el 40% en peso. Debido a la inmiscibilidad en estado sólido de la Ag y del Bi-2212, se ha utilizado un método de síntesis de estos materiales por medio de técnicas sol-gel para asegurar una buena homogeneidad y un tamaño de partícula reducido en la cerámica de

  4. Electronic structure of superconducting Bi2212 crystal by angle resolved ultra violet photoemission

    International Nuclear Information System (INIS)

    Saini, N.L.; Shrivastava, P.; Garg, K.B.

    1993-01-01

    The electronic structure of a high quality superconducting Bi 2 Sr 2 CaCu 2 Osub(8+δ) (Bi2212) single crystal is studied by angle resolved ultra violet photoemission (ARUPS) using He I (21.2 eV). Our results appear to show two bands crossing the Fermi level in ΓX direction of the Brillouin zone as reported by Takahashi et al. The bands at higher binding energy do not show any appreciable dispersion. The nature of the states near the Fermi level is discussed and the observed band structure is compared with the band structure calculations. (author)

  5. Design, processing, and properties of Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R; Sokolowski, R S; Aoki, Y; Hasegawa, T

    1999-01-01

    In a program intended to explore the use of high temperature superconducting (HTSC) cables in high field synchrotron dipole magnets model Bi:2212/Ag Rutherford cables were designed bearing in mind the needs for mechanical integrity, relatively high tensile strength, and low coupling losses. To satisfy these needs a core-type cable design was selected and a readily available heat-resistant core material acquired. Cables were wound for critical current- and AC loss measurement. Both winding-induced (mechanical) and core-induced (chemical) critical current degradation was examined. Interstrand coupling loss was measured calorimetrically on model cable samples with bare- and oxide-coated cores. From the results it was predicted that the losses of full-scale Bi:2212/Ag-wound LHC-type Rutherford cables would fall close to the acceptability range for the windings of high-field accelerator dipoles. (10 refs).

  6. Processing and characterization of superconducting solenoids made of Bi-2212/Ag-alloy multifilament round wire for high field magnet applications

    Science.gov (United States)

    Chen, Peng

    As the only high temperature superconductor with round wire (RW) geometry, Bi2Sr2CaCu2O8+x (Bi-2212) superconducting wire has the advantages of being multi-filamentary, macroscopically isotropic and twistable. With overpressure (OP) processing techniques recently developed by our group at the National High Magnetic Field Laboratory (NHMFL), the engineering current density (Je) of Bi-2212 RW can be dramatically increased. For example, Je of more than 600 A/mm 2 (4.2 K and 20 T) is achieved after 100 bar OP processing. With these intrinsically beneficial properties and recent processing progress, Bi-2212 RW has become very attractive for high field magnet applications, especially for nuclear magnetic resonance (NMR) magnets and accelerator magnets etc. This thesis summarizes my graduate study on Bi-2212 solenoids for high field and high homogeneity NMR magnet applications, which mainly includes performance study of Bi-2212 RW insulations, 1 bar and OP processing study of Bi-2212 solenoids, and development of superconducting joints between Bi-2212 RW conductors. Electrical insulation is one of the key components of Bi-2212 coils to provide sufficient electrical standoff within coil winding pack. A TiO 2/polymer insulation offered by nGimat LLC was systematically investigated by differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), dielectric property measurements, and transport critical current (Ic) property measurements. About 29% of the insulation by weight is polymer. When the Bi-2212 wire is fully heat treated, this decomposes with slow heating to 400 °C in flowing O2. After the full reaction, we found that the TiO2 did not degrade the critical current properties, adhered well to the conductor, and provided a breakdown voltage of more than 100 V. A Bi-2212 RW wound solenoid coil was built using this insulation being offered by nGimat LLC. The coil resistance was constant through coil winding, polymer burn

  7. Considerable photoluminescence enhancement of LiEu(MoO4)2 red phosphors via Bi and/or Si doping for white LEDs

    International Nuclear Information System (INIS)

    Wang, Qing-Feng; Liu, Ying; Wang, Yu; Wang, Wenxi; Wan, Yi; Wang, Gui-Gen; Lu, Zhou-Guang

    2015-01-01

    Graphical abstract: Doping of Bi and Si into the lattice leads to an considerable increase of the excitation efficiency and luminous intensity, and obvious movement of the CIE chromaticity coordinates to the NTSC standard values of the LiEu(MoO 4 ) 2 , a promising red phosphors suitable for near UV excited white-light emitting diodes. - Highlights: • High performance red phosphors for near UV light excited white LEDs. • Lithium lanthanide molybdate red phosphors. • Bi and Si substitution. • Considerable enhancement of luminescence intensity and excitation efficiency. • CIE chromaticity coordinates very close to the NTSC standard values. - Abstract: Novel Bi and/or Si substituted LiEu(MoO 4 ) 2 phosphors, where Bi was used as sensitizer to enhance the emission intensity and Si was used as substitution to improve the excitation efficiency, were prepared using the sol–gel method, and the photoluminescent properties of the resulting phosphors were intensively investigated. All samples can be excited efficiently by UV (395 nm) light and emit bright red light at 614 nm, which are coupled well with the characteristic emission from a UV-LED. In the Bi 3+ -doped samples, the intensities of the main emission line ( 5 D 0 – 7 F 2 transition at 614 nm) are strengthened because of the energy transition from Bi 3+ to Eu 3+ . With the substitution of Mo 4+ by Si 4+ , there are no significant changes in the emission peak positions, but the emission intensity was significantly enhanced under 395 nm excitation. Particularly, the LiEu 0.9 Bi 0.1 (Mo 0.97 Si 0.03 O 4 ) 2 phosphor doped with both Bi and Si demonstrates superior comprehensive photoluminescence properties with an excellent combination of easy excitation in the near UV range, bright emission intensity, high PL quantum efficiency as well as suitable decay time, which are very suitable for application as red phosphor for near UV type LEDs

  8. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  9. Reduction of Gas Bubbles and Improved Critical Current Density in Bi-2212 Round Wire by Swaging

    CERN Document Server

    Jiang, J; Huang, Y; Hong, S; Parrell, J; Scheuerlein, C; Di Michiel, M; Ghosh, A; Trociewitz, U; Hellstrom, E; Larbalestier, D

    2013-01-01

    Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.

  10. Large critical current density improvement in Bi-2212 wires through the groove-rolling process

    International Nuclear Information System (INIS)

    Malagoli, A; Bernini, C; Braccini, V; Romano, G; Putti, M; Chaud, X; Debray, F

    2013-01-01

    Recently there has been a growing interest in Bi-2212 superconductor round wire for high magnetic field use despite the fact that an increase of the critical current is still needed to boost its successful use in such applications. Recent studies have demonstrated that the main obstacle to current flow, especially in long wires, is the residual porosity inside these powder-in-tube processed conductors that develops from bubble agglomeration when the Bi-2212 melts. In this work we tried to overcome this issue affecting the wire densification by changing the deformation process. Here we show the effects of groove rolling versus the drawing process on the critical current density J C and on the microstructure. In particular, groove-rolled multifilamentary wires show a J C increased by a factor of about 3 with respect to drawn wires prepared with the same Bi-2212 powder and architecture. We think that this approach in the deformation process is able to produce the required improvements both because the superconducting properties are enhanced and because it makes the fabrication process faster and cheaper. (paper)

  11. Pseudogap in normal underdoped phase of Bi2212: LDA + DMFT + Σk

    International Nuclear Information System (INIS)

    Nekrasov, I.A.; Kuchinskii, E.Z.; Pchelkina, Z.V.; Sadovskii, M.V.

    2007-01-01

    Pseudogap phenomena are observed for normal underdoped phase of different high-T c cuprates. Among others Bi 2 Sr 2 CaCu 2 O 8-δ (Bi2212) compound is one of the most studied experimentally [A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75 (2003) 473; J.C. Campuzano, M.R. Norman, M. Randeria, in: K.H. Bennemann, J.B. Ketterson (Eds.), Physics of Superconductors, vol. 2, Springer, Berlin, 2004, p. 167; J. Fink et al., (cond-mat/0512307); X.J. Zhou et al., (cond-mat/0604284)]. To describe pseudogap regime in Bi2212, we employ novel generalized DMFT + Σ k approach [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al., Phys. Rev. B 72 (2005) 155105, and these proceedings, (doi:10.1016/j.physc.2007.03.367)]. This approach gives possibility to preserve conventional dynamical mean-field theory (DMFT) equations [A. Georges et al., Rev. Mod. Phys. 68 (1996) 13] and include an additional (momentum dependent) self-energy Σ k . In the present case, Σ k describes non-local dynamical correlations induced by short-ranged collective Heisenberg-like antiferromagnetic spin fluctuations [M.V. Sadovskii, Physics-Uspekhi 44 (2001) 515, (cond-mat/0408489)]. The effective single impurity problem in the DMFT + Σ k is solved by numerical renormalization group (NRG) [R. Bulla, A.C. Hewson, Th. Pruschke, J. Phys. Cond. Mat. 10 (1998) 8365; R. Bulla, Phys. Rev. Lett. 83 (1999) 136]. To take into account material specific properties of two neighboring CuO 2 layers of Bi2212 we employ local density approximation (LDA) to calculate necessary model parameters, e.g. the values of intra- and interlayer hopping integrals between Cu-sites. Onsite Coulomb interaction U for x 2 -y 2 orbital was calculated in constrained LDA method [O. Gunnarsson et al., Phys. Rev. B 39 (1989) 1708]. The value of pseudogap potential Δ was obtained within DMFT(NRG) [E.Z. Kuchinskii, I.A. Nekrasov, M.V. Sadovskii, JETP Lett. 82 (2005) 198; M.V. Sadovskii et al

  12. Bubble Formation within Filaments of Melt-Processed Bi2212 wires and its strongly negative effect on the Critical Current Density

    CERN Document Server

    Kametani, F; Jiang, J; Scheuerlein, C; Malagoli, A; Di Michiel, M; Huang, Y; Miao, H; Parrell, J A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Most studies of Bi2Sr2CaCu2Ox (Bi2212) show that the critical current density Jc is limited by the connectivity of the filaments, but what determines the connectivity is still elusive. Here we report on the role played by filament porosity in limiting Jc. By a microstructural investigation of wires quenched from the melt state, we find that porosity in the unreacted wire agglomerates into bubbles that segment the Bi2212 melt within the filaments into discrete sections. These bubbles do not disappear during subsequent processing because they are only partially filled by Bi2212 grains as the Bi2212 forms on cooling. Correlating the microstructure of quenched wires to their final, fully processed Jc values shows an inverse relation between Jc and bubble density. Bubbles are variable between conductors and perhaps from sample to sample, but they occur frequently and almost completely fill the filament diameter, so they exert a strongly variable but always negative effect on Jc. Bubbles reduce the continuous Bi221...

  13. A study of the formation processes of the 2212 phase in the Bi-based superconductor systems. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Lo; Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, Univ. of Cambridge (United Kingdom)

    1992-04-15

    A study towards the identification of the reactions contributing to and accompanying the formation of the 2212 phase from oxides and carbonates by solid state reaction processes was conducted. The formation processes were investigated by thermal analysis, powder X-ray diffractometry and AC magnetic susceptometry. The 2212 phase was found to form from reactions between the 2201 phases (the non-superconducting pseudo-tetragonal and the superconducting monoclinic phases), Bi{sub 6}Ca{sub 7}O{sub 16}, CuO and SrCO{sub 3}. The 2201 phases were produced by the reactions of Bi-Sr-Cu-O or Bi-Sr-O compounds with SrCO{sub 3} or CuO. The 2201 phases could also be formed through the direct reaction between Bi{sub 2}CuO{sub 4} and SrCO{sub 3}. (orig.).

  14. First AC loss test and analysis of a Bi2212 cable-in-conduit conductor for fusion application

    Science.gov (United States)

    Qin, Jinggang; Shi, Yi; Wu, Yu; Li, Jiangang; Wang, Qiuliang; He, Yuxiang; Dai, Chao; Liu, Fang; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-01-01

    The main goal of the Chinese fusion engineering test reactor (CFETR) is to build a fusion engineering tokamak reactor with a fusion power of 50-200 MW, and plan to test the breeding tritium during the fusion reaction. This may require a maximum magnetic field of the central solenoid and toroidal field coils up to 15 T. New magnet technologies should be developed for the next generation of fusion reactors with higher requirements. Bi2Sr2CaCu2Ox (Bi2212) is considered as a potential and promising superconductor for the magnets in the CFETR. R&D activities are ongoing at the Institute of Plasma Physics, Chinese Academy of Sciences for demonstration of the feasibility of a CICC based on Bi2212 round wire. One sub-size conductor cabled with 42 wires was designed, manufactured and tested with limited strand indentation during cabling and good transport performance. In this paper, the first test results and analysis on the AC loss of Bi2212 round wires and cabled conductor samples are presented. Furthermore, the impact of mechanical load on the AC loss of the sub-size conductor is investigated to represent the operation conditions with electromagnetic loads. The first tests provide an essential basis for the validation of Bi2212 CICC and its application in fusion magnets.

  15. Void and Phase Evolution during the Processing of Bi-2212 Superconducting Wires monitored by combined fast Synchrotron Micro-tomography and X-Ray Diffraction

    CERN Document Server

    Scheuerlein, C; Scheel, M; Jiang, J; Kametani, F; Malagoli, A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Recent study of the current-limiting mechanisms in Bi-2212 round wires has suggested that agglomeration of the residual Bi-2212 powder porosity into bubbles of filament-diameter size occurs on melting the Bi-2212 filaments. These pores introduce a major obstacle to current flow, which greatly reduces the critical current density (Jc). Here we present an in situ non-destructive tomographic and diffraction study of the changes occurring during the heat treatment of wires and starting powder, as well as a room temperature study of ex situ processed wires. The in situ through-process study shows that the agglomeration of residual porosity is more complex than previously seen. Filament changes start with coalescence of the quasi-uniform and finely divided powder porosity into lens-shaped defects at about 850 0C when the Bi-2201 impurity phase decomposes before the Bi-2212 starts to melt. These lens-shaped voids grow to bubbles of a filament diameter on melting of the Bi-2212 and continue to lengthen and then to ag...

  16. Heterojunction BiOI/Bi2MoO6 nanocomposite with much enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Li, Wen Ting; Zheng, Yi Fan; Yin, Hao Yong; Song, Xu Chun

    2015-01-01

    BiOI/Bi 2 MoO 6 heterostructures with different amounts of BiOI were successfully prepared via a facile deposition method. The obtained BiOI/Bi 2 MoO 6 photocatalysts exhibited much higher visible light (λ > 420 nm) induced photocatalytic activity compared with single Bi 2 MoO 6 and BiOI photocatalysts. 20 % BiOI/Bi 2 MoO 6 nanocomposite exhibited the highest photocatalytic activity with almost all RhB decomposed within 70 min. However, excess BiOI covering on the surface of Bi 2 MoO 6 can inversely reduce the photocatalytic activity. The enhanced photocatalytic activities could be resulted from the function of the novel p–n heterojunction interface between Bi 2 MoO 6 and BiOI, which could separate photoinduced carriers efficiently. Possible mechanisms on the basis of the relative band positions were also discussed

  17. Uranium doping and neutron irradiation of Bi-2223 superconduction tapes for improved critical current density

    International Nuclear Information System (INIS)

    Moss, S.D.; Wang, W.G.; Dou, S.X.; Weinstein, R.

    1998-01-01

    It is demonstrated that a combination of neutron irradiation with uranium doping introduce fission tracks through a Bi-2223 tape which act as effective pinning centres, leading to a substantial increase in critical current. Preliminary data suggests that the combination of uranium doping and neutron irradiation produces improved flux pinning in Bi-2223 tapes over neutron irradiation alone. Before irradiation, SEM, DTA and XRD analyses were performed on the tapes. Both before and after irradiation the trapped maximum magnetic flux was measured at 77K. Before neutron irradiation, uranium doping has no effect on critical current. Preliminary SEM data suggested that the uranium is homogeneously distributed throughout the oxide core of the tape. The presence of 2212 and other secondary phases in the doped tapes suggest further refinement of the sintering procedure is necessary. (authors)

  18. RRR and thermal conductivity of Ag and Ag0.2wt%Mg alloy in Ag/Bi-2212 wires

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pei [Fermilab; Ye, L. [North Carolina State U.; Jiang. J., Jiang. J. [Natl. High Mag. Field Lab.; Shen, T. [Fermilab

    2015-08-19

    The residual resistivity ratio (RRR) and thermal conductivity of metal matrix in metal/superconductor composite wires are important parameters for designing superconducting magnets. However, the resistivity of silver in reacted Ag/Bi-2212 wires has yet to be determined over temperature range from 4.2 K to 80 K because Bi-2212 filaments have a critical transition temperature Tc of ~ 80 K, and because it is unknown whether the RRR of Ag/Bi-2212 degrades with Cu diffusing from Bi-2212 filaments into silver sheathes at elevated temperatures and to what degree it varies with heat treatment. We measured the resistivity of stand-alone Ag and AgMg (Ag-0.2wt%Mg) wires as well as the resistivity of Ag and Ag- 0.2wt%Mg in the state-of-the-art Ag/Bi-2212 round wires reacted in 1 bar oxygen at 890 °C for 1, 8, 24 and 48 hours and quickly cooled to room temperature. The heat treatment was designed to reduce the critical current Ic of Bi-2212 wires to nearly zero while allowing Cu loss to fully manifest itself. We determined that pure silver exhibits a RRR of ~ 220 while the oxide-dispersion strengthened AgMg exhibits a RRR of ~ 5 in stand-alone samples. A surprising result is that the RRR of silver in the composite round wires doesn’t degrade with extended time at 890 °C for up to 48 hours. This surprising result may be explained by our observation that the Cu that diffuses into the silver tends to form Cu2O precipitates in oxidizing atmosphere, instead of forming Ag-Cu solution alloy. We also measured the thermal conductivity and the magneto-resistivity of pure Ag and Ag-0.2 wt%Mg from 4.2 K to 300 K in magnetic fields up to 14.8 T and summarized them using a Kohler plot.

  19. Considerable photoluminescence enhancement of LiEu(MoO{sub 4}){sub 2} red phosphors via Bi and/or Si doping for white LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing-Feng [Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055 (China); Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Liu, Ying [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Wang, Yu [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Wang, Wenxi; Wan, Yi [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Wang, Gui-Gen [Department of Materials Science and Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong 518055 (China); Lu, Zhou-Guang [Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China)

    2015-03-15

    Graphical abstract: Doping of Bi and Si into the lattice leads to an considerable increase of the excitation efficiency and luminous intensity, and obvious movement of the CIE chromaticity coordinates to the NTSC standard values of the LiEu(MoO{sub 4}){sub 2}, a promising red phosphors suitable for near UV excited white-light emitting diodes. - Highlights: • High performance red phosphors for near UV light excited white LEDs. • Lithium lanthanide molybdate red phosphors. • Bi and Si substitution. • Considerable enhancement of luminescence intensity and excitation efficiency. • CIE chromaticity coordinates very close to the NTSC standard values. - Abstract: Novel Bi and/or Si substituted LiEu(MoO{sub 4}){sub 2} phosphors, where Bi was used as sensitizer to enhance the emission intensity and Si was used as substitution to improve the excitation efficiency, were prepared using the sol–gel method, and the photoluminescent properties of the resulting phosphors were intensively investigated. All samples can be excited efficiently by UV (395 nm) light and emit bright red light at 614 nm, which are coupled well with the characteristic emission from a UV-LED. In the Bi{sup 3+}-doped samples, the intensities of the main emission line ({sup 5}D{sub 0}–{sup 7}F{sub 2} transition at 614 nm) are strengthened because of the energy transition from Bi{sup 3+} to Eu{sup 3+}. With the substitution of Mo{sup 4+} by Si{sup 4+}, there are no significant changes in the emission peak positions, but the emission intensity was significantly enhanced under 395 nm excitation. Particularly, the LiEu{sub 0.9}Bi{sub 0.1}(Mo{sub 0.97}Si{sub 0.03}O{sub 4}){sub 2} phosphor doped with both Bi and Si demonstrates superior comprehensive photoluminescence properties with an excellent combination of easy excitation in the near UV range, bright emission intensity, high PL quantum efficiency as well as suitable decay time, which are very suitable for application as red phosphor for near UV

  20. Unexpected strong magnetism of Cu doped single-layer MoS₂ and its origin.

    Science.gov (United States)

    Yun, Won Seok; Lee, J D

    2014-05-21

    The magnetism of the 3d transition-metal (TM) doped single-layer (1L) MoS2, where the Mo atom is partially replaced by the 3d TM atom, is investigated using the first-principles density functional calculations. In a series of 3d TM doped 1L-MoS2's, the induced spin polarizations are negligible for Sc, Ti, and Cr dopings, while the induced spin polarizations are confirmed for V, Mn, Fe, Co, Ni, Cu, and Zn dopings and the systems become magnetic. Especially, the Cu doped system shows unexpectedly strong magnetism although Cu is nonmagnetic in its bulk state. The driving force is found to be a strong hybridization between Cu 3d states and 3p states of neighboring S, which results in an extreme unbalanced spin-population in the spin-split impurity bands near the Fermi level. Finally, we also discuss further issues of the Cu induced magnetism of 1L-MoS2 such as investigation of additional charge states, the Cu doping at the S site instead of the Mo site, and the Cu adatom on the layer (i.e., 1L-MoS2).

  1. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    Science.gov (United States)

    Hayakawa, N.; Noguchi, S.; Kurupakorn, C.; Kojima, H.; Endo, F.; Hirano, N.; Nagaya, S.; Okubo, H.

    2006-06-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current Ic for different ambient temperatures T0 at 4.2 K - 40 K. Experimental results revealed that Ic increased with the decrease in T0 and was saturated at T0 account of temperature dependence of specific heat and thermal conductivity of the materials. We also measured the temperature rise of Bi2212/Ag HTS coil for different continuous current levels at T0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil.

  2. Ultrahigh vacuum STM/STS studies of the Bi-O surface in Bi2Sr2CuOy single crystals

    International Nuclear Information System (INIS)

    Ikeda, Kazuto; Tomeno, Izumi; Takamuku, Kenshi; Yamaguchi, Koji; Itti, Rittaporn; Koshizuka, Naoki

    1992-01-01

    Scanning tunneling microscopic and spectroscopic studies were made on cleaved surfaces of Bi 2 Sr 2 CuO y single crystals using an ultrahigh-vacuum scanning tunneling microscope (UHV-STM). The modulation structures of the Bi-O surface were observed at room temperature with atomic resolution. The tunneling spectra showed electronic gap structures similar to those observed for the Bi-O surface of superconducting Bi-2212 single crystals. This suggests that superconductivity is not directly related to the electronic structure observed in the Bi-O plane. (orig.)

  3. A model of knock-out of oxygen by charged particle irradiation of Bi-2212

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.K.; Sen, Pintu; Barat, P.; Mukherjee, P.; Das, S.K.; Ghosh, B.

    1996-01-01

    A model of knock-out of oxygen by charged particle (α and proton) irradiation of Bi 2 Sr 2 CaCu 2 O 8+x (Bi-2212) is proposed on the basis of Monte Carlo TRIM calculations. In Bi-2212, the loosely bound excess oxygen is vulnerable to be displaced by particle irradiation. Binding energy and hence, displacement energy of this loosely bound excess oxygen is less compared to that of stoichiometric lattice bound oxygen and other atoms. The displaced or knocked out oxygen goes to pores or intergranular region and generates large pressure inside the sample. Because of porosity of the material, this displaced oxygen diffuses out and there is a net reduction of oxygen content of the sample. The irradiation induced oxygen knock-out is dominant in the bulk where nonionizing energy loss is maximum. (author). 29 refs., 1 fig., 3 tabs

  4. The pinning property of Bi-2212 single crystals with columnar defects

    International Nuclear Information System (INIS)

    Okamura, Kazunori; Kiuchi, Masaru; Otabe, Edmund Soji; Yasuda, Takashi; Matsushita, Teruo; Okayasu, Satoru

    2004-01-01

    It is qualitatively understood that the condensation energy density in oxide superconductors, which is one of the essential parameters for determining their pinning strength, becomes large with increasing dimensionality of the superconductor. However, the condensation energy density has not yet been evaluated quantitatively. Its value can be estimated from the elementary pinning force of a known defect. Columnar defects created by heavy ion irradiation are candidates for being such defects. That is, the size and number density of columnar defects can be given. In addition, it is known that two-dimensional vortices like those in Bi-2212 are forced into three-dimensional states by these defects in a magnetic field parallel to the defects. Thus, the condensation energy density can be estimated from the pinning property of the columnar defects even for two-dimensional superconductors. A similar analysis was performed also for three-dimensional Y-123. A discussion is given of the relationship between the condensation energy density and the anisotropy parameter estimated from measurements of anisotropic resistivity and peak field

  5. A Green Desulfurization Technique: Utilization of Flue Gas SO2 to Produce H2 via a Photoelectrochemical Process Based on Mo-Doped BiVO4

    Directory of Open Access Journals (Sweden)

    Jin Han

    2017-12-01

    Full Text Available A green photoelectrochemical (PEC process with simultaneous SO2 removal and H2 production has attracted an increasing attention. The proposed process uses flue gas SO2 to improve H2 production. The improvement of the efficiency of this process is necessary before it can become industrial viable. Herein, we reported a Mo modified BiVO4 photocatalysts for a simultaneous SO2 removal and H2 production. And the PEC performance could be significantly improved with doping and flue gas removal. The evolution rate of H2 and removal of SO2 could be enhanced by almost three times after Mo doping as compared with pristine BiVO4. The enhanced H2 production and SO2 removal is attributed to the improved bulk charge carrier transportation after Mo doping, and greatly enhanced oxidation reaction kinetics on the photoanode due to the formation of SO32− after SO2 absorption by the electrolyte. Due to the utilization of SO2 to improve the production of H2, the proposed PEC process may become a profitable desulfurization technique.

  6. A green desulfurization technique: utilization of flue gas SO2 to produce H2 via a photoelectrochemical process based on Mo-doped BiVO4

    Science.gov (United States)

    Han, Jin; Li, Kejian; Cheng, Hanyun; Zhang, Liwu

    2017-12-01

    A green photoelectrochemical (PEC) process with simultaneous SO2 removal and H2 production has attracted an increasing attention. The proposed process uses flue gas SO2 to improve H2 production. The improvement of the efficiency of this process is necessary before it can become industrial viable. Herein, we reported a Mo modified BiVO4 photocatalysts for a simultaneous SO2 removal and H2 production. And the PEC performance could be significantly improved with doping and flue gas removal. The evolution rate of H2 and removal of SO2 could be enhanced by almost 3 times after Mo doping as compared with pristine BiVO4. The enhanced H2 production and SO2 removal is attributed to the improved bulk charge carrier transportation after Mo doping, and greatly enhanced oxidation reaction kinetics on the photoanode due to the formation of SO32- after SO2 absorption by the electrolyte. Due to the utilization of SO2 to improve the production of H2, the proposed PEC process may become a profitable desulfurization technique.

  7. Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    International Nuclear Information System (INIS)

    Malagoli, A; Lee, P J; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C; Ghosh, A K; Scheuerlein, C; Di Michiel, M

    2013-01-01

    It is well known that longer Bi-2212 conductors have significantly lower critical current density (J c ) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5–240 cm lengths of state-of-the-art, commercial Ag alloy sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of J c away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers J c , often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full J c of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled. (paper)

  8. Comparative study of pinning and creep in Tl2Ba2CaCu2O8 and Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Oussena, M.; Porter, S.; Volkozub, A.V.; de Groot, P.A.J.; Lanchester, P.C.; Ogborne, D.; Weller, M.T.; Balakrishnan, G.; Paul, D.M.

    1993-01-01

    We have compared the pinning and creep in two identically shaped single crystals, Tl 2 Ba 2 CaCu 2 O 8 (Tl 2:2:1:2) and Bi 2 Sr 2 CaCu 2 O 8 (Bi 2:2:1:2) using magnetometry. The critical current density, J c , deduced from the M-H hysteresis loops is found to be the highest in Bi 2:2:1:2 at low temperatures (T c , in this temperature range, is similar for both crystals. At higher temperatures, J c is found to decrease more rapidly with magnetic field in Bi 2:2:1:2 than in Tl 2:2:1:2. The critical current also decreases more quickly with temperature in Bi 2:2:1:2 leading to a vanishing J c at temperatures lower than in the case of Tl 2:2:1:2. I-V characteristic curves have been obtained from measurements of magnetic-sweep-rate dependencies of the hysteresis loops. We have found that the characteristic temperature at which flux motion becomes important is significantly higher in Tl 2:2:1:2 than in Bi 2:2:1:2

  9. Phase relations and crystal structures in the systems (Bi,Ln)2WO6 and (Bi,Ln)2MoO6 (Ln=lanthanide)

    International Nuclear Information System (INIS)

    Berdonosov, Peter S.; Charkin, Dmitri O.; Knight, Kevin S.; Johnston, Karen E.; Goff, Richard J.; Dolgikh, Valeriy A.; Lightfoot, Philip

    2006-01-01

    Several outstanding aspects of phase behaviour in the systems (Bi,Ln) 2 WO 6 and (Bi,Ln) 2 MoO 6 (Ln=lanthanide) have been clarified. Detailed crystal structures, from Rietveld refinement of powder neutron diffraction data, are provided for Bi 1.8 La 0.2 WO 6 (L-Bi 2 WO 6 type) and BiLaWO 6 , BiNdWO 6 , Bi 0.7 Yb 1.3 WO 6 and Bi 0.7 Yb 1.3 WO 6 (all H-Bi 2 WO 6 type). Phase evolution within the solid solution Bi 2- x La x MoO 6 has been re-examined, and a crossover from γ(H)-Bi 2 MoO 6 type to γ-R 2 MoO 6 type is observed at x∼1.2. A preliminary X-ray Rietveld refinement of the line phase BiNdMoO 6 has confirmed the α-R 2 MoO 6 type structure, with a possible partial ordering of Bi/Nd over the three crystallographically distinct R sites. - Graphical abstract: A summary of phase relations in the lanthanide-doped bismuth tungstate and bismuth molybdate systems is presented, together with some additional structural data on several of these phases

  10. Uniaxial Strain Induced Critical Current Degradation of Ag-Sheathed Bi-2212 Round Wire

    NARCIS (Netherlands)

    Dai, Chao; Qin, Jinggang; Liu, Bo; Liu, Peihang; Wu, Yu; Nijhuis, Arend; Zhou, Chao; Li, Chenshan; Hao, Qingbin; Liu, Sheng

    2018-01-01

    The critical current degradation of Bi-2212 Ag-sheathed round wire subjected to uniaxial strain was studied at 4.2 K in 14 T background field. The strains applied on the sample are both tension and compression. The additional tensile strain caused by the difference in thermal expansion between the

  11. Bi sub 2 Sr sub 2 Ca sub n sub - sub 1 Cu sub n O sub y films sputtered on substrates of Bi sub 2 Sr sub 2 CuO sub y single crystals

    CERN Document Server

    Katsurahara, K; Matsumoto, K; Fujiwara, N; Tanaka, H; Kishida, S

    2003-01-01

    We prepared Bi sub 2 Sr sub 2 CaCu sub 2 O sub y (Bi-2212) films on substrates of Bi sub 2 Sr sub 2 CuO sub y (Bi-2201) single crystals by a rf magnetron sputtering method, where He and O sub 2 mixture sputtering gas and an off-axis geometry were used. The EPMA measurement indicated that the films deposited on the Bi-2201 single crystal had approximately the same composition as those on MgO substrate, which showed a Bi-221 single-phase. The film deposited on the Bi-2201 single crystal post-annealed at 500degC for 0.5h showed a metallic temperature dependent resistance in the normal state and the superconducting transition (T sub c sup o sup n sup s sup e sup t) of about 80 K. Therefore, the Bi-2212 films are considerate to grow on the substrate of the Bi-2201 singe crystal. (author)

  12. Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212

    Science.gov (United States)

    He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun

    2015-03-01

    Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.

  13. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  14. Evidence for charge transfer in Bi-based superconductors studied by positron annihilation

    International Nuclear Information System (INIS)

    Tang, Z.; Wang, S.J.; Gao, X.H.; Ce, G.C.; Zhao, Z.X.

    1993-01-01

    We have measured Doppler-broadening annihilation radiation (DBAR) spectra and positron lifetimes in normal and superconducting states for three kinds of Bi-based superconductors: Bi2212, Pb-doped Bi2223, Pb- and F-doped Bi2223. The difference spectra after deconvolution between two states show a sharpening effect with increasing temperature; the F-doped sample has the greatest amplitude in difference spectra but nearly the same positron lifetimes as the Pb-doped sample. The results are interpreted in terms of charge transfer between the Cu-O and Bi-O planes. The role of oxygen defects in charge transfer is discussed. (orig.)

  15. Improved photoelectrochemical performance of BiVO4/MoO3 heterostructure thin films

    Science.gov (United States)

    Kodan, Nisha; Mehta, B. R.

    2018-05-01

    Bismuth vanadate (BiVO4) and Molybdenum trioxide (MoO3) thin films have been prepared by RF sputtering technique. BiVO4 thin films were deposited on indium doped tin oxide (In: SnO2; ITO) substrates at room temperature and 80W applied rf power. The prepared BiVO4 thin films were further annealed at 450°C for 2 hours in air to obtain crystalline monoclinic phase and successively coated with MoO3 thin films deposited at 150W rf power and 400°C for 30 minutes. The effect of coupling BiVO4 and MoO3 on the structural, optical and photoelectrochemical (PEC) properties have been studied. Optical studies reveal that coupling of BiVO4 and MoO3 results in improvement of optical absorption in visible region of solar spectrum. PEC study shows approximate 3-fold and 38-fold increment in photocurrent values of BiVO4/MoO3 (0.38 mA/cm2) heterostructure thin film as compared to MoO3 (0.15 mA/cm2) and BiVO4 (10 µA/cm2) thin films at applied bias of 1 V vs Ag/AgCl in 0.5 M Na2SO4 (pH=7) electrolyte.

  16. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    International Nuclear Information System (INIS)

    Cagliero, Stefano; Khan, Mohammad Mizanur Rahman; Agostino, Angelo; Truccato, Marco; Orsini, Francesco; Marinone, Massimo; Poletti, Giulio; Lascialfari, Alessandro

    2009-01-01

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90 C have been performed on two sets of samples, which were monitored by means of X-rays diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi 2 Sr 2 CuCa 2 O 8+x (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers. (orig.)

  17. Crystalline instability of Bi-2212 superconducting whiskers near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cagliero, Stefano; Khan, Mohammad Mizanur Rahman [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Agostino, Angelo [Torino Universita, ' NIS' Centre of Excellence, Dip. Chimica Generale e Chimica Organica, and CNISM UdR, Turin (Italy); Truccato, Marco [Torino Universita, ' NIS' Centre of Excellence, Dip. Fisica Sperimentale, and CNISM UdR, Turin (Italy); Orsini, Francesco; Marinone, Massimo; Poletti, Giulio [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Lascialfari, Alessandro [Universita degli Studi di Milano, Istituto di Fisiologia Generale e Chimica Biologica, Milan (Italy); CNR-INFM-S3 NRC, Modena (Italy); Universita degli Studi di Pavia, INFM-CNR c/o Dipartimento di Fisica A. Volta, Pavia (Italy)

    2009-05-15

    We report new evidences for the thermodynamic instability of whisker crystals in the Bi-Sr-Ca-Cu-O (BSCCO) system. Annealing treatments at 90 C have been performed on two sets of samples, which were monitored by means of X-rays diffraction (XRD) and atomic force microscopy (AFM) measurements, respectively. Two main crystalline domains of Bi{sub 2}Sr{sub 2}CuCa{sub 2}O{sub 8+x} (Bi-2212) were identified in the samples by the XRD data, which underwent an evident crystalline segregation after about 60 hours. Very fast dynamics of the surface modifications was also described by the AFM monitoring. Two typologies of surface structures formed after about 3 annealing hours: continuous arrays of dome shaped bodies were observed along the edges of the whiskers, while in the central regions a dense texture of flat bodies was found. These modifications are described in terms of the formation of simple oxide clusters involving a degradation of the internal layers. (orig.)

  18. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    International Nuclear Information System (INIS)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-01-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables

  19. Interstrand contact resistances of Bi-2212 Rutherford cables for SMES

    Science.gov (United States)

    Kawagoe, A.; Kawabata, Y.; Sumiyoshi, F.; Nagaya, S.; Hirano, N.

    2006-10-01

    Interstrand contact resistances of Bi-2212 Rutherford cables for SMES coils were evaluated from a comparison between measured data and 2D-FEM analyses on interstrand coupling losses in these cables. The cables were composed of 30 non-twisted Bi-2212 strands with a diameter of 0.81 mm and a cable twist pitch of 90 mm. Three samples were measured; one of them had NiCr cores and the others had no cores. One of the latter two samples repeatedly experienced bending. The interstrand coupling losses were measured in liquid helium for the straight samples under transverse ac ripple magnetic fields superposed on dc bias magnetic fields. The transverse magnetic field was applied to the samples in directions both perpendicular and parallel to the flat face of the cable. The effect of the bending on the interstrand coupling losses could be neglected for the non-cored samples. The interstrand coupling losses of NiCr cored sample decreased by about 30% compared with the non-cored samples, in case the direction of the transverse magnetic fields applied to the cable is perpendicular to the flat face of the cable. Using these results and 2D-FEM analyses, taking into account that interstrand contact conditions vary from the center to the edge in the cross-section of cables, gave us the conclusion that the between side-by-side strands contact with metallurgical bond only in both edges of the cables.

  20. Growth and superconducting properties of Bi2Sr2Ca2Cu3O10 single crystals

    International Nuclear Information System (INIS)

    Clayton, N; Musolino, N; Giannini, E; Garnier, V; Fluekiger, R

    2004-01-01

    Single crystals of Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) have been grown using the travelling solvent floating zone technique in an image furnace. Annealing the crystals under high pressures of O 2 increased their critical temperature to 109 K, and resulted in sharp superconducting transitions of ΔT c = 1 K. The superconducting anisotropy of Bi-2223 was found to be ∼ 50, from measurements of the lower critical field with the magnetic field applied parallel and perpendicular to the c-axis. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212), and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy

  1. Homogenous BSCCO-2212 Round Wires for Very High Field Magnets

    International Nuclear Information System (INIS)

    Campbell, Scott; Holesinger, Terry; Huang, Ybing

    2012-01-01

    index (n-value) sufficiently high to meet the field decay requirements (in persistent magnets), piece lengths long enough to wind coils, and acceptably low costs. HEP has traditionally used very high current magnets made from Rutherford cables, and the ability to be cabled is another key advantage. Very high on the list of materials able to fulfill the requirements above is Bi-2212 round wire. Both cables and high field coils on a small scale have been demonstrated using this material. By contrast, YBCO is a single-filament tape that is not easy to cable. As shown in Figure 1 these tapes are highly anisotropic in their current density. In the good orientation the performance is considerably better than Bi-2212, however at the highest fields measured, the isotropic current behavior of 2212 exceeds the bad orientation of YBCO.

  2. Thermoelectric properties and thermal stability of Bi-doped PbTe single crystal

    Science.gov (United States)

    Chen, Zhong; Li, Decong; Deng, Shuping; Tang, Yu; Sun, Luqi; Liu, Wenting; Shen, Lanxian; Yang, Peizhi; Deng, Shukang

    2018-06-01

    In this study, n-type Bi-doped single-crystal PbTe thermoelectric materials were prepared by melting and slow cooling method according to the stoichiometric ratio of Pb:Bi:Te = 1-x:x:1 (x = 0, 0.1, 0.15, 0.2, 0.25). The X-ray diffraction patterns of Pb1-xBixTe samples show that all main diffraction peaks are well matched with the PbTe matrix, which has a face-centered cubic structure with the space group Fm 3 bar m . Electron probe microanalysis reveals that Pb content decreases gradually, and Te content remains invariant basically with the increase of Bi content, indicating that Bi atoms are more likely to replace Pb atoms. Thermal analysis shows that the prepared samples possess relatively high thermal stability. Simultaneously, transmission electron microscopy and selected area electron diffraction pattern indicate that the prepared samples have typical single-crystal structures with good mechanical properties. Moreover, the electrical conductivity of the prepared samples improved significantly compared with that of the pure sample, and the maximum ZT value of 0.84 was obtained at 600 K by the sample with x = 0.2.

  3. Space growth studies of Ce-doped Bi12SiO20 single crystal

    International Nuclear Information System (INIS)

    Zhou, Y.F.; Wang, J.C.; Tang, L.A.; Pan, Z.L.; Chen, N.F.; Chen, W.C.; Huang, Y.Y.; He, W.

    2004-01-01

    Ce-doped Bi 12 SiO 20 (BSO) single crystal was grown on board of the Chinese Spacecraft-Shenzhou No. 3. A cylindrical crystal, 10 mm in diameter and 40 mm in length, was obtained. The morphology of crystals is significantly different for ground- and space-grown portions. The space- and ground-grown crystals have been characterized by Ce concentration distribution, X-ray rocking curve absorption spectrum and micro-Raman spectrum. The results show that the quality of Ce-doped BSO crystal grown in space is more homogeneous and more perfect than that of ground grown one

  4. Optical spectroscopy of Pr3+ in M+Bi(XO4)2, M+ = Li or Na and X = W or Mo, locally disordered single crystals

    International Nuclear Information System (INIS)

    Mendez-Blas, A; Rico, M; Volkov, V; Cascales, C; Zaldo, C; Coya, C; Kling, A; Alves, L C

    2004-01-01

    NaBi(WO 4 ) 2 (NBW), NaBi(MoO 4 ) 2 (NBMo) and LiBi(MoO 4 ) 2 (LBMo) single crystals grown by the Czochralski technique have been doped up to a praseodymium concentration of Pr ∼1x10 20 cm -3 in the crystal. 10 K polarized optical absorption and photoluminescence measurements have been used to determine the energy position of 32, 39 and 36 Pr 3+ Stark levels in NBW, NBMo and LBMo crystals, respectively. These energy levels were labelled with the appropriate irreducible representations corresponding to a C 2 local symmetry of an average optical centre. Single-electron Hamiltonians including free-ion and crystal field interactions have been used in the fitting of experimental energy levels and in the simulation of the full sequence of the 4f 2 Pr 3+ configuration. 300 K absorption spectra of different 2S+1 L J Pr 3+ multiplets were determined and used in the context of the Judd-Ofelt theory and for the calculation of the 1 D 2 -related emission cross sections of this average Pr 3+ centre. Non-radiative electron relaxation from the 3 P 0 level feeds the 1 D 2 multiplet. This latter level efficiently decays radiatively to the ground 3 H 4 multiplet but still there is a significant rate of radiative decay to the 1 D → 3 F 3 praseodymium laser channel. For Pr ≥ 2x10 19 cm -3 , non-radiative electric dipole-dipole Pr pair energy transfer limits the radiative yield

  5. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    International Nuclear Information System (INIS)

    Xiong Guohong; Wang Minquan; Fan Xianping; Tang Xiaoming

    1993-01-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T c =85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  6. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Science.gov (United States)

    Xiong, Guohong; Wang, Minquan; Fan, Xianping; Tang, Xiaoming

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C 790°C, forming of the 2212 superconducting phase at 790°C 860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C 970°C. It is also confirmed that the 2212 superconducting phase ( T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.

  7. The reaction process of the Bi-Sr-Ca-Cu-O system and the forming mechanism of the 2212 superconducting phase

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Guohong (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Wang Minquan (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Fan Xianping (Zhejiang Univ., Hangzhou (China). Dept. of Materials Science and Engineering); Tang Xiaoming (Zhejiang Univ., Hangzhou (China). Center for Analysis and Measurement)

    1993-02-01

    The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680 C-790 C, forming of the 2212 superconducting phase at 790 C-860 C and forming of semiconducting phases in the presence of the liquid phase at 860 C-970 C. It is also confirmed that the 2212 superconducting phase (T[sub c]=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase. (orig.)

  8. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  9. The preparation and characterization of Bi-2212 film on Ag substrate by dip-coating method

    International Nuclear Information System (INIS)

    Song Yang; Zhao Liang; Li Pei; Qu Timing; Huang Yong; Han Zhenghe

    2006-01-01

    In this paper we report on the processing parameters and resulting critical current densities of Bi 2 Sr 2 Ca 1 Cu 2 O x thick films on Ag substrate. Bi-2212 tapes and wires are prepared by dip-coating method. It is found that parameters during partial melting (maximum process temperature T max and solidification temperature T s ) have strong influences on the transition temperature T c . The 0.5 mm diameter dip-coated wire can carry 4000 A/cm 2 critical current in 77 K, self field. Post-annealing on different temperatures and atmospheres are studied as well to obtain varied T c samples

  10. Short-circuit testing of monofilar Bi-2212 coils connected in series and in parallel

    International Nuclear Information System (INIS)

    Polasek, A; Dias, R; Serra, E T; Filho, O O; Niedu, D

    2010-01-01

    Superconducting Fault Current Limiters (SCFCL's) are one of the most promising technologies for fault current limitation. In the present work, resistive SCFCL components based on Bi-2212 monofilar coils are subjected to short-circuit testing. These SCFCL components can be easily connected in series and/or in parallel by using joints and clamps. This allows a considerable flexibility to developing larger SCFCL devices, since the configuration and size of the whole device can be easily adapted to the operational conditions. The single components presented critical current (Ic) values of 240-260 A, at 77 K. Short-circuits during 40-120 ms were applied. A single component can withstand a voltage drop of 126-252 V (0.3-0.6 V/cm). Components connected in series withstand higher voltage levels, whereas parallel connection allows higher rated currents during normal operation, but the limited current is also higher. Prospective currents as high as 10-40 kA (peak value) were limited to 3-9 kA (peak value) in the first half cycle.

  11. Chemical composition and microstructure of magnetically melt-textured Bi2Sr2Ca0.8Dy0.2Cu2O8-y

    International Nuclear Information System (INIS)

    Stassen, S.; Rulmont, A.; Krekels, T.; Ausloos, M.; Cloots, R.

    1996-01-01

    Dysprosium-doped Bi-based 2212 materials have been synthesized in the presence of a magnetic field, applied perpendicularly to the lateral face of a cylinder, by a melt-textured growth process. Thick (well oriented) layers of different chemical composition have been observed. A dysprosium-doped 2212 phase (the expected D phase) and a dysprosium-free bismuth-rich and strontium-deficient 2212 phase have been found. It is argued that the latter is a so-called M phase. Other impurity phases have been observed, connected with both 2212-type layers. A novel aspect of this work is the calcium solubility at the strontium site in the 2201 structure, and inversely the strontium solubility at the calcium site in the 8250 structure. (orig.)

  12. Valency and spin states of substituent cations in Bi2.15Sr1.85CaCu2O8+δ

    Science.gov (United States)

    Benseman, T. M.; Cooper, J. R.; Zentile, C. L.; Lemberger, L.; Balakrishnan, G.

    2011-10-01

    We studied the valency and spin behavior of M = Mn, Fe, Co, Li, and Al in the high-temperature superconducting compound Bi2.15Sr1.85Ca(Cu1-zMz)2O8+δ (Bi-2212) for small values of z. Mn, Fe, and Co retain their magnetic moments, and our thermopower and magnetic susceptibility data imply ionization states Mn3+, Fe2+, and Co2+, while Li and Al are accommodated in the charge reservoir layers. Single-crystal studies show that the susceptibility of Co2+ ions in Bi-2212 is strongly anisotropic, with a weak anisotropy detected for Mn3+ and none for Fe2+. Fits to a pseudogap formula for a pure Bi-2212 crystal suggest that the spin susceptibility of the host compound is more anisotropic than previously realized. Data in the superconducting state allow us to compare the pair-breaking properties of the different impurities. Several aspects of the data, including the stronger suppression of the superconducting transition temperature Tc by Co compared with Fe for underdoped and optimally doped samples, show that the d-level structure of the magnetic ions and multiorbital effects are important. We also find that the temperatures of the magnetization crossing points are equal to the low-field Tc values to within 1% or 2%. This agrees with a 2D thermodynamic fluctuation argument given by Junod

  13. Electrical and thermal characteristics of Bi2212/Ag HTS coils for conduction-cooled SMES

    International Nuclear Information System (INIS)

    Hayakawa, N; Noguchi, S; Kurupakorn, C; Kojima, H; Endo, F; Hirano, N; Nagaya, S; Okubo, H

    2006-01-01

    In this paper, we investigated the electrical and thermal performance of conduction-cooled Bi2212/Ag HTS coils with 4K-GM cryocooler system. First, we measured the critical current I c for different ambient temperatures T 0 at 4.2 K - 40 K. Experimental results revealed that I c increased with the decrease in T 0 and was saturated at T 0 0 = 4.8 K. Experimental results revealed the criterion of thermal runaway, which was discussed in terms of heat generation and propagation in the test coil

  14. Oxygen stoichiometry, superconductivity and structure of the Bi-2212 ceramics after thermal treatment in the inert atmosphere

    International Nuclear Information System (INIS)

    Bratukhin, P.V.; Aksenova, T.D.; Shavkin, S.V.; Komarov, A.O.; Voronkov, S.A.; Mozhaev, A.P.

    1993-01-01

    A complex study of the stoichiometry and superconducting properties has been performed as well as an X-ray structure analysis of Bi 1.6 Pb 0.4 Sr 2 Ca 1 Cu 2 O x ceramic samples after thermal treatment in the helium atmosphere. Annealing has been found to result in the reduction of the oxygen coefficient followed by the critical temperature rise and the decrease of the unit cell parameters which sharply distinguishes Bi2212 from Y123. Anisotropic widening of diffraction lines due to monoclinic distortions has been detected. Correlations between the monoclinic angle and the critical temperature have been disclosed. Structural changes in Bi2122 are 30-100 times smaller than in the Y123 structure under similar changes in T c

  15. Anisotropic superconducting properties and fabrication of submicrometre bridges in misaligned Bi-Sr-Ca-Cu-O (2212) films

    CERN Document Server

    Moriya, M; Usami, K; Goto, T; Kobayashi, T

    2002-01-01

    In this paper, we report on misaligned Bi-Sr-Ca-Cu-O (2212) films that have been deposited on vicinal strontium titanate substrates using a dc sputtering system. We measured the temperature dependences of resistivity across and along the terrace, and only the resistivity across the terrace slightly decreased with the increase of the temperature in the normal state region. The estimated anisotropy parameter gamma was smaller than that of single crystal, but a significant anisotropy was observed. Submicrometre bridges were fabricated, and the temperature dependence of the critical current density was investigated. The value of the critical current density across the terrace is smaller than the value of that along the terrace. This suggests that the current partially flows along the c-axis. However, a multi-branch structure was not observed even after post annealing in oxygen atmosphere at low pressure.

  16. Influence of doping on transport and magnetisation properties of Bi 2212 tapes - vortex pinning; Influence du dopage sur les proprietes de transport et d`aimantation de rubans polycristallins de Bi 2212 - ancrage de vortex

    Energy Technology Data Exchange (ETDEWEB)

    Zani, L

    1999-12-31

    Bismuth-based superconductors ar now thoroughly studied and are thought to be one of the best High Critical Temperature Superconductors (HSTC) that could be industrially developed. Though their synthesis is one of the easiest to achieve, their strong anisotropy affects drastically their transport properties under magnetic field, especially in the low field regime. In order to avoid vortices motion, two main methods have been used to introduce pinning centers: irradiation defects or dissemination of non-superconducting particles. An original method of synthesis has been developed in our laboratories, alternating electrolytic depositions and heat treatments with which one can obtain Bi 2212 tapes on silver substrate. Though we have good performances at 77 K, the J{sub c} drops by a factor of 5 at 7 T for B parallel to c-axis. By including Ag, MgO and ZrO{sub 2} particles, we tried to introduce efficient pinning centers in the superconducting matrix. Some of these dopants played also a role on intergranular connectivity. By magnetisation and transport studies, we have been able to improve the situation in these two fields. (author) 195 refs.

  17. Influence of doping on transport and magnetisation properties of Bi 2212 tapes - vortex pinning; Influence du dopage sur les proprietes de transport et d`aimantation de rubans polycristallins de Bi 2212 - ancrage de vortex

    Energy Technology Data Exchange (ETDEWEB)

    Zani, L

    1998-12-31

    Bismuth-based superconductors ar now thoroughly studied and are thought to be one of the best High Critical Temperature Superconductors (HSTC) that could be industrially developed. Though their synthesis is one of the easiest to achieve, their strong anisotropy affects drastically their transport properties under magnetic field, especially in the low field regime. In order to avoid vortices motion, two main methods have been used to introduce pinning centers: irradiation defects or dissemination of non-superconducting particles. An original method of synthesis has been developed in our laboratories, alternating electrolytic depositions and heat treatments with which one can obtain Bi 2212 tapes on silver substrate. Though we have good performances at 77 K, the J{sub c} drops by a factor of 5 at 7 T for B parallel to c-axis. By including Ag, MgO and ZrO{sub 2} particles, we tried to introduce efficient pinning centers in the superconducting matrix. Some of these dopants played also a role on intergranular connectivity. By magnetisation and transport studies, we have been able to improve the situation in these two fields. (author) 195 refs.

  18. Evidence for long range movement of Bi-2212 within the filament bundle on melting and its significant effect on J{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Malagoli, A; Kametani, F; Jiang, J; Trociewitz, U P; Hellstrom, E E; Larbalestier, D C, E-mail: malagoli@asc.magnet.fsu.edu [Applied Superconductivity Center, National High Magnetic Field Laboratory, 2031 E Paul Dirac Drive, Tallahassee, FL 32310 (United States)

    2011-07-15

    It is well known that the critical current density J{sub c} of multifilamentary Bi-2212 wires tends to decline as the wire length increases, but the reasons for and the magnitude of this decline remain obscure and quantitatively unpredictable. Here we report on the J{sub c} and mass density variation with length on {approx} 1 m long samples taken from two recent and representative wires, in which we find a strong decrease of J{sub c} with distance from the end and a strong correlation between J{sub c} and the local mass density. The mass density variations occur on length scales of centimeters, many times the nominal 15 {mu}m filament diameter. The cause of the mass density variation appears to be internal gas pressure that generates bubbles which almost fill the filament diameter when the Bi-2212 melts. Control of this internal pressure seems to be vital to moderating or avoiding the length dependence of J{sub c}.

  19. Doping evolution of the electronic structure in the single-layer cuprates Bi2Sr2−xLaxCuO6 delta: Comparison with other single-layer cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.

    2010-04-30

    We have performed angle-resolved photoemission and core-level x-ray photoemission studies of the single-layer cuprate Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6+{delta}} (Bi2201) and revealed the doping evolution of the electronic structure from the lightly-doped to optimally-doped regions. We have observed the formation of the dispersive quasi-particle band, evolution of the Fermi 'arc' into the Fermi surface and the shift of the chemical potential with hole doping as in other cuprates. The doping evolution in Bi2201 is similar to that in Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2} (Na-CCOC), where a rapid chemical potential shift toward the lower Hubbard band of the parent insulator has been observed, but is quite different from that in La{sub 2-x}Sr{sub x}CuO{sub 4} (LSCO), where the chemical potential does not shift, yet the dispersive band and the Fermi arc/surface are formed around the Fermi level already in the lightly-doped region. The (underlying) Fermi surface shape and band dispersions are quantitatively analyzed using tightbinding fit, and the deduced next-nearest-neighbor hopping integral t also confirm the similarity to Na-CCOC and the difference from LSCO.

  20. Magnetic properties of Eu doped BiGdO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nithya, R., E-mail: nithya@igcar.gov.in; Yadagiri, K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN (India); Shukla, Neeraj [UGC-DAE-CSR Kalpakkam Node, Kokilamedu-603 104, TN (India)

    2016-05-23

    Bulk Bismuth Gadolinium Oxide, BiGdO{sub 3} and Eu doped BiGdO{sub 3} compounds were synthesized by the conventional solid state reaction in air. Phase formation of these compounds was tracked using powder X-ray characterization technique since single phase formation was found to be sensitive to thermal treatment parameters such as cooling and heating rates. Analysis of X-ray diffraction patterns revealed cubic structure with Pm-3m symmetry. An antiferromagnetic transition around 3.8 K was observed in the pristine compound whereas doped samples showed paramagnetic nature in the whole measured temperature range.

  1. The influence of precursor powders on the microstructure and properties of B-2212 blocks

    International Nuclear Information System (INIS)

    Santos, F.F.M.; Polasek, A.; Saleh, L.A.; Sena, C.V. de; Serra, E.T.; Rizzo, F.

    2006-01-01

    The Bi-2212 is one of the main HTSC's for applications development. The present work reports our investigations on the partial melt processing of bulk-2212. The precursors were uniaxially pressed into silver molds, which were partially melted, slow cooled and subsequently annealed. Precursor powders with different nominal compositions, with and without silver powder addition were employed. Samples were analyzed by XRD, SEM/EDS and DTA. The DC critical current (lc) was measured by the four-points method (77 K). Although the partial melt processing has been intensively studied, there is still a lack of knowledge on the influence on the final properties of bulk Bi-2212. (author)

  2. Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films

    International Nuclear Information System (INIS)

    Babin, V.; Gorbenko, V.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Zazubovich, S.; Zorenko, Yu.

    2013-01-01

    Single crystalline films of Bi-doped Y 2 SiO 5 are studied at 4.2–350 K by the time-resolved luminescence methods under excitation in the 3.8–6.2 eV energy range. Ultraviolet luminescence of Y 2 SiO 5 :Bi (≈3.6 eV) is shown to arise from the radiative decay of the metastable and radiative minima of the triplet relaxed excited state (RES) of Bi 3+ centers which are related to the 3 P 0 and 3 P 1 levels of a free Bi 3+ ion, respectively. The lowest-energy excitation band of this emission, located at ≈4.5 eV, is assigned to the 1 S 0 → 3 P 1 transitions of a free Bi 3+ ion. The phenomenological model is proposed to describe the excited-state dynamics of Bi 3+ centers in Y 2 SiO 5 :Bi, and parameters of the triplet RES are determined. -- Highlights: •Luminescence of Y 2 SiO 5 :Bi is investigated for the first time. •Ultraviolet emission arises from Bi 3+ ions located in Y lattice sites. •The triplet relaxed excited states parameters of Bi 3+ centers are determined

  3. Low coupling loss core-strengthened Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R

    1999-01-01

    In a comprehensive "vertically integrated" program multifilamentary (MF) high temperature superconducting (HTSC) Bi:2212/Ag strand was fabricated using the powder-in-tube process and heat treated in oxygen by a modified standard $9 procedure. The reaction-heat-treatment (HT) was adjusted to maximize critical current (density), I/sub c/ (J /sub c/), as measured in various magnetic fields, B. A series of Rutherford cables was designed, each of which included a $9 metallic (Nichrome-80) core for strengthening and reduction of coupling loss. Prior to cable winding a series of tests examined the possibility of strand "poisoning" by the core during HT. Small model Rutherford cables were wound, $9 and after HT were prepared for I/sub c/(B) measurement and calorimetric measurement of AC loss and hence interstrand contact resistance I/sub c/(B). It was deduced that, if in direct contact with the strand during HT, the core $9 material can degrade the I/sub c/ of the cable; but steps can be taken to eliminate this probl...

  4. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    International Nuclear Information System (INIS)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J

    2009-01-01

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi 2 O 3 or ZnS and Bi 2 O 3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  5. Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, B; Hidalgo, P; Fernandez, P; Piqueras, J, E-mail: balemanl@fis.ucm.e [Departamento de Fisica de Materiales, Facultad de Ciencias FIsicas, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2009-11-21

    Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi{sub 2}O{sub 3} or ZnS and Bi{sub 2}O{sub 3} powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.

  6. Defects controlling electrical and optical properties of electrodeposited Bi doped Cu2O

    Science.gov (United States)

    Brandt, Iuri S.; Tumelero, Milton A.; Martins, Cesar A.; Plá Cid, Cristiani C.; Faccio, Ricardo; Pasa, André A.

    2018-04-01

    Doping leading to low electrical resistivity in electrodeposited thin films of Cu2O is a straightforward requirement for the construction of efficient electronic and energy devices. Here, Bi (7 at. %) doped Cu2O layers were deposited electrochemically onto Si(100) single-crystal substrates from aqueous solutions containing bismuth nitrate and cupric sulfate. X-ray photoelectron spectroscopy shows that Bi ions in a Cu2O lattice have an oxidation valence of 3+ and glancing angle X-ray diffraction measurements indicated no presence of secondary phases. The reduction in the electrical resistivity from undoped to Bi-doped Cu2O is of 4 and 2 orders of magnitude for electrical measurements at 230 and 300 K, respectively. From variations in the lattice parameter and the refractive index, the electrical resistivity decrease is addressed to an increase in the density of Cu vacancies. Density functional theory (DFT) calculations supported the experimental findings. The DFT results showed that in a 6% Bi doped Cu2O cell, the formation of Cu vacancies is more favorable than in an undoped Cu2O one. Moreover, from DFT data was observed that there is an increase (decrease) of the Cu2O band gap (activation energy) for 6% Bi doping, which is consistent with the experimental results.

  7. Bi:Ge substitution - its effect on the structural and electrical properties of the Bi2212 superconductor

    International Nuclear Information System (INIS)

    Saligan, P.P.

    1997-03-01

    The critical temperature determined from dc resistance and ac magnetic susceptibility measurements, and the coherence length obtained from the of fluctuation conductivity of polycrystalline Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ were studied. The effect of sample quality was also studied by making two kinds of pellet samples: (1) by conventional sintering process and (2) by conventional sintering process followed annealing at high temperature. The rough phase diagram of Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ was constructed and it was found that from x=0 to x=0.3 a predominantly Bi2212 phase can be obtained. The critical temperature of the unsubstituted Bi 2 Sr 2 CaCu 2 O 8 +δ is sensitive to the cold press and anneal method. The resistive transition T c based on the maximum dR(T)dT of the as-sintered Bi 2 Sr 2 CaCu 2 O 8 +δ is about 74 K. The resistive T c of the cold-pressed-annealed samples either (1) remain near 74 K or (2) increase to approximately 85 K or (3) show two values at about 74 K and 85 K. A structural relaxation is observed in the Bi 2-x Ge x Sr 2 CaCu 2 O 8 +δ the c-axis decreases with increasing x and the a-axis increases at x=0.1 then settles back to its unsubstituted value at higher x. The as-sintered samples show an increasing resistive T c with x, 74 K for x=0 and 79 K for x>0. The resistive T c 's of the cold-pressed-annealed samples are almost independent of x, 85 K for x=0 and 87 K for x>0. The increase in the magnetic critical temperature induced by the cold press and anneal method is considerably larger compared to the increase in the resistive critical temperature, independent of the Bi:Ge substitution. An analysis of fluctuation conductivity just above T c using the Aslamasov-Larkin model for two-dimensional superconductors and the Lawrence-Doniach model for layered superconductors was done. The Aslamasov-Larkin model gives the thickness of the two dimensional superconductor to be ∼34 A also independent of the Bi:Ge substitution. The Lawrence

  8. Thick Bi2Sr2CaCu2O8+δ films grown by liquid-phase epitaxy for Josephson THz applications

    Science.gov (United States)

    Simsek, Y.; Vlasko-Vlasov, V.; Koshelev, A. E.; Benseman, T.; Hao, Y.; Kesgin, I.; Claus, H.; Pearson, J.; Kwok, W.-K.; Welp, U.

    2018-01-01

    Theoretical and experimental studies of intrinsic Josephson junctions (IJJs) that naturally occur in high-T c superconducting Bi2Sr2CaCu2O8+δ (Bi-2212) have demonstrated their potential for novel types of compact devices for the generation and sensing of electromagnetic radiation in the THz range. Here, we show that the THz-on-a-chip concept may be realized in liquid-phase epitaxial-grown (LPE) thick Bi-2212 films. We have grown μm thick Bi-2212 LPE films on MgO substrates. These films display excellent c-axis alignment and single crystal grains of about 650 × 150 μm2 in size. A branched current-voltage characteristic was clearly observed in c-axis transport, which is a clear signature of underdamped IJJs, and a prerequisite for THz-generation. We discuss LPE growth conditions allowing improvement of the structural quality and superconducting properties of Bi-2212 films for THz applications.

  9. Second and third peaks in the non-resonant microwave absorption spectra of superconducting Bi2212 crystals

    CSIR Research Space (South Africa)

    Srinivasu, V V

    2010-04-01

    Full Text Available . Bhat, S.V., Ganguly, P., Ramakrishnan, T.V., Rao, C.N.R.: J. Phys. C 20, L559 (1987) 2. Blazey, K.W., Muller, K.A., Bednorz, J.G., Berlinger, W., Amoretti, G., Buluggiu, E., Vera, A., Matacotta, F.C.: Phys. Rev. B 36, 7241 (1987) 3. Kachaturyan, K... 10.1007/s10948-009-0530-5 O R I G I NA L PA P E R Second and Third Peaks in the Non-resonant Microwave Absorption Spectra of Superconducting Bi2212 Crystals V.V. Srinivasu Received: 19 August 2009 / Accepted: 25 August 2009 ' Springer Science...

  10. Growth and properties of oxygen doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Kapitulnik, A.; Mitzi, D.B.

    1990-01-01

    This paper reports results on oxygen doped single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system grown by a directional solidification method. Annealing of as made crystals in increasing partial pressure of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed). Magnetic and photoemission properties of these crystals will be discussed

  11. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    Science.gov (United States)

    Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.

    1990-04-01

    A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.

  12. Influence of photoinduced Bi-related self-doping on the photocatalytic activity of BiOBr nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dan [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Yue, Songtao; Wang, Wei [College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); An, Tiacheng, E-mail: antc99@gig.ac.cn [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Li, Guiying [Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Ye, Liqun [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061 (China); Yip, Ho Yin [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China); Wong, Po Keung, E-mail: pkwong@cuhk.edu.hk [School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR (China)

    2017-01-01

    Highlights: • Bi{sup 5+} self-doped BiOBr nanosheets are achieved under UV irradiation. • Bi{sup 5+} is formed due to the oxidation of surface Bi{sup 3+} by photoexcited h{sup +} of BiOBr. • Two photoinduced h{sup +} mediated oxidation processes happen simultaneously. • Self-doped BiOBr is superior in phenol degradation and bacterial inactivation. • Bi{sup 5+} electron trapping induced photocatalytic enhancement mechanism is proposed. - Abstract: Under UV irradiation, self-doped Bi{sup 5+} is evidenced to be generated on the surface of BiOBr nanosheets, but with well-preserved crystal structure and morphology compared with pure counterpart. Bi{sup 5+} self-doping BiOBr (BiOBr-4) exhibits distinct photocatalytic mode for dyes degradation, as compared with pure BiOBr nanosheets. These photodegradation distinctions are mainly due to the simultaneous occurrence of two photoinduced hole (h{sup +}) mediated oxidation processes on the BiOBr surfaces: (1) a portion of photoexcited h{sup +} participates in the photocatalytic oxidation of dyes, and (2) partial h{sup +} involves the oxidation of Bi{sup 3+} to Bi{sup 5+}. Notably, BiOBr-4 nanosheets comparatively show superior photocatalytic activity for the phenol decomposition as well as the bacterial inactivation. Besides Bi{sup 5+} induced narrowed bandgap and enhanced light adsorption capacity, significantly, the oxidative Bi{sup 5+} acts as electron traps to promote the photoexcited electron-hole separation and accelerate h{sup +} migration, resulting in the considerable photocatalytic enhancement of BiOBr-4 nanosheets. These novel findings will not only give new insights into the photocatalytic mechanism but also explore new route to enhance photocatalytic performance of Bi-based materials.

  13. Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Y.; Gorbenko, V.; Savchyn, V.; Zorenko, T.; Nikl, M.; Mares, J.A.; Beitlerova, A.; Jary, V.

    2013-01-01

    Absorption, cathodoluminescence, excitation spectra of photoluminescence (PL) and PL decay kinetics were studied at 300 K for the double doped with Bi 3+ –Pr 3+ and separately doped with Bi 3+ and Pr 3+ Lu 3 Al 5 O 12 (LuAG) and Y 3 Al 5 O 12 (YAG) single crystalline film (SCF) phosphors grown by the liquid phase epitaxy method. The emission bands in the UV range arising from the intrinsic radiative transitions of Bi 3+ based centers, and emission bands in the visible range, related to the luminescence of excitons localized around Bi 3+ based centers, were identified both in Bi–Pr and Bi-doped LuAG and YAG SCFs. The energy transfer processes from the host lattice simultaneously to Bi 3+ and Pr 3+ ions and from Bi 3+ to Pr 3+ ions were investigated. Competition between Pr 3+ and Bi 3+ ions in the energy transfer processes from the LuAG and YAG hosts was evidenced. The strong decrease of the intensity of Pr 3+ luminescence both in LuAG:Pr and YAG:Pr SCFs phosphors, grown from Bi 2 O 3 flux, is observed due to the quenching influence of Bi 3+ flux related impurity. Due to overlap of the UV emission band of Bi 3+ centers with the f–d absorption bands of Pr 3+ ions in the UV range and the luminescence of excitons localized around Bi ions with the f–f absorption bands of Pr 3+ ions in the visible range, an effective energy transfer from Bi 3+ ions to Pr 3+ ions takes place in LuAG:Bi,Pr and YAG:Bi,Pr SCFs, resulting in the appearance of slower component in the decay kinetics of the Pr 3+ d–f luminescence. -- Highlights: • Bi and Pr doped film phosphor grown by liquid phase epitaxy method. • Energy transfer from Bi 3+ to Pr 3+ ions. • Strong quenching of the Pr 3+ luminescence by Bi 3+ co-dopant

  14. Near-net-shape fabrication of continuous Ag-Clad Bi-Based superconductors

    International Nuclear Information System (INIS)

    Lanagan, M. T. et al.

    1998-01-01

    We have developed a near-net-shape process for Ag-clad Bi-2212 superconductors as an alternative to the powder-in-tube process. This new process offers the advantages of nearly continuous processing, minimization of processing steps, reasonable ability to control the Bi-2212/Ag ratio, and early development of favorable texture of the Bi-2212 grains. Superconducting properties are discussed

  15. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    Science.gov (United States)

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A plate-on-plate sandwiched Z-scheme heterojunction photocatalyst: BiOBr-Bi{sub 2}MoO{sub 6} with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyao [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China); Yang, Xianglong; Zhang, Xuehao; Ding, Xing; Yang, Zixin [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Dai, Ke [College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070 (China); Chen, Hao, E-mail: hchenhao@mail.hzau.edu.cn [College of Science, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070 (China)

    2017-01-01

    Highlights: • A visible light heterojunction photocatalyst of BiOBr-Bi{sub 2}MoO{sub 6} was simply synthesized. • Carriers transferred efficiently in sandwiched layers causing an enhance activity. • A possible direct Z-scheme charge transfer mechanism of BiOBr-Bi2MoO6 is proposed. - Abstract: In this study, a direct Z-scheme heterojunction BiOBr-Bi{sub 2}MoO{sub 6} with greatly enhanced visible light photocatalytic performance was fabricated via a two-step coprecipitation method. It was indicated that a plate-on-plate heterojunctions be present between BiOBr and Bi{sub 2}MoO{sub 6} through different characterization techniques including X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoelectrochemical measurements. The crystal structure and morphology analysis revealed that the heterointerface in BiOBr-Bi{sub 2}MoO{sub 6} occurred mainly on the (001) facets of BiOBr and (001) facets of Bi{sub 2}MoO{sub 6}. The photocatalytic activity of the BiOBr-Bi{sub 2}MoO{sub 6} was investigated by degradation of RhB and about 66.7% total organic carbon (TOC) could be removed. Ciprofloxacin (CIP) was employed to rule out the photosensitization. It was implied that the higher activity of BiOBr-Bi{sub 2}MoO{sub 6} could be attribute to the strong redox ability in the Z-scheme system, which was subsequently confirmed by photoluminescence spectroscopy (PL) and active spices trapping experiments. This study provides a promising platform for Z-scheme heterojunction constructing and also sheds light on highly efficient visible-light-driven photocatalysts designing.

  17. Growth and spectroscopic properties of Tm3+:NaBi(MoO4)2 single crystal

    Science.gov (United States)

    Gusakova, N. V.; Mudryi, A. V.; Demesh, M. P.; Yasukevich, A. S.; Pavlyuk, A. A.; Kornienko, A. A.; Dunina, E. B.; Khodasevich, I. A.; Orlovich, V. A.; Kuleshov, N. V.

    2018-06-01

    In this work we report the spectroscopic properties of Tm3+:NaBi(MoO4)2 crystals with the dopant concentrations of 0.7 at.% and 3 at.%. The energy levels of the Tm3+ in the NaBi(MoO4)2 host were determined from polarized optical absorption and photoluminescence spectra measured at 77.4 K. Radiative properties of the crystals were calculated in context of Judd-Ofelt theory. Raman spectra of the crystal were studied. The concentration dependences of emission decay times of 3H4 and 3F4 levels were analyzed. The potential of the crystal for building tunable and ultrafast pulse lasers is shown on the base of cross sections and gain coefficient in the range of 1.9 μm.

  18. High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation

    International Nuclear Information System (INIS)

    Li, Yongjin; Song, Zhiguo; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi

    2013-01-01

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the 2 H 11/2 / 4 S 3/2 (green) and 4 F 9/2 (red) levels of Er 3+ ions were observed from Er 3+ singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er 3+ ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er 3+ ions doping

  19. Fabrication and characterization of Bi2Sr2CaCu2O8+δ stacks by self-planarizing process

    International Nuclear Information System (INIS)

    Okanoue, K.; Ishida, H.; Funabiki, H.; Hamasaki, K.; Shimakage, N.; Kawakami, A.; Wang, Z.; Abe, H.

    2005-01-01

    We developed a new fabrication process of stacked intrinsic Josephson junctions using superconducting Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) single crystals. In the proposed self-planarizing process, the Bi-2212 crystal around the junction window was modified to insulator by soaking into the solution of dilute (0.05-0.2%) hydrochloric acid for 5 s. Energy dispersive X-ray (EDX) spectroscopy revealed that the acid-treated Bi-2212 exhibited the decrease of Cu and Sr contents in the crystals. The current-voltage characteristic of the stacks showed distinct resistive branches with large hysteresis at 77 K. The number of intrinsic junctions in the stacks linearly decreased with decreasing the concentration of the solution. The well controllability of the number of junctions in the self-planarized stacks may be useful for electronic device applications

  20. Effective visible light-active nitrogen and samarium co-doped BiVO4 for the degradation of organic pollutants

    International Nuclear Information System (INIS)

    Wang, Min; Niu, Chao; Liu, Jun; Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan

    2015-01-01

    Nitrogen and samarium co-doped BiVO 4 (N–xSm–BiVO 4 ) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO 4 particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO 4 extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO 4 exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO 4 under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO 4 were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO 4 has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping

  1. Superconductivity induced by oxygen doping in Y{sub 2}O{sub 2}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiyue; Deng, Shuiquan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Gordon, Elijah E. [Department of Chemistry, North Carolina State University, Raleigh, NC (United States); Whangbo, Myung-Hwan [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences (CAS), Fuzhou (China); Department of Chemistry, North Carolina State University, Raleigh, NC (United States)

    2017-08-14

    When doped with oxygen, the layered Y{sub 2}O{sub 2}Bi phase becomes a superconductor. This finding raises questions about the sites for doped oxygen, the mechanism of superconductivity, and practical guidelines for discovering new superconductors. We probed these questions in terms of first-principles calculations for undoped and O-doped Y{sub 2}O{sub 2}Bi. The preferred sites for doped O atoms are the centers of Bi{sub 4} squares in the Bi square net. Several Bi 6p x/y bands of Y{sub 2}O{sub 2}Bi are raised in energy by oxygen doping because the 2p x/y orbitals of the doped oxygen make antibonding possible with the 6p x/y orbitals of surrounding Bi atoms. Consequently, the condition necessary for the ''flat/steep'' band model for superconductivity is satisfied in O-doped Y{sub 2}O{sub 2}Bi. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Li-adsorption on doped Mo2C monolayer: A novel electrode material for Li-ion batteries

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-04-01

    A first principle calculation has been used to study the electronic and magnetic properties of pristine and N/Mn-doped Mo2C with and without Li-adsorption. The pseudopotential method implemented in SIESTA code based on density functional theory with generalized gradient approximation (GGA) as exchange-correlation (XC) potential has been employed. Our calculated results revealed that the Li gets favorably adsorbed on the hexagonal centre in pristine Mo2C and at the top of C-atom in case of N/Mn-doped Mo2C. The doping of Mn and N atom increases the adsorption of Li in Mo2C monolayer which may results in enhancement of storage capacity in Li-ion batteries. The metallic nature of Li-adsorbed pristine and N/Mn-doped Mo2C monolayer implies a good electronic conduction which is crucial for anode materials for its applications in rechargeable batteries. Also, the open circuit voltage for single Li-adsorption in doped Mo2C monolayer comes in the range of 0.4-1.0 eV which is the optimal range for any material to be used as an anode material. Our result emphasized the enhanced performance of doped Mo2C as an anode material in Li-ion batteries.

  3. Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-Doped MoS2: A dispersion-corrected DFT study

    Science.gov (United States)

    Sadeghi, Meisam; Jahanshahi, Mohsen; Ghorbanzadeh, Morteza; Najafpour, Ghasem

    2018-03-01

    The kind of sensing platform in nano biosensor plays an important role in nucleic acid sequence detection. It has been demonstrated that graphene does not have an intrinsic band gap; therefore, transition metal dichalcogenides (TMDs) are desirable materials for electronic base detection. In the present work, a comparative study of the adsorption of the DNA/RNA nucleobases [Adenine (A), Cytosine (C) Guanine (G), Thymine (T) and Uracil (U)] onto the single-layer molybdenum disulfide (MoS2) and Li-doped MoS2 (Li-MoS2) as a sensing surfaces was investigated by using Dispersion-corrected Density Functional Theory (D-DFT) calculations and different measure of equilibrium distances, charge transfers and binding energies for the various nucleobases were calculated. The results revealed that the interactions between the nucleobases and the MoS2 can be strongly enhanced by introducing metal atom, due to significant charge transfer from the Li atom to the MoS2 when Lithium is placed on top of the MoS2. Furthermore, the binding energies of the five nucleobases were in the range of -0.734 to -0.816 eV for MoS2 and -1.47 to -1.80 eV for the Li-MoS2. Also, nucleobases were adsorbed onto MoS2 sheets via the van der Waals (vdW) force. This high affinity and the renewable properties of the biosensing platform demonstrated that Li-MoS2 nanosheet is biocompatible and suitable for nucleic acid analysis.

  4. Physicochemical investigation of Bi2MoO6 solid-phase interaction with Sm2MoO6

    International Nuclear Information System (INIS)

    Khajkina, E.G.; Kovba, L.M.; Bazarova, Zh.G.; Khal'baeva, K.M.; Khakhinov, V.V.; Mokhosoev, M.V.

    1986-01-01

    Bi 2 MoO 6 -Sm 2 MoO 6 interaction in the temperature range of 700-1000 deg C is studied using X-ray phase analysis and vibrational spectroscopy. Formation of monoclinic solid solutions based on γ'-Bi 2 MoO 6 and B 2-x Sm x MoO 6 varied composition phase with α-Ln 2 MoO 6 structure which homogeneity region extent at 1000 deg C constitutes ∼ 50 mol % (0.7≤x≤1.7) is stated. Crystallographic characteristics of the synthesized phases are determined

  5. Effect of Nd-doping on structure and microwave electromagnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Sheng [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China); Luo, Heng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Yan, Shuoqing; Yao, Lingling; He, Jun; Li, Yuhan; He, Longhui; Huang, Shengxiang; Deng, Lianwen [School of Physics and Electronics, Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Central South University, Changsha 410083 (China)

    2017-03-15

    The single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0, 0.05, 0.10, 0.15, 0.20) were synthesized by the sol-gel method. Their crystal structure and microwave electromagnetic property in the frequency range of 2–18 GHz were investigated. The XRD patterns and Raman spectra showed that structural transition from rhombohedral (x=0, 0.05, 0.1) to triclinic (x=0.15) and tetragonal structure (x=0.20) appeared in the Bi{sub 1-x}Nd{sub x}FeO{sub 3}. Electromagnetic measurement suggested that both microwave permeability μ′ and magnetic loss tanδ{sub m} increased remarkably over 2–18 GHz by doping Nd. Strong dielectric loss peak was observed on the samples of Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.15) and Bi{sub 1-x}Nd{sub x}FeO{sub 3} (x=0.2). Results show that Nd substitution is an effective way to push BiFeO{sub 3} to become microwave absorbing materials with high performance. - Highlights: • Single-phase Bi{sub 1-x}Nd{sub x}FeO{sub 3} samples were prepared by a sol-gel method. • Strong dielectric loss peak was observed in BiFeO{sub 3} with high doping content. • Significant enhancement of microwave absorption property was found in Nd-doped BiFeO{sub 3}.

  6. Microstructural dynamics of Bi-2223/Ag tapes annealed in 8% O2

    DEFF Research Database (Denmark)

    Andersen, L.G.; Poulsen, H.F.; Abrahamsen, A.B.

    2002-01-01

    The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting in an in......The microstructural dynamics of Bi-2223 tapes are investigated in situ during annealing in 8% O-2 by means of 100 keV x-ray diffraction. A green mono- and a green multi-filamentary tape are annealed at 829.5 degreesC. During ramp-up (Ca,Sr)(2)PbO4 decomposes above 750 degreesC, resulting...... in an incorporation of Pb in Bi-2212. The associated grain growth of Bi-2212 is the main cause of the strain relief and the c-axis grain alignment of the Bi containing phases. Above 825 degreesC the Bi-2212 partly dissociates into (Ca,Sr)(14)Cu24Ox and a liquid phase. The linewidth of Bi-2212 is constant during...... the transformation to Bi-2223, indicating no strain or finite-size broadening. The most probable transformation mechanism is found to be nucleation and growth with a fast decomposition of the individual Bi-2212 grain, followed by a growth of Bi-2223 from the Bi-2212 melt reacting with (Ca,Sr)(14)Cu24Ox. The multi...

  7. Microstructure origin of hot spots in textured laser zone melting Bi-2212 monoliths

    International Nuclear Information System (INIS)

    Lera, F; Angurel, L A; Rojo, J A; Mora, M; Recuero, S; Arroyo, M P; Andres, N

    2005-01-01

    Hot spots are one of the main limitations in the development of large-scale high-power applications with superconducting materials. The application of digital speckle interferometry to detect inhomogeneous heating on ceramic superconductors allows the determining of a hot spot location in these materials before any damage is caused to the material. The technique detects deformations that are induced in the material due to dilatation, attaining a resolution of 0.45 μm /fringe. In this paper this technique has been applied to analyse the heating generation in Bi-2212 superconducting monoliths at room temperature and in operation conditions. In the first case a homogeneous heating is obtained, leading to a parallel fringe pattern. In the second case, a situation with an inhomogeneous heating origin has been detected. Once the position of this hot spot is determined, microstructure studies have been performed to determine which defects are responsible for hot spot generation

  8. Efficient solar-driven water splitting by nanocone BiVO4-perovskite tandem cells

    Science.gov (United States)

    Qiu, Yongcai; Liu, Wei; Chen, Wei; Chen, Wei; Zhou, Guangmin; Hsu, Po-Chun; Zhang, Rufan; Liang, Zheng; Fan, Shoushan; Zhang, Yuegang; Cui, Yi

    2016-01-01

    Bismuth vanadate (BiVO4) has been widely regarded as a promising photoanode material for photoelectrochemical (PEC) water splitting because of its low cost, its high stability against photocorrosion, and its relatively narrow band gap of 2.4 eV. However, the achieved performance of the BiVO4 photoanode remains unsatisfactory to date because its short carrier diffusion length restricts the total thickness of the BiVO4 film required for sufficient light absorption. We addressed the issue by deposition of nanoporous Mo-doped BiVO4 (Mo:BiVO4) on an engineered cone-shaped nanostructure, in which the Mo:BiVO4 layer with a larger effective thickness maintains highly efficient charge separation and high light absorption capability, which can be further enhanced by multiple light scattering in the nanocone structure. As a result, the nanocone/Mo:BiVO4/Fe(Ni)OOH photoanode exhibits a high water-splitting photocurrent of 5.82 ± 0.36 mA cm−2 at 1.23 V versus the reversible hydrogen electrode under 1-sun illumination. We also demonstrate that the PEC cell in tandem with a single perovskite solar cell exhibits unassisted water splitting with a solar-to-hydrogen conversion efficiency of up to 6.2%. PMID:27386565

  9. Effects of doping in BSCCO superconductor system; Efeito da dopagem do sistema superconductor BSCCO com terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, V.D.; Carvalho, C.L.; Souza, E.J. de; Torsoni, G.B.; Silva, M.J. da, E-mail: vivian_delmute@yahoo.com.b [UNESP, Ilha Solteira, SP (Brazil). Dept. de Fisica e Quimica

    2010-07-01

    There are several studies on doping in superconducting systems, due to their high TC. Actually, the search for high current densities permitting future application of these materials. In this work, the purpose was to synthesize and characterize the phase (Bi,Pb)-2223 pure and doped BSCCO superconducting system to study the influence of the dopant on its electrical properties and its TC. Doping was achieved by substituting La in the sites of Sr, with the stoichiometric formula Bi{sub 1,6}Pb{sub 0,4}Sr{sub 2-x}Re{sub x}Ca{sub 2}Cu{sub 3}O{sub 10+{delta}{delta}}, where x=0.5. Precursor solutions were prepared by Pechini method and heat treated between 800 deg C- 810 deg C. The samples were structurally characterized by X-ray diffraction and electrically by dc four-probe method. XRD analysis suggesting the formation of (Bi,Pb)-2212 and (Bi,Pb)-2223 phase in pure and doped samples, respectively. While the electrical measurements indicated a decrease in the superconducting temperature for the doped sample. (author)

  10. Anti-site defected MoS2 sheet-based single electron transistor as a gas sensor

    Science.gov (United States)

    Sharma, Archana; Husain, Mushahid; Srivastava, Anurag; Khan, Mohd. Shahid

    2018-05-01

    To prevent harmful and poisonous CO gas molecules, catalysts are needed for converting them into benign substances. Density functional theory (DFT) calculations have been used to study the adsorption of CO and CO2 gas molecules on the surface of MoS2 monolayer with Mo atom embedded at S-vacancy site (MoS). The strong interaction between Mo metal with pristine MoS2 sheet suggests its strong binding nature. Doping Mo into MoS2 sheet enhances CO and CO2 adsorption strength. The sensing response of MoS-doped MoS2 system to CO and CO2 gas molecules is obtained in the single electron transistor (SET) environment by varying bias voltage. Doping reduces charging energy of the device which results in fast switching of the device from OFF to ON state.

  11. Investigation of the phase equilibria and phase transformations associated with the Bi2Sr2CaCu2Oy superconductor

    International Nuclear Information System (INIS)

    Holesinger, T.

    1993-01-01

    The solid solution region and reaction kinetics of the Bi 2 Sr 2 CaCu 2 O y (2212) superconductor were examined as a function of temperature and oxygen partial pressure. Crystallization studies from the glassy and molten states were undertaken to determine the phase transformation and kinetics associated with the formation of 2212 and other competing phases. Crystallization of nominal 2212 glasses was found to proceed in two steps with the formation of Bi 2 Sr 2-x Ca x CuO y (2201) and Cu 2 O followed by Bi 2 Sr 3-x Ca x O y , CaO, and SrO. The 2212 phase converts from the 2201 phase with increasing temperatures. However, its formation below 800 C was kinetically limited. At 800 C and above, a nearly full conversion to the 2212 phase was achieved after only one minute although considerably longer anneal times were necessary for the system to reach equilibrium. In low oxygen partial pressures, the solidus is reduced to approximately 750 C. Solidification studies revealed an eutectic structure separating the incongruently melting 2212/2201 phases at high oxygen partial pressures from the congruently melting Bi 2 Sr 3-x Ca x O y (23x) and Bi 2 Sr 2-x Ca x O y (22x) phases present at low oxygen partial pressures. During solidification in various oxygen partial pressures, the separation of CaO in the melt and the initial crystallization of alkaline-earth cuprates leaves behind a Bi-rich liquid from which it is impossible to form single-phase 2212. Hence, significant amounts of 2201 were also present in these samples. These problems could be reduced by melt processing in inert atmospheres. Bulk 2212 material produced in this manner was found to possess high transition temperatures, high intergranular critical current densities below 20K, and modest critical current densities at 77K

  12. Evolution of electronic structure in highly charge doped MoS2 compounds

    Science.gov (United States)

    Bin Subhan, Mohammed; Watson, Matthew; Liu, Zhongkai; Walters, Andrew; Hoesch, Moritz; Howard, Chris; Diamond I05 beamline Collaboration

    Transition-metal dichalcogenides (TMDCs) are a group of layered materials that exhibit a rich array of electronic ground states including semiconductivity, metallicity, superconductivity and charge density waves. In recent years, 2D TMDCs have attracted considerable attention due to their unique properties and potential applications in optoelectronics. It has been shown that the charge carrier density in few layer MoS2 can be tunably increased via electrostatic gating. At high levels of doping, MoS2 exhibits superconductivity with a dome-like dependence of Tc on doping analogous to that found in the cuprate superconductors. High doping can also be achieved via intercalation of alkali metals in bulk MoS2. The origin of this superconductivity is not yet fully understood with predictions ranging from exotic pairing mechanisms in bulk systems to Ising superconductivity in single layers. Despite these interesting properties, there has been limited research to date on the electronic structure of these doped compounds. Here we present our work on alkali metal intercalated MoS2 using the low temperature metal ammonia solution method. Using X-ray diffraction, Raman spectroscopy and ARPES measurements we will discuss the physical and electronic structure of these materials. EPSRC, Diamond Light Source.

  13. Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies

    Science.gov (United States)

    Wangkhem, Ranjoy; Yaba, Takhe; Shanta Singh, N.; Ningthoujam, R. S.

    2018-03-01

    CaMoO4:Eu3+ (3 at. %)/Bi3+ (x at. %) nanophosphors were synthesized hydrothermally. All the samples can be excited by 280, 320, 393, and 464 nm (blue) wavelengths for generation of red color emission. Enhancement in 5D0 → 7F2 (615 nm) emission (f-f transition) of Eu3+ is observed when Bi3+ is incorporated in CaMoO4:Eu3+. This is due to the efficient energy transfer from Bi3+ to Eu3+ ions. Introduction of Bi3+ in the system does not lead to the change of emission wavelength of Eu3+. However, Bi3+ incorporation in the system induces a shift in Mo-O charge transfer band absorption from 295 to 270 nm. This may be due to the increase in electronegativity between Mo and O bond in the presence of Bi3+ leading to change in crystal field environment of Mo6+ in MoO42-. At the optimal concentration of Bi3+, an enhancement in emission by a factor of ˜10 and 4.2 in the respective excitation at 393 (7F0 → 5L6) and 464 nm (7F0 → 5D2) is observed. The energy transfer efficiency from Bi3+ to Eu3+ increases from 75% to 96%. The energy transfer is observed to occur mainly via dipole-dipole interactions. Maximum quantum yield value of 55% is observed from annealed CaMoO4:Eu3+ (3 at. %) when sensitized with Bi3+ (15 at. %) under 464 nm excitation. From Commission International de I'Eclairage chromaticity coordinates, the color (red) saturation is observed to be nearly 100%.

  14. Effective visible light-active nitrogen and samarium co-doped BiVO{sub 4} for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Min; Niu, Chao [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China); Liu, Jun, E-mail: minwang62@msn.com [Shenyang Military General Hospital, Shenyang 110016 (China); Wang, Qianwu; Yang, Changxiu; Zheng, Haoyan [College of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110165 (China)

    2015-11-05

    Nitrogen and samarium co-doped BiVO{sub 4} (N–xSm–BiVO{sub 4}) nanoparticles were synthesized using a sol–gel method with a corn stem template. The physicochemical properties of the resultant N–xSm–BiVO{sub 4} particles were characterized using various methods: XPS, XRD, SEM, BET, and UV–Vis DRS analyses. The visible-light photocatalytic activity was successfully demonstrated by degrading a model dye, namely, methyl orange. The dopant content was optimized, and the nitrogen and samarium co-doped BiVO{sub 4} extended the light absorption spectrum toward the visible region, significantly enhancing the photodegradation of the model dye. The Sm and N co-doped BiVO{sub 4} exhibited the highest photocatalytic activity compared to materials with a single dopant or no dopant. The significantly enhanced photocatalytic activity of the N–Sm co-doped BiVO{sub 4} under visible-light irradiation can be attributed to the synergistic effects of the nitrogen and samarium. - Highlights: • The N–Sm codoped BiVO{sub 4} were synthesized using a sol–gel method with a corn stem template. • The N and Sm codoped BiVO{sub 4} has excellent photocatalytic activity of methyl orange degradation. • The maximum activity was observed when the molar ratio of Sm/Bi was 1.0. • The high photocatalytic activity was caused by the synergistic effects between N doping and Sm doping.

  15. Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals

    International Nuclear Information System (INIS)

    Mitzi, D.B.; Lombardo, L.W.; Kapitulnik, A.; Laderman, S.S.; Jacowitz, R.D.

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi 2 Sr 2 CaCu 2 O 8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20--25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)x10 21 cm -3 (0.34 holes per Cu site) to 4.6(3)x10 21 cm -3 (0.50 holes per Cu site)

  16. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Sudakar, C.; Mocherla, Pavana S.V.; Mandal, Balaji P.; Jayakumar, Onnatu D.; Tyagi, Avesh K.

    2012-01-01

    In this study we report the synthesis of undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . A magnetization of 0.144 μB/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles. Thus it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been demonstrated. The Bi 2 Fe 4(1−x) Sc x O 9 (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi 2 Fe 4 O 9 . Highlights: ► Phase pure Bi 2 Fe 4 O 9 nanostructures synthesized using a facile sonochemical technique. ► Nanoparticles show a weak ferromagnetic order at room temperature. ► Sc 3+ doping in Bi 2 Fe 4 O 9 nanoparticles alters their magnetic and ferroelectric properties. ► A

  17. The DC Electrical Resistivity Curves of Bismuth-2212 Ceramic Superconductors: Evaluation of the Hole-Carrier Concentrations per-Cu Ion

    Directory of Open Access Journals (Sweden)

    nurmalita .

    2016-04-01

    Full Text Available In this study the samples of Bismuth ceramic superconductors were synthesized by the melt textured growth methods from a 2212 stoichiometric composition in order to obtain a large amount of pure Bi-2212. The effects of Pb substitution on the properties of Bi-based Bi2−xPbxSr2CaCu2Oy superconductor with x = 0, 0.2, and 0.4 were investigated by means of DC electrical resistivity measurements. It has been found that the hole-carrier concentrations per-Cu ion of the samples change independently of Pb content.

  18. Preferred Orientation Contribution to the Anisotropic Normal State Resistivity in Superconducting Melt-Cast Processed Bi2Sr2CaCu2O8+δ

    Directory of Open Access Journals (Sweden)

    Aline Dellicour

    2017-05-01

    Full Text Available We describe how the contribution of crystallographic texture to the anisotropy of the resistivity of polycrystalline samples can be estimated by averaging over crystallographic orientations through a geometric mean approach. The calculation takes into account the orientation distribution refined from neutron diffraction data and literature values for the single crystal resistivity tensor. The example discussed here is a melt-cast processed Bi2Sr2CaCu2O8+δ (Bi-2212 polycrystalline tube in which the main texture component is a <010> fiber texture with relatively low texture strength. Experimentally-measured resistivities along the longitudinal, radial, and tangential directions of the Bi-2212 tube were compared to calculated values and found to be of the same order of magnitude. Calculations for this example and additional simulations for various texture strengths and single crystal resistivity anisotropies confirm that in the case of highly anisotropic phases such as Bi-2212, even low texture strengths have a significant effect on the anisotropy of the resistivity in polycrystalline samples.

  19. Light up conversion effects in Erbium doped CaBi4Ti4O15 ceramics

    International Nuclear Information System (INIS)

    Bokolia, Renuka; Sreenivas, K.

    2013-01-01

    In recent years the rare earth doped bismuth layered structured ferroelectric (BLSF) compositions such as CaBi 4 Ti 4 O 15 , SrBi 4 Ti 4 O 15 and BaBi 4 Ti 4 O 15 ceramics have shown interesting light up-conversion emission effects. The observation of such novel effects has generated a lot of scientific interest, and there is a need to further improve their dielectric, piezoelectric and light up-conversion properties. In the present study, Erbium doped CaBi 4 Ti 4 O 15 (CBT), and SrBi 4 Ti 4 O 15 (SBT) ferroelectric ceramic have been prepared by the conventional solid state reaction method. Formation of single phase material is confirmed by X-Ray Diffraction (XRD), and changes occurring in the lattice parameters with Erbium dopant are analysed. Room temperature dielectric studies and ferroelectric studies will be discussed. (author)

  20. High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3

    Science.gov (United States)

    Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.

    2018-06-01

    We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.

  1. High multi-photon visible upconversion emissions of Er{sup 3+} singly doped BiOCl microcrystals: A photon avalanche of Er{sup 3+} induced by 980 nm excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongjin; Song, Zhiguo, E-mail: songzg@kmust.edu.cn; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-12-02

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} (green) and {sup 4}F{sub 9/2} (red) levels of Er{sup 3+} ions were observed from Er{sup 3+} singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er{sup 3+} ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er{sup 3+} ions doping.

  2. Optical and structural properties of Mo-doped NiTiO{sub 3} materials synthesized via modified Pechini methods

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr

    2017-07-31

    Highlights: • Mo-doped NiTiO{sub 3} materials were well prepared by a modified Pechini method. • Recombination rates of the materials were significantly inhibited by Mo doping. • Defect sites were generated by the substitution of Mo for Ni or Ti positions. • The generation of defect sites gradually decreased the grain sizes of the materials. • The surface areas of the materials were increased with decreasing the grain sizes. - Abstract: In this study, molybdenum (Mo)-doped nickel titanate (NiTiO{sub 3}) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO{sub 3} structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO{sub 3} lattice was doped with Mo. On the other hand, Mo doping of NiTiO{sub 3} materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.

  3. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  4. Fabrication and characterizations of the BSCCO-2212/SrSO4 bulk superconductors

    International Nuclear Information System (INIS)

    Kim, Kyu Tae; Jang, Seok Hern; Park, Eui Cheol; Hwang, Sumin; Joo, Jin Hoo; Hong, Gye Won; Kim, Chan Joong; Kim, Hye Rim; Hyun, Ok Bae

    2006-01-01

    We fabricated Bi-2212/SrSO 4 bulk superconductors by the casting process and evaluated the effects of the powder mixing method and annealing temperature on the texture, microstructure, and critical current. In the process, the Bi-2212 powders were mixed with SrSO 4 by hand-mixing(HM) and planetary ball milling(PBM) method and then the powder mixtures were melted at 1100 - 1200 degrees C, solidified, and annealed. We observed that the rod made by the PBM had a more homogeneous microstructure and smaller SrSO 4 and second phases than that of the rod made by the HM, resulting in increased I c . The I c of the rod also depended on the annealing temperature and the highest I c was obtained to be 200 A when prepared by HM at 1200 degrees C and annealed at 810 degrees C which is probably due to the moderate density and 2212 texture and the smaller and less second phase compared to that at higher temperature. The possible causes of the variations of I c with the powder mixing method and annealing temperature were related to the microstructural evolution based on the SEM, EPMA, and DTA analyses.

  5. Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ji-guo Huang

    2015-01-01

    Full Text Available The undoped and Mo-doped TiO2 nanoparticles were synthesized by sol-gel method. The as-prepared samples were characterized by X-ray diffraction (XRD, diffuse reflectance UV-visible absorption spectra (UV-vis DRS, X-ray photoelectron spectra (XPS, and transmission electron microscopy (TEM. The photocatalytic activity was evaluated by photocatalytic degradation of methylene blue under irradiation of a 500 W xenon lamp and natural solar light outdoor. Effects of calcination temperatures and Mo doping amounts on crystal phase, crystallite size, lattice distortion, and optical properties were investigated. The results showed that most of Mo6+ took the place of Ti4+ in the crystal lattice of TiO2, which inhibited the growth of crystallite size, suppressed the transformation from anatase to rutile, and led to lattice distortion of TiO2. Mo doping narrowed the band gap (from 3.05 eV of TiO2 to 2.73 eV of TiMo0.02O and efficiently increased the optical absorption in visible region. Mo doping was shown to be an efficient method for degradation of methylene blue under visible light, especially under solar light. When the calcination temperature was 550°C and the Mo doping amount was 2.0%, the Mo-doped TiO2 sample exhibited the highest photocatalytic activity.

  6. Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties

    International Nuclear Information System (INIS)

    Vigil-Galan, O.; Sanchez-Meza, E.; Ruiz, C.M.; Sastre-Hernandez, J.; Morales-Acevedo, A.; Cruz-Gandarilla, F.; Aguilar-Hernandez, J.; Saucedo, E.; Contreras-Puente, G.; Bermudez, V.

    2007-01-01

    The physical properties of Bi doped CdTe films, grown on glass substrates by the Closed Space Transport Vapour (CSVT) method, from different Bi doped CdTe powders are presented. The CdTe:Bi films were characterized using Photoluminescence, Hall effect, X-Ray diffraction, SEM and Photoconductivity measurements. Moreover, CdS/CdTe:Bi solar cells were made and their characteristics like short circuit current density (J sc ), open circuit voltage (V OC ), fill factor (FF) and efficiency (η) were determined. These devices were fabricated from Bi doped CdTe layers deposited on CdS with the same growth conditions than those used for the single CdTe:Bi layers. A correlation between the CdS/CdTe:Bi solar cell characteristics and the physical properties of the Bi doped CdTe thin films are presented and discussed

  7. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles

    Science.gov (United States)

    Naz, Hina; Ali, Rai Nauman; Zhu, Xingqun; Xiang, Bin

    2018-06-01

    In this paper, we report the effect of single phase Mo and Ti doping concentration on the structural and optical properties of the ZnS nanoparticles. The structural and optical properties of the as-synthesized samples have been examined by x-ray diffraction, transmission electron microscopy (TEM), UV-visible near infrared absorption spectroscopy and x-ray photoelectron spectroscopy. TEM characterizations reveal a variation in the doped ZnS nanoparticle size distribution by utilizing different dopants of Mo and Ti. In absorption spectra, a clear red shift of 14 nm is observed with increasing Mo concentration as compared to pure ZnS nanoparticles, while by increasing Ti doping concentration, blue shift of 14 nm is obtained. Moreover, it demonstrates that the value of energy band gap decreases from 4.03 eV to 3.89 eV in case of Mo doping. However, the value of energy band gap have shown a remarkable increase from 4.11 eV to 4.27 eV with increasing Ti doping concentration. Our results provide a new pathway to understand the effect of Mo and Ti doping concentrations on the structural and optical properties of ZnS nanoparticles as it could be the key to tune the properties for future optoelectronic devices.

  8. Growth, characterization, and physical properties of Bi-Sr-Ca-Cu-O superconducting whiskers

    International Nuclear Information System (INIS)

    Kraak, W.; Thiele, P.

    1996-01-01

    Single crystal whiskers of the Bi-based high-T c superconductors have been grown directly from the stoichiometric melt. Conditions for the preferable growth of the (2212) phase and annealing conditions for the conversion from the (2212) phase to the (2223) and (2234) Bi-based superconducting phases are achieved. The orientation and chemical composition of the crystals were characterized by X-ray diffractometry and energy dispersive X-ray analysis. Characteristic structural properties of the whiskers (incommensurable modulation in b-direction, peculiarities of dislocation networks) have been revealed by transmission electron microscopy and electron diffraction. Some special features of the broad superconducting transition in multiphase whiskers have been examined by spatially resolved measurements using low-temperature scanning electron microscopy. (orig.)

  9. Coexistence of two different types of modulation in quenched samples of the superconductor BiSrCaCuO (2212)

    International Nuclear Information System (INIS)

    Mokrani, R.; Ben Salem, M.; Boulesteix, C.; Monnereau, O.; Remy, F.; Vacquier, G.

    1990-01-01

    It has been shown by Kang et al. that the modulation of BiSrCaCuO (2212) compounds along the b axis can be of 3 different kinds: M1, M2, M3. This modulation can be related to the preparation conditions and to the T c value of the superconductor. It is shown here that M1 and M3 can occur in the same crystal in the case of quenched samples, which corresponds to the stacking of different layers modulated as M1 and M3. The two different modulations may occur either along the same direction, or in two perpendicular directions [fr

  10. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light

    International Nuclear Information System (INIS)

    Bi, Jinhong; Fang, Wei; Li, Li; Li, Xiaofen; Liu, Minghua; Liang, Shijing; Zhang, Zizhong; He, Yunhui; Lin, Huaxiang; Wu, Ling; Liu, Shengwei; Wong, Po Keung

    2015-01-01

    A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. RGO/Bi 2 MoO 6 /Au was characterized by X-ray powder diffraction patterns, transmission electron microscopy, UV–vis diffuse reflectance spectra, Raman spectroscopy and X-ray photoelectron spectroscopy. In comparison with Bi 2 MoO 6 , RGO/Bi 2 MoO 6 and Au/Bi 2 MoO 6 , RGO/Bi 2 MoO 6 /Au exhibits an enhanced photocatalytic activity for decomposition of Rhodamine B under visible light. The separation efficiency of the photogenerated holes and electrons on Bi 2 MoO 6 is promoted by the combined effect of both RGO and Au in the ternary composite, and thus enhances photocatalytic activity. The scavenger study revealed that both hole and superoxide are the major reactive species for the photocatalytic degradation of Rhodamine B using RGO/Bi 2 MoO 6 /Au photocatalyst. - Graphical abstract: A novel ternary nanocomposite photocatalyst consisted of reduced-graphene-oxide (RGO), Bi 2 MoO 6 and plasmonic Au nanoparticles were successfully fabricated by multiple steps including a simple solvothermal process and photochemical reduction process. The resulted ternary nanocomposites greatly enhanced the visible light photocatalytic properties compared to Bi 2 MoO 6 , RGO/Bi 2 MoO 6 or Au/Bi 2 MoO 6 binary systems. The improved photocatalytic activity was mainly attributed to the synergistic effect of Au and RGO with better separation of the photogenerated holes and electrons, resulting from the surface plasmonic resonance and extra strong electron magnetic field of Au nanoparticles and the high electron conductivity of RGO. - Highlights: • The ternary nanocomposites RGO/Bi 2 MoO 6 /Au were constructed for the first time. • RGO/Bi 2 MoO 6 /Au showed much higher visible photoactivity than RGO (Au)/Bi 2 MoO 6 . • The improved

  11. Enhanced photocatalytic property of BiFeO_3/N-doped graphene composites and mechanism insight

    International Nuclear Information System (INIS)

    Li, Pai; Li, Lei; Xu, Maji; Chen, Qiang; He, Yunbin

    2017-01-01

    Highlights: • A hydrothermal process was used to prepare BiFeO_3/N-doped graphene composites. • BiFeO_3/N-doped graphene exhibits superior photocatalytic activity and stability. • The energy band of BiFeO_3 bends downward by ∼1.0 eV at the composite interface. • Downward band bending leads to rapid electron transfer at the composite interface. • Holes and ·OH are predominant active species in the photo-degradation process. - Abstract: A series of BiFeO_3/(N-doped) graphene composites are prepared by a facile hydrothermal method. BiFeO_3/N-doped graphene shows photocatalytic performance superior to that of BiFeO_3/graphene and pristine BiFeO_3. The enhanced photo-degradation performance of BiFeO_3/N-doped graphene are mainly attributable to the improved light absorbance of the composite, abundant active adsorption sites and high electrical charge mobility of N-doped graphene, and the downward band bending of BiFeO_3 at the composite interface. In particular, X-ray photoelectron spectroscopy analyses reveal that the electron energy band of BiFeO_3 is downward bent by 1.0 eV at the interface of BiFeO_3/N-doped graphene, because of different work functions of both materials. This downward band bending facilitates the transfer of photogenerated electrons from BiFeO_3 to N-doped graphene and prompts the separation of photo-generated electron-hole pairs, leading eventually to the enhanced photocatalytic performance.

  12. Substitution-induced near phase transition with Maxwell-Wagner polarization in SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} ceramics [A = W, Mo and x = 0, 0.025

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Prasun; Franco, Adolfo Jr. [Instituto de Fisica, Universidade Federal de Goias, Goiania (Brazil)

    2017-10-15

    The synthesis, micro-structure, spectroscopic, and dielectric properties of SrBi{sub 2}(Nb{sub 1-x}A{sub x}){sub 2}O{sub 9} [with A=W, Mo and x = 0, 0.025] ceramics were systematically studied. A relative density of ≥98% was obtained for all the samples using a two-step solid state sintering process. XRD images showed that a single phase layered perovskite structure of SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) was formed. The orthorhombic structure with A2{sub 1}am phase group was found up to ∝2.5 at.% substitution of W and Mo into the SBN matrix. SEM revealed the rod-like grain structure similar to the Maxwell-Wagner (MW) parallel plate capacitor model in SBN ceramic, whereas smaller heterogeneous grain structure was observed in W and Mo donor doped ceramics. The initial high value of real and imaginary part of relative permittivity also indicated the presence of interfacial MW relaxation in the SBN ceramics. The experimental data fit well to the theoretical data obtained from MW polarization model in SBN ceramics. The possible origin of the difference of the properties present in the doped sample has been explained based on grain size, orientation, and modification done in the ceramic matrices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Magnetic and electrical properties of Pr-doped Bi(Pb)-Sr-Ca-Cu-O superconductors

    International Nuclear Information System (INIS)

    Malik, A.I.; Halim, S.A.; Mohammed, S.B.; Khalid, K.; Hassan, Z.A.

    1999-01-01

    The effect of Praseodymium doping on the electrical and magnetic properties of the bismuth-based superconductors has been investigated. The doping was done on the Calcium site ranging from x=0.00 to 0.10. For low doping percentages x<0.03, the 2223 phase still persists. However beyond this concentration the samples were dominated by 2212 phase. These results were obtained from the measurements of temperature dependence of electrical resistance and ac susceptibility of the samples. The magnetic behavior of the doping element, Pr, (a 4f rare earth magnetic element) seemed to have deteriorated the superconducting properties of the system by breaking the electron pairing mechanism. Pr doping also deteriorates the coupling of the superconducting rains, as observed by the abrupt shift of the loss peaks towards lower temperatures. (author)

  14. Inequivalence of single-particle and population lifetimes in a cuprate superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuolong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Sobota, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leuenberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); He, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Hashimoto, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, D. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Eisaki, H. [National Institute of Advanced Industrial Science and Technology, Ibaraki (Japan); Kirchmann, P. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Shen, Z. -X. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)

    2015-06-15

    We study optimally doped Bi-2212 (Tc=96 K) using femtosecond time- and angle-resolved photoelectron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only electron-phonon scattering they should converge in the low-temperature, low-fluence limit. As a result, the qualitative disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon interactions play a significant role in the electron dynamics of cuprate superconductors.

  15. The oxygen content of the high-temperature superconducting compound Bi2+xSr3-yCayCu2O8+d with respect to varying Ca and Bi contents

    International Nuclear Information System (INIS)

    Majewski, P.; Su, H.L.; Aldinger, F.

    1994-01-01

    The oxygen content of Bi 2+x Sr 3-y Ca y Cu 2 O 8+d (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T c decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T c of the 2212 phase primarily is controlled by its cation concentration

  16. Edge structures and properties of triangular antidots in single-layer MoS2

    International Nuclear Information System (INIS)

    Gan, Li-Yong; Cheng, Yingchun; Huang, Wei; Schwingenschlögl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xi-xiang

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS 2 . The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS 2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS 2 devices.

  17. Recent topics in {mu}SR studies on high-T{sub c} Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Isao; Nagamine, Kanetada [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Akoshima, Megumi; Koike, Yoji

    1999-03-01

    We report the recent topics in {mu}SR studies on the high-T{sub c} Superconductors, especially about the studies on Zn-doped Bi-2212 system, Bi{sub 2}Sr{sub 2}Ca{sub 1-x}Y{sub x}(Cu{sub 1-y}Zn{sub y})O{sub 8+{delta}}. Zero-field muon spin relaxation ({mu}SR) measurement was applied to this Zn-doped Bi2212 system to study a possibility of the so called `1/8 problem` which was established in high-T{sub c} La-systems. The muon spin depolarization rate increased with decreasing temperature below 10 K in only the Zn-doped (y=0.025) system in which the hole density was 1/8 (x=0.3125), indicating the slowing down behavior of the Cu-spin fluctuations. A long range coherent ordering of the Cu-spins which were the similar to the one observed in the La-systems was not confirmed down to 0.3 K. Both of the Zn-doping and the 1/8 hole density were essential for the freezing of the Cu-spin fluctuations in also the Zn-doped Bi2212 system. (author)

  18. In situ controllable synthesis of novel surface plasmon resonance-enhanced Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} composite for enhanced and stable visible light photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Lu, Luhua, E-mail: lhlu@cug.edu.cn [Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 23003 (China); Geng, Lei; Wang, Zhongliao; Yuan, Guangyu; Zhu, Guangping [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2017-01-01

    Highlights: • Novel Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary photocatalyst was prepared. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed enhanced catalytic activity. • Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} showed long reusable life. - Abstract: A novel hierarchical Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} ternary visible-light-driven photocatalyst was successfully synthesized by in situ doping Ag{sub 2}WO{sub 4} with Bi{sub 2}MoO{sub 6} nanosheets through a facile hydrothermal and photochemical process. The morphology, structure, optical performance and crystallinity of the products were measured by field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and X-ray diffraction (XRD). The results showed that Ag{sub 2}WO{sub 4}/Ag was uniformly dispersed on the surface of Bi{sub 2}MoO{sub 6} nanosheets. The photocatalytic performance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} heterostructures was evaluated by the degradation of methylene blue (MB) under 410 nm LED arrays. The ternary Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} nanocomposite exhibits higher photocatalytic activity than Bi{sub 2}MoO{sub 6} and Ag{sub 2}WO{sub 4}. The synergistic effect of Ag{sub 2}WO{sub 4} and Bi{sub 2}MoO{sub 6} could generated more heterojunctions which promoted photoelectrons transfer from Ag{sub 2}WO{sub 4} to Bi{sub 2}MoO{sub 6}, leading to the improvement of photocatalytic performance by photoelectrons-holes recombination suppression. At the same time, the surface plasmon resonance of Ag{sub 2}WO{sub 4}/Ag/Bi{sub 2}MoO{sub 6} is another crucial reason for the high photocatalytic performance of organic pollutants degradation. And the 20 wt% Ag{sub 2}WO{sub 4}-loaded Bi{sub 2}MoO{sub 6} shows the optimal photocatalytic performance in the degradation of MB. In addition, the ternary composites can be easily reclaimed by precipitation and exhibits high stability of photocatalytic

  19. Microstructural and magneto-transport properties of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 1−x}Gd{sub x}Cu{sub 2}O{sub 8+δ} superconducting ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Boudjadja, Y., E-mail: yazid.bouj@Gmail.com [NDT Laboratory, Faculty of Science and Technology, Jijel University, Jijel 18000 (Algeria); Amira, A.; Mahamdioua, N.; Saoudel, A. [NDT Laboratory, Faculty of Science and Technology, Jijel University, Jijel 18000 (Algeria); Menassel, S. [MSAR Unit, Physics Department, Constantine 1 University, Constantine 25017 (Algeria); Varilci, A.; Terzioglu, C.; Altintas, S.P. [Department of Physics, Faculty of Arts and Sciences, AIB University, Bolu 14280 (Turkey)

    2017-01-15

    This study aims to investigate the effect of Gd doping on the phase formation, microstructure, transport and magnetic properties of the Bi(Pb)-2212 system. A series of superconducting bulks with a nominal composition of Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 1−x}Gd{sub x}Cu{sub 2}O{sub 8+δ} with x=0, 0.05, 0.10 and 0.15 are synthesized by the solid state synthesis route. The formed samples are characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), electrical transport and magnetic measurements. The experiment results reveal that all the samples doped are composed of Bi-2212 phase and traces of Bi-2201 secondary phase when compared to the undoped sample. The refinement of cell parameters shows that the doping reduces the cell volume of the samples. The texture degree decreases with doping while the degree of orthorhombicity increases. Quantitative EDS analysis confirms that Gd atoms are successfully introduced into crystalline structure. The SEM micrographs show randomly distributed grains with a flake-like shape. The highest value of onset critical transition temperatures is obtained for x=0.10 and is about 90.22 K, which correlates well with the observed slope of resistivity and the hole concentration of the CuO{sub 2} layers. Magnetic hysteresis loops suggest that the diamagnetism, remanant magnetization and lower critical field are better for x=0.10. Based on the enhancements of both grain boundary weak-links and flux pinning centers, improvement of the critical current densities and flux pinning density is obtained with this kind of doping.

  20. Two-dimensional peridynamic simulation of the effect of defects on the mechanical behavior of Bi2Sr2CaCu2Ox round wires

    International Nuclear Information System (INIS)

    Le, Q V; Chan, W K; Schwartz, J

    2014-01-01

    Ag/AgX sheathed Bi 2 Sr 2 CaCu 2 O x (Bi2212) is the only superconducting round wire (RW) with high critical current density (J c ) at high magnetic (>25 T) and is thus a strong candidate for high field magnets for nuclear magnetic resonance and high energy physics. A significant remaining challenge, however, is the relatively poor electromechanical behavior of Bi2212 RW, yet there is little understanding of the relationships between the internal Bi2212 microstructure and the mechanical behavior. This is in part due to the complex microstructures within the Bi2212 filaments and the uncertain role of interfilamentary bridges. Here, two-dimensional peridynamic simulations are used to study the stress distribution of the Bi2212 RWs under an axial tensile load. The simulations use scanning electron micrographs obtained from high J c wires as a starting point to study the impact of various defects on the distribution of stress concentration within the Bi2212 microstructure and Ag. The flexibility of the peridynamic approach allows various defects, including those captured from SEM micrographs and artificially created defects, to be inserted into the microstructure for systematic study. Furthermore, this approach allows the mechanical properties of the defects to be varied, so the effects of porosity and both soft and hard secondary phases are evaluated. The results show significant stress concentration around defects, interfilamentary bridges and the rough Bi2212/Ag interface. In general, the stress concentration resulting from porosity is greater than that of solid-phase inclusions. A clear role of the defect geometry is observed. Results indicate that crack growth is likely to initiate at the Ag/Bi2212 interface or at voids, but that voids may also arrest crack growth in certain circumstances. These results are consistent with experimental studies of Bi2212 electromechanical behavior and magneto-optical imaging of crack growth. (paper)

  1. Doping of (Bi,Pb)-2223 with metal oxides

    International Nuclear Information System (INIS)

    Goehring, D.; Vogt, M.; Wischert, W.; Kemmler-Sack, S.

    1997-01-01

    The effect of doping on formation, superconductivity and pinning forces of (Bi,Pb)-2223 was studied for several dopants. They can be subdivided into promoters (Cu, Mn at low doping level of x=0.1 and Rh) and inhibitors (Mg, Al, Sn, Co, Y, Pd and high substitution levels of Mn and Ni) of the transformation of the precursor material into (Bi,Pb)-2223. According to X-ray diffraction (XRD) studies the incorporation of the dopant into the 2223 lattice is restricted to a very low doping level. Higher dopant concentrations are accompanied by a segregation of secondary phases. These segregations are not effective in the process of creating flux pinning centres. A depression of T c is observed for 2223 materials with the dopants Co, Ni and Pd. (orig.)

  2. Optical properties of a new Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor with fluorite-type δ-Bi{sub 2}O{sub 3} structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zuoshan; Bi, Shala; Wan, Yingpeng [State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Huang, Pengjie [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China); Zheng, Min, E-mail: zhengmin@suda.edu.cn [College of Textile and Clothing Engineering, Soochow University, Suzhou 215006 (China)

    2017-03-31

    Highlights: • Bi{sub 38}Mo{sub 7}O{sub 78} semiconductor nanoparticles were synthesized by sol-gel method. • Bi{sub 38}Mo{sub 7}O{sub 78} keeps the structural characteristics of the patrimonial δ-Bi{sub 2}O{sub 3} structure. • Bi{sub 38}Mo{sub 7}O{sub 78} show an efficient optical absorption in visible light. • Photocatalytic property was markedly enhanced for Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles. • The mechanism of this photocatalysis system was proposed. - Abstract: Bi{sup 3+}-containing inorganic materials usually show rich optical and electronic properties due to the hybridization between 6s and 6p electronic components together with the lone pair in Bi{sup 3+} ions. In this work, a new semiconductor of bismuth molybdate Bi{sub 38}Mo{sub 7}O{sub 78} (19Bi{sub 2}O{sub 3}·7MoO{sub 3}) was synthesized by the sol-gel film coating and the following heat process. The samples developed into nanoparticles with average size of 40 nm. The phase formation was verified via the XRD Rietveld structural refinement. Orthorhombic Bi{sub 38}Mo{sub 7}O{sub 78} can be regarded to be derived from the cubic δ-phase Bi{sub 2}O{sub 3} structure. The microstructure was investigated by SEM, EDX, TEM, BET and XPS measurements. The UV-vis absorption spectra showed that the band gap of Bi{sub 38}Mo{sub 7}O{sub 78} (2.38 eV) was greatly narrowed in comparison with Bi{sub 2}O{sub 3} (2.6 eV). This enhances the efficient absorption of visible light. Meanwhile, the conduction band of is wider and shows more dispersion, which greatly benefits the mobility of the light-induced charges taking part in the photocatalytic reactions. Bi{sub 38}Mo{sub 7}O{sub 78} nanoparticles possess efficient activities on the photodegradation of methylene blue (MB) solutions under the excitation of visible-light. The photocatalysis activities and mechanisms were discussed on the crystal structure characteristics and the measurements such as photoluminescence, exciton lifetime and XPS results.

  3. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong; Cheng, Yingchun; Schwingenschlö gl, Udo; Yao, Yingbang; Zhao, Yong; Zhang, Xixiang; Huang, Wei

    2016-01-01

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  4. Edge structures and properties of triangular antidots in single-layer MoS2

    KAUST Repository

    Gan, Li Yong

    2016-08-30

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS2. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS2 samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS2 devices. Published by AIP Publishing.

  5. Effects of Mo-doping on microstructure and near-infrared shielding performance of hydrothermally prepared tungsten bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingjuan; Li, Can; Xu, Wenai; Zhao, Xiaolin; Zhu, Jingxin [Laboratory of Green Energy Materials and Storage Systems, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Jiang, Haiwei, E-mail: tyjmx@163.com [Laboratory of Green Energy Materials and Storage Systems, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Kang, Litao, E-mail: kangltxy@163.com [Laboratory of Green Energy Materials and Storage Systems, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (China); Zhao, Zhe [School of Materials Science & Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2017-03-31

    Highlights: • Mo-doped tungsten bronzes were hydrothermally synthesized at 80 °C. • Samples transformed from hexagonal to monoclinic structure with Mo-content increase. • 1.5% Mo-doped samples show the best near-infrared shielding performance. • High Mo-doping weakens localized surface plasmon resonance (LSPR) absorption and thus NIR shielding performance. • Small polaron absorption seems to be less affected by Mo-doping. - Abstract: Both Mo and W belong to VIB-sub-group, and possess similar ionic radii, electronegativity and oxide lattice configuration. Herein, Mo-doped (0–80 at.%) tungsten bronzes, M{sub x}WO{sub 3}, were hydrothermally prepared to systematically explore the influence of Mo-doping on their micro-structure and optical performance. The products adopted a hexagonal structure within 6 at.% Mo-doping, and transformed into a monoclinic phase with higher Mo-doping content. Further tests suggested that 1.5 at.% Mo-doping is beneficial for the formation of pure hexagonal phase and uniform nano-rod morphology. Optical measures showed that all samples exhibited high and comparable visible transmittance (70–80%), but a very different near infrared (NIR) shielding ability. The sample doped with 1.5 at.% Mo demonstrated the best NIR shielding ability with a transmittance minimum of 20% at 1300 nm. Further increase of Mo-doping dosage remarkably deteriorated NIR shielding ability by depressing the absorption of localized surface plasmon resonance (LSPR). However, the optical absorption from small-polaron was less influenced by the introduction of Mo. As a result, Mo-doping caused an evident blue shift of the infrared absorption peaks from 1350 to 750 nm.

  6. Pulsed transport critical currents of Bi2212 tapes in pulsed magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rogacki, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw (Poland); Gilewski, A; Klamut, J [International Laboratory of High Magnetic Fields and Low Temperatures, Polish Academy of Sciences, Wroclaw (Poland); Newson, M; Jones, H [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom); Glowacki, B A [IRC in Superconductivity and Department of Materials Science, University of Cambridge, Cambridge (United Kingdom)

    2002-07-01

    If high-T{sub C} superconductors are ever to be used in high-field applications, it is vital that the critical surfaces can be mapped under high-field conditions. However, the latest superconductors have high currents even at fields over 20 T, making accurate measurements very difficult due to the thermal and mechanical problems. In this paper, we compare measurements on BSCCO-2212 tape using a number of different methods, particularly an innovative pulsed transport current and pulsed field mode. We show how the analysis of the voltage signal from BSCCO-2212 tape in pulsed conditions may be used to extract the critical current in quasi-stationary conditions. The effect of a metallic substrate on the results is also briefly discussed. (author)

  7. The effect of Bi3+ and Li+ co-doping on the luminescence characteristics of Eu3+-doped aluminum oxide films

    International Nuclear Information System (INIS)

    Padilla-Rosales, I.; Martinez-Martinez, R.; Cabañas, G.; Falcony, C.

    2015-01-01

    The incorporation of Bi 3+ and Li + as co-dopants in Eu 3+ -doped aluminum oxide films deposited by the ultrasonic spray pyrolysis technique and its effect on the luminescence characteristics of this material are described. Both Bi 3+ and Li + do not introduce new luminescence features but affect the luminescence intensity of the Eu 3+ related emission spectra as well as the excitation spectra. The introduction of Bi 3+ generates localized states in the aluminum oxide host that result in a quenching of the luminescence intensity, while Li + and Bi 3+ co-doping increase the luminescence intensity of these films. - Highlights: • Li and Bi co-doping increase the luminescence. • Bi creates localized states in the Al 2 O 3 host. • Li was incorporated as a co-activator

  8. Edge structures and properties of triangular antidots in single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Li-Yong, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, Yingchun, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa; Huang, Wei [Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials - SICAM, Nanjing Tech University - NanjingTech, 30 South Puzhu Road, Nanjing 211816 (China); Schwingenschlögl, Udo, E-mail: ganly@swjtu.edu.cn, E-mail: iamyccheng@njtech.edu.cn, E-mail: udo.schwingenschlogl@kaust.edu.sa [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Yao, Yingbang [Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); School of Materials and Energy, Guangdong University of Technology, Guangdong 510006 (China); Zhao, Yong [Key Laboratory of Advanced Technology of Materials (Ministry of Education), Superconductivity and New Energy R& D Center, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031 Sichuan (China); Zhang, Xi-xiang [Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Advanced Nanofabrication and Imaging Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia)

    2016-08-29

    Density functional theory and experiments are employed to shed light on the edge structures of antidots in O etched single-layer MoS{sub 2}. The equilibrium morphology is found to be the zigzag Mo edge with each Mo atom bonded to two O atoms, in a wide range of O chemical potentials. Scanning electron microscopy shows that the orientation of the created triangular antidots is opposite to the triangular shape of the single-layer MoS{sub 2} samples, in agreement with the theoretical predictions. Furthermore, edges induced by O etching turn out to be p-doped, suggesting an effective strategy to realize p-type MoS{sub 2} devices.

  9. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun

    2014-04-28

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we investigate Mn-doped MoS2 by first-principles calculations. We study how the valley polarization depends on the strength of the spin orbit coupling and the exchange interaction and discuss how it can be controlled by magnetic doping. Valley polarization by magnetic doping is also expected for other honeycomb materials with strong spin orbit coupling and the absence of inversion symmetry.

  10. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    CERN Document Server

    Natividad, E; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T sub c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J sub c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic m...

  11. Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics

    International Nuclear Information System (INIS)

    Parida, Geetanjali; Bera, J.

    2013-01-01

    Bismuth layer structured ferroelectrics (BLSFs) have attracted much attention because of their potential applications in non-volatile ferroelectric random access memories and high temperature piezoelectric. They are very attractive for these applications due to their fatigue free nature and environment friendly lead-free composition. BLSF crystal structure has layers of bismuth oxide and pseudo perovskite block stacked alternately along their c-direction, For commercial application, numerous efforts have been made to improve the electrical properties of BLSFs. Some effective approaches are: (i) doping at A-site, (ii) high valentcation doping at B-site and (iii) formation of intergrowth between different BLSFs. The intergrowth BLSFs are consist of regular stacking of one half the unit cell of m-member structure and one half the unit cell of (m+1) member BLSF structure along their c-axis. In this report, Nb-doped Bi 4 Ti 3 O 12 -SrBi 4 Ti 4 O 15 intergrowth ceramics have been prepared by modified oxalate route. XRD phase analysis confirmed the formation of single phase compound. Nb-doping does not affect the basic crystal structure of the intergrowth. SEM micrographs showed that the grain size of the ceramics decreases with Nb-doping. The temperature dependence of dielectric constant and losses was investigated in the temperature range 30 to 800℃ and frequency range 1 kHz to 1 MHz. With Nb-doping, the T c of the ferroelectrics reduces and peak permittivity increases. Doping also introduces small relaxor behaviour in the ferroelectrics. The dc conductivity of the ceramics decreases with doping. The remnant polarization (Pr) of the intergrowth ferroelectrics is increased with Nb doping. (author)

  12. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.; Williams, James R.; Kong, Desheng; Meister, Stefan; Peng, Hailin; Bestwick, Andrew J.; Gallagher, Patrick; Goldhaber-Gordon, David; Cui, Yi

    2010-01-01

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  13. Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Cha, Judy J.

    2010-03-10

    A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.

  14. Facile Br- assisted hydrothermal synthesis of Bi2MoO6 nanoplates with enhanced visible-light photocatalytic activity

    International Nuclear Information System (INIS)

    Zhang, Peng; Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin; Zhang, Guoqing; Ding, Shimin

    2017-01-01

    Bi 2 MoO 6 nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br - containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi 2 MoO 6 nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi 2 MoO 6 nanoplates. KBr-templated Bi 2 MoO 6 nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi 2 MoO 6 but inferior to that of CTAB-templated Bi 2 MoO 6 nanoplates. (orig.)

  15. Inducing phase decomposition and superconductivity of Bi2Sr2CaCu2Oy single crystals treated in sulphur atmosphere at low temperature

    International Nuclear Information System (INIS)

    Chen, Q.W.; China Univ. of Science and Technology, Hefei, AH; Wu, W.B.; Qian, Y.T.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Li, F.Q.; Zhou, G.E.; Chen, Z.Y.; Zhang, Y.H.

    1995-01-01

    As it has been pointed out, phase decomposition which may be hard to be detected in a polycrystalline system and is likely to correlate with changes in both oxygen content and microstructure, has been observed frequently in annealed single crystals especially at higher temperatures (> 500 C). This is still an open question to some degree because the mechanism of phase decomposition is very complex and is dominated by the composition of the Bi-2212 phase, the condition of heat treatment, and the atmosphere. Hence, inducing oxygen loss at low temperature to avoid the evaporation of Bi atoms and other undetected structure changes which would occur at higher temperature annealing undoubtedly provides important information about the relationship between oxygen loss and phase decomposition, as well as the relationship between oxygen content and superconductivity. In this note, we report on the results of treatments of Bi 2 Sr 2 CaCu 2 O y single crystals in sulphur atmosphere at 160 C. (orig.)

  16. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study

    Science.gov (United States)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.

    2018-04-01

    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  17. Comparison of the redox activities of sol-gel and conventionally prepared Bi-Mo-Ti mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wildberger, M.; Grundwaldt, J.D.; Mallat, T.; Baiker, A. [Lab. of Technical Chemistry, Swiss Federal Inst. of Technology, ETH-Zentrum, Zuerich (Switzerland)

    1998-12-31

    Novel sol-gel Bi-Mo-Ti oxides have been prepared and characterized by XRD, XPS, FT-Raman and HRTEM. The surface Bi{sup 3+} and Mo{sup 6+} species of some xerogels and an aerogel could be reduced and oxidized at room temperature, whereas the conventionally prepared reference materials were not reduced by H{sub 2} below 300 C. The unusual redox properties, under very mild conditions, are likely due to the unique morphology of Bi-Mo-oxides stabilized by titania. During butadiene oxidation to furan at above 400 C to sol-gel mixed oxides restructured considerably and their performance was barely better than that of titania-supported Bi-Mo oxides. (orig.)

  18. Electronic Raman scattering in Bi2Sr2CaCu2O8=δ

    International Nuclear Information System (INIS)

    Quilty, J.W.; Trodahl, H.J.; Pooke, D.

    1996-01-01

    Full text: High-T c superconductors exhibit a definite Electronic Raman Scattering (ERS) continuum, which most materials do not. Typically, the continuum is relatively flat in the normal state, while below T c the ERS spectrum shows reduced scattering at the lowest Raman shifts and a peak close to the superconducting gap energy. The behaviour below T c is due to the breaking of Cooper pairs and reflects the superconducting density of states, hence revealing the superconducting gap. Through an appropriate choice of incident and scattered polarisation vectors, the electronic Raman continuum of high-T c superconductors may also be used to reveal information on the symmetry of the superconducting gap. Previous studies of the electronic continuum show that a broad peak associated with the superconducting gap forms in the continuum below T c in these materials, when compared to the normal-state. We report temperature and polarisation dependent ERS measurements on differently-doped Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals, within a temperature range of 300 K to 10 K

  19. Experimental evidence of enhanced ferroelectricity in Ca doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.V.; Deus, R.C. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil); Foschini, C.R.; Longo, E. [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Bauru, Dept. de Eng. Mecânica, Av. Eng. Luiz Edmundo C. Coube 14-01, 17033-360 Bauru, SP (Brazil); Cilense, M. [Universidade Estadual Paulista, UNESP, Instituto de Química – Laboratório Interdisciplinar em Cerâmica (LIEC), Rua Professor Francisco Degni s/n, 14800-90 Araraquara, SP (Brazil); Simões, A.Z., E-mail: alezipo@yahoo.com [Universidade Estadual Paulista, UNESP, Faculdade de Engenharia de Guaratinguetá, Av. Dr. Ariberto Pereira da Cunha, 333, Bairro Portal das Colinas, CEP 12516-410 Guaratinguetá, SP (Brazil)

    2014-04-01

    Calcium (Ca)-doped bismuth ferrite (BiFeO{sub 3}) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements. Structural studies by XRD and TEM reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO{sub 3} where enhanced ferroelectric and piezoelectric properties are produced by internal strain. Resistive switching is observed in BFO and Ca-doped BFO which are affected by the barrier contact and work function of multiferroic materials and Pt electrodes. A high coercive field in the hysteresis loop is observed for the BiFeO{sub 3} film. Piezoelectric properties are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain. This observation introduces magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom which are already present in the multiferroic BiFeO{sub 3}. - Highlights: • Ca doped BiFeO{sub 3} thin films were obtained by the polymeric precursor method. • Co-existence of distorted rhombohedral and tetragonal phases are evident. • Enhanced ferroelectric and piezoelectric properties are produced by the internal strain in the Ca doped BiFeO{sub 3} film.

  20. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-03-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  1. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    Science.gov (United States)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  2. Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field

    Science.gov (United States)

    Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao

    2017-03-01

    External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.

  3. Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com [Advanced Materials Research Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440033, M.S. India (India)

    2016-05-23

    In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of doped PZT.

  4. Phase development and kinetics of high temperature Bi-2223 phase

    International Nuclear Information System (INIS)

    Yavuz, M.; Maeda, H.; Hua, K.L.; Shi, X.D.

    1998-01-01

    The two-dimensional nucleation (random)-growth mechanism were observed as a support for the related previous works, which is attributable to the growth of the Bi-2223 grain in the a-b plane direction of the Bi-2212 matrix is being much faster than in the c-direction, or that the early-formed plate-like 2212 phase confines the 2223 product. At the beginning of the reaction, the additional phases are partially melted. Because of the structure, composition and thermal fluctuation, the 2223 nucleates and grows in the phase boundary between the liquid phase and Bi-2212. It was shown here that the nucleation and the growth rate were relatively fast between 0 and 36 h. At the final stage, between 36 and 60 h, because of the impingement of the growth fronts of different nuclei, the high formation rate of 2223 is suppressed. The major reactant 2212 remains as a solid and its plate-like configuration determines the two dimensional nature of the reaction. The amount of liquid forms during reaction is small. (orig.)

  5. The oxygen content of the high-temperature superconducting compound Bi{sub 2+x}Sr{sub 3-y}CayCu{sub 2}O{sub 8+d} with respect to varying Ca and Bi contents

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, P.; Su, H.L.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuggart (Germany)

    1994-12-31

    The oxygen content of Bi{sub 2+x}Sr{sub 3-y}Ca{sub y}Cu{sub 2}O{sub 8+d} (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T{sub c} decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T{sub c} of the 2212 phase primarily is controlled by its cation concentration.

  6. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  7. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  8. Luminescence properties of Y2O3:Bi3+, Yb3+ co-doped phosphor for application in solar cells

    Science.gov (United States)

    Lee, E.; Kroon, R. E.; Terblans, J. J.; Swart, H. C.

    2018-04-01

    Bismuth (Bi3+) and ytterbium (Yb3+) co-doped yttrium oxide (Y2O3) phosphor powder was successfully synthesised using the co-precipitation technique. The X-ray diffraction (XRD) patterns confirmed that a single phase cubic structure with a Ia-3 space group was formed. The visible emission confirmed the two symmetry sites, C2 and S6, found in the Y2O3 host material and revealed that Bi3+ ions preferred the S6 site as seen the stronger emission intensity. The near-infrared (NIR) emission of Yb3+ increased significantly by the presence of the Bi3+ ions when compared to the singly doped Y2O3:Yb3+ phosphor with the same Yb3+ concentration. An increase in the NIR emission intensity was also observed by simply increasing the Yb3+ concentration in the Y2O3:Bi3+, Yb3+ phosphor material where the intensity increased up to x = 5.0 mol% of Yb3+ before decreasing due to concentration quenching.

  9. New structural and electrical data on Bi-Mo mixed oxides with a structure based on [Bi12O14]∞ columns

    International Nuclear Information System (INIS)

    Vannier, R.N.; Abraham, F.; Nowogrocki, G.; Mairesse, G.

    1999-01-01

    The authors recently described a new family of oxide anion conductors with a structure based on [Bi 12 O 14 ] ∞ columns (Journal of Solid State Chemistry 122, 394 (1996)). The parent compound of this series can be formulated as Bi 26 Mo 10 O 69 and formation of a solid solution, in the Bi 2 O 3 -MoO 3 binary system, in the range 2.57 ≤ Bi/Mo ≤ 2.77 was established. The stoichiometry of this series was questioned by R. Enjalbert et al. (Journal of Solid State Chemistry 131, 236 (1997)), but confirmed by D.J. Buttrey et al. (Materials Research Bulletin 32, 947 (1997)). The first part of this paper is devoted to a refutation of criticisms by R. Enjalbert et al. In the second part, a comparison with other Bi 2 O 3 -based oxide anion conductors enables the authors to propose an iono-covalent description of this novel structure type, taking into account all the structural and electrical features, especially new neutron powder diffraction refinement and conductivity measurements under variable oxygen partial pressures

  10. Superconductivity proximate to antiferromagnetism in a copper-oxide monolayer grown on Bi2Sr2CaCu2O8 +δ

    Science.gov (United States)

    Wang, Shuai; Zhang, Long; Wang, Fa

    2018-01-01

    A nodeless superconducting (SC) gap was reported in a recent scanning tunneling spectroscopy experiment of a copper-oxide monolayer grown on a Bi2Sr2CaCu2O8 +δ (Bi2212) substrate [Zhong et al., Sci. Bull. 61, 1239 (2016), 10.1007/s11434-016-1145-4], which is in stark contrast to the nodal d -wave pairing gap in the bulk cuprates. Motivated by this experiment, we first show with first-principles calculations that the tetragonal CuO (T-CuO) monolayer on the Bi2212 substrate is more stable than the commonly postulated CuO2 structure. The T-CuO monolayer is composed of two CuO2 layers sharing the same O atoms. The band structure is obtained by first-principles calculations, and its strong electron correlation is treated with the renormalized mean-field theory. We argue that one CuO2 sublattice is hole doped while the other sublattice remains half filled and may have antiferromagnetic (AF) order. The doped Cu sublattice can show d -wave SC; however, its proximity to the AF Cu sublattice induces a spin-dependent hopping, which splits the Fermi surface and may lead to a full SC gap. Therefore, the nodeless SC gap observed in the experiment could be accounted for by the d -wave SC proximity to an AF order, thus it is extrinsic rather than intrinsic to the CuO2 layers.

  11. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    International Nuclear Information System (INIS)

    Azlan Abdul Rahman; Nasri Abdul Hamid; Abdul Aziz Mohamed; Mohd Shahrul Nizam Abdullah; Samsul Isman; Hidayah Zainal

    2013-01-01

    Full-text: For practical applications of high-temperature superconductor ceramics, the compounds must be able to sustain extreme mechanical stress and external magnetic field. Bi-2212 superconductor is one of the existing superconductors that are commonly used in various applications. Improvement in the microstructure enhanced the connectivity of the adjacent grains within the superconducting grains, and as such improved the mechanical strength of the ceramics. The ability of the superconductor ceramics to sustain superconducting properties in external magnetic field is also required. The compounds must be able to maintain high transport critical current density (Jc) in magnetic field. Another potential application of superconductors is at the nuclear facilities. Thus, study on the impact of radiation exposure on the mechanical and superconducting properties is very important to gauge the viability of superconductor ceramics in such environment. In this study, the mechanical and superconducting properties between exposure and non-irradiated samples are compared. Characterization will be done by the temperature dependence on electrical resistance measurements, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and measurements of transport critical current (Jc) dependence on temperature in magnetic field. (author)

  12. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation

    International Nuclear Information System (INIS)

    Huang, Hongwei; Liu, Liyuan; Zhang, Yihe; Tian, Na

    2015-01-01

    Graphical abstract: The efficient charge transfer occurred at the interface of BiIO 4 /Bi 2 MoO 6 heterojunction results in the efficient separation of photoexcited electron–hole pairs and promotes the photocatalytic activity. - Highlights: • BiIO 4 /Bi 2 MoO 6 composites were synthesized by a one-step hydrothermal method. • The BiIO 4 /Bi 2 MoO 6 composite exhibits much better photoelectrochemical performance. • The highly improved photocatalytic activity is attributed to heterojunction structure. • Holes (h + ) are the main active species in the photodegradation process of RhB. - Abstract: A novel BiIO 4 /Bi 2 MoO 6 heterojunction photocatalyst has been successfully developed by a one-step hydrothermal method for the first time. It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflection spectroscopy (DRS). Compared to pure BiIO 4 and Bi 2 MoO 6 , the BiIO 4 /Bi 2 MoO 6 composite exhibits the much better photoelectrochemical performance for Rhodamine B (RhB) degradation and photocurrent (PC) generation under visible light irradiation (λ > 420 nm). This enhancement on visible-light-responsive photocatalytic activity should be attributed to the fabrication of a BiIO 4 /Bi 2 MoO 6 heterojunction, thus resulting in the high separation and transfer efficiency of photogenerated charge carriers. The supposed photocatalytic mechanism dominated by holes (h + ) was verified by the photoluminescence (PL) spectroscopy, electrochemical impedance spectra (EIS) and active species trapping experiments

  13. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: xjx@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: lhm@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)

    2015-03-15

    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  14. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.S. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Wang, H.J.; Feng, L. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Shao, L.X. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Zou, C.W., E-mail: qingyihaiyanas@163.com [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China)

    2014-08-30

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  15. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    International Nuclear Information System (INIS)

    Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W.

    2014-01-01

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent

  16. Synthesis and characterization of hierarchical Bi2MoO6/Polyaniline nanocomposite for all-solid-state asymmetric supercapacitor

    International Nuclear Information System (INIS)

    Wu, Fangsheng; Wang, Xiaohong; Zheng, Wanru; Gao, Haiwen; Hao, Chen; Ge, Cunwang

    2017-01-01

    Bi 2 MoO 6 /Polyaniline (PANI) hybrid nanocomposite with enhanced specific capacity and rate performance was synthesized by compositing Bi 2 MoO 6 with the PANI layer using sodium lignosulphonate (SLS) as a dopant through a simple chemical polymerization. The Bi 2 MoO 6 /PANI (BMP) nanocomposite affords a large reaction surface area, an excellent structural stability, a large number of active sites, good strain accommodation, and fast electron and ion transportation compared with pure Bi 2 MoO 6 , which all are beneficial for improving the electrochemical performance. Hence, the Bi 2 MoO 6 /PANI electrode with 0.15 g Bi 2 MoO 6 (BMP-2) shows a high specific capacitance of 826 F g −1 at a current density of 1 A g −1 and capacitance retention of 75.5% after 3000 cycles at a current density of 5 A g −1 , which is higher than pristine Bi 2 MoO 6 and other electrodes. In addition, an all-solid-state asymmetric supercapacitor (ASC) fabricated by the BMP-2 electrode and activated carbon (AC) displays a high specific capacitance of 90.0 F g −1 and a high energy density of 31.9 Wh kg −1 . Moreover, the BMP-2//AC ASC device exhibits high cycle stability, and 86.5% of its initial capacitance is retained after continuous 6000 cycles. Therefore, these results will promote a promising potential application of the Bi 2 MoO 6 /PANI nanocomposite for use as an effective electrode material in supercapacitors.

  17. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...

  18. Facile synthesis of Sm-doped BiFeO{sub 3} nanoparticles for enhanced visible light photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zijun; Chen, Da, E-mail: dchen_80@hotmail.com; Wang, Sen; Zhang, Ning; Qin, Laishun, E-mail: qinlaishun@cjlu.edu.cn; Huang, Yuexiang

    2017-06-15

    Highlights: • Effective Sm doping into BiFeO{sub 3} nanoparticles was obtained by a facile sol-gel route. • Band gap of Sm-doped BiFeO{sub 3} nanoparticles was regulated by the dopant concentration. • Sm-doped BiFeO{sub 3} nanoparticles exhibited superior photocatalytic activities. • The possible photocatalytic mechanism of Sm-doped BiFeO{sub 3} nanospheres was discussed. - Abstract: In this work, the effect of Sm doping on the structural and photocatalytic properties of BiFeO{sub 3} (BFO) was investigated. A series of Sm doped BFO nanoparticles containing different Sm dopant contents (Bi{sub (1−x)}Sm{sub x}FeO{sub 3}, x = 0.00, 0.01, 0.03, 0.05, 0.07, 0.10) were synthesized via a simple sol-gel route. It was revealed that Sm{sup 3+} ions were successfully doped into BFO nanoparticles, and the band gap value was gradually decreased when increasing Sm dopant concentration. The photocatalytic activity of Sm-doped BFO photocatalyst was significantly affected by the Sm doping content. Compared to pure BFO, the Sm-doped BFO samples exhibited much higher photocatalytic activity. The improved photocatalytic activity of Sm-doped BFO could be attributed to the enhanced visible light absorption and the efficient separation of photogenerated electrons and holes derived from Sm dopant trapping level in the Sm-doped BFO samples. In addition, the possible photocatalytic mechanism of Sm-doped BFO photocatalyst was also proposed.

  19. Sr doped BiMO{sub 3} (M = Mn, Fe, Y) perovskites: Structure correlated thermal and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Samita, E-mail: samitasthakur@gmail.com [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); School of Basic Sciences, Arni University, Kathgarh (India); Singh, K.; Pandey, O.P. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India)

    2017-02-01

    Sr{sup 2+} substituted BiMnO{sub 3−δ} (BSM), BiFeO{sub 3−δ} (BSF) and BiYO{sub 3−δ} (BSY) perovskites structured samples have been investigated for their structural, thermal and electrical properties. These samples are characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), iodometric titration, Raman spectroscopy, thermogravimetric analysis (TGA) and conductivity. Rietveld refinement confirms that BSY sample has cubic (Fm-3m) symmetry with limited solid solubility of Sr{sup 2+} as compared to tetragonal symmetry (p4mm) of BSM and BSF samples. X-ray photoelectron spectroscopy study confirms the presence of Mn{sup 4+} and Fe{sup 4+} content in BSM and BSF samples. The amount of Mn{sup 3+}, Fe{sup 4+} and oxygen vacancies in these systems are calculated by iodometric titration. The highest oxygen vacancies are found in BSF sample. The BSM system exhibit the highest conductivity followed by BSF and BSY samples due to the presence of Mn{sup 4+} content and moderate oxygen vacancies in this particular sample. - Highlights: • (BiSr)MO{sub 3} (M = Mn, Fe, Y) was synthesized by solid state reaction method. • The B-site cation highly affect the generation of defects in perovskites. • The structural and electrical properties strongly depend upon the B-site cation.

  20. Structural properties of superconducting Bi-2223/Ag tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalck Andersen, L.

    2001-05-01

    The structural properties of silver clad high-T{sub c} superconducting ceramic tapes of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) have been investigated by means of synchrotron X-ray diffraction (including the 3DXRD microscope setup), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDS). By synchrotron X-ray diffraction in situ studies of the phase development during the transformation of (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub x} (Bi-2212) into Bi-2223, the stoichiometry changes and the texture have been performed during annealing in 8% O{sub 2} and in air. Furthermore, an annealing with two high temperature cycles has been performed to study the equilibrium phenomena. During heating (Ca,Sr){sub 2}PbO{sub 4} decomposes at temperatures between 700 deg. C and 840 deg.C. Simultaneously, the Bi-2212 lattice contracts, indicating an incorporation of Pb. Moreover, the grain mis-alignment decreases significantly. In air we have observed that Bi-2212 partly dissociates into (Ca,Sr){sub 2}CuO{sub 3} and a liquid at temperatures above 812 deg. C. At the annealing temperature Bi-2212 and (Ca,Sr){sub 2}CuO{sub 3} react with the liquid to form Bi-2223. The transformation mechanism is discussed. During cooling below {approx}750 deg.C (Ca,Sr){sub 2}CuO{sub 3} and the liquid mainly transform into Bi-2201. Below {approx}780 deg. C Bi-2223 decomposes to 3221. In addition, a two-step cooling experiment and a decomposition study have been performed in 8% O{sub 2}. By TEM the grain and colony size in the c-axis direction, the angles of c-axis tilt grain boundaries and the intergrowth content are investigated. A fully processed tape has on average 50% thicker grains than a tape after the 1st annealing. The angles of c-axis tilt grain boundaries are on average 14 deg. and 26 deg. for the fully processed tape and the tape after the 1st annealing, respectively. The intergrowth content (15%) and

  1. Exfoliated thin Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying; Jia, Yulong; Wang, Lina [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Min [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Bi, Yingpu, E-mail: yingpubi@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Qi, Yanxing, E-mail: qiyx@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China)

    2016-12-30

    Highlights: • Thin Bi{sub 2}MoO{sub 6} nanosheets were prepared by microwave assisted ultrasonic separation. • The thin Bi{sub 2}MoO{sub 6} nanosheets could be more favorable to charge shift and separation. • The WO{sub 3}/thin Bi{sub 2}MoO{sub 6} exhibits superior photoelectric activity than WO{sub 3}/Bi{sub 2}MoO{sub 6} film. • The efficient photoelectric property results from facilitated charge separation. - Abstract: Thin Bi{sub 2}MoO{sub 6} nanosheets are obtained by a microwave-assisted ultrasonic separation process. After exfoliation, the thinner and uniform nanosheets with a thickness of about 10 nm were obtained. The exfoliated nanosheets would provide many amazing functionalities such as high electron mobility and quantum Hall effects. Therefore, thin Bi{sub 2}MoO{sub 6} supported on WO{sub 3} electrode (WO{sub 3}/thin Bi{sub 2}MoO{sub 6}) exhibits facilitated charge separation than pure WO{sub 3} film and the un-exfoliated Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode (WO{sub 3}/Bi{sub 2}MoO{sub 6}). As a result, WO{sub 3}/thin Bi{sub 2}MoO{sub 6} shows remarkably stable photocurrent density of 2.2 mA/cm{sup 2} at 0.8 V{sub SCE} in 0.1 M Na{sub 2}SO{sub 4} which is higher than that of that of WO{sub 3} (1.1 mA/cm{sup 2}) and WO{sub 3}/Bi{sub 2}MoO{sub 6} (1.5 mA/cm{sup 2}).

  2. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  3. Fe-doping effect on the Bi{sub 3}Ni superconductor microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Gonsalves, Silvio Henrique; Monteiro, Joao Frederico Haas Leandro; Leal, Adriane Consuelo da Silva; Andrade, Andre Vitor Chaves de; Souza, Gelson Biscaia de; Siqueira, Ezequiel Costa; Serbena, Francisco Carlos; Jurelo, Alcione Roberto, E-mail: arjurelo@uepg.br [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil). Departamento de Fisica

    2017-05-15

    The substitution effects of Fe ion on the structure of the intermetallic Bi{sub 3}Ni{sub 1-x}Fe{sub x} (0 ≤ x ≤ 0.10) superconductor were studied. The morphology of samples consists of an inhomogeneous laminar slab-like microstructure. The main phase corresponds to Bi{sub 3}Ni{sub 1-x}Fe{sub x} with an orthorhombic structure (Pnma), but with very small quantities of impurities of BiNi and Bi as revealed by X-ray diffraction. SEM and AFM reveal that the Bi3{sub N}i1{sub -x}Fe{sub x} phase consists of two regions. One region is Bi richer and Ni and Fe poorer than the other region.Raman spectroscopy revealed two phonon modes at room temperature. No significant changes were observed in the spectra with Fe doping and in different regions of the Bi{sub 3}Ni{sub 1-x}Fe{sub x} phase. Superconductivity is observed below a transition temperature T{sub C} = 4 K and regardless of iron doping. (author)

  4. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    Science.gov (United States)

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  5. Phase chemistry and microstructure evolution in silver-clad (Bi2-xPbx)Sr2Ca2Cu3Oy filaments

    International Nuclear Information System (INIS)

    Luo, J.S.; Merchant, N.; Maroni, V.A.; Escorcia-Aparicio, E.; Gruen, D.M.; Tani, B.S.; Riley, G.N. Jr.; Carter, W.L.

    1992-08-01

    The reaction kinetics and mechanism that control the conversion of (Bi,Pb) 2 Sr 2 CaCu 2 O z (Bi-2212) + alkaline earth cuporates to (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) in silver-clad wires were investigated as a function of equilibration temperature and time at a fixed oxygen partial pressure (7.5% O 2 ). Measured values for the fractional conversion of Bi-2223 versus time have been evaluated based on the Avrami equation. SEM and TEM studies of partially and fully converted wires have revealed that (1) the growth of Bi-2223 is two-dimensional and controlled by a diffusion process, (2) liquid phases are present during part of the Bi-2212 -> Bi-2212 conversion, and (3) segregation of the second phases occurs in early time domains of the reaction

  6. Synthesis and electrochemical properties of tin-doped MoS{sub 2} (Sn/MoS{sub 2}) composites for lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Min, Feixia; Luo, Zhaohui; Wang, Shiquan, E-mail: wsqhao@126.com [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Teng, Fei [Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and Engineering (China); Li, Guohua [Zhejiang University of Technology, School of Chemical Engineering and Materials Science (China); Feng, Chuanqi [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China)

    2016-12-15

    SnO{sub 2}-MoO{sub 3} composites were synthesized by using (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O and SnCl{sub 2}·2H{sub 2}O as raw materials through a simple solvothermal method followed by pyrolysis. Tin-doped MoS{sub 2} (Sn/MoS{sub 2}) flowers have been synthesized by a solvothermal method followed with annealing in Ar(H{sub 2}) atmosphere, with SnO{sub 2}-MoO{sub 3}, thioacetamide (TAA), and urea as starting materials. The doping and the content of Sn-doping play crucial roles in the morphology and electrochemical performance of the MoS{sub 2}. As anode materials for lithium ion battery (LIB), all Sn/MoS{sub 2} composites exhibit both higher reversible capacity and better cycling performance at current density of 200 mA g{sup −1}, compared with MoS{sub 2} without Sn doping. The achieved discharge capacity for Sn/MoS{sub 2} composites is above 1000 mAh g{sup −1} after 100 cycles with nearly 100% coulombic efficiency. The doping of metal Sn in MoS{sub 2} can improve the conductivity of MoS{sub 2} and significantly enhance its electrochemical properties. The good electrochemical performance suggests that the Sn/MoS{sub 2} composite could be a promising candidate as a novel anode material for LIB application. Our present work provides a new approach to the fabrication of anode materials for LIB applications.

  7. Energy transfer and colorimetric properties of Eu3+/Dy3+ co-doped Gd2(MoO4)3 phosphors

    International Nuclear Information System (INIS)

    Wan Jing; Cheng Lihong; Sun Jiashi; Zhong Haiyang; Li Xiangping; Lu Weili; Tian Yue; Lin Hai; Chen Baojiu

    2010-01-01

    Dy 3+ single-doped and Eu 3+ /Dy 3+ co-doped gadolinium molybdate (Gd 2 (MoO 4 ) 3 ) phosphors were synthesized by a traditional solid-state reaction method. The XRD was used to confirm the crystal structure of the phosphors. The energy transfer between Eu 3+ and Dy 3+ was observed and studied. The Eu 3+ concentration can hardly affect the blue and yellow emission intensities of Dy 3+ , and the Eu 3+ emission intensity increases with the increase of Eu 3+ concentration. Co-doping with Eu 3+ compensated the red emission component of the Dy 3+ doped Gd 2 (MoO 4 ) 3 phosphor. Introducing proper amount of Eu 3+ can improve the colorimetric performance of the phosphors.

  8. Significance of out-of-plane electronic contributions in Bi-cuprates studied by resonant photoelectron spectroscopy at the Cu2p edge

    Science.gov (United States)

    Janowitz, Christoph; Schmeißer, Dieter

    2018-04-01

    In high-temperature superconductors with a layered crystal structure, the copper-oxygen planes are commonly considered to dominate the electronic properties around the Fermi energy. As a consequence, out-of-plane contributions are often neglected in the description of these materials. Here we report on a resonant photoemission study of Pb0,4Bi1,6Sr2,0CaCu2O8 ((Pb, Bi)-2212) and Pb0,6Bi1,4Sr1.5La0.5CuO6 ((Pb, Bi)-2201)) single crystals to unravel the resonant decay mechanisms at the Cu2p absorption edge. We find evidence for a pronounced polarization dependence caused by two different Auger processes for in-plane and out-of-plane orientations. We deduce that the lowest energy valence state—which is involved in the two Auger processes—consists of three-dimensional contributions by admixed out-of-plane Sr, Bi, and O2p states. It also suggests that the doping-induced charge density is dynamic, fluctuating within the Cu-O plane, and spills out perpendicular to it. This suggests that out-of-plane electronic degrees of freedom should be included in future consistent theoretical models of these materials.

  9. Enhanced magnetic and ferroelectric properties in scandium doped nano Bi{sub 2}Fe{sub 4}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Dimple P., E-mail: dimpled@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sudakar, C.; Mocherla, Pavana S.V. [Department of Physics, IIT Madras, Chennai 600 036 (India); Mandal, Balaji P.; Jayakumar, Onnatu D. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tyagi, Avesh K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-08-15

    In this study we report the synthesis of undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles using sonochemical technique. X-ray diffraction reveals that all samples are single phase with no impurities detected. EDS analysis was done to confirm the extent of Sc{sup 3+} doping in the samples. The size and morphology of the nanoparticles have been analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M-H relationship reported for bulk Bi{sub 2}Fe{sub 4}O{sub 9}. A magnetization of 0.144 {mu}B/f.u. is obtained at 300 K, which is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc{sup 3+} dopant in varying concentrations in these Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles. Thus it can be inferred that Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles shows promise as good multiferroic materials. -- Graphical abstract: Undoped and Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been synthesized using sonochemical technique. The bi-functionalities of Sc{sup 3+} doped Bi{sub 2}Fe{sub 4}O{sub 9} nanoparticles have been demonstrated. The Bi{sub 2}Fe{sub 4(1-x)}Sc{sub x}O{sub 9} (x = 0.1) nanoparticles showed enhanced magnetic and ferroelectric properties with considerably less lossy characteristics compared to the bulk Bi{sub 2}Fe{sub 4}O{sub 9}. Highlights: Black-Right-Pointing-Pointer Phase pure Bi{sub 2}Fe{sub 4}O{sub 9} nanostructures synthesized using a facile

  10. A first-principles study of structure, orbital interactions and atomic oxygen and OH adsorption on Mo-, Sc- and Y-doped nickel bimetallic clusters

    International Nuclear Information System (INIS)

    Das, Nishith Kumar; Shoji, Tetsuo

    2013-01-01

    Highlights: •Mo-doped nickel clusters are energetically more stable than the Sc and Y-doped clusters (n ⩾ 10). •Mo atom exhibits center at the cluster rather than edge, while Sc and Y atom sit at the edge. •The metallic s, d orbitals are mainly dominated on the stability of nanoclusters. •The oxygen and OH adsorption energy of Mo-doped cluster are higher than those of other nanoclusters. •2p Orbitals are strongly bonds with Mo 4d, and a weakly interacts with Ni 3d, 4s and Mo 5s orbitals. -- Abstract: Density functional theory (DFT) has been used to study the stability, orbitals interactions and oxygen and hydroxyl chemisorption properties of Ni n M (1 ⩽ n ⩽ 12) clusters. A single atom doped-nickel clusters increase the stability, and icosahedral Ni 12 Mo cluster is the most stable structure. Molybdenum atom prefers to exhibit center at the cluster (n ⩾ 10) rather than edge, while Sc and Y atom remain at the edge. The Ni–Mo bond lengths are smaller than the Ni–Sc and Ni–Y. The pDOS results show that the d–d orbitals interactions are mainly dominating on the stability of clusters, while p orbitals have a small effect on the stability. The Mo-doped nanoclusters have the highest oxygen and OH chemisorption energy, and the most favorable adsorption site is on the top Mo site. The larger cluster distortion is found for the Sc- and Y-doped structures compared to other clusters. The oxygen 2p orbitals are strongly hybridizing with the Mo 4d orbitals (n < 9) and a little interaction between oxygen 2p and Ni 3d, 4s and Mo 5s orbitals. The Mo-doped clusters are significantly increased the chemisorption energies that might improve the passive film adherence of nanoalloys

  11. Synthesis, structural and spectroscopic properties of acentric triple molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Savina, A.A. [Laboratory of Oxide Systems, Baikal Institute of Nature Management, SB RAS, Ulan-Ude 670047 (Russian Federation); Department of Chemistry, Buryat State University, Ulan-Ude 670000 (Russian Federation); Atuchin, V.V., E-mail: atuchin@isp.nsc.ru [Laboratory of Optical Materials and Structures, Rzhanov Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Functional Electronics Laboratory, Tomsk State University, Tomsk 634050 (Russian Federation); Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikov, S.F. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Solodovnikova, Z.A. [Laboratory of Crystal Chemistry, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Krylov, A.S. [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Maximovskiy, E.A. [Laboratory of Epitaxial Layers, Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Laboratory of Research Methods of Composition and Structure of Functional Materials, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Molokeev, M.S. [Laboratory of Crystal Structure, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Oreshonkov, A.S [Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Department of Photonics and Laser Technology, Siberian Federal University, Krasnoyarsk 660079 (Russian Federation); Pugachev, A.M. [Laboratory of Condenced Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090 (Russian Federation); and others

    2015-05-15

    New ternary molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is synthesized in the system Na{sub 2}MoO{sub 4}–Cs{sub 2}MoO{sub 4}–Bi{sub 2}(MoO{sub 4}){sub 3}. The structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} of a new type is determined in noncentrosymmetric space group R3c, a=10.6435(2), c=40.9524(7) Å, V=4017.71(13) Å{sup 3}, Z=12 in anisotropic approximation for all atoms taking into account racemic twinning. The structure is completely ordered, Mo atoms are tetrahedrally coordinated, Bi(1) and Bi(2) atoms are in octahedra, and Na(1) and Na(2) atoms have a distorted trigonal prismatic coordination. The Cs(1) and Cs(2) atoms are in the framework cavities with coordination numbers 12 and 10, respectively. No phase transitions were found in Cs{sub 2}NaBi(MoO{sub 4}){sub 3} up to the melting point at 826 K. The compound shows an SHG signal, I{sub 2w}/I{sub 2w}(SiO{sub 2})=5 estimated by the powder method. The vibrational properties are evaluated by Raman spectroscopy, and 26 narrow lines are measured. - Graphical abstract: - Highlights: • The crystal structure of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is defined. • The molybdate Cs{sub 2}NaBi(MoO{sub 4}){sub 3} is stable up to melting point at 826 K. • Vibrational properties of Cs{sub 2}NaBi(MoO{sub 4}){sub 3} are evaluated by Raman spectroscopy.

  12. Oxygen stoichiometry and its influence on superconductivity in Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Krishnaraj, P.; Lelovic, M.; Eror, N.G.; Balachandran, U.

    1994-01-01

    Bi 2 Sr 2 CaCu 2 O 8+x (2212) was synthesized from freeze-dried precursors. The oxygen content of 2212 was determined as a function of temperature and oxygen partial pressure and the variation of Tc with oxygen content was determined. It was found that 2212 without excess oxygen (x = 0) is superconducting. This points to the role of the (Bi-O) ∞ layers as a source for holes in 2212. Four probe resistivity measurements were also performed on 2212. The nature of oxygen intercalation and oxygen removal in 2212 was studied by thermogravimetry and resistivity. It was also found that samples of 2212 with the same oxygen content had different T c 's depending on thermal history. This difference in T c is thought to arise from oxygen occupying different sites in the lattice while maintaining the same total oxygen content

  13. Ganoderma-Like MoS2 /NiS2 with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst.

    Science.gov (United States)

    Guan, Yongxin; Feng, Yangyang; Wan, Jing; Yang, Xiaohui; Fang, Ling; Gu, Xiao; Liu, Ruirui; Huang, Zhengyong; Li, Jian; Luo, Jun; Li, Changming; Wang, Yu

    2018-05-27

    Herein, a unique ganoderma-like MoS 2 /NiS 2 hetero-nanostructure with isolated Pt atoms anchored is reported. This novel ganoderma-like heterostructure can not only efficiently disperse and confine the few-layer MoS 2 nanosheets to fully expose the edge sites of MoS 2 , and provide more opportunity to capture the Pt atoms, but also tune the electronic structure to modify the catalytic activity. Because of the favorable dispersibility and exposed large specific surface area, single Pt atoms can be easily anchored on MoS 2 nanosheets with ultrahigh loading of 1.8 at% (the highest is 1.3 at% to date). Owing to the ganoderma-like structure and platinum atoms doping, this catalyst shows Pt-like catalytic activity for the hydrogen evolution reaction with an ultralow overpotential of 34 mV and excellent durability of only 2% increase in overpotential for 72 h under the constant current density of 10 mA cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size

    International Nuclear Information System (INIS)

    Lotey, Gurmeet Singh; Verma, N. K.

    2012-01-01

    Pure and Gd-doped BiFeO 3 nanoparticles have been synthesized by sol–gel method. The significant effects of size and Gd-doping on structural, electrical, and magnetic properties have been investigated. X-ray diffraction study reveals that the pure BiFeO 3 nanoparticles possess rhombohedral structure, but with 10% Gd-doping complete structural transformation from rhombohedral to orthorhombic has been observed. The particle size of pure and Gd-doped BiFeO 3 nanoparticles, calculated using Transmission electron microscopy, has been found to be in the range 25–15 nm. Pure and Gd-doped BiFeO 3 nanoparticles show ferromagnetic character, and the magnetization increases with decrease in particle size and increase in doping concentration. Scanning electron microscopy study reveals that grain size decreases with increase in Gd concentration. Well-saturated polarization versus electric field loop is observed for the doped samples. Leakage current density decreases by four orders by doping Gd in BiFeO 3 . The incorporation of Gd in BiFeO 3 enhances spin as well as electric polarization at room temperature. The possible origin of enhancement in these properties has been explained on the basis of dopant and its concentration, phase purity, small particle, and grain size.

  15. Thermoelectric Response in Single Quintuple Layer Bi2Te3

    KAUST Repository

    Sharma, S.

    2016-10-05

    Because Bi2Te3 belongs to the most important thermoelectric materials, the successful exfoliation of a single quintuple layer has opened access to an interesting two-dimensional material. For this reason, we study the thermoelectric properties of single quintuple layer Bi2Te3 by considering both the electron and phonon transport. On the basis of first-principles density functional theory, the electronic and phononic contributions are calculated by solving Boltzmann transport equations. The dependence of the lattice thermal conductivity on the phonon mean free path is evaluated along with the contributions of the acoustic and optical branches. We find that the thermoelectric response is significantly better for p- than for n-doping. By optimizing the carrier concentration, at 300 K, a ZT value of 0.77 is achieved, which increases to 2.42 at 700 K.

  16. Enhanced multiferroic properties in scandium doped Bi2Fe4O9

    International Nuclear Information System (INIS)

    Dutta, Dimple P.; Tyagi, A. K.

    2013-01-01

    Undoped and Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles have been synthesized using sonochemical method. The phase purity of the samples was checked using powder X-rau diffraction technique. EDS analysis was done to confirm the extent of Sc 3+ doping in the samples. The size and morphology of the nanoparticles have been analyzed using transmission electron microscopy (TEM). The Bi 2 Fe 4 O 9 nanoparticles show a weak ferromagnetic behavior at room temperature, which is quite different from the linear M–H relationship reported for bulk Bi 2 Fe 4 O 9 . This is mainly attributed to the uncompensated moments at the disordered particle surface resulting from the reduced coordination of the surface spins, arising due to lattice strain or oxygen deficiency. Addition of Sc 3+ dopant in varying concentrations in these Bi 2 Fe 4 O 9 nanoparticles, improves their magnetic as well as ferroelectric properties. The leakage current is considerably reduced and electric polarization increases significantly in case of Bi 2 Fe 4(1-x) Sc x O 9 (x = 0.1) nanoparticles. Hence it can be inferred that Sc 3+ doped Bi 2 Fe 4 O 9 nanoparticles shows promise as good multiferroic materials.

  17. Hydrothermal synthesis, structure and photocatalytic properties of La/Bi co-doped NaTaO3

    International Nuclear Information System (INIS)

    Lan, Nguyen Thi; Huan, Bui Doan; Anh, Trinh Xuan; Chinh, Huynh Dang; Phan, Le Gia; Hoang, Luc Huy; Hong, Le Van

    2016-01-01

    La/Bi co-doped NaTaO 3 nanomaterials for photocatalytic applications have been successfully synthesized by hydrothermal method at low temperature. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and UV-Vis molecular absorption spectroscopy. The results showed that the particle sizes of La/Bi co-doped NaTaO 3 were smaller than that of the pure NaTaO 3 . La/Bi co-doping has extended optical absorption in the visible light region and then successfully increased photocatalytic activity of the La/Bi-codoped NaTaO 3 that were evaluated by degradation of methylene blue (MB). (author)

  18. Feasible voltage-tap based quench detection in a Ag/Bi-2212 coil enabled by fast 3D normal zone propagation

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Li, Pei

    2016-01-01

    For this study, small insert solenoids have been built using a commercial Ag/Bi-2212 multifilamentary round wire, insulated with a new thin TiO 2 – polymer coating insulation (thickness in ~20 μm versus ~100 μm for a commonly used mullite braided sleeve insulation), and characterized in background magnetic field up to 14 T at 4.2 K to explore the high-field performance and quench detection of Bi-2212 magnets. The coil has no visible leakage and no electrical shorts after reaction, and it carries 280 A/mm -2 in a background field 14 T and generates an additional 1.7 T. A notable result is that, despite normal zones propagate slowly along the conductor, the hot spot temperature upon detection increases only from 40 K to 60 K when the resistive quench detection voltage threshold increases from 0.1 V to 1 V for all operating current density investigated, showing that quench detection using voltage taps is feasible for this coil. This is in a strong contrast to a coil we previously built to the same specifications but from wires insulated with the mullite braided sleeve insulation, for which the hot spot temperature upon detection increases from ~80 K to ~140 K while increasing from the detection voltage threshold from 0.1 V to 1 V, and thus for which quench detection using voltage taps presents significant risks, consistent with the common belief that the effectiveness of quench detection using voltage taps for superconducting magnets built using high temperature superconductors is seriously compromised by their slow normal zone propagation. This striking difference is ascribed to the fast transverse quench propagation enabled by thin insulation and improved thermal coupling between conductor turns. Finally, this work demonstrates that quench detection for high-temperature superconducting magnets highly depends on the design and construction of the coils such as insulation materials used and this dependence should be factored into the overall magnet design

  19. Large theoretical thermoelectric power factor of suspended single-layer MoS2

    International Nuclear Information System (INIS)

    Babaei, Hasan; Khodadadi, J. M.; Sinha, Sanjiv

    2014-01-01

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS 2 utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS 2 on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS 2 to peak at ∼2.8 × 10 4 μW/m K 2 at 300 K, at an electron concentration of 10 12 cm −2 . This figure is higher than that in bulk Bi 2 Te 3 , for example. Given its relatively high thermal conductivity, suspended SL-MoS 2 may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized

  20. Chemisorption-induced n-doping of MoS2 by oxygen

    International Nuclear Information System (INIS)

    Qi, Long; Wang, Ying; Wu, Yihong; Shen, Lei

    2016-01-01

    Both chemisorption and physisorption affect the electronic properties of two-dimensional materials, such as MoS 2 , but it remains a challenge to probe their respective roles experimentally. Through repeated in-situ electrical measurements of few-layer MoS 2 field-effect transistors in an ultrahigh vacuum system with well-controlled oxygen partial pressure (6 × 10 −8 mbar–3 × 10 −7 mbar), we were able to study the effect of chemisorption on surface defects separately from physically adsorbed oxygen molecules. It is found that chemisorption of oxygen results in n-doping in the channel but negligible effect on mobility and on/off ratio of the MoS 2 transistors. These results are in disagreement with the previous reports on p-doping and degradation of the device's performance when both chemisorption and physisorption are present. Through the analysis of adsorption-desorption kinetics and the first-principles calculations of electronic properties, we show that the experimentally observed n-doping effect originates from dissociative adsorption of oxygen at the surface defects of MoS 2 , which lowers the conduction band edge locally and makes the MoS 2 channel more n-type-like as compared to the as-fabricated devices

  1. Preparation of Nd-doped BiFeO{sub 3} films and their electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Meng [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Tan Guoqiang, E-mail: tan3114@163.com [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China); Xue Xu; Xia Ao; Ren Huijun [Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education of China, Shaanxi University of Science and Technology, Weiyang District, Xi' an 710021 (China)

    2012-09-01

    The Nd-doped BiFeO{sub 3} thin films were prepared on SnO{sub 2}(FTO) substrates spin-coated by the sol-gel method using Nd(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O, Fe(NO{sub 3}){sub 3}{center_dot}9H{sub 2}O and Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O as raw materials. The microstructure and electric properties of the BiFeO{sub 3} thin films were characterized and tested. The results indicate that the diffraction peak of the Nd-doped BiFeO{sub 3} films is shifted towards right as the doping amounts are increased. The structure is transformed from the rhombohedral to pseudotetragonal phase. The crystal grain is changed from an elliptical to irregular polyhedron. Structure transition occurring in the Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} films gives rise to the largest Pr of 64 {mu}C/cm{sup 2}. The leakage conductance of the Nd doped thin films is reduced. The dielectric constant and dielectric loss of Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3} thin film at 10 kHz are 190 and 0.017 respectively.

  2. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  3. Synthesis of Zn{sup 2+} doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen Ting [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China); Huang, Wan Zhen; Zhou, Huan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Yin, Hao Yong [Institute of Environmental Science and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Zheng, Yi Fan [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310014 (China); Song, Xu Chun, E-mail: songxuchunfj@163.com [Department of Chemistry, Fujian Normal University, Fuzhou 350007 (China)

    2015-07-25

    Highlights: • Hierarchical-structured Zn-doped BiOCl were prepared by a facile solvothermal method. • The Zn-doped BiOCl showed higher photocatalytic ability than other BiOCl materials. • The effects of Zn-doping contents on the photocatalytic activity were discussed. • Repetitive tests implied the good stability of the Zn-doped BiOCl photocatalyst. - Abstract: In this study, BiOCl doped with different contents of zinc were successfully prepared via a facile ethylene glycol (EG)-assisted solvothermal process at 160 °C for 12 h. The as-synthesized samples were characterized in details by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), UV–vis diffuse reflectance spectra (UV–vis DRS) and Brunauer Emmet Teller (BET) measurement. The photocatalytic performances were evaluated by the photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. The results showed that Zn doping did not change the morphologies and particle sizes of BiOCl. However, it had an obvious effect on the photocurrent and BET surface area of BiOCl and accordingly the photocatalytic performance of BiOCl was greatly improved. The Zn-doped BiOCl with R{sub Zn} = 0.07 showed the highest photocatalytic activities with almost all of the RhB decomposed in 8 min. Moreover, repetitive tests imply the good recyclability and stability of the catalysts. The enhanced photocatalytic activity was largely ascribed to the efficient separation of photogenerated electron–hole pairs and high BET surface area of the catalysts. In addition, a possible mechanism on basis of the experimental results was discussed.

  4. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol

    Science.gov (United States)

    Yang, Shuang; Liu, Yueli; Chen, Tao; Jin, Wei; Yang, Tingqiang; Cao, Minchi; Liu, Shunshun; Zhou, Jing; Zakharova, Galina S.; Chen, Wen

    2017-01-01

    Zn doped MoO3 nanobelts with the thickness of 120-275 nm, width of 0.3-1.4 μm and length of more than 100 μm are prepared by hydrothermal reaction. The operating temperature of sensors based on Zn doped MoO3 nanobelts is 100-380 °C with a better response to low concentration of ethanol. The highest response value of sensors based on Zn doped MoO3 to 1000 ppm ethanol at 240 °C is 321, which is about 15 times higher than that of pure MoO3 nanobelts. The gas sensors based on Zn doped MoO3 nanobelts possess good selectivity to ethanol compared with methanol, ammonia, acetone and toluene, which implies that it would be a good candidate in the potential application. The improvement of gas sensing properties may be attributed to the increasing absorbed ethanol, the decreasing probability of ethoxy recombination, the promoted dehydrogenation progress at lower temperature, and the narrowed band gap by Zn doping.

  5. Effects of Bi doping on dielectric and ferroelectric properties

    Indian Academy of Sciences (India)

    [Pb0.95(La1−Bi)0.05][Zr0.53Ti0.47]O3 (PLBZT) ferroelectric thin films have been synthesized on indium tin oxide (ITO)-coated glass by sol–gel processing. PLBZT thin films were annealed at a relatively low temperature of 550 °C in oxygen ambient. Effects of Bi doping on structure, dielectric and ferroelectric properties of ...

  6. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  7. Fe-Doping Effect on Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3

    Directory of Open Access Journals (Sweden)

    Hyeona Mun

    2015-03-01

    Full Text Available The substitutional doping approach has been shown to be an effective strategy to improve ZT of Bi2Te3-based thermoelectric raw materials. We herein report the Fe-doping effects on electronic and thermal transport properties of polycrystalline bulks of p-type Bi0.48Sb1.52Te3. After a small amount of Fe-doping on Bi/Sb-sites, the power factor could be enhanced due to the optimization of carrier concentration. Additionally, lattice thermal conductivity was reduced by the intensified point-defect phonon scattering originating from the mass difference between the host atoms (Bi/Sb and dopants (Fe. An enhanced ZT of 1.09 at 300 K was obtained in 1.0 at% Fe-doped Bi0.48Sb1.52Te3 by these synergetic effects.

  8. Facile Br{sup -} assisted hydrothermal synthesis of Bi{sub 2}MoO{sub 6} nanoplates with enhanced visible-light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Peng [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Teng, Xiaoxu; Liu, Dongsheng; Fu, Liang; Xie, Hualin [Yangtze Normal University, College of Chemistry and Chemical Engineering, Chongqing (China); Zhang, Guoqing [Yangtze Normal University, Chongqing Key Laboratory of Inorganic Special Functional Materials, Chongqing (China); Ding, Shimin [Yangtze Normal University, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Chongqing (China)

    2017-10-15

    Bi{sub 2}MoO{sub 6} nanoplates have been controllably synthesized via a facile hydrothermal process with the assistance of Br{sup -} containing surfactant cetyltrimethylammonium bromide (CTAB) or KBr. A remarkable enhancement in the visible-light-driven photocatalytic degradation of Rhodamine B was observed. It was found that reaction temperature and surfactant play crucial roles in the formation and properties of the Bi{sub 2}MoO{sub 6} nanoplates. The best results as photocatalyst were obtained with the sample hydrothermally synthesized at 150 C with the assistance of CTAB. The improved photocatalytic performance could be ascribed to the {001}-oriented nanostructure of the Bi{sub 2}MoO{sub 6} nanoplates. KBr-templated Bi{sub 2}MoO{sub 6} nanoplates also showed better photocatalytic efficiency compared with that of flower-like Bi{sub 2}MoO{sub 6} but inferior to that of CTAB-templated Bi{sub 2}MoO{sub 6} nanoplates. (orig.)

  9. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun

    2013-03-05

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.

  10. Rapid enhancement of nodal quasiparticle mass with heavily underdoping in Bi2212

    Science.gov (United States)

    Anzai, Hiroaki; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Ishikado, Motoyuki; Fujita, Kazuhiro; Ishida, Shigeyuki; Uchida, Shin-ichi; Ino, Akihiro

    2018-05-01

    We report substantial advance of our low-energy angle-resolved photoemission study of nodal quasiparticles in Bi2Sr2CaCu2O8+δ. The new data cover the samples from underdoped down to heavily underdoped levels. We also present the nodal Fermi velocities that determined by using an excitation-photon energy of hν = 7.0 eV over a wide doping range. The consistency between the results with hν = 8.1 and 7.0 eV allows us to rule out the effect of photoemission matrix elements. In comparison with the data previously reported, the nodal effective mass increases by a factor of ∼ 1.5 in going from optimally doped to heavily underdoped levels. We find a rapid enhancement of the nodal quasiparticle mass at low doping levels near the superconductor-to-insulator transition. The effective coupling spectrum, λ (ω) , is extracted directly from the energy derivatives of the quasiparticle dispersion and scattering rate, as a causal function of the mass enhancement factor. A steplike increase in Reλ (ω) around ∼ 65 meV is demonstrated clearly by the Kramers-Kronig transform of Imλ (ω) . To extract the low-energy renormalization effect, we calculated a simple model for the electron-boson interaction. This model reveals that the contribution of the renormalization at | ω | ≤ 15 meV to the quasiparticle mass is larger than that around 65 meV in underdoped samples.

  11. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles

    Science.gov (United States)

    Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae

    2018-05-01

    Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.

  13. Spin-Glass Transition and Giant Paramagnetism in Heavily Hole-Doped Bi2Sr2Co2Oy

    Science.gov (United States)

    Hsu, Hung Chang; Lee, Wei-Li; Lin, Jiunn-Yuan; Young, Ben-Li; Kung, Hsiang-Hsi; Huang, Jian; Chou, Fang Cheng

    2014-02-01

    Hole-doped single crystals of misfit-layered cobaltate Bi2-xPbxSr2-zCo2Oy (x = 0-0.61, y = 8.28-8.62, and z = 0.01-0.22) have been successfully grown using the optical floating-zone method. Heavier hole doping has been achieved through both Pb substitution in the Bi site and the more effective Sr vacancy formation. The Co4+ : Co3+ ratio can be raised significantly from its original ˜1 : 1 to 4.5 : 1, as confirmed by iodometric titration. A spin-glass transition temperature of Tg ˜ 70 K is confirmed by ac susceptibility measurement when the Co4+ : Co3+ ratio becomes higher than 2 : 1, presumably owing to the significantly increased probability of triangular geometrical frustration among antiferromagnetically coupled localized Co4+ spins.

  14. Preparation and characterization of Fe3O4/SiO2/Bi2MoO6 composite as magnetically separable photocatalyst

    International Nuclear Information System (INIS)

    Hou, Xuemei; Tian, Yanlong; Zhang, Xiang; Dou, Shuliang; Pan, Lei; Wang, Wenjia; Li, Yao; Zhao, Jiupeng

    2015-01-01

    Highlights: • Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite was prepared by a hydrothermal method. • The composite has an enhanced visible absorption compared with pure Bi 2 MoO 6 . • The magnetic photocatalyst displayed excellent stability and reusability. • O 2 ·− and · OH play a major role during the photocatalytic process. - Abstract: In this paper, Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres were prepared by a facile hydrothermal method. The scanning electron microscope (SEM) results revealed that flower-like three dimensional (3D) Bi 2 MoO 6 microspheres were decorated with Fe 3 O 4 /SiO 2 magnetic nanoparticles. The UV–vis diffuse reflection spectra showed extended absorption within the visible light range compared with pure Bi 2 MoO 6 . We evaluated the photocatalytic activities of Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 microspheres on the degradation of Rhodamine B (RhB) under visible light irradiation and found that the obtained composite exhibited higher photocatalytic activity than pure Bi 2 MoO 6 and P25. Moreover, the Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 composite also displayed excellent stability and their photocatalytic activity decreased slightly after reusing 5 cycles. Meanwhile, the composite could be easily separated by applying an external magnetic field. The trapping experiment results suggest that superoxide radical species O 2 ·− and hydroxyl radicals · OH play a major role in Fe 3 O 4 /SiO 2 /Bi 2 MoO 6 system under visible light irradiation. The combination of flower-like three dimensional (3D) Bi 2 MoO 6 microspheres and Fe 3 O 4 /SiO 2 magnetic nanospheres provides a useful strategy for designing multifunctional nanostructure materials with enhanced photocatalytic activities in the potential applications of water purification

  15. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    Science.gov (United States)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  16. Modification of TiO{sub 2} nanorods by Bi{sub 2}MoO{sub 6} nanoparticles for high performance visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Na; Zhu Li [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Zhang Weide, E-mail: zhangwd@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China); Yu Yuxiang; Zhang Wenhui; Hou Meifang [School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640 (China)

    2011-10-13

    Highlights: > Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts. > Effective separation of photoexcited electrons and holes. > High visible light photocatalytic activity. - Abstract: In this work, TiO{sub 2} nanorods were prepared by a hydrothermal process and then Bi{sub 2}MoO{sub 6} nanoparticles were deposited onto the TiO{sub 2} nanorods by a solvothermal process. The nanostructured Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites was evaluated by degradation of methylene blue. The Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites exhibit higher catalytic activity than pure Bi{sub 2}MoO{sub 6} and TiO{sub 2} for degradation of methylene blue under visible light irradiation ({lambda} > 420 nm). Further investigation revealed that the ratio of Bi{sub 2}MoO{sub 6} to TiO{sub 2} in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi{sub 2}MoO{sub 6}:TiO{sub 2} = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.

  17. Synthesis of AgI/Bi2MoO6 nano-heterostructure with enhanced visible-light photocatalytic property

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2018-04-01

    Full Text Available A novel nano-heterostructure of AgI/Bi2MoO6 photocatalyst was successfully synthesized via a facile deposition-precipitation method. The samples were systematically characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoemission spectroscopy, UV–Vis absorption spectroscopy, and photoluminescence spectra. While sole Bi2MoO6 or AgI showed poor activity toward photocatalytic rhodamine B degradation, the nano-heterostructure was found with superior performance. The AgI/Bi2MoO6 composite with an optimal content of 20 wt% AgI exhibited the highest photocatalytic degradation rate. Rhodamine B was totally degraded within 75 min visible-light irradiation. Moreover, the hybrid photocatalyst also showed a fairly good stability for several-cycle reuse. This study indicates that the AgI/Bi2MoO6 nano-heterostructure can be used as an effective candidate for photocatalytic degradation of organic pollutants. Keywords: Heterostructure, Photocatalyst, RhB-degradation

  18. Enhancement of thermoelectric properties of Mg2Si compounds with Bi doping through carrier concentration tuning

    Science.gov (United States)

    Lee, Ji Eun; Cho, Sang-Hum; Oh, Min-Wook; Ryu, Byungi; Joo, Sung-Jae; Kim, Bong-Seo; Min, Bok-Ki; Lee, Hee-Woong; Park, Su-Dong

    2014-07-01

    The Bi-doped Mg2Si powder was fabricated with solid state reaction method and consolidated with hot pressing method and then its thermoelectric properties were investigated. The n-type transport properties were measured in all samples and temperature dependence of the electrical properties shows a behavior of degenerate semiconductors for Bi-doped samples. The electrical resistivity and the Seebeck coefficient were greatly reduced with Bi, which was mainly due to the increment of the carrier concentration. The samples have maximum carrier concentration of 8.2 × 1018 cm-3. The largest ZT value of 0.61 was achieve at 873 K for Mg2.04SiBi0.02. The Bi-doping was found to be an effective n-type dopant to adjust carrier concentration. [Figure not available: see fulltext.

  19. Alternating-current transport losses of melt-cast processed Bi-2212 bulk superconductor bars

    International Nuclear Information System (INIS)

    Tsukamoto, T; Inada, R; Inagaki, N; Andoh, H; Sugiura, T; Oota, A

    2003-01-01

    Using a melt-casting method, we have fabricated two pieces of Bi-2212 bulk superconductor bar with square and rectangular cross-sections, and we have investigated the alternating-current (ac) transport self-field losses at 77 K. Despite the main contribution of hysteresis loss of the superconductor, there is some difference in the loss behaviour between these two samples. To elucidate the origin, we make numerical calculations on the ac transport self-field losses as a function of current amplitude I 0 below the critical current I c . At a fixed I 0 , the calculated values using the uniform J c distribution and the actual cross-sectional geometry are much higher than the experimental data for the sample with a square cross-section 7.5 x 7.5 mm 2 , while there is good agreement between the calculation and the experiment for the sample with a rectangular cross-section 4.5 x 13.6 mm 2 . The discrepancy appearing in the sample with a square cross-section is ascribed to the actual J c distribution, which is confirmed by critical current measurements when scraping off the sample. The local J c value decreases significantly in going from the surface to the interior of the sample. This suppresses the extension of the flux-penetration region to the interior under ac current transmission and lowers the loss generation compared with the calculated results obtained by the uniform J c distribution

  20. 3D structured Mo-doped Ni3S2 nanosheets as efficient dual-electrocatalyst for overall water splitting

    Science.gov (United States)

    Wu, Chengrong; Liu, Bitao; Wang, Jun; Su, Yongyao; Yan, Hengqing; Ng, Chuntan; Li, Cheng; Wei, Jumeng

    2018-05-01

    Searching for a cost-effective, high efficient and stable bifunctional electrocatalyst for overall water-splitting is critical to renewable energy systems. In this study, three-dimensional (3D) curved nanosheets of Mo-doped Ni3S2 grown on nickel foam were successfully synthesized via a one-step hydrothermal process. The hydrogen-evolution reaction (HER) and the oxygen-evolution reaction (OER) in alkaline environment of this 3D catalyst are investigated in detail. The results show that it possesses lower overpotential, high current densities and small Tafel slopes both in OER and HER. For HER, the catalysts show excellent electrochemical performance, demonstrating a low over-potential of 212 mV at 10 mA cm-2 with a large decrease of 127 mV compared to the undoped Ni3S2. And it also shows a lower overpotential of 260 mV at 10 mA cm-2 which decreases 30 mV for OER. In addition, it is only need 1.67 V for the overall water splitting at 10 mA cm-2 which is 70 mV. It found that the Mo element would change the morphology of Ni3S2 and induce much more active sites for HER and OER. The as-prepared Mo-doped Ni3S2 bi-functional electrocatalyst could act as the promising electrode materials for water splitting.

  1. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    Science.gov (United States)

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  2. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    International Nuclear Information System (INIS)

    Hao, H.; Liu, H.X.; Cao, M.H.; Min, X.M.; Ouyang, S.X.

    2006-01-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi 4 Ti 4 O 15 (SBT) were studied in the range 40-590 C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm -1 modes related to the rotating and tilting of the TiO 6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm -1 peaks. (orig.)

  3. Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy

    Science.gov (United States)

    Hao, H.; Liu, H. X.; Cao, M. H.; Min, X. M.; Ouyang, S. X.

    2006-10-01

    The temperature-dependent Raman spectra of Mg- and La-doped SrBi4Ti4O15 (SBT) were studied in the range 40 590 °C. A quantum chemistry calculation was employed to estimate these two substitution states. It was found that A-site doping in this study not only caused multiplicative substitution states, but also the Raman spectra changed with the substitution amount. In a La-doped perovskite-like layer, La would occupy the Bi site when x>0.10 and the 314 and 550 cm-1 modes related to the rotating and tilting of the TiO6 octahedron firstly became wide and then became sharp. With the increase of the substitution amount, both substitution states of Mg-doped SBT lead to the widening of 270 and 520 cm-1 peaks.

  4. The origin of the enhanced performance of nitrogen-doped MoS_2 in lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Weijun, Xia; Wu, Zhenjun; Huo, Jia; Liu, Dongdong; Wang, Shuangyin; Wang, Qiang

    2016-01-01

    MoS_2 with a similar layered structure to graphene has been widely applied in various areas including lithium ion batteries. However, low conductivity, capacity fading and poor rate performance are still the main challenges for MoS_2 anode materials. In this work, for the first time, we prepared nitrogen-doped MoS_2 (N-MoS_2) nanosheets through a simple two-step method involving the preparation of MoS_2 with defects by the hydrothermal method, followed by sintering in a NH_3 atmosphere. Our electrochemical characterizations and density functional theory calculations demonstrated that nitrogen doping could enhance the electron conductivity and showed higher specific capacity than pristine MoS_2 as anode materials of lithium ion batteries, which can be attributed to the faster transportation of electrons and ions because of nitrogen doping. This work helps us understand the origin of the enhanced performance of N-doped MoS_2 in lithium ion batteries. (paper)

  5. The effect of sintering temperature on the intergranular properties and weak link behavior of Bi2223 superconductors

    Directory of Open Access Journals (Sweden)

    P. Kameli

    2006-03-01

    Full Text Available  A systematic study of the intergranular properties of (Bi,Pb2 Sr2 Ca2 Cu3 Oy (Bi2223 polycrystalline samples has been done using the electrical resistivity and AC susceptibility techniques. In this study, we have prepared a series of Bi2223 samples with different sintering temperatures. The XRD results show that by increasing the sintering temperature up to 865° c , the Bi2212 phase fraction decreases. It was found that the Bi2212 phase on the grain boundaries is likely to play the role of the weak links and consequently reduces the intergranular critical current densities.

  6. In-plane polarization dependence of (Bi,Pb){sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} single crystals studied by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, A., E-mail: ghafari@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, I-34149 Trieste (Italy); Ariffin, A.K. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Department of Physics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim (Malaysia); Janowitz, C., E-mail: christoph.janowitz@physik.hu-berlin.de [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany); Dwelk, H.; Krapf, A.; Manzke, R. [Institute of Physics, Humboldt University of Berlin, Newtonstr., 15, D-12489 Berlin (Germany)

    2014-06-15

    The effects of in-plane polarization change on the determination of the hole density of weakly under-doped (Bi, Pb)-2212 single crystals has been studied by x-ray absorption spectroscopy (XAS). The XAS signal at the CuL{sub 3} edge (925–940 eV) and O K edge (525 eV to 539 eV) were recorded under continuous rotation of the CuO{sub 2} plane from 0° to 180° with a minimum increment of 1.8°, yielding experimentally an in-plane polarization dependence for the absorption signals at the respective threshold. From that the in-plane angular dependence of the hole density (n{sub H}(φ)) could be determined. Fermi's golden rule was then used for the evaluation of the in-plane polarization dependence showing the expected polarization independence in disaccord to the experimental observations. Possible scenarios to solve this issue are discussed. Our results propose that polarization dependence could be due to inhomogeneous distribution of holes in the CuO{sub 2} planes which is also supported by models. Second, the role of out of plane orbitals has to be taken into account for interpretation.

  7. Superconducting Bi-Sr-Ca-Cu-O thin films from metallo-organic complexes

    International Nuclear Information System (INIS)

    Gruber, H.; Krautz, E.; Fritzer, H.P.; Popitsch, A.

    1991-01-01

    Thin films in the Bi-Sr-Ca-Cu-O system are produced by decomposition of organic precursor compounds containing different metallo-organic complexes. The superconducting phase identified is Bi 2 Sr 2 CaCu 2 O 8+x on (100)-MgO single crystal substrates, polycrystalline Au- and Ag-ribbons and Bi 2 Sr 2 Ca 2 Cu 3 O 10+x on Ag-ribbons. For the 2212-phase a zero resistance temperature of 79 K is found. The 2223-samples on Ag-ribbons show a broad transition at 110 K with a zero resistance at 85 K. SEM and EDX are used for the detection of the microstructure and composition of the prepared films. (orig.)

  8. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  9. Tuning the electrical transport of type II Weyl semimetal WTe2 nanodevices by Mo doping

    Science.gov (United States)

    Fu, Dongzhi; Pan, Xingchen; Bai, Zhanbin; Fei, Fucong; Umana-Membreno, Gilberto A.; Song, Honglian; Wang, Xuelin; Wang, Baigeng; Song, Fengqi

    2018-04-01

    We fabricated nanodevices from MoxW1-xTe2 (x = 0, 0.07, 0.35), and conducted a systematic comparative study of their electrical transport. Magnetoresistance measurements show that Mo doping can significantly suppress mobility and magnetoresistance. The results for the analysis of the two band model show that doping with Mo does not break the carrier balance. Through analysis of Shubnikov-de Haas oscillations, we found that Mo doping also has a strong suppressive effect on the quantum oscillation of the sample, and the higher the ratio of Mo, the fewer pockets were observed in our experiments. Furthermore, the effective mass of electron and hole increases gradually with increasing Mo ratio, while the corresponding quantum mobility decreases rapidly.

  10. Solidification of Bi2Sr2Ca1Cu2Oy and Bi2Sr1.75Ca0.25CuOy

    International Nuclear Information System (INIS)

    Holesinger, T.G.; Miller, D.J.; Viswanathan, H.K.; Chumbley, L.S.

    1993-01-01

    The solidification processes for the compositions Bi 2 Sr 2 CaCu 2 O y (2212) and Bi 2 Sr 1.75 Ca 0.25 CuO y (2201) were determined as a function of oxygen partial pressure. During solidification in argon, the superconducting phases were generally not observed to form for either composition. In both cases, the solidus is lowered to approximately 750 degree C. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 2-x Ca x O y (22x) and Cu 2 O while solidification of Bi 2 Sr 2 CaCu 2 O y in Ar resulted in a divorced eutectic structure of Bi 2 Sr 3-x Ca x O y (23x) and Cu 2 O. Solidification of Bi 2 Sr 1.75 Ca 0.25 CuO y in O 2 resulted in large grains of 2201 interspersed with small regions containing the eutectic structure of 22x and CuO/Cu 2 O. Solidification of Bi 2 Sr 2 CaCu 2 O y in partial pressures of 1%, 20%, and 100% oxygen resulted in multiphase samples consisting of 2212, 2201, some alkaline-earth cuprates, and both divorced eutectic structures found during solidification in Ar. For both compositions, these latter structures can be attributed to oxygen deficiencies present in the melt regardless of the overpressure of oxygen. These eutectic structures are unstable and convert into the superconducting phases during subsequent anneals in oxygen. The formation process of the 2212 phase during solidification from the melt was determined to proceed through an intermediate state involving the 2201 phase

  11. Fabrication of Ni-doped BiVO_4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment

    International Nuclear Information System (INIS)

    Regmi, Chhabilal; Kshetri, Yuwaraj K.; Kim, Tae-Ho; Pandey, Ramesh Prasad; Ray, Schindra Kumar; Lee, Soo Wohn

    2017-01-01

    Highlights: • Synthesis of a Ni-doped BiVO_4 semiconductor photocatalyst with reduced band gap energy. • Ni-doped BiVO_4 provided efficient photocatalytic activity for ibuprofen degradation and E. coli and green tide deactivation. • DFT calculation and thermodynamic modeling to understand the underlying mechanism. - Abstract: A visible-light-driven Ni-doped BiVO_4 photocatalyst was synthesized using a microwave hydrothermal method. The nominal Ni doping amount of 1 wt% provided excellent photoactivity for a variety of water pollutants, such as ibuprofen (pharmaceutical), Escherichia coli (bacteria), and green tides (phytoplankton). Each Ni-doped BiVO_4 sample exhibits better performance than pure BiVO_4. The degradation of ibuprofen reaches 80% within 90 min, the deactivation of Escherichia coli reaches around 92% within 5 h, and the inactivation of green tide (Chlamydomonas pulsatilla) reaches 70% upon 60 min of the visible light irradiation. The first principle calculation and thermodynamic modeling revealed that Ni doping in the vanadium site gives the most stable configuration of the synthesized samples with the formation of an in-gap energy state and oxygen vacancies. The in-gap energy state and the oxygen vacancies serve as an electron-trapping center that decreases the migration time of the photogenerated carrier and increases the separation efficiency of electron-hole pairs, which are responsible for the observed efficient photocatalytic, anti-bacterial and anti-algal activity of the samples. These properties thus suggest potential applications of Ni-doped BiVO_4 as a multifunctional material in the field of wastewater treatment.

  12. Diffusion coefficients for Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolite at 100-200 MPa

    Science.gov (United States)

    Berlo, Kim; Brooker, Richard; Wilke, Max

    2014-05-01

    A series of experiments have been conducted to determine the diffusivities of Tl, Pb, Cd, In, Zn, Bi, As, Mo and Sb in hydrous rhyolitic melt. Diffusion experiments used two adjoining glass cylinder of the same hydrous composition, one doped with the elements of interest at ~ 100 ppm. These couples were rapidly heated to 850, 1000 and 1150°C at 100-200 MPa for a few hours. After quenching the sectioned charges were analyzed by both synchrotron XRF (The Diamond Light Source) and LA-ICP-MS (University of Oxford). The data shows excellent correlation between these two techniques. The diffusion profiles were fitted to a 1-D diffusion couple equation to determine the diffusivities and fitting to the different temperature runs defined the Arrhenius parameters. We find that for 850°C the diffusion coefficients follow the trend Tl>Pb>Cd>Zn>In>Bi>As>Sb>Mo. Additional experiments were performed with either S or Cl added (to both sides of the diffusion couple). In general S increases the diffusion rate of all metals except Mo and Sb, which diffuse slower in the presence of S. Chlorine also speeds up the diffusion of metals with the exception of In, Mo and Sb. The systematic change in diffusivities of these metals and their different behaviour in the presence of the ligands that are also observed to be significant in volcanic gases, are important in determining the distribution of these metals during degassing (e.g. MacKenzie and Canil, 2008). This is particularly important in a dynamic environment such as a volcanic conduit. There are also implications for economic exploration and well as hazard mitigation.

  13. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  14. Enhanced thermoelectric figure of merit in strained Tl-doped Bi2Se3

    KAUST Repository

    Saeed, Y.; Singh, Nirpendra; Schwingenschlö gl, Udo

    2014-01-01

    We explain recent experimental findings on Tl-doped Bi2Se3 by determining the electronic and transport properties by first-principles calculations and semi-classical Boltzmann theory. Though Tl-doping introduces a momentum-dependent spin

  15. Achieving tunable doping of MoSe2 based devices using GO@MoSe2 heterostructure

    Science.gov (United States)

    Maji, Tuhin Kumar; Tiwary, Krishna Kanhaiya; Karmakar, Debjani

    2017-05-01

    Doping nature of MoSe2, one of the promising Graphene analogous device material, can be tuned by controlling the concentration of functional groups in Graphene oxide (GO)@MoSe2 heterostructure. In this study, by first-principles simulation, we have observed that GO can be used as a carrier injection layer for MoSe2, where n or p type carriers are introduced within MoSe2 layer depending on the type and concentration of functional moieties in it. Both n and p-type Schottky barrier height modulations are investigated for different modeled configurations of the heterostructure. This combinatorial heterostructure can be a promising material for future electronic device application.

  16. Broad band and enhanced photocatalytic behaviour of Ho3+-doped Bi2O3 micro-rods

    Science.gov (United States)

    Prasad, Neena; Karthikeyan, Balasubramanian

    2018-06-01

    Band-gap-tuned Bi2O3 micro-rods were synthesized using simple co-precipitation method by doping 5 wt% Ho3+ to mitigate the concentration of toxic dye from the polluted water using it as a photocatalyst. Structure and morphology of the prepared samples were identified using powder X-ray diffraction technique and scanning electron microscopy (SEM). Elemental composition and chemical state of the prepared samples were analyzed from the X-ray photoelectron spectroscopy (XPS). Considerable absorption in IR region was observed for Ho3+ doped Bi2O3 due to the electronic transitions of 5I8→5F4, 5I8→5F5, and 5I8→5I5, 5I6. The excellent ultra-violet (UV), white and infrared light (IR)-driven photocatalytic activity were suggested for pure and doped Bi2O3 samples. Ho3+-doped Bi2O3 micro-rods exhibits a better photocatalytic activity under white light irradiation. The consequence of the bandgap and the synergetic effect of Ho3+ and Bi2O3 on the photocatalytic degradation of MB were investigated.

  17. Rotational Symmetry Breaking in a Trigonal Superconductor Nb-doped Bi_{2}Se_{3}

    Directory of Open Access Journals (Sweden)

    Tomoya Asaba

    2017-01-01

    Full Text Available The search for unconventional superconductivity has been focused on materials with strong spin-orbit coupling and unique crystal lattices. Doped bismuth selenide (Bi_{2}Se_{3} is a strong candidate, given the topological insulator nature of the parent compound and its triangular lattice. The coupling between the physical properties in the superconducting state and its underlying crystal symmetry is a crucial test for unconventional superconductivity. In this paper, we report direct evidence that the superconducting magnetic response couples strongly to the underlying trigonal crystal symmetry in the recently discovered superconductor with trigonal crystal structure, niobium (Nb-doped Bi_{2}Se_{3}. As a result, the in-plane magnetic torque signal vanishes every 60°. More importantly, the superconducting hysteresis loop amplitude is enhanced along one preferred direction, spontaneously breaking the rotational symmetry. This observation indicates the presence of nematic order in the superconducting ground state of Nb-doped Bi_{2}Se_{3}.

  18. Large theoretical thermoelectric power factor of suspended single-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Babaei, Hasan, E-mail: babaei@illinois.edu, E-mail: babaei@auburn.edu [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States); Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Khodadadi, J. M. [Mechanical Engineering Department, Auburn University, Auburn, Alabama 36849-5341 (United States); Sinha, Sanjiv [Mechanical Science and Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2906 (United States)

    2014-11-10

    We have calculated the semi-classical thermoelectric power factor of suspended single-layer (SL)- MoS{sub 2} utilizing electron relaxation times derived from ab initio calculations. Measurements of the thermoelectric power factor of SL-MoS{sub 2} on substrates reveal poor power factors. In contrast, we find the thermoelectric power factor of suspended SL-MoS{sub 2} to peak at ∼2.8 × 10{sup 4} μW/m K{sup 2} at 300 K, at an electron concentration of 10{sup 12} cm{sup −2}. This figure is higher than that in bulk Bi{sub 2}Te{sub 3}, for example. Given its relatively high thermal conductivity, suspended SL-MoS{sub 2} may hold promise for in-plane thin-film Peltier coolers, provided reasonable mobilities can be realized.

  19. Electronic and magnetic properties of 3d-metal trioxides superhalogen cluster-doped monolayer MoS2: A first-principles study

    International Nuclear Information System (INIS)

    Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2014-01-01

    Utilizing first-principle calculations, the structural, electronic, and magnetic properties of monolayer MoS 2 doped with 3d transition-metal (TM) atoms and 3d-metal trioxides (TMO 3 ) superhalogen clusters are investigated. 3d-metal TMO 3 superhalogen cluster-doped monolayers MoS 2 almost have negative formation energies except CoO 3 and NiO 3 doped monolayer MoS 2 , which are much lower than those of 3d TM-doped structures. 3d-metal TMO 3 superhalogen clusters are more easily embedded in monolayer MoS 2 than 3d-metal atoms. MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic, and the total magnetic moments are approximately 1.0, 2.0, 3.0, and 4.0 μB per supercell, respectively. MnO 3 and FeO 3 incorporated into monolayer MoS 2 become semiconductors, whereas CoO 3 and NiO 3 incorporated into monolayer MoS 2 become half-metallic. Our studies demonstrate that the half-metallic ferromagnetic nature of 3d-metal TMO 3 superhalogen clusters-doped monolayer MoS 2 has a great potential for MoS 2 -based spintronic device applications. -- Highlights: •TMO 3 superhalogen clusters incorporated into monolayer MoS 2 were investigated. •TMO 3 doped structures have much lower formation energies than TM doped structures. •TMO 3 cluster-doped MoS 2 are thermodynamically favored. •Significant charge transfers between O atoms and Mo atoms in TMO 3 doped structures. •MnO 3 , FeO 3 , CoO 3 , and NiO 3 incorporated into monolayer MoS 2 are magnetic.

  20. Fabrication of Ni-doped BiVO{sub 4} semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Regmi, Chhabilal [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kshetri, Yuwaraj K. [Department of Advanced Materials Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Kim, Tae-Ho [Division of Mechanics and ICT Convergence Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Pandey, Ramesh Prasad [Institute of Biomolecule Reconstruction, Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Ray, Schindra Kumar [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of); Lee, Soo Wohn, E-mail: swlee@sunmoon.ac.kr [Department of Environmental and Biochemical Engineering, Sun Moon University, Chungnam 31460 (Korea, Republic of)

    2017-08-15

    Highlights: • Synthesis of a Ni-doped BiVO{sub 4} semiconductor photocatalyst with reduced band gap energy. • Ni-doped BiVO{sub 4} provided efficient photocatalytic activity for ibuprofen degradation and E. coli and green tide deactivation. • DFT calculation and thermodynamic modeling to understand the underlying mechanism. - Abstract: A visible-light-driven Ni-doped BiVO{sub 4} photocatalyst was synthesized using a microwave hydrothermal method. The nominal Ni doping amount of 1 wt% provided excellent photoactivity for a variety of water pollutants, such as ibuprofen (pharmaceutical), Escherichia coli (bacteria), and green tides (phytoplankton). Each Ni-doped BiVO{sub 4} sample exhibits better performance than pure BiVO{sub 4}. The degradation of ibuprofen reaches 80% within 90 min, the deactivation of Escherichia coli reaches around 92% within 5 h, and the inactivation of green tide (Chlamydomonas pulsatilla) reaches 70% upon 60 min of the visible light irradiation. The first principle calculation and thermodynamic modeling revealed that Ni doping in the vanadium site gives the most stable configuration of the synthesized samples with the formation of an in-gap energy state and oxygen vacancies. The in-gap energy state and the oxygen vacancies serve as an electron-trapping center that decreases the migration time of the photogenerated carrier and increases the separation efficiency of electron-hole pairs, which are responsible for the observed efficient photocatalytic, anti-bacterial and anti-algal activity of the samples. These properties thus suggest potential applications of Ni-doped BiVO{sub 4} as a multifunctional material in the field of wastewater treatment.

  1. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lu Cai

    2018-02-01

    Full Text Available In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, and UV-vis diffuse reflection spectroscopy (DRS were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB under the visible light (λ > 420 nm irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation.

  2. Facile Preparation of Nano-Bi2MoO6/Diatomite Composite for Enhancing Photocatalytic Performance under Visible Light Irradiation

    Science.gov (United States)

    Gong, Jiuyan; Liu, Jianshe; Song, Wendong; Ji, Lili

    2018-01-01

    In this work, a new nano-Bi2MoO6/diatomite composite photocatalyst was successfully synthesized by a facile solvothermal method. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-vis diffuse reflection spectroscopy (DRS) were employed to investigate the morphology, crystal structure, and optical properties. It was shown that nanometer-scaled Bi2MoO6 crystals were well-deposited on the surface of Bi2MoO6/diatomite. The photocatalytic activity of the obtained samples was evaluated by the degradation of rhodamine B (RhB) under the visible light (λ > 420 nm) irradiation. Moreover, trapping experiments were performed to investigate the possible photocatalytic reaction mechanism. The results showed that the nano-Bi2MoO6/diatomite composite with the mass ratio of Bi2MoO6 to diatomaceous earth of 70% exhibited the highest activity, and the RhB degradation efficiency reached 97.6% within 60 min. The main active species were revealed to be h+ and•O2−. As a photocatalytic reactor, its recycling performance showed a good stability and reusability. This new composite photocatalyst material holds great promise in the engineering field for the environmental remediation. PMID:29425138

  3. Resistive switching effect of N-doped MoS2-PVP nanocomposites films for nonvolatile memory devices

    Science.gov (United States)

    Wu, Zijin; Wang, Tongtong; Sun, Changqi; Liu, Peitao; Xia, Baorui; Zhang, Jingyan; Liu, Yonggang; Gao, Daqiang

    2017-12-01

    Resistive memory technology is very promising in the field of semiconductor memory devices. According to Liu et al, MoS2-PVP nanocomposite can be used as an active layer material for resistive memory devices due to its bipolar resistive switching behavior. Recent studies have also indicated that the doping of N element can reduce the band gap of MoS2 nanosheets, which is conducive to improving the conductivity of the material. Therefore, in this paper, we prepared N-doped MoS2 nanosheets and then fabricated N-doped MoS2-PVP nanocomposite films by spin coating. Finally, the resistive memory [C. Tan et al., Chem. Soc. Rev. 44, 2615 (2015)], device with ITO/N-doped MoS2-PVP/Pt structure was fabricated. Study on the I-V characteristics shows that the device has excellent resistance switching effect. It is worth mentioning that our device possesses a threshold voltage of 0.75 V, which is much better than 3.5 V reported previously for the undoped counterparts. The above research shows that N-doped MoS2-PVP nanocomposite films can be used as the active layer of resistive switching memory devices, and will make the devices have better performance.

  4. Studying magnetic structure of Bi doped Co2MnO4 cubic spinel by neutron diffraction

    International Nuclear Information System (INIS)

    Rajeevan, N.E.; Kaushik, S.D.; Kumar, Ravi

    2016-01-01

    In present work, we studied effect of Bi doped spinel Bi x Co 2-x MnO 4 (x = 0, 0.05, 0.10, 0.15 and 0.20) samples on their crystal as well as magnetic structure by employing neutron diffraction of wavelength 1.48 A using focusing crystal diffractometer of UGC-DAECSR Mumbai Centre at Dhruva, Trombay, Mumbai, India. The analysis of the neutron diffraction using Fullprof program reveals that crystal structure due to Bi doping remains intact and all the samples have been formed in the cubic spinel structure with Fd3m (space group no. 227). The lattice parameter shows the positive thermal expansion upon Bi doping across the temperature range. In order to understand the implication on the spin structure and magnetism in the detail, temperature dependent neutron diffraction study is carried out on some of the samples (x = 0, 0.1) in the series. The ND pattern of x = 0.1 at 2.9K is shown. The experimental finding in terms of modified magnetic structure upon Bi doping are discussed which are understood in terms of variation in the ferroelectric properties, bond lengths and their effect on the CoO 6 polyhedra. Furthermore, Bi substitution in Co 2 MnO 4 spinel brings in the balance of structural distortion, which affects both ferrimagnetism and ferroelectricity

  5. Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber heterojunction film with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hua [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Zhang, Tianxi [School of Physics, Northwest University, Xi’an 710069 (China); Pan, Chao; Pu, Chenchen; Hu, Yang [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun [School of Physics, Northwest University, Xi’an 710069 (China); Liu, Enzhou, E-mail: liuenzhou@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China)

    2017-01-01

    Highlights: • Self-assembled Bi{sub 2}MoO{sub 6}/TiO{sub 2} nanofiber film was synthesized. • TiO{sub 2} nanofiber film exhibits excellent visible light scattering property. • The scattering light from TiO{sub 2} overlaps with the absorption light of Bi{sub 2}MoO{sub 6}. • Bi{sub 2}MoO{sub 6}/TiO{sub 2} heterojunction photocatalysts show higher photocatalytic activity. - Abstract: TiO{sub 2} nanofiber film (TiO{sub 2} NFF) was successfully fabricated by an ethylene glycol-assisted hydrothermal method, and then self-assembled flake-like Bi{sub 2}MoO{sub 6} was grown on the surface of TiO{sub 2} nanofiber under alcohol thermal condition. The investigations indicate that the nanofiber structure of TiO{sub 2} films exhibits excellent visible light scattering property, the scattering light overlaps with the absorption band of Bi{sub 2}MoO{sub 6}, which can enhance the utility of incident light. The prepared Bi{sub 2}MoO{sub 6}/TiO{sub 2} composites show obviously enhanced photocatalytic activity for methylene blue (MB) degradation compared with pure TiO{sub 2} nanofiber under visible light irradiation (λ > 420 nm). The enhanced photocatalytic activity is primarily attributed to the synergistic effect of visible light absorption and effective electron-hole separation at the interfaces of the two semiconductors, which is confirmed by photoluminescence (PL) and electrochemical tests.

  6. Layered MoSe2/Bi2WO6 composite with P-N heterojunctions as a promising visible-light induced photocatalyst

    Science.gov (United States)

    Xie, Taiping; Liu, Yue; Wang, Haiqiang; Wu, Zhongbiao

    2018-06-01

    In this paper, layered MoSe2/Bi2WO6 composites were fabricated by a simple bath sonication method for photocatalytic applications. Their photocatalytic performances were then investigated via the photocatalytic oxidation of gaseous toluene under visible-light irradiation. As a result, 1.5%-MoSe2/Bi2WO6 catalyst showed the highest activity with a degradation rate of nearly 80% during three-hour visible-light irradiation. The k value determined of 1.5%-MoSe2/Bi2WO6 was approximately 6 times higher than that of pure Bi2WO6 and 7 times higher compared with pure MoSe2. After a series of characterizations, it was concluded that the p-n heterojunctions of MoSe2/Bi2WO6 composites with strong interlayer interactions could effectively prolong the life time of photoinduced electron-hole pairs. And both the contents of surface superoxide and hydroxyl radicals were thereby increased, benefitting the photocatalytic process. Furthermore, the hydroxyl radicals and holes were found to be the major active species. This work provided a way to design photocatalyst with enhanced visible-light driven photoactivity toward indoor air pollutants purification.

  7. Effects of low-level Ag doping on Bi2Sr2CaCu2O8+x

    International Nuclear Information System (INIS)

    Deis, T.A.; Eror, N.G.; Krishnaraj, P.; Prorok, B.C.; Lelovic, M.; Balachandran, U.

    1995-07-01

    Bi 2 Sr 2 CaCu 2 O 8 has been doped with silver, up to 10,000 ppm, in three ways: excess additions, substitution of Ag for Bi, and substitution of Ag for Sr. Effects of doping on the c-axis lattice parameter and critical temperature (T c ) were measured. Effects from doing were only observed in slow-cooled [10 degree/hr] oxygen equilibrated samples. Doping by excess additions caused a small decrease in T c and an increase in the c-axis length of the lattice. Doping by substitution, compared to excess Ag additions, caused a larger decrease in T c and higher c-axis values for doping levels up to 1,000 ppm. Doping by substitution at higher levels (1,000--10,000 ppm) caused T c to increase and the c-axis to decrease. Samples with similar substitutional doping levels exhibited comparable T c values and samples with Ag substituted for Sr consistently exhibited higher c-axis values than samples that had equivalent amounts of Ag substituted for Bi

  8. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions

    International Nuclear Information System (INIS)

    Liu, Wei; Zhang, Qiang; Yin, Kang; Chi, Hang; Zhou, Xiaoyuan; Tang, Xinfeng; Uher, Ctirad

    2013-01-01

    The study of Mg 2 Si 1−x Sn x -based thermoelectric materials has received widespread attention due to a potentially high thermoelectric performance, abundant raw materials, relatively low cost of modules, and non-toxic character of compounds. In this research, Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y solid solutions with the nominal Bi content of 0≤y≤0.03 are prepared using a two-step solid state reaction followed by spark plasma sintering consolidation. Within this range of Bi concentrations, no evidence of second phase segregation was found. Bi is confirmed to occupy the Si/Sn sites in the crystal lattice and behaves as an efficient n-type dopant in Mg 2 Si 0.4 Sn 0.6 . Similar to the effect of Sb, Bi doping greatly increases the electron density and the power factor, and reduces the lattice thermal conductivity of Mg 2.16 Si 0.4 Sn 0.6 solid solutions. Overall, the thermoelectric figure of merit of Bi-doped Mg 2.16 Si 0.4 Sn 0.6 solid solutions is improved by about 10% in comparison to values obtained with Sb-doped materials of comparable dopant content. This improvement comes chiefly from a marginally higher Seebeck coefficient of Bi-doped solid solutions. The highest ZT∼1.4 is achieved for the y=0.03 composition at 800 K. - Graphical abstract: (a)The relationship between electrical conductivity and power factor for Sb/Bi-doped Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y (Sb/Bi) y (0 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y (0≤y≤0.03) solid solutions. (c)Temperature dependent dimensionless figure of merit ZT of Mg 2.16 (Si 0.4 Sn 0.6 ) 1−y Bi y (0≤y≤0.03) solid solutions. - Highlights: • Bi doped Mg 2.16 Si 0.4 Sn 0.6 showed 15% enhancement in the power factor as compared to Sb doped samples. • Bi doping reduced κ ph of Mg 2.16 Si 0.4 Sn 0.6 due to stronger point defect scattering. • The highest ZT=1.4 at 800 K was achieved for Mg 2.16 (Si 0.4 Sn 0.6 ) 0.97 Bi 0.03

  9. Influence of the post-annealing cooling rate on the superconducting and mechanical properties of LFZ textured Bi-2212 rods

    International Nuclear Information System (INIS)

    Natividad, E; Gomez, J A; Angurel, L A; Salazar, A; Pastor, J Y; Llorca, J

    2002-01-01

    Laser floating zone textured Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thin rods were manufactured and subjected to a two-step annealing process at 870 deg C and 801 deg C in air. It was found that the subsequent cooling process led to marked changes in electrical properties. Three cooling rates were tested: (i) quenching in liquid nitrogen, (ii) cooling in air inside an alumina tube and (iii) cooling inside the furnace. The results showed that the faster the cooling rate, the higher the normal state resistivity. The T c distribution across the rods was also affected by the cooling rate, but no large differences were observed in the magnitude of the critical current at 77 K since the homogeneity of furnace-cooled samples compensated for the higher outer J c values of fast-cooled ones. The mechanical properties (elastic modulus and flexure strength) were not influenced by the cooling rate, but the samples quenched in liquid nitrogen were often cracked by thermal shock. The elastic modulus and the flexure strength of the rods were deteriorated by the existence of an outer ring of compact, poorly textured material and by the large bubbles found in the central region of the rod. Samples processed by a two-step texturing process which reduced the thickness of the outer ring and eliminated the bubbles had better electrical and mechanical properties

  10. Synthesis of carbon-doped nanosheets m-BiVO{sub 4} with three-dimensional (3D) hierarchical structure by one-step hydrothermal method and evaluation of their high visible-light photocatalytic property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Deqiang; Zong, Wenjuan [Chongqing University, Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment Ministry of Education and National Centre for International Research of Low-carbon and Green Buildings (China); Fan, Zihong [School of Environmental and Biological Engineering Chongqing Technology and Business University (China); Fang, Yue-Wen [East China Normal University, Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering (China); Xiong, Shimin; Du, Mao; Wu, Tianhui; Ji, Fangying, E-mail: jfy@cqu.edu.cn; Xu, Xuan, E-mail: xuxuan@cqu.edu.cn [Chongqing University, Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment Ministry of Education and National Centre for International Research of Low-carbon and Green Buildings (China)

    2017-04-15

    To achieve an efficient visible-light absorption and degradation of bismuth vanadate (BiVO{sub 4}), in this paper, a carbon-doped (C-doped) nanosheets monoclinic BiVO{sub 4} (m-BiVO{sub 4}), with thicknesses within 19.86 ± 8.48 nm, was synthesized using polyvinylpyrrolidone K-30 (PVP) as a template and l-carbonic as the carbon source by one-step hydrothermal synthesis method. This C-doped BiVO{sub 4} in three-dimensional (3D) hierarchical structure enjoys high visible-light photocatalytic property. The samples were characterized using x-ray diffraction, scanning electron microscope, Raman spectra, energy dispersive spectrometer, transmission electron microscope, x-ray photoelectron spectroscopy, UV–Vis diffused reflectance spectroscopy, specific surface area, electron spin resonance, and transient photocurrent response, photoluminescence spectra, and incident-photon-to-current conversion efficiency, respectively. What is more, we studied the C-doping effect on the band-gap energy of BiVO{sub 4} based on First-principles. X-ray diffraction analysis showed that all photocatalysts were in the same single monoclinic scheelite structure. According to the other characterization results, the element C was successfully doped in BiVO{sub 4}, resulting in the 3D hierarchical structure of C-doped BiVO{sub 4} (P-L-BiVO{sub 4}). We speculated that it could be the directional coalescence mechanism by which the l-cysteine promoted the two-dimensional growth and C-doping process of BiVO{sub 4}, thus leading to the formation of nanosheets which were then promoted into 3D self-assembly by PVP and the shortening of the band gap. Among all samples, P-L-BiVO{sub 4} can make the highest removal ratio of rhodamine B under visible-light irradiation. The stability of P-L-BiVO{sub 4} was verified by recycle experiments. It showed that P-L-BiVO{sub 4} had strong visible-light absorption behavior and high electron–hole separation efficiency and stability, making a significant

  11. Reaction products between Bi-Sr-Ca-Cu-oxide thick films and alumina substrates

    International Nuclear Information System (INIS)

    Alarco, J.A.; Ilushechkin, A.; Yamashita, T.; Bhargava, A.; Barry, J.; Mackinnon, I.D.R.

    1997-01-01

    The structure and composition of reaction products between Bi-Sr-Ca-Cu-oxide (BSCCO) thick films and alumina substrates have been characterized using a combination of electron diffraction, scanning electron microscopy and energy dispersive X-ray spectrometry (EDX). Sr and Ca are found to be the most reactive cations with alumina. Sr 4 Al 6 O 12 SO 4 is formed between the alumina substrates and BSCCO thick films prepared from paste with composition close to Bi-2212 (and Bi-2212+10 wt.% Ag). For paste with composition close to Bi(Pb)-2223 +20 wt.% Ag, a new phase with f.c.c. structure, lattice parameter about a=24.5 A and approximate composition Al 3 Sr 2 CaBi 2 CuO x has been identified in the interface region. Understanding and control of these reactions is essential for growth of high quality BSCCO thick films on alumina. (orig.)

  12. Nest-like structures of Sr doped Bi2WO6: Synthesis and enhanced photocatalytic properties

    International Nuclear Information System (INIS)

    Liu Ying; Wang Weimin; Fu Zhengyi; Wang Hao; Wang Yucheng; Zhang Jinyong

    2011-01-01

    Highlights: → Bi 2 WO 6 with 3D nest-like structures was obtained without the presence of templates but after Sr-doping, which represents a marked improvement over previous reports. → The products showed enhanced photocatalytic properties over pure Bi 2 WO 6 . → Samples subsequently thermal treated at 500 deg. C show better photocatalytic activities. - Abstract: A series of Sr-doped Bi 2 WO 6 with three-dimensional (3D) nest-like structures were synthesized through simple hydrothermal route and characterized by XRD, FESEM, TEM, XPS, UV-vis DRS, etc. Morphology observation revealed that the as-synthesized Bi 2 WO 6 were self-assembled three-dimensional (3D) nest-like structures, which were constructed from nanoplates. UV-vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light areas. Their photocatalytic activities were evaluated by photodegradation of rhodamine B (RhB) under UV and visible light irradiation (λ > 420 nm). The photocatalytic properties were enhanced after Sr doping. Samples subsequently thermal treated at 500 deg. C showed higher photocatalytic activities. The reasons for the differences in the photocatalytic activities of these nest-like Bi 2 WO 6 microstructures were further investigated.

  13. 39 CFR 221.2 - Board of Governors.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Board of Governors. 221.2 Section 221.2 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION GENERAL ORGANIZATION § 221.2 Board of Governors. (a) Composition. The Board of Governors consists of 11 members. Nine governors are appointed by...

  14. Inhomogeneous electronic structures in heavily Pb-doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} single crystals probed by low temperature STM/STS

    Energy Technology Data Exchange (ETDEWEB)

    Kinoda, Go; Nakao, Shoichiro; Motohashi, Teruki; Nakayama, Yuri; Shimizu, Keisuke; Shimoyama, Junichi; Kishio, Koji; Hanaguri, Tetsuo; Kitazawa, Koichi; Hasegawa, Tetsuya

    2003-05-15

    We have performed cryogenic scanning tunneling microscopy/spectroscopy (STM/STS) of heavily Pb-doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} single crystals to investigate local electronic structures in the overdoped regime. The obtained STM/STS results at 4.3 K clearly showed local inhomogeneity of gap structure {delta} ({delta}=20-60 meV) in a scale of several nm, suggesting the coexistence of superconducting and pseudogap-like regions, even in the overdoped regime.

  15. Relation between film thickness and surface doping of MoS2 based field effect transistors

    Science.gov (United States)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  16. NaYF4:Er,Yb/Bi2MoO6 core/shell nanocomposite: A highly efficient visible-light-driven photocatalyst utilizing upconversion

    International Nuclear Information System (INIS)

    Sun, Yuanyuan; Wang, Wenzhong; Sun, Songmei; Zhang, Ling

    2014-01-01

    Highlights: • Design and synthesis of NaYF 4 :Er,Yb/Bi 2 MoO 6 based on upconversion. • NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite was prepared for the first time. • Core–shell structure benefits the properties. • Upconversion contributed to the enhanced photocatalytic activity. • Helps to understand the functionality of new type photocatalysts. - Abstract: NaYF 4 :Er,Yb/Bi 2 MoO 6 core/shell nanocomposite was designed and prepared for the first time based on upconversion. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDS) and diffuse reflectance spectra (DRS). The results revealed that the as-synthesized NaYF 4 :Er,Yb/Bi 2 MoO 6 consisted of spheres with a core diameter of about 26 nm and a shell diameter of around 6 nm. The core was upconversion illuminant NaYF 4 :Er,Yb and the shell was Bi 2 MoO 6 around the core, which was confirmed by EDS. The NaYF 4 :Er,Yb/Bi 2 MoO 6 exhibited higher photocatalytic activity for the photodecomposition of Rhodamine B (RhB) under the irradiation of Xe lamp and green light emitting diode (g-LED). The mechanism of the high photocatalytic activity was discussed by photoluminescence spectra (PL), which is mainly attributed to upconversion of NaYF 4 :Er,Yb in the NaYF 4 :Er,Yb/Bi 2 MoO 6 nanocomposite and the core–shell structure

  17. Growth of Bi doped cadmium zinc telluride single crystals by Bridgman oscillation method and its structural, optical, and electrical analyses

    International Nuclear Information System (INIS)

    Carcelen, V.; Rodriguez-Fernandez, J.; Dieguez, E.; Hidalgo, P.

    2010-01-01

    The II-VI compound semiconductor cadmium zinc telluride (CZT) is very useful for room temperature radiation detection applications. In the present research, we have successfully grown Bi doped CZT single crystals with two different zinc concentrations (8 and 14 at. %) by the Bridgman oscillation method, in which one experiment has been carried out with a platinum (Pt) tube as the ampoule support. Pt also acts as a cold finger and reduces the growth velocity and enhances crystalline perfection. The grown single crystals have been studied with different analysis methods. The stoichiometry was confirmed by energy dispersive by x-ray and inductively coupled plasma mass spectroscopy analyses and it was found there is no incorporation of impurities in the grown crystal. The presence of Cd and Te vacancies was determined by cathodoluminescence studies. Electrical properties were assessed by I-V analysis and indicated higher resistive value (8.53x10 8 Ω cm) for the crystal grown with higher zinc concentration (with Cd excess) compare to the other (3.71x10 5 Ω cm).

  18. Fabrication and Enhanced Photoelectrochemical Performance of MoS₂/S-Doped g-C₃N₄ Heterojunction Film.

    Science.gov (United States)

    Ye, Lijuan; Wang, Dan; Chen, Shijian

    2016-03-02

    We report on a novel MoS2/S-doped g-C3N4 heterojunction film with high visible-light photoelectrochemical (PEC) performance. The heterojunction films are prepared by CVD growth of S-doped g-C3N4 film on indium-tin oxide (ITO) glass substrates, with subsequent deposition of a low bandgap, 1.69 eV, visible-light response MoS2 layer by hydrothermal synthesis. Adding thiourea into melamine as the coprecursor not only facilitates the growth of g-C3N4 films but also introduces S dopants into the films, which significantly improves the PEC performance. The fabricated MoS2/S-doped g-C3N4 heterojunction film offers an enhanced anodic photocurrent of as high as ∼1.2 × 10(-4) A/cm(2) at an applied potential of +0.5 V vs Ag/AgCl under the visible light irradiation. The enhanced PEC performance of MoS2/S-doped g-C3N4 film is believed due to the improved light absorption and the efficient charge separation of the photogenerated charge at the MoS2/S-doped g-C3N4 interface. The convenient preparation of carbon nitride based heterojunction films in this work can be widely used to design new heterojunction photoelectrodes or photocatalysts with high performance for H2 evolution.

  19. Oxygen partial pressure dependence of electrical conductivity in γ'-Bi2MoO6

    International Nuclear Information System (INIS)

    Vera, C.M.C.; Aragon, R.

    2008-01-01

    The electrical conductivity of γ'-Bi 2 MoO 6 was surveyed between 450 and 750 deg. C as a function of oxygen partial pressure, in the range 0.01-1 atm. A -1/6 power law dependence, consistent with a Frenkel defect model of doubly ionized oxygen vacancies and interstitials, is evidence for an n-type semiconductive component, with an optical band gap of 2.9 eV. The absence of this dependence is used to map the onset of dominant ionic conduction. - Graphical abstract: Temporal dependence of electrical conductivity at 500 deg. C for γ'-Bi 2 MoO 6 at controlled partial pressures of oxygen

  20. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber

    Science.gov (United States)

    Zhang, Yue; Zhu, Jianqi; Li, Pingxue; Wang, Xiaoxiao; Yu, Hua; Xiao, Kun; Li, Chunyong; Zhang, Guangyu

    2018-04-01

    We report on an all-fiber passively mode-locked ytterbium-doped (Yb-doped) fiber laser with monolayer molybdenum disulfide (ML-MoS2) saturable absorber (SA) by three-temperature zone chemical vapor deposition (CVD) method. The modulation depth, saturation fluence, and non-saturable loss of this ML-MoS2 are measured to be 3.6%, 204.8 μJ/cm2 and 6.3%, respectively. Based on this ML-MoS2SA, a passively mode-locked Yb-doped fiber laser has been achieved at 979 nm with pulse duration of 13 ps and repetition rate of 16.51 MHz. A mode-locked fiber laser at 1037 nm is also realized with a pulse duration of 475 ps and repetition rate of 26.5 MHz. To the best of our knowledge, this is the first report that the ML-MoS2 SA is used in an all-fiber Yb-doped mode-locked fiber laser at 980 nm. Our work further points the excellent saturable absorption ability of ML-MoS2 in ultrafast photonic applications.

  1. Structural transitions and multiferroic properties of high Ni-doped BiFeO3

    Science.gov (United States)

    Betancourt-Cantera, L. G.; Bolarín-Miró, A. M.; Cortés-Escobedo, C. A.; Hernández-Cruz, L. E.; Sánchez-De Jesús, F.

    2018-06-01

    Nickel doped bismuth ferrite powders, BiFe1-x NixO3 (0 ≤ x ≤ 0.5), were synthesized by high-energy ball milling followed by an annealing at 700 °C. A detailed study about the substitution of Fe3+ by Ni2+ on the crystal structure and multiferroic properties is presented. The X-ray diffraction patterns reveal the formation of rhombohedral structure with small amounts of Bi2Fe4O9 as a secondary phase for x behavior indicates the frustration of the G-antiferromagnetic order typical of the un-doped BiFeO3, caused by the presence of small amounts of Ni2+ (x Behavior modifications of electrical conductivity, permittivity and dielectric loss versus frequency are related with crystal structure transformations, when nickel concentration is increased.

  2. Bismuth-doped Cu(In,Ga)Se2 absorber prepared by multi-layer precursor method and its solar cell

    International Nuclear Information System (INIS)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi; Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori

    2015-01-01

    Bismuth (Bi)-doped Cu(In,Ga)Se 2 (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V OC ). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi 4 Se 3 . Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V OC . (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Anisotropic superconducting state parameters of Tl-2212 superconductors

    International Nuclear Information System (INIS)

    Khaskalam, Amit K.; Singh, R.K.; Varshney, Dinesh

    2001-01-01

    We have estimated the superconducting state parameters and their anisotropy in thallium based superconductors (Tl-2212), in the frame work of Fermi liquid approach. Determination of the effective mass of the charge carriers from the Fermi velocity and estimated anisotropic superconducting state parameters, particularly, the magnetic penetration depth along and perpendicular to the conducting plane. The coherence length along and perpendicular to the ab plane is evaluated and appears to be higher. The temperature dependence of penetration depth, their anisotropy and Ginsburg Landau parameter for optimised doped Tl based cuprates shows the power law. The technique permits a consistency with the reported data. (author)

  4. Phase stability, oxygen nonstoichiometry, and superconductivity properties of Bi2Sr2CaCu2O8+δ and Bi1.8Pb0.4Sr2Ca2Cu3O10+δ

    International Nuclear Information System (INIS)

    Mozhaev, A.P.; Chernyaev, S.V.; Badun, Y.V.

    1995-01-01

    Phase stability of Bi 2 Sr 2 CaCu 2 O 8+δ (2212) and Bi 1.8 Pb 0.4 Sr 2 Ca 2 Cu 3 O 10+δ (2223) was studied by means of thermogravimetry, dilatometry, high-temperature resistivity, and the powder X-ray methods in the temperature range 700-1000 degrees and at P O2 = 1-10 -4.3 atm. The existence of a high-temperature (peritectic melting) boundary of phase stability was found. The temperatures of low-temperature phase decomposition were determined in air and under an oxygen atmosphere. The change in oxygen content was determined for the 2212 phase in the temperature range 700-860 degrees C and at P O2 = 0.21-10 -3.7 atm by iodometric analysis of quenched samples. It was found that in the single-phase region, the change in oxygen nonstoichiometry had an insignificant influence on T c . It was also shown that the slow cooling of samples led to a significant decrease in T c and transport j c due to partial phase decomposition

  5. Synergy effects in mixed Bi2O3, MoO3 and V2O5 catalysts for selective oxidation of propylene

    DEFF Research Database (Denmark)

    Nguyen, Tien The; Le, Thang Minh; Truong, Duc Duc

    2012-01-01

    % Bi2Mo3O12 and 78.57 mol% BiVO4), corresponding to the compound Bi1-x/3V1-xMoxO4 with x = 0.45 (Bi0.85V0.55Mo0.45O4), exhibited the highest activity for the selective oxidation of propylene to acrolein. The mixed sample prepared chemically by a sol–gel method possessed higher activity than...

  6. Melt processing of the Bi2Sr2CaCu2Oy superconductor in oxygen and argon atmospheres

    International Nuclear Information System (INIS)

    Holesinger, T.G.; Miller, D.J.; Chumbley, L.S.

    1992-08-01

    Solidification and subsequent annealing of Bi 2 Sr 2 CaCu 2 O y (2212) in oxygen and argon atmospheres were investigated in order to identify alternative processing routes for controlling microstructures and superconducting properties. In addition to 2212, several other phases formed on cooling in O 2 and did not disappear upon subsequent annealing. Crystallization in Ar resulted in a divorced eutetic structure of Bi 2 Sr 3-x Ca x O y and Cu 2 O/CuO. The superconductor was formed on subsequent anneals. Samples melted in Ar and then annealed generally possessed a more uniform microstructure compared with samples that were melted in oxygen and annealed. Compositional measurements of the 2212 phase suggest that CaO segregation in the melt may be minimized with an overall composition such as Bi 2.15 Sr 2 Ca 0.85 Cu 2 O y

  7. Bismuth-doped Cu(In,Ga)Se{sub 2} absorber prepared by multi-layer precursor method and its solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi [Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori [Environment and Energy Research Center, Nitto Denko Corporation, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-06-15

    Bismuth (Bi)-doped Cu(In,Ga)Se{sub 2} (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V{sub OC}). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi{sub 4}Se{sub 3}. Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V{sub OC}. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Electronic conduction in doped multiferroic BiFeO3

    Science.gov (United States)

    Yang, Chan-Ho; Seidel, Jan; Kim, Sang-Yong; Gajek, M.; Yu, P.; Holcomb, M. B.; Martin, L. W.; Ramesh, R.; Chu, Y. H.

    2009-03-01

    Competition between multiple ground states, that are energetically similar, plays a key role in many interesting material properties and physical phenomena as for example in high-Tc superconductors (electron kinetic energy vs. electron-electron repulsion), colossal magnetoresistance (metallic state vs. charge ordered insulating state), and magnetically frustrated systems (spin-spin interactions). We are exploring the idea of similar competing phenomena in doped multiferroics by control of band-filling. In this paper we present systematic investigations of divalent Ca doping of ferroelectric BiFeO3 in terms of structural and electronic conduction properties as well as diffusion properties of oxygen vacancies.

  9. Rose-like I-doped Bi_2O_2CO_3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    International Nuclear Information System (INIS)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng

    2017-01-01

    Highlights: • DFT reveals I"− can partially substitute CO_3"2"−to narrow the bandgap of Bi_2O_2CO_3. • Sodium citrate play a key role on the formation of rose-like I-doped Bi_2O_2CO_3. • Rose-like I-doped Bi_2O_2CO_3 show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi_2O_2CO_3, I"− can partly replace the CO_3"2"−in Bi_2O_2CO_3 to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi_2O_2CO_3 microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi_2O_2CO_3 microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi_2O_2CO_3 by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi_2O_2CO_3 microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  10. The inhomogeneities of (Pb,Bi)2223 superconducting tapes and their detection

    International Nuclear Information System (INIS)

    Leeuwen, S. van

    1999-05-01

    This thesis consists of two parts: first, the inhomogeneities that were observed in high temperature superconducting (Pb,Bi)2223 tapes were studied followed by the design of two rigs which were built to detect them. These investigations concentrated on (Pb,Bi)2223 phase high temperature superconducting tapes. Superconductors and their applications were briefly evaluated. It was found that high temperature superconductors have unique properties which cannot be duplicated by their counterparts. However, it was noted that there are significant improvements to be made before they can be commercially viable. An investigation was carried out into the variation of core density within cross sections and along lengths of (Pb,Bi)2223 tapes during fabrication. It was observed that rolling and thermal treatment brought about a non-uniform core density in both these aspects of tile tape. This was followed by an investigation into the effect of core density on the formation of the (Pb,Bi)2223 phase. It was shown that a high core density formed the (Pb,Bi)2223 phase at a slower rate than a lower core density under the thermal treatment. A high core density and a slow heating rate produced smaller 2212 grains at the end of the incubation period. Smaller 2212 grains were thought to be linked to the faster formation of the (Pb,B1)2223 phase. The highest Jc was from a high core density tape which had the smaller 2212 grains at the end of incubation period. Smaller 2212 grains were thought to aid a more homogeneous conversion to the (Pb,Bi)2223 phase. Alloy-sheathed (Pb,Bi)2223 superconducting tapes were produced in order to fabricate a more homogeneous core density. It was found that the alloy sheath (with an addition of 15% wt Ag in the precursor powder) changed the characteristics of the core in several ways: the formation of the (Pb,Bi)2223 phase was homogeneous across the thickness of the core, a smaller 2212 grain size was formed at the end of the incubation period and a higher

  11. A comprehensive investigation of tetragonal Gd-doped BiVO{sub 4} with enhanced photocatalytic performance under sun-light

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yangyang; Tan, Guoqiang, E-mail: tan3114@163.com; Dong, Guohua; Ren, Huijun; Xia, Ao

    2016-02-28

    Graphical abstract: - Highlights: • Tetragonal Gd-BiVO{sub 4} with enhanced photocatalytic activity was synthesized. • Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. • GdVO{sub 4} seeds as crystal nucleus dominate the formation of tetragonal Gd-BiVO{sub 4}. • Tetragonal Gd-BiVO{sub 4} exhibits the excellent separation of electrons and holes. • The contribution of high photocatalytic activity under sun-light is from UV-light. - Abstract: Tetragonal Gd-doped BiVO{sub 4} having enhanced photocatalytic activity have been synthesized by a facile microwave hydrothermal method. The structural analysis indicates that Gd doping can induce the phase transition from monoclinic to tetragonal BiVO{sub 4}. The reaction results in precursor solutions imply that tetragonal GdVO{sub 4} seeds as crystal nucleus are the original and determined incentives to force the formation of tetragonal Gd-BiVO{sub 4}. The influences of the surface defect, band structure, and BET surface area on the improved photocatalytic activities of tetragonal Gd-doped BiVO{sub 4} are investigated systematically. The results demonstrate that the more surface oxygen deficiencies as active sites and the excellent mobility and separation of photogenerated electrons and holes are beneficial to the enhancement of the photocatalytic performance of tetragonal Gd-BiVO{sub 4}. The RhB photodegradation experiments indicate that the contribution of high photocatalytic activities under simulated sun-light is mainly from UV-light region due to the tetragonal structure feature. The best photocatalytic performance is obtained for tetragonal 10 at% Gd-BiVO{sub 4}, of which the RhB degradation rate can reach to 96% after 120 min simulated sun-light irradiation. The stable tetragonal Gd-BiVO{sub 4} with efficient mineralization will be a promising photocatalytic material applied in water purification.

  12. Irradiation-induced doping of Bismuth Telluride Bi2Te3

    International Nuclear Information System (INIS)

    Rischau, Carl Willem

    2014-01-01

    Bismuth Telluride Bi 2 Te 3 has attracted enormous attention because of its thermoelectric and topological insulator properties. Regarding its bulk band structure Bi 2 Te 3 is a band insulator with an energy gap of around 150-170 meV. However, the native anti-site defects that are present in real samples always dope this band insulator and shift the chemical potential into the valence or conduction band. In this PhD, the Fermi surface of as-grown and electron irradiated p-type Bi 2 Te 3 single crystals has been investigated extensively using electrical transport experiments. For moderate hole concentrations (p ∼< 5 x 10 18 cm -3 ), it is confirmed that electrical transport can be explained by a six-valley model and the presence of strong Zeeman-splitting. At high doping levels (p≅5 x 10 18 cm -3 ), the hole concentrations determined from Hall and Shubnikov-de Haas (SdH) effect differ significantly which is attributed to an impurity/defect band introduced by the anti-site defects. In this work, we show that it is possible to dope p-type Bi 2 Te 3 in a very controlled manner using electron-irradiation by performing detailed in- and ex-situ electrical transport studies on samples irradiated at room and at low temperatures with 2.5 MeV electrons. These studies show that the defects induced at both irradiation temperatures act as electron donors and can thus be used to convert the conduction from p- to n-type. The point of optimal compensation is accompanied by an increase of the low-temperature resistivity by several orders of magnitude. Irradiation at room temperature showed that both the p-type samples obtained after irradiation to intermediate doses as well as the samples in which the conduction has been converted to n-type by irradiation, still have a well defined Fermi surface as evidenced by SdH oscillations. By studying the Hall coefficient in-situ during low temperature electron irradiation, the coexistence of electron- and hole-type carriers was evidenced

  13. Room temperature ferromagnetism with large magnetic moment at low field in rare-earth-doped BiFeO₃ thin films.

    Science.gov (United States)

    Kim, Tae-Young; Hong, Nguyen Hoa; Sugawara, T; Raghavender, A T; Kurisu, M

    2013-05-22

    Thin films of rare earth (RE)-doped BiFeO3 (where RE=Sm, Ho, Pr and Nd) were grown on LaAlO3 substrates by using the pulsed laser deposition technique. All the films show a single phase of rhombohedral structure with space group R3c. The saturated magnetization in the Ho- and Sm-doped films is much larger than the values reported in the literature, and is observed at quite a low field of 0.2 T. For Ho and Sm doping, the magnetization increases as the film becomes thinner, suggesting that the observed magnetism is mostly due to a surface effect. In the case of Nd doping, even though the thin film has a large magnetic moment, the mechanism seems to be different.

  14. Solvothermal syntheses of Bi and Zn co-doped TiO_2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    International Nuclear Information System (INIS)

    Li, Juan-Juan; Cai, Song-Cai; Xu, Zhen; Chen, Xi; Chen, Jin; Jia, Hong-Peng; Chen, Jing

    2017-01-01

    Highlights: • Bi-Zn co-doped TiO_2 catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO_2 generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi_1_._9_%Zn_1_%O_2 exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO_2 on photodegradation of gaseous toluene. The doped TiO_2 with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi_1_._9_%O_2 and TiBi_1_._9_%Zn_1_%O_2 can reach to 51% and 93%, respectively, which are much higher than 25% of TiO_2. Bi doping into TiO_2 lattice generates new intermediate energy level of Bi below the CB edge of TiO_2. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO_2 agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  15. Molecular Doping the Topological Dirac Semimetal Na3Bi across the Charge Neutrality Point with F4-TCNQ.

    Science.gov (United States)

    Edmonds, Mark T; Hellerstedt, Jack; O'Donnell, Kane M; Tadich, Anton; Fuhrer, Michael S

    2016-06-29

    We perform low-temperature transport and high-resolution photoelectron spectroscopy on 20 nm thin film topological Dirac semimetal Na3Bi grown by molecular beam epitaxy. We demonstrate efficient electron depletion ∼10(13) cm(-2) of Na3Bi via vacuum deposition of molecular F4-TCNQ without degrading the sample mobility. For samples with low as-grown n-type doping (1 × 10(12) cm(-2)), F4-TCNQ doping can achieve charge neutrality and even a net p-type doping. Photoelectron spectroscopy and density functional theory are utilized to investigate the behavior of F4-TCNQ on the Na3Bi surface.

  16. Mo-doped Gray Anatase TiO2: Lattice Expansion for Enhanced Sodium Storage

    International Nuclear Information System (INIS)

    Liao, Hanxiao; Xie, Lingling; Zhang, Yan; Qiu, Xiaoqing; Li, Simin; Huang, Zhaodong; Hou, Hongshuai; Ji, Xiaobo

    2016-01-01

    Gray-colored Mo 6+ -doped anatase TiO 2 is prepared uniformly with particle size of 10–20 nm, and is firstly employed as anode material in sodium-ion batteries (SIBs), presenting excellent electrochemical performances. It delivered reversible specific capacities of 231.8 mAh g −1 at 0.1 C (33.5 mA g −1 ) after 100 cycles and 108.3 mAh g −1 at 5 C (1.68 A g −1 ), comparing to 170.5 mAh g −1 at 0.1 C and only 41.7 mAh g −1 at 5C for the bare TiO 2 . The improved electrochemical performances might be beneficial from the doping of Mo 6+ , which can effectively enhance the conductivity of TiO 2 resulting from induced conduction band electrons, interstitial oxygen defects and vacancies. In addition, the doping can also lead to the lattice expansion, which can facilitate the diffusion of Na + . In combination with natural abundance and environmental benignity, Mo 6+ -doped TiO 2 can be expected to be utilized as an anode material for enhanced sodium storage.

  17. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun; Guo, Z. B.; Mi, W. B.; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number

  18. Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Mingying; Zollfrank, Cordt; Wondraczek, Lothar [Lehrstuhl fuer Glas und Keramik, WW3, Friedrich Alexander Universitaet Erlangen-Nuernberg, Martensstrasse 5, D-91058 Erlangen (Germany)], E-mail: mingying.peng@ww.uni-erlangen.de, E-mail: lothar.wondraczek@ww.uni-erlangen.de

    2009-07-15

    Bi-doped glasses with broadband photoluminescence in the near-infrared (NIR) spectral range are presently receiving significant consideration for potential applications in telecommunications, widely tunable fiber lasers and spectral converters. However, the origin of NIR emission remains disputed. Here, we report on NIR absorption and emission properties of bismuthate glass and their dependence on the melting temperature. Results clarify that NIR emission occurs from the same centers as it does in Bi-doped glasses. The dependence of absorption and NIR emission of bismuthate glasses on the melting temperature is interpreted as thermal dissociation of Bi{sub 2}O{sub 3} into elementary Bi. Darkening of bismuthate glass melted at 1300 deg. C is due to the agglomeration of Bi atoms. The presence of Bi nanoparticles is confirmed by transmission electron microscopy, high-resolution energy dispersive x-ray spectroscopy and element distribution mapping. By adding antimony oxide as an oxidation agent to the glass, NIR emission centers can be eliminated and Bi{sup 3+} is formed. By comparing with atomic spectral data, absorption bands at {approx}320 , {approx}500 , 700 , 800 and 1000 nm observed in Bi-doped glasses are assigned to Bi{sup 0} transitions {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 3/2}, {sup 4}S{sub 3/2}{yields}{sup 2}P{sub 1/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 5/2}, {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(2) and {sup 4}S{sub 3/2}{yields}{sup 2}D{sub 3/2}(1), respectively, and broadband NIR emission is assigned to the transition {sup 2}D{sub 3/2}(1){yields}{sup 4}S{sub 3/2}.

  19. Tl, Bi, and Pb doping in Ba4BiPb2TlO12-δ

    International Nuclear Information System (INIS)

    Sutto, T.E.; Averill, B.A.

    1992-01-01

    To determine the effects of different 6s metal concentrations on the superconducting nature of Ba 4 BiPb 2 TlO 12-δ , materials produced via four doping schemes were examined: Ba 4 Bi(Pb, Tl) 3 O 12-δ , Ba 4 -(BiPb) 3 TlO 12-δ , Ba 4 (Bi,Tl) 2 Pb 2 O 12-δ , and Ba 4 Bi x Pb 4-2x Tl x O 12-δ . For the parent compound a value of δ = 0.91 was observed, indicating that approximately 1/4 oxygen atom was missing per cubic subsection of the unit cell. For all samples, the symmetry of the parent compound changed from orthorhombic to tetragonal as the system moved away from the ideal composition. This was usually accompanied by the loss of superconductivity, which exhibited a maximum T c of 10.5 K for the parent compound Ba 4 BiPb 2 TlO 12-δ . Also reported are high-temperature magnetic susceptibility results, which are used to determine the effect of metal substitution on the density of states at the Fermi level. For each set of variants on the parent composition, the onset of superconductivity was accompanied by a significant decrease in the size of the Pauli paramagnetic signal. 16 refs., 6 figs

  20. An in situ study of the annealing behaviour of BiSCCO Ag tapes

    DEFF Research Database (Denmark)

    Frello, T.; Poulsen, H.F.; Andersen, L.G.

    1999-01-01

    The phase transformations and structural changes occurring during initial heating and annealing of an Ag-clad high-T-c superconducting tape of the (Bi, Pb)(2)Sr2Ca2Cu3Ox type are investigated. The annealing takes place in air at an operating temperature of 835 degrees C. Using x-ray diffraction...... continuously. We interpret these results as being related to a temperature-dependent solubility limit of Pb in 2212, leading to a substantial grain growth of the phase. Above 812 degrees C 2212 partly decomposes to form (Ca, Sr)(2)CuO3 and a liquid. At the operating temperature 2212 and (Ca, Sr)(2)CuO3 react...... the annealing the 2212 linewidth is constant, implying that there is neither strain nor finite-size broadening of the 2212 peaks during the transformation. This points to a transformation mechanism where only a few 2212 grains transform at a given time. Implications of these findings are discussed in relation...

  1. Scintillation properties of Er-doped Y3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Ogino, Hiraku; Fujimoto, Yutaka; Suzuki, Akira; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Yoshikawa, Akira

    2013-01-01

    Er-doped Y 3 Al 5 O 12 single crystals with different Er concentrations of 0.1, 1.0, 10, 30, and 50% were grown by the micro-pulling down method. There were several absorption lines due to the Er 3+ 4f-4f transitions in the transmittance spectra and these lines correspond to the transitions from the ground state of 4 I 15/2 to the excited states. The photo- and radio-luminescence spectra showed Er 3+ 4f-4f emissions. Relative light yield under 5.5 MeV alpha-ray irradiation of Er 0.1%:Y 3 Al 5 O 12 was estimated to be 63% of that of Bi 4 Ge 3 O 12 . -- Highlights: •Er doped Y 3 Al 5 O 12 single crystal scintillators were grown with different Er concentrations. •Optical properties associated with 4f-4f transition were evaluated. •Radio luminescence spectra measurements were performed under 5.5 MeV alpha-ray irradiation. •The highest light yield was estimated to be 63% of that of Bi 4 Ge 3 O 12 under 5.5 MeV alpha-ray irradiation

  2. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  3. First principles prediction of the magnetic properties of Fe-X6 (X = S, C, N, O, F) doped monolayer MoS2

    KAUST Repository

    Feng, Nan

    2014-02-05

    Using first-principles calculations, we have investigated the electronic structure and magnetic properties of Fe-X 6 clusters (X = S, C, N, O, and F) incorporated in 4 4 monolayer MoS 2, where a Mo atom is substituted by Fe and its nearest S atoms are substituted by C, N, O, and F. Single Fe and Fe-F 6 substituions make the system display half-metallic properties, Fe-C 6 and Fe-N 6 substitutions lead to a spin gapless semiconducting behavior, and Fe-O 6 doped monolayer MoS 2 is semiconducting. Magnetic moments of 1.93, 1.45, 3.18, 2.08, and 2.21...? B are obtained for X = S, C, N, O, and F, respectively. The different electronic and magnetic characters originate from hybridization between the X and Fe/Mo atoms. Our results suggest that cluster doping can be an efficient strategy for exploring two-dimensional diluted magnetic semiconductors.

  4. Evolution of MoTeO x/SiO 2 and MoBiTeO x/SiO 2 catalysts in the partial oxidation of propane to acrolein

    Science.gov (United States)

    He, Yiming; Wu, Ying

    2010-04-01

    A thorough investigation of the catalysts Mo 1Te 1O x/SiO 2 and Mo 1Bi 0.05Te 1O x/SiO 2 in the partial oxidation of propane is presented in this paper, in order to elucidate the nature and behavior of the active surface. The catalysts' structures and redox properties were investigated by means of X-ray powder diffraction, Raman spectroscopy, in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and H 2-TPR techniques. The results indicate that Te-polymolybdate is the main active phase on fresh catalysts. During reaction, the catalysts underwent a progressive reduction, resulting in the reconstruction of the active surface and the formation of a MoO 3 phase. The synergistic effect between Te-polymolybdate and MoO 3 was assumed to promote catalytic performance. The different stabilities of Mo 1Te 1O x/SiO 2 and Mo 1Bi 0.05Te 1O x/SiO 2 catalysts are also discussed.

  5. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance

    Science.gov (United States)

    Chen, Ruizhi; Wang, Weixuan; Jiang, Dongmei; Chu, Xiaoxuan; Ma, Xueming; Zhan, Qingfeng

    2018-06-01

    BiVO4 photocatalysts with different Nd3+ doping content were prepared by a hydrothermal method with varied hydrothermal reaction time. The effects of Nd3+ doping on phase transformation, morphology, chemical valence, optical properties and photocatalytic activities were investigated. With different reaction time, phase transformation from tetragonal zircon (tz-BiVO4) to monoclinic scheelite (ms-BiVO4) could be found, and Nd3+ doping played a suppressive role in this process. Scanning electron microscopy showed the morphology evolved from irregular structure to rod-like shapes with phase transformation. The photoluminescence induced by Nd3+ doping could be confirmed by UV-vis diffuse reflectance spectra. Photocatalytic performance tests had been performed under simulated solar conditions and sample with 1 at% Nd3+ doping and 5 h reaction time showed the best performance (89% degradation rate in 90 min). The pH also showed great influence on morphology and phase transformation of samples. Finally, the phyotocatalytic mechanism and effects of Nd3+ in phase transformation were discussed.

  6. Magnetic properties and superconducting-fluctuation diamagnetism above Tc in Bi2-xPbxSr2CaCu2O8+δ (x=0.0, 0.1, 0.2, 0.3, 0.5) and

    International Nuclear Information System (INIS)

    Lee, W.C.; Cho, J.H.; Johnston, D.C.

    1991-01-01

    The magnetic susceptibilities χ(T) of the title compounds above and below T c are reported. For the Bi 2-x Pb x Sr 2 CaCu 2 O 8+δ (Bi 2:2:1:2) system, optimization of the phase purity and superconducting properties is found between x=0.2 and 0.3. The χ(T) data for these Bi 2:2:1:2 and for the two Bi 2:2:2:3 samples increase monotonically with temperature from T c up to at least 400 K, exhibiting strong negative curvature below ∼200 K. From theoretical fits to the data in the two-dimensional regime above T c using the static Lawrence-Doniach model as modified by Klemm, we conclude that the negative curvature in χ(T) for each sample arises from superconducting-fluctuation diamagnetism (SFD). The data are thus consistent with a superconducting order parameter of s-wave symmetry. From the fits to the data, the Ginzburg-Landau coherence lengths in the CuO 2 planes were obtained and found to be ξ ab (0)=20.4(2) A for Bi 2:2:1:2 and 11.8(4) A for Bi 2:2:2:3. The value for Bi 2:2:1:2 is comparable to those calculated from upper critical magnetic-field data for this compound (23.5--27.1 A). Our ξ ab (0) values for Bi 2:2:1:2 and Bi 2:2:2:3 are also comparable with that (13.6 A) found from our previous similar analysis of the SFD in YBa 2 Cu 3 O 7 . The possible role of the bridging oxygens out of the CuO 2 plane in Bi 2:2:2:3 and the influence of the dynamics in the fits to the SFD in the Bi-based compounds remain to be addressed

  7. Electron and hole doping effects in Sr{sub 2}FeMoO{sub 6} double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D. E-mail: diana.sanchez@icmm.csic.es; Alonso, J.A.; Garcia-Hernandez, M.; Martinez-Lope, M.J.; Casais, M.T.; Martinez, J.L.; Fernandez-Diaz, M.T

    2004-05-01

    Electron and hole doping effects in the ferromagnetic and structural properties of the double perovskite Sr{sub 2}FeMoO{sub 6} are studied along the series Sr{sub 2-x}La{sub x}FeMoO{sub 6} (0{<=}x{<=}1) and Sr{sub 2-x}FeMoO{sub 6} (0{<=}x{<=}0.4) from neutron powder diffraction and magnetization data. Sr-deficient samples (hole doped) show moderate changes in the structure and both T{sub c} and M{sub s} rapidly decrease with x. On the contrary, a change from tetragonal to monoclinic symmetry and a non monotonic behaviour in T{sub c} is found in the La-substituted series (electron doped)

  8. Hydrogen Doping into MoO3 Supports toward Modulated Metal-Support Interactions and Efficient Furfural Hydrogenation on Iridium Nanocatalysts.

    Science.gov (United States)

    Xie, Lifang; Chen, Ting; Chan, Hang Cheong; Shu, Yijin; Gao, Qingsheng

    2018-03-16

    As promising supports, reducible metal oxides afford strong metal-support interactions to achieve efficient catalysis, which relies on their band states and surface stoichiometry. In this study, in situ and controlled hydrogen doping (H doping) by means of H 2 spillover was employed to engineer the metal-support interactions in hydrogenated MoO x -supported Ir (Ir/H-MoO x ) catalysts and thus promote furfural hydrogenation to furfuryl alcohol. By easily varying the reduction temperature, the resulting H doping in a controlled manner tailors low-valence Mo species (Mo 5+ and Mo 4+ ) on H-MoO x supports, thereby promoting charge redistribution on Ir and H-MoO x interfaces. This further leads to clear differences in H 2 chemisorption on Ir, which illustrates its potential for catalytic hydrogenation. As expected, the optimal Ir/H-MoO x with controlled H doping afforded high activity (turnover frequency: 4.62 min -1 ) and selectivity (>99 %) in furfural hydrogenation under mild conditions (T=30 °C, PH2 =2 MPa), which means it performs among the best of current catalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution

    International Nuclear Information System (INIS)

    Zhao, Xue; Ma, Xiao; Lu, Qingqing; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2017-01-01

    Well-established methods to improve the hydrogen evolution reaction (HER) performances include, but are not limited to, tailoring the morphology and electronic structure of transition metal dichalcogenides (TMDs), and doping of earth abundant chemicals such as iron pyrite FeS 2 into existing TMDs. In this work, MoS 2 nanoflowers with the majority being octahedral MoS 2 (1T-MoS 2 ) and doped with FeS 2 were prepared and applied to HER. The as-prepared catalysts were characterized by X-ray absorption fine structure at the K-edge of Mo, S, and Fe to probe the local electronic structures. The resulting nanomaterial was identified to be FeS 2 doped MoS 2 nanoflower (denoted as Fe-MoS 2 NF) with 66% 1T-MoS 2 which was the metallic phase and could drastically boost the HER properties. The Fe-MoS 2 NF exhibited high HER performance with a Tafel slope of 82 mV dec −1 and it needs 136 mV to achieve a current density of 10 mA cm −2 . The synthesis of Fe-MoS 2 NF with refined morphology and active electronic structure is expected to open a new era for improving the catalytic activity and stability of MoS 2 .

  10. Enhancing visible light photocatalytic and photocharge separation of (BiO)_2CO_3 plate via dramatic I"− ions doping effect

    International Nuclear Information System (INIS)

    Liang, Lei; Cao, Jing; Lin, Haili; Guo, Xiaomin; Zhang, Meiyu; Chen, Shifu

    2016-01-01

    Highlights: • Novel I-(BiO)_2CO_3 was prepared by a facile chemical precipitation method. • I"− ions impurity level located on the top of valence band of (BiO)_2CO_3. • I"− ions doping largely improved photocatalytic activity of I-(BiO)_2CO_3. • I-(BiO)_2CO_3 displayed excellent photocharge separation efficiency. - Abstract: Novel I"− ions doped (BiO)_2CO_3 (I-(BiO)_2CO_3) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO)_2CO_3 displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO)_2CO_3. The pseudo-first-order rate constant k_a_p_p of RhB degradation over 15.0% I-(BiO)_2CO_3 was 0.54 h"−"1, which is 11.3 times higher than that of (BiO)_2CO_3. The doped I"− ions formed an impurity level on the top of valence band of (BiO)_2CO_3 and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO)_2CO_3 system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO)_2CO_3 via intense doping effect of I"− ions.

  11. Ab-initio study of electronic and magnetic properties of Co-doped Mo2C monolayer

    Science.gov (United States)

    Mehta, Veenu; Tankeshwar, K.; Saini, Hardev S.

    2018-05-01

    The spin polarized density functional theory (DFT) based calculations has been performed to investigate the electronic and magnetic properties of pristine and Co-doped Mo2C using VASP code. The calculated results show that the pristine Mo2C is found to be non-magnetic whereas the Co dopant at Mo-site in the Mo2C monolayer generates the ferromagnetism in the resultant compound. The total magnetic moment of the system has been found to be 1.2µB which increases to 2.03µB as the concentration of Co increase from 3% to 8%, respectively. The electronic structure calculations of the pristine and Co-doped Mo2C show its metallic behavior which may found its application in magnetic energy storage devices, magnetic tape etc.

  12. Substutited molybdates of bismuth on a basis of Bi13Mo5O34±δ: production and properties

    Directory of Open Access Journals (Sweden)

    Z. A. Mikhailovskaya

    2014-11-01

    Full Text Available The present work is devoted to the investigation of the methods of a synthesis and properties of the one of the most interesting one-dimensional oxygen –ion conductors, the Bi13Mo5O34±δ –based complex oxides. The general compositions of these bismuth molybdates are Bi13Mo5-хMeхO34-δ, and Bi13-yMeyMo5O34-δ, with Me = Mg, Ca, Sr, Ba (IIA group and Co, Fe, Ni (Fe triade. The samples have been synthesized using conventional ceramic technology. The powders and pellets of the bismuth molybdates were studied by X-Ray diffraction, scanning electron microscopy, laser dispersion, dilatometry, atom absorption and inductively-coupled plasma atomic emission spectrometry. Electrical conductivity has been studied using impedance spectroscopy method.

  13. Synthesis of C@Bi{sub 2}MoO{sub 6} nanocomposites with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuying; Wu, Juan; Ma, Tianjin; Wang, Pengchao; Cui, Chunyue; Ma, Dong, E-mail: madong8088@126.com

    2017-05-01

    Highlights: • C@BM composites were obtained by two–step hydrothermal method. • The properties of Bi{sub 2}MoO{sub 6} were deeply influenced by carbon layer. • Carbon could reduce recombination of electrons and holes in C@BM composites. • The holes and ·O{sub 2}{sup −} are the two main reactive species for Rh B degradation. - Abstract: Carbon–coated Bi{sub 2}MoO{sub 6} (C@BM) composites have been successfully synthesized via two–step hydrothermal method. The morphology, structure and photocatalytic performance of the composites in the degradation of Rhodamine B (Rh B) are characterized. The results show that the C@BM composites exhibit enhanced photocatalytic performance in the degradation of Rh B with maximum degradation rates of 90% (210 min) under visible light irradiation. 1.0%C@BM sample shows the highest photocatalytic activity, and the improved photocatalytic performance is mainly ascribed to the formation of Mo−O−C and Bi−O−C bonds. The bonds could promote electron transfer from Bi{sub 2}MoO{sub 6} to carbon layer and inhibit the recombination of electron–hole pairs with the presence of carbon layer in the composites. Moreover, the carbon layer on Bi{sub 2}MoO{sub 6} could enhance the absorption in the visible light region. In the photocatalytic degradation process, ·O{sub 2}{sup −}and holes are the predominant active species for the decomposition of Rh B.

  14. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    Science.gov (United States)

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  15. Enhanced infrared magneto-optical response of the nonmagnetic semiconductor BiTeI driven by bulk Rashba splitting

    Energy Technology Data Exchange (ETDEWEB)

    Demko, L.; Tokura, Y. [Multiferroics Project, ERATO, JST, c/o Department of Applied Physics, University of Tokyo (Japan); Schober, G.A.H. [Institute for Theoretical Physics, University of Heidelberg (Germany); Kocsis, V.; Kezsmarki, I. [Department of Physics, Budapest University of Technology and Economics and Condensed Matter Research Group of the Hungarian Academy of Sciences (Hungary); Bahramy, M.S.; Murakawa, H. [CMRG and CERG, RIKEN ASI (Japan); Lee, J.S.; Arita, R.; Nagaosa, N. [Department of Applied Physics, University of Tokyo (Japan)

    2013-07-01

    We study the magneto-optical (MO) response of the polar semiconducting BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being nonmagnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (up to 3 T). Our first-principles calculations show that the enhanced MO response of BiTeI comes mainly from the intraband transitions between the Rashba-split bulk conduction bands. These transitions connecting electronic states with opposite spin directions become active due to the presence of strong spin-orbit interaction and give rise to distinct features in the MO spectra with a systematic doping dependence. We predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands.

  16. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping.

    Science.gov (United States)

    Wi, Sungjin; Kim, Hyunsoo; Chen, Mikai; Nam, Hongsuk; Guo, L Jay; Meyhofer, Edgar; Liang, Xiaogan

    2014-05-27

    Layered transition-metal dichalcogenides hold promise for making ultrathin-film photovoltaic devices with a combination of excellent photovoltaic performance, superior flexibility, long lifetime, and low manufacturing cost. Engineering the proper band structures of such layered materials is essential to realize such potential. Here, we present a plasma-assisted doping approach for significantly improving the photovoltaic response in multilayer MoS2. In this work, we fabricated and characterized photovoltaic devices with a vertically stacked indium tin oxide electrode/multilayer MoS2/metal electrode structure. Utilizing a plasma-induced p-doping approach, we are able to form p-n junctions in MoS2 layers that facilitate the collection of photogenerated carriers, enhance the photovoltages, and decrease reverse dark currents. Using plasma-assisted doping processes, we have demonstrated MoS2-based photovoltaic devices exhibiting very high short-circuit photocurrent density values up to 20.9 mA/cm(2) and reasonably good power-conversion efficiencies up to 2.8% under AM1.5G illumination, as well as high external quantum efficiencies. We believe that this work provides important scientific insights for leveraging the optoelectronic properties of emerging atomically layered two-dimensional materials for photovoltaic and other optoelectronic applications.

  17. The luminescence of CaWO4: Bi single crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pashkovsky, M.; Voloshinovskii, A.; Kuklinski, B.; Grinberg, M.

    2006-01-01

    Influence of doping with Bi 3+ ions and Bi 3+ -Na + or Bi 3+ -Li + ions pairs on luminescence, emission kinetics and light yield of CaWO 4 crystals has been investigated. It has been shown that under excitation in the A-band at 272 and 287nm, related to the Bi 3+ ions absorption, the luminescence peaked at 468nm decaying with time τ=0.41μs is observed. For bismuth concentration 50-500ppm and the equimolar concentrations of the Bi 3+ ions accompanied by Na + or Li + ions compensators the significant suppression of the phosphorescence peaked at 520nm, related to the defect WO 3 -V O complex, and an improvement of scintillation characteristics of the CaWO 4 are noticed. Energy transfer from the defect WO 3 -V O and regular WO 4 2- oxy-anions to Bi 3+ ions have been observed at room temperatures and discussed

  18. Facile synthesis of Z-scheme graphitic-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} nanocomposite for enhanced visible photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jiali [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Dai, Kai, E-mail: daikai940@chnu.edu.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Zhang, Jinfeng; Geng, Lei [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Liang, Changhao, E-mail: chliang@issp.ac.cn [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Qiangchun; Zhu, Guangping; Chen, Chen [College of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China)

    2015-12-15

    Graphical abstract: - Highlights: • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} nanocomposite photocatalyst was prepared. • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} as a typical Z-scheme photocatalyst was proved. • g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} showed long reusable life with irradiation of LED light. - Abstract: The band engineering of visible-light-driven photocatalysts is a promising route for harnessing of effective solar energy to perform high chemical reactions and to treat environmental pollution. In this study, two narrow band gap semiconductor nanomaterials, graphitic carbon nitride (g-C{sub 3}N{sub 4}) and Bi{sub 2}MoO{sub 6}, were selected and coupled to form series of g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts. Their structure, light absorption wavelength range, charge transport properties and energy level were investigated. Through perfect manipulation of their composition, enhanced photocatalytic activity of the Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts with efficient reduction of recombination of photogenerated electrons and holes was achieved. The optimized Z-scheme g-C{sub 3}N{sub 4}/Bi{sub 2}MoO{sub 6} photocatalysts with 25 wt%g-C{sub 3}N{sub 4} showed apparent pseudo-first-order rate constant k{sub app} as high as 0.0688 min{sup −1}, which was 4.8 times and 8.2 times higher than that of g-C{sub 3}N{sub 4} and Bi{sub 2}MoO{sub 6} photocatalyst, respectively.

  19. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    International Nuclear Information System (INIS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Misra, Soumyadeep; Roca i Cabarrocas, Pere; Yu, Linwei

    2015-01-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs

  20. Preparation and characterization of Bi-doped TiO2 and its solar photocatalytic activity for the degradation of isoproturon herbicide

    International Nuclear Information System (INIS)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2011-01-01

    Highlights: → Visible active Bi-TiO 2 photocatalyst preparation and thorough charaterization. → Bi-TiO 2 shows high activity for isoproturon degradation under solar light irradiation. → The spectral response of TiO 2 shifts from UV to visible light region by Bi doping. → Bi 3+δ+ species are playing a vital role in minimizing e - /h + recombination. -- Abstract: Bi-doped TiO 2 catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO 2 showed red shift in optical absorption. The presence of Bi 3+δ+ species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO 2 .

  1. Preparation of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8-x} tracks and thick films by jet printing

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 OHE (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom). E-mail: bag10 at cus.cam.ac.uk

    2000-05-01

    The formation of the 2212 phase material on both silver and magnesium oxide (100) substrates was successfully achieved by the dropwise deposition of solutions of 2212 dissolved in nitric acid or organic acids such as acetic acid or propionic acid using commercial ink-jet printing head using so-called technique 'droplet-on-request'. Precursor solutions were prepared by dissolving either a mixture of metal nitrates (Bi(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O, Sr(NO{sub 3}){sub 2}, Ca(NO{sub 3}){sub 2}{center_dot}4H{sub 2}O and Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O) or 2212 superconducting powder in acid solutions. From this initial study using simple solutions on conventional substrates such as polycrystalline silver and large MgO single crystals, the preparation of the textured thick 2212 film for superconducting circuits and interconnections by the ink-jet printing process appears quite promising. The critical temperatures of the selected superconducting coatings were in range of 82-92 K. (author)

  2. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO+ and BiO+ with a very short metal–oxygen bond

    International Nuclear Information System (INIS)

    Kazin, Pavel E.; Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V.; Magdysyuk, Oxana V.; Dinnebier, Robert E.

    2016-01-01

    Crystal structures of substituted apatites with general formula Ca 10−x M x (PO 4 ) 6 (OH 1−δ ) 2−x O x , where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca 2+ and M 3+ -ions localized near Ca2-site were determined. The M 3+ -ion was found shifted toward the hexagonal channel center with respect to the Ca 2+ -ion, forming very short bond with the intrachannel O 2− , while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO + ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO + and LaO + were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La 2 O 3 . The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO + and LaO + with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  3. Effect of Ag on the peritectic decomposition of Bi2Sr2CaCu2Ox

    International Nuclear Information System (INIS)

    Margulies, L.; Dennis, K.W.; Kramer, M.J.; McCallum, R.W.

    1995-01-01

    During the melt processing of superconducting wires and tapes a number of partial liquid phase regions are entered, and the type and amount of second phases that exist in the melt before cooling are critical in determining the microstructure of the final material. Decomposition pathway of Bi 2 Sr 2 CaCu 2 O x (Bi2212) with 0, 2, and 10 wt% Ag added was examined at 1 bar PO 2 by performing SAME/EDS analysis on oil quenched samples. A variety of quaternary phase diagrams were constructed to describe the evolution of the phase assemblage with temperature. At all Ag contents, Bi2212 first undergoes a peritectic reaction producing (Sr 1-x Ca x ) 14 Cu 24 O 41 (14,24), Bi 2 (Sr 1-x Ca x ) 4 O x (24x), and liquid

  4. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    Science.gov (United States)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  5. Production of BiPbSrCaCuO thin films on MgO and Ag/MgO substrates by electron beam deposition techniques

    CERN Document Server

    Varilci, A; Gorur, O; Celebi, S; Karaca, I

    2002-01-01

    Superconducting BiPbSrCaCuO thin films were prepared on MgO(001) and Ag/MgO substrates using an electron beam (e-beam) evaporation technique. The effects of annealing temperature and Ag diffusion on the crystalline structure and some superconducting properties, respectively, were investigated by X-ray diffraction, atomic force microscopy, and by measurements of the critical temperature and the critical current density. It was shown that an annealing of both types of films at 845 or 860 C resulted in the formation of mixed Bi-2223 and Bi-2212 phases with a high degree of preferential orientation with the c-axis perpendicular to the substrates. The slight increase of the critical temperature from 103 K to 105 K, the enhancement of the critical current density from 2 x 10 sup 3 to 6 x 10 sup 4 A/cm sup 2 , and the improved surface smoothness are due to a possible silver doping from the substrate. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  6. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    Science.gov (United States)

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  7. Enhanced photoelectrochemical water splitting of BiVO4 photonic crystal photoanode by decorating with MoS2 nanosheets

    Science.gov (United States)

    Nan, Feng; Cai, Tianyi; Ju, Sheng; Fang, Liang

    2018-04-01

    Bismuth vanadate (BiVO4) has been considered as one of the promising Photoelectrochemical (PEC) photoanode materials. However, the performances remain poorly rated due to inefficient carrier separation, short carrier diffusion length, and sluggish water oxidation kinetics. Herein, a photoanode consisting of MoS2 nanosheet coating on the three-dimensional ordered BiVO4 inverse opal is fabricated by a facile combination of nanosphere lithography and hydrothermal methods. By taking advantage of the photonic crystal and two-dimensional material, the optimized MoS2/BiVO4 inverse opal photoanode exhibits a 560% improvement of the photocurrent density and threefold enhancement of the incident photon-to-current efficiency than that of the pristine BiVO4 film photoanode. Systematic studies reveal that the excellent PEC activity should be attributed to enhanced light harvesting and charge separation efficiency.

  8. Solvothermal syntheses of Bi and Zn co-doped TiO{sub 2} with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan-Juan [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Cai, Song-Cai [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Xu, Zhen [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Xi [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Chen, Jin [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Jia, Hong-Peng, E-mail: hpjia@iue.ac.cn [Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Chen, Jing, E-mail: jing.chen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China)

    2017-03-05

    Highlights: • Bi-Zn co-doped TiO{sub 2} catalysts were prepared by solvothermal route. • The incorporation of Bi doping into the TiO{sub 2} generates intermediate energy levels. • Bi and Zn doping showed the enhanced absorption in visible-light region. • Zn dopant acts as a mediator of interfacial charge transfer. • TiBi{sub 1.9%}Zn{sub 1%}O{sub 2} exhibited high photocatalytic degradation for toluene. - Abstract: This study investigated the effects of Bi doped and Bi-Zn co-doped TiO{sub 2} on photodegradation of gaseous toluene. The doped TiO{sub 2} with various concentration of metal was prepared using the solvothermal route and characterized by SEM, XRD, Raman, BET, DRS, XPS, PL and EPR. Their photocatalytic activities under visible-light irradiation were drastically influenced by the dopant content. The results showed that moderate metal doping levels were obviously beneficial for the toluene degradation, while high doping levels suppressed the photocatalytic activity. The photocatalytic degradation of toluene over TiBi{sub 1.9%}O{sub 2} and TiBi{sub 1.9%}Zn{sub 1%}O{sub 2} can reach to 51% and 93%, respectively, which are much higher than 25% of TiO{sub 2}. Bi doping into TiO{sub 2} lattice generates new intermediate energy level of Bi below the CB edge of TiO{sub 2}. The electron excitation from the VB to Bi orbitals results in the decreased band gap, extended absorption of visible-light and thus enhances its photocatalytic efficiency. Zn doping not only further enhances the absorption in this visible-light region, but also Zn dopant exists as the form of ZnO crystallites located on the interfaces of TiO{sub 2} agglomerates and acts as a mediator of interfacial charge transfer to suppress the electron-hole recombination. These synergistic effects are responsible for the enhanced photocatalytic performance.

  9. Single phase in Ba-dopped Bi-based high-T/sub c/ compound

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2001-01-01

    Ba-doped, Bi-based, high-Tc superconductor was prepared by a solid state reaction method. The nominal composition used was Bi/sub 1.6/Pb/sub 0.4/Sr/sub 1.6/Ba/sub 0.4/Ca/sub 2/Cu/sub 3/O/sub y/. The samples were characterized by dc electrical resistivity and ac magnetic susceptibility both as a function of temperature (T). Room temperature x-ray diffraction studies were also done. Binder chemicals do affect the properties of the samples and it was observed that samples prepared with polyvinyl alcohol binder chemical showed good reproducible results. All the Above measurements showed that in the compound Bi/sub 1.6/Pb/sub 0.4/Ca/sub 2/Cu/sub 3/O/sub y/ there exists a single high-T/sub c/ phase with T/sub c.0≅/109 plus minus 1K. It behaves like an ideal metal before the superconducting transition in ρ-T plot and the Mathiessen's rule could be fitted. The ac susceptibility measurements support the observations of electrical resistivity. The lattice constants of the material are a=5.416(7) degree A, b=5.455(6) degree A, and c=37.26(8) degree A. The c-axis lattice constant slightly increased with Ba-doping. This fact indicated that Ba was probably incorporated into the Sr site of the crystal structure. Large sized samples (Diameter '28mm and length' 11mm) are under investigation for thermal transport properties by transient Plane Source (TPS) method. (author)

  10. Enhanced photocatalytic activity of cadmium-doped Bi{sub 2}WO{sub 6} nanoparticles under simulated solar light

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xu Chun, E-mail: songxuchunfj@163.com; Li, Wen Ting [Fujian Normal University, Department of Chemistry (China); Huang, Wan Zhen; Zhou, Huan [Zhejiang University of Technology, Research Center of Analysis and Measurement (China); Yin, Hao Yong [Hangzhou Dianzi University, Institute of Environmental Science and Engineering (China); Zheng, Yi Fan [Zhejiang University of Technology, Research Center of Analysis and Measurement (China)

    2015-03-15

    Novel cadmium-doped Bi{sub 2}WO{sub 6} nanoparticles with different Cd contents have been synthesized by a one-step route using ethylene glycol and water as solvents at 180 °C for 12 h. The as-synthesized samples were characterized in detailed by SEM, XRD, EDS, HRTEM, UV–Vis DRS, BET techniques, and so on. The results shown that with the increase of the Cd{sup 2+} addition, the crystal structure, lattice space, and absorption edge were not significantly changed and the calculated band gap value was 2.58 eV. However, the flower-like Bi{sub 2}WO{sub 6} sphere was gradually destroyed. Simultaneously, the surface area and photocurrent responses of the catalysts were greatly increased. Photocatalytic activity of the Cd-doped Bi{sub 2}WO{sub 6} samples was determined by monitoring the change of RhB concentration under simulated solar light. The results revealed that cadmium doping greatly improved the photocatalytic efficiency of Bi{sub 2}WO{sub 6}. The Bi{sub 2}WO{sub 6} sample with R{sub Cd} = 0.05 displayed the highest photocatalytic activity, and the degradation rate is about two times greater than pure Bi{sub 2}WO{sub 6}. Moreover, the Cd–Bi{sub 2}WO{sub 6} photocatalyst remained stable even after five consecutive cycles. A possible mechanism of photocatalytic activity enhancement on basis of the experimental results was proposed.

  11. Structures of Bi14WO24 and Bi14MoO24 from neutron powder diffraction data

    International Nuclear Information System (INIS)

    Ling, C.D.; Withers, R.L.; Thompson, J.G.; Schmid, S.

    1999-01-01

    The (isomorphous) structures of Bi 14 WO 24 , tetradecabismuth tungsten tetracosaoxide, and Bi 14 MoO 24 , tetradecabismuth molybdenum tetracosaoxide, have been solved and refined using neutron powder diffraction data in the space group I4/m. The metal-atom array is fully ordered in terms of composition, and in terms of atomic positions deviates only slightly from a fluorite-type δ-Bi 2 O 3 -related parent structure. Three independent O-atom sites (accounting for 70 out of 78 O atoms in the unit cell) are also very close to fluorite-type parent positions. The remaining two O-atom sites, which coordinate W, exhibit partial occupancies and displacive disorder, neither of which could be better modelled by lowering of symmetry. The W site is coordinated by four O atoms in highly distorted tetrahedral coordination, the tetrahedron necessarily being orientationally disordered on that site. Nonetheless, the structure appears to be chemically reasonable. (orig.)

  12. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    Science.gov (United States)

    Yang, C.-H.; Seidel, J.; Kim, S. Y.; Rossen, P. B.; Yu, P.; Gajek, M.; Chu, Y. H.; Martin, L. W.; Holcomb, M. B.; He, Q.; Maksymovych, P.; Balke, N.; Kalinin, S. V.; Baddorf, A. P.; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-06-01

    Many interesting materials phenomena such as the emergence of high-Tc superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO3 through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A `dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of ~1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO3.

  13. Strain tunable magnetic properties of 3d transition-metal ion doped monolayer MoS2: A first-principles study

    Science.gov (United States)

    Zhu, Yupeng; Liang, Xiao; Qin, Jun; Deng, Longjiang; Bi, Lei

    2018-05-01

    In this article, a systematic study on the magnetic properties and strain tunability of 3d transition metal ions (Mn, Fe, Co, Ni) doped MoS2 using first-principles calculations is performed. Antiferromagnetic coupling is observed between Mn, Fe ions and the nearest neighbor Mo ions; whereas ferromagnetic coupling is observed in Co and Ni systems. It is also shown that by applying biaxial tensile strain, a significant change of the magnetic moment is observed in all transition metal doped MoS2 materials with a strain threshold. The changes of total magnetic moment have different mechanisms for different doping systems including an abrupt change of the bond lengths, charge transfer and strain induced structural anisotropy. These results demonstrate applying strain as a promising method for tuning the magnetic properties in transition metal ion doped monolayer MoS2.

  14. Friction and wear behaviour of Mo-W doped carbon-based coating during boundary lubricated sliding

    Science.gov (United States)

    Hovsepian, Papken Eh.; Mandal, Paranjayee; Ehiasarian, Arutiun P.; Sáfrán, G.; Tietema, R.; Doerwald, D.

    2016-03-01

    A molybdenum and tungsten doped carbon-based coating (Mo-W-C) was developed in order to provide low friction in boundary lubricated sliding condition at ambient and at high temperature. The Mo-W-C coating showed the lowest friction coefficient among a number of commercially available state-of-the-art DLC coatings at ambient temperature. At elevated temperature (200 °C), Mo-W-C coating showed a significant reduction in friction coefficient with sliding distance in contrast to DLC coatings. Raman spectroscopy revealed the importance of combined Mo and W doping for achieving low friction at both ambient and high temperature. The significant decrease in friction and wear rate was attributed to the presence of graphitic carbon debris (from coating) and 'in situ' formed metal sulphides (WS2 and MoS2, where metals were supplied from coating and sulphur from engine oil) in the transfer layer.

  15. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles

    Science.gov (United States)

    Lv, Hua; Liu, Yumin; Tang, Haibo; Zhang, Peng; Wang, Jianji

    2017-12-01

    The photodegradation of organic pollutants is an attractive green chemistry technology for water pollution control. Here we prepared a new composite material consisting of BiPO4 nanocrystals grown on layered graphene and MoS2 as a high-performance photocatalyst for the photodegradation of organic pollutants. This composite material was synthesized by a facile one-pot microwave-assisted hydrothermal technique in the presence of layered graphene and MoS2. Through optimizing the loading content of each component, the BiPO4-MoS2/graphene nanocomposite exhibited the highest photocatalytic activity for the degradation of Rhodamine (RhB) when the content of MoS2 and graphene was 2 wt% and 7 wt%, respectively. The enhanced photocatalytic activity of the new composite photocatalyst was attributed to the positive synergetic effect of the layered graphene and MoS2 as cocatalyst, which acted as electron collector and transporter for the interfacial electron transfer from BiPO4 to electron acceptor in the aqueous solution and thus suppressed the charge recombination and made the photogenerated holes more available to participated in the oxidation process. Moreover, the presence of layered MoS2/graphene hybrid could offer more reactive sites and activated the O2 molecular in water to form superoxide radical, thereby resulting in the enhanced photocatalytic activity.

  16. Quantitative Raman Measurement of the Evolution of the Cooper-pair Density with Doping in Bi2Sr2CaCu2O8+δ Superconductors

    International Nuclear Information System (INIS)

    Blanc, S.; Gu, G.; Gallais, Y.; Sacuto, A.; Cazayous, M.; Measson, M.A.; Wen, J.S.; Xu, Z.J.

    2009-01-01

    We report Raman measurements on Bi 2 Sr 2 CaCu 2 O 8+δ single crystals that allow us to quantitatively evaluate the doping dependence of the density of Cooper pairs in the superconducting state. We show that the drastic loss of Cooper pairs in the antinodal region as the doping level is reduced is concomitant with a deep alteration of the quasiparticles dynamic above T c and consistent with a pseudogap that competes with superconductivity. Our data also reveal that the overall density of Cooper pairs evolves with doping, distinctly from the superfluid density above the doping level p c = 0.2.

  17. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    Science.gov (United States)

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  18. Preparation of NO-doped β-MoO{sub 3} and its methanol oxidation property

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thuy Phuong, E-mail: pttphuong@ict.vast.vn; Nguyen, Phuc Hoang Duy; Vo, Tan Tai; Luu, Cam Loc; Nguyen, Huu Huy Phuc

    2016-12-01

    The major drawback of the industrial iron molybdate catalysts which is their deactivation problem has driven the study of alternative catalysts for formaldehyde production from methanol. In this paper, NO-doped β-MoO{sub 3} was successfully synthesized from the commercial molybdic acid powder (H{sub 2}MoO{sub 4}) and characterized by differential thermal analysis (DTA), X-ray Diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results obtained from XRD and Raman spectroscopy indicated that the synthesized sample has all features of the well-known β-MoO{sub 3} except for the presence of a new small peak. The curve-fitting of XPS spectra revealed that nitrogen-containing species may be present in the form of negatively charged nitrogen oxide in the prepared sample. Due to its metastable nature, NO-doped β-MoO{sub 3} may be transformed into the thermally stable α-MoO{sub 3} at temperature higher than 400 °C as pointed out by DTA study. However, when the reaction temperature was as low as 300 °C, the catalyst was stable for partial methanol oxidation with no significant change in activity during 30 h of catalytic study. Methanol conversion and formaldehyde selectivity were maintained at about 98% and 99%, respectively. - Highlights: • NO-doped β-MoO{sub 3} was synthesized by a facile and effective method. • Its structure was confirmed by XRD, Raman and XPS analysis. • X{sub MeOH} and S{sub HCHO} were stabilized at 98% and 99%, respectively, for the first 30 h.

  19. Investigation on synthesis of Bi-based thin films on flat sputter-deposited Ag film by melting process

    International Nuclear Information System (INIS)

    Su Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Awane, Toru; Fukuyo, Akihiro; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2003-01-01

    We report on the fabrication of ribbon-like thin films on flat sputter-deposited Ag films whose surface smoothness remained within the order of tens of nm. It was found that the addition of Pb to the starting material improves the wettability of molten phase and facilitates the growth of Bi-2212 ribbon-like thin films on a flat Ag substrate, and that the increase of Ca and Cu in starting material suppresses the intergrowth of the Bi-2201 phase in ribbon-like thin films. By using (Bi,Pb)-2246 powders, with nominal composition of Bi 1.6 Pb 0.4 Sr 1.6 Ca 3.2 Cu 4.8 O y , as the starting material, the superconducting Bi-2212 ribbon-like thin films with an onset T c at 74 K on a very flat Ag substrate were successfully synthesized. Additionally, the growth mechanism of ribbon-like thin films on flat Ag substrate was investigated by in situ high temperature microscope observation

  20. Ultrafast microwave hydrothermal synthesis and characterization of Bi1−xLaxFeO3 micronized particles

    International Nuclear Information System (INIS)

    Ponzoni, C.; Cannio, M.; Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K.; Leonelli, C.

    2015-01-01

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi 1−x La x FeO 3 where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi 1−x La x FeO 3 crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO 3 lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO 3 and Bi 0.85 La 0.15 FeO 3 . The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi 1−x La x FeO 3 , x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T c shift in La doped BiFeO 3 DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic

  1. Preparation of La{sup 3+}/Zn{sup 2+}-doped BiVO{sub 4} nanoparticles and its enhanced visible photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yanhui; Yuan, Huili; Chen, Hang; Feng, Jiantao; Ding, Yan; Li, Liangchao [Zhejiang Normal University, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Jinhua (China)

    2017-10-15

    BiVO{sub 4} samples doped with different amounts of La{sup 3+} or Zn{sup 2+} ions have been synthesized successfully by a hydrothermal method, and their composition, microstructure and photocatalytic activity were characterized by means of modern analytical techniques. The results illustrated that these doped BiVO{sub 4} samples presented a better photocatalytic performance than the undoped BiVO{sub 4} sample, among which Bi{sub 0.92}La{sub 0.08}VO{sub 4} and Bi{sub 0.92}Zn{sub 0.08}VO{sub 4} exhibited the highest degradation efficiency. Under visible light illumination, their photocatalytic degradation on RhB was up to 95.4 and 98.56% in 60 min, respectively. In particular, the Bi{sub 0.92}La{sub 0.08}VO{sub 4} and Bi{sub 0.92}Zn{sub 0.08}VO{sub 4} had a good stability and still retained the photocatalytic activity of 93.7 and 94% after five cycling test. These results confirmed that the La{sup 3+}/Zn{sup 2+}-doped BiVO{sub 4} samples were a kind of efficient and stable visible-light-driven photocatalysts and had a promising application for the degradation of organic contaminant. (orig.)

  2. Mo0.5W0.5S2 for Q-switched pulse generation in ytterbium-doped fiber laser

    Science.gov (United States)

    Wang, Junli; Chen, Lei; Dou, Chenxi; Yan, Haiting; Meng, Lingjie; Wei, Zhiyi

    2018-06-01

    In this work, we fabricate the Mo0.5W0.5S2 by microwave-assisted solvothermal method, and report the Q-switched Yb-doped fiber lasers (YDFL) using Mo0.5W0.5S2 polymer film and tapered fiber as the saturable absorbers (SAs). The modulation depth and saturable intensity of the film SA are 5.63% and 6.82 MW cm‑2. The shortest pulse duration and the maximum single pulse energy are 1.22 μs and 148.8 nJ for the film SA, 1.46 μs and 339 nJ for the fiber-taper SA. To the best of our knowledge, this is the first report on the Q-switched YDFL using Mo0.5W0.5S2 SAs.

  3. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping

    DEFF Research Database (Denmark)

    Jin, Chengjun; Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    ) with a generalized gradient approximation predicts a Schottky barrier height of 0.18 eV, whereas the G0W0 method increases this value to 0.60 eV. While the DFT band gap of MoS2 does not change when the heterostructure is formed, the G0W0 gap is reduced by 0.30 eV as a result of the enhanced screening by the graphene...... layer. In contrast to the case of metal substrates, where the band alignment is governed by Pauli repulsion-induced interface dipoles, the graphene/MoS2 heterostructure shows only a negligible interface dipole. As a consequence, the band alignment at the neutral heterostructure is not changed when...... the two layers are brought into contact. We systematically follow the band alignment as a function of doping concentration and find that the Fermi level of the graphene crosses the MoS2 conduction band at a doping concentration of around 1012 cm–2. The variation of the energy levels with doping...

  4. Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene

    KAUST Repository

    Park, Jung-Hyun

    2016-01-22

    Bi3Mo2Fe1Px oxide catalysts were prepared by a co-precipitation method and the influence of phosphorous content on the catalytic performance in the oxidative dehydrogenation of 1-butene was investigated. The addition of phosphorous up to 0.4mole ratio to Bi3Mo2Fe1 oxide catalyst led to an increase in the catalytic performance; however, a higher phosphorous content (above P=0.4) led to a decrease of conversion. Of the tested catalysts, Bi3Mo2Fe1P0.4 oxide catalyst exhibited the highest catalytic performance. Characterization results showed that the catalytic performance was related to the quantity of a π-allylic intermediate, facile desorption behavior of adsorbed intermediates and ability for re-oxidation of catalysts. © 2015 Korean Institute of Chemical Engineers, Seoul, Korea

  5. Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene

    KAUST Repository

    Park, Jung-Hyun; Shin, Chae-Ho

    2016-01-01

    Bi3Mo2Fe1Px oxide catalysts were prepared by a co-precipitation method and the influence of phosphorous content on the catalytic performance in the oxidative dehydrogenation of 1-butene was investigated. The addition of phosphorous up to 0.4mole ratio to Bi3Mo2Fe1 oxide catalyst led to an increase in the catalytic performance; however, a higher phosphorous content (above P=0.4) led to a decrease of conversion. Of the tested catalysts, Bi3Mo2Fe1P0.4 oxide catalyst exhibited the highest catalytic performance. Characterization results showed that the catalytic performance was related to the quantity of a π-allylic intermediate, facile desorption behavior of adsorbed intermediates and ability for re-oxidation of catalysts. © 2015 Korean Institute of Chemical Engineers, Seoul, Korea

  6. Filament to filament bridging and its influence on developing high critical current density in multifilamentary Bi2Sr2CaCu2Ox round wires

    International Nuclear Information System (INIS)

    Shen, T; Jiang, J; Kametani, F; Trociewitz, U P; Larbalestier, D C; Schwartz, J; Hellstrom, E E

    2010-01-01

    Increasing the critical current density (J c ) of the multifilamentary round wire Ag/Bi 2 Sr 2 CaCu 2 O x (2212) requires understanding its complicated microstructure, in which extensive bridges between filaments are prominent. In this first through-process quench study of 2212 round wire, we determined how its microstructure develops during a standard partial-melt process and how filament bridging occurs. We found that filaments can bond together in the melt state. As 2212 starts to grow on subsequent cooling, we observed that two types of 2212 bridges form. One type, which we call Type-A bridges, forms within filaments that bonded in the melt; Type-A bridges are single grains that span multiple bonded filaments. The other type, called Type-B bridges, form between discrete filaments through 2212 outgrowths that penetrate into the Ag matrix and intersect with other 2212 outgrowths from adjacent filaments. We believe the ability of these two types of bridges to carry inter-filament current is intrinsically different: Type-A bridges are high- J c inter-filament paths whereas Type-B bridges contain high-angle grain boundaries and are typically weak linked. Slow cooling leads to more filament bonding, more Type-A bridges and a doubling of J c without changing the flux pinning. We suggest that Type-A bridges create a 3D current flow that is vital to developing high J c in multifilamentary 2212 round wire.

  7. Strong and Stable Doping of Carbon Nanotubes and Graphene by MoO x for Transparent Electrodes

    KAUST Repository

    Hellstrom, Sondra L.

    2012-07-11

    MoO x has been used for organic semiconductor doping, but it had been considered an inefficient and/or unstable dopant. We report that MoO x can strongly and stably dope carbon nanotubes and graphene. Thermally annealed MoO x-CNT composites can form durable thin film electrodes with sheet resistances of 100 ω/sq at 85% transmittance plain and 85 ω/sq at 83% transmittance with a PEDOT:PSS adlayer. Sheet resistances change less than 10% over 20 days in ambient and less than 2% with overnight heating to 300 °C in air. The MoO x can be easily deposited either by thermal evaporation or from solution-based precursors. Excellent stability coupled with high conductivity makes MoO x-CNT composites extremely attractive candidates for practical transparent electrodes. © 2012 American Chemical Society.

  8. Hydrothermal fabrication of N-doped (BiO){sub 2}CO{sub 3}: Structural and morphological influence on the visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Wang, Rui; Li, Xinwei [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Biological Engineering, Chongqing Technology and Business University, Chongqing 400067 (China); Ho, Wing-Kei [Department of Science and Environmental Studies, The Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Hong Kong (China)

    2014-11-15

    Graphical abstract: - Highlights: • Persimmon-like, flower-like N-doped (BiO){sub 2}CO{sub 3} superstructures were prepared. • The superstructures were fabricated by one-step hydrothermal method. • The hydrothermal temperature controlled the morphological structure. • N-doped (BiO){sub 2}CO{sub 3} superstructure showed enhanced photocatalytic activity. • The high activity can be ascribed to doped nitrogen and hierarchical structure. - Abstract: Various 3D N-doped (BiO){sub 2}CO{sub 3} (N-BOC) hierarchical superstructures self-assembled with 2D nanosheets were fabricated by one-step hydrothermal treatment of bismuth citrate and urea. The as-obtained samples were characterized by XRD, XPS, FT-IR, SEM, N{sub 2} adsorption–desorption isotherms and UV–vis DRS. The hydrothermal temperature plays a crucial role in tuning the crystal and morphological structure of the samples. Adjusting the reaction temperature to 150, 180 and 210 °C, we obtained N-doped (BiO){sub 2}CO{sub 3} samples with corresponding attractive persimmon-like, flower-like and nanoflakes nano/microstructures. The photocatalytic activities of the samples were evaluated by removal of NO under visible and solar light irradiation. The results revealed that the N-doped (BiO){sub 2}CO{sub 3} hierarchical superstructures showed enhanced visible light photocatalytic activity compared to pure (BiO){sub 2}CO{sub 3} and TiO{sub 2}-based visible light photocatalysts. The outstanding photocatalytic performance of N-BOC samples can be ascribed to the doped nitrogen and the special hierarchical structure. The present work could provide new perspectives in controlling the morphological structure and photocatalytic activity of photocatalyst for better environmental pollution control.

  9. Microscopic effects of Dy doping in the topological insulator Bi2Te3

    Science.gov (United States)

    Duffy, L. B.; Steinke, N.-J.; Krieger, J. A.; Figueroa, A. I.; Kummer, K.; Lancaster, T.; Giblin, S. R.; Pratt, F. L.; Blundell, S. J.; Prokscha, T.; Suter, A.; Langridge, S.; Strocov, V. N.; Salman, Z.; van der Laan, G.; Hesjedal, T.

    2018-05-01

    Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI's exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive. Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.

  10. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+ (RE=Eu, Tb) phosphor under VUV/UV excitation

    International Nuclear Information System (INIS)

    Zeng Xiaoqing; Im, Seoung-Jae; Jang, Sang-Hun; Kim, Young-Mo; Park, Hyoung-Bin; Son, Seung-Hyun; Hatanaka, Hidekazu; Kim, Gi-Young; Kim, Seul-Gi

    2006-01-01

    Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO 3 :Bi 3+ ,Eu 3+ and strong green emission for (Y,Gd)BO 3 :Bi 3+ ,Tb 3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu 3+ -doped or Tb 3+ -doped (Y,Gd)BO 3 . The luminescence enhancement of Bi 3+ - and RE 3+ -co-doped (Y,Gd)BO 3 phosphors is due to energy transfer from Bi 3+ ion to Eu 3+ or Tb 3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi 3+ and Eu 3+ or Tb 3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp

  11. In situ synthesis and characterization of fine-patterned La and Mn co-doped BiFeO{sub 3} film

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Fuxue, E-mail: yanfuxue@126.com; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn; Song, Na; Zhao, Nana; Chen, Yuanqing

    2013-09-05

    Highlights: •La and Mn co-doped BiFeO{sub 3} film was prepared by a photosensitive sol–gel method. •XRD and Raman spectra confirmed single-phase rhombohedral structure with space group R3c. •Fine-patterned BLFMO film was obtained by a direct-patterning technique. •The saturation magnetization and Pr were enhanced in the fine-patterned BLFMO film. -- Abstract: La and Mn co-doped BiFeO{sub 3} (BLFMO) film was prepared by a photosensitive sol–gel method utilizing bismuth nitrate, lanthanum nitrate, manganese nitrate and ferric nitrate as starting materials. After a chelating reaction between benzoylacetone (BzAcH) and metallic ions, the precursor solution presented photosensitivity. Through a direct patterning process, a fine-patterned BLFMO film was obtained. The phase constituents, morphology, electric and magnetic properties of the as-prepared BLFMO film were characterized by X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), ferroelectric testing unit, LCR Meter and vibrating sample magnetometer (VSM). The Mn dopant enhanced the saturation magnetization and remnant polarization of the BLFMO film.

  12. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafei [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Zhu, Gangqiang, E-mail: zgq2006@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hojamberdiev, Mirabbos [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik Halqa Yo’li 17, Tashkent 100095 (Uzbekistan); Gao, Jianzhi [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hao, Jing [Xi' an Rejee Industry Development Co., Ltd., Xi’an 710016 (China); Zhou, Jianping; Liu, Peng [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2016-05-15

    Highlights: • Nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures were synthesized by hydrothermal method. • Surface oxygen vacancy were obtained by irradiating the nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} with UV light. • Photocatalytic activity was studied by degrading Rhodamine B. • A synergistic effect between oxygen vacancy and nitrogen doping in Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Single-crystalline bare Bi{sub 2}O{sub 2}CO{sub 3} (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV–vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  13. Preparation and characterization of Bi-doped TiO{sub 2} and its solar photocatalytic activity for the degradation of isoproturon herbicide

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Police Anil Kumar; Srinivas, Basavaraju; Kala, Pruthu; Kumari, Valluri Durga [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India 500607 (India); Subrahmanyam, Machiraju, E-mail: subrahmanyam@iict.res.in [Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India 500607 (India)

    2011-11-15

    Highlights: {yields} Visible active Bi-TiO{sub 2} photocatalyst preparation and thorough charaterization. {yields} Bi-TiO{sub 2} shows high activity for isoproturon degradation under solar light irradiation. {yields} The spectral response of TiO{sub 2} shifts from UV to visible light region by Bi doping. {yields} Bi{sup 3+{delta}+} species are playing a vital role in minimizing e{sup -}/h{sup +} recombination. -- Abstract: Bi-doped TiO{sub 2} catalyst was prepared by sol-gel method and was characterized by thermo gravimetric analysis (TGA), X-ray diffraction spectra (XRD), X-ray photo electronic spectroscopy (XPS), UV-Vis diffused reflectance spectra (DRS), photoluminescence spectra (PLS), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX) and BET surface area. The photocatalytic activity of the catalysts were evaluated for the degradation of isoproturon herbicide under solar light irradiation. The UV-Visible DRS of Bi-doped TiO{sub 2} showed red shift in optical absorption. The presence of Bi{sup 3+{delta}+} species are playing a vital role in minimizing the electron hole recombination resulting higher activity compared to bare TiO{sub 2}.

  14. Polymorphism and properties of Bi{sub 2}WO{sub 6} doped with pentavalent antimony

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonova, E.P.; Belov, D.A. [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Gagor, A.B.; Pietraszko, A.P. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław (Poland); Alekseeva, O.A. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninsky pr. 59, 119333 Moscow (Russian Federation); Voronkova, V.I., E-mail: voronk@polly.phys.msu.ru [M.V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation)

    2014-04-05

    Highlights: • The limit of Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions is at x = 0.05. • Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} does not fully transform into high-temperature monoclinic phase. • Sb{sup 5+} has a weak effect on the temperatures of the ferroelectric transitions. • γ→γ{sup ‴} transition near 650 °C was observed as strong permittivity peak at 0.01–8 Hz. • The conductivity of Bi{sub 2}W{sub 0.96}Sb{sub 0.04}O{sub 6−y} at 800 °C reaches 0.02 S/cm. -- Abstract: Antimony-containing solid solutions isostructural with bismuth tungstate, Bi{sub 2}WO{sub 6}, have been prepared in air as polycrystalline samples by solid-state reactions and as single crystals by unseeded flux growth. The antimony in the solid solutions is in a pentavalent state and substitutes for tungsten in the structure of Bi{sub 2}WO{sub 6}. The Bi{sub 2}W{sub 1−x}Sb{sub x}O{sub 6−y} solid solutions have been shown to exist in the composition range 0 ⩽ x ⩽ 0.05. We have examined the effect of Sb{sup 5+} doping on the polymorphism and properties of Bi{sub 2}WO{sub 6}. In contrast to undoped Bi{sub 2}WO{sub 6}, antimony-substituted bismuth tungstate does not completely transform into its high-temperature, monoclinic phase at 960 °C and remains two-phase up to temperatures approaching its melting point. Antimony substitution for tungsten has a weak effect on the temperatures of the ferroelectric phase transitions. Heterovalent substitution of Sb{sup 5+} for W{sup 6+} is accompanied by the formation of extra oxygen vacancies and an increase in the electrical conductivity of the solid solutions by one to two orders of magnitude relative to undoped Bi{sub 2}WO{sub 6}.

  15. Improving the Photo-Oxidative Performance of Bi2MoO6 by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition.

    Science.gov (United States)

    Wu, Xuelian; Hart, Judy N; Wen, Xiaoming; Wang, Liang; Du, Yi; Dou, Shi Xue; Ng, Yun Hau; Amal, Rose; Scott, Jason

    2018-03-21

    It has been reported that photogenerated electrons and holes can be directed toward specific crystal facets of a semiconductor particle, which is believed to arise from the differences in their surface electronic structures, suggesting that different facets can act as either photoreduction or photo-oxidation sites. This study examines the propensity for this effect to occur in faceted, plate-like bismuth molybdate (Bi 2 MoO 6 ), which is a useful photocatalyst for water oxidation. Photoexcited electrons and holes are shown to be spatially separated toward the {100} and {001}/{010} facets of Bi 2 MoO 6 , respectively, by facet-dependent photodeposition of noble metals (Pt, Au, and Ag) and metal oxides (PbO 2 , MnO x , and CoO x ). Theoretical calculations revealed that differences in energy levels between the conduction bands and valence bands of the {100} and {001}/{010} facets can contribute to electrons and holes being drawn to different surfaces of the plate-like Bi 2 MoO 6 . Utilizing this knowledge, the photo-oxidative capability of Bi 2 MoO 6 was improved by adding an efficient water oxidation co-catalyst, CoO x , to the system, whereby the extent of enhancement was shown to be governed by the co-catalyst location. A greater oxygen evolution occurred when CoO x was selectively deposited on the hole-rich {001}/{010} facets of Bi 2 MoO 6 compared to when CoO x was randomly located across all of the facets. The elevated performance exhibited for the selectively loaded CoO x /Bi 2 MoO 6 was ascribed to the greater opportunity for hole trapping by the co-catalyst being accentuated over other potentially detrimental effects, such as the co-catalyst acting as a recombination medium and/or covering reactive sites. The results indicate that harnessing the synergy between the spatial charge separation and the co-catalyst location on the appropriate facets of plate-like Bi 2 MoO 6 can promote its photocatalytic activity.

  16. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  17. Growth and Properties of Oxygen and Ion Doped BISMUTH(2) STRONTIUM(2) Calcium COPPER(2) Oxygen (8+DELTA) Single Crystals

    Science.gov (United States)

    Mitzi, David Brian

    1990-01-01

    A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.

  18. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng

    2011-06-28

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from experiments on bulk single crystals that Bi2Se3 gets additional n-type doping after exposure to the atmosphere, thereby reducing the relative contribution of SS in total conductivity. In this article, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological SS. Appropriate surface passivation or encapsulation may be required to probe topological SS of Bi2Se3 by transport measurements. © 2011 American Chemical Society.

  19. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  20. Novel and facile microwave-assisted synthesis of Mo-doped hydroxyapatite nanorods: Characterization, gamma absorption coefficient, and bioactivity.

    Science.gov (United States)

    Abutalib, M M; Yahia, I S

    2017-09-01

    In the current work, the authors report the microwave-assisted synthesis Molybdenum-doped (from 0.05 to 5wt%) hydroxyapatite (HAp) for the first time. The morphology of Mo-doped HAp is nanorods of diameter in the range of 25-70nm and length in the range of 25nm to 200nm. The good crystalline nature was confirmed from X-ray diffraction patterns and also lattice parameters, grain size, strain and dislocation density were determined. The crystallite size was found to be in the range 16 to 30nm and crystallinity was found to be enhanced from 0.5 to 0.7 with doping. The field emission SEM micrographs show that the morphology of the synthesized nanostructures of pure and Mo-doped HAp are nanorods of few nanometers. The vibrational modes were identified using the FT-Raman and FT-IR spectroscopy. The dielectric properties were studied and the AC electrical conductivity was found to be increased with increasing the concentration of Mo ions doping in HAp. Moreover, antimicrobial studies were also carried out to understand the anti-bacterial and anti-fungi properties. The results suggest that it may be a good bio-ceramics material for bio-medical applications. Mo-doped HAp was subjected to the gamma irradiation produced from Cs-137 (662keV) and its related parameters such as linear absorption coefficient, the half-value layer (HVL) and the tenth value layer TVL were calculated and analyzed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mambertiite, BiMo"5"+_2_._8_0O_8(OH), a new mineral from Su Seinargiu, Sardinia, Italy: occurrence, crystal structure, and relationships with gelosaite

    International Nuclear Information System (INIS)

    Orlandi, Paolo; Biagioni, Cristian; Pasero, Marco; Merlino, Stefano; Demartin, Francesco; Campostrini, Italo

    2015-01-01

    Mambertiite, BiMo"5"+_2_._8_0O_8(OH), is a new mineral identified in small vugs of quartz veins from Su Seinargiu, Sarroch, Cagliari, Sardinia, Italy. It occurs as pale yellow {001} tabular crystals, up to 1 mm in length and few μm thick, with adamantine lustre. Mambertiite is brittle, with a conchoidal fracture. It is associated with ferrimolybdite, muscovite, quartz, sardignaite, and wulfenite. Electron microprobe data (wt% - mean of 12 spot analyses) are: Mo_2O_5 59.59, Bi_2O_3 36.96, WO_3 2.03, H_2O_c_a_l_c 1.48, sum 100.06. On the basis of 9 O atoms per formula unit, the empirical formula is Bi_0_._9_9(Mo"5"+_2_._7_4W_0_._0_5)_Σ_2_._7_9O_7_._9_7(OH)_1_._0_3. Infrared spectra showed absorption bands consistent with the occurrence of OH- groups. Mambertiite is triclinic, space group P1, with a = 5.854(2), b = 9.050(3), c = 7.637(3) Aa, α = 112.85(1), β = 102.58(1), γ = 90.04(1) , V = 362.3(2) Aa"3, Z = 2. The crystal structure of mambertiite was solved and refined down to R_1 = 0.050 on the basis of 2019 observed [F_o>4σ(F_o)] reflections. It is composed by eight-fold coordinated Bi-centred polyhedra and five independent Mo-centred octahedra. Among the latter, two are completely occupied by molybdenum, whereas the remaining three are only partially occupied. Two kinds of (10 anti 1) layers occur in mambertiite, alternating along [10 anti 1]*: one is composed by Bi-centered polyhedra and the two partially occupied Mo_4 and Mo_5 sites, whereas the other is composed by the zigzag chains, running along c, formed by the fully occupied Mo_1 and Mo_2 sites, and the partially occupied Mo_3 site. Mambertiite is structurally related to gelosaite, BiMo"6"+_2O_7(OH) . H_2O; their relationships can be conveniently described through the OD theory. Mambertiite is the fourth known mineral with Bi and Mo as essential components. Its name honours the Italian mineral collector Marzio Mamberti (b. 1959) for his contribution to the knowledge of the Sardinian mineralogy. The

  2. Phase transitions in K-doped MoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Alves, L. M. S., E-mail: leandro-fisico@hotmail.com; Lima, B. S. de; Santos, C. A. M. dos [Departamento de Engenharia de Materiais, Escola de Engenharia de Lorena-USP, Lorena, São Paulo 12602-810 (Brazil); Rebello, A.; Masunaga, S. H.; Neumeier, J. J. [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, Montana 59717-3840 (United States); Leão, J. B. [NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899-6102 (United States)

    2014-05-28

    K{sub 0.05}MoO{sub 2} has been studied by x-ray and neutron diffractometry, electrical resistivity, magnetization, heat capacity, and thermal expansion measurements. The compound displays two phase transitions, a first-order phase transition near room temperature and a second-order transition near 54 K. Below the transition at 54 K, a weak magnetic anomaly is observed and the electrical resistivity is well described by a power-law temperature dependence with exponent near 0.5. The phase transitions in the K-doped MoO{sub 2} compound have been discussed for the first time using neutron diffraction, high resolution thermal expansion, and heat capacity measurements as a function of temperature.

  3. Growth of superconducting Bi2Sr2CaCu2O8+δ films by sedimentation deposition and liquid phase sintering and annealing technique

    International Nuclear Information System (INIS)

    Manahan, R.L.C.; Sarmago, R.V.

    2006-01-01

    We report on a technique of growing highly c-axis oriented Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) thick films on MgO substrate using a combined sedimentation-deposition and liquid phase sintering and annealing process. The temperature profiles employed partial melting followed by rapid cooling to temperature below the melting point. Scanning electron micrographs show that the films have a smooth surface. No evidence of grain boundaries on the film's surface can be seen. The critical temperatures of the samples range from ∼67 K to ∼81 K. This method presents a quick and easy preparation for high quality epitaxial Bi-2212 films

  4. Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zai, Jiantao; Cao, Fenglei; Liang, Na; Yu, Ke; Tian, Yuan; Sun, Huai; Qian, Xuefeng, E-mail: xfqian@sjtu.edu.cn

    2017-01-05

    Highlights: • DFT reveals I{sup −} can partially substitute CO{sub 3}{sup 2−}to narrow the bandgap of Bi{sub 2}O{sub 2}CO{sub 3}. • Sodium citrate play a key role on the formation of rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3}. • Rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} show enhanced visible light response. • The catalyst has enhanced photocatalytic activity to organic and Cr(VI) pollutes. - Abstract: Based on the crystal structure and the DFT calculation of Bi{sub 2}O{sub 2}CO{sub 3}, I{sup −} can partly replace the CO{sub 3}{sup 2−}in Bi{sub 2}O{sub 2}CO{sub 3} to narrow its bandgap and to enhance its visible light absorption. With this in mind, rose-like I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres were prepared via a hydrothermal process. This method can also be extended to synthesize rose-like Cl- or Br-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres. Photoelectrochemical test supports the DFT calculation result that I- doping narrows the bandgap of Bi{sub 2}O{sub 2}CO{sub 3} by forming two intermediate levels in its forbidden band. Further study reveals that I-doped Bi{sub 2}O{sub 2}CO{sub 3} microspheres with optimized composition exhibit the best photocatalytic activity. Rhodamine B can be completely degraded within 6 min and about 90% of Cr(VI) can be reduced after 25 min under the irradiation of visible light (λ > 400 nm).

  5. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    Science.gov (United States)

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  6. Strain reduced critical current in Bi-2223/Ag superconductors under axial tension and compression

    International Nuclear Information System (INIS)

    Haken, B. ten; Godeke, A.; Kate, H.H.J. ten

    1997-01-01

    The critical current of Ag sheathed Bi(Pb)SrCaCuO-2223 tape conductors is investigated as a function of various strain components. A reduction of the critical current occurs due to both tensile or a compressive strain. The critical current reduction is qualitatively similar with the results as observed in Bi-2212 conductors. An axial compression leads to an immediate critical current reduction. The critical current in an axially elongated sample remains nearly constant up to a certain limit typically close to 0.3% strain. For a larger elongation the critical current reduces rapidly. A transverse pressure acting on the tape surface leads also to an irreversible critical current reduction. This behavior is compared with the influence of an axial compression with an effective Young's modulus. The deformation induced critical current reductions in Bi-2223 conductors can be described by a model that is already proposed for Bi-2212 conductors. This model is based on the irreversible nature of the critical current reduction due to a certain deformation

  7. Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures: A hybrid density functional theory study

    Science.gov (United States)

    Opoku, Francis; Govender, Krishna Kuben; Sittert, Cornelia Gertina Catharina Elizabeth van; Govender, Penny Poomani

    2018-01-01

    Graphite-like carbon nitride (g-C3N4)-based heterostructures have received much attention due to their prominent photocatalytic activity. The g-C3N4/Bi2WO6 and g-C3N4/Bi2MoO6 heterostructures, which follow a typical hetero-junction charge transfer mechanisms show a weak potential for hydrogen evolution and reactive radical generation under visible light irradiation. A mediator-free Z-scheme g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures photocatalyst are designed for the first time using first-principles studies. Moreover, theoretical understanding of the underlying mechanism, the effects of interfacial composition and the role the interface play in the overall photoactivity is still unexplained. The calculated band gap of the heterostructures is reduced compared to the bulk Bi2WO6 and Bi2MoO6. In this study, we systematically calculated energy band structure, optical properties and charge transfer of the g-C3N4/Bi2MoO6(010) and g-C3N4/Bi2WO6(010) heterostructures using the hybrid density functional theory approach. The results show that the charge transfer at the interface of the heterostructures induces a built-in potential, which benefits the separation of photogenerated charge carriers. The g-C3N4/Bi2MoO6(010) heterostructure with more negative adhesion energy (-1.10 eVA-2) is predicted to have a better adsorptive ability and can form more easily compared to the g-C3N4/Bi2WO6(010) interface (-1.16 eVA-2). Therefore, our results show that the g-C3N4 interaction with Bi2MoO6 is stronger than Bi2WO6, which is also verified by the smaller vertical separation (3.25 Å) between Bi2MoO6 and g-C3N4 compared to the g-C3N4/Bi2WO6(010) interface (3.36 Å). The optical absorption verifies that these proposed Z-scheme heterostructures are excellent visible light harvesting semiconductor photocatalyst materials. This enhancement is ascribed to the role of g-C3N4 monolayer as an electron acceptor and the direct Z-scheme charge carrier transfer at the interface of

  8. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  9. Fabrication, modification and application of (BiO)_2CO_3-based photocatalysts: A review

    International Nuclear Information System (INIS)

    Ni, Zilin; Sun, Yanjuan; Zhang, Yuxin; Dong, Fan

    2016-01-01

    Graphical abstract: - Highlights: • The (BiO)_2CO_3 with Aurivillius structure y is an emergent material. • Synthesis of (BiO)_2CO_3 micro/nano structures was reviewed. • The mechanisms of (BiO)_2CO_3 based nanocomposites were discussed. • Doping (BiO)_2CO_3 with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO)_2CO_3 based derivatives was demonstrated. - Abstract: (BiO)_2CO_3 (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi_2O_2"2"+ layers and CO_3"2"− layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO)_2CO_3 have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi_xMO_y)/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The enhanced photocatalytic activity of BOC-based systems can be attributed to the unique interaction of

  10. Enhanced thermoelectric figure of merit in strained Tl-doped Bi2Se3

    KAUST Repository

    Saeed, Y.

    2014-07-21

    We explain recent experimental findings on Tl-doped Bi2Se3 by determining the electronic and transport properties by first-principles calculations and semi-classical Boltzmann theory. Though Tl-doping introduces a momentum-dependent spin-orbit splitting, the effective mass of the carriers is essentially not modified, while the band gap is reduced. Tl is found to be exceptional in this respect as other dopants modify the dispersion, which compromises thermoelectricity. Moreover, we demonstrate that only after Tl-doping strain becomes an efficient tool for enhancing the thermoelectric performance. A high figure of merit of 0.86 is obtained for strong p-doping (7 × 10^20 cm^(−3), maximal power factor) at 500 K under 2% tensile strain.

  11. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  12. Synergy effects between bismuth molybdate catalyst phases (Bi/Mo from 0.57 to 2) for the selective oxidation of propylene to arcrolein

    DEFF Research Database (Denmark)

    Le, Minh Thang; Well, Willy van; Stoltze, Per

    2005-01-01

    In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ-phase. A m......-phase. A mixture with Bi/Mo ratio = 1.3 consisting of γ- and α-phase, exhibits the highest activity. Less homogeneous ‘artificial mixtures’ exhibit reduced synergy effects when compared to homogeneous ‘in situ mixtures’.......In this work, the synergy effect between different phases of bismuth molybdate catalysts was investigated systematically. The catalysts were prepared by spray drying and had a Bi/Mo atomic between 0.57 and 2. It is found that the synergy effect is only observed in mixtures containing γ...

  13. Crystal structure details of La- and Bi-substituted hydroxyapatites: Evidence for LaO{sup +} and BiO{sup +} with a very short metal–oxygen bond

    Energy Technology Data Exchange (ETDEWEB)

    Kazin, Pavel E., E-mail: kazin@inorg.chem.msu.ru [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Pogosova, Mariam A.; Trusov, Lev A.; Kolesnik, Irina V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation); Magdysyuk, Oxana V.; Dinnebier, Robert E. [Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany)

    2016-05-15

    Crystal structures of substituted apatites with general formula Ca{sub 10−x}M{sub x}(PO{sub 4}){sub 6}(OH{sub 1−δ}){sub 2−x}O{sub x}, where M=La, Bi, 0≤x<2, were refined using high-resolution X-ray powder diffraction patterns. Individual positions for Ca{sup 2+} and M{sup 3+}-ions localized near Ca2-site were determined. The M{sup 3+}-ion was found shifted toward the hexagonal channel center with respect to the Ca{sup 2+}-ion, forming very short bond with the intrachannel O{sup 2−}, while leaving considerably longer distances to other oxygen atoms, which suggested the existence of a MO{sup +} ion. Distinct bands of stretching M–O modes were observed in the Raman and FT-IR spectra of the compounds. The bond lengths for BiO{sup +} and LaO{sup +} were estimated to be 2.05(1) and 2.09(1) Å correspondingly. The latter was almost 0.3 Å lower than the shortest La–O bond in La{sub 2}O{sub 3}. The realization of such a strong lanthanide–oxygen bond in a crystal lattice could provide a very high axial ligand field and might be implemented to develop high-energy-barrier single-molecule magnets as well as to tune properties of lanthanide-based luminophores. - Graphical abstract: A fragment of the La-for-Ca substituted apatite crystal structure focusing on the La–O bond. - Highlights: • Individual positions in the apatite crystal lattice for a doping atom (La, Bi) and Ca. • The doping atom shifts toward the center of the hexagonal channel. • BiO{sup +} and LaO{sup +} with estimated short bond lengths of 2.05 and 2.09 Å respectively.

  14. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Liu Li; Wang Shouyu; Yin Zi; Zhang Chuang; Li Xiu; Yang Jiabin; Liu Weifang; Xu Xunling

    2016-01-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La 0.1 Bi 0.9−x Sr x FeO y (LBSF, x = 0, 0.2, 0.4) with dopant Sr 2+ ions were synthesized by the sol–gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ∼ 2.08 eV to ∼ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO 3 -based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO 3 . (paper)

  15. Structural, magnetic and dielectric properties of Y doped BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Min [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Kumar, N. Pavan [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Department of Physics, National Institute of Technology, Warangal, 506002 (India); Sagar, E. [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Jian, Zhu; Yemin, Hu [School of Materials Science and Engineering, Shanghai University, Shanghai, 200072 (China); Reddy, P. Venugopal, E-mail: paduruvenugopalreddy@gmail.com [Departmant of Physics, Osmania University, Hyderabad, 500 007 (India); Vidya Jyothi Institute of Technology, Aziz Nagar Gate, C.B. Post, Hyderabad, 500075 (India)

    2016-04-15

    With a view to understand the influence of doping Bismuth ferrite with Yttrium on structural, magnetic and dielectric behavior, a series of samples were prepared by the solid state reaction technique. After characterizing the samples with XRD and SEM studies, magnetic and dielectric measurements were carried out. The impurity phase of Bismuth ferrite is found to disappear with increasing Y doping concentration and finally the sample with x = 0.2 is found to be free from secondary phases. The dielectric constant is also found to exhibit two transitions and efforts were made to explain the observed behavior. - Highlights: • The doping of Y helped in reducing the impurity phase of BiFeO{sub 3}. • All the Y doped samples are found to exhibit peaks in magnetization. • Y doped BFO might be considered for future device applications.

  16. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  17. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  18. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2017-01-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  19. Rational Design of Single Molybdenum Atoms Anchored on N-Doped Carbon for Effective Hydrogen Evolution Reaction.

    Science.gov (United States)

    Chen, Wenxing; Pei, Jiajing; He, Chun-Ting; Wan, Jiawei; Ren, Hanlin; Zhu, Youqi; Wang, Yu; Dong, Juncai; Tian, Shubo; Cheong, Weng-Chon; Lu, Siqi; Zheng, Lirong; Zheng, Xusheng; Yan, Wensheng; Zhuang, Zhongbin; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2017-12-11

    The highly efficient electrochemical hydrogen evolution reaction (HER) provides a promising pathway to resolve energy and environment problems. An electrocatalyst was designed with single Mo atoms (Mo-SAs) supported on N-doped carbon having outstanding HER performance. The structure of the catalyst was probed by aberration-corrected scanning transmission electron microscopy (AC-STEM) and X-ray absorption fine structure (XAFS) spectroscopy, indicating the formation of Mo-SAs anchored with one nitrogen atom and two carbon atoms (Mo 1 N 1 C 2 ). Importantly, the Mo 1 N 1 C 2 catalyst displayed much more excellent activity compared with Mo 2 C and MoN, and better stability than commercial Pt/C. Density functional theory (DFT) calculation revealed that the unique structure of Mo 1 N 1 C 2 moiety played a crucial effect to improve the HER performance. This work opens up new opportunities for the preparation and application of highly active and stable Mo-based HER catalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Accuracy and Transferability of Ab Initio Electronic Band Structure Calculations for Doped BiFeO3

    Science.gov (United States)

    Gebhardt, Julian; Rappe, Andrew M.

    2017-11-01

    BiFeO3 is a multiferroic material and, therefore, highly interesting with respect to future oxide electronics. In order to realize such devices, pn junctions need to be fabricated, which are currently impeded by the lack of successful p-type doping in this material. In order to guide the numerous research efforts in this field, we recently finished a comprehensive computational study, investigating the influence of many dopants onto the electronic structure of BiFeO3. In order to allow for this large scale ab initio study, the computational setup had to be accurate and efficient. Here we discuss the details of this assessment, showing that standard density-functional theory (DFT) yields good structural properties. The obtained electronic structure, however, suffers from well-known shortcomings. By comparing the conventional DFT results for alkali and alkaline-earth metal doping with more accurate hybrid-DFT calculations, we show that, in this case, the problems of standard DFT go beyond a simple systematic error. Conventional DFT shows bad transferability and the more reliable hybrid-DFT has to be chosen for a qualitatively correct prediction of doping induced changes in the electronic structure of BiFeO3.

  1. Functional regulation of Pb-Ti/MoS_2 composite coatings for environmentally adaptive solid lubrication

    International Nuclear Information System (INIS)

    Ren, Siming; Li, Hao; Cui, Mingjun; Wang, Liping; Pu, Jibin

    2017-01-01

    Highlights: • Co-doped Pb-Ti/MoS_2 composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS_2 composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS_2 composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS_2 are easily affected by water to form MoO_3 that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS_2 in high humidity condition, the co-doped Pb-Ti/MoS_2 composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS_2-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS_2 coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS_2 composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS_2 composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS_2 coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS_2 coatings as the environmentally adaptive lubricants.

  2. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb

    2013-08-14

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  3. Possible doping strategies for MoS 2 monolayers: An ab initio study

    KAUST Repository

    Dolui, Kapildeb; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano

    2013-01-01

    Density functional theory is used to systematically study the electronic properties of doped MoS2 monolayers, where the dopants are incorporated both via S/Mo substitution or as adsorbates. Among the possible substitutional dopants at the Mo site, Nb is identified as suitable p-type dopant, while Re is the donor with the lowest activation energy. When dopants are simply adsorbed on a monolayer we find that alkali metals shift the Fermi energy into the MoS2 conduction band, making the system n type. Finally, the adsorption of charged molecules is considered, mimicking an ionic liquid environment. We find that molecules adsorption can lead to both n- and p-type conductivity, depending on the charge polarity of the adsorbed species. © 2013 American Physical Society.

  4. Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO3 as a function of synthesis methodology

    International Nuclear Information System (INIS)

    Rojas-George, G.; Silva, J.; Castañeda, R.; Lardizábal, D.; Graeve, O.A.; Fuentes, L.; Reyes-Rojas, A.

    2014-01-01

    We present an analysis of crystallographic symmetry and the origin of the pseudo-cubic character of doped BiFeO 3 . Specifically, barium-doped bismuth ferrite, Bi 1−x Ba x FeO 3 (x = 0.05, 0.075, 0.1, 0.125), perovskite-type nanoparticles have been synthesized by implementing five modifications to the sol–gel technique (citric acid-assisted sol–gel method, ethylene glycol method, tartaric acid-assisted sol–gel method, polyvinyl alcohol–ethylene glycol method, and EDTA complexing sol–gel method) and their final pseudo-cubic character is discussed. The effect of the carboxylic groups and hydroxyl groups during synthesis is critical to obtain single phase BBFO. Fourier transform infrared spectroscopy and thermogravimetric analysis is used to study the decomposition and thermal behavior of the precursors and their relation to the final nanoparticle characteristics. X-ray diffraction analysis shows a single phase with symmetry changes for four of the five synthesis methodologies employed. Only the EDTA complexing sol–gel method, where EDTA is used as dissolver and chelating agent, is not satisfactory in all concentration ranges. Rietveld results suggest that the degree of distortion of the rhombohedral symmetry in the crystallized BiFeO 3 powders decreases 12% as a result of progressive substitution of Bi 3+ by Ba 2+ and that there is no shift from rhombohedral to tetragonal symmetry. Magnetization properties of samples with a low-distortion rhombohedral structure show higher magnetic saturation and remanent magnetization than samples with high-distortion rhombohedral structure. - Highlights: • Ba–BiFeO 3 : rhombohedral distortion degree is highly affected by the chemical method. • Rietveld results show no shift in BBFO from rhombohedral to tetragonal symmetry. • The low-distortion rhombohedral structure show higher magnetic saturation. • To stabilize a metal complex is necessary a balance between COOH − and OH − groups

  5. Effects of Lu and Tm Doping on Thermoelectric Properties of Bi2Te3 Compound

    Science.gov (United States)

    Yaprintsev, Maxim; Lyubushkin, Roman; Soklakova, Oxana; Ivanov, Oleg

    2018-02-01

    The Bi2Te3, Bi1.9Lu0.1Te3 and Bi1.9Tm0.1Te3 thermoelectrics of n-type conductivity have been prepared by the microwave-solvothermal method and spark plasma sintering. These compounds behave as degenerate semiconductors from room temperature up to temperature T d ≈ 470 K. Within this temperature range the temperature behavior of the specific electrical resistivity is due to the temperature changes of electron mobility determined by acoustic and optical phonon scattering. Above T d, an onset of intrinsic conductivity takes place when electrons and holes are present. At the Lu and Tm doping, the Seebeck coefficient increases, while the specific electrical resistivity and total thermal conductivity decrease within the temperature 290-630 K range. The increase of the electrical resistivity is related to the increase of electron concentration since the Tm and Lu atoms are donor centres in the Bi2Te3 lattice. The increase of the density-of-state effective mass for conduction band can be responsible for the increase of the Seebeck coefficient. The decrease of the total thermal conductivity in doped Bi2Te3 is attributed to point defects like the antisite defects and Lu or Tm atoms substituting for the Bi sites. In addition, reducing the electron thermal conductivity due to forming a narrow impurity (Lu or Tm) band having high and sharp density-of-states near the Fermi level can effectively decrease the total thermal conductivity. The thermoelectric figure-of-merit is enhanced from ˜ 0.4 for undoped Bi2Te3 up to ˜ 0.7 for Bi1.9Tm0.1Te3 and ˜ 0.9 for Bi1.9Lu0.1Te3.

  6. Spectroscopic evidence of two-dimensional character of the 90 K Bi2(Sr,La,Ca)3Cu2O8 superconductors

    International Nuclear Information System (INIS)

    Lindberg, P.A.P.; Shen, Z.; Wells, B.O.; Dessau, D.S.; Borg, A.; Lindau, I.; Spicer, W.E.; Mitzi, D.B.; Kapitulnik, A.

    1989-01-01

    Polarization-dependent angle-resolved photoemission experiments in the constant final state mode (absorption measurements) were performed on single crystals of the Bi-based 2212 material using synchrotron radiation in the photon energy range 10--40 eV. Evidence of polarization-dependent transitions due to Bi 5d→6p, Sr 4p→4d, and Ca 3p→3d excitations is observed. The data show that the electronic charge is highly localized to the layers of the crystal structure, thus providing a direct spectroscopic confirmation of the two-dimensional nature of these types of materials. Polarization-sensitive absorption signals at 14--15 eV attributed to Bi 6s→6p transitions show that the density of states (DOS) of the Bi 6p z holes peaks at about 0.7 eV higher energy than the DOS of the Bi 6p x,y holes

  7. Facile synthesis of MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites for enhanced CO{sub 2} photoreduction activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weili, E-mail: wldai81@126.com [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Yu, Juanjuan [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China); Deng, Yiqiang, E-mail: dyq3211@126.com [College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000 Guangdong (China); Hu, Xu; Wang, Tengyao; Luo, Xubiao [Key Laboratory of Jiangxi Province for Persistant Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China)

    2017-05-01

    Highlights: • MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites (MB) were fabricated by a facile two-step approach. • MoS{sub 2} was first used as a cocatalyst coupling with Bi{sub 2}WO{sub 6} for CO{sub 2} photoreduction. • MoS{sub 2} significantly enhanced the photoelectric properties and photoactivity. • The CO{sub 3}{sup 2−}, HCO{sub 3}{sup −} and H{sub 2}CO{sub 3} in CO{sub 2} solution actually act as the reactive substrates. - Abstract: A novel composite material, MoS{sub 2}/Bi{sub 2}WO{sub 6}, has been fabricated via a facile two-step approach. The few layered MoS{sub 2} as a cocatalyst has intimate interactions with the hierarchical flower-like Bi{sub 2}WO{sub 6} microspheres, which boosts the visible light harvesting and charge transferring, and promotes the separation of electron-hole pairs, thus leading to the superior photocatalytic activity. It was found that the as-synthesized MoS{sub 2}/Bi{sub 2}WO{sub 6} nanocomposites exhibited significantly enhanced performance for the photoreduction of CO{sub 2} into hydrocarbons, i.e. methanol and ethanol, as compared with pure Bi{sub 2}WO{sub 6}. The yields of methanol and ethanol obtained over the composite with optimal content of MoS{sub 2} (0.4 wt%) were 36.7 and 36.6 μmol gcat{sup −1} after 4 h of visible light irradiation, respectively, which were 1.94 times higher than that over pure Bi{sub 2}WO{sub 6}. Furthermore, the mechanism of CO{sub 2} photoreduction was also investigated. It indicates that the CO{sub 3}{sup 2−}, HCO{sub 3}{sup −} and H{sub 2}CO{sub 3} generated in CO{sub 2} aqueous solution would be the reactive substrates during the photoreduction reaction, proving the thermodynamic feasibility of CO{sub 2} photoreduction. This work demonstrated that MoS{sub 2} is a very promising candidate for development of highly active photocatalysts, and supplied a facile and simple strategy for designing environmentally benign, cheap non-noble metal, and highly efficient semiconductor

  8. Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene

    Directory of Open Access Journals (Sweden)

    Titinan Chanchuey

    2016-01-01

    Full Text Available The catalytic dehydration of ethanol to ethylene over the mesoporous Al-SSP and Mo-doped Al-SSP catalysts was investigated. The Al-SSP catalyst was first synthesized by the modified sol-gel method and then doped with Mo by impregnation to obtain 1% Mo/Al-SSP and 5% Mo/Al-SSP catalysts (1 and 5 wt% of Mo. The final catalysts were characterized using various techniques such as XRD, N2 physisorption, SEM/EDX, TEM, and NH3-TPD. The catalytic activity for all catalysts in gas-phase ethanol dehydration reaction was determined at temperature range of 200°C to 400°C. It was found that the most crucial factor influencing the catalytic activities appears to be the acidity. The acid property of catalysts depended on the amount of Mo loading. Increased Mo loading in Al-SSP resulted in increased weak acid sites, which enhanced the catalytic activity. Besides acidity, the high concentration of Al at surface of catalyst is also essential to obtain high activity. Based on the results, the most suitable catalyst in this study is 1% Mo/Al-SSP catalyst, which can produce ethylene yield of ca. 90% at 300°C with slight amounts of diethyl ether (DEE and acetaldehyde.

  9. Synthesis, characterization and luminescent properties of mixed phase bismuth molybdate-doped with Eu3+ ions

    Science.gov (United States)

    Wang, Liyong; Guo, Xiaoqing; Cai, Xiaomeng; Song, Qingwei; Han, Yuanyuan; Jia, Guang

    2018-02-01

    Red phosphors of Eu3+-doped bismuth molybdate (BMO) are prepared by a low temperature hydrothermal method assisting with Phenol Formaldehyde resin (PFr), and characterized by X-ray diffraction (XRD) patterns, Fourier transform infrared-spectroscopy (FT-IR), thermogravimetric analyzer (TGA), differential thermal analyzer (DTA), and photoluminescence (PL) spectroscopy. PL properties influence factors including molar ratio of Bi3+ and Mo3+ ions, PFr dosage and dopants concentration are discussed in detail. The results show that BMO can act as a useful host for Eu3+ ions doping, and energy transferring from Bi3+ to Eu3+ achieved efficiently, the BMO phosphors displayed intense red color emission under ultraviolet light excitation.

  10. Ni-Doping Effects on Oxygen Removal from an Orthorhombic Mo 2 C (001) Surface: A Density Functional Theory Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Mingxia [Department; Cheng, Lei [Materials; Choi, Jae-Soon [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, Unites States; Liu, Bin [Department; Curtiss, Larry A. [Materials; Assary, Rajeev S. [Materials

    2018-01-11

    Density functional theory (DFT) calculations were used to investigate the effect of Ni dopants on the removal of chemisorbed oxygen (O*) from the Mo-terminated (T-Mo) and C-terminated (Tc) Mo2C(001) surfaces. The removal of adsorbed oxygen from the catalytic site is essential to maintain the long-term activity and selectivity of the carbide catalysts in the deoxygenation process related to bio-oil stabilization and upgrading. In this contribution, the computed reaction energetics and reaction barriers of O* removal were compared among undoped and Ni-doped Mo2C(001) surfaces. The DFT calculations indicate that selected Ni-doped surfaces such as Ni adsorbed on T-Mo and Tc Mo2C(001) surfaces enable weaker binding of important reactive intermediates (O*, OH*) compared to the undoped counterparts, which is beneficial for the O* removal from the catalyst surface. This study thus confirms the promoting effect of the Ni dopant on O* removal reaction on the T-Mo Mo2C(001) and Tc Mo2C(001) surfaces. This computational prediction has been confirmed by the temperature-programmed reduction profiles of Mo2C and Ni-doped Mo2C catalysts, which had been passivated and stored in an oxygen environment.

  11. Electrical conduction and thermal properties of Bi-doped Pr0·7Sr0 ...

    Indian Academy of Sciences (India)

    mal conductivity and thermo-power measurements show that larger Bi-ion, in place of smaller Pr ion, enhances ... correlated electron system and technological applications because of ..... doping level (c) indicate the reliability of fitting with this.

  12. Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, C. S. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Hung, C.-M.; Anthoninappen, J. [Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Xu, Z.-R.; Ting, Y.; Peng, Y.-T. [Department of Physics, Fu Jen Catholic University, New Taipei City 24205, Taiwan (China); Schmidt, V. H.; Chien, R. R. [Department of Physics, Montana State University, Bozeman, Montana 59717 (United States)

    2013-09-28

    Photovoltaic (PV) effects, power-conversion efficiencies, and structures have been systematically measured in (Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics for x = 0.05, 0.10, and 0.15. The heterostructures of indium tin oxide (ITO) film/(Bi{sub 1−x}Ca{sub x})FeO{sub 3−δ} ceramics/Au film exhibit significant PV effects under illumination of λ = 405 nm. The maximum power-conversion efficiency in the ITO/(Bi{sub 0.90}Ca{sub 0.10})FeO{sub 2.95} (BFO10C)/Au can reach 0.0072%, which is larger than 0.0025% observed in the graphene/polycrystalline BFO/Pt films [Zang et al., Appl. Phys. Lett. 99, 132904 (2011)]. A theoretical model based on optically excited current in the depletion region between ITO film and Ca-doped BFO ceramics is used to describe the I-V characteristic, open-circuit voltage, and short-circuit current density as a function of illumination intensity. This work suggests that the Ca-substitution can reduce the rhombohedral distortion and stabilize the single-phase structure.

  13. Effect of Substitutional Pb Doping on Bipolar and Lattice Thermal Conductivity in p-Type Bi0.48Sb1.52Te₃.

    Science.gov (United States)

    Kim, Hyun-Sik; Lee, Kyu Hyoung; Yoo, Joonyeon; Youn, Jehun; Roh, Jong Wook; Kim, Sang-Il; Kim, Sung Wng

    2017-07-06

    Cation substitutional doping is an effective approach to modifying the electronic and thermal transports in Bi₂Te₃-based thermoelectric alloys. Here we present a comprehensive analysis of the electrical and thermal conductivities of polycrystalline Pb-doped p-type bulk Bi 0.48 Sb 1.52 Te₃. Pb doping significantly increased the electrical conductivity up to ~2700 S/cm at x = 0.02 in Bi 0.48-x Pb x Sb 1.52 Te₃ due to the increase in hole carrier concentration. Even though the total thermal conductivity increased as Pb was added, due to the increased hole carrier concentration, the thermal conductivity was reduced by 14-22% if the contribution of the increased hole carrier concentration was excluded. To further understand the origin of reduction in the thermal conductivity, we first estimated the contribution of bipolar conduction to thermal conductivity from a two-parabolic band model, which is an extension of the single parabolic band model. Thereafter, the contribution of additional point defect scattering caused by Pb substitution (Pb in the cation site) was analyzed using the Debye-Callaway model. We found that Pb doping significantly suppressed both the bipolar thermal conduction and lattice thermal conductivity simultaneously, while the bipolar contribution to the total thermal conductivity reduction increased at high temperatures. At Pb doping of x = 0.02, the bipolar thermal conductivity decreased by ~30% from 0.47 W/mK to 0.33 W/mK at 480 K, which accounts for 70% of the total reduction.

  14. Structural, magnetic and electric properties of Nd and Ni co-doped BiFeO3 materials

    Directory of Open Access Journals (Sweden)

    Dao Viet Thang

    2017-09-01

    Full Text Available Multiferroic Bi1−xNdxFe0.975Ni0.025O3 (x = 0.00, 0.05, 0.10, 0.125, and 0.15 (BNFNO and BiFeO3 (BFO materials were synthesized by a sol-gel method. Crystal structure, ferromagnetic and ferroelectric properties of the as-synthesized materials were investigated. Results showed that Nd3+ and Ni2+ co-doping affected to the electrical leakage, enhanced ferroelectric polarization and magnetization of BiFeO3. Co-doped sample with 12.5 mol% of Nd3+ and 2.5 mol% of Ni2+ exhibited an enhancement in both ferromagnetism and ferroelectric properties up to MS ~ 0.528 emu/g and PS ~ 18.35 μC/cm2 with applied electric field at 5 kV/cm, respectively. The origins of ferromagnetism and ferroelectricity enhancement were discussed in the paper.

  15. Enhanced infrared-to-visible up-conversion emission and temperature sensitivity in (Er3+,Yb3+, and W6+) tri-doped Bi4Ti3O12 ferroelectric oxide

    Science.gov (United States)

    Bokolia, Renuka; Mondal, Manisha; Rai, V. K.; Sreenivas, K.

    2017-02-01

    Strong up conversion (UC) luminescence at 527, 550, and 662 nm is compared under an excitation of 980 nm in single doped (Er3+), co-doped (Er3+/Yb3+), and (Er3+/Yb3+/W6+) tri-doped bismuth titanate (Bi4Ti3O12). For the co-doped system, the frequency (UC) emission intensity due to Er3+ ions is enhanced significantly in the green bands due to the efficient energy transfer from Yb3+ to Er3+ ions. Further increase in the emission intensity is seen with non-luminescent W6+ ions in the tri-doped system due to the modification in the local crystal field around the Er3+ ions, and is evidenced through a gradual change in the crystal structure of the host lattice with increasing W6+ content. The observed changes in the fluorescence lifetime and the associated energy transfer mechanisms are discussed. A progressive reduction of the lifetime of the 4S3/2 levels of Er3+ ions from 72 to 58.7 μs with the introduction of Yb3+ and W6+ dopant increases the transition probability and enhances the UC emission intensity. The efficiency of the energy transfer process ( η ) in the co-doped and tri-doped systems is found to be 9.4% and 18.6%, respectively, in comparison to the single doped system. Temperature sensing based on the fluorescence intensity ratio (FR) technique shows high sensitivity (0.0123 K-1) in the high temperature range (293 to 523 K) for an optimum content of Er3+, Yb3+, and W6+ with x = 0.03, y = 0.18, and z = 0.06 at. % in the tri-doped Bi4-x-yErxYbyTi3-zWzO12 ferroelectric composition, and is found useful for potential applications in optical thermometry.

  16. Enhancing visible light photocatalytic and photocharge separation of (BiO){sub 2}CO{sub 3} plate via dramatic I{sup −} ions doping effect

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lei [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Cao, Jing [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Anhui Collaborative Innovation Center of Advanced Functional Composite, Huaibei, 235000, Anhui (China); Lin, Haili, E-mail: linhaili@mail.ipc.ac.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Guo, Xiaomin; Zhang, Meiyu [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); Chen, Shifu, E-mail: chshifu@chnu.edu.cn [College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, Anhui (China); College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang, 233100, Anhui (China)

    2016-08-15

    Highlights: • Novel I-(BiO){sub 2}CO{sub 3} was prepared by a facile chemical precipitation method. • I{sup −} ions impurity level located on the top of valence band of (BiO){sub 2}CO{sub 3}. • I{sup −} ions doping largely improved photocatalytic activity of I-(BiO){sub 2}CO{sub 3}. • I-(BiO){sub 2}CO{sub 3} displayed excellent photocharge separation efficiency. - Abstract: Novel I{sup −} ions doped (BiO){sub 2}CO{sub 3} (I-(BiO){sub 2}CO{sub 3}) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO){sub 2}CO{sub 3} displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO){sub 2}CO{sub 3}. The pseudo-first-order rate constant k{sub app} of RhB degradation over 15.0% I-(BiO){sub 2}CO{sub 3} was 0.54 h{sup −1}, which is 11.3 times higher than that of (BiO){sub 2}CO{sub 3}. The doped I{sup −} ions formed an impurity level on the top of valence band of (BiO){sub 2}CO{sub 3} and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO){sub 2}CO{sub 3} system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO){sub 2}CO{sub 3} via intense doping effect of I{sup −} ions.

  17. Investigation of the geometrical barrier in Bi-2212 using the magneto-optical technique

    International Nuclear Information System (INIS)

    Lin, Z.W.

    2000-01-01

    It has been found that the penetration of vortices into a weak pinning crystal is governed by a geometrical barrier and they form a dome-shaped flux profile across the crystal. Using the powerful magneto-optical technique, we investigated this geometrical barrier in a high-purity Bi 2 Sr 2 CaCu 2 O 8+x single-crystal platelet. Our results show that over the temperature range 20-70 K the dome-shaped profile is observed. Also, the influences of the edge shape and the roughness on the geometrical barrier are discussed. (author)

  18. Effect of poly(ethylene glycol) surfactant on carbon-doped MoO3 ...

    Indian Academy of Sciences (India)

    to get the desired phase of carbon-doped MoO3 material. ... photocatalyst (Jose et al 2007; Gambhire et al 2009), dye sensitized solar cells (Gratzel 2004), rechargeable lithium batteries (Wen et ..... S K 2002 Solid State Ionics 147 129. Li X L ...

  19. Preparation and properties of visible light responsive Y3+ doped Bi5Nb3O15 photocatalysts for Ornidazole decomposition

    International Nuclear Information System (INIS)

    Zhao, Jie; Yao, Binghua; He, Qiang; Zhang, Ting

    2012-01-01

    Highlights: ► A novel Y 3+ -Bi 5 Nb 3 O 15 material was prepared. ► Y 3+ -Bi 5 Nb 3 O 15 is firstly used for the photocatalytic degradation of Ornidazole. ► Possible pathway of Ornidazole degradation in aqueous solution is proposed. - Abstract: Nanoparticle of Bi 5 Nb 3 O 15 doped with Y 3+ was prepared for the first time by the sol–gel method combined with impregnation. The degradation of Ornidazole reacting with Y 3+ -Bi 5 Nb 3 O 15 was investigated to explore the feasibility of using Y 3+ -Bi 5 Nb 3 O 15 to treat antibiotics in wastewater. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, UV–vis diffuse reflectance spectrum and X-ray photoelectron spectroscopy. The results showed that the Y 3+ -Bi 5 Nb 3 O 15 exhibited single-crystalline orthorhombic structure with small particle size (20–100 nm); additionally, its UV–vis absorbance edges significantly shift to the visible-light region. The as-prepared nanoparticles exhibited a high photocatalytic activity in the decomposition of Ornidazole and several possible pathways of degradation of Ornidazole were proposed according to the results of ultra-performance liquid chromatography tandem mass spectrometry.

  20. The effects of Zn doping on magnetic properties of Cu3Bi(SeO3)2O2Cl

    Science.gov (United States)

    Yang, Pei-Ying; Tseng, Wu-Jyun; Wu, Hung-Cheng; Kakarla, D. Chandrasekhar; Yang, Hung-Duen; Department of Physics, Natl Sun Yat Sen Univ Team

    Recently, layered spin-frustrated Cu3Bi(SeO3)2 O2Cl has received considerable research attention due to its unusual magnetic properties. Two inequivalent Cu2 + ions form a pseudo-kagome lattice that invokes spin frustration and anisotropic magnetic properties. In this study, the influence of Zn doping on the complex magnetic properties has been explored. Polycrystalline (Cu1-xZnx) Bi(SeO3)2 O2Cl (0 x 0.5) samples were synthesized using solid-state reaction and characterized by X-ray diffraction and magnetic measurements. The Zn doping strongly modulates the magnetic ground state of the system. The antiferromagnetic transition temperature TN = 24 K and magnetic field-induced hysteresis observed for x = 0 at low field are systematically shifted to lower temperature and reduced with Zn doping. These results can illustrate the insight of the occurrence of field-induced spin-flip type multiferroics in Cu3Bi(SeO3)2 O2Cl.

  1. Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping

    International Nuclear Information System (INIS)

    Han, Yumin; Mao, Weiwei; Quan, Chuye; Wang, Xingfu; Yang, Jianping; Yang, Tao; Li, Xing’ao

    2014-01-01

    Highlights: • BiFeO 3 , Bi 0.8 Er 0.2 FeO 3 , Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 nanoparticles were prepared by sol–gel method. • The introduction of Er and Mn, Co into BiFeO 3 leads into a phase transition with reduced grain size. • The phase transformation combined with size reduction has significantly increased saturated polarization (Ps), remanent polarization (Pr) and saturated magnetization (Ms), remanent magnetization (Mr) behaviors of the doped samples with the same variation trend. • The formation of dipolar defect complexes (DDCs) in the doped samples may also contribute to the improved ferroelectric property. • Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 exhibits significantly improved ferroelectric and ferromagnetic properties. - Abstract: BiFeO 3 (BFO), Bi 0.8 Er 0.2 FeO 3 (BEFO), Bi 0.8 Er 0.2 Fe 0.9 Mn 0.1 O 3 (BEFMO) and Bi 0.8 Er 0.2 Fe 0.9 Co 0.1 O 3 (BEFCO) nanoparticles were prepared by sol–gel method having an average size of 200 nm for BFO, under100 nm for BEFO and under 60 nm for BEFMO and BEFCO. Phase transition from a rhombohedral symmetry (R3c) for BFO to an orthorhombic symmetry (Ibmm) for BEFO, BEFMO and BEFCO has been observed. The phase transformation combined with size reduction has significantly improved both ferroelectric and ferromagnetic behaviors of the doped samples in a similar way. The formation of dipolar defect complexes (DDCs) in the doped samples also contributes to the improved ferroelectric property with saturated polarization (Ps) of 0.375 μC/cm 2 and remanent polarization (Pr) of 0.244 μC/cm 2 for BEFMO. Size effect may also impact the simultaneously developed Pr for BEFMO and BEFCO. Owning to the interactions between the ferromagnetic and antiferromagnetic microdomains, improved saturated magnetization (Ms) and remanent magnetization (Mr) are also observed in BEFMO

  2. Development of Bulk Bi2+xSr3-yCa yCu 2O8+delta Superconductors by Partial-Melting Route for Fault Current Limiters Application

    Directory of Open Access Journals (Sweden)

    Bojan A. Marinkovic

    2002-06-01

    Full Text Available The production of bulk Bi2+xSr3-yCa yCu 2O8+delta (Bi-2212 superconductors for fault current limiter application was developed via a partial-melting route. Aiming high Ic (critical current, which is the essential superconducting characteristic for application of this material in the construction of Fault Current Limiters (FCL, the produced blocks have predominance of Bi-2212 phase (83 wt%, which characterizes with high values of zero and onset transport critical temperature of 92K and 97.5K, respectively. A relatively low transition width, deltaT, from the superconducting to the normal state of 5.5K, revealed a good intergrain connectivity. Consequently, current measurements on the blocks of Bi-2212 show promising Ic values of 230A and 850A for direct and alternate current, respectively. It is expected that further increases in the Ic values will depend on the elimination of an observed amorphous phase and further reduction of amount and grain sizes of secondary phases, still present in the blocks obtained by the proposed partial-melting route. This may be achieved by a further optimization of the partial-melting processing parameters.

  3. The phase diagram and magnetic properties of Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 solid solutions

    International Nuclear Information System (INIS)

    Wu, Jiangtao; Xu, Jun; Li, Nan; Jiang, Yaqi; Xie, Zhaoxiong

    2015-01-01

    Single phase Co and Ti co-doped Bi_1_−_xFeO_3−La_xFeO_3 (x = 0–1) solid solutions were prepared by the sol–gel method. Room temperature x-ray powder diffraction (XRD) patterns showed that the structures of as-prepared Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3 solid solutions transformed from rhombohedral R3c to tetragonal P4mm and then to orthorhombic Pnma, with increasing La concentration from 0 to 1. In situ high-temperature XRD (HTXRD) analysis further revealed that rhombohedral structure R3c (x ≤ 0.16) and tetragonal structure P4mm (0.17 ≤ x ≤ 0.40) changed to orthorhombic Pnma along with increasing temperature, and the phase transition temperature decreased with the increase of La doping concentration. However, the orthorhombic structure Pnma (x ≥ 0.41) kept stable even when the temperature reached 850 °C. The phase diagram of as-prepared binary solid solutions of Bi_1_−_xLa_xFe_0_._9_0Co_0_._0_5Ti_0_._0_5O_3(x = 0–1) was drawn on the basis of XRD and HTXRD analysis. Magnetic measurement revealed that the magnetic properties are greatly enhanced with the increase of La content. - Highlights: • Single phase Co and Ti co-doped (1−x)BiFeO_3–xLaFeO_3 (x = 0–1) solid solutions were synthesized. • The phase transitions were investigated by tuning composition and temperature. • Phase diagram was constructed according to the results of XRD for the first time. • The magnetization of solid solution can be enhanced when increasing La content.

  4. Low temperature synthesis, characterization and tunable optical properties of Eu3+, Tb3+ doped CaMoO4 nanoparticles

    International Nuclear Information System (INIS)

    Sharma, K. Gayatri; Singh, Th. Prasanta; Singh, N. Rajmuhon

    2014-01-01

    Highlights: • Red and green nanophosphors of CaMoO 4 :Eu 3+ and Tb 3+ were synthesized via an ethylene glycol route at very low temperature. • The prepared nanoparticles have tetragonal structure. • The luminescence properties of the nanoparticles are also studied extensively. • CIE chromaticity coordinates of the phosphors are also studied. • The blue-green emission of host could be easily tuned to red or green by varying the dopant ion used in the host. - Abstract: CaMoO 4 doped with Eu 3+ and Tb 3+ nanoparticles are obtained using ethylene glycol as the solvent. The synthesis has been carried out at 130 °C temperature. The XRD patterns reveal that all the doped samples are well assigned to the scheelite structure of the CaMoO 4 phase. Upon excitation by ultraviolet radiation, the CaMoO 4 :Eu 3+ , Tb 3+ phosphors show the characteristic emission lines of Eu 3+ and Tb 3+ . For Eu 3+ doped samples, red emission dominates over other transitions and for Tb 3+ doped, green emission is the predominant one. The blue-green emission of the host could be easily tuned to red and green by doping with activator ions. The emission intensity is also dependent on the concentration of the dopant ions. The prepared nanoparticles could find applications in LEDs and other optical devices

  5. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  6. Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jiayu; Peng, Changqing; Zhang, Lili; Fu, Yongsheng; Li, Hang; Zhao, Xianmin; Zhu, Junwu; Wang, Xin

    2017-01-01

    Highlights: •N-doped carbon@MoSe 2 core/branch was prepared via a facile calcining method. •N-doped carbon core and MoSe 2 branch can be simultaneously constructed. •PANI played vital roles in the reduction of MoO 3 and elemental Se. •The core/branch structure remarkably improved the lithium storage performance. -- Abstract: Here, we report a one-step simultaneous-construction approach to synthesize N-doped carbon@MoSe 2 core/branch nanostructures by heating a mixture of MoO 3 /PANI hybrids and Se powders in argon atmosphere, without requiring a cumbersome multi-step process or highly toxic reducing agents. It is found that in the construction process, PANI played a crucial role in the reduction of MoO 3 and Se to form MoSe 2 nanosheet branches, while PANI itself was decomposed and carbonized into N-doped carbon nanorod cores. Interestingly, the coexistence of 1D and 2D nanostructures in the N-doped carbon@MoSe 2 core/branch system leads to excellent lithium storage performance, including a large discharging capacity of 1275 mA h g −1 , a high reversible lithium extraction capacity of 928 mA h g −1 and a coulombic efficiency of 72.8%. After 100 cycles, the NDC@MS electrode still delivers a reversible capacity of 906 mA h g −1 with a capacity retention ratio of 97.6%. The superior electrochemical properties can be attributed to the unique core/branch nanostructure of NDC@MS and the synergistic effect between the N-doped carbon nanorod cores and MoSe 2 nanosheet branches.

  7. Optical, mechanical and TEM assessment of titania-doped Bi2V1 ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Home; Journals; Bulletin of Materials Science; Volume 37; Issue 7. Optical, mechanical and TEM assessment of titania-doped Bi2V1−TiO5.5−δ bismuth vanadate oxides. Gurbinder Kaur Gary Pickrell Vishal Kumar Om Prakash Pandey Kulvir Singh Daniel Homa. Volume 37 Issue 7 December 2014 pp ...

  8. Fabrication and properties of Ag-Bi2223 tapes with resistive barriers for filament decoupling

    International Nuclear Information System (INIS)

    Inada, Ryoji; Fukumoto, Yohei; Yasunami, Taeko; Nakamura, Yuichi; Oota, Akio; Li Chengshang; Zhang Pingxiang

    2007-01-01

    In this paper, we prepared the Bi2223 multifilamentary tapes with Ca 2 CuO 3 + Bi2212 as interfilamentary resistive barriers to suppress the electromagnetic coupling among the filaments under AC external magnetic field. The tapes with thin barrier layers of Ca 2 CuO 3 + 30 wt% Bi2212 around the filaments were prepared by using a standard powder-in-tube (PIT) method. The outside surface of monocore Ag-sheathed rods was coated by barrier materials. Then, the several coated monocore wires were stacked and packed into another Ag or Ag-Mg alloy tube. The packed tube was drawn and rolled into tape shape. The tape was subsequently sintered to form Bi2223 phase inside filaments. For the characterization of tapes, X-ray diffraction measurements were performed to investigate the phase formation inside the filaments. The uniformity of transport properties (J c ) for barrier tapes were evaluated on the order of several metre lengths and compared with the result for the tapes without barriers. Finally, AC loss characteristics under AC parallel transverse magnetic field were investigated to examine the effect of introducing the barriers on the filament decoupling

  9. Large Tc depression at low angle [100] tilt grain boundaries in bulk Bi2Sr2CaCu2O8+δ bicrystals

    International Nuclear Information System (INIS)

    Li, Q.; Tsay, Y.N.; Zhu, Y.; Suenaga, M.; Gu, G.D.; Koshizuka, N.

    1997-01-01

    Large depression of T c at 7 degree [100] tilt grain boundaries was observed in bulk Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) bicrystals by measuring the zero-field electrical transport properties of the grain boundaries and the constituent single crystals over an extended range of currents and voltages. The T c -depressed region was determined to be around 20 nm, comparable to the width of the strain field associated with the observed array of grain-boundary dislocations. Superconducting coupling of the grain boundaries increases sharply as temperature decreases below the grain-boundary T c congruent 68 K. copyright 1997 American Institute of Physics

  10. Co-doping induced coexistence of superconductivity and ferromagnetism in Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Feng, Zhenjie, E-mail: fengzhenjie@t.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Yin, Xunqing; Li, Qing; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Lu, Bo [Laboratory for Microstructures, Shanghai University, Shanghai 200444 (China); Jing, Chao; Cao, Shixun [Department of Physics, Shanghai University, Shanghai 200444 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai 200444 (China); Zhang, Jincang [Department of Physics, Shanghai University, Shanghai 200444 (China); Materials Genome Institute, Shanghai University, Shanghai 200444 (China)

    2016-09-15

    Highlights: • Bi{sub 4}O{sub 4}S{sub 3} is a new discovered layered superconductor. Some doping effects, such as Ag, Cu, and Pb, are studied, the superconductivity is suppressed in these doping samples. We doped the Ni magnetic ions to the system, it is interesting that the superconductivity is not suppressed in x = 0.1 sample. Meanwhile, the coexistence of the superconductivity and magnetism is observed in the samples from the M-vs. –H loops. - Abstract: The effects of Co doping on the physical properties of the Bi{sub 4}O{sub 4}S{sub 3} system was studied. We discovered that stable Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3} compound exhibits both long-range ferromagnetism and enhanced superconductivity with thermodynamic evidences for Tc ∼ 5.5 K. We found that there is an anomalous feature which represents superconducting transition in the hysteretic M-vs.-H loops for Bi{sub 3.9}Co{sub 0.1}O{sub 4}S{sub 3} at T = 3 K.

  11. Hydrothermal synthesis of CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts with excellent visible-light-driven photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yi; Yan, Xu; Liu, Chunbo; Hong, Yuanzhi; Zhu, Lin; Zhou, Mingjun; Shi, Weidong, E-mail: swd1978@ujs.edu.cn

    2015-10-30

    Graphical abstract: - Highlights: • The novel CdS/Bi{sub 2}MoO{sub 6} heterojunction were synthesized for the first time via a two-step hydrothermal process. • The CdS/Bi{sub 2}MoO{sub 6} heterojunction exhibited an excellent visible-light-driven photocatalytic activity for RhB degradation. • The photocatalytic activity of this heterojunction also evaluated by TC, MB degradation. • The mechanism of this photocatalysis system was firstly proposed. - Abstract: A novel CdS/Bi{sub 2}MoO{sub 6} heterojunction photocatalysts were successfully prepared via two-step hydrothermal methods. The prepared samples were characterized by various physicochemical techniques, such as XRD, SEM, TEM, HRTEM, XPS, UV–vis and PL. The obtained samples exhibited highly photocatalytic activity toward the degradation of the different kinds of organic dyes and tetracycline in aqueous solution under visible light irradiation (λ > 420 nm). The optimum photocatalytic efficiency of CdS-2 sample for the degradation rhodamine B (RhB) was about 25.3 and 3.7 times higher than that of individual CdS and Bi{sub 2}MoO{sub 6}, respectively. In addition, the possible photocatalytic mechanism was analyzed by different active species trapping experiments. The results indicated that the h{sup +} and ·O{sub 2}{sup −} were the main active species for the photocatalytic degradation of RhB. Moreover, the prepared sample shows good stability and recyclability properties which are beneficial for its practical application.

  12. Ultrafast microwave hydrothermal synthesis and characterization of Bi{sub 1−x}La{sub x}FeO{sub 3} micronized particles

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Cannio, M., E-mail: maria.cannio@unimore.it [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy); Boccaccini, D.N.; Bahl, C.R.H.; Agersted, K. [Department of Energy Conversion and Storage, Technical University of Denmark Frederiksborgvej, 4000 Roskilde (Denmark); Leonelli, C. [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena 42025 (Italy)

    2015-07-15

    In this work a microwave assisted hydrothermal method is applied to successfully synthesize lanthanum doped bismuth ferrites (BLFO, Bi{sub 1−x}La{sub x}FeO{sub 3} where x = 0, 0.15, 0.30 and 0.45). The growth mechanism of the Bi{sub 1−x}La{sub x}FeO{sub 3} crystallites is discussed in detail. The existence of the single-phase perovskite structure for all the doped samples is confirmed by the X-ray powder diffraction patterns. A peak shift, observed at lower angle with increasing La doping concentration, indicates that the BiFeO{sub 3} lattice is doped. The results of TG/DTA show a shift in the transition temperature from 805 °C to 815 °C as function of the La-doping for all the doped powders. At higher levels of La doping, i.e. x = 0.30 and 0.45, significant weight losses occur above 860 °C suggesting a change in the physical and chemical properties. Finally, magnetic measurements are carried out at room temperature for pure BiFeO{sub 3} and Bi{sub 0.85}La{sub 0.15}FeO{sub 3}. The results indicate that the materials are both weakly ferromagnetic, with no significant hysteresis in the curves. - Graphical abstract: Display Omitted - Highlights: • MW hydrothermal method applied to synthesize Bi{sub 1−x}La{sub x}FeO{sub 3}, x = 0, 0.15, 0.30, 0.45. • A single-phase perovskite structure for all the samples was confirmed by XRD. • A T{sub c} shift in La doped BiFeO{sub 3} DTA was observed as function of the La-doping. • Magnetic measurements indicate that the materials are weakly ferromagnetic.

  13. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  14. Single-layer MoS2 electronics.

    Science.gov (United States)

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  15. Enhanced magnetic and dielectric behavior in Co doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Chaudhuri, Sheli Sinha [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); De, S.K., E-mail: msskd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-05-01

    Magnetic and dielectric properties of Co doped BiFeO{sub 3} (BFO) nanoparticles (13 nm) have been investigated. The dopant Co{sup 2+} converts spherical morphology to cubic nanostructures. The significant changes in temperature dependence of magnetization may be due to magnetic disorder phase induced by divalent Co. The substitution of Fe by Co disrupts cycloidal spin structure of BFO and improves the ferromagnetic property. Enhancement of the saturation magnetization and coercivity by about 10 times in doped BFO are due to changes in morphology. High dielectric constant of about 670 and low loss at room temperature show Co doped BFO as promising material for multifunctional devices.

  16. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  17. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei; Ren, Shang-Fen

    2011-01-01

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  18. Phonons of single quintuple Bi 2 Te 3 and Bi 2 Se 3 films and bulk materials

    KAUST Repository

    Cheng, Wei

    2011-03-10

    Phonons of single quintuple films of Bi2Te3 and Bi2Se3 and corresponding bulk materials are calculated in detail by MedeA (a trademark of Materials Design) and Vienna ab initio simulation package (VASP). The calculated results with and without spin-orbit couplings are compared, and the important roles that the spin-orbit coupling plays in these materials are discussed. A symmetry breaking caused by the anharmonic potentials around Bi atoms in the single quintuple films is identified and discussed. The observed Raman intensity features in Bi 2Te3 and Bi2Se3 quintuple films are explained. © 2011 American Physical Society.

  19. Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Yang, C.; Liu, C.Z.; Wang, C.M.; Zhang, W.G.; Jiang, J.S.

    2012-01-01

    Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles, Bi 0.8 Ca 0.2−x Ba x FeO 3 (x=0–0.20), were prepared by a sol–gel method. The phase structure, grain size, dielectric and magnetic properties of the prepared samples were investigated. The results showed that the lattice structure of the nanoparticles transformed from rhombohedral (x=0) to orthorhombic (x=0.07–0.19) and then to tetragonal (x=0.20) with x increased. The dielectric properties of the nanoparticles were affected by the properties of the substitutional ions as well as the crystalline structure of the samples. The magnetic properties of the nanoparticles were greatly improved and the T N of the nanoparticles was obviously increased. All the Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles presented the high ratio of M r /M from 0.527 to 0.571 and large coercivity from 4.335 to 5.163 KOe. - Highlights: ► Ca 2+ and Ba 2+ ions co-doped BiFeO 3 nanoparticles were prepared using a sol–gel method. ► The magnetic properties of the nanoparticles are greatly improved. ► The Neel temperature (T N ) of the nanoparticles is greatly increased. ► Doped ions and crystal structure affect the dielectric properties of the nanoparticles.

  20. Synergistic effects of Mo and F doping on the quality factor of ZnO thin films prepared by a fully automated home-made nebulizer spray technique

    Science.gov (United States)

    Ravichandran, K.; Dineshbabu, N.; Arun, T.; Manivasaham, A.; Sindhuja, E.

    2017-01-01

    Transparent conducting oxide films of undoped, Mo doped, Mo + F co-doped ZnO were deposited using a facile homemade nebulizer spray pyrolysis technique. The effects of Mo and F doping on the structural, optical, electrical and surface morphological properties were investigated using XRD, UV-vis-NIR spectroscopy, I-V and Hall probe techniques, FESEM and AFM, and XPS, respectively. The XRD analysis confirms that all the films are well crystallized with hexagonal wurtzite structure. All the synthesized samples exhibit high transmittance (above 85%) in the visible region. The current-voltage (I-V) characteristics show the ohmic conduction nature of the films. The Hall probe measurements show that the synergistic effects of Mo and F doping cause desirable improvements in the quality factor of the ZnO films. A minimum resistivity of 5.12 × 10-3 Ω cm with remarkably higher values of mobility and carrier concentration is achieved for Mo (2 at.%) + F (15 at.%) co-doped ZnO films. A considerable variation in the intensity of deep level emission caused by Mo and F doping is observed in the photoluminescence (PL) studies. The presence of the constituent elements in the samples is confirmed by XPS analysis.

  1. Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

    Directory of Open Access Journals (Sweden)

    Xin Zhao

    2017-12-01

    Full Text Available Nanostructures exhibit numerous merits to improve the efficiency in solar-to-energy conversion. These include shortened carrier collection pathways, an increased volume ratio between depletion layer and bulk, enhanced light capture due to multiple light scattering in nanostructures, and a high surface area for photochemical conversion reactions. In this study, we describe the synthesis of morphology-controlled W-doped BiVO4 by simply tuning the solvent ratio in precursor solutions. Planar and porous W-doped BiVO4 thin films were prepared and compared. The porous film, which exhibits increased surface area and enhanced light absorption, has displayed enhanced charge separation and interfacial charge injection. Our quantitative analysis showed an enhancement of about 50% of the photoelectrochemical performance for the porous structure compared to the planar structure. This enhancement is attributed to improved light absorption (13% increase, charge separation (14% increase, and interfacial charge injection (20% increase.

  2. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides

    International Nuclear Information System (INIS)

    Hsiao, Chun-Lung; Qi, Xiaoding

    2016-01-01

    Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted

  3. Surface and catalytic properties of MoO3/Al2O3 system doped with Co3O4

    International Nuclear Information System (INIS)

    Zahran, A.A.; Shaheen, W.M.; El-Shobaky, G.A.

    2005-01-01

    Thermal solid-solid interactions in cobalt treated MoO 3 /Al 2 O 3 system were investigated using X-ray powder diffraction. The solids were prepared by wet impregnation method using Al(OH) 3 , ammonium molybdate and cobalt nitrate solutions, drying at 100 deg. C then calcination at 300, 500, 750 and 1000 deg. C. The amount of MoO 3 , was fixed at 16.67 mol% and those of cobalt oxide were varied between 2.04 and 14.29 mol% Co 3 O 4 . Surface and catalytic properties of various solid samples precalcined at 300 and 500 deg. C were studied using nitrogen adsorption at -196 deg. C, conversion of isopropanol at 200-500 deg. C and decomposition of H 2 O 2 at 30-50 deg. C. The results obtained revealed that pure mixed solids precalcined at 300 deg. C consisted of AlOOH and MoO 3 phases. Cobalt oxide-doped samples calcined at the same temperature consisted also of AlOOH, MoO 3 and CoMoO 4 compounds. The rise in calcination temperature to 500 deg. C resulted in complete conversion of AlOOH into very poorly crystalline γ-Al 2 O 3 . The further increase in precalcination temperature to 750 deg. C led to the formation of Al 2 (MoO 4 ) 3 , κ-Al 2 O 3 besides CoMoO 4 and un-reacted portion of Co 3 O 4 in the samples rich in cobalt oxide. Pure MoO 3 /Al 2 O 3 preheated at 1000 deg. C composed of MoO 3 -αAl 2 O 3 solid solution (acquired grey colour). The doped samples consisted of the same solid solution together with CoMoO 4 and CoAl 2 O 4 compounds. The increase in calcination temperature of pure and variously doped solids from 300 to 500 deg. C increased their specific surface areas and total pore volume which suffered a drastic decrease upon heating at 750 deg. C. Doping the investigated system with small amounts of cobalt oxide (2.04 and 4 mol%) followed by heating at 300 and 500 deg. C increased its catalytic activity in H 2 O 2 decomposition. This increase, measured at 300 deg. C, attained 25.4- and 12.9-fold for the solids precalcined at 300 and 500 deg. C, respectively

  4. Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles

    International Nuclear Information System (INIS)

    Yildirim, G.

    2013-01-01

    Highlights: •Standard measurements such as bulk density, ρ-T, J ct , XRD, SEM and EDX examinations for characterization of the samples. •Role of Eu inclusions on the microstructural, electrical and superconducting properties of Bi-2223 phase. •Determination of metal to insulator transition due to Eu impurities in the Bi-2223 superconducting matrix. •From the Eu content level of x = 0.5 onwards, destruction of the superconducting phases. •Constant retrogression of the microstructural and superconducting properties with the Eu individuals. -- Abstract: This comprehensive study examines the change of the microstructural, electrical and superconducting properties of the Eu doped Bi 1.8 Pb 0.4 Eu x Sr 2 Ca 2.2 Cu 3.0 O y ceramic cuprates (with x ⩽ 0.7) produced by the conventional solid state reaction method at the constant annealing temperature of 840 °C for 24 h with the aid of the standard characterization measurements such as bulk density, dc resistivity (ρ-T), transport critical current density (J c ), X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) examinations. For the full characterization of the pure and Eu doped Bi-2223 samples, the degree of granularity (from the bulk density and porosity measurements); the room temperature resistivity, onset–offset critical transition temperature, variation of transition temperature, hole carrier concentration, spin-gap opening temperature and thermodynamic fluctuations (from the dc resistivity experiments); the texturing, crystal structure, crystallite size, phase purity and cell parameters (from the XRD investigations); the variation of the flux pinning centers and the boundary weak-links between the superconducting grains (from the critical current density values); the crystallinity, specimen surface morphology, grain connectivity between the superconducting grains and grain size distribution (from the SEM examinations), the elemental compositions and

  5. Synthesis, structural and luminescence properties of Bi3+ co-doped Y2Sn2O7:Tb nanoparticles

    International Nuclear Information System (INIS)

    Nigam, S.; Sudarsan, V.; Vatsa, R.K.

    2010-01-01

    Full text: In recent years, advanced materials derived from Pyrochlore-type oxides (A 2 B 2 O 7 ) have been of extensive scientific and technological interest. Chemical substitution of A or B sites of pyrochlore oxide by rare earth ions is a widely used approach to prepare thermally stable, lanthanide ion doped luminescent materials. Due to the higher symmetry around the A and B sites in the lattice lanthanide ions like Eu 3+ and Tb 3+ when incorporated at the A or B sites give very poor luminescence. This problem can be avoided by incorporating other ions like Bi 3+ in the lattice so that the lattice gets distorted and luminescent intensity from the lanthanide ions increases. The present study deals with the synthesis and characterization of Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb nanoparticles. For the preparation of Tb 3+ and Bi 3+ doped Y 2 Sn 2 O 7 nano-materials, Sn metal, Bi(NO 3 ) 3 , Tb 4 O 7 , Y 2 CO 3 , were used as starting materials. The solution containing Y 3+ , Sn 4+ ,and Bi 3+ -Tb 3+ in ethylene glycol medium was slowly heated up to 120 deg C and then subjected to urea hydrolysis. The obtained precipitate after washing was heated to 700 deg C. As prepared samples are amorphous in nature and 700 deg C heated sample showed well crystalline pyrochlore structure as revealed by the XRD studies. Average particles size is calculated from the width of the X-ray diffraction peaks and found to be ∼ 5 nm. TEM images of the nanoparticles obtained at 700 deg C shows very fine spherical particles having a diameter in the range of 2-5 nm. Luminescence measurements were carried out for as prepared and 700 deg C heated samples of 2.5%Tb doped Y 2 Sn 2 O 7 nanoparticles. Green emission characteristic 5 D 4 7 F 5 transition of Tb 3+ has been observed from as prepared sample but on heating to 700 deg C the emission characteristic of Tb 3+ ions got completely removed . However, there is a significant improvement in Tb 3+ emission from 2.5% Bi 3+ co-doped Y 2 Sn 2 O 7 :Tb 3

  6. Facile synthesis of Bi/BiOCl composite with selective photocatalytic properties

    International Nuclear Information System (INIS)

    Chen, Dongling; Zhang, Min; Lu, Qiuju; Chen, Junfang; Liu, Bitao; Wang, Zhaofeng

    2015-01-01

    This paper presents a novel and facile method to fabricate Bi/BiOCl composites with dominant (001) facets in situ via a microwave reduction route. Different characterization techniques, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission scanning electron microscopy (TEM), UV–vis diffuse reflectance spectrometry (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance spectroscopy (ESR), cathodoluminescence spectrum (CL), and lifetime, have been employed to investigate the structure, optical and electrical properties of the Bi/BiOCl composites. The experimental results show that the introduction of Bi particles can efficiently enhance the photocatalytic performance of BiOCl for the degradation of several dyes under ultraviolet (UV) light irradiation, especially for negative charged methyl orange (MO). Unlike the UV photocatalytic performance, such Bi/BiOCl composite shows higher degradation efficiency towards rhodamine B (RhB) than MO and methylene blue (MB) under visible light irradiation. This special photocatalytic performance can be ascribed to the synergistic effect between oxygen vacancies and Bi particles. This work provides new insights about the photodegradation mechanisms of MO, MB and RhB under UV and visible light irradiation, which would be helpful to guide the selection of an appropriate catalyst for other pollutants. - Highlights: • Bi/BiOCl composites were synthesized via a microwave reduction. • Tunable selectivity photocatalytic activity can be achieved. • Photodegradation mechanism under UV and visible light were proposed

  7. Higher critical current density achieved in Bi-2223 High-Tc superconductors

    Directory of Open Access Journals (Sweden)

    M.S. Shalaby

    2016-07-01

    Full Text Available Bi2Sr2Ca2Cu3Ox (Bi-2223 were prepared using a solid state reaction method at different sintering times and temperatures. Structural phase identifications have been done using X-Ray analysis and refinement by Reitveld method which proves the coexistence of Bi-2223 and Bi-2212 phases. The critical transition temperature Tc and critical current density Jc values were measured using superconducting quantum interference device magnetometer (SQUID and by the magneto-optics technique. A remarkable rapid decrease to the diamagnetic signal in the magnetization versus temperature M(T at 110 K and Jc around 1.2 × 107 A/m2 at 5 K are confirmed for the Bi-2223 compound.

  8. Functional regulation of Pb-Ti/MoS{sub 2} composite coatings for environmentally adaptive solid lubrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Siming [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Hao [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Cui, Mingjun [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Wang, Liping, E-mail: wangliping@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Pu, Jibin, E-mail: pujibin@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2017-04-15

    Highlights: • Co-doped Pb-Ti/MoS{sub 2} composite coatings were successfully fabricated by unbalanced magnetron sputtering system. • Co-doped Pb-Ti/MoS{sub 2} composite coatings showed lower friction coefficient and longer wear life in both humid and vacuum environments than that of single-doped ones. • The wear behaviours of Pb-Ti/MoS{sub 2} composite coatings with the increase of Pb content is in accordance with the variation in H/E ratio that higher H/E is corresponding to the lower wear rate of coating. - Abstract: The lubrication of molybdenum disulfide coatings has commonly been limited by the application environments, for instance, the crystal MoS{sub 2} are easily affected by water to form MoO{sub 3} that causes a higher friction coefficient and short lifetime. Therefore, to improve the tribolgical performance of MoS{sub 2} in high humidity condition, the co-doped Pb-Ti/MoS{sub 2} composite coatings are deposited by unbalanced magnetron sputtering system. The design of the co-doping elements in MoS{sub 2}-based coatings can not only maintain the characteristic of low humidity-sensitivity as the Ti/MoS{sub 2} coating but also improve the mechanical properties and tribological performance of coatings as a comparison with single-doped ones. Moreover, the ultra-low friction coefficient with a minimum value of 0.006 under the vacuum condition is achieved for Pb-Ti/MoS{sub 2} composite coating containing about 4.6 at.% Pb, depending on the densification structure of coating. Intriguingly, the wear behaviours of Pb-Ti/MoS{sub 2} composite coatings are in accordance with the variation in H/E (hardness to the elastic modulus) ratio that the coating with higher H/E exhibits lower wear rate. These results demonstrate that the lubricating properties of MoS{sub 2} coatings in both humid environment and vacuum condition can be achieved through the Pb and Ti co-doped, which is of great significant for developing MoS{sub 2} coatings as the environmentally adaptive

  9. Growth of superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} films by sedimentation deposition and liquid phase sintering and annealing technique

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R.L.C. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)]. E-mail: rcmanahan@nip.upd.edu.ph; Sarmago, R.V. [Condensed Matter Physics Laboratory, National Institute of Physics, University of the Philippines, Llamas Science Hall, Rm. 3122, E. Quirino Street, Diliman, Quezon City 1101 (Philippines)

    2006-10-01

    We report on a technique of growing highly c-axis oriented Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi-2212) thick films on MgO substrate using a combined sedimentation-deposition and liquid phase sintering and annealing process. The temperature profiles employed partial melting followed by rapid cooling to temperature below the melting point. Scanning electron micrographs show that the films have a smooth surface. No evidence of grain boundaries on the film's surface can be seen. The critical temperatures of the samples range from {approx}67 K to {approx}81 K. This method presents a quick and easy preparation for high quality epitaxial Bi-2212 films.

  10. Occupied and unoccupied electronic structure of Na doped MoS{sub 2}(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Komesu, Takashi; Zhang, Xin; Dowben, P. A. [Department of Physics and Astronomy, Theodore Jorgensen Hall, 855 N 16th St., University of Nebraska, Lincoln, Nebraska 68588-0299 (United States); Le, Duy; Rahman, Talat S. [Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States); Ma, Quan; Bartels, Ludwig [Department of Chemistry and the Materials Science and Engineering Program, University of California - Riverside, Riverside, California 92521 (United States); Schwier, Eike F.; Iwasawa, Hideaki; Shimada, Kenya [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Kojima, Yohei; Zheng, Mingtian [Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan)

    2014-12-15

    The influence of sodium on the band structure of MoS{sub 2}(0001) and the comparison of the experimental band dispersion with density functional theory show excellent agreement for the occupied states (angle-resolved photoemission) and qualitative agreement for the unoccupied states (inverse photoemission spectroscopy). Na-adsorption leads to charge transfer to the MoS{sub 2} surface causing an effect similar to n-type doping of a semiconductor. The MoS{sub 2} occupied valence band structure shifts rigidly to greater binding with little change in the occupied state dispersion. Likewise, the unoccupied states shift downward, approaching the Fermi level, yet the amount of the shift for the unoccupied states is greater than that of the occupied states, effectively causing a narrowing of the MoS{sub 2} bandgap.

  11. First-principles study on doping and temperature dependence of thermoelectric property of Bi2S3 thermoelectric material

    International Nuclear Information System (INIS)

    Guo, Donglin; Hu, Chenguo; Zhang, Cuiling

    2013-01-01

    Graphical abstract: The direction-induced ZT is found. At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36, which is three times as much as maximal laboratorial value. This result matches well the analysis of electron effective mass. Highlights: ► Electrical transportations of Bi 2 S 3 depend on the concentration and temperature. ► The direction-induced ZT is found. ► At ZZ direction and n = 1.47 × 10 19 cm −3 , the ZT can reach maximal value, 0.36. ► The maximal ZT value is three times as much as maximal laboratorial value. ► By doping and temperature tuning, Bi 2 S 3 is a promising thermoelectric material. - Abstract: The electronic structure and thermoelectric property of Bi 2 S 3 are investigated. The electron and hole effective mass of Bi 2 S 3 is analyzed in detail, from which we find that the thermoelectric transportation varies in different directions in Bi 2 S 3 crystal. Along ac plane the higher figure of merit (ZT) could be achieved. For n-type doped Bi 2 S 3 , the optimal doping concentration is found in the range of (1.0–5.0) × 10 19 cm −3 , in which the maximal ZT reaches 0.21 at 900 K, but along ZZ direction, the maximal ZT reaches 0.36. These findings provide a new understanding of thermoelectricity-dependent structure factors and improving ZT ways. The donor concentration N increases as T increases at one bar of pressure under a suitable chemical potential μ, but above this chemical potential μ, the donor concentration N keeps a constant

  12. Growth of nucleation sites on Pb-doped Bi2Sr2Ca1Cu2O8+δ

    International Nuclear Information System (INIS)

    Finnemore, D.K.; Xu, M.; Kouzoudis, D.; Bloomer, T.; Kramer, M.J.; McKernan, S.; Balachandran, U.; Haldar, P.

    1996-01-01

    In the growth of Bi 2 Sr 2 Ca 2 Cu 3 O 10+δ from mixed powders of Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ and other oxides, it has been discovered that a dense array of hillocks or mesas grow at the interface between a Ag overlay and Pb-doped Bi 2 Sr 2 Ca 1 Cu 2 O 8+δ grains during the ramp up to the reaction temperature. As viewed in an environmental scanning electron microscope, the Ag coated grains develop a texture that looks like open-quote open-quote chicken pox close-quote close-quote growing on the grains at about 700 degree C. These hillocks are about 100 nm across and are spaced at about 500 to 1000 nm. If there is no Ag, this texture does not develop. Preliminary measurements indicate that the hillocks are a recrystallization of (Bi,Pb) 2 Sr 2 Ca 1 Cu 2 O 8+δ , and are definitely not a Pb rich phase. copyright 1996 American Institute of Physics

  13. Structures and magnetic properties of rare earth double perovskites containing antimony or bismuth Ba{sub 2}LnMO{sub 6} (Ln=rare earths; M=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Shumpei, E-mail: m-nis-s-o@ec.hokudai.ac.jp; Hinatsu, Yukio

    2015-07-15

    A series of double perovskite-type oxides Ba{sub 2}LnMO{sub 6} (Ln=lanthanides; M=Sb, Bi) were synthesized and their structures were studied. The Ln and M are structurally ordered in the rock-salt type at the B-site of the perovskite ABO{sub 3}. For Ba{sub 2}PrBiO{sub 6} and Ba{sub 2}TbBiO{sub 6}, it has been found that the disordering between Ln ion and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data. Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no magnetic ordering down to 1.8 K. - Graphical abstract: Tolerance factor for Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) plotted against the ionic radius of Ln{sup 3+}. We have found that there is a clear relation between crystal structures and tolerance factors. - Highlights: • The Ln and M ions are structurally ordered in the rock-salt type at the B-site. • The disordering between Pr (Tb) ion and Bi ion occurs at the B-site. • Ba{sub 2}LnMO{sub 6} (M=Sb, Bi) have no magnetic ordering down to 1.8 K.

  14. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  15. Effects of Sb-doping on the grain growth of Cu(In, Ga)Se2 thin films fabricated by means of single-target sputtering

    International Nuclear Information System (INIS)

    Zhang, Shu; Wu, Lu; Yue, Ruoyu; Yan, Zongkai; Zhan, Haoran; Xiang, Yong

    2013-01-01

    To investigate the effects of Sb doping on the kinetics of grain growth in Cu(In,Ga)Se 2 (CIGS) thin films during annealing, CIGS thin films were sputtered onto Mo coated substrates from a single CIGS alloy target, followed by chemical bath deposition of Sb 2 S 3 thin layers on top of CIGS layers and subsequent annealing at different temperatures for 30 min in Se vapors. X-ray diffraction results showed that CIGS thin films were obtained directly using the single-target sputtering method. After annealing, the In/Ga ratio in Sb-doped CIGS thin films remained stable compared to undoped film, possibly because Sb can promote the incorporation of Ga into CIGS. The grain growth in CIGS thin films was enhanced after Sb doping, exhibiting significantly larger grains after annealing at 400 °C or 450 °C compared to films without Sb. In particular, the effect was strikingly significant in grain growth across the film thickness, resulting in columnar grain structure in Sb-doped films. This grain growth improvement may be led by the diffusion of Sb from the front surface to the CIGS-Mo back interface, which promoted the mass transport process in CIGS thin films. - Highlights: ► Cu(In,Ga)Se 2 (CIGS) thin films made by sputtering from a single CIGS target. ► Chemical bath deposition used to introduce antimony into CIGS absorber layers. ► In/Ga ratio decreases in Sb-doped annealed films, comparatively to undoped films. ► Sb-doped CIGS films are superior to undoped films in terms of grain-growth kinetics

  16. Evidence of chemical-potential shift with hole doping in Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Shen, Z.; Dessau, D.S.; Wells, B.O.; Olson, C.G.; Mitzi, D.B.; Lombado, L.; List, R.S.; Arko, A.J.

    1991-01-01

    We have performed photoemission studies on high-quality Bi 2 Sr 2 CaCu 2 O 8+δ samples with various δ. Our results show a clear chemical-potential shift (0.15--0.2 eV) as a function of doping. This result and the existing angle-resolved-photoemission data give a rather standard doping behavior of this compound in its highly doped regime

  17. Experimental and density functional study of Mn doped Bi2Te3 topological insulator

    Directory of Open Access Journals (Sweden)

    A. Ghasemi

    2016-12-01

    Full Text Available We present a nanoscale structural and density functional study of the Mn doped 3D topological insulator Bi2Te3. X-ray absorption near edge structure shows that Mn has valency of nominally 2+. Extended x-ray absorption fine structure spectroscopy in combination with electron energy loss spectroscopy (EELS shows that Mn is a substitutional dopant of Bi and Te and also resides in the van der Waals gap between the quintuple layers of Bi2Te3. Combination of aberration-corrected scanning transmission electron microscopy and EELS shows that Mn substitution of Te occurs in film regions with increased Mn concentration. First-principles calculations show that the Mn dopants favor octahedral sites and are ferromagnetically coupled.

  18. Thermoelectric Properties of Cu-Doped n-Type Bi2Te2.85Se0.15 Prepared by Liquid Phase Growth Using a Sliding Boat

    Science.gov (United States)

    Kitagawa, Hiroyuki; Matsuura, Tsukasa; Kato, Toshihito; Kamata, Kin-ya

    2015-06-01

    N-type Bi2Te2.85Se0.15 thermoelectric materials were prepared by liquid phase growth (LPG) using a sliding boat, a simple and short fabrication process for Bi2Te3-related materials. Cu was selected as a donor dopant, and its effect on thermoelectric properties was investigated. Thick sheets and bars of Cu x Bi2 Te2.85Se0.15 ( x=0-0.25) of 1-2mm in thickness were obtained using the process. X-ray diffraction patterns and scanning electron micrographs showed that the in-plane direction tended to correspond to the hexagonal c-plane, which is the preferred direction for thermoelectric conversion. Cu-doping was effective in controlling conduction type and carrier (electron) concentration. The conduction type was p-type for undoped Bi2Te2.85Se0.15 and became n-type after Cu-doping. The Hall carrier concentration was increased by Cu-doping. Small resistivity was achieved in Cu0.02Bi2Te2.85Se0.15 owing to an optimized amount of Cu-doping and high crystal orientation. As a result, the maximum power factor near 310K for Cu0.02Bi2Te2.85Se0.15 was approximately 4×10-3W/K2m and had good reproducibility. Furthermore, the thermal stability of Cu0.02Bi2Te2.85Se0.15 was also confirmed by thermal cycling measurements of electrical resistivity. Thus, n-type Bi2Te2.85Se0.15 with a large power factor was prepared using the present LPG process.

  19. Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-04-01

    Full Text Available I-doped Bi2Te3−xIx (x=0, 0.05, 0.1, 0.2 flower-like nanoparticles were synthesized by a hydrothermal method through a careful adjustment of the amount of ethylenediamine tetraacetic acid surfactant. The nanopowders of flower-like nanoparticles were hot-pressed into bulk pellets and the thermoelectric properties of the pellets were investigated. The results showed that I-doping decreased the electrical resistivity effectively, and the thermal conductivitives of the Bi2Te3−xIx bulk samples was lower because of the closer atomic mass of I compared to Te. As a result, a ZT value of 1.1 was attained at 448 K for the Bi2Te2.9I0.1 sample.

  20. Synthesis of BiFeO{sub 3} thin films on single-terminated Nb : SrTiO{sub 3} (111) substrates by intermittent microwave assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca; Ruediger, Andreas, E-mail: ruediger@emt.inrs.ca, E-mail: reji.thomas@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650 Lionel-Boulet, Varennes, Québec, J3X1S2 (Canada)

    2016-06-15

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO{sub 3} (111) substrates and the deposition of ferroelectric BiFeO{sub 3} thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO{sub 3}){sup 4−} or Ti{sup 4+} layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d{sub 111}) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO{sub 3} single crystal substrates. Multiferroic BiFeO{sub 3} thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO{sub 3} (111) substrates. Bi(NO{sub 3}){sub 3} and Fe(NO{sub 3}){sub 3} along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO{sub 3} films on Nb : SrTiO{sub 3} (100) substrates was verified by piezoresponse force microscopy.

  1. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  2. Dynamic response of the electronic structure of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Freutel, Simon

    2015-01-01

    This work investigates the dynamic response of the electronic system of the high critical temperature superconductor Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212) due to the optical excitation by ultra short laser pulses. By using time- and angle-resolved photoemission spectroscopy on optimally and underdoped Bi2212 in the pseudogap phase two effects revealed by changes in the electronic structure are being discussed which, due to their different temporal behaviors, can be considered as independent. First, this is an photoinduced change of the effective mass m* around the kink energy of E - E F = -70 meV, that occurs during the experiment's time resolution of ∝100 fs and therefore can be interpreted as perturbation of the underlying electronic interaction caused directly by the pump pulse. Second, a shift of the Fermi surface vector k F is observed, that can be interpreted as an effective change of hole doping that gives rise to new opportunities for possible ultrafast optoelectronic devices based on optically induced phase transitions. Furthermore, the energy- and fluence-dependent dynamics of excited electrons are investigated, which exhibit a biexponential behavior. While the slow component of this decay seems to be independent from the excitation fluence, the fast component shows a pronounced jump in the corresponding decay time above and below the material's characteristic energy of 70 meV. This jump is most pronounced for the low fluences, which will be discussed in the context of an appropriate theoretical model system. Moreover, a major part of this work was the construction and build up of an entirely new experimental setup for photoemission spectroscopy. The main part regarding this issue consists of the design of 6-axis manipulator which is capable of moving the sample at low temperature independently in all 3 rotational and translational degrees of freedom. In the context of this work first tests and characterization measurements has been performed using

  3. Facile synthesis of surface N-doped Bi_2O_2CO_3: Origin of visible light photocatalytic activity and in situ DRIFTS studies

    International Nuclear Information System (INIS)

    Zhou, Ying; Zhao, Ziyan; Wang, Fang; Cao, Kun; Doronkin, Dmitry E.; Dong, Fan; Grunwaldt, Jan-Dierk

    2016-01-01

    Graphical abstract: Surfactant (CTAB) can induce nitrogen interstitially doping in the Bi_2O_2CO_3 surface, leading to the formation of localized states from N−O bond, which probably account for the origin of the visible light activity. Moreover, the photocatalytic NO oxidation processes over Bi_2O_2CO_3 were successfully monitored for the first time by in situ DRIFTS. - Highlights: • Interstitially doping N in the Bi_2O_2CO_3 surface was achieved at room temperature. • N-doped Bi_2O_2CO_3 exhibited significantly enhanced visible light photocatalytic activity compared to the pristine Bi_2O_2CO_3. • The formation of localized states from N−O bond could account for the visible light activity of Bi_2O_2CO_3. • The photocatalytic NO oxidation process was monitored by in situ DRIFTS. - Abstract: Bi_2O_2CO_3 nanosheets with exposed {001} facets were prepared by a facile room temperature chemical method. Due to the high oxygen atom density in {001} facets of Bi_2O_2CO_3, the addition of cetyltrimethylammonium bromide (CTAB) does not only influence the growth of crystalline Bi_2O_2CO_3, but also modifies the surface properties of Bi_2O_2CO_3 through the interaction between CTAB and Bi_2O_2CO_3. Nitrogen from CTAB as dopant interstitially incorporates in the Bi_2O_2CO_3 surface evidenced by both experimental and theoretical investigations. Hence, the formation of localized states from N−O bond improves the visible light absorption and charge separation efficiency, which leads to an enhancement of visible light photocatalytic activity toward to the degradation of Rhodamine B (RhB) and oxidation of NO. In addition, the photocatalytic NO oxidation over Bi_2O_2CO_3 nanosheets was successfully monitored for the first time using in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). Both bidentate and monodentate nitrates were identified on the surface of catalysts during the photocatalytic reaction process. The application of this strategy to

  4. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  5. Study of Ho-doped Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, S. E. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Collins-McIntyre, L. J.; Zhang, S. L.; Chen, Y. L.; Hesjedal, T., E-mail: Thorsten.Hesjedal@physics.ox.ac.uk [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Kellock, A. J.; Pushp, A.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Harris, J. S. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-11-02

    Breaking time-reversal symmetry through magnetic doping of topological insulators has been identified as a key strategy for unlocking exotic physical states. Here, we report the growth of Bi{sub 2}Te{sub 3} thin films doped with the highest magnetic moment element Ho. Diffraction studies demonstrate high quality films for up to 21% Ho incorporation. Superconducting quantum interference device magnetometry reveals paramagnetism down to 2 K with an effective magnetic moment of ∼5 μ{sub B}/Ho. Angle-resolved photoemission spectroscopy shows that the topological surface state remains intact with Ho doping, consistent with the material's paramagnetic state. The large saturation moment achieved makes these films useful for incorporation into heterostructures, whereby magnetic order can be introduced via interfacial coupling.

  6. Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped BiFeO{sub 3} as a function of synthesis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-George, G. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Silva, J. [Universidad Autónoma de Ciudad Juárez, Ave. del Charro 450 Norte, Cd. Juárez, Chih. 32310 (Mexico); Castañeda, R.; Lardizábal, D. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Graeve, O.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr. – MC 0411, La Jolla, CA 92093-0411 (United States); Fuentes, L. [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico); Reyes-Rojas, A., E-mail: armando.reyes@cimav.edu.mx [Centro de Investigación en Materiales Avanzados S.C., Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua, Chih. 31109 (Mexico)

    2014-07-01

    We present an analysis of crystallographic symmetry and the origin of the pseudo-cubic character of doped BiFeO{sub 3}. Specifically, barium-doped bismuth ferrite, Bi{sub 1−x}Ba{sub x}FeO{sub 3} (x = 0.05, 0.075, 0.1, 0.125), perovskite-type nanoparticles have been synthesized by implementing five modifications to the sol–gel technique (citric acid-assisted sol–gel method, ethylene glycol method, tartaric acid-assisted sol–gel method, polyvinyl alcohol–ethylene glycol method, and EDTA complexing sol–gel method) and their final pseudo-cubic character is discussed. The effect of the carboxylic groups and hydroxyl groups during synthesis is critical to obtain single phase BBFO. Fourier transform infrared spectroscopy and thermogravimetric analysis is used to study the decomposition and thermal behavior of the precursors and their relation to the final nanoparticle characteristics. X-ray diffraction analysis shows a single phase with symmetry changes for four of the five synthesis methodologies employed. Only the EDTA complexing sol–gel method, where EDTA is used as dissolver and chelating agent, is not satisfactory in all concentration ranges. Rietveld results suggest that the degree of distortion of the rhombohedral symmetry in the crystallized BiFeO{sub 3} powders decreases 12% as a result of progressive substitution of Bi{sup 3+} by Ba{sup 2+} and that there is no shift from rhombohedral to tetragonal symmetry. Magnetization properties of samples with a low-distortion rhombohedral structure show higher magnetic saturation and remanent magnetization than samples with high-distortion rhombohedral structure. - Highlights: • Ba–BiFeO{sub 3}: rhombohedral distortion degree is highly affected by the chemical method. • Rietveld results show no shift in BBFO from rhombohedral to tetragonal symmetry. • The low-distortion rhombohedral structure show higher magnetic saturation. • To stabilize a metal complex is necessary a balance between COOH{sup

  7. Lead-doped electron-beam-deposited Bi-Sr-Ca-Cu-O superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotry, S.A.; Saini, K.K.; Kant, C.; Sharma, C.P.; Ekbote, S.N.; Asthana, P.; Nagpal, K.C.; Chandra, S. (National Physical Lab., New Delhi (India))

    1991-03-20

    Superconducting thin films of the lead-doped Bi-Sr-Ca-Cu-O system have been prepared on (100) single-crystal SrTiO{sub 3} substrates by an electron beam deposition technique using a single sintered pellet as the evaporation source. As-deposited films are amorphous and non-superconducting; post-deposition annealing at an optimized temperature in air has been found to result in crystalline and superconducting films. The superconducting characteristics of the films have been observed to be sensitive not only to the duration and temperature of post-deposition annealing but also to the lead content and the sintering parameters for the pellet to be used as the evaporation source. A pellet with nominal composition Bi{sub 3}Pb{sub 1}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y} that had been sintered for 200 h zero resistivity Tc{sup 0}=112 K. However, films deposited using such a pellet as the evaporation source had Tc{sup 0} {approx equal} 73-78 K, as had the films deposited from a pellet without any lead. We investigated systematically films deposited from pellets with more lead and sintered for different durations. It is evident from these investigations that pellets with nominal composition Bi{sub 3}Pb{sub 2}Sr{sub 3}Ca{sub 3}Cu{sub 4}O{sub y}, i.e. with an excess of lead, and sintered for about 75 h when used as the evaporation source yield films with Tc{sup 0} {approx equal} 100 K when annealed between 835 and 840deg C for an optimized long duration. The films are characterized by X-ray diffraction and energy-dispersive spectroscopy techniques and have been found to be highly c axis oriented. The effect of lead in promoting a high Tc{sup 0}=110 K phase seems to be similar to that in bulk ceramics. (orig.).

  8. Structural and morphological study of Fe-doped Bi-based superconductor

    Science.gov (United States)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  9. Fabrication, modification and application of (BiO){sub 2}CO{sub 3}-based photocatalysts: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Zilin; Sun, Yanjuan [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China); Zhang, Yuxin [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Dong, Fan, E-mail: dfctbu@126.com [Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The (BiO){sub 2}CO{sub 3} with Aurivillius structure y is an emergent material. • Synthesis of (BiO){sub 2}CO{sub 3} micro/nano structures was reviewed. • The mechanisms of (BiO){sub 2}CO{sub 3} based nanocomposites were discussed. • Doping (BiO){sub 2}CO{sub 3} with nonmetals for enhanced activity was highlighted. • Multi-functional applications of (BiO){sub 2}CO{sub 3} based derivatives was demonstrated. - Abstract: (BiO){sub 2}CO{sub 3} (BOC), a fascinating material, belongs to the Aurivillius-related oxide family with an intergrowth texture in which Bi{sub 2}O{sub 2}{sup 2+} layers and CO{sub 3}{sup 2−} layers are orthogonal to each other. BOC is a suitable candidate for various fields, such as healthcare, photocatalysis, humidity sensor, nonlinear optical application and supercapacitors. Recently, the photocatalysis properties of (BiO){sub 2}CO{sub 3} have been gained increased attention. BOC has a wide band gap (3.1–3.5 eV), which constrains its visible light absorption and utilization. In order to enhance the visible light driven photocatalytic performance of BOC, many modification strategies have been developed. According to the discrepancies of different coupling mechanisms, six primary systems of BOC-based nanocomposites can be classified and summarized: namely, metal/BOC heterojunction, single metal oxides (metal sulfides)/BOC heterostructure, bismuth-based metallic acid salts (Bi{sub x}MO{sub y})/BOC, bismuth oxyhalides (BiOX)/BOC, metal-free semiconductor/BOC and the BOC-based complex heterojunction. Doping BOC with nonmetals (C, N and oxygen vacancy) is unique strategy and warrants a separate categorization. In this review, we first give a detailed description of the strategies to fabricate various BOC micro/nano structures. Next, the mechanisms of photocatalytic activity enhancement are elaborated in three parts, including BOC-based nanocomposites, nonmetal doping and formation of oxygen vacancy. The

  10. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  11. Novel electrical conductivity properties in Ca-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Wang, X.; Wang, S. Y.; Liu, W. F.; Xi, X. J.; Zhang, H.; Guo, F.; Xu, X. L.; Li, M.; Liu, L.; Zhang, C.; Li, X.; Yang, J. B.

    2015-01-01

    The charge defective structure in Bi 1−x Ca x FeO 3 (CBFO, x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanoparticles (NPs) ranging from 140 to 25 nm as well as their relations to band gap and leakage current behavior are investigated. It is demonstrated that Ca doping effectively narrows the band gap from ∼2.16 to ∼2.02 eV, due to the appearance and accumulation of oxygen vacancy. Subsequently, enhanced electrical conductivity was obtained in these CBFO NPs, which leads to the appearance of a distinct threshold switching behavior in Ca-doped BFO NPs with higher conductivity at room temperature. Possible mechanisms for Ca doping effects on the electric conduction were discussed upon the interplay of NPs’ size effect and mobile charged defects on the basis of reduced particle size and the increased density of oxygen vacancy analyzed through X-ray photoelectron spectrum

  12. Positron lifetime studies of 100-MeV oxygen irradiated Pb-doped Bi-2223 superconductors

    NARCIS (Netherlands)

    Banerjee, T.; Viswanath, R.N.; Kanjilal, D.; Kumar, R.; Ramasamy, S.

    2000-01-01

    Positron lifetime studies have been carried out for unirradiated and 100-MeV oxygen ion irradiated Pb-doped Bi-2223 superconductors. The analysis of positron lifetime spectra revealed three lifetime components: a short lifetime, τ1 = 153–196 ps; an intermediate lifetime, τ2 = 269–339 ps; and a long

  13. Effects of iron deficiency on anisotropy and ferromagnetic resonance linewidth in Bi-doped LiZn ferrite

    Directory of Open Access Journals (Sweden)

    Xiaona Jiang

    2017-05-01

    Full Text Available Bi-doped LiZn ferrites with different iron deficiencies were fabricated by a conventional ceramic method. Anisotropy constant (K1 was calculated and ferromagnetic resonance (FMR linewidth (ΔH was investigated. Crystalline anisotropy broadening linewidth (ΔHa and porosity broadening linewidth (ΔHp were derived by an approximate calculation based on dipolar narrowing theory, which play a significant role in contributions to FMR linewidth and occupy more than 90 % of ΔH. Physical and static magnetic properties of LiZn ferrite with iron deficiency are presented, which supports a decline in linewidths with increasing iron deficiency. Iron deficiency makes K1, ΔHa and ΔHp reduce. The results also show that ΔHp is the majority of contributions to ΔH in Bi-doped LiZn ferrite and densification is an effective method to decrease ΔH.

  14. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    Science.gov (United States)

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  15. Structural, magnetic and dielectric properties of Sr and V doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Dahiya, Reetu; Agarwal, Ashish, E-mail: aagju@yahoo.com; Sanghi, Sujata; Hooda, Ashima; Godara, Priyanka

    2015-07-01

    Bi{sub 0.85}Sr{sub 0.15}FeO{sub 3} (BSFO), Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.97}V{sub 0.03}O{sub 3} (BSFVO1) and Bi{sub 0.85}Sr{sub 0.15}Fe{sub 0.95}V{sub 0.05}O{sub 3} (BSFVO2) ceramics were synthesized by solid state reaction method. X-ray diffraction studies and Rietveld refinement results indicate that all the samples crystallized in rhombohedrally distorted perovskite structure. The remnant magnetization and coercive field of BSFVO2 were greatly enhanced in comparison with BSFO. The enhancement of remnant magnetization was attributed to collapse of the spiral spin structure caused by change in bond length and bond angles of BSFO on V substitution. The enhanced value of coercive field might be attributed to decreased grain size with V substitution. BSFO sample shows dispersion in dielectric constant (έ) and dielectric loss (tan δ) values in lower frequency region. With V doping this dispersion is reduced resulting in frequency independent region. Dielectric anomaly peak due to charge defects in BSFO sample is also suppressed significantly on V substitution. BSFVO2 sample shows almost temperature stable behavior in έ and tan δ in the studied temperature range. Temperature dependence of index ‘s’ of power law suggests that overlapping large polaron tunneling model is applicable for describing the conduction mechanism in BSFO sample while small polaron tunneling model is appropriate for BSFVO1 and BSFVO2 samples in the studied temperature range. - Highlights: • Sr and V doped BiFeO{sub 3} multiferroics were synthesized by solid state reaction. • Ceramics crystallized in rhombohedrally distorted perovskite structure. • Remnant magnetization and coercive field were improved with V doping.

  16. Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO{sub 2} hybrid carbon spheres

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Waseem; Haque, M.M. [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Muneer, M., E-mail: m.muneer.ch@amu.ac.in [Department of Chemistry, Aligarh Muslim University, Aligarh 202002 (India); Fleisch, M.; Hakki, A.; Bahnemann, D. [Institut fuer Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover (Germany)

    2015-05-25

    Highlights: • La and Mo doped TiO{sub 2} hybrid carbon spheres have been synthesized using hydrothermal method. • The characterization of La and Mo doped TiO{sub 2} hybrid carbon spheres uniform morphology having anatase phase and good structural stability. • TiO{sub 2} hybrid carbon spheres with dopant concentration of 2.0% (La) and 1.5% (Mo) showed the highest photocatalytic activity as compared to the other dopant concentrations for the degradation of all the dyes under investigation. - Abstract: La and Mo-doped TiO{sub 2} coated carbon spheres have been synthesized using the hydrothermal method. The prepared materials were characterized by standard analytical techniques, X-ray diffraction (XRD), UV–Vis spectrophotometry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. The XRD and Raman spectroscopic analysis showed that the particles are in anatase phase. The EDX and SEM images showed that La/Mo-doped TiO{sub 2} are present on the surface of the carbon spheres. The photocatalytic activity of the synthesized particles were tested by studying the degradation of three different chromophoric dyes, i.e., Acid Yellow 29 (azo dye), Coomassie Brilliant Blue G250 (triphenylmethane dye) and Acid Green 25 (anthraquinone dye) as a function of time on irradiation in aqueous suspension. TiO{sub 2} particle with dopant concentration of 2.0% La and 1.5% Mo showed the highest photocatalytic activity as compared to the other dopant concentrations for the degradation of all the dyes under investigation.

  17. MoP nanoparticles supported on indium-doped porous carbon. Outstanding catalysts for highly efficient CO{sub 2} electroreduction

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaofu; Lu, Lu; Yang, Dexin; Chen, Chunjun; Han, Buxing [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhu, Qinggong; Wu, Congyi [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing (China)

    2018-02-23

    Electrochemical reduction of CO{sub 2} into value-added product is an interesting area. MoP nanoparticles supported on porous carbon were synthesized using metal-organic frameworks as the carbon precursor, and initial work on CO{sub 2} electroreduction using the MoP-based catalyst were carried out. It was discovered that MoP nanoparticles supported on In-doped porous carbon had outstanding performance for CO{sub 2} reduction to formic acid. The Faradaic efficiency and current density could reach 96.5 % and 43.8 mA cm{sup -2}, respectively, when using ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate as the supporting electrolyte. The current density is higher than those reported up to date with very high Faradaic efficiency. The MoP nanoparticles and the doped In{sub 2}O{sub 3} cooperated very well in catalyzing the CO{sub 2} electroreduction. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Optical spectroscopy of iodine-doped single-wall carbon nanotubes of different diameter

    International Nuclear Information System (INIS)

    Tonkikh, Alexander A.; Obraztsova, Elena D.; Pozharov, Anatolii S.; Obraztsova, Ekaterina A.; Belkin, Alexey V.

    2012-01-01

    Single-wall carbon nanotubes with polyiodide chains inside are interesting from two points of view. According to predictions, first, the iodine structure type inside the nanotube is determined by the nanotube geometry. Second, after iodination all nanotubes become metallic. In this work, we made an attempt to check both predictions. To study the diameter-dependent properties we have taken for a gas-phase iodination the pristine single-wall carbon nanotubes grown by three different techniques providing a different average diameter: a chemical vapor deposition with a Co/Mo catalyst (CoMoCat) with a diameter range (0.6-1.3) nm, a high-pressure CO decomposition (HiPCO) - a diameter range (0.8-1.5) nm, and an aerosol technique with Fe catalyst - a diameter range (1.3-2.0) nm. The Raman spectra have shown a complication of the polyiodide chain structure while the nanotube diameter increased. The optical spectroscopy data (a suppression of E 11 band in the UV-Vis-NIR absorption spectrum) have confirmed the theoretical prediction about transformation of all nanotubes into metallic phase after doping. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structural, electric and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics obtained by co-precipitation route

    Directory of Open Access Journals (Sweden)

    Mohamed Afqir

    2018-03-01

    Full Text Available This paper presents a study of the structure and dielectric properties of Eu-doped SrBi2Nb2O9 ceramics prepared by co-precipitation route and sintered at 850 °C. The materials were examined using XRD and FTIR methods. XRD data indicated the formation of well crystallized structure of the pure and doped SrBi2Nb2O9, without the presence of undesirable phases. FTIR spectra do not bring a significant shift in the band positions. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined through the frequency range [50 kHz–1 MHz]. In particular, the dielectric constant (ε′ and dielectric losses (tan δ of the SrBi2Nb2O9 and SrBi1.6Eu0.4Nb2O9 ceramics were measured as a function of temperature at various frequencies.

  20. Influence of cobalt doping on structural and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Khan, U.; Adeela, N.; Javed, K.; Riaz, S.; Ali, H.; Iqbal, M.; Han, X. F.; Naseem, S.

    2015-11-01

    Nanocrystalline cobalt-doped bismuth ferrites with general formula of BiFe1- δ Co δ O3 (0 ≤ δ ≤ 0.1) have been synthesized using solution evaporation method. Structure and phase identification was performed with X-ray diffraction (XRD) technique. The results confirm the formation of rhombohedral-distorted Perovskite structure with R3c symmetry. A decrease in lattice parameters and an increase in X-ray density have been observed with increasing cobalt concentration in BiFeO3. Particle size determined by transmission electron microscope was in good agreement with XRD, i.e., 39 nm. Room-temperature coercivity and saturation magnetization of nanoparticles were increased up to 7.5 % of cobalt doping. Low-temperature magnetic measurements of selected sample showed increasing behavior in saturation magnetization, coercivity, effective magnetic moments, and anisotropy constant. An increase in coercivity with decrease in temperature followed theoretical model of Kneller's law, while modified Bloch's model was employed for saturation magnetization in temperature range of 5-300 K.

  1. Thermoelectric power of Bi and Bi{sub 1{minus}x}Sb{sub x} alloy thin films and superlattices grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S; DiVenere, A; Wong, G K; Ketterson, J B; Meyer, J R; Hoffman, C A

    1997-07-01

    The authors have measured the thermoelectric power (TEP) of MBE-grown epitaxial Bi and Bi{sub 1{minus}x} alloy thin films and superlattices as a function of temperature in the range 20--300 K. They have observed that the TEP of a Bi thin film of 1 {micro}m thickness is in good agreement with the bulk single crystal value and that the TEPs for superlattices with 400 {angstrom} and 800 {angstrom} Bi well thicknesses are enhanced over the bulk values. For x = 0.072 and 0.088 in Bi{sub 1{minus}x}Sb{sub x} thin films showing semiconducting behavior, TEP enhancement was observed by a factor of two. However as Bi or Bi{sub 1{minus}x}Sb{sub x} well thickness decreases in superlattice geometry, the TEP decreases, which may be due to unintentional p-type doping.

  2. Raman-active phonons in Bi2Sr2Ca1-xYxCu2O8+d (x=0-1): Effects of hole filling and internal pressure induced by Y doping for Ca, and implications for phonon assignments

    DEFF Research Database (Denmark)

    Kakihana, M.; Osada, M.; Käll, M.

    1996-01-01

    The phonon Raman spectra of Bi2Sr2Ca1-xYxCu2O8+d (x=0-1) have been investigated in a number of well-defined single-crystal and polycrystalline samples. From the polarization and Y-doping dependence, and from a comparison with previous reports on Bi-based cuprates, we identify the (6A(1g)+1B(1g...

  3. Optical spectroscopy of Eu3+ doped Th(MoO4)2

    International Nuclear Information System (INIS)

    Keskar, Meera; Phatak, Rohan; Gupta, Santhosh; Natarajan, V.

    2014-01-01

    Eu 3+ is often used as a structural probe, because of the relative simplicity of its energy-level structure and dependence on its site symmetry in the host material. The phonon energy of the host for rare-earth ions is a crucial factor to be considered for developing luminescent materials.Thorium molybdate can satisfy both low phonon energy environment for rare-earth ions and good chemical and mechanical stabilities for practical use. Thus Eu 3+ doped Th(MoO 4 ) 2 are expected to be a good promising optical materials. To the best of our knowledge, there is no report on optical spectroscopy of Eu 3+ doped thorium molybdate and thus work has been carried out and discussed in this paper

  4. Surface chemical and photocatalytic consequences of Ca-doping of BiFeO{sub 3} as probed by XPS and H{sub 2}O{sub 2} decomposition studies

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt); Ramadan, Wegdan [Physics Department, Faculty of Science, Alexandria University, Alexandria 21511 (Egypt); Katrib, Ali [Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Rabee, Abdallah I.M. [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt)

    2014-10-30

    Graphical abstract: - Highlights: • BiFeO{sub 3} is a modest visible-light heterogeneous photocatalyst for H{sub 2}O{sub 2} decomposition. • The ferrite activity is promoted with Ca-doping up to 10 wt%-Ca. • Favourable consequences are enhanced surface metal redoxability and oxide basicity. • Furthering doping to >10 wt%-Ca retrogresses the ferrite photocatalytic activity. • A retrogressive doping consequence is bulk phase separation of α(γ)-Fe{sub 2}O{sub 3}. - Abstract: Pure and Ca-doped Bi{sub 1−x}Ca{sub x}FeO{sub 3} samples were prepared with x = 0.0–0.2, adopting a sol–gel method. Previously reported studies performed on similarly composed and prepared samples revealed that Ca-doping, above solubility limit (namely at ≥10%-Ca), results in phase separation and formation of BiFeO{sub 3}/α(γ)-Fe{sub 2}O{sub 3} nanocomposite particles. Hetero p/n nanojunctions thus established were considered to help separating photo-generated electron–hole pairs and, therefore, explain consequent promotion of photo-Fenton catalytic activity of BiFeO{sub 3} towards methylene blue degradation in presence of H{sub 2}O{sub 2} additive. However, the encompassed decomposition of H{sub 2}O{sub 2} was not addressed. To bridge this gap of knowledge, the present investigation was designed to assess Ca-doping-effected surface chemical modifications and gauge its impact on the heterogeneous photo-/thermo-catalytic activity of BiFeO{sub 3} towards H{sub 2}O{sub 2} decomposition, by means of X-ray photoelectron spectroscopy (XPS) and H{sub 2}O{sub 2} decomposition gravimetry. XPS results revealed generation of high binding energy Bi 4f and Fe 2p states, as well as enhancement of the surface basicity, upon doping to 10%-Ca. These surface chemical consequences are rendered hardly detectable upon further increase of the dopant magnitude to 20%-Ca. In parallel, the H{sub 2}O{sub 2} decomposition activity of the ferrite, under natural visible light, is enhanced to optimize

  5. Luminescence of Bi3+ ions in Y3Al5O12:Bi single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Voznyak, T.; Vistovsky, V.; Nedilko, S.; Nikl, M.

    2007-01-01

    The absorption and cathodoluminescence spectra of single crystalline films (SCF) of Y 3 Al 5 O 12 :Bi garnet depending on Bi concentration were analyzed. For consideration of the nature of the UV and visible Bi-related emission bands the time-resolved luminescence of Bi 3+ (ns 2 ) ions in YAG:Bi SCF was studied at 10 K under excitation by synchrotron radiation. The difference in the excitation spectra and emission decay of the UV and visible bands has been explained via radiative relaxation from the 3 P 1,0 excited states to the 1 S 0 ground state of the isolated and pair/clustered Bi 3+ emission centers in the garnet lattice, respectively

  6. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.

    Science.gov (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  7. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  8. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  9. Large power factor and anomalous Hall effect and their correlation with observed linear magneto resistance in Co-doped Bi2Se3 3D topological insulator

    Science.gov (United States)

    Singh, Rahul; Shukla, K. K.; Kumar, A.; Okram, G. S.; Singh, D.; Ganeshan, V.; Lakhani, Archana; Ghosh, A. K.; Chatterjee, Sandip

    2016-09-01

    Magnetoresistance (MR), thermo power, magnetization and Hall effect measurements have been performed on Co-doped Bi2Se3 topological insulators. The undoped sample shows that the maximum MR as a destructive interference due to a π-Berry phase leads to a decrease of MR. As the Co is doped, the linearity in MR is increased. The observed MR of Bi2Se3 can be explained with the classical model. The low temperature MR behavior of Co doped samples cannot be explained with the same model, but can be explained with the quantum linear MR model. Magnetization behavior indicates the establishment of ferromagnetic ordering with Co doping. Hall effect data also supports the establishment of ferromagnetic ordering in Co-doped Bi2Se3 samples by showing the anomalous Hall effect. Furthermore, when spectral weight suppression is insignificant, Bi2Se3 behaves as a dilute magnetic semiconductor. Moreover, the maximum power factor is observed when time reversal symmetry (TRS) is maintained. As the TRS is broken the power factor value is decreased, which indicates that with the rise of Dirac cone above the Fermi level the anomalous Hall effect and linearity in MR increase and the power factor decreases.

  10. BiI{sub 3} single crystal for room-temperature gamma ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T., E-mail: saito.tatsuya125@canon.co.jp [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Iwasaki, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan); Kurosawa, S.; Yoshikawa, A. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Den, T. [Frontier Research Center, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501 (Japan)

    2016-01-11

    BiI{sub 3} single crystals were grown by the physical vapor transport method. The repeated sublimation of the starting material reduced impurities in the BiI{sub 3} single crystal to sub-ppm levels. The detector was fabricated by depositing Au electrodes on both surfaces of the 100-μm-thick BiI{sub 3} single crystal platelet. The resistivity of the BiI{sub 3} single crystal was increased by post-annealing in an iodine atmosphere (ρ=1.6×10{sup 11} Ω cm). Pulse height spectroscopy measurements showed clear peaks in the energy spectrum of alpha particles or gamma rays. It was estimated that the mobility-lifetime product was μ{sub e}τ{sub e}=3.4–8.5×10{sup −6} cm{sup 2}/V and the electron–hole pair creation energy was 5.8 eV. Our results show that BiI{sub 3} single crystals are promising candidates for detectors used in radiographic imaging or gamma ray spectroscopy.

  11. Phase separation in Sr doped BiMnO3

    International Nuclear Information System (INIS)

    Li Guan-Nan; Gao Qing-Qing; Luo Jun; Liu Guang-Yao; Liang Jing-Kui; Rao Guang-Hui; Huang Qing-Zhen; Li Jing-Bo

    2014-01-01

    Phase separation in Sr doped BiMnO 3 (Bi 1−x Sr x MnO 3 , x = 0.4−0.6) was studied by means of temperature-dependent high-resolution neutron powder diffraction (NPD), high resolution X-ray powder diffraction (XRD), and physical property measurements. All the experiments indicate that a phase separation occurs at the temperature coinciding with the reported charge ordering temperature (T CO ) in the literature. Below the reported T CO , both the phases resulting from the phase separation crystallize in the orthorhombically distorted perovskite structure with space group Imma. At lower temperature, these two phases order in the CE-type antiferromagnetic structure and the A-type antiferromagnetic structure, respectively. However, a scrutiny of the high-resolution NPD and XRD data at different temperatures and the electron diffraction experiment at 300 K did not manifest any evidence of a long-range charge ordering (CO) in our investigated samples, suggesting that the anomalies of physical properties such as magnetization, electric transport, and lattice parameters at the T CO might be caused by the phase separation rather than by a CO transition

  12. Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15ferroelectric materials

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-12-01

    Full Text Available The Er3+ doped Bi5TiNbWO15 ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of Bi3TiNbO9 and then Bi2WO6. Based on fluorescence intensity ratio (FIR technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (Bi3TiNbO9 in bismuth layered-structure and emission from the different part (Bi3TiNbO9 and Bi2WO6 in bismuth layered-structure for the first time.

  13. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  14. Andreev Reflection Spectroscopy of Nb-doped Bi2Se3 Topological Insulator

    Science.gov (United States)

    Kurter, C.; Finck, A. D. K.; Qiu, Y.; Huemiller, E.; Weis, A.; Atkinson, J.; Medvedeva, J.; Hor, Y. S.; van Harlingen, D. J.

    2015-03-01

    Doped topological insulators are speculated to realize p-wave superconductivity with unusual low energy quasiparticles, such as surface Andreev bound states. We present point contact spectroscopy of thin exfoliated flakes of Nb-doped Bi2Se3 where superconductivity persists up to ~ 1 K, compared to 3.2 K in bulk crystals. The critical magnetic field is strongly anisotropic, consistent with quasi-2D behavior. Andreev reflection measurements of devices with low resistance contacts result in prominent BTK-like behavior with an enhanced conductance plateau at low bias. For high resistance contacts, we observe a split zero bias conductance anomaly and additional features at the superconducting gap. Our results suggest that this material is a promising platform for studying topological superconductivity. We acknowledge support from Microsoft Project Q.

  15. Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization

    International Nuclear Information System (INIS)

    Bisrat, Y; Luo, Z P; Davis, D; Lagoudas, D

    2007-01-01

    A mechanical pressure injection technique has been used to fabricate uniform bismuth (Bi) nanowires in the pores of an anodic aluminum oxide (AAO) template. The AAO template was prepared from general purity aluminum by a two-step anodization followed by heat treatment to achieve highly ordered nanochannels. The nanowires were then fabricated by an injection technique whereby the molten Bi was injected into the AAO template using a hydraulic pressure method. The Bi nanowires prepared by this method were found to be dense and continuous with uniform diameter throughout the length. Electron diffraction experiments using the transmission electron microscope on cross-sectional and free-standing longitudinal Bi nanowires showed that the majority of the individual nanowires were single crystalline, with preferred orientation of growth along the [011] zone axis of the pseudo-cubic structure. The work presented here provides an inexpensive and effective way of fabricating highly ordered single-crystalline Bi nanowires, with uniform size distributions

  16. Structural phase transition and magnetic properties of Er-doped BiFeO3 nanoparticles

    International Nuclear Information System (INIS)

    Li, Y T; Zhang, H G; Dong, X G; Li, Q; Mao, W W; Dong, C L; Ren, S L; Li, X A; Wei, S Q

    2013-01-01

    The structural phase transition and local structural distortion of Er-doped BiFeO 3 nanoparticles have been discussed in order to understand the variation of magnetic properties in this system. The X-ray diffraction patterns and X-ray absorption fine structure of these samples demonstrate that there is structural phase transition and no obvious local structural distortion with the increasing of doping concentration. Unfortunately, no ferromagnetic properties have been observed even at a lower temperature. And the X-ray absorption spectra of Fe 2p core level of these samples are totally same, especially the energy positions do not shift which means the consistent valence states of Fe ions.

  17. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  18. Incorporating isolated molybdenum (Mo) atoms into Bilayer Epitaxial Graphene on 4H-SiC(0001)

    Science.gov (United States)

    Huang, Han; Wan, Wen; Li, Hui; Wong, Swee Liang; Lv, Lu; Gao, Yongli; Wee, Andrew T. S.

    2014-03-01

    The atomic structures and electronic properties of isolated Mo atoms in bilayer epitaxial graphene (BLEG) on 4H-SiC(0001) are investigated by low temperature scanning tunneling microscopy (LT-STM). LT-STM results reveal that isolated Mo dopants prefer to substitute C atoms at α-sites, and preferentially locate between the graphene bilayers. First-principles calculations confirm that the embedding of single Mo dopants within BLEG is energetically favorable as compared to monolayer graphene. The calculated bandstructures show that Mo-doped BLEG is n-doped, and each Mo atom introduces a local magnetic moment of 1.81 μB. Our findings demonstrate a simple and stable method to incorporate single transition metal dopants into the graphene lattice to tune its electronic and magnetic properties for possible use in graphene spin devices. NRF-CRP (Singapore) grants R-143-000-360-281and R-144-000-295-281. ``Shenghua Professorship'' startup funding from CSU and the support from the NSF of China (Grant No.11304398).

  19. Luminescence and photo-thermally stimulated defect-creation processes in Bi.sup.3+./sup.-doped single crystals of lead tungstate

    Czech Academy of Sciences Publication Activity Database

    Buryi, Maksym; Boháček, Pavel; Chernenko, K.; Krasnikov, A.; Laguta, Valentyn; Mihóková, Eva; Nikl, Martin; Zazubovich, S.

    2016-01-01

    Roč. 123, č. 5 (2016), 895-910 ISSN 0370-1972 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : defects * EPR * excitons * PbWO 4 :Bi single crystals * photoluminescence * thermoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.674, year: 2016

  20. Investigation of renormalization effects in high temperature cuprate superconductors

    International Nuclear Information System (INIS)

    Zabolotnyy, Volodymyr B.

    2008-01-01

    It has been found that the self-energy of high-T C cuprates indeed exhibits a well pronounced structure, which is currently attributed to coupling of the electrons either to lattice vibrations or to collective magnetic excitations in the system. To clarify this issue, the renormalization effects and the electronic structure of two cuprate families Bi 2 Sr 2 CaCu 2 O 8+δ and YBa 2 Cu 3 O 7-δ were chosen as the main subject for this thesis. With a simple example of an electronic system coupled to a collective mode unusual renormalization features observed in the photoemission spectra are introduced. It is shown that impurity substitution in general leads to suppression of the unusual renormalization. Finally an alternative possibility to obtain a purely superconducting surface of Y-123 via partial substitution of Y atoms with Ca is introduced. It is shown that renormalization in the superconducting Y-123 has similar strong momentum dependence as in the Bi-2212 family. It is also shown that in analogy to Bi-2212 the renormalization appears to have strong dependence on the doping level (no kinks for the overdoped component) and practically vanishes above T C suggesting that coupling to magnetic excitations fits much better than competing scenarios, according to which the unusual renormalization in ARPES spectra is caused by the coupling to single or multiple phononic modes. (orig.)

  1. Novel electrical conductivity properties in Ca-doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Wang, S. Y., E-mail: shouyu.wang@yahoo.com [Tianjin Normal University, College of Physics and Materials Science (China); Liu, W. F., E-mail: wfliu@tju.edu.cn [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Xi, X. J. [Tianjin Normal University, College of Physics and Materials Science (China); Zhang, H. [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Guo, F. [Tianjin Normal University, College of Physics and Materials Science (China); Xu, X. L. [Tianjin University, Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science (China); Li, M.; Liu, L.; Zhang, C.; Li, X.; Yang, J. B. [Tianjin Normal University, College of Physics and Materials Science (China)

    2015-05-15

    The charge defective structure in Bi{sub 1−x}Ca{sub x}FeO{sub 3} (CBFO, x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) nanoparticles (NPs) ranging from 140 to 25 nm as well as their relations to band gap and leakage current behavior are investigated. It is demonstrated that Ca doping effectively narrows the band gap from ∼2.16 to ∼2.02 eV, due to the appearance and accumulation of oxygen vacancy. Subsequently, enhanced electrical conductivity was obtained in these CBFO NPs, which leads to the appearance of a distinct threshold switching behavior in Ca-doped BFO NPs with higher conductivity at room temperature. Possible mechanisms for Ca doping effects on the electric conduction were discussed upon the interplay of NPs’ size effect and mobile charged defects on the basis of reduced particle size and the increased density of oxygen vacancy analyzed through X-ray photoelectron spectrum.

  2. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  3. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  4. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  5. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  6. Effect of indium and antimony doping in SnS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Chaki, Sunil H., E-mail: sunilchaki@yahoo.co.in; Chaudhary, Mahesh D.; Deshpande, M.P.

    2015-03-15

    Highlights: • Single crystals growth of pure SnS, indium doped SnS and antimony doped SnS by direct vapour transport (DVT) technique. • Doping of In and Sb occurred in SnS single crystals by cation replacement. • The replacement mechanism ascertained by EDAX, XRD and substantiated by Raman spectra analysis. • Dopants concentration affects the optical energy bandgap. • Doping influences electrical transport properties. - Abstract: Single crystals of pure SnS, indium (In) doped SnS and antimony (Sb) doped SnS were grown by direct vapour transport (DVT) technique. Two doping concentrations of 5% and 15% each were employed for both In and Sb dopants. Thus in total five samples were studied viz., pure SnS (S1), 5% In doped SnS (S2), 15% In doped SnS (S3), 5% Sb doped SnS (S4) and 15% Sb doped SnS (S5). The grown single crystal samples were characterized by evaluating their surface microstructure, stoichiometric composition, crystal structure, Raman spectroscopy, optical and electrical transport properties using appropriate techniques. The d.c. electrical resistivity and thermoelectric power variations with temperature showed semiconducting and p-type nature of the as-grown single crystal samples. The room temperature Hall Effect measurements further substantiated the semiconducting and p-type nature of the as-grown single crystal samples. The obtained results are deliberated in detail.

  7. Comparison of Sn-doped and nonstoichiometric vertical-Bridgman-grown crystals of the topological insulator Bi2Te2Se

    International Nuclear Information System (INIS)

    Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Xiong, J.; Ong, N. P.; Pletikosic, I.; Weber, A. P.; Fedorov, A. V.; Valla, T.

    2014-01-01

    A comparative study of the properties of topological insulator Bi 2 Te 2 Se (BTS) crystals grown by the vertical Bridgeman method is described. Two defect mechanisms that create acceptor impurities to compensate for the native n-type carriers are compared: Bi excess, and light Sn doping. Both methods yield low carrier concentrations and an n-p crossover over the length of the grown crystal boules, but lower carrier concentrations and higher resistivities are obtained for the Sn-doped crystals, which reach carrier concentrations as low as 8 × 10 14  cm −3 . Further, the temperature dependent resistivities for the Sn-doped crystals display strongly activated behavior at high temperatures, with a characteristic energy of half the bulk band gap. The (001) cleaved Sn-doped BTS crystals display high quality Shubnikov de Haas (SdH) quantum oscillations due to the topological surface state electrons. Angle resolved photoelectron spectroscopy (ARPES) characterization shows that the Fermi energy (E F ) for the Sn-doped crystals falls cleanly in the surface states with no interference from the bulk bands, which the Dirac point for the surface states lies approximately 60 meV below the top of the bulk valence band maximum, and allows for a determination of the bulk and surface state carrier concentrations as a function of Energy near E F . Electronic structure calculations that compare Bi excess and Sn dopants in BTS demonstrate that Sn acts as a special impurity, with a localized impurity band that acts as a charge buffer occurring inside the bulk band gap. We propose that the special resonant level character of Sn in BTS gives rise to the exceptionally low carrier concentrations and activated resistivities observed

  8. Study of the variation of the E-I curves in the superconducting to normal transition of Bi-2212 textured ceramics by Pb addition

    Directory of Open Access Journals (Sweden)

    Sotelo, A.

    2006-06-01

    Full Text Available Vitreous cylinders with compositions Bi2-xPbxSr2CaCu2Oy, (x = 0, 0.2, 0.4 and 0.6 were prepared and used as precursors to fabricate textured bars through a laser floating zone melting method (LFZ. The resulting textured cylindrical bars were annealed, followed by their electrical characterization. The microstructure was determined and correlated with the electrical measured properties. The influence of Pb doping on the sharpness of the superconducting to normal transition on the E-I curves has been determined. The sharpest transitions have been obtained for samples doped with 0.4Pb.

    Se han preparado precursores de tipo vítreo en forma de cilindro con composiciones nominales Bi2-xPbxSr2CaCu2Oy, con x = 0, 0.2, 0.4 y 0.6. Estos cilindros se han utilizado como precursores para fabricar barras texturadas por medio de una técnica de fusión zonal inducida por láser (LFZ. Estas barras texturadas se recocieron a diferentes temperaturas y se caracterizaron eléctricamente. Además, se examinó su microestructura para correlacionarla con las propiedades eléctricas medidas. La variación de la transición del estado superconductor al normal se ha relacionado con el dopaje con Pb a través de las curvas E-I. Las mejores transiciones se han obtenido para muestras dopadas con 0.4 Pb.

  9. Fluctuation Induced Conductivity Studies of 100 MeV Oxygen Ion Irradiated Pb Doped Bi-2223 Superconductors

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kumar, Ravi; Kanjilal, D.; Ramasamy, S.

    2000-01-01

    We report on 100 MeV oxygen ion irradiation in Pb doped Bi-2223 superconductors. Resistivity measurements reveal that both grains as well as the grain boundaries are affected by such irradiation. An analysis of the excess conductivity has been made within the framework of Aslamazov-Larkin (AL) and

  10. Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry.

    Science.gov (United States)

    Du, Peng; Yu, Jae Su

    2018-03-23

    The authors describe an ethylene glycol assisted precipitation method for synthesis of Er(III)/Yb(III)-doped BiF 3 nanoparticles (NPs) at room temperature. Under 980-nm light irradiation, the NPs emit upconversion (UC) emission of Er(III) ions as a result of a two-photon absorption process. The temperature-dependent green emissions (peaking at 525 and 545 nm) are used to establish an unambiguous relationship between the ratio of fluorescence intensities and temperature. The NPs have a maximum sensitivity of 6.5 × 10 -3  K -1 at 619 K and can be applied over the 291-691 K temperature range. The results indicate that these NPs are a promising candidate for optical thermometry. Graphical abstract Schematic of the room-temperature preparation of Er(III)/Yb(III)-doped BiF 3 nanoparticles with strongly temperature-dependent upconversion emission.

  11. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mehedi, E-mail: mhrizvi@gce.buet.ac.bd; Hakim, M. A.; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul [Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Basith, M. A., E-mail: mabasith@phy.buet.ac.bd [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Hossain, Md. Sarowar [S. N. Bose National Centre for Basic Sciences, Salt Lake City, Kolkata, West Bengal 700098 (India); Ahmmad, Bashir [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-03-15

    Improvement in magnetic and electrical properties of multiferroic BiFeO{sub 3} in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe{sup 2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO{sub 3} nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi{sub 0.9}Ba{sub 0.1}FeO{sub 3} nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO{sub 3}.

  12. Effect of Nd substitution for Ca on crystal structure, optical and magnetic properties of multiferroic Bi0.9Ca0.1FeO3

    International Nuclear Information System (INIS)

    Quan, Chuye; Ma, Yuhui; Han, Yumin; Tang, Xingxing; Lu, Mengjia; Mao, Weiwei; Zhang, Jian; Yang, Jianping; Li, Xing’ao

    2015-01-01

    Highlights: • Crystal structure of doped samples transform to two phase coexistence. • The crystal size decreased to ∼50 nm after doping. • Ultraviolet absorption peak demonstrates apparent blue shift for doped sample. • The ratio of Fe 2+ increased by merging Nd. • Ca, Nd co-doped can promote the ferromagnetism obviously. - Abstract: Pure and co-doped BiFeO 3 (Ca, Nd) nanoparticles with diameter in the range of 50–250 nm were synthesized through a sol–gel method. X-ray diffraction (XRD) and Raman results show that Bi-site co-doped with Ca, Nd could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). An apparent blue shift can be observed in the co-doped samples along with a decrease of the direct optical band gap. Moreover, the leakage current was decreased due to the introduction of nonvolatile Ca and Nd at Bi 3+ site. Analysis of MPMS-VSM magnetic hysteresis data reveals a further enhancement in magnetism in the Nd doped Bi 0.9 Ca 0.1 FeO 3, which is further explained by XPS characterization

  13. Experimental and first principles investigation of the multiferroics BiFeO3 and Bi0.9Ca0.1FeO3: Structure, electronic, optical and magnetic properties

    International Nuclear Information System (INIS)

    Gao, Ning; Quan, Chuye; Ma, Yuhui; Han, Yumin; Wu, Zhenli; Mao, Weiwei

    2016-01-01

    We propose first-principles methods to study the structure, electronic, optical and magnetic properties of BiFeO 3 (BFO) and Bi 0.9 Ca 0.1 FeO 3 (BCFO). The morphology, optical band gap as well as magnetic hysteresis also have been investigated using experimental methods. X-ray diffraction data shows that Bi-site doping with Ca could result in a transition of crystal structure (from single phase rhombohedral (R3c) to two phase coexistence). Changing of Fermi level and decreasing of band gap indicating that the Ca-doped BFO exhibit a typical half-metallic nature. The optical absorption properties are related to the electronic structure and play the key role in determining their band gaps, also we have analyzed the inter-band contribution to the theory of optical properties such as absorption spectra, dielectric constant, energy-loss spectrum, absorption coefficient, optical reflectivity, and refractive index of BCFO. Enhancement of magnetic properties after doping is proved by both experimental and calculated result, which can be explained by size effect and structural distortion.

  14. Effect of lead content on nonstoichiometric Bi2-xPbySr2Ca2Cu3Oδ ceramic superconductors

    International Nuclear Information System (INIS)

    Diaz-Valdes, E.; Pacheco-Malagon, G.; Contreras-Puente, G.; Mejia-Garcia, C.; Andrade-Garay, G.; Ortiz-Lopez, J.; Conde-Gallardo, A.; Falcony, C.

    1993-01-01

    Ceramic superconducting samples of the type Bi 2-x Pb y Sr 2 Ca 2 Cu 3 O δ were processed with a nonstoichiometric content of Bi and Pb (x≠y) with respect to the 2223 phase in this system. The resistance vs. temperature characteristics and the presence of the 2223 and 2212 phases as a function of the sample preparation conditions and the lead content (Bi/Pb ratio) are reported. The growth of unwanted phases such as PbO was observed for those samples with a high content of Pb (y=0.9) and Bi (x=0.1). (orig.)

  15. Isothermal and dynamic oxidation behaviour of Mo-W doped carbon-based coating

    Science.gov (United States)

    Mandal, Paranjayee; Ehiasarian, Arutiun P.; Hovsepian, Papken Eh.

    2015-10-01

    The oxidation behaviour of Mo-W doped carbon-based coating (Mo-W-C) is investigated in elevated temperature (400-1000 °C). Strong metallurgical bond between Mo-W-C coating and substrate prevents any sort of delamination during heat-treatment. Isothermal oxidation tests show initial growth of metal oxides at 500 °C, however graphitic nature of the as-deposited coating is preserved. The oxidation progresses with further rise in temperature and the substrate is eventually exposed at 700 °C. The performance of Mo-W-C coating is compared with a state-of-the-art DLC(Cr/Cr-WC/W:C-H/a:C-H) coating, which shows preliminary oxidation at 400 °C and local delamination of the coating at 500 °C leading to substrate exposure. The graphitisation starts at 400 °C and the diamond-like structure is completely converted into the graphite-like structure at 500 °C. Dynamic oxidation behaviour of both the coatings is investigated using Thermo-gravimetric analysis carried out with a slow heating rate of 1 °C/min from ambient temperature to 1000 °C. Mo-W-C coating resists oxidation up to ˜800 °C whereas delamination of DLC(Cr/Cr-WC/W:C-H/a:C-H) coating is observed beyond ˜380 °C. In summary, Mo-W-C coating provides improved oxidation resistance at elevated temperature compared to DLC(Cr/Cr-WC/W:C-H/a:C-H) coating.

  16. Enhanced Photoluminescence of Sm3+/Bi3+ Co-Doped La2O3 Nanophosphors by Combustion Synthesis

    Science.gov (United States)

    Zhang, Ying; Wu, Muying; Zhang, W. F.

    Nanosized La2O3:Sm3+ and La2O3:Sm3+, Bi3+ phosphor powders were prepared via combustion synthesis. The structures and morphology were examined using powder X-ray diffraction and transmission electron microscope, respectively. The photoluminescence spectra were investigated at different doping concentrations of Sm3+ and Bi3+ ions. The results indicate that La2O3:Sm3+ (Bi3+) exhibited good crystallinity and spherical-like particles. All phosphors give emission bands centered at 564, 608 and 650 nm corresponding to 4G5/2→6HJ (J=5/2, 7/2 and 9/2) transitions of Sm3+ ions, respectively. Interestingly, the emission intensity of Sm3+ ions is significantly enhanced with the addition of Bi3+ ions to La2O3:Sm3+ and the maximum occurs at a Bi3+ concentration of 0.8 mol%. The La2O3:Sm3+, Bi3+ phosphor with highly enhanced luminescence is very encouraging for applications in display and tunable solid lasers.

  17. Nonvolatile ferroelectric memory based on PbTiO3 gated single-layer MoS2 field-effect transistor

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2018-01-01

    We fabricated ferroelectric non-volatile random access memory (FeRAM) based on a field effect transistor (FET) consisting of a monolayer MoS2 channel and a ferroelectric PbTiO3 (PTO) thin film of gate insulator. An epitaxial PTO thin film was deposited on a Nb-doped SrTiO3 (Nb:STO) substrate via pulsed laser deposition. A monolayer MoS2 sheet was exfoliated from a bulk crystal and transferred to the surface of the PTO/Nb:STO. Structural and surface properties of the PTO thin film were characterized by X-ray diffraction and atomic force microscopy, respectively. Raman spectroscopy analysis was performed to identify the single-layer MoS2 sheet on the PTO/Nb:STO. We obtained mobility value (327 cm2/V·s) of the MoS2 channel at room temperature. The MoS2-PTO FeRAM FET showed a wide memory window with 17 kΩ of resistance variation which was attributed to high remnant polarization of the epitaxially grown PTO thin film. According to the fatigue resistance test for the FeRAM FET, however, the resistance states gradually varied during the switching cycles of 109. [Figure not available: see fulltext.

  18. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  19. Systematics in Bi-2201, -2212 and -2223 superconductors studied by positron annihilation radiation measurements

    International Nuclear Information System (INIS)

    Sanyal, D.; Banerjee, D.; De, Udayan

    1998-01-01

    Positron lifetimes in Bi 2 Sr 2 Ca (n-1) Cu n O (2n+4+δ) or Bi-22(n-1)n superconducting compounds for n=1, 2 and 3 have been determined from positron annihilation lifetime (PAL) spectroscopy of associated γ-radiations. Bulk lifetime is shown to increase systematically with increase of n, the number of CuO 2 -layers in the Bi-22(n-1)n compound. Positron annihilation probing of structural units of this perovskite-like crystal system has thus been demonstrated

  20. Influence of Ga-doping on the thermoelectric properties of Bi(2−xGaxTe2.7Se0.3 alloy

    Directory of Open Access Journals (Sweden)

    Xingkai Duan

    2015-02-01

    Full Text Available Bi(2−xGaxTe2.7Se0.3 (x=0, 0.04, 0.08, 0.12 alloys were fabricated by vacuum melting and hot pressing technique. The structure of the samples was evaluated by means of X-ray diffraction. The peak shift toward higher angle can be observed by Ga-doping. The effects of Ga substitution for Bi on the electrical and thermal transport properties were investigated in the temperature range of 300–500 K. The power factor values of the Ga-doped samples are obviously improved in the temperature range of 300–440 K. Among all the samples, the Bi(2−xGaxTe2.7Se0.3 (x=0.04 sample showed the lowest thermal conductivity near room temperature and the maximum ZT value reached 0.82 at 400 K.