WorldWideScience

Sample records for mo note required

  1. MoMoSat -- Mobile Service for Monitoring with GeoNotes via Satellite

    Energy Technology Data Exchange (ETDEWEB)

    Niemeyer, Irmgard [Forschungszentrum Juelich (Germany). Programme Group Systems Analysis and Technology Evaluation (STE); Jonas, Karl [Univ. of Applied Science Bonn-Rhein-Sieg, Sankt Augustin (Germany). FhG FOKUS CC SATCom; Horz, Alexander [horz informatik, Sankt Augustin (Germany); Wettschereck, Dietrich; Schmidt, Dirk [DIALOGIS GmbH, Bonn (Germany)

    2003-05-01

    The MoMoSat service will enable mobile end-users to view, manage, annotate, and communicate mapbased information in the field. The handled information exists of a huge volume of raster (satellite or aerial images) and vector data (i.e. street networks, cadastral maps or points of interest), as well as text-specific geo-referenced textual notes (the so-called 'GeoNotes') and real-time voice. A secure real-time communication between mobile units and the primary data store is an essential task of the MoMoSat service. The basic information is stored in the primary database that is accessible through a virtual private network (VPN) and cached at a server at a base station in order to ensure data availability. The base station may be installed in a car or another mobile vehicle. The two servers will periodically communicate with each other via secure satellite communication in order to check for updates. The base station supplies the relevant GIS data for the mobile units (people or even robots in the field at remote solutions). The communication between the mobile units is based on a peer-to-peer wireless local area network (WLAN) architecture. The mobile units are equipped with mobile computers (i.e. laptop, tablet PC or PDA) combined with a satellite-based positioning system (GPS) that enables them to request the proper geographic data sets from yhe base station's map server. An interactive mapping software shows the actual location on the map and allows the user to navigate (zoom, pan) through the high-resolution map display. The user can switch 'on' or 'off' several thematic layers (i.e. street network or points of interest) on the map. The software also supports collaborative aspects of MoMoSat by offering tools for the management of the GeoNotes that can be visualized by categories. The user can extend the existing GeoNotes with his personnel comments or create new GeoNotes by defining categories, recipients and the level of

  2. Developing INDCs: a guidance note

    DEFF Research Database (Denmark)

    Bakkegaard, Riyong Kim; Bee, Skylar; Naswa, Prakriti

    needs and low capability, would need means of implementation (MoI) for adaptation and to take ambitious mitigation actions. Developing countries would include MoI needs in the context of mitigation and adaptation. The note explains briefly how countries can identify their unconditional contributions....

  3. Effect of Mo Content on Microstructure and Property of Low-Carbon Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Haijiang Hu

    2016-07-01

    Full Text Available In this work, three low-carbon bainitic steels, with different Mo contents, were designed to investigate the effects of Mo addition on microstructure and mechanical properties. Two-step cooling, i.e., initial accelerated cooling and subsequent slow cooling, was used to obtain the desired bainite microstructure. The results show that the product of strength and elongation first increases and then shows no significant change with increasing Mo. Compared with Mo-free steel, bainite in the Mo-containing steel tends to have a lath-like morphology due to a decrease in the bainitic transformation temperature. More martensite transformation occurs with the increasing Mo, resulting in greater hardness of the steel. Both the strength and elongation of the steel can be enhanced by Mo addition; however, the elongation may decrease with a further increase in Mo. From a practical viewpoint, the content of Mo could be ~0.14 wt. % for the composition design of low-carbon bainitic steels in the present work. To be noted, an optimal scheme may need to consider other situations such as the role of sheet thickness, toughness behavior and so on, which could require changes in the chemistry. Nevertheless, these results provide a reference for the composition design and processing method of low-carbon bainitic steels.

  4. Photo-transmutation of {sup 100}Mo to {sup 99}Mo with Laser-Compton Scattering Gamma-ray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiyoung; Rehman, Haseeb ur; Kim, Yonghee [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents a photonuclear transmutation method using laser Compton scattering (LCS) gamma-ray beam. Potential production rate (reaction rate) of 99Mo using the photonuclear (γ,n) reaction is evaluated. Rigorous optimization of the LCS spectrum has also been performed to maximize production of the 99Mo. Cyclotron proton accelerators are used worldwide to produce many short-living medical isotopes. However, few are capable of producing Mo-99 and none are suitable for producing more than a small fraction of the required amounts. More than 90% of the world's demand of 99Mo is sourced from five nuclear reactors. Two of these reactors have already been decommissioned and the rest are more than 45 years old. Relatively short half-life of the parent 99Mo requires continuous re-supply to meet the requirements of medical industry. Therefore, there is an urgent need to produce the 99Mo and 99mTc isotopes by alternative ways. One such alternative is giant dipole resonance (GDR) based photonuclear transmutation of 100Mo to 99Mo. For 99Mo production with the LCS photons using GDR-based (γ,n) reaction, the gamma-ray energy should be around 15 MeV. This study indicates that optimization of LCS spectrum by varying the electron and laser energies within practical limits can enhance the transmutation of Mo-100 to M-99 quite significantly. It has been found that irradiation time should be rather short, e.g., less than 6 hours, to maximize the weekly production of Mo-99 in the GDR-based Mo-99 production facility using the LCS photons. The analysis shows that production of 99Mo using a high-performance LCS facility offers a potentially-promising alternative for the production of 99mTc.

  5. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Kaili Zhong

    2016-08-01

    Full Text Available Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus.

  6. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    Science.gov (United States)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  7. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  8. Successful labeling of 99mTc-MDP using 99mTc separated from 99Mo produced by 100Mo(n,2n)99Mo

    International Nuclear Information System (INIS)

    Nagai, Yasuki; Hatsukawa, Yuichi; Kin, Tadahiro; Hashimoto, Kazuyuki; Motoishi, Shoji; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Sato, Yuichi; Sato, Norihito; Ohta, Akio; Yamabayashi, Hisamichi; Tanase, Masakazu; Fujisaki, Saburo; Kawauchi, Yukimasa; Teranaka, Tomoyuki; Takeuchi, Nobuhiro; Igarashi, Takashi

    2011-01-01

    We have for the first time succeeded in separating 99m Tc from a MoO 3 sample irradiated with accelerator neutrons free from any radioactive impurities and in formulating 99m Tc-methylene diphosphonate ( 99 mTc-MDP). 99 Mo, the mother nuclide of 99m Tc, was produced by the 100 Mo(n,2n) 99 Mo reaction using about 14 MeV neutrons provided by the 3 H(d,n) 4 He reaction at the Fusion Neutronics Source of Japan Atomic Energy Agency. The 99m Tc was separated from 99 Mo by sublimation and its radionuclide purity was confirmed to be higher than 99.99% by γ-spectroscopy. The labeling efficiency of 99m Tc-MDP was shown to be higher than 99% by thin-layer chromatography. These values exceed the United States Pharmacopeia requirements for a fission product, 99 Mo. Consequently, a 99m Tc radiopharmaceutical preparation formed by using the mentioned 99 Mo can be a promising substitute for the fission product 99 Mo, which is currently produced using a highly enriched uranium target in aging research reactors. A longstanding problem to ensure a reliable and constant supply of 99 Mo in Japan can be partially mitigated. (author)

  9. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  10. 99Mo production using MoO3 pellets obtained by mechanical compression and heat treatment

    International Nuclear Information System (INIS)

    Rojas, Jorge; Mendoza, Pablo; Lopez, Alcides

    2014-01-01

    This paper shows the results of the MoO 3 pellets fabrication by mechanical compression and the heat treatment method (MCHT) in order to optimize the production of 99 Mo in the RACSO Nuclear Center. The effects of polyvinyl alcohol (PVA) as binder are assessed by heat treatment of pellets in air atmosphere, evaluating the elimination process with increasing temperature and solubility in 5N NaOH. The results show that the pellets fabrication technique is suitable because fulfills the required technical specifications, allows to irradiate 50 % more of 98 Mo mass and facilitate a safer radiological handling of the irradiated MoO 3 . (authors).

  11. Diffusion barrier performances of thin Mo, Mo-N and Mo/Mo-N films between Cu and Si

    International Nuclear Information System (INIS)

    Song Shuangxi; Liu Yuzhang; Mao Dali; Ling Huiqin; Li Ming

    2005-01-01

    In this work, we have studied the diffusion barrier performances of Mo, Mo-N and Mo/Mo-N metallization layers deposited by sputtering Mo in Ar/N 2 atmospheres, respectively. Samples were subsequently annealed at different temperatures ranging from 400 to 800 deg C in vacuum condition. The film properties and their suitability as diffusion barriers and protective coatings in silicon devices were characterized using four-point probe measurement, X-ray diffractometry, scanning electron microscopy, Auger electron spectroscopy and transmission electron microscopy analyses. Experimental results revealed that the Mo (20 nm)/Mo-N (30 nm) layer was able to prevent the diffusion reaction between Cu and Si substrate after being annealed at 600 deg C for 30 min. The adhesion between layers and the content of N atoms are the key parameters to improve the properties of Mo-based barrier materials. The Mo layer interposed between Cu and Mo-N diluted the high nitrogen concentration of the barrier and so enhanced the barrier performances

  12. Comparative study on catalytic behavior of polynuclear Mg-Mo-complex and FeMo-co-factor of nitrogenase in reactions with C2H2, N2 and CO

    International Nuclear Information System (INIS)

    Bardina, N.V.; Bazhenova, T.A.; Petrova, G.N.; Shilova, A.K.; Shilov, A.E.

    2006-01-01

    Catalytic reduction kinetics of C 2 H 2 in the presence of the Mg-Mo-cluster {[Mg 2 Mo 8 O 22 (MeO) 6 (MeOH) 4 ] 2- [Mg(MeOH) 6 ] 2+ }·6MeOH 1 is studied. Several interdependent coordinating centers are active in reference to substrates and inhibitors in the polynuclear Mg-Mo-complex, as in the reduced by europium amalgam (μ 6 -N)MoFe 7 S 9 ·homocitrate (FeMoco, 2). Comparison of regularities in reduction mechanism of C 2 H 2 , N 2 and CO with the participation of synthetic polynuclear complex 1 and natural cluster 2 is conducted. Regularities of the studied reactions in the systems involving natural catalytic cluster FeMoco and the synthetic Mg-Mo-complex modelling of its effect are noted to be similar. The main variations the systems show as regards to the reaction with molecular nitrogen [ru

  13. Microstructure and properties of MoSi2-MoB and MoSi2-Mo5Si3 molybdenum silicides

    International Nuclear Information System (INIS)

    Schneibel, J.H.; Sekhar, J.A.

    2003-01-01

    MoSi 2 -based intermetallics containing different volume fractions of MoB or Mo 5 Si 3 were fabricated by hot-pressing MoSi 2 , MoB, and Mo 5 Si 3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo 5 Si 3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 deg. C, except when the Mo 5 Si 3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi 2 containing materials as consisting mostly of SiO 2 . The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 deg. C when compared with pure MoSi 2 . However, in contrast with the pure MoSi 2 material, oxidation at 1400 deg. C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo 5 Si 3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo 5 Si 3 additions to MoSi 2 tended to be detrimental for the mechanical and oxidative properties

  14. 99Mo production by 100Mo(n,2n)99Mo using accelerator neutrons

    International Nuclear Information System (INIS)

    Sato, Nozomi; Kawabata, Masako; Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Kin, Tadahiro; Konno, Chikara; Ochiai, Kentaro; Takakura, Kosuke; Minato, Futoshi; Iwamoto, Osamu; Iwamoto, Nobuyuki; Hashimoto, Shintaro

    2013-01-01

    We proposed a new route to produce a medical radioisotope 99 Mo by the 100 Mo(n,2n) 99 Mo reaction using accelerator neutrons. A high-quality 99 Mo with a minimum level of radioactive waste can be obtained by the proposed reaction. The decay product of 99 Mo, 99m Tc, is separated from 99 Mo by the sublimation method. The proposed route could bring a major breakthrough in the solution of ensuring a constant and reliable supply of 99 Mo. (author)

  15. Thermal and x-ray studies on Tl2U(MoO4)3 and Tl4U(MoO4)4

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Kulkarni, N.K.; Singh Mudher, K.D.

    2006-01-01

    In the quaternary Tl-U(IV)-Mo-O system, two new compounds namely Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were prepared and characterized by powder X-ray diffraction and thermal methods. These compounds were prepared by solid state reactions of Tl 2 MoO 4 , UMoO 5 and MoO 3 in the required stoichiometric ratio at 500 deg C in evacuated sealed quartz ampoule. The XRD data of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 were indexed on orthorhombic cell. TG curves of Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 did not show any weight change up to 700 deg C in an inert atmosphere. During heating in an inert atmosphere, Tl 2 U(MoO 4 ) 3 and Tl 4 U(MoO 4 ) 4 showed endothermic Dta peaks due to melting of the compounds at 519 and 565 deg C, respectively. (author)

  16. On-stack two-dimensional conversion of MoS2 into MoO3

    Science.gov (United States)

    Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin

    2017-03-01

    Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.

  17. Preparation of MoB and MoB-MoSi2 composites by combustion synthesis in SHS mode

    International Nuclear Information System (INIS)

    Yeh, C.L.; Hsu, W.S.

    2007-01-01

    Combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) was carried out in the Mo-B and Mo-B-Si systems for the preparation of molybdenum boride MoB and the composite of MoB-MoSi 2 from elemental powder compacts. Under a preheating temperature above 150 deg. C , the reaction of Mo with boron in the sample compact of Mo:B = 1:1 is characterized by a planar combustion front propagating in a self-sustaining and steady manner. As the preheating temperature or sample compaction density increased, combustion temperature was found to increase and the propagation rate of the combustion front was correspondingly enhanced. Moreover, the XRD analysis provides evidence of yielding nearly single-phase α-MoB from the Mo-B sample at equiatomic stoichiometry. In the synthesis of MoB-MoSi 2 composites, the starting stoichiometry of the Mo-B-Si powder compact was varied so as to produce the final composites containing 20-80 mol% MoB. It was also found the increase of flame-front velocity and combustion temperature with increasing MoB content formed in the composite. The composition analysis by XRD shows excellent conversion from the Mo-B-Si powder compact to the MoB-MoSi 2 composite through the SHS reaction; that is, in addition to a small amount of Mo 5 Si 3 , the as-synthesized composite is composed entirely of MoB and MoSi 2

  18. Plasma-assisted synthesis of MoS2

    Science.gov (United States)

    Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.

    2018-03-01

    There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.

  19. Measurement of target and double-spin asymmetries for the e<mo>→>p<mo>→eπ+(n)> reaction in the nucleon resonance region at low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.; Adhikari, K. P.; Bosted, P.; Deur, A.; Drozdov, V.; El Fassi, L.; Kang, Hyekoo; Kovacs, K.; Kuhn, S.; Long, E.; Phillips, S. K.; Ripani, M.; Slifer, K.; Smith, L. C.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chen, J. -P.; Chetry, T.; Choi, Seonho; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Dodge, G. E.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovach, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Pisano, S.; Pogorelko, O.; Price, J. W.; Puckett, A. J. R.; Raue, B. A.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zonta, I.

    2016-10-01

    We report measurements of target- and double-spin asymmetries for the exclusive channel e<mo>→>p<mo>→eπ+(n)> in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH3 target and a longitudinally polarized electron beam with energies 1.1, 1.3, 2.0, 2.3, and 3.0 GeV. The new results are consistent with previous CLAS publications but are extended to a low Q2 range from 0.0065 to 0.35 (GeV/c)2. The Q2 access was made possible by a custom-built Cherenkov detector that allowed the detection of electrons for scattering angles as low as 6 degrees. These results are compared with the unitary isobar models JANR and MAID, the partial-wave analysis prediction from SAID, and the dynamic model DMT. In many kinematic regions our results, in particular results on the target asymmetry, help to constrain the polarization-dependent components of these models.

  20. Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN

    International Nuclear Information System (INIS)

    Ihara, H.; Kimura, Y.; Senzaki, K.; Kezuka, H.; Hirabayashi, M.

    1985-01-01

    The electronic structures of B1 MoN, fcc Mo 2 N, and hexagonal MoN were observed by photoelectron spectroscopic measurement. The B1-MoN phase has been predicted to be a high-T/sub c/ superconductor because of a large density of states at Fermi level. The observed electronic structure of the stoichiometric B1-MoN phase is different from that of the real B1-MoN type. The nitrogen excess B1-MoN/sub x/ (x> or =1.3) phase, however, shows the B1-type electronic structure. This is explained by the occurrence of a nitrogen vacancy in the apparent stoichiometric B1 phase and the occupation of the nitrogen vacancy in the nitrogen-excess B1 phase. This property is related to the previously reported low T/sub c/ of the B1-MoN crystals

  1. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production

  2. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2000-05-01

    Fission Mo-99 is the only parent nuclide of Tc-99m, an extremely useful tool for mdeical diagnosis, with an estimated usage of greater than 80% of nuclear medicine applicatons. HEU and LEU targets to optimize in HANARO irradiation condition suggested and designed for domestic production of fission Mo-99. The optimum process conditions are established in each unit process to meet quality requirements of fission Mo-99 products, and the results of performance test in combined process show Mo separation and purification yield of the above 97%. The concept of Tc generator production process is established, and the result of performance test show Tc production yield of 98.4% in Tc generator procuction process. The drafts is prepared for cooperation of technical cooperation and business investment with foreign country. Evaluation on economic feasibility is accompanied for fission Mo-99 and Tc-99m generator production.

  3. Benchmark experiment for the cross section of the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions

    Science.gov (United States)

    Takács, S.; Ditrói, F.; Aikawa, M.; Haba, H.; Otuka, N.

    2016-05-01

    As nuclear medicine community has shown an increasing interest in accelerator produced 99mTc radionuclide, the possible alternative direct production routes for producing 99mTc were investigated intensively. One of these accelerator production routes is based on the 100Mo(p,2n)99mTc reaction. The cross section of this nuclear reaction was studied by several laboratories earlier but the available data-sets are not in good agreement. For large scale accelerator production of 99mTc based on the 100Mo(p,2n)99mTc reaction, a well-defined excitation function is required to optimise the production process effectively. One of our recent publications pointed out that most of the available experimental excitation functions for the 100Mo(p,2n)99mTc reaction have the same general shape while their amplitudes are different. To confirm the proper amplitude of the excitation function, results of three independent experiments were presented (Takács et al., 2015). In this work we present results of a thick target count rate measurement of the Eγ = 140.5 keV gamma-line from molybdenum irradiated by Ep = 17.9 MeV proton beam, as an integral benchmark experiment, to prove the cross section data reported for the 100Mo(p,2n)99mTc and 100Mo(p,pn)99Mo reactions in Takács et al. (2015).

  4. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo

    Science.gov (United States)

    Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki

    2017-11-01

    We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.

  5. Mass spectrometric determination of stability of gaseous BaMoO2, Ba2MoO4, Ba2MoO5, Ba2Mo2O8 molecules

    International Nuclear Information System (INIS)

    Kudin, L.S.; Balduchchi, Dzh.; Dzhil'i, G.; Gvido, M.

    1982-01-01

    During the mass spectrometric investigation of BaCrO 4 evaporation Cr + , Ba + , BaO + main ions are recorded as well as BaMoO 4 + , BaMoO 3 + , BaMoO 2 + , BaMoO + , BaMoO 4 + , Ba 2 MoO 5 + , BaMo 2 O 8 + ions - the products of ionization of three-component (Ba, Mo, M) molecules, forming as a result of substance chemical interaction with the material of an effusion cell (Mo). Heats of formation of BaMoO 2 , Ba 2 MoO 4 , Ba 2 MoO 5 and Ba 2 Mo 2 O 8 molecules which constituted - 577+-70, -1343+-115, -1464+-70, -2393+-90 k J/mol respectively are determined on the base of the analysis of curves of ionisation efficiency and of reaction heats Ba 2 MoO 5 =BaO+BaMoO 4 , ΔH 0 0 =322+-60 kJ/mol Ba 2 Mo 2 O 8 =2BaMoO 4 , ΔH 0 0 =351+-80 kJ/mol calculated with the use of third low of thermodynamics [ru

  6. 99Mo Yield Using Large Sample Mass of MoO3 for Sustainable Production of 99Mo

    Science.gov (United States)

    Tsukada, Kazuaki; Nagai, Yasuki; Hashimoto, Kazuyuki; Kawabata, Masako; Minato, Futoshi; Saeki, Hideya; Motoishi, Shoji; Itoh, Masatoshi

    2018-04-01

    A neutron source from the C(d,n) reaction has the unique capability of producing medical radioisotopes such as 99Mo with a minimum level of radioactive waste. Precise data on the neutron flux are crucial to determine the best conditions for obtaining the maximum yield of 99Mo. The measured yield of 99Mo produced by the 100Mo(n,2n)99Mo reaction from a large sample mass of MoO3 agrees well with the numerical result estimated with the latest neutron data, which are a factor of two larger than the other existing data. This result establishes an important finding for the domestic production of 99Mo: approximately 50% of the demand for 99Mo in Japan could be met using a 100 g 100MoO3 sample mass with a single accelerator of 40 MeV, 2 mA deuteron beams.

  7. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  8. Dipole strength distribution below the giant dipole resonance in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Rusev, G.Y.

    2006-07-01

    Investigations of the dipole-strength distributions in {sup 92}Mo, {sup 98}Mo and {sup 100}Mo were carried out by means of the method of nuclear resonance fluorescence. The low-lying excitations in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been studied in photon-scattering experiments at an electron energy of 6 MeV at the ELBE accelerator and at electron energies from 3.2 to 3.8 MeV at the Dynamitron accelerator. Five levels were observed in {sup 92}Mo. Five levels in {sup 98}Mo and 14 in {sup 100}Mo were identified for the first time in the energy range from 2 to 4 MeV. Dipole-strength distributions up to the neutron-separation energies in the nuclides {sup 92}Mo, {sup 98}Mo and {sup 100}Mo have been investigated at the ELBE accelerator. Because of the possible observation of transitions in the neighboring nuclei produced via ({gamma},n) reaction, additional measurements at electron energies of 8.4 and 7.8 MeV, below the neutron-separation energy, were performed on {sup 98}Mo and {sup 100}Mo, respectively. The number of transitions assigned to {sup 92}Mo, {sup 98}Mo and {sup 100}Mo is 340, 485 and 499, respectively, the main part of them being dipole transitions. Statistical properties of the observed transitions are obtained. The continuum contains the ground-state transitions as well as the branching transitions to the low-lying levels and the subsequent deexcitations of these levels. (orig.)

  9. Using molybdenum depleted in 95Mo in UMo fuel

    International Nuclear Information System (INIS)

    Bakker, K.; Wijtsma, F.; Bos, A.; Mol, C.; Rakhorst, H.; Bretscher, M.; Hofman, G.; Snelgrove, J.

    2002-01-01

    In recent years significant interest was gained in UMo fuel to be used in Material Test Reactors. This interest was induced by the fact that UMo fuel is mechanically stable, even at high uranium concentrations and high U-burnup. These properties are required in order to use Low Enriched Uranium (LEU) and still be able to achieve high flux and burnup values and, thus, to facilitate the conversion from High Enriched Uranium (HEU) to LEU. Neutronics computations have shown that, although the Mo concentration in UMo fuel is not very high (about 5 - 10w%), the neutron absorption cross sections of natural Mo are sufficiently high to have a considerable negative impact on the reactivity of this UMo fuel. In the present research the neutron absorption cross sections of natural Mo are discussed and the option to reduce the cross section of molybdenum by depleting the Mo in 95 Mo is described. Finally the economic consequences of using Mo depleted in 95 Mo are briefly discussed

  10. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  11. Impact of Reduced Graphene Oxide on MoS2 Grown by Sulfurization of Sputtered MoO3 and Mo Precursor Films (Postprint)

    Science.gov (United States)

    2016-05-26

    1,2 intercalation assisted exfoliation,8–11 physical vapor deposition (PVD),12,13 and a wet chemistry approach involving thermal decomposition of a... annealed MoO3, MoS2 films S1 (MoS2 using Mo precursor), S2 (MoS2 using MoO3 precursor), S1r (MoS2 using Mo pre- cursor and rGO), and S2r (MoS2 using...MoO3 precursor and rGO). The annealed MoO3 (a) shows Mo(IV) peaks which are indicative of MoO2, and Mo(VI) peaks that occur when MoO3 is present. Both

  12. Phase formation in Na2MoO4 - MgMoO4 - Cr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Kotova, I.Yu.; Kozhevnikova, N.M.

    1998-01-01

    Interaction within Na 2 MoO 4 - MgMoO 4 - Cr 2 (MoO 4 ) 3 ternary system is studied by X ray phase and DTA methods. State diagram of NaCr(MoO 4 ) 2 - MgMoO 4 section is plotted. Production of ternary molybdates of Na 1-x Mg 1-x Cr 1+x (MoO 4 ) 3 , where 0 ≤ x ≤ 0.3, and NaMg 3 Cr(MoO 4 ) 5 composition is ascertained [ru

  13. Penetration Peg Formation and Invasive Hyphae Development Require Stage-Specific Activation of MoGTI1 in Magnaporthe oryzae.

    Science.gov (United States)

    Li, Yang; Wang, Guanghui; Xu, Jin-Rong; Jiang, Cong

    2016-01-01

    The hemibiotrophic pathogen Magnaporthe oryzae causes one of the most destructive diseases in cultivated rice. Complex infection-related morphogenesis and production of various effectors are known to be important for successful colonization and disease development. In this study, we characterized the activation of the MoGTI1 transcription factor and its role in infection-related morphogenesis and effector gene expression. The Mogti1 mutant was nonpathogenic, although it was normal in appressorium formation and turgor generation. Close examination showed that Mogti1 was defective in penetration and growth of normal invasive hyphae. Deletion of MoGTI1 affected the expression of the majority of effector genes. The expression of MoGti1 appeared to be controlled by the Mps1 but not Pmk1 mitogen-activated protein kinase (MAPK), and the mps1 and Mogti1 mutants had similar phenotypes in plant infection and cell wall integrity defects. However, lack of MAPK phosphorylation sites and dispensability of the putative MAPK docking site suggested that MoGti1 is not a direct target of Mps1. Site-specific mutagenesis analyses showed that the putative protein kinase A phosphorylation site was not essential for localization of MoGti1 to the nucleus but important for its normal function. Although the cyclin-dependent kinase (CDK) phosphorylation site of MoGti1 is dispensable during vegetative growth and appressorium formation, the S77A mutation affected penetration and invasive growth. Localization of MoGti1(S77A)-green fluorescent protein to the nucleus in late stages of appressorium formation and during invasive growth was not observed, suggesting a stage-specific CDK phosphorylation of MoGti1. Overall, our data indicate that Mps1 may indirectly regulate the expression of MoGti1 in maintaining cell wall integrity, conidiation, and plant infection. MoGti1 is likely a stage-specific target of CDK and plays a crucial role in effector gene expression and morphogenesis related to the

  14. DigiMemo: Facilitating the Note Taking Process

    Science.gov (United States)

    Kurt, Serhat

    2009-01-01

    Everyone takes notes daily for various reasons. Note taking is very popular in school settings and generally recognized as an effective learning strategy. Further, note taking is a complex process because it requires understanding, selection of information and writing. Some new technological tools may facilitate the note taking process. Among such…

  15. Towards a uniform and large-scale deposition of MoS2 nanosheets via sulfurization of ultra-thin Mo-based solid films.

    Science.gov (United States)

    Vangelista, Silvia; Cinquanta, Eugenio; Martella, Christian; Alia, Mario; Longo, Massimo; Lamperti, Alessio; Mantovan, Roberto; Basset, Francesco Basso; Pezzoli, Fabio; Molle, Alessandro

    2016-04-29

    Large-scale integration of MoS2 in electronic devices requires the development of reliable and cost-effective deposition processes, leading to uniform MoS2 layers on a wafer scale. Here we report on the detailed study of the heterogeneous vapor-solid reaction between a pre-deposited molybdenum solid film and sulfur vapor, thus resulting in a controlled growth of MoS2 films onto SiO2/Si substrates with a tunable thickness and cm(2)-scale uniformity. Based on Raman spectroscopy and photoluminescence, we show that the degree of crystallinity in the MoS2 layers is dictated by the deposition temperature and thickness. In particular, the MoS2 structural disorder observed at low temperature (<750 °C) and low thickness (two layers) evolves to a more ordered crystalline structure at high temperature (1000 °C) and high thickness (four layers). From an atomic force microscopy investigation prior to and after sulfurization, this parametrical dependence is associated with the inherent granularity of the MoS2 nanosheet that is inherited by the pristine morphology of the pre-deposited Mo film. This work paves the way to a closer control of the synthesis of wafer-scale and atomically thin MoS2, potentially extendable to other transition metal dichalcogenides and hence targeting massive and high-volume production for electronic device manufacturing.

  16. An alternative route for the preparation of the medical isotope 99Mo from the 238U(γ, f) and 100Mo(γ, n) reactions

    International Nuclear Information System (INIS)

    Naik, H.; Goswami, A.; Suryanarayana, S.V.; Jagadeesan, K.C.; Thakare, S.V.; Joshi, P.V.; Nimje, V.T.; Mittal, K.C.; Venugopal, V.; Kailas, S.

    2013-01-01

    The radionuclide 99 Mo, which has a half-life of 65.94 h was produced from 238 U(γ, f) and 100 Mo(γ, n) reactions using a 10 MeV electron linac at EBC, Kharghar Navi-Mumbai, India. This has been investigated since the daughter product 99m Tc is very important from a medical point of view and can be produced in a generator from the parent 99 Mo. The activity of 99 Mo was analyzed by a γ-ray spectrometric technique using a HPGe detector. From the detected γ-rays activity of 140.5 and 739.8 keV, the amount of 99 Mo produced was determined. For comparison, the amount of 99 Mo from 238 U(γ, f) and 100 Mo(γ, n) reactions was also estimated using the experimental photon flux from 197 Au(γ, n) 196 Au reaction. The amount of 99 Mo from the detected γ-lines is in agreement with the estimated value for 238 U(γ, f) and 100 Mo(γ, n) reactions. The production of 99 Mo activity from 238 U(γ, f) and 100 Mo(γ, n) reactions is a relevant and novel approach, which provides alternative routes to 235,238 U(n, f) and 98 Mo(n, γ) reactions, circumventing the need for a reactor. The viability and practicality of the 99 Mo production from the 238 U(γ, f) and 100 Mo(γ, n) reactions alternative to 235,238 U(n, f) and 98 Mo(n, γ) reactions has been emphasize. An estimate has been also arrived based on the experimental data of present work to fulfill the requirement of DOE. (author)

  17. Feasibility study on mass production of (n,γ)99Mo

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Tanimoto, Masataka; Kimura, Akihiro; Hori, Naohiko; Izumo, Hironobu; Tsuchiya, Kunihiko

    2011-01-01

    The world is currently suffering from a severe shortage of 99 Mo and various efforts have been given for its availability. The (n,γ) method is one of candidates for the alternative supply of 99 Mo. The only but critical shortage of (n,γ) 99 Mo is its extremely low specific activity, which gives inconveniency in the extraction of 99m Tc and is consequently converted to additional cost. Potential technologies which make the (n,γ) 99 Mo competitive by reducing the additional cost are already available. It is expected that verification of such technologies is much easy and cost effective compared to any other options known for the alternative 99 Mo production. Because Japan and Korea import all 99 Mo from long distance, the cost benefit of local (n,γ) 99 Mo production in these countries is especially large. If five high flux reactors in China, Japan and Korea are utilized for the cross backup supply of (n,γ) 99 Mo, stable availability of 99 Mo in the region can be secured. Therefore, it is necessary to evaluate its feasibility on (n,γ) 99 Mo production in the Asia region. In this report, we studied feasibility of the mass (n,γ) 99 Mo production from viewpoints of global and regional status of 99 Mo demand and supply, competitiveness with other production methods, requirements and flow of the 99 Mo, production capability, cost, convenience in usage, and alternative technologies to overcome its shortage. (author)

  18. Food and Drug Administration process validation activities to support 99Mo production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    McDonald, M.J.; Bourcier, S.C.; Talley, D.G.

    1997-01-01

    Prior to 1989 99 Mo was produced in the US by a single supplier, Cintichem Inc., Tuxedo, NY. Because of problems associated with operating its facility, in 1989 Cintichem elected to decommission the facility rather than incur the costs for repair. The demise of the 99 Mo capability at Cintichem left the US totally reliant upon a single foreign source, Nordion International, located in Ottawa Canada. In 1992 the DOE purchased the Cintichem 99 Mo Production Process and Drug Master File (DMF). In 1994 the DOE funded Sandia National Laboratories (SNL) to produce 99 Mo. Although Cintichem produced 99 Mo and 99m Tc generators for many years, there was no requirement for process validation which is now required by the Food and Drug Administration (FDA). In addition to the validation requirement, the requirements for current Good manufacturing Practices were codified into law. The purpose of this paper is to describe the process validation being conducted at SNL for the qualification of SNL as a supplier of 99 Mo to US pharmaceutical companies

  19. Characterisation of electrodeposited and heat-treated Ni-Mo-P coatings

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Regis L.; Casciano, Paulo N.S.; Correia, Adriana N.; Lima-Neto, Pedro de, E-mail: pln@ufc.br [Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2012-07-01

    The electrodeposition, hardness and corrosion resistance properties of Ni-Mo-P coatings were investigated. Characterisations of the electrodeposited coatings were carried out using scanning electron microscopy, X-ray diffraction and energy dispersive X-ray analysis techniques. Corrosion tests were performed at room temperature in 10-1 mol dm-3 NaCl solutions and by potentiodynamic linear polarisation. Amorphous Ni-Mo-P coatings were successfully obtained by electrodeposition using direct current. The coating composition showed to be dependent on the bath composition, current density and bath temperature. Both P and Mo contents contribute for the hardness properties of the Ni-Mo-P coatings and the absence of cracks is a requirement to produce electrodeposited Ni-Mo-P coatings with good hardness properties. The hardness values increase with heat-treatment temperature due to the precipitation of Ni, Ni{sub 3}P and NiMo phases during the heat treatment. The corrosion resistance of the electrodeposited Ni-Mo-P amorphous coatings increases with P content in the layer. Among the electrodeposited Ni-Mo-P amorphous coatings, Ni{sub 78}Mo{sub 10}P{sub 12} presented the best hardness and corrosion-resistance properties. The results showed that the addition of P is beneficial for the hardness and corrosion resistance properties of the Ni-Mo-based coatings. (author)

  20. Irradiation behaviour of UO2/Mo porous cermets for thermionic converters

    International Nuclear Information System (INIS)

    Stora, J.P.; Kauffmann, Y.

    1975-01-01

    Two types of UO 2 Mo porous cernets have been fabricated and irradiated in a Cythere irradiation device. The first cermet is constituted by little bits of dense fuel in which the two constituants are finely dispersed. The whole open porosity is located between the granules. This type of cermet is called breche (33.4vol%UO 2 , 51vol%Mo, 14.8vol%porosity). At the end of the irradiation the burn up was 19000MWd/t(U) and neither swelling of the cermet nor deformation of the can were noted. On the contrary, a shrinkage of the emitter was observed attributed to a fuel densification under irradiation. The second type of cermet is called macrogranule (36vol%UO 2 , 49vol%Mo 15vol%porosity). UO 2 granules of 0.07cm mean diameter are dispersed in the molybdenum matrix. The porosity is regularly distributed all around the UO 2 kernels. The post irradiation metrology shows that the emitter is fairly stable. Only a slight ovalisation of about 0.5% was noted, but the granules of UO 2 were redistributed inside the molybdenum matrix, overlapping the metallic cavity by a condensation-evaporation process. The matrix has crept into the central void and consequently the volume has grown and the whole porosity has increased from about 15% to about 23%. This creeping is due to the fission gas pressure in the molybdenum cavities after 3000 hours of irradiation. In conclusion two types of cermets have shown good behaviour under irradiation and should allow lifetimes of several thousand hours of operation for thermionic fuel elements [fr

  1. Impact of reduced graphene oxide on MoS{sub 2} grown by sulfurization of sputtered MoO{sub 3} and Mo precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Pacley, Shanee, E-mail: shanee.pacley@us.af.mil; Brausch, Jacob; Beck-Millerton, Emory [U.S. Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base, Wright Patterson, Ohio 45433-7707 (United States); Hu, Jianjun; Jespersen, Michael [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Hilton, Al [Wyle Laboratories, 4200 Colonel Glenn Hwy, Beavercreek, Ohio 45431 (United States); Waite, Adam [University Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432 (United States); Voevodin, Andrey A. [Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203 (United States)

    2016-07-15

    Monolayer molybdenum disulfide (MoS{sub 2}), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS{sub 2} processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO{sub 3}, and MoCl{sub 5} have been used to form a vapor reaction with sulfur, resulting in thin films of MoS{sub 2}. Currently, MoO{sub 3} ribbons and powder, and MoCl{sub 5} powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS{sub 2} film growth. In this paper, the authors compare the structural properties of MoS{sub 2} grown by sulfurization of pulse vapor deposited MoO{sub 3} and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS{sub 2} structure. Reports show that rGO increases MoS{sub 2} grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS{sub 2} when rGO was used during sulfurization of both sputtered Mo and MoO{sub 3} precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS{sub 2} films produced from Mo when compared to the films produced from MoO{sub 3}. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS{sub 2} films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used.

  2. Nanoparticles of superconducting γ-Mo2N and δ-MoN

    International Nuclear Information System (INIS)

    Gomathi, A.; Sundaresan, A.; Rao, C.N.R.

    2007-01-01

    We have been able to prepare nanoparticles (∼4 nm diameter) of cubic γ-Mo 2 N by a simple procedure involving the reaction of MoCl 5 with urea at 873 K. The nanoparticles show a superconducting transition around 6.5 K. The γ-Mo 2 N nanoparticles are readily transformed to nanoparticles of δ-MoN with a slightly larger diameter on heating in a NH 3 atmosphere at 573 K. Phase-pure δ-MoN obtained by this means shows a superconducting transition around 5 K. - Graphical abstract: TEM image of the γ-Mo 2 N particles with the inset showing the resistivity of the sample as a function of temperature

  3. Microwave effects on NiMoS and CoMoS single-sheet catalysts.

    Science.gov (United States)

    Borges, I; Silva, Alexander M; Modesto-Costa, Lucas

    2018-05-04

    Single-sheet nanoclusters of MoS 2 , NiMoS or CoMoS are widely used in hydrodesulfurization (HDS) catalysis in the petroleum industry. In HDS reactions under microwave irradiation, experiments indirectly pointed out that for pristine MoS 2 reaction rates are accelerated because hot spots are generated on the catalyst bed. In this work, we investigated NiMoS and CoMoS isolated single-sheet substituted catalysts before and after thiophene adsorption focusing on quantifying the effect of microwave irradiation. For that purpose, density functional theory (DFT) molecular charge densities of each system were decomposed according to the distributed multipole analysis (DMA) of Stone. Site dipole values of each system were directly associated with a larger or smaller interaction with the microwave field according to a proposed general approach. We showed that microwave enhancement of HDS reaction rates can occur more efficiently in the CoMoS and NiMoS promoted clusters compared to pristine MoS 2 in the following order: CoMoS > NiMoS > MoS 2 . The atomic origin of the catalyst hot spots induced by microwaves was clearly established in the promoted clusters.

  4. Electronic structure of structural open derivatives of the [Mo6X14]2- cluster: [Mo5Cl13]2- and [Mo4I11]2-

    International Nuclear Information System (INIS)

    Miessner, H.; Korol'kov, D.V.

    1983-01-01

    The electronic structure of structural open derivatives of the [Mo 6 X 14 ] 2 - -cluster [Mo 5 Cl 13 ] 2 - and [Mo 4 I 11 ] 2 - has been studied by the EHMO method. In [Mo 5 Cl 13 ] 2 - 9 occupied MO's with dominant Mo4d character are responsible for the formation of the 8 metal-metal bonds. In [Mo 4 I 11 ] 2 - the stronger covalent character of the Mo-I bonds affects the localization and the energy of molecular orbitals and also the charge distribution. The metal-metal bonds are formed by 8 MO's containing considerable participation of halogen AO's contrary to the chloride cluster. There is no bonding between the Mo atoms at the wing tips of the Mo 4 butterfly and the reason for decreasing the dihedral angle between the Mo 3 planes in [Mo 4 I 11 ] 2 - compared with the octahedral angle is apparently the stabilization of the whole system (Mo-Mo and Mo-I bonds). The unpaired electron occupies in both clusters a slightly antibonding (with regard to the Mo-Mo bonds) orbital. (author)

  5. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  6. Visible light responsive Cu2MoS4 nanosheets incorporated reduced graphene oxide for efficient degradation of organic pollutant

    Science.gov (United States)

    Rameshbabu, R.; Vinoth, R.; Navaneethan, M.; Harish, S.; Hayakawa, Y.; Neppolian, B.

    2017-10-01

    Visible light active copper molybdenum sulfide (Cu2MoS4) nanosheets were successfully anchored on reduced graphene oxide (rGO) using facile hydrothermal method. During the hydrothermal reaction, reduction of graphene oxide into rGO and the formation of Cu2MoS4 nanosheets were successfully obtained. The charge transfer interaction between the rGO sheets and Cu2MoS4 nanosheets extended the absorption to visible region in comparison with bare Cu2MoS4 nanosheets i.e without rGO sheets. Furthermore, the notable photoluminescence quenching observed for Cu2MoS4/rGO nanocomposite revealed the effective role of rGO towards the significant inhibition of electron-hole pair recombination. The photocatalytic efficiencies of bare Cu2MoS4 and Cu2MoS4/rGO nanocomposite was evaluated for the degradation of methyl orange dye under visible irradiation (λ > 420 nm). A maximum photodegradation efficiency of 99% was achieved for Cu2MoS4/rGO nanocomposite, while only 64% photodegradation was noted for bare Cu2MoS4. The enhanced optical absorption in visible region, high surface area, and low charge carrier recombination in the presence of rGO sheets were the main reasons for the enhancement in photodegardation of MO dye. In addition, the resultant Cu2MoS4/rGO nanocomposite was found to be reusable for five successive cycles without significant loss in its photocatalytic performance.

  7. Phase relations in the M2MoO4 - Ag2MoO4 - Hf(MoO4)2 (M=Li, Na) systems

    International Nuclear Information System (INIS)

    Bazarova, Zh.G.; Bazarov, B.G.; Balsanova, L.V.

    2002-01-01

    The M 2 MoO 4 - Ag 2 MoO 4 - Hf(MoO 4 ) 2 (M=Li, Na) systems were studied by X-ray diffraction and differential thermal analyses in the subsolidus area (450 - 500 Deg C) for the first time. The formation of the binary compound with the variable composition Li 4-x Hf 1+0.2x (MoO 4 ) 4 (0 ≤ x ≤ 0.6) in the Li 2 MoO 4 - Hf(MoO 4 ) 2 system and the ternary molybdates Li 4 Ag 2 Hf(MoO 4 ) 5 (S 1 ) and Na 2 Ag 2 Hf(MoO 4 ) 4 (S 2 ) was established and the thermal characteristics of the prepared compounds were examined. The new binary molybdate Ag 2 Hf(MoO 4 ) 3 was prepared by the reaction between Ag 2 MoO 4 and Hf(MoO 4 ) 2 [ru

  8. Phase formation in the Li2MoO4–K2MoO4–In2(MoO4)3 system and crystal structures of new compounds K3InMo4O15 and LiK2In(MoO4)3

    International Nuclear Information System (INIS)

    Khal’baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2012-01-01

    XRD study of solid-phase interaction in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was performed. The boundary K 2 MoO 4 –In 2 (MoO 4 ) 3 system is an non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system where a new polymolybdate K 3 InMo 4 O 15 isotypic to K 3 FeMo 4 O 15 was found. In the structure (a=33.2905(8), b=5.8610(1), c=15.8967(4) Å, β=90.725(1)°, sp. gr. C2/c, Z=8, R(F)=0.0407), InO 6 octahedra, Mo 2 O 7 diortho groups and MoO 4 tetrahedra form infinite ribbons {[In(MoO 4 ) 2 (Mo 2 O 7 )] 3− } ∞ along the b-axis. Between the chains, 8- to 10-coordinate potassium cations are located. A subsolidus phase diagram of the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system was constructed and a novel triple molybdate LiK 2 In(MoO 4 ) 3 was revealed. Its crystal structure (a=7.0087(2), b=9.2269(3), c=10.1289(3) Å, β=107.401(1)°, sp. gr. P2 1 , Z=2, R(F)=0.0280) contains an open framework of vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids with nine- and seven-coordinate potassium ions in the framework channels. - Graphical abstract: Exploring the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system showed its partial non-quasibinarity and revealed new compounds K 3 InMo 4 O 15 (isotypic to K 3 FeMo 4 O 15 ) and LiK 2 In(MoO 4 ) 3 which were structurally studied. An open framework of the latter is formed by vertex-shared MoO 4 tetrahedra, InO 6 octahedra and LiO 5 tetragonal pyramids. Highlights: ► Subsolidus phase relations in the Li 2 MoO 4 –K 2 MoO 4 –In 2 (MoO 4 ) 3 system were explored. ► The K 2 MoO 4 –In 2 (MoO 4 ) 3 system is a non-quasibinary join of the K 2 O–In 2 O 3 –MoO 3 system. ► New compounds K 3 InMo 4 O 15 and LiK 2 In(MoO 4 ) 3 were obtained and structurally studied. ► K 3 InMo 4 O 15 is isotypic to K 3 FeMo 4 O 15 and carries bands of InO 6 , MoO 4 and Mo 2 O 7 units. ► An open framework of LiK 2 In(MoO 4 ) 3 is formed by polyhedra MoO 4 , InO 6 and LiO 5 .

  9. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization

    DEFF Research Database (Denmark)

    Bodin, Anders; Christoffersen, Ann-Louise N.; Elkjær, Christian F.

    2018-01-01

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts...... for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo75Ni25 metal target in a reactive atmosphere of Ar and H2S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered...

  10. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    International Nuclear Information System (INIS)

    Chen, Shilin; Dai, Yunjie; Zhang, Hongmei; Zhao, Dewei

    2016-01-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO 3 )/LiF/MoO 3 /Ag/MoO 3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO 3 /LiF/MoO 3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO 3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO 3 /LiF/MoO 3 /Ag/MoO 3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO 3 /LiF/MoO 3 /Ag/MoO 3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs. (paper)

  11. Structural instability and ground state of the U_2Mo compound

    International Nuclear Information System (INIS)

    Losada, E.L.; Garcés, J.E.

    2015-01-01

    This work reports on the structural instability at T = 0 °K of the U_2Mo compound in the C11_b structure under the distortion related to the C_6_6 elastic constant. The electronic properties of U_2Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11_b structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D_6 distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U_2Mo due to the D_6 distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U_2Mo compound is not the assumed C11_b structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U_2Mo compound.

  12. Thermal expansion studies on Th(MoO4)2, Na2Th(MoO4)3 and Na4Th(MoO4)4

    International Nuclear Information System (INIS)

    Keskar, Meera; Krishnan, K.; Dahale, N.D.

    2008-01-01

    Thermal expansion behavior of Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 was studied under vacuum in the temperature range of 298-1123 K by high temperature X-ray diffractometer. Th(MoO 4 ) 2 was synthesized by reacting ThO 2 with 2 mol of MoO 3 , at 1073 K in air and Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were prepared by reacting Th(MoO 4 ) 2 with 1 and 2 mol of Na 2 MoO 4 , respectively at 873 K in air. The XRD data of Th(MoO 4 ) 2 was indexed on orthorhombic system where as XRD data of Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were indexed on tetragonal system. The lattice parameters and cell volume of all the three compounds, fit into polynomial expression with respect to temperature, showed positive thermal expansion (PTE) up to 1123 K. The average value of thermal expansion coefficients for Th(MoO 4 ) 2 , Na 2 Th(MoO 4 ) 3 and Na 4 Th(MoO 4 ) 4 were determined from the high temperature data

  13. Ternary system of Na2MoO4-Cs2MoO4-MoO3

    International Nuclear Information System (INIS)

    Zueva, V.P.; Shabanova, A.N.; Drobasheva, T.I.

    1982-01-01

    Using the methods of thermal analysis interaction of components in ternary system Na 2 MoO 4 -Cs 2 MoO 4 -MoO 3 has been studied. Crystallization surface consists of nine fields belonging to initial components and compounds of lateral sides. Triangulation of the system is carried out and the character of nonvariant points is clarified, the temperature of 360 deg C corresponds to low-melting eutectics

  14. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  15. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    Directory of Open Access Journals (Sweden)

    M.K. MEYER

    2014-04-01

    Full Text Available High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  16. Development of annular targets for 99Mo production

    International Nuclear Information System (INIS)

    Conner, C.; Lewandowski, E.F.; Snelgrove, J.L.; Liberatore, M.W.; Walker, D.E.; Wiencek, T.C.; McGann, D.J.; Hofman, G.L.; Vandegrift, G.F.

    1999-01-01

    During 1999, significant progress was made in the development of a low-enriched uranium (LEU) target for production of 99 Mo. Successful conversion requires an inexpensive, reliable target. To keep the target geometry the same when changing from high-enriched uranium (HEU) to LEU targets, a denser form of uranium is required in order to increase the amount of uranium per target by a factor of approximately five. Targets containing LEU in the form of a metal foil are being developed for producing 99 Mo from the fissioning of 235 U. A new annular target was developed this year, and seven targets were irradiated in the Indonesian RSG-GAS reactor. Results of development of this annular target and its performance during irradiation are described. (author)

  17. P-MoS2 / n-CdS thin film heterojunction

    International Nuclear Information System (INIS)

    El Maliki, H.; Gourmelon, E.; Bernede, J.C.; Pouzet, J.; Mebarki, M.; Khelil, A.; Zoaeter, M.

    1999-01-01

    short circuit in the structure. The W/MoS 2 contact being ohmic, the W/MoS 2 /CdS/ in structures have been studied. the J-V characteristics follow the thermionic equation: I=I o exp nkT / qV [1] with I o =A exp kT / -qφ b [1 ' ], K: Boltzmann constant, q: electron charge, φ b : barriers height at the heterojunction, n: ideality factor. (n=3 at room temperature) It should be noted that n increases when T decreases. Therefore even if the n value is quite large, the variation of n with T chows that the tunnel effect is probably not dominant in the function. Therefore for the first time we have put in evidence that rectifying contacts can be obtained with MoS 2 , which is very promising for the future

  18. Microstructure and tribological properties of NiMo/Mo2Ni3Si intermetallic 'in-situ' composites

    International Nuclear Information System (INIS)

    Gui Yongliang; Song Chunyan; Yang Li; Qin Xiaoling

    2011-01-01

    Research highlights: → Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites was fabricated successfully with Mo-Ni-Si powder blends as the starting materials. Microstructure of the NiMo/Mo 2 Ni 3 Si composites consists of Mo 2 Ni 3 Si primary dendrites, binary intermetallic phase NiMo and small amount of Ni/NiMo eutectics structure. The NiMo/Mo 2 Ni 3 Si composites exhibited high hardness and outstanding tribological properties under room-temperature dry-sliding wear test conditions which were attributed to the covalent-dominant strong atomic bonds and excellent combination of strength and ductility and toughness. - Abstract: Wear resistant NiMo/Mo 2 Ni 3 Si intermetallic 'in-situ' composites with a microstructure of ternary metal silicide Mo 2 Ni 3 Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated using molybdenum, nickel and silicon elemental powders. Friction and wear properties of NiMo/Mo 2 Ni 3 Si composites were evaluated under different contact load at room-temperature dry-sliding wear test conditions. Microstructure, worn surface morphologies and subsurface microstructure were characterized by OM, XRD, SEM and EDS. Results indicate that NiMo/Mo 2 Ni 3 Si composites have low fiction coefficient, excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo 2 Ni 3 Si composites are soft abrasion and slightly superficial oxidative wear.

  19. 99mTc gel generators based on zirconium molybdate-99Mo: III: Influence of preparatory conditions of zirconium molybdate-99Mo gel on generator performance

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sarkar, S.K.; Arjun, G.; Ramamoorthy, N.; Nandy, S.K.

    2004-01-01

    The effect of subtle variations on zirconium molybdate- 99 Mo gel preparatory conditions, such as stoichiometry of reactants, pH of gel formation, conditioning of gel granules etc., prior to elution were investigated primarily to arrive at the conditions resulting in high 99m Tc release and minimal 99 Mo breakthrough upon elution with normal saline. Zirconium molybdate- 99 Mo gels were prepared by reacting solutions of Zr and Mo in mole ratios of 0.75-1.5. Both water and normal saline were used for gel disintegration, and the release of 99m Tc and 99 Mo from gel columns into eluates was compared. Sharper elution profile of 99m Tc, but with significantly higher 99 Mo breakthrough (5-8 times), was obtained when water alone was used for disintegration and elution, in comparison to when saline was used. Gels exhibiting optimum characteristics were found to be formed at a pH of 4-5 by reacting [Zr]: [Mo] in the mole ratio of 1.25: 1 and after drying, the product was dispersed into granules by disintegration with normal saline. 99m Tc elution efficiency was found to be ∝ 75% and 99 Mo breakthrough ∝ 0.05%. The elution profile was sharp when a 6 g gel column coupled to a 2 g acidic alumina column (to trap 99 Mo) was eluted with 6-9 ml normal saline. Generators containing upto 23 GBq 99 Mo were prepared, eluted extensively without changing the alumina column and found to provide pertechnetate of good quality, commensurate with hospital radiopharmacy requirements. (orig.)

  20. In-situ fabrication of MoSi2/SiC–Mo2C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo2C barrier layer at high temperature

    International Nuclear Information System (INIS)

    Liu, Jun; Gong, Qianming; Shao, Yang; Zhuang, Daming; Liang, Ji

    2014-01-01

    MoSi 2 /SiC–Mo 2 C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo 2 C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi 2 /SiC layer on the upper part of Mo 2 C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo 2 C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi 2 /SiC composite layer.

  1. Structural instability and ground state of the U{sub 2}Mo compound

    Energy Technology Data Exchange (ETDEWEB)

    Losada, E.L., E-mail: losada@cab.cnea.gov.ar [SIM" 3, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (Argentina); Garcés, J.E. [Gerencia de Investigación y Aplicaciones Nucleares, Comisión Nacional de Energía Atómica (Argentina)

    2015-11-15

    This work reports on the structural instability at T = 0 °K of the U{sub 2}Mo compound in the C11{sub b} structure under the distortion related to the C{sub 66} elastic constant. The electronic properties of U{sub 2}Mo such as density of states (DOS), bands and Fermi surface (FS) are studied to understand the source of the instability. The C11{sub b} structure can be interpreted as formed by parallel linear chains along the z-directions each one composed of successive U–Mo–U blocks. Hybridization due to electronic interactions inside the U–Mo–U blocks is slightly modified under the D{sub 6} distortion. The change in distance between chains modifies the U–U interaction and produces a split of f-states. The distorted structure is stabilized by a decrease in energy of the hybridized states, mainly between d-Mo and f-U states, together with the f-band split. Consequently, an induced Peierls distortion is produced in U{sub 2}Mo due to the D{sub 6} distortion. It is important to note that the results of this work indicate that the structure of the ground state of the U{sub 2}Mo compound is not the assumed C11{sub b} structure. It is suggested for the ground state a structure with hexagonal symmetry (P6 #168), ∼0.1 mRy below the energy of the recently proposed Pmmn structure. - Highlights: • Structural instability of the C11b compound due to the D6 deformation. • Induced Peierls distortion due to the D6 deformation. • Distorted structure is stabilized by hybridization and split of f-Uranium state. • P6 (#168) suggested ground state for the U{sub 2}Mo compound.

  2. MoEDAL expands

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    The MoEDAL collaboration deployed a test array of 18 plastic Nuclear Track Etch Detector (NTD) stacks – covering an area of 1 m2 – in the MoEDAL/VELO cavern at Point 8 of the LHC ring in November 2009. This small array was supplemented by a further 110 stacks this past January. The MoEDAL test array, which now covers an area of 8 m2, will reveal its secrets early in 2013. The full MoEDAL detector will be installed in the next long shutdown of the LHC in 2013.   View of the MoEDAL detectors installed at Point 8 of the LHC ring in January 2011. MoEDAL (Monopole and Exotics Detector At the LHC), the seventh LHC experiment, was approved by the CERN Research Board at the end of 2009. Its goal is to search for very specific exotics such as highly ionising massive stable (or pseudo-stable) particles with conventional electrical charge and magnetic monopoles. “The main LHC experiments are designed to detect conventionally charged particles, with conventional ionisation patte...

  3. Solution chemistry of Mo(III) and Mo(IV): Thermodynamic foundation for modeling localized corrosion

    International Nuclear Information System (INIS)

    Wang Peiming; Wilson, Leslie L.; Wesolowski, David J.; Rosenqvist, Joergen; Anderko, Andrzej

    2010-01-01

    To investigate the behavior of molybdenum dissolution products in systems that approximate localized corrosion environments, solubility of Mo(III) in equilibrium with solid MoO 2 has been determined at 80 deg. C as a function of solution acidity, chloride concentration and partial pressure of hydrogen. The measurements indicate a strong increase in solubility with acidity and chloride concentration and a weak effect of hydrogen partial pressure. The obtained results have been combined with literature data for systems containing Mo(III), Mo(IV), and Mo(VI) in solutions to develop a comprehensive thermodynamic model of aqueous molybdenum chemistry. The model is based on a previously developed framework for simulating the properties of electrolyte systems ranging from infinite dilution to solid saturation or fused salt limit. To reproduce the measurements, the model assumes the presence of a chloride complex of Mo(III) (i.e., MoCl 2+ ) and hydrolyzed species (MoOH 2+ , Mo(OH) 2 + , and Mo(OH) 3 0 ) in addition to the Mo 3+ ion. The model generally reproduces the experimental data within experimental scattering and provides a tool for predicting the phase behavior and speciation in complex, concentrated aqueous solutions. Thus, it provides a foundation for simulating the behavior of molybdenum species in localized corrosion environments.

  4. Problems in clinical practice of domestic supply of 99Mo/99mTc. Current status and action plans on domestic production of 99Mo raw materials for medical use

    International Nuclear Information System (INIS)

    Nakamura, Yoshihide

    2012-01-01

    NRU in Canada and HFR in the Netherlands which had been producing the most important medical isotope, 99 Mo, were shut down in 2009-2010. As the production of more than 95% of global 99 Mo supply were performed in only five research reactors in the world including the two reactors mentioned above, these shutdowns resulted in global supply shortage of 99 Mo. Although the medical isotope crisis were alleviated after the two reactors returning to service, all of these five 99 Mo producing reactors are approximately 50 years old. Because the remaining life time of these reactors is not so long, the construction of new reactors or the development of new technologies to produce bulk 99 Mo, such as the neutron activation of 98 Mo in a reactor or charged particle reaction by accelerator, are proposed for the long-term security of supply of 99 Mo. The methods using the molybdenum target lead to much lower specific activity of 99 Mo compared to the production with fission method. The new chemical processing technologies, such as manufacturing 99m Tc-labeled radiopharmaceuticals from such low specific activity 99 Mo, are required for the development of domestic practical production of 99 Mo. (author)

  5. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A; Verma, G S.P. [Ranchi Coll. (India). Dept. of Chemistry

    1975-12-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber.

  6. Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures

    Science.gov (United States)

    Li, Gen

    2018-05-01

    Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.

  7. Phase formation in the Li2MoO4-Rb2MoO4-Ln2(MoO4)3 systems and the properties of LiRbLn2(MoO4)4

    International Nuclear Information System (INIS)

    Basovich, O.M.; Khajkina, E.G.; Vasil'ev, E.V.; Frolov, A.M.

    1995-01-01

    Phase equilibria within subsolidus range of ternary salt systems Li 2 MoO 4 -Rb 2 MoO 4 -Ln 2 (MoO 4 ) 4 (Ln - Nd, Er) are analyzed. Formation of ternary molybdate LiRbNd 2 (MoO 4 ) 4 is proved along LiNd(MoO 4 ) 2 -RbNd(MoO 4 )-2 cross-section. Phase diagram of this cross-section is plotted. Similar compounds are synthesized for Ln = La-Eu. The parameters of their monoclinic elementary cells are determined. Luminescent properties of LiRbLa 2 (MoO 4 ) 4 -Nd 3+ are studied. 17 refs., 4 figs., 2 tabs

  8. Lecture Notes in Statistics. 3rd Semester

    DEFF Research Database (Denmark)

    The lecture note is prepared to meet the requirements for the 3rd semester course in statistics at the Aarhus School of Business. It focuses on multiple regression models, analysis of variance, and log-linear models.......The lecture note is prepared to meet the requirements for the 3rd semester course in statistics at the Aarhus School of Business. It focuses on multiple regression models, analysis of variance, and log-linear models....

  9. Stacking change in MoS2 bilayers induced by interstitial Mo impurities.

    Science.gov (United States)

    Cortés, Natalia; Rosales, Luis; Orellana, Pedro A; Ayuela, Andrés; González, Jhon W

    2018-02-01

    We use a theoretical approach to reveal the electronic and structural properties of molybdenum impurities between MoS 2 bilayers. We find that interstitial Mo impurities are able to reverse the well-known stability order of the pristine bilayer, because the most stable form of stacking changes from AA' (undoped) into AB' (doped). The occurrence of Mo impurities in different positions shows their split electronic levels in the energy gap, following octahedral and tetrahedral crystal fields. The energy stability is related to the accommodation of Mo impurities compacted in hollow sites between layers. Other less stable configurations for Mo dopants have larger interlayer distances and band gaps than those for the most stable stacking. Our findings suggest possible applications such as exciton trapping in layers around impurities, and the control of bilayer stacking by Mo impurities in the growth process.

  10. High performance Mo adsorbent PZC

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1998-10-01

    We have developed Mo adsorbents for natural Mo(n, {gamma}){sup 99}Mo-{sup 99m}Tc generator. Among them, we called the highest performance adsorbent PZC that could adsorb about 250 mg-Mo/g. In this report, we will show the structure, adsorption mechanism of Mo, and the other useful properties of PZC when you carry out the examination of Mo adsorption and elution of {sup 99m}Tc. (author)

  11. Mo-99 supply issues: Status report and lessons learned

    International Nuclear Information System (INIS)

    Ponsard, B.

    2010-01-01

    The worldwide supply of 99 Mo relies on a limited number of research reactors and processing facilities. Its production is essential for the nuclear medicine as 99m Tc, obtained from 99 Mo/ 99m Tc generators, is used in about 80% of the diagnostic nuclear imaging procedures. These applications represent yearly approximately 30 million examinations worldwide. The short half-life's of 99 Mo (66 hours) and its daughter 99m Tc (6 hours) require a regular supply of 99 Mo/ 99m Tc generators to hospitals or central radiopharmacies. Currently, there are only five nuclear reactors involved in the production of 99 Mo on industrial scale: NRU (Canada), HFR (Netherlands), BR2 (Belgium), OSIRIS (France) and SAFARI (South Africa). They irradiate highly enriched uranium targets for the production of about 95% of the available 99 Mo by four processing facilities: AECL/MDS NORDION (Canada), COVIDIEN (Netherlands), IRE (Belgium) and NTP (South Africa). However, these ageing reactors are subject to unscheduled shutdowns and longer maintenance periods making the 99 Mo supply chain vulnerable and unreliable. Several severe disruptions have been experienced since the fall 2005 due to the occurrence of problems at different stages of the supply chain: reactor outages, release of activity from processing facilities, recall of 99 Mo/ 99m Tc generators by the manufacturers, ... It is not expected that the situation will improve significantly in the near future. Therefore, several workshops have been organized in 2009 by the OECD Nuclear Energy Agency (NEA), the International Atomic Energy Agency (IAEA) and the Association of Imaging Producers and Equipment Suppliers (AIPES) to define measures that should be taken to secure the 99 Mo supply in the short, medium and long term. This paper summarizes the current status of the 99 Mo supply, discusses the ongoing plans for additional 99 Mo production capacity and outlines the issues for a reliable global supply chain. (author)

  12. Application of laser ablation inductivly coupled plasma mass spectrometry for characterization of U-7Mo/Al-55i dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Mook; Park, Jai Il; Youn, Young Sang; Ha, Yeong Keong; Kim, Jong Yun [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-04-15

    This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U–7Mo/Al–5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured {sup 98}Mo/{sup 238}U ratios in fuel particles from spot analysis, and 3.4% RSD for {sup 98}Mo/{sup 238}U ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U–7Mo fuel particles from the Al–5Si matrix. Each mass spectrum peak indicates the presence of U–7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for {sup 98}Mo by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U–Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

  13. Spectrophotometric and potentiometric studies of oxidation of Mo(III) by Mo(VI) in phosphoric acid medium

    International Nuclear Information System (INIS)

    Kumar, Arvind; Verma, G.S.P.

    1975-01-01

    Oxidation of Mo(III) (green) by Mo(VI) in an inert atmosphere and in orthophosphoric acid medium at various acid concentrations is reported. Potentiometric and spectrophotometric data suggest that oxidation of Mo(III) proceeds to Mo(V) through a binuclear species Mo(III) Mo(IV) absorbing at 400 nm. The formation of this species is facilitated at high acid concentrations. It is further found that quantitative conversion of Mo(III) into Mo(V) takes place at fairly high acid concentrations. In high phosphoric acid concentrations, solution of Mo(III) has been found to be oxidized to Mo(VI) by air and hence this can be used as a good oxygen absorber. (author)

  14. Measurement of the Single Top Quark Production Cross Section and <mo stretchy='false'>|mo>Vtb stretchy='false'>|mo> in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hirschbuehl, D.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2014-12-31

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of smo>=>1.96 TeV using a data set corresponding to 7.5 fbmo>->1 of integrated luminosity collected by the Collider Detector at Fermilab. We select events consistent with the single top quark decay process tmo stretchy="false">→mo>Wb stretchy="false">→mo>>νb by requiring the presence of an electron or muon, a large imbalance of transverse momentum indicating the presence of a neutrino, and two or three jets including at least one originating from a bottom quark. An artificial neural network is used to discriminate the signal from backgrounds. We measure a single top quark production cross section of 3.04mo>->0.53mo>+>0.57 pb and set a lower limit on the magnitude of the coupling between the top quark and bottom quark mo stretchy="false">|mo

  15. MoDUO1, a Duo1-like gene, is required for full virulence of the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Peng, Haowen; Feng, Youjun; Zhu, Xiaohui; Lan, Xiuwan; Tang, Mei; Wang, Jinzi; Dong, Haitao; Chen, Baoshan

    2011-12-01

    Duo1, a major component of the Dam1 complex which has been found in two species of yeast (the budding yeast Saccharomyces cerevisae and the fission yeast Schizosaccharomyces pombe), is involved in mitosis-related chromosome segregation, while its relevance to pathogenicity in filamentous fungi remains unclear. This report elucidated this very fact in the case of the rice blast fungus Magnaporthe oryzae. A gene designated MoDUO1 that encodes a Duo1-like homolog (MoDuo1) was discovered in the M. oryzae genome. Two types of MoDUO1 mutants were obtained using genetic approaches of Agrobacterium-mediated gene disruption and homologous recombination. Both disruption and deletion of MoDUO1 can exert profound effects on the formation pattern of conidiophores and conidial morphology, such as abnormal nucleic numbers in conidia and delayed extension of infectious hyphae. Intriguingly, plant infection assays demonstrated that inactivation of MoDUO1 significantly attenuates the virulence in its natural host rice leaves, and functional complementation can restore it. Subcellular localization assays showed that MoDuo1 is mainly distributed in the cytosol of fungal cells. Proteomics-based investigation revealed that the expression of four mitosis-related proteins is shut down in the MoDUO1 mutant, suggesting that MoDuo1 may have a function in mitosis. In light of the fact that Duo1 orthologs are widespread in plant and human fungal pathogens, our finding may represent a common mechanism underlying fungal virulence. To the best of our knowledge, this is the first example of linking a Duo1-like homolog to the pathogenesis of a pathogenic fungus, which might provide clues to additional studies on the role of Dam1 complex in M. oryzae and its interaction with rice.

  16. Spent 99Mo/99mTc generator as an economical source of 99Mo

    International Nuclear Information System (INIS)

    El-Kolaly, M.T.

    1990-01-01

    An improved method for utilization and purification of 99 Mo from spent 90 Mo/ 99m Tc generators has been described. After washing the generator with saline to remove the generated 99m Tc, followed by 2 mL 5 M NaOH containing a few drops of H 2 O 2 , the 99 Mo was quantitatively eluted from the generator with 5 mL 5 M NaOH. The alkaline eluate containing 99 Mo was contaminated with partially dissolved alumina. In the present method, an anion-exchange resin Dowex 1 x 8 column was used for purification of 99 Mo from the contaminating alumina. The resultant 99 Mo was of high purity and contained 3+ /mL 99 Mo solution, as estimated by atomic absorption. (author)

  17. Study of the activation of targets containing Mo for the production of 99Mo by the 98Mo(n,γ)99Mo nuclear reaction and the behaviour of the radionuclidic impurities of the process

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    1998-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MOO 3 and MoZr gel were evaluated, and these represent the two possible ways of preparing the gel of MoZr. A target of metallic Mo was also studied. The radionuclidic purity of 99m Tc eluted from generators prepared in these ways was also measured and compared with the generators prepared with fission 99 Mo. The results showed that, by all the parameters analysed, the best way of preparing the generator of 99 Mo - 99m Tc is the irradiation of MOO 3 and further preparation of the gel and the generators. (author)

  18. A small reactor design for 99Mo production with novel fuel

    International Nuclear Information System (INIS)

    Gary Stange; Michael Corradini

    2015-01-01

    The central goal of this design is to meet U.S. demand for the medical isotope 99 Mo with a water-cooled critical reactor featuring discrete, cladded fuel elements. 99 Mo is produced within the solid fuel that is powering the fission reaction. The fuel is a low-enriched uranyl nitrate hexahydrate crystal, chosen to take advantage of a flexible uranium recovery process. The low melting temperature of the fuel material has required utilizing an annular fuel pin geometry. Preliminary heat transfer calculations and MCNP modeling have demonstrated the capability of such a design to produce the desired quantities of 99 Mo. (author)

  19. Interstitial Mo-Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors.

    Science.gov (United States)

    Kim, Sunkook; Maassen, Jesse; Lee, Jiyoul; Kim, Seung Min; Han, Gyuchull; Kwon, Junyeon; Hong, Seongin; Park, Jozeph; Liu, Na; Park, Yun Chang; Omkaram, Inturu; Rhyee, Jong-Soo; Hong, Young Ki; Yoon, Youngki

    2018-03-01

    Thin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe 2 ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W -1 ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe 2 TFTs is sought. A unique structural characteristic of the APCVD-grown MoSe 2 is observed, in which interstitial Mo atoms exist between basal planes, unlike usual 2H phase TMDs. Density functional theory calculations and photoinduced transfer characteristics reveal that such interstitial Mo atoms form photoreactive electronic states in the bandgap. Models indicate that huge photoamplification is attributed to trapped holes in subgap states, resulting in a significant photovoltaic effect. In this study, the fundamental origin of high responsivity with synthetic MoSe 2 phototransistors is identified, suggesting a novel route to high-performance, multifunctional 2D material devices for future wearable sensor applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Clinical Note Creation, Binning, and Artificial Intelligence

    OpenAIRE

    Deliberato, Rodrigo Oct?vio; Celi, Leo Anthony; Stone, David J

    2017-01-01

    The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artifici...

  1. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  2. Preparation of a gel of zirconium molybdate for use in the generators of 99 Mo - 99m Tc prepared with 99 Mo produced by the 98 Mo(n,γ)99 Mo reaction

    International Nuclear Information System (INIS)

    Osso Junior, Joao A.; Lima, Ana Lucia V.P.; Silva, Nestor C. da; Nieto, Renata C.; Velosa, Adriana C. de

    1998-01-01

    IPEN develops a project concerning the preparation of a gel of Zirconium Molybdate for use in the generators of 99 Mo- 99m Tc . 99m Tc is the most used radioisotope in nuclear medicine diagnosis procedures and nowadays the generators are being prepared with imported 99 Mo, produced by 235 U fission. The production of 99 Mo by the 98 Mo(n, γ) 99 Mo reaction is now possible because of the power upgrade of IPEN's IEA-R1 reactor, from 2 to 5 MW. This work describes the preparation method of Zirconium Molybdate gel that will be used in the 99 Mo- 99m Tc generators. The gel is prepared by the chemical reaction between Mo, in Mo O 3 form, and Zr, in Zr O Cl 2 .8H 2 O form. After the reaction, the gel is filtered, dried and cracked with saline solution. The product is then loaded into glass columns for use as 99m Tc generator. The results showed the good quality of the gel prepared at laboratory level and of the generators evaluated. (author)

  3. Edge termination of MoS2 and CoMoS catalyst particles

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Nørskov, Jens Kehlet; Clausen, B. S.

    2000-01-01

    The edge termination of MoS2 and CoMoS catalyst particles is studied by density functional calculations. We show that for structures without vacancies Mo-terminated edges have the lowest edge energies. Creation of vacancies, which are believed to be active sites in these catalyst systems, leads...

  4. Environmental restoration contractor facility safety plan -- MO-561 100-D site remediation project

    International Nuclear Information System (INIS)

    Donahoe, R.L.

    1996-11-01

    This safety plan is applicable to Environmental Restoration Contractor personnel who are permanently assigned to MO-561 or regularly work in the facility. The MO-561 Facility is located in the 100-D Area at the Hanford Site in Richland, Washington. This plan will: (a) identify hazards potentially to be encountered by occupants of MO-561; (b) provide requirements and safeguards to ensure personnel safety and regulatory compliance; (c) provide information and actions necessary for proper emergency response

  5. Evaluation of 99Mo/99mTc generator experiment using PZC material and irradiated natural molybdenum

    International Nuclear Information System (INIS)

    Khongpetch, P.; Chingjit, S.; Dangprasert, M.; Rangsawai, W.; Virawat, N.

    2006-01-01

    Technetium-99m ( 99m Tc) is the most widely used radioisotope in nuclear medicine, accounting for more than 80% of all diagnostic nuclear medicine procedure. 99m Tc is almost exclusively produced from the decay of its parent molybdenum-99 ( 99 Mo). The present sources of 99 Mo are research reactors by using the (n, γ) nuclear reaction with natural molybdenum, resulting in inexpensive but low specific activity 99 Mo, or by neutron-induced fission of uranium-235, which result in expensive but high specific activity 99 Mo. The technology requirement for processing of 99 Mo from the (n, γ) 'activation method' is rather simple, and is within the reach of most developing countries operating research reactors. In the fission method' the technological and infrastructure requirements are some complex, and possibly can be sustained only by countries with advanced nuclear technology. To overcome these difficulties, Japan Atomic Energy Research Institute (JAERI) and KAKEN company have developed alternative technology for 99 Mo/ 99m Tc generator by using a molybdenum absorbent called Poly Zirconium compound (PZC) and irradiated natural molybdenum. The paper describes experiments for evaluation the performance of PZC as a column packing material for 99 Mo/ 99m Tc generator from (n, γ) 99 Mo. (author)

  6. A 14-mo zinc-supplementation trial in apparently healthy Chilean preschool children.

    Science.gov (United States)

    Ruz, M; Castillo-Duran, C; Lara, X; Codoceo, J; Rebolledo, A; Atalah, E

    1997-12-01

    Apparently healthy preschool children (46 boys, 52 girls) aged 27-50 mo from low socioeconomic conditions who attended daycare centers in Santiago participated in a 14-mo long double-blind zinc supplementation trial. Unlike most previous studies, no additional inclusion criteria such as short stature or slow growth rate were considered. Subjects were pair matched according to sex and age and randomly assigned to two experimental groups: the supplemented group, which received 10 mg Zn/d, and the placebo group. Selected anthropometric, clinical, dietary, biochemical, and functional indexes were determined at the beginning of the study and after 6 and 14 mo of intervention. Actual dietary zinc intake was 66% of the recommended dietary allowance. Height gain after 14 mo was on average 0.5 cm higher in the supplemented group (P = 0.10). The response, however, was different between sexes. Boys from the supplemented group gained 0.9 cm more than those in the placebo group (P = 0.045). No effect was seen in girls. Although no significant differences were observed in the rest of the variables studied, trends (0.05 < P < 0.10) in the supplemented group compared with the placebo group for increased midarm muscle area in boys, improved response to tuberculin, and reduced rates of parasite reinfestation were noted. We conclude that in preschool children of low socioeconomic status, zinc is a limiting factor in the expression of growth potential.

  7. Effect of monoclonal antibodies (MoAb) to class I and class II HLA antigens on lectin- and MoAb OKT3-induced lymphocyte proliferation.

    Science.gov (United States)

    Akiyama, Y; Zicht, R; Ferrone, S; Bonnard, G D; Herberman, R B

    1985-04-01

    We have examined the effect of several monoclonal antibodies (MoAb) to monomorphic determinants of class II HLA antigens, and MoAb to monomorphic determinants of class I HLA antigens and to beta-2-microglobulin (beta 2-mu) on lectin- and MoAb OKT3-induced proliferation of human peripheral blood mononuclear cells (PBMNC) and cultured T cells (CTC). Some, but not all, anti-class II HLA MoAb inhibited the proliferative response of PBMNC to MoAb OKT3 and pokeweed mitogen (PWM). The degree of inhibitory effect varied considerably. This effect was not limited to anti-class II HLA MoAb since anti-class I HLA MoAb and anti-beta 2-mu MoAb also inhibited MoAb OKT3- or PWM-induced proliferative responses. In contrast, the response of PBMNC to phytohemagglutinin (PHA) and concanavalin A (Con A) was not blocked by any anti-class II HLA MoAb. However, some anti-class II HLA MoAb also inhibited the proliferative response of CTC plus allogeneic peripheral blood adherent accessory cells (AC) to PHA or Con A as well as to MoAb OKT3 or PWM. This may be attributable to the substantially greater class II HLA antigen expression by CTC than by fresh lymphocytes. Pretreatment of either CTC or AC with anti-class II HLA MoAb inhibited OKT3-induced proliferation. In contrast, pretreatment of CTC, but not AC, with anti-class I HLA MoAb inhibited the proliferative response of CTC to OKT3. Pretreatment of CTC with anti-class I HLA MoAb inhibited PHA-, Con A and PWM-induced proliferation, to a greater degree than the anti-class II HLA MoAb. It appears as if lymphocyte activation by different mitogens exhibits variable requirements for the presence of cells expressing major histocompatibility determinants. Binding of Ab to membrane markers may interfere with lymphocyte-AC cooperation, perhaps by inhibiting binding of mitogens to their receptors or by interfering with lymphocyte and AC function. We also have examined the role of class II HLA antigens on CTC by depleting class II HLA-positive cells

  8. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100)

    Science.gov (United States)

    McManus, Jesse R.; Vohs, John M.

    2014-12-01

    The desire to produce fuels and chemicals in an energy conscious, environmentally sympathetic approach has motivated considerable research on the use of cellulosic biomass feedstocks. One of the major challenges facing the utilization of biomass is finding effective catalysts for the efficient and selective removal of oxygen from the highly-oxygenated, biomass-derived platform molecules. Herein, a study of the reaction pathways for the biomass-derived platform molecule furfural and biomass-derived sugar model compound glycolaldehyde provides insight into the mechanisms of hydrodeoxygenation (HDO) on a model molybdenum carbide catalyst, Mo2C/Mo(100). Using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS), it was found that the Mo2C/Mo(100) catalyst was active for selective deoxygenation of the aldehyde carbonyl by facilitating adsorption of the aldehyde in an η2(C,O) bonding configuration. Furthermore, the catalyst showed no appreciable activity for furanic ring hydrogenation, highlighting the promise of relatively inexpensive Mo2C catalysts for selective HDO chemistry.

  9. Effect of Mo/B atomic ratio on the properties of Mo2NiB2-based cermets

    International Nuclear Information System (INIS)

    Xie, Lang; Li, XiaoBo; Zhang, Dan; Yi, Li; Gao, XiaoQing; Xiangtan Univ.

    2015-01-01

    Using three elementary substances, Mo, Ni, and amorphous B as raw materials, four series of Mo 2 NiB 2 -based cermets with the Mo/B atomic ratio ranging from 0.9 to 1.2 were successfully prepared via reaction sintering. The effect of Mo/B atomic ratio on the microstructure and properties was studied for the cermets. The results indicate that there is a strong correlation between the Mo/B atomic ratio and properties. The transverse rupture strength of the cermets increases with an increase in Mo/B ratio and shows a maximum value of 1 872 MPa at an Mo/B atomic ratio of 1.1 and then decreases with increasing Mo/B atomic ratio. The hardness and the corrosion resistance of the cermets increase monotonically with an increase in Mo/B atomic ratio. In Mo-rich cermets with an atomic ratio of Mo/B above 1.1, a small amount Ni-Mo intermetallic compound is found precipitated at the interface of Mo 2 NiB 2 grains.

  10. In-situ fabrication of MoSi{sub 2}/SiC–Mo{sub 2}C gradient anti-oxidation coating on Mo substrate and the crucial effect of Mo{sub 2}C barrier layer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Gong, Qianming, E-mail: gongqianming@mail.tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Shao, Yang; Zhuang, Daming [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); State Key Laboratory of New Ceramics and Fine Processing, Beijing 100084 (China); Liang, Ji [Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-07-01

    MoSi{sub 2}/SiC–Mo{sub 2}C gradient coating on molybdenum was in situ prepared with pack cementation process by two steps: (1) carburizing with graphite powder to obtain a Mo{sub 2}C layer on Mo substrate, and (2) siliconizing with Si powder to get a composite MoSi{sub 2}/SiC layer on the upper part of Mo{sub 2}C layer. The microstructure and elemental distribution in the coating were investigated with scanning electron microscopy (SEM), backscattered electron (BSE), energy dispersive spectroscopy (EDS), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Cyclic oxidation tests (at 500 °C, 1200 °C, 1400 °C and 1600 °C) demonstrated excellent oxidation resistance for the gradient composite coating and the mass loss was only 0.23% in 60 min at 1600 °C. XRD, EPMA, thermal dynamic and phase diagram analyses indicated that the Mo{sub 2}C barrier layer played the key role in slowing down the diffusion of C and Si toward inner Mo substrate at high temperature and principally this contributed to the excellent anti-oxidation for Mo besides the outer MoSi{sub 2}/SiC composite layer.

  11. Facile synthesis of stable structured MoS{sub 2}-Mo-CNFs heteroarchitecture with enhanced hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Qionghua [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Faculty of Material and Energy, South West University, Chongqing 400700 (China); Yao, Yucen [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Liu, Bitao, E-mail: liubitao007@163.com [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Peng, Lingling; Yan, Hengqing; Hou, Zhupei; Wang, Jun [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Lin, Yue, E-mail: linyue@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui 230026 (China)

    2017-06-01

    3D structured MoS{sub 2} are grown in-situ on Mo particles embedded carbon nanofibers (CNFs) via a hydrothermal method. Due to this special structure, the bonding and effective electron delivery between CNFs and MoS{sub 2} are both enhanced, and which will exhibits a better hydrogen evolution activity. The onset potential of this MoS{sub 2}-Mo-CNFs catalyst will decreased to 60 mV compared to the 90 mV for the MoS{sub 2}-CNFs. And its current density nearly no change with 5000 cycles which is better than the 32.3% decrease of MoS{sub 2}-CNFs at η = 300 mV (V vs RHE). - Highlights: • Newly structured MoS{sub 2}-Mo-CNFs with effectively connection between MoS{sub 2} and CNFs successfully synthesized. • This structure can enhance the charge transfer and significantly increase electrocatalytic efficiency. • Nearly no HER activity loss after 5000 CV cycles.

  12. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    International Nuclear Information System (INIS)

    Komar Varela, C.; Mirandou, M.; Arico, S.; Balart, S.; Gribaudo, L.

    2009-01-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 deg. C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 deg. C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20 Mo 2 U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43 Mo 4 U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3 Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5 Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  13. Thermal behavior analysis of U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2004-07-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  14. Thermal behavior analysis of U-Mo/Al dispersion fuel

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Park, Jong Mang; Lee, Yoon Sang; Kim, Chang Kyu

    2004-01-01

    According to the non-proliferation policy under the reduced enrichment for research and test reactors (RERTR) program, low enriched uranium(LEU) fuel such as uranium silicide dispersion fuels are being used in research reactors. Because of a lower enrichment higher uranium density fuels are required for some high performance research reactors. Some uranium alloys with a high uranium density such as U-Mo alloys have been considered as one of the most promising candidates for a dispersion fuel due to the good irradiation performance. An international qualification program to replace the uranium silicide dispersion fuel with U-Mo dispersion fuel is being carried out under the RERTR program. Although U-Mo powders are conventionally supplied by the mechanical comminuting of as-cast U-Mo alloys, KAERI developed a centrifugal atomization method in order to simplify the preparation process and improve the properties. The centrifugally atomized powders have a rapidly solidified gamma uranium structure and a spherical shape. During the in-reactor operation of a dispersion fuel, interdiffusion or chemical reactions between the fuel particles and the matrix occurr. Intermetallic compounds in the form of UAlx are formed as a result of the diffusional reaction. Because the intermetallic compounds are less dense than the combined reactants, the volume of the fuel element increases after the reaction. In addition to the effect on the swelling performance, the reaction layers between the U-Mo and the Al matrix induces a degradation of the thermal properties of the U-Mo/Al dispersion fuels. It is important to investigate the thermal behavior of U-Mo/Al dispersion fuel according to reaction between the fuel particles and the matrix with the burnup and linear power. In this study, a finite element analysis was used for the calculation of the temperature distribution of the U-Mo/Al dispersion fuel with a burnup and linear power. Kinetics data of the reaction layers such as the growth

  15. On the reduction of orthorhombic MoO3 to MoO2

    International Nuclear Information System (INIS)

    Delannay, F.

    1982-01-01

    Electron diffraction shows evidence of topotactic orientation relationships between the original MoO 3 crystal and MoO 2 crystals formed under mild reduction conditions. These relationships differ from previously published literature data. A possible mechanism of formation of the [100] strings of edge sharing octahedra in the MoO 2 structure is tentatively proposed. (author)

  16. Laparotomy operative note template constructed through a modified Delphi method.

    Science.gov (United States)

    Moore, Lolonya; Churley-Strom, Ruth; Singal, Bonita; O'Leary, Sharon

    2009-05-01

    An operative note is indispensable to physician documentation and decision-making; however, there are no accepted standards for operative note content. Our aim was to use a modified Delphi consensus-building method to construct a uniform operative note template for laparotomy. Using Joint Commission on Accreditation of Healthcare Organizations requirements, literature review, and feedback from 15 medical malpractice defense attorneys, we compiled a draft operative note template of 31 elements. We surveyed 37 Association of Professor of Gynecology and Obstetrics/Solvay scholars asking for their input on inclusion of each item as essential content of the operative note. Two iterations of the survey were required to reach a predetermined 75% level of consensus. Nine elements were eliminated from the template: 6 original and 3 expert-suggested elements. We provide an operative note template that was compiled through a Delphi process.

  17. Quality assurance of Mo-99/Tc-99m radionuclide generators

    Science.gov (United States)

    Uzunov, Nikolay; Yordanova, Galina; Salim, Seniha; Stancheva, Natalya; Mineva, Vanya; Meléndez-Alafort, Laura; Rosato, Antonio

    2018-03-01

    Gamma-ray spectrometry analyses of the radionuclide content of eluate from two Mo-99/Tc-99m radionuclide generators POLTECHNET have been performed. The relative activities of 99Mo 103Ru and 131I radioisotopes with respect to the activity of 99mTc at different time intervals after the primary pertechnetate elution of the generators have been analyzed. The relative activities of the isotopes were determined and compared to the radionuclidic purity requirements for 99mTc.

  18. Cu4Pr6(MoO4)11-Pr2(MoO4)3 system

    International Nuclear Information System (INIS)

    Arzumanyan, G.A.

    1982-01-01

    Existence boundaries and Dalton compositions (CuPr(MoO 4 ) 2 , CuPr 3 (MoO 4 ) 5 ) of solid solutions that in the mojority are of shcheelite dsitored structure have been determined in the Cu 4 Pr 6 (MoO 4 ) 11 -Pr 2 (MoO 4 ) 3 system. It has been revealed that regions of homogeneity near the CuPr(MoO 4 ) 2 composition have a horseshoeshaped profile

  19. Thermal conduction properties of Mo/Si multilayers for extreme ultraviolet optics

    Science.gov (United States)

    Bozorg-Grayeli, Elah; Li, Zijian; Asheghi, Mehdi; Delgado, Gil; Pokrovsky, Alexander; Panzer, Matthew; Wack, Daniel; Goodson, Kenneth E.

    2012-10-01

    Extreme ultraviolet (EUV) lithography requires nanostructured optical components, whose reliability can be influenced by radiation absorption and thermal conduction. Thermal conduction analysis is complicated by sub-continuum electron and phonon transport and the lack of thermal property data. This paper measures and interprets thermal property data, and their evolution due to heating exposure, for Mo/Si EUV mirrors with 6.9 nm period and Mo/Si thickness ratios of 0.4/0.6 and 0.6/0.4. We use time-domain thermoreflectance and the 3ω method to estimate the thermal resistance between the Ru capping layer and the Mo/Si multilayers (RRu-Mo/Si = 1.5 m2 K GW-1), as well as the out-of-plane thermal conductivity (kMo/Si 1.1 W m-1 K-1) and thermal anisotropy (η = 13). This work also reports the impact of annealing on thermal conduction in a co-deposited MoSi2 layer, increasing the thermal conductivity from 1.7 W m-1 K-1 in the amorphous phase to 2.8 W m-1 K-1 in the crystalline phase.

  20. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.

  1. Phase formation in the Li2MoO4–Rb2MoO4–Fe2(MoO4)3 system and crystal structure of a novel triple molybdate LiRb2Fe(MoO4)3

    International Nuclear Information System (INIS)

    Khal'baeva, Klara M.; Solodovnikov, Sergey F.; Khaikina, Elena G.; Kadyrova, Yuliya M.; Solodovnikova, Zoya A.; Basovich, Olga M.

    2013-01-01

    X-ray investigation of solid state interaction of the components in the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system was carried out, and a subsolidus phase diagram of the said system was constructed. The subsystem Rb 2 MoO 4 –LiRbMoO 4 –RbFe(MoO 4 ) 2 was shown to be non-quasiternary. Formation of a novel triple molybdate LiRb 2 Fe(MoO 4 ) 3 was established, conditions of solid state synthesis and crystallization of the compound were found. Its crystal structure (orthorhombic, space group Pnma, Z=4, a=24.3956(6), b=5.8306(1), c=8.4368(2) Å) represents a new structure type and includes infinite two-row ribbons ([Fe(MoO 4 ) 3 ] 3− ) ∞ parallel to the b axis and composed of FeO 6 octahedra, terminal Mo(3)O 4 tetrahedra, and bridge Mo(1)O 4 and Mo(2)O 4 tetrahedra connecting two or three FeO 6 octahedra. The ribbons are connected to form 3D framework via corner-sharing LiO 4 tetrahedra. Rubidium cations are 11- and 13-coordinated and located in cavities of this heterogeneous polyhedral framework. - Graphical abstract: Exploring the Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system showed its partial non-quasiternarity and revealed a new compound LiRb 2 Fe(MoO 4 ) 3 which was structurally studied. - Highlights: • The Li 2 MoO 4 –Rb 2 MoO 4 –Fe 2 (MoO 4 ) 3 system study revealed a new compound LiRb 2 Fe(MoO 4 ) 3 . • Its structure of a new type includes ribbons of FeO 6 octahedra and MoO 4 tetrahedra. • The ribbons are connected into a 3D framework via corner-sharing LiO 4 tetrahedra

  2. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  3. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  4. Xyce parallel electronic simulator release notes.

    Energy Technology Data Exchange (ETDEWEB)

    Keiter, Eric R; Hoekstra, Robert John; Mei, Ting; Russo, Thomas V.; Schiek, Richard Louis; Thornquist, Heidi K.; Rankin, Eric Lamont; Coffey, Todd S; Pawlowski, Roger P; Santarelli, Keith R.

    2010-05-01

    The Xyce Parallel Electronic Simulator has been written to support, in a rigorous manner, the simulation needs of the Sandia National Laboratories electrical designers. Specific requirements include, among others, the ability to solve extremely large circuit problems by supporting large-scale parallel computing platforms, improved numerical performance and object-oriented code design and implementation. The Xyce release notes describe: Hardware and software requirements New features and enhancements Any defects fixed since the last release Current known defects and defect workarounds For up-to-date information not available at the time these notes were produced, please visit the Xyce web page at http://www.cs.sandia.gov/xyce.

  5. Lattice structures and electronic properties of MO/MoSe2 interface from first-principles calculations

    Science.gov (United States)

    Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min

    2015-02-01

    Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.

  6. Sulfur bonding in MoS2 and Co-Mo-S structures

    DEFF Research Database (Denmark)

    Byskov, Line Sjolte; Hammer, Bjørk; Nørskov, Jens Kehlet

    1997-01-01

    The structure and bonding in small MoS2 structures with and without Co is studied theoretically using self-consistent density functional theory with a non-local exchange-correlation energy. The structures model the catalysts used extensively in hydrotreating. We study in detail the structure...... study the energy required to form sulfur vacancies, which are believed to be the active sites for many hydrotreating reactions. The presence of Co atoms at the edges is shown to lead to a significant lowering of the metal-sulfur binding energy. This imposes an increase in the concentration of active...

  7. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    Science.gov (United States)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  8. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    Science.gov (United States)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  9. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  10. Phase relations in the systems M2MoO4-Cr2(MoO4)3-Zr(MoO4)2 (M=Li, Na, or Rb)

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Chimitova, O.D.; Bazarova, Ts.T.; Arkhincheeva, S.I.; Bazarova, Zh.G.

    2008-01-01

    Phase equilibria in the systems M 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 (M=Li, Na, or Rb) were investigated by X-ray powder diffraction analysis, DTA, and IR spectroscopy. The subsolidus structure of the phase diagrams of the systems under study was established. Two phases are formed in the Rb 2 MoO 4 -Cr 2 (MoO 4 ) 3 -Zr(MoO 4 ) 2 system with the molar ratios of the starting components equal to 5:1:1 (S 2 ) and 1:1:1 (S 1 ). Proceeding from isostructural character of Rb 5 FeHf(MoO 4 ) 6 and S 2 , the unit cell parameters are determined for S 2 [ru

  11. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  12. Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe-Mo/MgO catalyst

    International Nuclear Information System (INIS)

    Xu Xiangju; Huang Shaoming; Yang Zhi; Zou Chao; Jiang Junfan; Shang Zhijie

    2011-01-01

    Research highlights: → Increasing the Mo content in the Fe-Mo/MgO catalysts resulted in an increase in wall number, diameter and growth yield of carbon nanotubes. → The Fe interacts with MgO to form complex (MgO) x (FeO) 1-x (0 4 and relative large metal Mo particles can be generated after reduction. → The avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles. - Abstract: A series of Fe-Mo/MgO catalysts with different Mo content were prepared by combustion method and used as catalysts for carbon nanotube (CNT) growth. Transmission electron microscopy studies of the nanotubes show that the number of the CNT walls and the CNT diameters increase with the increasing of Mo content in the bimetallic catalyst. The growth yield determined by thermogravimetric analysis also follows the trend: the higher the Mo content, the higher the yield of the CNTs. However, the increase of Mo content leads to the lower degree of graphitization of CNTs. A comparative study on the morphology and catalytic functions of Fe/MgO, Mo/MgO and Fe-Mo/MgO catalysts was carried out by scanning electron microscopy and X-ray diffraction. It is found that the Fe interacts with MgO to form complexes and is then dispersed into the MgO support uniformly, resulting in very small Fe nanoparticles after reduction. The Mo interacts with MgO to form stoichiometry compound MgMoO 4 and relative large metal Mo particles can be generated after reduction. High yield CNTs with small diameter can be generated from Fe-Mo/MgO because the avalanche-like reduction of MgMoO 4 makes the catalyst particles to be small thus enhances the utilize efficiency of Fe nanoparticles.

  13. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shafirovich, Evgeny [Univ. of Texas, El Paso, TX (United States)

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  14. A novel synthesis of α-MoO3 nanobelts and the characterization

    International Nuclear Information System (INIS)

    Chiang, Tzu Hsuan; Yeh, Hung Che

    2014-01-01

    Highlights: • This work provided a novel method for the fabrication of α-MoO 3 nanobelts. • A growth mechanism associated with the formation of α-MoO 3 nanobelts. • The thickness of the α-MoO 3 belts decreased as the sintering time increased. • The crystallite size of sintered α-MoO 3 belts increased with increases of sintering time. -- Abstract: This study investigated the reaction of ethylene glycol with ammonium molybdate tetrahydrate that the reaction product had the structural characteristics of α-MoO 3 (molybdenum trioxide) nanobelts. This work provided a novel and effective method for the fabrication of high-quality α-MoO 3 nanobelts. The initial reaction was very simple, only requiring reaction at reaction time of 40 min at 120 °C to form MoO 3 ·H 2 O, which was then converted to α-MoO 3 by sintering at 300 °C for 1 h. The α-MoO 3 nanobelts were formed at a sintering temperature of 700 °C for 3 h. The structure and morphology of the α-MoO 3 nanobelts were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The α-MoO 3 nanobelts that were obtained after sintering at 700 °C for 3 h were 99 nm thick, 500 μm length and had an average width of 10 μm. The (0 2 0), (0 4 0), (0 6 0), and (0 1 0 0) planes were observed in XRD, implying that the α-MoO 3 nanobelts grew with a strongly-preferred orientation

  15. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  16. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rhodes, Mark A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schemer-Kohrn, Alan L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guzman, Anthony D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-30

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  17. 7 CFR 3550.208 - Reamortization using promissory note interest rate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Reamortization using promissory note interest rate... § 3550.208 Reamortization using promissory note interest rate. Reamortization using the promissory note interest rate may be authorized when RHS determines that reamortization is required to enable the borrower...

  18. Radioactive Waste Issues related to Production of Fission-based Mo-99 by using Low Enriched Uranium (LEU)

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Muhmood ul; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    In order to produce fission-based Mo-99 from research reactors, two types of targets are being used and they are highly enriched uranium (HEU) targets with {sup 235}U enrichment more than 90wt% of {sup 235}U and low enriched uranium (LEU) targets with {sup 235}U enrichment less than 20wt% of {sup 235}U. It is worth noting that medium enriched uranium i.e. 36wt% of {sup 235}U as being used in South Africa is also regarded as non-LEU from a nuclear security point of view. In order to cope with the proliferation issues, international nuclear security policy is promoting the use of LEU targets in order to minimize the civilian use of HEU. It is noteworthy that Mo-99 yield of the LEU target is less than 20% of the HEU target, which requires approximately five times more LEU targets to be irradiated and consequently results in increased volume of waste. The waste generated from fission Mo-99 production can be mainly due to: target fabrication, assembling of target, irradiation in reactor and processing of irradiated targets. During the fission of U-235 in a reactor, a large number of radionuclides with different chemical and physical properties are formed. The waste produced from these practices may be a combination of low level waste (LLW) and intermediate level waste (ILW) comprised of all three types, i.e., solid, liquid and gas. Handling and treatment of the generated waste are dependent on its form and activity. In case of the large production facility, waste storage facility should be constructed in order to limit the radiation exposures of the workers and the environment. In this study, we discuss and compare mainly the radioactive waste generated by alkaline digestion of both HEU and LEU targets to assist in planning and deciding the choice of the technology with better arrangements for proper handling and disposal of generated waste. With the use of the LEU targets in Mo-99 production facility, significant increase in liquid and solid waste has been expected.

  19. Modeling the homogenization kinetics of as-cast U-10wt% Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie, E-mail: zhijie.xu@pnnl.gov [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Joshi, Vineet [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hu, Shenyang [Reactor Materials & Mechanical Design, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Paxton, Dean [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lavender, Curt [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Burkes, Douglas [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-04-01

    Low-enriched U-22at% Mo (U–10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U–10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding of the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.

  20. Effect of unlabelled monoclonal antibody (MoAb) on biodistribution of /sup 111/Indium labelled (MoAb)

    Energy Technology Data Exchange (ETDEWEB)

    Lamki, L M; Murray, J L; Rosenblum, M G; Patt, Y Z; Babaian, Richard; Unger, M W

    1988-08-01

    We have evaluated immunoscintigraphy in cancer patients using four /sup 111/In-labelled murine monoclonal antibodies (MoAb): 96.5 (anti-P97 of melanoma), ZME-018 (anti-high molecular weight antibody of melanoma), ZCE-025 (anti-CEA for colon cancer) and PAY-276 (anti-prostatic acid phosphatase for prostatic cancer). The effect of increasing the doses of unlabelled MoAb (co-infused with 1 mg labelled MoAb) on the relative body distribution of each labelled MoAb was assessed. Localization in the liver decreased significantly in all cases, with increasing MoAb dose, except for ZME-018. Localization in other organs increased significantly as the liver activity decreased. The spleen activity, however, fell in the case of MoAb ZME-018. Blood-pool activity increased with MoAb dose in all four MoAbs. These findings correlated with the rise in the detection rate of metastases, the plasma half-life, and other pharmacokinetic parameters. However, the dose level at which this correlation occurred varied with each antibody. These data demonstrate the co-infusion of unlabelled MoAb with /sup 111/In-labelled MoAb could alter the organ distribution, pharmacokinetics and tumour uptake in a favourable manner, though the degree to which this occurs depends on the antibody in question.

  1. Variations of radiation intensity as a function of position in radiation field of a mammographic unit of 760 mm SID with Mo anode and 20 μm Mo added filter

    International Nuclear Information System (INIS)

    Noriah Jamal

    2001-01-01

    There are many effects that contribute to radiation field nonuniformity in mammography, including the heel effect and shorter source to image distance (SID), inverse square law and different photon path lengths through various attenuating media (the x-ray tube beryllium window, the added filter, the mirror, and the compression paddle) throughout the field. Variations of radiation intensity was investigated as a function of position in the radiation field (with compression paddle in place)of a mammographic unit in 760 mm SID with Mo anode and 20 μm Mo added filter. Reduction in radiation intensity along central axis of up to 19.40%, 19.13% and 19.34% were noted at 24, 26 and 28 kVp respectively. Radiation intensity also drops off to the left and right of the central axis. As a function of position in the field, we also found that the variations of optical density correlate well with the measured radiation intensity changes. (Author)

  2. Development of 99Mo/99mTc Generator System for Production of Medical Radionuclide 99mTc using a Neutron-activated 99Mo and Zirconium Based Material (ZBM as its Adsorbent

    Directory of Open Access Journals (Sweden)

    I. Saptiama

    2016-12-01

    Full Text Available Molybdenum produced from fission of U-235 is the most desirable precursor for 99Mo/99mTc generator system as it is non-carrier added and has high specific activity. However, in the last decade there has been short supply of 99Mo due to several constrains. Therefore, there have been many works performed for development of 99Mo/99mTc generator system using 99Mo which is not produced from either LEU or HEU. This report deals with development of 99Mo/99mTc generator system where zirconium-based material (ZBM is used as adsorbent of neutron-activated 99Mo. The system was prepared by firstly irradiating natural Mo in the G. A. Siwabessy reactor to produce neutron-activated 99Mo. The target was dissolved in NaOH 4N and then neutralized with 12 M HCl. The 99Mo solution was then mixed with a certain amount of ZBM followed by heating at 90°C for three hours to allow the 99Mo adsorbed on ZBM. The 99Mo-ZBM (9.36 GBq of 99Mo was Mo/ 4.2 g ZBM was packed on a fritz-glass column. This column was then fitted serially with an alumina column for trapping 99Mo breakthrough. The columns were then eluted daily with saline solution for up to one week. The yield of 99mTc was found to be between 53.7 – 74% (n= 5. All 99mTc eluates were clear solutions with pH of 5. Breakthrough of 99Mo in 99mTc eluates was found to be 0.031 ± 0.019 μCi 99Mo/ mCi 99mTc (n= 5 which was less than the maximum activity of 99Mo allowed in 99mTc solution ( 99%. Radiolabeling of this 99mTc towards methylene diphosphonate (MDP kit gave a radiolabelling efficiency of 99%. In summary, a new 99Mo/99mTc generator system that used neutron-activated 99Mo and ZBM as its adsorbent has been successfully prepared. The 99mTc produced from this new 99Mo/99mTc generator system attained the quality of 99mTc required for medical purposes.

  3. Holey Reduced Graphene Oxide Coupled with an Mo2 N-Mo2 C Heterojunction for Efficient Hydrogen Evolution.

    Science.gov (United States)

    Yan, Haijing; Xie, Ying; Jiao, Yanqing; Wu, Aiping; Tian, Chungui; Zhang, Xiaomeng; Wang, Lei; Fu, Honggang

    2018-01-01

    An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo 2 N-Mo 2 C heterojunction (Mo 2 N-Mo 2 C/HGr). The method includes the first immobilization of H 3 PMo 12 O 40 (PMo 12 ) clusters on graphite oxide (GO), followed by calcination in air and NH 3 to form Mo 2 N-Mo 2 C/HGr. PMo 12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH 3 simultaneously react with the Mo species to form an Mo 2 N-Mo 2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H 2 SO 4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm -2 ). The good activity of Mo 2 N-Mo 2 C/HGr is ascribed to its small size, the heterojunction of Mo 2 N-Mo 2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced field emission behavior of layered MoSe2

    International Nuclear Information System (INIS)

    Suryawanshi, Sachin R; Pawbake, Amit S; Jadkar, Sandesh R; More, Mahendra A; Pawar, Mahendra S; Late, Dattatray J

    2016-01-01

    Herein, we report one step facile chemical vapor deposition method for synthesis of single-layer MoSe 2 nanosheets with average lateral dimension ∼60 μm on 300 nm SiO 2 /Si and n-type silicon substrates and field emission investigation of MoSe 2 /Si at the base pressure of ∼1 × 10 −8 mbar. The morphological and structural analyses of the as-deposited single-layer MoSe 2 nanosheets were carried out using an optical microscopy, Raman spectroscopy and atomic force microscopy. Furthermore, the values of turn-on and threshold fields required to extract an emission current densities of 1 and 10 μA cm −2 , are found to be ∼1.9 and ∼2.3 V μm −1 , respectively. Interestingly, the MoSe 2 nanosheet emitter delivers maximum field emission current density of ∼1.5 mA cm −2 at a relatively lower applied electric field of ∼3.9 V μm −1 . The long term operational current stability recorded at the preset values of 35 μA over 3 hr duration and is found to be very good. The observed results demonstrates that the layered MoSe 2 nanosheet based field emitter can open up many opportunities for their potential application as an electron source in flat panel display, transmission electron microscope, and x-ray generation. Thus, the facile one step synthesis approach and robust nature of single-layer MoSe 2 nanosheets emitter can provide prospects for the future development of practical electron sources. (paper)

  5. Synthesis, structure and optical properties of two isotypic crystals, Na3MO4Cl (M=W, Mo)

    International Nuclear Information System (INIS)

    Han, Shujuan; Bai, Chunyan; Zhang, Bingbing; Yang, Zhihua; Pan, Shilie

    2016-01-01

    Two isotypic compounds, Na 3 MO 4 Cl (M = W, Mo) have been obtained from the high temperature solution, and their structures were determined by single-crystal X-ray diffraction. Both of them crystallize in the space group P4/nmm of tetragonal system with the unit cells: a=7.5181(15), c=5.360(2) for Na 3 WO 4 Cl and a=7.4942(12), c=5.3409(18) for Na 3 MoO 4 Cl. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. The structural similarities and differences between Na 3 MO 4 Cl (M=W, Mo) and Sr 3 MO 4 F (M=Al, Ga) have been discussed. Meanwhile, detailed structure comparison analyses between Na 3 MO 4 Cl (M=W, Mo) and Na 3 MO 4 F (M=W, Mo) indicate that the different connection modes of ClNa 6 and FNa 6 make Na 3 MO 4 Cl and Na 3 MO 4 F crystallize in different structures. The IR spectra were used to verify the validity of the structure. The diffuse reflectance spectra show that the UV absorption edges are about 249 nm (4.99 eV) and 265 nm (4.69 eV) for Na 3 WO 4 Cl and Na 3 MoO 4 Cl, respectively. In addition, the first-principles theoretical studies are also carried out to aid the understanding of electronic structures and linear optical properties. - Graphical abstract: Two isotypic compounds, Na 3 MO 4 Cl (M=W, Mo) have been obtained from the high temperature solution. Both of them crystallize in the space group P4/nmm of tetragonal system. The structure exhibits a 3D network built up by the ClNa 6 groups, and the MO 4 groups reside in the tunnels of the 3D network. - Highlights: • Structure and properties of Na 3 MO 4 Cl (M=W, Mo) are reported for the first time. • They show a 3D network built by ClNa 6 , and WO 4 lies in the tunnels of the network. • IR spectra were used to verify the validity of the structure. • Band structures and density of states have been calculated.

  6. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    Energy Technology Data Exchange (ETDEWEB)

    Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey D. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H2O2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K2MoO4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H2O2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  7. Development on UO3-K2O and MoO3-K2O binary systems and study of UO2MoO4-MoO3 domain within UO3-MoO3-K2O ternary system

    International Nuclear Information System (INIS)

    Dion, C.; Noel, A.

    1983-01-01

    This paper confirms the previous study on the MoO 3 -K 2 O system, and constitutes a clarity of the UO 3 -K 2 O system. Four distinct uranates VI with alkaline metal/uranium ratio's 2, 1, 0,5 and 0,285 exist. Preparation conditions and powder diffraction spectra of these compounds are given. Additional informations relative to K 2 MoO 4 allotropic transformations are provided. Study of UO 2 MoO 4 -K 2 MoO 4 diagram has brought three new phases into prominence: (B) K 6 UMo 4 O 18 incongruently melting point, (E) K 2 UMo 2 O 10 congruently melting and (F) K 2 U 3 Mo 4 O 22 incongruently melting point. Within MoO 3 -K 2 MoO 4 -UO 2 MoO 4 ternary system, no new phase is found. The general appearance of ternary liquidus and crystallization fields of several compounds are given. These three new compounds become identified with these of UO 2 MoO 4 -Na 2 MoO 4 binary system [fr

  8. Investigation of BaMoO4-Ln2(MoO4)3 systems (Ln = Nd, Sm, Yb)

    International Nuclear Information System (INIS)

    Vakulyuk, V.V.; Evdokimov, A.A.; Khomchenko, G.P.

    1982-01-01

    Using the methods of X-ray phase and differential-thermal analyses phase ratios in the systems BaMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=Nd, Sm, Yb); BaNd 2 (MoO 4 ) 4 -MaGd 2 (MoO 4 ) are studied. Unit cell parameters and the character of melting of the compounds BaLn 2 (MoO 4 ) 4 are specified. Effect of growth conditions on laminated nature of BaGd 2 (MoO 4 ) 4 monocrystals is studied

  9. Systems Tl2MoO4-E(MoO4)2, where E=Zr or Hf, and the crystal structure of Tl8Hf(MoO4)6

    International Nuclear Information System (INIS)

    Bazarov, B.G.; Bazarova, Ts.T.; Fedorov, K.N.; Bazarova, Zh.G.; Chimitova, O.D.; Klevtsova, R.F.; Glinskaya, L.A.

    2006-01-01

    Systems Tl 2 MoO 4 -E(MoO 4 ) 2 (E=Zr, Hf) were studied by X-ray diffraction, differential thermal analysis and IR spectroscopy. Formation of Tl 8 E(MoO 4 ) 6 and Tl 2 E(MoO 4 ) 2 compounds was established. Phase T-x diagrams of the Tl 2 MoO 4 -Zr(MoO 4 ) 2 system were constructed. Monocrystals were grown, and structure of Tl 8 Hf(MoO 4 ) 6 was studied. The compound is crystallized in monoclinic syngony with elementary cell parameters a=9.9688(6), b=18.830(1), c=7.8488(5) A, β=108.538(1) Deg, Z=2, sp. gr. C2/m. The isolated group [HfMo 6 O 24 ] 8- is responsible for fundamental fragment of the structure. Three varieties of crystallographically independent Tl-polyhedra fill space evenly between fragments [HfMo 6 O 24 ] 8- forming three-dimensional form [ru

  10. Phase equilibria in the Tl2MoO4–R2(MoO43–Zr(MoO42 (R = Al, Cr systems: synthesis, structure and properties of new triple molybdates Tl5RZr(MoO46 and TlRZr0.5(MoO43

    Directory of Open Access Journals (Sweden)

    V. G. Grossman

    2017-12-01

    Full Text Available The Tl2MoO4–R2(MoO43–Zr(MoO42 (R = Al, Cr systems were studied in the subsolidus region using X-ray powder diffraction and differential scanning calorimetric (DSC analysis. Quasi-binary joins were revealed, and triangulation was carried out. New ternary molybdates: Tl5RZr(MoO46 (5:1:2 and TlRZr0.5(MoO43 (1:1:1 (R = Al, Cr were prepared. The unit cell parameters for the new compounds were calculated.

  11. Hydrothermal Synthesis of MoO2 and Supported MoO2 Cata-lysts for Oxidative Desulfurization of Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    Wang Danhong; Zhang Jianyong; Liu Ni; Zhao Xin; Zhang Minghui

    2014-01-01

    A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo (VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization (ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mecha-nism for formation of MoO2 involving oxalic acid was proposed.

  12. The Physics Programme Of The MoEDAL Experiment At The LHC

    CERN Document Server

    Acharya, B.; Bernabeu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; De Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J.R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Giorgini, M.; Hasegan, D.; Hott, T.; J.Jak\\r u; Katre, A.; Kim, D-W.; King, M.G.L.; Kinoshita, K.; Lacarrere, D.; Lee, S.C.; Leroy, C.; Margiotta, A.; Mauri, N.; Mavromatos, N.E.; Mermod, P.; Mitsou, V.A.; Orava, R.; Pasqualini, L.; Patrizii, L.; Pavalas, G.E.; Pinfold, J.L.; Platkevic, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y.N.; Staszewski, R.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J.A.; Vento, V.; Vives, O.; Vykydal, Z.; Widom, A.; Yoon, J.H.

    2014-01-01

    The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this...

  13. Phase equilibria in the CdMoO4-Gd2(MoO4)3 system

    International Nuclear Information System (INIS)

    Tunik, T.A.; Fedorov, N.F.; Razumovskij, S.N.

    1980-01-01

    The constitutional diagram of the CdMoO 4 -Cd 2 (MoO 4 ) 3 system has been plotted using statistical and dynamic methods as well as a complex of instrumental analysis procedures. Three major phases have been found to occur in the systems, viz.: CdMoO 4 based solid solutions that crystallize in the range from 0 to 25 mol.percent of Cd 2 (MoO 4 ) 3 and pass in transit the two-phase narrow region becoming then solid solutions having a distorted scheelite structure and existing in concentrations from 40 to 65 mol.% of Cd 2 (MoO 4 ) 3 . The entire range, in which the Cd 2 (MoO 4 ) 3 solid solutions can exist, amounts to less than 5 mol.%. Certain crystallochemical constants of the phases that occur in the system have been determined [ru

  14. Lecture notes on quantum statistics

    NARCIS (Netherlands)

    Gill, R.D.

    2000-01-01

    These notes are meant to form the material for an introductory course on quantum statistics at the graduate level aimed at mathematical statisticians and probabilists No background in physics quantum or otherwise is required They are still far from complete

  15. Note Taking and Note Sharing While Browsing Campaign Information

    DEFF Research Database (Denmark)

    Robertson, Scott P.; Vatrapu, Ravi; Abraham, George

    2009-01-01

    Participants were observed while searching and browsing the internet for campaign information in a mock-voting situation in three online note-taking conditions: No Notes, Private Notes, and Shared Notes. Note taking significantly influenced the manner in which participants browsed for information...

  16. Note by Note: a New Revolution in Cooking

    OpenAIRE

    Burke, Roisin; Danaher, Pauline

    2016-01-01

    Note by note cooking is an application of Molecular Gastronomy. It was first proposed by French Physical Chemist and Molecular Gastronomy Co-founder, Hervé This. Note by Note dishes are being created as part of Ph.D. research in the Dublin Institute of Technology, Cathal Brugha Street.

  17. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    Science.gov (United States)

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparitive study of fluorescence lifetime quenching of rhodamine 6G by MoS2 and Au-MoS2

    Science.gov (United States)

    Shakya, Jyoti; Kasana, Parath; Mohanty, T.

    2018-04-01

    Time resolved fluorescence study of Rhodamine 6G (R6G) in the presence of Molybdenum disulfide (MoS2) nanosheets and gold doped MoS2 (Au-MoS2) have been carried out and discussed. We have analyzed the fluorescence decay curves of R6G and it is observed that Au-MoS2 is a better fluorescence lifetime quencher as compare to MoS2 nanosheets. Also, the energy transfer efficiency and energy transfer rate from R6G to MoS2 and Au-MoS2 has been calculated and found higher for Au-MoS2.

  19. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  20. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    International Nuclear Information System (INIS)

    Pacheco, Robin Montoya; Alexander, David John; Mccabe, Rodney James; Clarke, Kester Diederik; Scott, Jeffrey E.; Montalvo, Joel Dwayne; Papin, Pallas; Ansell, George S.

    2017-01-01

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  1. Annealing of (DU-10Mo)-Zr Co-Rolled Foils

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Robin Montoya [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alexander, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccabe, Rodney James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scott, Jeffrey E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Montalvo, Joel Dwayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Papin, Pallas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ansell, George S. [Colorado School of Mines, Golden, CO (United States)

    2017-01-20

    Producing uranium-10wt% molybdenum (DU-10Mo) foils to clad with Al first requires initial bonding of the DU-10Mo foil to zirconium (Zr) by hot rolling, followed by cold rolling to final thickness. Rolling often produces wavy (DU-10Mo)-Zr foils that should be flattened before further processing, as any distortions could affect the final alignment and bonding of the Al cladding to the Zr co-rolled surface layer; this bonding is achieved by a hot isostatic pressing (HIP) process. Distortions in the (DU-10Mo)-Zr foil may cause the fuel foil to press against the Al cladding and thus create thinner or thicker areas in the Al cladding layer during the HIP cycle. Post machining is difficult and risky at this stage in the process since there is a chance of hitting the DU-10Mo. Therefore, it is very important to establish a process to flatten and remove any waviness. This study was conducted to determine if a simple annealing treatment could flatten wavy foils. Using the same starting material (i.e. DU-10Mo coupons of the same thickness), five different levels of hot rolling and cold rolling, combined with five different annealing treatments, were performed to determine the effect of these processing variables on flatness, bonding of layers, annealing response, microstructure, and hardness. The same final thickness was reached in all cases. Micrographs, textures, and hardness measurements were obtained for the various processing combinations. Based on these results, it was concluded that annealing at 650°C or higher is an effective treatment to appreciably reduce foil waviness.

  2. Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 Angstrom

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.; Suckewer, S.

    1993-09-01

    We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 angstrom. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p 6 -- 4p 5 6s transition in Mo VII in resonantly photopumped by the 5s 2 S 1/2 -- 4p 2 P 1/2 transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p 5 6s upper lasing level when pumped by an adjacent Mo VII plasma. No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition

  3. Ternary CoS{sub 2}/MoS{sub 2}/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Gao, Wen-Kun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chi, Jing-Qi; Li, Xiao; Yan, Kai-Li; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-08-01

    Highlights: • Ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase as electrocatalyst for HER was prepared. • CoMoS phase have the metallic nature and highly intrinsic activity for HER. • RGO support ensures good distribution of CoMoS phase and enhances the conductivity. • The introduction of CoMoS and RGO may be a novel strategy for efficient HER of MoS{sub 2}. - Abstract: CoMoS phase with metallic character plays crucial role on enhancing the activity of MoS{sub 2} electrocatalysts for hydrogen evolution reaction (HER). However, only Co atoms located in the edges of MoS{sub 2} can create CoMoS phase, so it is a challenge to obtain CoMoS phase with homogeneous distribution limited by the layered MoS{sub 2} and doping method of Co. Herein, we reported a simple one-pot hydrothermal method to prepare novel ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase for HER using reduced graphene oxide (RGO) as support. XPS proves the formation of CoMoS phase, implying the enhanced activity for HER. RGO support ensures the well distribution of CoMoS phase and enhances the conductivity of CoS{sub 2}/MoS{sub 2}/RGO. Compared to CoS{sub 2}/RGO, MoS{sub 2}/RGO and CoS{sub 2}/MoS{sub 2}, the obtained CoS{sub 2}/MoS{sub 2}/RGO shows superior activity for HER with an onset overpotential of −80 mV (vs. RHE), small Tafel slope of 56 mV dec{sup −1}, high exchange current density of 11.4 μA cm{sup −2} and rigid electrochemical durability. The enhanced performances for HER may be ascribed to the formation of CoMoS phase with high activity and the existence of RGO support with good electrical conductivitys in ternary CoS{sub 2}/MoS{sub 2}/RGO. Therefore, the introduction of CoMoS phase and RGO into MoS{sub 2} could effectively enhance electrocatalytic properties for HER.

  4. Phase equilibria in the MgMoO4-Ln2(MoO4)3 (Ln=La,Gd) systems

    International Nuclear Information System (INIS)

    Fedorov, N.F.; Ipatov, V.V.; Kvyatkovskij, O.V.

    1980-01-01

    Phase equilibria in the MgMoO 4 -Ln 2 (MoO 4 ) 3 systems (Ln=La, Gd) have been studied by static and dynamic methods of the physico-chemical analysis, using differential thermal, visual-polythermal, crystal-optical, X-ray phase, and infrared spectroscopic methods, and their phase diagrams have been constructed. Phase equilibria in the systems studied are characterized by limited solubility of components in the liquid state, formation of solid solutions on the base of α- and β-forms of Gd 2 (MoO 4 ) 3 . Eutectics in the MgMoO 4 -Ln 2 (MoO 4 ) 3 (Ln=La, Gd) systems corresponds to the composition of 71 mode % La 2 (MoO 4 ) 3 -29 mole % MgMoO 4 , tsub(melt)--935+-5 deg C and 57 mole % Gd 2 (MoO 4 ) 3 -43 mole % MgMoO 4 , tsub(melt)=1020+-5 deg C. The region of glass formation has been established [ru

  5. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.

    Science.gov (United States)

    Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing

    2016-06-28

    Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.

  6. Determination of Mo- and Ca-isotope ratios in Ca100MoO4 crystal for AMoRE-I experiment

    Science.gov (United States)

    Karki, S.; Aryal, P.; Kim, H. J.; Kim, Y. D.; Park, H. K.

    2018-01-01

    The first phase of the AMoRE (Advanced Mo-based Rare process Experiment) is to search for neutrinoless double-beta decay of 100Mo with calcium molybdate (Ca100MoO4) crystals enriched in 100Mo and depleted in 48Ca using a cryogenic technique at Yangyang underground laboratory in Korea. It is important to know 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal to estimate half-life of 100Mo decays and to 2 νββ background from 48Ca. We employed the ICP-MS (Inductive Coupled Plasma Mass Spectrometer) to measure 100Mo- and 48Ca-isotope ratios in Ca100MoO4 crystal. The measured results for 100Mo- and 48Ca-isotope ratios in the crystal are (94 . 6 ± 2 . 8) % and (0 . 00211 ± 0 . 00006) %, respectively, where errors are included both statistical and systematic uncertainties.

  7. Postirradiation tensile properties of Mo and Mo alloys irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Mueller, G.V.; Gavillet, D.; Victoria, M.; Martin, J.L.

    1994-01-01

    Tensile specimens of pure Mo and Mo-5 Re, Mo-41 Re and TZM alloys have been irradiated with 600 MeV protons in the PIREX facility at 300 and 660 K to 0.5 dpa. Results of the postirradiation tensile testing show a strong radiation hardening and a severe loss of ductility for all the materials tested at room temperature. ((orig.))

  8. Reducing the Schottky barrier between few-layer MoTe2 and gold

    Science.gov (United States)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  9. Layer-by-layer thinning of MoSe_2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF_6 + N_2 as precursors for layer-by-layer thinning of MoSe_2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe_2 were also demonstrated. • Equal numbers of MoSe_2 layers can be removed uniformly without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe_2) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe_2 can be changed from the indirect band gap to the direct band gap when MoSe_2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe_2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe_2 nanaosheets down to monolayer by using SF_6 + N_2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe_2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. By adjusting the etching rates we can achieve complete MoSe_2 removal and any disired number of MoSe_2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  10. The fracture toughness and DBTT of MoB particle-reinforced MoSi2 composites

    International Nuclear Information System (INIS)

    Xiong Zhi; Wang Gang; Jiang Wan

    2005-01-01

    The room temperature fracture toughness and the high temperature DBTT of MoB particle-reinforced MoSi 2 composites were investigated using Vickers indentation technique and MSP testing method, respectively. Modified small punch (MSP) test is a method for evaluation of mechanical properties using very small specimens, and it's appropriate for the determination of strength and DBTT. It was found that the approximate fracture toughness of the composite is 1.3 times that of monolithic MoSi 2 , and its DBTT is 100 C higher than that of monolithic MoSi 2 materials. Cracks deflection is a probable mechanism responsible for this behavior. (orig.)

  11. Theoretical prediction of high electron mobility in multilayer MoS2 heterostructured with MoSe2

    Science.gov (United States)

    Ji, Liping; Shi, Juan; Zhang, Z. Y.; Wang, Jun; Zhang, Jiachi; Tao, Chunlan; Cao, Haining

    2018-01-01

    Two-dimensional (2D) MoS2 has been considered to be one of the most promising semiconducting materials with the potential to be used in novel nanoelectronic devices. High carrier mobility in the semiconductor is necessary to guarantee a low power dissipation and a high switch speed of the corresponding electronic device. Strain engineering in 2D materials acts as an important approach to tailor and design their electronic and carrier transport properties. In this work, strain is introduced to MoS2 through perpendicularly building van der Waals heterostructures MoSe2-MoS2. Our first-principles calculations demonstrate that acoustic-phonon-limited electron mobility can be significantly enhanced in the heterostructures compared with that in pure multilayer MoS2. It is found that the effective electron mass and the deformation potential constant are relatively smaller in the heterostructures, which is responsible for the enhancement in the electron mobility. Overall, the electron mobility in the heterostructures is about 1.5 times or more of that in pure multilayer MoS2 with the same number of layers for the studied structures. These results indicate that MoSe2 is an excellent material to be heterostructured with multilayer MoS2 to improve the charge transport property.

  12. Digital Note-Taking: Discussion of Evidence and Best Practices.

    Science.gov (United States)

    Grahame, Jason A

    2016-03-01

    Balancing active course engagement and comprehension with producing quality lecture notes is challenging. Although evidence suggests that handwritten note-taking may improve comprehension and learning outcomes, many students still self-report a preference for digital note-taking and a belief that it is beneficial. Future research is warranted to determine the effects on performance of digitally writing notes. Independent of the methods or software chosen, best practices should be provided to students with information to help them consciously make an educated decision based on the evidence and their personal preference. Optimal note-taking requires self-discipline, focused attention, sufficient working memory, thoughtful rewording, and decreased distractions. Familiarity with the tools and mediums they choose will help students maximize working memory, produce better notes, and aid in their retention of material presented.

  13. Studies of the effect of irradiation in a nuclear reactor, of targets containing Mo used for the preparation of 99Mo gel, material that constitutes the 99Mo - 99mTc generators

    International Nuclear Information System (INIS)

    Nieto, Renata Correa

    2004-01-01

    The most used radioisotope in Nuclear Medicine is 99m Tc, obtained in the 99 Mo - 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in Cyclotron and Reactor. The production in Cyclotron is not technically and commercially feasible. The production in Nuclear Reactor can be made in two ways: 235 U fission and 99 Mo (n,γ) 99 Mo reaction. A project aiming the production of 99 Mo by activation of Mo is under way at IPEN, producing a gel type MoZr generator. There are two ways of preparing the gel and the generators: by irradiating MoO 3 and preparing the gel or by the preparation of the gel and further irradiation. This work consists in the study of the irradiation effects in several targets containing Mo for the production of 99 Mo by the 98 Mo (n,γ) 99 Mo reaction and further preparation of the gel for use as a gel type 99 Mo - 99m Tc generator. Three rinds of gel were studied: zirconium, titanium and cerium molybdate, and their morphology, infrared structure and elution yield of 99m Tc were analysed. The best results were achieved with the generators prepared with MoZr post formed gel, with amorphous structure and better elution yields. The pre formed gel induced crystallinity and worst performance of the generators. (author)

  14. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  15. MoManI: a tool to facilitate research, analysis, and teaching of computer models

    Science.gov (United States)

    Howells, Mark; Pelakauskas, Martynas; Almulla, Youssef; Tkaczyk, Alan H.; Zepeda, Eduardo

    2017-04-01

    Allocating limited resource efficiently is a task to which efficient planning and policy design aspires. This may be a non-trivial task. For example, the seventh sustainable development goal (SDG) of Agenda 2030 is to provide access to affordable sustainable energy to all. On the one hand, energy is required to realise almost all other SDGs. (A clinic requires electricity for fridges to store vaccines for maternal health, irrigate agriculture requires energy to pump water to crops in dry periods etc.) On the other hand, the energy system is non-trivial. It requires the mapping of resource, its conversion into useable energy and then into machines that we use to meet our needs. That requires new tools that draw from standard techniques, best-in-class models and allow the analyst to develop new models. Thus we present the Model Management Infrastructure (MoManI). MoManI is used to develop, manage, run, store input and results data for linear programming models. MoManI, is a browser-based open source interface for systems modelling. It is available to various user audiences, from policy makers and planners through to academics. For example, we implement the Open Source energy Modelling System (OSeMOSYS) in MoManI. OSeMOSYS is a specialized energy model generator. A typical OSeMOSYS model would represent the current energy system of a country, region or city; in it, equations and constraints are specified; and calibrated to a base year. From that future technologies and policy options are represented. From those scenarios are designed and run. Efficient allocation of energy resource and expenditure on technology is calculated. Finally, results are visualized. At present this is done in relatively rigid interfaces or via (for some) cumbersome text files. Implementing and operating OSeMOSYS in MoManI shortens the learning curve and reduces phobia associated with the complexity of computer modelling, thereby supporting effective capacity building activities. The novel

  16. Physicochemical investigation of Bi2MoO6 solid-phase interaction with Sm2MoO6

    International Nuclear Information System (INIS)

    Khajkina, E.G.; Kovba, L.M.; Bazarova, Zh.G.; Khal'baeva, K.M.; Khakhinov, V.V.; Mokhosoev, M.V.

    1986-01-01

    Bi 2 MoO 6 -Sm 2 MoO 6 interaction in the temperature range of 700-1000 deg C is studied using X-ray phase analysis and vibrational spectroscopy. Formation of monoclinic solid solutions based on γ'-Bi 2 MoO 6 and B 2-x Sm x MoO 6 varied composition phase with α-Ln 2 MoO 6 structure which homogeneity region extent at 1000 deg C constitutes ∼ 50 mol % (0.7≤x≤1.7) is stated. Crystallographic characteristics of the synthesized phases are determined

  17. Atomistic simulation of the point defects in B2-type MoTa alloy

    International Nuclear Information System (INIS)

    Zhang Jianmin; Wang Fang; Xu Kewei; Ji, Vincent

    2009-01-01

    The formation and migration mechanisms of three different point defects (mono-vacancy, anti-site defect and interstitial atom) in B 2 -type MoTa alloy have been investigated by combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM). From minimization of the formation energy, we find that the anti-site defects Mo Ta and Ta Mo are easier to form than Mo and Ta mono-vacancies, while Mo and Ta interstitial atoms are difficult to form in the alloy. In six migration mechanisms of Mo and Ta mono-vacancies, one nearest-neighbor jump (1NNJ) is the most favorable due to its lowest activation and migration energies, but it will cause a disorder in the alloy. One next-nearest-neighbor jump (1NNNJ) and one third-nearest-neighbor jump (1TNNJ) can maintain the ordered property of the alloy but require higher activation and migration energies, so the 1NNNJ and 1TNNJ should be replaced by straight [1 0 0] six nearest-neighbor cyclic jumps (S[1 0 0]6NNCJ) or bent [1 0 0] six nearest-neighbor cyclic jumps (B[1 0 0]6NNCJ) and [1 1 0] six nearest-neighbor cyclic jumps ([1 1 0]6NNCJ), respectively. Although the migrations of Mo and Ta interstitial atoms need much lower energy than Mo and Ta mono-vacancies, they are not main migration mechanisms due to difficult to form in the alloy.

  18. U-10Mo Sample Preparation and Examination using Optical and Scanning Electron Microscopy. Rev. 1

    International Nuclear Information System (INIS)

    Prabhakaran, Ramprashad; Joshi, Vineet V.; Rhodes, Mark A.; Schemer-Kohrn, Alan L.; Guzman, Anthony D.; Lavender, Curt A.

    2016-01-01

    The purpose of this document is to provide guidelines to prepare specimens of uranium alloyed with 10 weight percent molybdenum (U-10Mo) for optical metallography and scanning electron microscopy. This document also provides instructions to set up an optical microscope and a scanning electron microscope to analyze U-10Mo specimens and to obtain the required information.

  19. AMORE Mo-99 Spike Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States); Krebs, John F. [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Byrnes, James P. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotsch, David A [Argonne National Lab. (ANL), Argonne, IL (United States); Brossard, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wesolowski, Kenneth [Argonne National Lab. (ANL), Argonne, IL (United States); Alford, Kurt [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-27

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solution is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project

  20. Decay of 99Mo

    International Nuclear Information System (INIS)

    Dickens, J.K.; Love, T.A.

    1976-01-01

    Relative intensities for K x-rays and gamma rays emanating from 99 Mo in equilibrium with its 99 Tc* daughter have been measured using several Ge photon detectors. Combining these intensities with an evaluated set of electron-conversion coefficients has provided a set of absolute intensities for the observed gamma rays. The absolute intensity for the dominant 140.5-keV gamma ray in 99 Tc was determined to be 90.7 +- 0.6/100 99 Mo disintegrations for 99 Mo decay in equilibrium with decay of the 99 Tc* daughter

  1. High pressure effect on MoS2 and MoSe2 single crystals grown by ...

    Indian Academy of Sciences (India)

    Unknown

    tetrahedral anvil apparatus up to 5 GPa. In this paper we report room temperature resistance mea- surements as a function of pressure on MoS2 and MoSe2 single crystals. In each case the resistance decreases un- der pressure due to an increase in the carrier concentration. 2. Experimental. Single crystals of MoS2 and ...

  2. Adsorption behavior of 99Mo using AG1-X8 anionic resin

    International Nuclear Information System (INIS)

    Santos, Jacinete L. dos; Yamaura, Mitiko; Damasceno, Marcos O.; Forbicini, Christina A.L.G.O.

    2013-01-01

    The significant growth in demand of 99 Mo in developed and developing countries, like Brazil, requires large production capacity and availability of this radioisotope. With the global crisis on its supply to Brazil rethought the need to become independent in their production and the solution was to start the Brazilian Multipurpose Reactor (RMB) project, which aims to meet the national demand of 99 Mo for the medical field. This work aims to study the 99 Mo adsorption in AG1-X8 strong anion resin, which is one of the intermediate steps of separation and purification, retaining it in the form of molybdate ions. In process evaluated the resin properties with respect to pH and concentration of 99 Mo in the solution. The adsorbed amount of 99 Mo was determined indirectly by the amount in the supernatant after adsorption and the data fitted to the Langmuir and Freundlich isotherms. Among the models, the Langmuir showed a closer relationship with the experimentally obtained data. This suggests the occurrence of monolayer adsorption and heterogeneous conditions at the surface, where both phenomena can coexist in the experimental conditions tested. (author)

  3. Measurement of Mo-99 column activity in the evaluation of Mo-99/Tc-99m generator

    International Nuclear Information System (INIS)

    Kuster, Z.

    1994-01-01

    In order to calculate the real elution efficiency of Mo-99/Tc-99m generator the Mo-99 content on the column has to be previously determined. As found in this work, the external measurement of Mo-99-column activity by means of Geiger-Mueller counter is a simple, fast and reliable method. Generally, Mo-99-column is placed slightly out of the center of the generator; therefore the externally measured flux of photons (φ) is an angular-dependent function. If the thickness of the lead container is radially uniform, the flux measured at some distance from the generator (which is rotated in 2π/3 steps) is given by the equation φ = A (1 + Bcos (α-2π(i - 2)/3)) -1 , i=1,2 or 3 (Eq.1) where A is a numerical constant depending on the Mo-99-column activity, B is a numerical constant depending on the Mo-99- column position within the lead container, the angle α depends on the initial orientation of the generator. A total of 20 generator were studied. The measured Mo-99-column activities (Capintec dose calibrator) were in the range 13.1- 35.11 GBq. Contrary to the findings of Vinberg and Kristensen (Eur J Nucl Med 1/1976(219), values of A (Eq. 1) are in good correlation (r 2 =0.9794) with the measured Mo-99-column activities. (author)

  4. Highly flexible, conductive and transparent MoO3/Ag/MoO3 multilayer electrode for organic photovoltaic cells

    International Nuclear Information System (INIS)

    Abachi, T.; Cattin, L.; Louarn, G.; Lare, Y.; Bou, A.; Makha, M.; Torchio, P.

    2013-01-01

    MoO 3 /Ag/MoO 3 (MAM) multilayer structures were deposited by vacuum evaporation on polyethylene terephthalate (PET) substrate. We demonstrate that, as in the case of glass substrate, the sheet resistance of such structures depends significantly on the Ag film deposition rate. When it is deposited between 0.2 and 0.4 nm/s, an Ag thickness of 11 nm allows achieving sheet resistance of 13 Ω/sq and an averaged transmission of 74%. A study of the influence of the PET substrate on the optimum MoO 3 thicknesses was done. A good qualitative agreement between the theoretical calculations of the variation of the optical transmittance of the MoO 3 /Ag/MoO 3 structures is obtained. The optimum MAM structures MoO 3 (17.5 nm)/Ag (11 nm)/MoO 3 (35 nm) has a factor of merit F M = 4.21 10 −3 (Ω/sq) −1 . Proven by the scotch test the MAM structures exhibit a good adhesion to the PET substrates. The MAM structures were also submitted to bending tests. For outer bending, the samples exhibit no variation of their resistance value, while for inner bending there is a small increase of the resistance of the MAM structures. However this increasing is smaller than that exhibited by Indium Tin Oxide. When the PET/MAM structures are used as anode in organic photovoltaic cells, it is shown that the need to use thicker Ag films inside the multilayer and to cover the MAM with Au to obtain promising Current density vs Voltage characteristics is due to the heating of the PET substrate during the deposition process. - Highlights: • MoO 3 /Ag/MoO 3 structures deposited on polyethylene terephthalate substrate. • MoO 3 /Ag/MoO 3 structures deposited by vacuum evaporation. • The Ag deposition rate influences the properties of the structures. • The MoO 3 /Ag/MoO 3 optimum structure has a factor of merit F M = 4.21 10 −3 (Ω/sq) −1 . • The MoO 3 /Ag/MoO 3 structures exhibit a high flexibility

  5. Controlled p-doping of black phosphorus by integration of MoS2 nanoparticles

    Science.gov (United States)

    Jeon, Sumin; Kim, Minwoo; Jia, Jingyuan; Park, Jin-Hong; Lee, Sungjoo; Song, Young Jae

    2018-05-01

    Black phosphorus (BP), a new family of two dimensional (2D) layered materials, is an attractive material for future electronic, photonic and chemical sensing devices, thanks to its high carrier density and a direct bandgap of 0.3-2.0 eV, depending on the number of layers. Controllability over the properties of BP by electrical or chemical modulations is one of the critical requirements for future various device applications. Herein, we report a new doping method of BP by integration of density-controlled monolayer MoS2 nanoparticles (NPs). MoS2 NPs with different density were synthesized by chemical vapor deposition (CVD) and transferred onto a few-layer BP channel, which induced a p-doping effect. Scanning electron microscopy (SEM) confirmed the size and distribution of MoS2 NPs with different density. Raman and X-ray photoelectron spectroscopy (XPS) were measured to confirm the oxidation on the edge of MoS2 NPs and a doping effect of MoS2 NPs on a BP channel. The doping mechanism was explained by a charge transfer by work function differences between BP and MoS2 NPs, which was confirmed by Kelvin probe force microscopy (KPFM) and electrical measurements. The hole concentration of BP was controlled with different densities of MoS2 NPs in a range of 1012-1013 cm-2.

  6. EXAFS study of Mo2N and Mo nitrides supported on zeolites

    International Nuclear Information System (INIS)

    Liu Zhenlin; Meng Ming; Fu Yilu; Jiang Ming; Hu Tiandou; Xie Yaning; Liu Tao

    2002-01-01

    In the present study, the reaction is applied to prepare molybdenum nitrides with high surface area, and zeolites are used as supports. The EXAFS of the Mo K-absorption edge is measured and the change of coordination environment of Mo atoms before and after the nitridation is revealed

  7. Study of methodologies for quality control of 99Mo used in 99Mo/99mTc generators

    International Nuclear Information System (INIS)

    Said, Daphne de Souza

    2016-01-01

    99m Tc is the most used radionuclide in nuclear medicine. In Brazil, the 99 Mo/ 99m Tc generators are exclusively produced by Radiopharmacy Center at IPEN-CNEN/ SP, by importing 99 Mo from different suppliers. 99 Mo (t 1/2 = 66 h) is a fission product of 235 U and it can have radionuclidic impurities that are prejudicial for human health. For safe use of generators, it is necessary to perform the evaluation of 99 Mo by quality control tests in order to assess if 99 Mo complies with the specifications. The European Pharmacopoeia (EP) presents a monograph for evaluation of the quality of the [ 99 Mo] solution as sodium molybdate,that is used as raw material for 99 Mo/ 99m Tc generators production, including specification parameters (identification, radiochemical purity and radionuclidic purity), analysis methods and limits. However, it has been observed difficulties on the execution and implementation of these methods by the generators producers, with a few literature about this subject, probably due to complexity of the proposed methods. In this work, many quality control parameters of 99 Mo described in the EP monograph were evaluated. Separation methods for 99M o from its radionuclidic impurities by solid phase extraction (SPE) and TLC were studied. After SPE separation, the quantification of metals by ICP-OES to evaluate the percentage of retention of Mo and the percentage of recovery of Ru, Te and Sr using different types of cartridges were proposed, replacing radiotracers use. It was observed that the specific type of SPE cartridge recommended by the EP for separation of 99 Mo presented low recoveries for Ru, compared to other available anion exchange SPE cartridges. 99 Mo samples from different worldwide suppliers were analyzed. It was observed that quantification of 103 Ru in 99 Mo samples with decay time higher than 4 weeks is possible. An alternative method for separation of 131 I from 99 Mo showed promising results by TLC. The quantification of beta and

  8. VTVH-MCD study of the Delta nifB Delta nifZ MoFe protein from Azotobacter vinelandii.

    Science.gov (United States)

    Cotton, Marcia S; Rupnik, Kresimir; Broach, Robyn B; Hu, Yilin; Fay, Aaron W; Ribbe, Markus W; Hales, Brian J

    2009-04-08

    NifZ is a member of a series of proteins associated with the maturation of the nitrogenase MoFe protein. An MCD spectroscopic study was undertaken on the Delta nifB Delta nifZ MoFe protein generated in the absence of both NifZ and NifB (deletion of NifB generates an apo-MoFe protein lacking the FeMo cofactor). Results presented here show that, in the absence of NifZ, only one of the two P-clusters of the MoFe protein is matured to the ultimate [8Fe-7S] structure. The other P-cluster site in the protein contains a [4Fe-4S] cluster pair, representing a P-cluster precursor that is electronically identical to the analogous clusters observed in the Delta nifH MoFe protein. These results suggest that the MoFe protein is synthesized in a stepwise fashion where NifZ is specifically required for the formation of the second P-cluster.

  9. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  10. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  11. Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.

    Science.gov (United States)

    Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine

    2018-01-01

    Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.

  12. Measurement of the molar heat capacities of MoO2 and MoO3 from 350 to 950 K

    International Nuclear Information System (INIS)

    Inaba, H.; Miyahara, K.; Naito, K.

    1984-01-01

    Molar heat capacities of MoO 2 and MoO 3 were measured in the range between 350 and 950 K by means of adiabatic scanning calorimetry. For MoO 2 , a sharp heat-capacity anomaly with a molar enthalpy change of (178 +- 24) J.mol -1 and a molar entropy change of (0.207 +- 0.028) J.K -1 .mol -1 was observed at 865 K, which had not been detected by drop calorimetry. For MoO 3 , two heat-capacity anomalies with molar enthalpy changes of (88 +- 21) and (60 +- 36) J.mol -1 were found at 808 K and 857 K, respectively; neither anomaly had been detected by the drop method. The lattice molar heat capacities of MoO 2 and MoO 3 are estimated as Csub(l,m)(MoO 2 ) = D(469 K/T) + E(578 K/T) + E(876 K/T) and Csub(l,m)(MoO 3 ) = D(208 K/T) + 2E(488 K/T) + E(1170 K/T), where D(x) and E(x) are the Debye and Einstein functions, respectively. The temperature coefficient of the electronic molar heat capacity of MoO 2 is estimated as (6.0 +- 0.5) mJ.K -2 .mol -1 . The excess heat capacity in MoO 3 found at higher temperatures is interpreted as being due to vacancy formation with a molar activation energy of (98 +-5) kJ.mol -1 . The origin of the heat-capacity anomalies is inferred as arising from the slight movement of distorted MoO 6 octahedra in the MoO 2 and MoO 3 structures. (author)

  13. Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation

    Science.gov (United States)

    Kar, Sujoy Kumar; Dheeradhada, Voramon S.; Lipkin, Don M.

    2013-08-01

    Alloys in the Mo-rich corner of the Mo-Ti-Zr-C system have found broad applications in non-oxidizing environments requiring structural integrity well beyond 1273 K (1000 °C). Alloys such as TZM (Mo-0.5Ti-0.08Zr-0.03C by weight %) and TZC (Mo-1.2Ti-0.3Zr-0.1C by weight) owe much of their high temperature strength and microstructural stability to MC and M2C carbide phases. In turn, the stability of the respective carbides and the subsequent mechanical behavior of the alloys are strongly dependent on the alloying additions and thermal history. A CALPHAD-based thermodynamic modeling approach is employed to develop a quaternary thermodynamic database for the Mo-Ti-Zr-C system. The thermodynamic database thus developed is validated with diffusion multiple experiments and the validated database is exercised to elucidate the effects of alloying and thermal history on the phase equilibrium in Mo-rich alloys.

  14. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    Science.gov (United States)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  15. Vertical MoSe2-MoO x p-n heterojunction and its application in optoelectronics

    Science.gov (United States)

    Chen, Xiaoshuang; Liu, Guangbo; Hu, Yunxia; Cao, Wenwu; Hu, PingAn; Hu, Wenping

    2018-01-01

    The hybrid n-type 2D transition-metal dichalcogenide (TMD)/p-type oxide van der Waals (vdW) heterojunction nanosheets consist of 2D layered MoSe2 (the n-type 2D material) and MoO x (the p-type oxide) which are grown on SiO2/Si substrates for the first time via chemical vapor deposition technique, displaying the regular hexagon structures with the average length dimension of sides of ˜8 μm. Vertical MoSe2-MoO x p-n heterojunctions demonstrate obviously current-rectifying characteristic, and it can be tuned via gate voltage. What is more, the photodetector based on vertical MoSe2-MoO x heterojunctions displays optimal photoresponse behavior, generating the responsivity, detectivity, and external quantum efficiency to 3.4 A W-1, 0.85 × 108 Jones, and 1665.6%, respectively, at V ds = 5 V with the light wavelength of 254 nm under 0.29 mW cm-2. These results furnish a building block on investigating the flexible and transparent properties of vdW and further optimizing the structure of the devices for better optoelectronic and electronic performance.

  16. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  17. Achieving tunable doping of MoSe2 based devices using GO@MoSe2 heterostructure

    Science.gov (United States)

    Maji, Tuhin Kumar; Tiwary, Krishna Kanhaiya; Karmakar, Debjani

    2017-05-01

    Doping nature of MoSe2, one of the promising Graphene analogous device material, can be tuned by controlling the concentration of functional groups in Graphene oxide (GO)@MoSe2 heterostructure. In this study, by first-principles simulation, we have observed that GO can be used as a carrier injection layer for MoSe2, where n or p type carriers are introduced within MoSe2 layer depending on the type and concentration of functional moieties in it. Both n and p-type Schottky barrier height modulations are investigated for different modeled configurations of the heterostructure. This combinatorial heterostructure can be a promising material for future electronic device application.

  18. Alternative Crucibles for U-Mo Microwave Melting

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Brent W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-31

    The crucibles used currently for microwave melting of U-Mo alloy at the Y-12 Complex contain silicon carbide (SiC) in a mullite (3Al2O3-2SiO2) matrix with an erbia coating in contact with the melt. Due to observed silicon contamination, Pacific Northwest National Laboratory has investigated alternative crucible materials that are susceptible to microwave radiation and are chemically compatible with molten U-Mo at 1400 1500C. Recommended crucibles for further testing are: 1) high-purity alumina (Al2O3); 2) yttria-stabilized zirconia (ZrO2); 3) a composite of alumina and yttria-stabilized zirconia; 4) aluminum nitride (AlN). Only AlN does not require an erbia coating. The recommended secondary susceptor, for heating at low temperature, is SiC in a “picket fence” arrangement.

  19. Microstructural defects modeling in the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Fernandez, Julian R.; Monti, Ana M.

    2006-01-01

    In this work we have utilized computer simulation techniques to study microstructural defects, such as point defects and interfaces, in the Al-Mo alloy. Such alloy is taken as a model to study the Al(fcc)/U-Mo(bcc) interface. The EAM interatomic potential used has been fitted to the formation energy and lattice constant of the AlMo 3 intermetallic. Formation of vacancies for both components Al and Mo and anti-sites, Al Mo and Mo Al , as well as vacancy migration was studied in this structure. We found that the lowest energy defect complex that preserves stoichiometry is the antisite pair Al Mo +Mo Al , in correspondence with other intermetallics of the same structure. Our results also suggest that the structure of the Al(fcc)/Mo(bcc) interface is unstable, while that of the Al(fcc)/Al 5 Mo interface is stable, as observed experimentally. (author) [es

  20. Development of improved HP/IP rotor material 2% CrMoNiWV (23 CrMoNiWV 88)

    International Nuclear Information System (INIS)

    Wiemann, W.

    1989-01-01

    The new 2% CrMoNiWV steel has a sufficient strength level, a very good creep (rupture) behaviour and an excellent toughness behaviour for a creep resistant steel. Even after long time high temperature exposure the toughness degradation is so small that it is still better than this of best 1% CrMo(Ni)V steels. The fatigue behaviour is well comparable to this of 1% CrMo(Ni)V. The 2% CrMoNiWV steel has the capability to substitute the traditional 1% CrMo(Ni)V. (orig.) With 26 annexes

  1. Electrical characteristics of multilayer MoS2 FET's with MoS2/graphene heterojunction contacts.

    Science.gov (United States)

    Kwak, Joon Young; Hwang, Jeonghyun; Calderon, Brian; Alsalman, Hussain; Munoz, Nini; Schutter, Brian; Spencer, Michael G

    2014-08-13

    The electrical properties of multilayer MoS2/graphene heterojunction transistors are investigated. Temperature-dependent I-V measurements indicate the concentration of unintentional donors in exfoliated MoS2 to be 3.57 × 10(11) cm(-2), while the ionized donor concentration is determined as 3.61 × 10(10) cm(-2). The temperature-dependent measurements also reveal two dominant donor levels, one at 0.27 eV below the conduction band and another located at 0.05 eV below the conduction band. The I-V characteristics are asymmetric with drain bias voltage and dependent on the junction used for the source or drain contact. I-V characteristics of the device are consistent with a long channel one-dimensional field-effect transistor model with Schottky contact. Utilizing devices, which have both graphene/MoS2 and Ti/MoS2 contacts, the Schottky barrier heights of both interfaces are measured. The charge transport mechanism in both junctions was determined to be either thermionic-field emission or field emission depending on bias voltage and temperature. On the basis of a thermionic field emission model, the barrier height at the graphene/MoS2 interface was determined to be 0.23 eV, while the barrier height at the Ti/MoS2 interface was 0.40 eV. The value of Ti/MoS2 barrier is higher than previously reported values, which did not include the effects of thermionic field emission.

  2. Polyoxometalates paneling through {Mo2O2S2} coordination: cation-directed conformations and chemistry of a supramolecular hexameric scaffold.

    Science.gov (United States)

    Marrot, Jérôme; Pilette, Marie Anne; Haouas, Mohamed; Floquet, Sébastien; Taulelle, Francis; López, Xavier; Poblet, Josep M; Cadot, Emmanuel

    2012-01-25

    The chemical system based on the [Mo(2)O(2)S(2)(OH(2))(6)](2+) aqua cation (noted L) and the trivacant [AsW(9)O(33)](9-) polyoxometalate (noted POM) has been investigated. Depending upon the ionic strength and the nature of the alkali cations, these complementary components assemble to yield three different architectures derived as hexamer (1), tetramer (2), and dimer (3). This series of clusters displays the same stoichiometry {POM(6)L(9)}(36-), {POM(4)L(6)}(24-), and {POM(2)L(3)}(12-) for 1, 2, and 3, respectively, and their conditions of formation differ mainly by the nature and the concentration of the alkali cation (from Li to Cs). Structural characterizations of 1 reveal a large hexameric supramolecular scaffold (about 25 Å in diameter), which encloses a large internal hole (about 200 Å(3)) filled by water molecules and alkali cations (Na(+) or K(+)). The hexameric scaffold 1 exhibits a rare flexibility property evidenced in the solid state by two distinct conformations, either eclipsed (1a) or staggered-off (1b). Both conformations appear clearly separated by a large twist angle (~40°) and depend mainly on the composition of the internal hole. Structure of anion 2 shows a tetrahedral arrangement where the four POM units and the six connecting {Mo(2)O(2)S(2)} linkers are located at the corners and at the edges, respectively. The structure of anion 3 corresponds to the simplest arrangement, described as a dimeric association of two POM units linked by three {Mo(2)S(2)O(2)} pillars. Stability of the hexameric scaffold has been investigated in solution by (183)W and (39)K NMR and by UV-vis, showing that stability of 1 depends strongly on the proportion of potassium ions, which interfere through host-guest exchange. Density functional methodology (DFT) has been applied to compute the geometries and energies of dimer (3), tetramer (2) and hexamer (1) based on {AsW(9)O(33)} (POM) and {Mo(2)O(2)S(2)} (L) units. Calculations tend to show that internal cations act

  3. Development of Mo recycle technique from generator materials

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Masataka; Kurosawa, Makoto; Kimura, Akihiro; Nishikata, Kaori; Tsuchiya, Kunihiko [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Kakei, Sadanori; Yoshinaga, Hideo [Taiyo Koko Corp., Ako Laboratory, Ako, Hyogo (Japan)

    2012-03-15

    The domestic {sup 99}Mo production by the (n,{gamma}) method is proposed in JMTR because of low amount of radioactive wastes and easy {sup 99}Mo/{sup 99m}Tc production process. For the development of domestic production, it is necessary to use the enriched {sup 98}MoO{sub 3}, which is very expensive, for high specific activity of {sup 99}Mo. A large amount of used PZC/PTC embraced {sup 98}Mo is also generated after the decay of {sup 99}Mo. JAEA and Taiyo Koko is proposed to recover molybdenum from the used PZC/PTC for an effective use of resources and reduction of radioactive wastes. Preliminary experiments of Mo recycling with un-irradiated MoO{sub 3} were carried out by the elution and sublimation methods. From the results, Mo recovery rate from the PZC/PTC was more than 95% by two kinds of methods. The prospects are bright for Mo recycle and reduction of radioactive wastes using these methods. (author)

  4. Investigation of the fabrication process of hot-worked stainless-steel and Mo sheathed PbMo6 S8 wires

    International Nuclear Information System (INIS)

    Yamasaki, H.; Kimura, Y.

    1988-01-01

    Stainless-steel and Mo sheathed PbMo 6 S 8 wires have been fabricated by hot working from modified PbS, Mo, and MoS 2 mixed powders which were prepared by reacting Pb, Mo, and S at 530 0 C. Critical current densities were investigated for different preparation conditions, and it is revealed that obtaining continuous current path between PbMo 6 S 8 grains is the most important factor to achieve high critical current density. The J/sub c/ value of 2.8 x 10 4 Acm 2 (8 T), 7.8 x 10 3 Acm 2 (15 T), and 1.3 x 10 3 Acm 2 (23 T) was observed for the PbMo 6 S/sub 7.0/ wire heat treated at 700 0 C.copic

  5. Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

    Directory of Open Access Journals (Sweden)

    Seung-Kon Lee

    2016-06-01

    Full Text Available Molybdenum-99 (99Mo is the most important isotope because its daughter isotope, technetium-99m (99mTc, has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of 99Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of 99Mo technology developments. Most of the industrial-scale 99Mo processes have been based on the fission of 235U. Recently, important issues have been raised for the conversion of fission 99Mo targets from highly enriched uranium to low enriched uranium (LEU. The development of new LEU targets with higher density was requested to compensate for the loss of 99Mo yield, caused by a significant reduction of 235U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission 99Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the 99Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  6. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Lee, Eungje; Murthy, Arun; Manthiram, Arumugam

    2011-01-01

    Carbon-supported Pt-Sn-Mo electrocatalysts have been synthesized by a polyol reduction method and characterized for ethanol electro-oxidation reaction (EOR). While the percent loading of the synthesized nanoparticles on the carbon support is higher than 35%, energy dispersive spectroscopy (EDS) reveals that the Mo contents in the nanoparticle catalysts are lower than the nominal value, indicating incomplete reduction of the Mo precursor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that the Sn and Mo exist as oxide phases at the surface layers of the nanoparticles and the degree of alloying is very low. The electrochemical properties of the electrocatalysts have been evaluated by cyclic voltammetry (CV) and chronoamperometry. The catalytic activity for EOR decreases in the order PtSnMo 0.6 /C > PtSnMo 0.4 /C > PtSn/C. Single cell direct ethanol fuel cell (DEFC) tests also confirm that the PtSnMo 0.6 /C anode catalyst exhibit better performance than the PtSn/C anode catalyst. An analysis of the electrochemical data suggests that the incorporation of Mo to Pt-Sn enhances further the catalytic activity for EOR.

  7. Phase formation in the Rb2MoO4-Li2MoO4-Hf(MoO4)2 system and the crystal structure of Rb5(Li1/3Hf5/3)(MoO4)6

    International Nuclear Information System (INIS)

    Solodovnikov, S.F.; Zolotova, E.S.; Balsanova, L.V.; Bazarov, B.G.; Bazarova, Zh.G.

    2003-01-01

    Phase formation in the Rb 2 MoO 4 -Li 2 MoO 4 -Hf(MoO 4 ) 2 system is studied in subsolidus region in air by the method of crossing sections. Three ternary molybdates are detected in the system. Compositions of two of them are corroborated by selection of isostructural analogues [ru

  8. Two-dimensional MoS2-graphene hybrid nanosheets for high gravimetric and volumetric lithium storage

    Science.gov (United States)

    Deng, Yakai; Ding, Lixin; Liu, Qixing; Zhan, Liang; Wang, Yanli; Yang, Shubin

    2018-04-01

    Two-dimensional (2D) MoS2-graphene (MoS2-G) hybrid is fabricated simultaneously and scalablely with an efficient electrochemical exfoliation approach from the combined bulk MoS2-graphite wafer. The as-prepared 2D MoS2-G hybrid is tightly covered with each other with lateral sizes of 600 nm to few micrometers and can be directly assembled to flexible films for lithium storage. When used as anode material for lithium ion battery, the resultant MoS2-G hybrid film exhibits both high gravimetric (750 mA h g-1 at 50 mA g-1) and volumetric capacities (1200 mA h cm-3 at 0.1 mA cm-2). Such excellent electrochemical performance should attributed to the unique 2D structure and good conductive graphene network, which not only facilitates the diffusion of lithium ions, but also improves the fast transfer of electrons, satisfying the kinetics requirements for rapid lithium storage.

  9. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review

    International Nuclear Information System (INIS)

    Zhao Yufei; Zhang Yuxia; Yang Zhiyu; Yan Yiming; Sun Kening

    2013-01-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials. (review)

  10. Diodes based on semi-insulating CdTe crystals with Mo/MoO{sub x} contacts for X- and γ-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Maslyanchuk, O.; Kulchynsky, V.; Solovan, M. [Chernivtsi National University, Chernivtsi (Ukraine); Gnatyuk, V. [Institute of Semiconductor Physics, NAS of Ukraine, Kyiv (Ukraine); Potiriadis, C. [Greek Atomic Energy Commission, Attiki (Greece); Kaissas, I. [Greek Atomic Energy Commission, Attiki (Greece); Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki (Greece); Brus, V. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany)

    2017-03-15

    This paper reports on the possible applications of molybdenum oxide (Mo/MoO{sub x}) contacts in combination with semi-insulating CdTe crystals. The electrical contacts to p-type Cl-doped CdTe crystals were formed by the deposition of molybdenum oxide and pure molybdenum thin films by the DC reactive magnetron sputtering. Electrical properties of the prepared Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo surface-barrier structures were investigated at different temperatures. It is shown that the rapid growth of the reverse current with increasing bias voltage higher than 10 V is caused by the space-charge limited currents. Spectrometric properties of the Mo-MoO{sub x}/p-CdTe/MoO{sub x}-Mo structures have been also analyzed. It is revealed that the developed heterojunction has shown promising characteristics for its practical application in X- and γ-ray radiation detector fabrication. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Evaluating Strengthening and Impact Toughness Mechanisms for Ferritic and Bainitic Microstructures in Nb, Nb-Mo and Ti-Mo Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    Gorka Larzabal

    2017-02-01

    Full Text Available Low carbon microalloyed steels show interesting commercial possibilities by combining different “micro”-alloying elements when high strength and low temperature toughness properties are required. Depending on the elements chosen for the chemistry design, the mechanisms controlling the strengths and toughness may differ. In this paper, a detailed characterization of the microstructural features of three different microalloyed steels, Nb, Nb-Mo and Ti-Mo, is described using mainly the electron backscattered diffraction technique (EBSD as well as transmission electron microscopy (TEM. The contribution of different strengthening mechanisms to yield strength and impact toughness is evaluated, and its relative weight is computed for different coiling temperatures. Grain refinement is shown to be the most effective mechanism for controlling both mechanical properties. As yield strength increases, the relative contribution of precipitation strengthening increases, and this factor is especially important in the Ti-Mo microalloyed steel where different combinations of interphase and random precipitation are detected depending on the coiling temperature. In addition to average grain size values, microstructural heterogeneity is considered in order to propose a new equation for predicting ductile–brittle transition temperature (DBTT. This equation considers the wide range of microstructures analyzed as well as the increase in the transition temperature related to precipitation strengthening.

  12. Phase formation in the K2MoO4-Lu2(MoO4)3-Hf(MoO4)2 system and the structural study of triple molybdate K5LuHf(MoO4)6

    International Nuclear Information System (INIS)

    Romanova, E.Yu.; Bazarov, B.G.; Tushinova, Yu.L.; Fedorov, K.N.; Bazarova, Zh.G.; Klevtsova, R.F.; Glinskaya, L.A.

    2007-01-01

    Interactions in the ternary system K 2 MoO 4 -Lu 2 (MoO 4 ) 3 -Hf(MoO 4 ) 2 have been studied by X-ray powder diffraction and differential thermal analysis. A new triple (potassium lutetium hafnium) molybdate with the 5 : 1 : 2 stoichiometry has been found. Monocrystals of this molybdate have been grown. Its X-ray diffraction structure has been refined (an X8 APEX automated diffractometer, MoK α radiation, 1960 F(hkl), R = 0.0166). The trigonal unit cell has the following parameters: a = 10.6536(1) A, c = 37.8434(8) A, V=3719.75(9) A, Z = 6, space group R3-bar c. The mixed 3D framework of the structure is built of Mo tetrahedra sharing corners with two independent (Lu,Hf)O 6 octahedra. Two sorts of potassium atoms occupy large framework voids [ru

  13. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo

    2015-10-05

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  14. Three-Dimensional Heterostructures of MoS 2 Nanosheets on Conducting MoO 2 as an Efficient Electrocatalyst To Enhance Hydrogen Evolution Reaction

    KAUST Repository

    Nikam, Revannath Dnyandeo; Lu, Ang-Yu; Sonawane, Poonam Ashok; Kumar, U. Rajesh; Yadav, Kanchan; Li, Lain-Jong; Chen, Yit Tsong

    2015-01-01

    Molybdenum disulfide (MoS) is a promising catalyst for hydrogen evolution reaction (HER) because of its unique nature to supply active sites in the reaction. However, the low density of active sites and their poor electrical conductivity have limited the performance of MoS in HER. In this work, we synthesized MoS nanosheets on three-dimensional (3D) conductive MoO via a two-step chemical vapor deposition (CVD) reaction. The 3D MoO structure can create structural disorders in MoS nanosheets (referred to as 3D MoS/MoO), which are responsible for providing the superior HER activity by exposing tremendous active sites of terminal disulfur of S2 (in MoS) as well as the backbone conductive oxide layer (of MoO) to facilitate an interfacial charge transport for the proton reduction. In addition, the MoS nanosheets could protect the inner MoO core from the acidic electrolyte in the HER. The high activity of the as-synthesized 3D MoS/MoO hybrid material in HER is attributed to the small onset overpotential of 142 mV, a largest cathodic current density of 85 mA cm, a low Tafel slope of 35.6 mV dec, and robust electrochemical durability.

  15. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  16. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    Science.gov (United States)

    Liu, Guoliang; Robertson, Alex W.; Li, Molly Meng-Jung; Kuo, Winson C. H.; Darby, Matthew T.; Muhieddine, Mohamad H.; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H.; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  17. Adsorption behavior of {sup 99}Mo using AG1-X8 anionic resin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jacinete L. dos; Yamaura, Mitiko; Damasceno, Marcos O.; Forbicini, Christina A.L.G.O., E-mail: jlsantos@ipen.br, E-mail: myamaura@ipen.br, E-mail: marcos956@bol.com.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The significant growth in demand of {sup 99}Mo in developed and developing countries, like Brazil, requires large production capacity and availability of this radioisotope. With the global crisis on its supply to Brazil rethought the need to become independent in their production and the solution was to start the Brazilian Multipurpose Reactor (RMB) project, which aims to meet the national demand of {sup 99}Mo for the medical field. This work aims to study the {sup 99}Mo adsorption in AG1-X8 strong anion resin, which is one of the intermediate steps of separation and purification, retaining it in the form of molybdate ions. In process evaluated the resin properties with respect to pH and concentration of {sup 99}Mo in the solution. The adsorbed amount of {sup 99}Mo was determined indirectly by the amount in the supernatant after adsorption and the data fitted to the Langmuir and Freundlich isotherms. Among the models, the Langmuir showed a closer relationship with the experimentally obtained data. This suggests the occurrence of monolayer adsorption and heterogeneous conditions at the surface, where both phenomena can coexist in the experimental conditions tested. (author)

  18. Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles

    Science.gov (United States)

    Wan, Qingming; Jin, Yi; Sun, Pengcheng; Ding, Yulong

    2014-05-01

    This work concerns rheological and frictional behaviour of lubricating oils containing platelet molybdenum disulfide (MoS2) nanoparticles (average diameter 50 nm; single layer thickness 3 nm). Stable nano-MoS2 lubricants were formulated and measured for their rheological behaviour and tribological performance. Rheological experiments showed that the nano-MoS2 oils were non-Newtonian following the Bingham plastic fluid model. The viscosity data fitted the classic Hinch-Leal (H-L) model if an agglomeration factor of 1.72 was introduced. Tribological experiments indicated that the use of MoS2 nanoparticles could enhance significantly the tribological performance of the base lubricating oil (reduced frictional coefficient, reduced surface wear and increased stability). Scanning electron microscopy, laser confocal microscope and x-ray energy dispersive spectroscopy analyses suggested that the reduced frictional coefficient and surface wear be associated with surface patching effects. Such patching effects were shown to depend on the concentration of MoS2 nanoparticles, and an effective patching required a concentration over approximately 1 wt%. The increased stability could be attributed to the enhanced heat transfer and lubricating oil film strength due to the presence of nanoparticles.

  19. New methods of magnet-based instrumentation for NOTES.

    Science.gov (United States)

    Magdeburg, Richard; Hauth, Daniel; Kaehler, Georg

    2013-12-01

    Laparoscopic surgery has displaced open surgery as the standard of care for many clinical conditions. NOTES has been described as the next surgical frontier with the objective of incision-free abdominal surgery. The principal challenge of NOTES procedures is the loss of triangulation and instrument rigidity, which is one of the fundamental concepts of laparoscopic surgery. To overcome these problems necessitates the development of new instrumentation. material and methods: We aimed to assess the use of a very simple combination of internal and external magnets that might allow the vigorous multiaxial traction/counter-traction required in NOTES procedures. The magnet retraction system consisted of an external magnetic assembly and either small internal magnets attached by endoscopic clips to the designated tissue (magnet-clip-approach) or an endoscopic grasping forceps in a magnetic deflector roll (magnet-trocar-approach). We compared both methods regarding precision, time and efficacy by performing transgastric partial uterus resections with better results for the magnet-trocar-approach. This proof-of-principle animal study showed that the combination of external and internal magnets generates sufficient coupling forces at clinically relevant abdominal wall thicknesses, making them suitable for use and evaluation in NOTES procedures, and provides the vigorous multiaxial traction/counter-traction required by the lack of additional abdominal trocars.

  20. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  1. X-ray and electron microscopy investigation of the topotactic transformation of MoO3 into MoO2

    International Nuclear Information System (INIS)

    Bertrand, O.; Dufour, L.C.

    1980-01-01

    The reduction of MoO 3 is investigated by X-ray analysis and electron microscopy from MoO 3 (010) platelets between 1000 A and 5 mm long. In all cases, the following orientation relationship between both lattices is found: [100] 2 parallel [010] 3 , [122] 2 parallel [100] 3 . [-12-2] 2 parallel [001] 3 . MoO 3 crystallites twinning and misorientation are discussed in relation with the particular importance of [101] 3 directions in MoO 3 preserved in the transformation and becoming [010] 2 of MoO 2 . A model for this topotactic reduction is proposed where the reaction develops layer (010) 3 by layer (010) 3 to form [20-1] 2 type planes in MoO 2 structure. Data on the kinetics of the boundary moving in [010] 3 direction are also presented. (author)

  2. PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al

    Directory of Open Access Journals (Sweden)

    Supardjo Supardjo

    2015-07-01

    Full Text Available PENGARUH SERBUK U-Mo HASIL PROSES MEKANIK DAN HYDRIDE – DEHYDRIDE – GRINDING MILL TERHADAP KUALITAS PELAT ELEMEN BAKAR U-Mo/Al. Penelitian bahan bakar U-7Mo/Al tipe pelat dilakukan dalam rangka pengembangan bahan bakar U3Si2/Al untuk mendapatkan bahan bakar baru yang memiliki densitas uranium lebih tinggi, stabil selama digunakan sebagai bahan bakar di dalam reaktor dan mudah dilakukan proses olah ulangnya. Lingkup penelitian meliputi pembuatan: paduan U-7Mo dengan teknik peleburan, pembuatan serbuk U-7Mo dengan dikikir dan hydride - dehydride - grinding mill, IEB U-7Mo/Al dengan teknik kompaksi pada tekanan 20 bar, dan PEB U-7Mo/Al dengan teknik pengerolan panas pada temperatur 425oC. Paduan U-7Mo hasil proses peleburan cukup homogen, berat jenis 16,34 g/cm3 dan bersifat ulet, kemudian dibuat menjadi serbuk dengan cara dikikir dan hydride - dehydride - grinding mill. Serbuk U-7Mo hasil proses kikir berbentuk pipih, kontaminan Fe cukup tinggi, sedangkan serbuk hasil proses hydride - dehydride - grinding mill, cenderung equiaxial dengan kontaminan yang rendah. Kedua jenis serbuk U-7Mo tersebut digunakan sebagai bahan baku pembuatan IEB U-7Mo/Al dan PEB U-7Mo/Al dengan densitas uranium 7 gU/cm3 dan diperoleh produk dengan kualitas yang hampir sama. Hasil uji IEB U-7Mo/Al berukuran 25 x 15 x 3,15±0,05 mm, tidak terdapat cacat/retak, distribusi U-7Mo di dalam matriks cukup homogen dan tidak terdapat pengelompokan/aglomerasi U-7Mo yang berdimensi >1 mm. PEB U-7Mo/Al hasil pengerolan dengan tebal akhir 1,45 mm, memiliki ketebalan meat rerata 0,60 mm dan tebal kelongsong 0,4 mm dan terdapat 1 titik pengukuran kelongsong dengan ketebalan 0,15 mm. Dengan membandingkan penggunaan kedua jenis serbuk U-7Mo tersebut, IEB U-7Mo/Al dan PEB U-7Mo/Al yang dihasilkan memiliki kualitas hampir sama. Namun demikian penggunaan serbuk U- 7Mo hasil proses hydride - dehydride - grinding mill lebih baik karena proses pengerjaannya lebih cepat dan impuritas dalam

  3. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  4. Intermediate report of MoReMo. Modelling resilience for maintenance and outage

    Energy Technology Data Exchange (ETDEWEB)

    Oedewald, P.; Macchi, L. (VTT Technical Research Centre of Finland (Finland)); Axelsson, C. (Ringhals AB, Vattenfall AB (Sweden)); Eitrheim, M.H.R. (Institute for Energy Technology (Norway))

    2012-02-15

    Resilience Engineering (RE) is a new approach to safety that helps organisations and individuals adapt to unforeseen events and long-term changes. Such an approach is needed by nuclear power plants (NPPs) as they face demanding modification projects, high staff turnover and increased pressures to maintain and improve safety. The goal of the Modelling Resilience for Maintenance and Outage (MoReMO) project is to develop and test models and methods to identify and analyse resilience in safety-critical activities in natural everyday settings. In 2011, we have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. The project has collected data through observations, interviews and document reviews at two NPPs. Together, the four approaches have provided valuable insights for understanding the rationale behind work practices, their effects on safety, and the support of flexibility and adaptability. In 2012, the MoReMO project will complete the data collection and integrate results on how resilience can be operationalized in practical safety management tools for the companies. (Author)

  5. Intermediate report of MoReMo. Modelling resilience for maintenance and outage

    International Nuclear Information System (INIS)

    Oedewald, P.; Macchi, L.; Axelsson, C.; Eitrheim, M.H.R.

    2012-02-01

    Resilience Engineering (RE) is a new approach to safety that helps organisations and individuals adapt to unforeseen events and long-term changes. Such an approach is needed by nuclear power plants (NPPs) as they face demanding modification projects, high staff turnover and increased pressures to maintain and improve safety. The goal of the Modelling Resilience for Maintenance and Outage (MoReMO) project is to develop and test models and methods to identify and analyse resilience in safety-critical activities in natural everyday settings. In 2011, we have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. The project has collected data through observations, interviews and document reviews at two NPPs. Together, the four approaches have provided valuable insights for understanding the rationale behind work practices, their effects on safety, and the support of flexibility and adaptability. In 2012, the MoReMO project will complete the data collection and integrate results on how resilience can be operationalized in practical safety management tools for the companies. (Author)

  6. First-principles study of van der Waals interactions in MoS2 and MoO3

    International Nuclear Information System (INIS)

    Peelaers, H; Van de Walle, C G

    2014-01-01

    Van der Waals interactions play an important role in layered materials such as MoS 2 and MoO 3 . Within density functional theory, several methods have been developed to explicitly include van der Waals interactions. We compare the performance of several of these functionals in describing the structural and electronic properties of MoS 2 and MoO 3 . We include functionals based on the local density or generalized gradient approximations, but also based on hybrid functionals. The coupling of the semiempirical Grimme D2 method with the hybrid functional HSE06 is shown to lead to a very good description of both structural and electronic properties. (paper)

  7. Controlled synthesis of MoO3 microcrystals by subsequent calcination of hydrothermally grown pyrazine–MoO3 nanorod hybrids and their photodecomposition properties

    International Nuclear Information System (INIS)

    Rajagopal, S.; Nataraj, D.; Khyzhun, O.Y.; Djaoued, Yahia; Robichaud, Jacques; Kim, Chang-Koo

    2013-01-01

    We present our results on successful synthesis of pyrazine–MoO 3 nanorod hybrids by using pyrazine and MoO 3 nanorods. On the first stage, MoO 3 nanorods were grown hydrothermally and, on the second stage, their mixture with pyrazine was again involved in a hydrothermal reaction to produce organic–inorganic hybrids. To understand the growth mechanism of the hybrids we varied time and temperature of the hydrothermal process. Intercalation of pyrazine was confirmed through X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray emission spectroscopy, scanning electron microscopy methods. Upon calcinations, pyrazine was deintercalated, i.e. removed from the MoO 3 hybrid system, and the MoO 3 nanorods were found to bind together resulting in formation of MoO 3 microslabs with increased surface area. Photodecomposition performance of the MoO 3 nanorods, pyrazine–MoO 3 hybrids and MoO 3 microcrystals was studied against Procion Red MX-5B textile dye. A high photodecomposition performance was found to decrease when going from MoO 3 nanorods to MoO 3 microcrystal and, further, to pyrazine–MoO 3 hybrids. - Graphical abstract: Display Omitted - Highlights: • High aspect ratio MoO 3 nanorods were prepared through a new hydrothermal method. • Hybrids of pyrazine–MoO 3 were formed by intercalating pyrazine into MoO 3 nanorods. • Intercalation of pyrazine was confirmed in X-ray spectroscopic analysis. • After calcinations, MoO 3 crystal was retained by binding MoO 3 nanorods together. • High photodegradation performance was noticed from MoO 3 nanorods

  8. Biodistribution of 99Mo in rats

    International Nuclear Information System (INIS)

    Souza, Raphael Sancho Sisley de; Ribeiro, Bianca da Silva; Dantas, Ana Leticia Almeida; Dantas, Bernardo Maranhao; Bernardo Filho, Mario

    2009-01-01

    The modification of 99 Mo standard metabolism in the presence of MDP would alter the dosimetry of this radionuclide in nuclear medicine patients. Therefore, the objective of this work is to evaluate the influence of MDP in the biodistribution of 99 Mo. Wistar rats were divided in two groups of six animals, being inoculated respectively 99 Molibdate and 99 Mo+MDP via plex ocular. The biodistribution study was carried out after 10 and 120 minutes respectively. The organs were counted with a NaI(Tl) detector. The uptake values did not present significant differences among the groups. An in vitro study through planar chromatography was carried out to determine the affinity between molybdenum and MDP. The results show that 99 Mo has low affinity both to propanone and NaCl-0.9% solution. However, 99 Mo in the presence of MDP presented affinity to NaCl-0.9% solution and low affinity to propanone suggesting that 99 Mo was bound to MDP under the conditions of the experiment. (author)

  9. Synthesis of Fine Mo2C Powder from Prereduced Mo in Undiluted CH4 Flow

    Science.gov (United States)

    Cetinkaya, S.; Eroglu, S.

    2017-10-01

    The carburization behavior of prereduced Mo was investigated in undiluted CH4 flow at 900-1000 K. Prior to the experiments, equilibrium thermodynamic analysis was carried out in the Mo-C-H system. The products were characterized by mass measurement, x-ray diffraction and scanning electron microscopy techniques. A single Mo2C phase was obtained within 45 min, 5 min, and 2.5 min at 900 K, 950 K, and 1000 K, respectively, at CH4 contents higher than the predicted ones. The reasons for this behavior were discussed in terms of CH4 stability, open tube flow, and self-created atmosphere in the powder bed. The fractional conversion-time curves indicated that the carburization kinetics followed a linear rate law. The Mo2C crystallite size (26-37 nm) and platelet thickness (50-100 nm) were found to be smaller than those of the parent Mo phase. These findings were attributable to the defects formed as a result of stresses associated with the reduction and the carburization.

  10. Comparative Effect of Mo and Cr on Microstructure and Mechanical Properties in NbV-Microalloyed Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Andrii Kostryzhev

    2018-02-01

    Full Text Available Steel product markets require the rolled stock with further increasing mechanical properties and simultaneously decreasing price. The steel cost can be reduced via decreasing the microalloying elements contents, although this decrease may undermine the mechanical properties. Multi-element microalloying with minor additions is the route to optimise steel composition and keep the properties high. However, this requires deep understanding of mutual effects of elements on each other’s performance with respect to the development of microstructure and mechanical properties. This knowledge is insufficient at the moment. In the present work we investigate the microstructure and mechanical properties of bainitic steels microalloyed with Cr, Mo, Nb and V. Comparison of 0.2 wt. % Mo and Cr additions has shown a more pronounced effect of Mo on precipitation than on phase balance. Superior strength of the MoNbV-steel originated from the strong solid solution strengthening effect. Superior ductility of the CrNbV-steel corresponded to the more pronounced precipitation in this steel. Nature of these mechanisms is discussed.

  11. GeneNotes – A novel information management software for biologists

    Directory of Open Access Journals (Sweden)

    Wong Wing H

    2005-02-01

    Full Text Available Abstract Background Collecting and managing information is a challenging task in a genome-wide profiling research project. Most databases and online computational tools require a direct human involvement. Information and computational results are presented in various multimedia formats (e.g., text, image, PDF, word files, etc., many of which cannot be automatically processed by computers in biologically meaningful ways. In addition, the quality of computational results is far from perfect and requires nontrivial manual examination. The timely selection, integration and interpretation of heterogeneous biological information still heavily rely on the sensibility of biologists. Biologists often feel overwhelmed by the huge amount of and the great diversity of distributed heterogeneous biological information. Description We developed an information management application called GeneNotes. GeneNotes is the first application that allows users to collect and manage multimedia biological information about genes/ESTs. GeneNotes provides an integrated environment for users to surf the Internet, collect notes for genes/ESTs, and retrieve notes. GeneNotes is supported by a server that integrates gene annotations from many major databases (e.g., HGNC, MGI, etc.. GeneNotes uses the integrated gene annotations to (a identify genes given various types of gene IDs (e.g., RefSeq ID, GenBank ID, etc., and (b provide quick views of genes. GeneNotes is free for academic usage. The program and the tutorials are available at: http://bayes.fas.harvard.edu/genenotes/. Conclusions GeneNotes provides a novel human-computer interface to assist researchers to collect and manage biological information. It also provides a platform for studying how users behave when they manipulate biological information. The results of such study can lead to innovation of more intelligent human-computer interfaces that greatly shorten the cycle of biology research.

  12. Solid state reactions of MoO3 and Na2MoO4 with (U.85,Ce.15)O2x

    International Nuclear Information System (INIS)

    Dahale, N.D.; Keskar, Meera; Singh Mudher, K.D.; Chawla, K.L.

    1999-01-01

    (U .85 ,Ce .15 )MoO 6-x was prepared by the solid state reactions of (U .85 ,Ce .15 )O 2±x with MoO 3 in air at 600 deg C. Solid state reactions of Na 2 MoO 4 with (U .85 ,Ce .15 )MoO 6.x up to 550 deg C in air led to the formation of Na 2 (U .85 ,Ce .15 )Mo 2 O 10-x and Na 2 (U .85 , Ce .15 ) 2 Mo 3 O 16-x . These compounds were characterised by x-ray and thermal methods. The x-ray powder data of (U .85 , Ce .15 ) MoO 6-x were indexed on monoclinic system whereas, data of Na 2 (U .85 ,Ce .15 ) Mo 2 O 10-x and Na 2 (U .85 ,Ce .15 ) 2 Mo 3 O 16-x were indexed on orthorhombic and monoclinic system respectively. (author)

  13. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  14. The use of extraction and electronic diffraction replicas for precipitates characterization in welded Cr-Mo Steels

    International Nuclear Information System (INIS)

    Gutierrez de Saiz-Solabarria, S.; San Juan Nunez, J.M.

    1997-01-01

    The precipitates and phases found in the structure of welded joints of Heat Interchanges Tubes were studied and identified. The base material satisfied the requirements of ASME Sec II, SA 213 Gr T22 (2 1/4 Cr 1 Mo). Compositions of Filler Metals were: 2 1/4 Cr 1 Mo and 2 1/4 Cr 1 Mo 1/4 Nb. The chemical composition of base and weld materials were analyzed by atomic emission spectroscopy in high vacuum electric discharge and by inductive plasma coupled. For the constituents characterization extraction and diffraction microscopy replicas were used. (Author) 65 refs

  15. Clinical Note Creation, Binning, and Artificial Intelligence.

    Science.gov (United States)

    Deliberato, Rodrigo Octávio; Celi, Leo Anthony; Stone, David J

    2017-08-03

    The creation of medical notes in software applications poses an intrinsic problem in workflow as the technology inherently intervenes in the processes of collecting and assembling information, as well as the production of a data-driven note that meets both individual and healthcare system requirements. In addition, the note writing applications in currently available electronic health records (EHRs) do not function to support decision making to any substantial degree. We suggest that artificial intelligence (AI) could be utilized to facilitate the workflows of the data collection and assembly processes, as well as to support the development of personalized, yet data-driven assessments and plans. ©Rodrigo Octávio Deliberato, Leo Anthony Celi, David J Stone. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 03.08.2017.

  16. Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target

    Science.gov (United States)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Dzhumaev, P. S.; Troyan, I. A.

    2018-06-01

    Pulsed laser ablation of a MoS2 target causes enhanced splashing of the material. So, for MoSx films obtained by pulsed laser deposition (PLD) in the conventional normal incidence (NI) configuration, their typical morphology is characterized by an underlying granular structure with an overlayer of widely dispersed spherical Mo and MoSx particles possessing micro-, sub-micro- and nanometer sizes. We investigated the possibility of using high surface roughness, which occurs due to particle deposition, as a support with a large exposed surface area for thin MoSx catalytic layers for the hydrogen evolution reaction (HER). For comparison, the HER performance of MoSx layers formed by grazing incidence (GI) PLD was studied. During GI-PLD, a substrate was placed along the direction of laser plume transport and few large particles loaded the substrate. The local structure and composition of thin MoSx layers formed by the deposition of the vapor component of the laser plume were varied by changing the pressure of the buffer gas (argon, Ar). In the case of NI-PLD, an increase in Ar pressure caused the formation of quasi-amorphous MoSx (x ≥ 2) films that possessed highly active catalytic sites on the edges of the layered MoS2 nanophase. At the same time, a decrease in the deposition rate of the MoSx film appeared due to the scattering of the vapor flux by Ar molecules during flux transport from the target to the substrate. This effect prevented uniform deposition of the MoSx catalytic film on the surface of most particles, whose deposition rate was independent of Ar pressure. The scattered vapor flux containing Mo and S atoms was a dominant source for MoSx film growth during GI-PLD. The thickness and composition distribution of the MoSx film on the substrate depended on both the pressure of the buffer gas and the distance from the target. For 1.0-2.5 cm from the target, the deposition rate was quite sufficient to form S-enriched quasi-amorphous MoSx (2.5 < x < 6) catalytic

  17. Study on Mo(V) species, location and adsorbates interactions in MoH-SAPO-34 by employing ESR and electron spin-echo modulation spectroscopies

    International Nuclear Information System (INIS)

    Back, Gern Ho; Jang, Chang Ki; Ru, Chang Kuk; Cho, Young Hwan; So, Hyun Soo; Larry, Keven

    2002-01-01

    A solid-state reaction of MoO 3 with as-synthesized H-SAPO-34 generated paramagnetic Mo(V) species. The dehydration resulted in weak Mo(V) species, and subsequent activation resulted in the formation of Mo(V) species such as Mo(V) 5c and Mo(V) 6c that are characterized by ESR. The data of ESR and ESEM show the oxomolybdenum species, to be (MoO 2 ) + or (MoO) 3+ . The (MoO 2 ) + species seems to be more probable. Since H-SAPO-34 has a low framework negative charge, (MoO) 3+ with a high positive charge can not be easily stabilized. A solution reaction between the solution of silico-molybdic acid and calcined H-SAPO-34 resulted in only MoO + 2 species. A rhombic ESR signal is observed on adsorption of D 2 O, CD 3 OH, CH 3 CH 2 OD and ND 3 . The Location and coordination structure of Mo(V) species has been determined by three-pulse electron spin-echo modulation data and their simulations. After the adsorption of methanol, ethylene, ammonia, and water for MoH-SAPO-34, three molecules, one and one molecule, respectively, are directly coordinated to (MoO 2 ) +

  18. Latest developments in on- and off-line inspection of bank notes during production

    Science.gov (United States)

    Brown, Stephen C.

    2004-06-01

    The inspection of bank notes is a highly labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. Machines for the automatic inspection of bank notes have been on the market for the past 10 to 12 years, but recent developments in technology have enabled a new generation of detectors and machines to be developed. This paper focuses on the latest developments in both the off-line and on-line inspection of bank notes covering not only the visible spectrum but also a new range of detectors for inspection some of the more common invisible features used as covert features in today's bank notes.

  19. Development of industrial-scale fission {sup 99}Mo production process using low enriched uranium target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Jun Sig [Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Beyer, Gerd J. [Grunicke Strasse 15, Leipzig (Germany)

    2016-06-15

    Molybdenum-99 ({sup 99}Mo) is the most important isotope because its daughter isotope, technetium-99m ({sup 99}mTc), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of {sup 99}Mo, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of {sup 99}Mo technology developments. Most of the industrial-scale {sup 99}Mo processes have been based on the fission of {sup 235}U. Recently, important issues have been raised for the conversion of fission {sup 99}Mo targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of {sup 99}Mo yield, caused by a significant reduction of {sup 235}U enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission {sup 99}Mo production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the {sup 99}Mo production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

  20. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    International Nuclear Information System (INIS)

    Wu, Qingjun; Lu, Fenggui; Cui, Haichao; Ding, Yuming; Liu, Xia; Gao, Yulai

    2014-01-01

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10 7 cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature

  1. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  2. Computational identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Gsponer, Jörg

    2015-06-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVMS, is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVMT, is used to identify similarities between regions in a query sequence and MoRFs of the training set. We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. http://www.chibi.ubc.ca/morf/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  4. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  5. Resonant photoelectron spectroscopy at the Mo 4p→4d absorption edge in MoS2

    International Nuclear Information System (INIS)

    Lince, J.R.; Didziulis, S.V.; Yarmoff, J.A.

    1991-01-01

    A systematic study has been conducted of the resonant behavior of the valence-band photoelectron spectrum of MoS 2 for hν=26--70 eV, spanning the Mo 4p→4d transition region. A broad Fano-like resonance appears at ∼42 eV in the constant-initial-state (CIS) intensity plot of the d z 2 peak near the valence-band maximum [∼2 eV binding energy (BE)], confirming its predominantly Mo 4d character. A second shoulder on the higher-hν side of the maximum in the d z 2 CIS intensity plot is suggested to result from transitions to unoccupied states in the 5sp band ∼10 eV above E F , by comparison with a partial-yield spectrum and previous inverse-photoemission data. The region of the valence band in the range 3--4.5-eV BE also exhibits resonant behavior, indicating Mo 4d character, although somewhat less than for the d z 2 peak. The 5--7-eV BE range does not exhibit resonance behavior at the Mo 4p edge and, therefore, contains negligible Mo 4d character. A feature at ∼30 eV in the CIS intensity plot for the 5--7-eV BE range could not be definitively assigned in this study, but may be due to a resonance between direct photoemission and a process involving absorption and autoionization of electronic states that contain Mo 5s and 5p character

  6. Doping of two-dimensional MoS2 by high energy ion implantation

    Science.gov (United States)

    Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang

    2017-12-01

    Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.

  7. Creep and shrinkage of Mo(Ni)

    International Nuclear Information System (INIS)

    Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.

    1984-01-01

    To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments

  8. Study of the water-gas shift reaction on Mo2C/Mo catalytic coatings for application in microstructured fuel processors

    NARCIS (Netherlands)

    Rebrov, E.V.; Kuznetsov, S.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2007-01-01

    The activity and stability of two types of molybdenum carbide coatings deposited on molybdenum substrates (Mo2C/Mo) were compared in the water-gas shift reaction at 513–631 K. The activity of the Mo2C/Mo coatings obtained by carburization of preoxidized molybdenum substrates in a CH4/H2 mixture at

  9. IEA Mobility Model (MoMo) and its use in the ETP 2008

    International Nuclear Information System (INIS)

    Fulton, Lew; Cazzola, Pierpaolo; Cuenot, Francois

    2009-01-01

    The IEA published 'Energy Technology Perspectives' (ETP) in June 2008. That document reports on IEA scenarios for baseline and low-CO 2 alternative scenarios to 2050, across the energy economy. The study included creating scenarios for transport, using the IEA Mobility Model (MoMo). This paper reports on the transport-related ETP scenarios and describes the model used in the analysis. According to the ETP Baseline scenario, world transport energy use and CO 2 emissions will more than double by 2050. In the most challenging scenario, called 'BLUE', transport emissions are reduced by 70% in 2050 compared to their baseline level in that year (and about 25% below their 2005 levels). There are several versions of the BLUE scenario, but all involve: a 50% or greater improvement in LDV efficiency, 30-50% improvement in efficiency of other modes (e.g. trucks, ships and aircraft), 25% substitution of liquid fossil fuels by biofuels, and considerable penetration of electric and/or fuel-cell vehicles. In the second half of this paper, an overview of the MoMo model is provided. Details on the complete analysis are contained in the ETP 2008 document, available at (www.iea.org). Details of the LDV fuel economy analysis are contained in a separate paper in this collection.

  10. Single Phase Melt Processed Powellite (Ba,Ca) MoO{sub 4} For The Immobilization Of Mo-Rich Nuclear Waste

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Kyle [Savannah River Site (SRS), Aiken, SC (United States); Marra, James [Savannah River Site (SRS), Aiken, SC (United States); Fox, Kevin [Savannah River Site (SRS), Aiken, SC (United States); Reppert, Jason [Savannah River Site (SRS), Aiken, SC (United States); Crum, Jarrod [Paci fic Northwest National Laboratory , Richland, WA (United States); Tang, Ming [Los Alamos National Laboratory , Los Alamos, NM (United States)

    2012-09-17

    Crystalline and glass composite materials are currently being investigated for the immobilization of combined High Level Waste (HLW) streams resulting from potential commercial fuel reprocessing scenarios. Several of these potential waste streams contain elevated levels of transition metal elements such as molybdenum (Mo). Molybdenum has limited solubility in typical silicate glasses used for nuclear waste immobilization. Under certain chemical and controlled cooling conditions, a powellite (Ba,Ca)MoO{sub 4} crystalline structure can be formed by reaction with alkaline earth elements. In this study, single phase BaMoO{sub 4} and CaMoO{sub 4} were formed from carbonate and oxide precursors demonstrating the viability of Mo incorporation into glass, crystalline or glass composite materials by a melt and crystallization process. X-ray diffraction, photoluminescence, and Raman spectroscopy indicated a long range ordered crystalline structure. In-situ electron irradiation studies indicated that both CaMoO{sub 4} and BaMoO{sub 4} powellite phases exhibit radiation stability up to 1000 years at anticipated doses with a crystalline to amorphous transition observed after 1 X 10{sup 13} Gy. Aqueous durability determined from product consistency tests (PCT) showed low normalized release rates for Ba, Ca, and Mo (<0.05 g/m{sup 2}).

  11. U-Mo fuel qualification program in HANARO

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Kim, H.R.; Kuk, I.H.; Kim, C.K.

    2000-01-01

    Atomized U-Mo fuel has shown good performance from the results of previous out-of-pile tests and post-irradiation examinations. A qualification program of rod type U-Mo fuel is in progress and the fuel will be irradiated in HANARO. 6 gU/cm 3 U-7Mo, U-8Mo and U-9Mo are considered in this program. The laboratory test results of porosity, mechanical property, thermal conductivity, and thermal compatibility test are discussed in this paper. In parallel with this qualification program, the feasibility study on the core conversion from the present U 3 Si fuel to U-Mo in HANARO will be initiated to provide technical bases for the policy making. Several options of core conversion for HANARO are proposed and each option will be addressed briefly in terms of the operation policy, fuel management, and licensing of HANARO. (author)

  12. On the coexistence of copper-molybdenum bronzes: CuxMoO3 (0.2 yMoO3-z (0.1 2-O quasi-ternary system

    International Nuclear Information System (INIS)

    Warner, T.E.; Skou, E.M.

    2010-01-01

    Two copper-molybdenum bronzes: Cu y MoO 3-z (0.1 x MoO 3 (0.2 3 at 600 o C under argon in Pt crucibles. Powder XRD showed that the material with global composition '0.1Cu.MoO 3 ' comprises ∼Cu 0.15 MoO 3 and MoO 3 ; whilst '0.2Cu.MoO 3 ' comprises ∼Cu 0.15 MoO 3 and ∼Cu 0.23 MoO 3 . DTA performed on '0.2Cu.MoO 3 ' reveals a reversible solid state phase transition ∼520 o C under argon. Reacting equimolar amounts of Cu 2 O and MoO 2 at 600 o C in a Cu crucible under argon yields: Cu 6 Mo 5 O 18 , Cu and MoO 2 . A tentative subsolidus Cu-MoO 2 -O isothermal (∼25 o C) phase diagram under argon is drawn from these data. Oxidation states of Cu and Mo within this system are discussed.

  13. DFT study of the reactions of Mo and Mo with CO2 in gas phase

    Indian Academy of Sciences (India)

    understanding the mechanism of second-row metal reacting with CO2. The minimum energy ... et al.18 performed an IR study on the reaction of laser- ablated Mo atom .... indicate that the weak electrostatic interaction between. Mo. + and CO2 ...

  14. A facile route to large-scale synthesis MoO2 and MoO3 as electrode materials for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Xuan, H.C.; Du, Y.W.; Zhang, Y.Q.; Xu, Y.K.; Li, H.; Han, P.D.; Wang, D.H.

    2016-01-01

    MoO 3 and MoO 2 materials have been successfully synthesized by thermal decomposition of ammonium paramolybdate in air and a sealed quartz tube, respectively. The microstructure of as-synthesized MoO 3 is composed of irregular lamellar plates with a plate thickness around 100 nm and MoO 2 has the larger grain size with lamellar plates connected with each other. A maximum specific capacitance of 318 F/g at 0.5 A/g is obtained for MoO 2 prepared in a closed environment. On the other hand, the sample MoO 3 exhibits excellent rate capacity with specific capacitances of 218, 209, 196, 188, 176, and 160 F/g at current densities of 0.5, 1, 2, 3, 4, and 5 A/g, respectively. These results pave the way to consider MoO 3 and MoO 2 as prospective materials for energy-storage applications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Studies on the phase diagram of Pb-Mo-O system

    International Nuclear Information System (INIS)

    Aiswarya, P.M.; Ganesan, Rajesh; Gnanasekaran, T.

    2014-01-01

    Liquid lead and Lead-Bismuth Eutectic (LBE) alloy are considered as spallation target and coolant in the accelerator driven systems and as candidate coolant in advanced nuclear reactors. Corrosion of the structural steel components in these liquid metal coolants can be minimized by the insitu formation of passive oxide layer on the steel surface under controlled oxygen concentration. A detailed knowledge of phase diagrams of Pb-M-O and Bi-M-O (M = Fe, Cr, Mo) systems and data on thermochemical properties of the ternary compounds of these systems are required for better understanding of composition and stability of these passive oxide films. In the present work, studies have been carried out to establish the ternary phase diagram of Pb-Mo-O system

  16. Development of fission Mo-99 production technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility.

  17. Development of fission Mo-99 production technology

    International Nuclear Information System (INIS)

    Park, Jin Ho; Choung, W. M.; Lee, K. I. and others

    2001-05-01

    This R and D project is planed to supply domestic demands of Mo-99 through fission route, and consequently this project will be expected to rise up utilization of HANARO and KAERI's capability for marketing extension into domestic and oversea radiopharmaceutical market. HEU and LEU target types are decided and designed for fission Mo-99 production in domestic. Experimental study of target fabrication technology was performed and developed processing equipments. And conceptual design of target loading/unloading in/from HANARO device are performed. Tracer test of Mo-99 separation and purification process was performed, test results reach to Mo-99 recovery yield above 80% and decontamination factor above 1600. Combined Mo-99 separation and purification process was decided for hot test scheduled from next year, and performance test was performed. Conceptual design for modification of existing hot cell for fission Mo-99 production facility was performed and will be used for detail design. Assumption for the comparison of LEU and HEU target in fission Mo-99 production process were suggested and compared of merits and demerits in view of fabrication technology and economy feasibility

  18. Measurements of emissivities on JT-60 first wall materials (inconel 625, Mo, TiC-coated Mo)

    International Nuclear Information System (INIS)

    Nakamura, Hiroo; Shimizu, Masatsugu; Makino, Toshiro; Kunitomo, Takeshi.

    1985-02-01

    To evaluate heat removal performance of JT-60 first wall, emissivities and reflectivities on Inconel 625, Mo, TiC coated Mo with optically smooth surface and actual surface are measured at temperature from a room temperature to 1300 K. Spectra are measured in the rnage of wave lengthes from 0.34 μm to 20 μm. Actual surfaces are machined/pickled surfaces for Inconel 625, electro-polished surfaces for molybdenum, and as-coated surfaces for TiC-coated molybdenum. Results of Inconel 625 and molybdenum with oplically smooth surfaces are examined by a two-electrons-type dispersion model of optical constants. Electronic constants of the equation are given and formulated in order to correlates the macroscopic properties of the radiative heat transfer. Total emissivities, obtained from the spectral emissivities of optically smooth surface, are 0.13(RT) -- 0.21(1300 K) for Inconel 625, 0.035(RT) -- 0.18(1300 K) for Mo, and 0.053(RT) for TiC-coated Mo. Moreover, total emissivities of the actual surface at a room temperature are 0.35(Inconel 625), 0.124(Mo), and 0.073(TiC-coated Mo). Large dependence of the emissivities on temperature and wave length shows that the model including these dependences is necessary for an accurate evaluation of the radiative heat transfer. (author)

  19. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  20. Controlled formation of MoSe{sub 2} by MoN{sub x} thin film as a diffusion barrier against Se during selenization annealing for CIGS solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Chan-Wook [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Cheon, Taehoon [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Center for Core Research Facilities, DaeguGyeongbuk Institute of Science & Technology, Daegu (Korea, Republic of); Kim, Hangil [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kwon, Min-Su [School of Chemical Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of); Kim, Soo-Hyun [School of Materials Science and Engineering, Yeungnam University, Gyeongsangbuk-do 712-749 (Korea, Republic of)

    2015-09-25

    Highlights: • Mo/MoN{sub x}/Mo multilayer was investigated as a back contact for CIGS solar cell. • The MoN{sub x} protected the underlying Mo layer during high temperature selenization. • The formation of MoSe{sub 2} layer was precisely controlled. • The diffusion barrier performance of MoN{sub x} against Se was evaluated using TEM analysis. - Abstract: This study investigated the interfacial reactions and electrical properties of a Mo single layer and Mo/MoN{sub x}/Mo multilayer during high temperature selenization annealing. The Mo single layer was converted easily to MoSe{sub 2}, which was 7 times thicker than the Mo layer consumed ∼900 nm, by selenization at 460 °C for 10 min and the sheet resistance increased 8 fold compared to that of the as-deposited Mo film. On the other hand, in the Mo/MoN{sub x}/Mo structure, transmission electron microscopy (TEM) showed that the MoSe{sub 2} transformation was localized only in the top Mo layer and the bottom Mo layer was completely unaffected, even after selenization at 560 °C. The sheet resistance of the multilayer was relatively unchanged by selenization. This suggests that the MoN{sub x} layer performed well as a diffusion barrier against Se and the thickness of MoSe{sub 2} can be controlled precisely by adjusting the top Mo layer thickness. Furthermore, TEM and energy dispersive spectroscopy analysis showed that the selenized multilayer consisted of MoSe{sub 2}/Mo/MoN{sub x}/Mo, in which the top Mo layer of 60 nm was not fully converted to MoSe{sub 2} and 20 nm was left unreacted. The residual Mo interlayer located at the interface of MoSe{sub 2} and MoN{sub x} is believed to be beneficial for the ohmic contact of the selenized multilayer.

  1. An experimental study: Role of different ambient on sulfurization of MoO{sub 3} into MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Prabhat, E-mail: prabhat89k@gmail.com; Singh, Megha; Sharma, Rabindar K.; Reddy, G.B.

    2016-06-25

    Molybdenum disulfide (MoS{sub 2}) nanostructured thin films (NTFs) were synthesised by sulfurizing MoO{sub 3} NTFs using three different non-conventional methods (named methods 1–3). Method 1 uses sulfur vapors, second employs H{sub 2}S/Ar gas and third adopts plasma of H{sub 2}S/Ar gas. HRTEM revealed formation of core–shell nanostructures with maximum shell thickness obtained in method 3. The samples showed uniform nanoflakes (NFs) throughout substrate, revealed by SEM, same as their precursor MoO{sub 3.} XRD and Raman analysis disclosed crystalline MoS{sub 2} and degree of crystallinity was greatest in case of sulfurization in plasma ambient. Quantitative analysis of sulfurized films carried out by XPS shows presence of MoS{sub 2} in all three methods with percentage found to be 18%, 87% and ∼100% respectively. The effect of sulfurizing ambient on its efficiency to convert MoO{sub 3} into MoS{sub 2} has been studied and it was found out that plasma ambient has resulted in high quality of MoS{sub 2} NTFs based on parameters as crystallinity, purity, uniformity and stoichiometry control. - Highlights: • Comparison of three non-conventional methods of sulfurization. • Parameters used for comparison are crystallinity, purity, sulfurized thickness, uniformity and stoichiometry. • H{sub 2}S/Ar plasma based method came out to be best among other techniques. • A soft template reactions for sulfurization of MoO{sub 3} nanoflake is proposed.

  2. Neutronic feasibility studies using U-Mo dispersion fuel (9 Wt % Mo, 5.0 gU/cm3) for LEU conversion of the MARIA (Poland), IR-8 (Russia), and WWR-SM (Uzbekistan) research reactors

    International Nuclear Information System (INIS)

    Bretscher, M.M.; Deen, J.R.; Hanan, N.A.; Matos, E.

    2000-01-01

    U-Mo alloys dispersed in an Al matrix offer the potential for high-density uranium fuels needed for the LEU conversion of many research reactors. On-going fuel qualification tests by the US RERTR Program show good irradiation properties of U-Mo alloy dispersion fuel containing 7-10 weight percent molybdenum. For the neutronic studies in this paper the alloy was assumed to contain 9 wt % Mo (U-9Mo) with a uranium density in the fuel meat of 5.00 gU/cm 3 which corresponds to 32.5 volume % U-9Mo. Fuels containing U-9Mo have been used in Russian reactors since the 1950's. For the three research reactors analyzed here, LEU fuel element thicknesses are the same as those for the Russian-fabricated HEU reference fuel elements. Relative to the reference fuels containing 80-90% enriched uranium, LEU U-9Mo Al-dispersion fuel with 5.00 gU/cm 3 doubles the cycle length of the MARIA reactor and increases the IR-8 cycle length by about 11%. For the WWR-SM reactor, the cycle length, and thus the number of fuel assemblies used per year, is nearly unchanged. To match the cycle length of the 36% enriched fuel currently used in the WWR-SM reactor will require a uranium density in the LEU U-9Mo Al-dispersion fuel of about 5.4 gU/cm 3 . The 5.00 gU/cm 3 LEU fuel causes thermal neutron fluxes in water holes near the edge of the core to decrease by (6-8)% for all three reactors. (author)

  3. MoEDAL: Passive but no less active

    CERN Multimedia

    MoEDAL Collaboration

    2015-01-01

    Relying almost completely on passive detectors, MoEDAL is a pioneering experiment designed to search for highly ionising avatars of new physics, such as magnetic monopoles or massive (pseudo-)stable charged particles. The first test detectors were deployed at LHC Point 8 in 2012 and analysed in 2013, and the full MoEDAL detector was installed in the winter of 2014 to start data-taking during Run 2 this year.   The image shows the MoEDAL detector systems installed at Point 8 of the LHC. MoEDAL’s groundbreaking physics programme defines over 30 scenarios that yield potentially revolutionary insights into such fundamental questions as: are there extra dimensions or new symmetries? Does magnetic charge exist? What is the nature of dark matter? And how did the big bang develop? MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. Having reached its final configuration in winter 2014, MoEDAL now consists of ten layers of plastic attached to the ...

  4. The concept of disclosure in the notes to financial statements

    Directory of Open Access Journals (Sweden)

    A.V. Ozeran

    2015-12-01

    Full Text Available The notes to Financial Statements are one of the most powerful sources of information for management decisions concerning a business entity. The tendency to overload informative notes causes rethinking of their role and content. The aim of the study is to discuss a number of ideas that set the requirements for disclosure in the notes to financial statements in order to prevent duplication of information in financial reporting as a whole and eliminate irrelevant disclosure to achieve clarity, consistency and effectiveness of the information contained in the notes. Based on the proposed clarified definition of «the notes to financial statements», we concluded that the notes should: a provide details and explanations of primary financial statements; b apply only to transactions and events existing at the reporting date; c focus on the needs of specific users and reflect reporting information specific to each entity. The development of the paper concepts will help strengthen the usefulness of company financial statements and increase their transparency.

  5. Improving the representation of modal choice into bottom-up optimization energy system models - The MoCho-TIMES model

    DEFF Research Database (Denmark)

    Tattini, Jacopo; Ramea, Kalai; Gargiulo, Maurizio

    2018-01-01

    and mathematical expressions required to develop the approach. This study develops MoCho-TIMES in the standalone transportation sector of TIMES-DK, the integrated energy system model for Denmark. The model is tested for the Business as Usual scenario and for four alternative scenarios that imply diverse......This study presents MoCho-TIMES, an original methodology for incorporating modal choice into energy-economy-environment-engineering (E4) system models. MoCho-TIMES addresses the scarce ability of E4 models to realistically depict behaviour in transport and allows for modal shift towards transit...

  6. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  7. Faceted MoS2 nanotubes and nanoflowers

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    A simple synthesis of novel faceted MoS 2 nanotubes (NTs) and nanoflowers (NFs) starting from molybdenum oxide and thiourea as the sulphur source is reported. The MoS 2 nanotubes with the faceted morphology have not been observed before. Further the as-synthesized MoS 2 nanotubes have high internal surface area. The nanostructures have been characterized by a variety of electron microscopy techniques. It is expected that these MoS 2 nanostrutures will find important applications in energy storage, catalysis and field emission.

  8. Effect of Mo2C/(Mo2C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    International Nuclear Information System (INIS)

    Xu, Qingzhong; Zhao, Jun; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-01-01

    To optimize the Mo 2 C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo 2 C/(Mo 2 C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K IC ). The results indicate that the Mo 2 C/(Mo 2 C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo 2 C/(Mo 2 C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo 2 C/(Mo 2 C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo 2 C. • The cermets with a Mo 2 C/(Mo 2 C + WC) ratio of 0.4 can be used to machine 42CrMo steel

  9. Single-layer MoS2 electronics.

    Science.gov (United States)

    Lembke, Dominik; Bertolazzi, Simone; Kis, Andras

    2015-01-20

    CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This

  10. Interface morphology of Mo/Si multilayer systems with varying Mo layer thickness studied by EUV diffuse scattering.

    Science.gov (United States)

    Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank

    2017-06-26

    We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.

  11. Synthesis and electrochemical properties of tin-doped MoS{sub 2} (Sn/MoS{sub 2}) composites for lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Min, Feixia; Luo, Zhaohui; Wang, Shiquan, E-mail: wsqhao@126.com [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Teng, Fei [Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Sciences and Engineering (China); Li, Guohua [Zhejiang University of Technology, School of Chemical Engineering and Materials Science (China); Feng, Chuanqi [Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China)

    2016-12-15

    SnO{sub 2}-MoO{sub 3} composites were synthesized by using (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O and SnCl{sub 2}·2H{sub 2}O as raw materials through a simple solvothermal method followed by pyrolysis. Tin-doped MoS{sub 2} (Sn/MoS{sub 2}) flowers have been synthesized by a solvothermal method followed with annealing in Ar(H{sub 2}) atmosphere, with SnO{sub 2}-MoO{sub 3}, thioacetamide (TAA), and urea as starting materials. The doping and the content of Sn-doping play crucial roles in the morphology and electrochemical performance of the MoS{sub 2}. As anode materials for lithium ion battery (LIB), all Sn/MoS{sub 2} composites exhibit both higher reversible capacity and better cycling performance at current density of 200 mA g{sup −1}, compared with MoS{sub 2} without Sn doping. The achieved discharge capacity for Sn/MoS{sub 2} composites is above 1000 mAh g{sup −1} after 100 cycles with nearly 100% coulombic efficiency. The doping of metal Sn in MoS{sub 2} can improve the conductivity of MoS{sub 2} and significantly enhance its electrochemical properties. The good electrochemical performance suggests that the Sn/MoS{sub 2} composite could be a promising candidate as a novel anode material for LIB application. Our present work provides a new approach to the fabrication of anode materials for LIB applications.

  12. K(MoO24O3(AsO4

    Directory of Open Access Journals (Sweden)

    Raja Jouini

    2013-06-01

    Full Text Available A new compound with a non-centrosymmetric structure, potassium tetrakis[dioxomolybdenum(IV] arsenate trioxide, K(MoO24O3(AsO4, has been synthesized by a solid-state reaction. The [(MoO24O3(AsO4]+ three-dimensional framework consists of single arsenate AsO4 tetrahedra, MoO6 octahedra, MoO5 bipyramids and bioctahedral units of edge-sharing Mo2O10 octahedra. The [Mo2O8]∞ octahedral chains running along the a-axis direction are connected through their corners to the AsO4 tetrahedra, MoO6 octahedra and MoO5 bipyramids, so as to form large tunnels propagating along the a axis in which the K+ cations are located. This structure is compared with compounds containing M2O10 (M = Mo, V, Fe dimers and with those containing M2O8 (M = V chains.

  13. Note Taking on Trial: A Legal Application of Note-Taking Research

    Science.gov (United States)

    Kiewra, Kenneth A.

    2016-01-01

    This article is about note taking, but it is not an exhaustive review of note-taking literature. Instead, it portrays the application of note-taking research to an unusual and important area of practice--the law. I was hired to serve as an expert witness on note taking in a legal case that hinged, in part, on the completeness and accuracy of…

  14. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    Science.gov (United States)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  15. An embedded system based computer controlled process automation for recovery and purification of 99mTc from (n,γ)99Mo

    International Nuclear Information System (INIS)

    De, Anirban; Pal, S.S.; Bhaskar, P.; Kumari, S.; Khare, V.K.; Duttaroy, A.; Garai, M.; Thakur, S.K.; Saha, S.; Chattopadhyay, Sankha; Barua, Luna; Das, Sujata Saha; Kumar, U.; Das, M.K.

    2012-01-01

    99 Mo produced 99 mTc (t 1/2 = 6 hr, 140 KeV γ-ray) is the most useful radioisotope for nuclear diagnostics. High specific activity 99 Mo is supplied globally mainly by five old reactors whose routine or unscheduled maintenance shutdown causes supply irregularities that adversely affects patient management in nuclear medicine centres. 99m Tc may also be produced via 98 Mo(n,γ) in a natural MoO 3 target in reactor or by 100 Mo(n,2n) 99 Mo or 100 Mo(p,2n) 99 mTc reaction in cyclotron. To meet the crisis proposals are there to produce 99 Mo by 100 Mo(n,2n) 99 Mo or 99m Tc directly by 100 Mo(p,2n) 99m Tc in a cyclotron. Of the several separation methods of 99 mTc from molybdenum, the most common are adsorption column chromatography, sublimation and liquid-liquid solvent extraction. The conventional methods besides being cumbersome are often hazardous, polluting, require skilled manpower and facilities like fume hood and so are not always practically feasible for hospitals. To address these, VECC and BRIT, Kolkata have collaborated to develop an embedded system based automated 99 Mo/ 99m Tc generator from low specific activity 99 Mo using solvent extraction technique, supervised by a PC based GUI. (author)

  16. Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.J.; Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu

    2016-10-31

    Stress-controlled uniaxial cyclic tensile tests were conducted on binary Mo-27 at% Re and Mo-0.3 at% Si solid solutions as a function of temperature and compared against the previously reported cyclic response of pure Mo. The Mo-27 at% Re alloy with a recrystallized grain size of ~30 µm was evaluated in the temperature range 25 °C–800 °C at R=0.1 and stress range that was 80% of the ultimate tensile strength (UTS); a peak in fatigue life was observed between 300 °C and 500 °C. The decrease in fatigue life at the higher temperatures of 700 °C and 800 °C is attributed to dynamic strain aging. Transmission electron microscopy of the cyclically-deformed alloy revealed parallel bands of dislocation at room temperature that transitioned to a uniform cell structure at 500 °C and back to orthogonal planar arrays at 800 °C. The as-extruded Mo-0.3 at% Si alloy was evaluated from 25 °C to 1200 °C and showed superior fatigue life and ratcheting strain resistance as compared to pure Mo and the Mo-27 at% Re alloy (within the temperature range where data were available for comparison). The superior resistance is attributed to the high density of dislocations within the material in this mostly unrecrystallized state rather than Si in solid solution. Above 800 °C, the ratcheting strain increases and fatigue life decreases rapidly with increasing temperature and is associated with dynamic recovery.

  17. On the Mo-Papas equation

    Science.gov (United States)

    Aguirregabiria, J. M.; Chamorro, A.; Valle, M. A.

    1982-05-01

    A new heuristic derivation of the Mo-Papas equation for charged particles is given. It is shown that this equation cannot be derived for a point particle by closely following Dirac's classical treatment of the problem. The Mo-Papas theory and the Bonnor-Rowe-Marx variable mass dynamics are not compatible.

  18. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    Science.gov (United States)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  19. XPS study of organic/MoO3 hybrid thin films for aldehyde gas sensors. Correlation between average Mo valance and sensitivity

    International Nuclear Information System (INIS)

    Itoh, Toshio; Matsubara, Ichiro; Shin, Woosuck; Izu, Noriya; Nishibori, Maiko

    2010-01-01

    We investigate the formaldehyde gas sensing properties of poly(5,6,7,8-tetrahydro-1-naphthylamine)-intercalated MoO 3 thin films ((PTHNA) x MoO 3 ). The resistance responses of (PTHNA) x MoO 3 to formaldehyde increase with increasing intercalation temperature. X-ray photoelectron spectroscopy reveals that the molar ratio of Mo 5+ decreases with increasing intercalation temperature. (author)

  20. Improving operation notes to meet British Orthopaedic Association guidelines.

    Science.gov (United States)

    Morgan, David; Fisher, Noel; Ahmad, Aman; Alam, Fazle

    2009-04-01

    Operation notes are an important part of medical records for clinical, academic and medicolegal reasons. This study audited the quality of operative note keeping for total knee replacements against the standards set by the British Orthopaedic Association (BOA). A prospective review of all patients undergoing total knee replacement at a district general hospital over 8 months. Data recorded were compared with those required by the BOA good-practice guidelines. Change in practice was implemented and the audit cycle completed. Data were statistically analysed. A total of 129 operation notes were reviewed. There was a significant improvement in the mean number of data points recorded from 9.6 to 13.1. The least well recorded data were diagnosis, description of findings, alignment and postoperative flexion range. All had a significant improvement except description of findings. The operating surgeon writing the note improved from 56% to 67%. Detailed postoperative instructions also improved in quality. Surgeon education and the use of a checklist produce better quality total knee replacement operation notes in line with BOA guidelines. Further improvements may be made by making the data points part of the operation note itself.

  1. Mo/Si multilayers with enhanced TiO II- and RuO II-capping layers

    Science.gov (United States)

    Yulin, Sergiy; Benoit, Nicolas; Feigl, Torsten; Kaiser, Norbert; Fang, Ming; Chandhok, Manish

    2008-03-01

    The lifetime of Mo/Si multilayer-coated projection optics is one of the outstanding issues on the road of commercialization of extreme-ultraviolet lithography (EUVL). The application of Mo/Si multilayer optics in EUVL requires both sufficient radiation stability and also the highest possible normal-incidence reflectivity. A serious problem of conventional high-reflective Mo/Si multilayers capped by silicon is the considerable degradation of reflective properties due to carbonization and oxidation of the silicon surface layer under exposure by EUV radiation. In this study, we focus on titanium dioxide (TiO II) and ruthenium dioxide (RuO II) as promising capping layer materials for EUVL multilayer coatings. The multilayer designs as well as the deposition parameters of the Mo/Si systems with different capping layers were optimized in terms of maximum peak reflectivity at the wavelength of 13.5 nm and longterm stability under high-intensive irradiation. Optimized TiO II-capped Mo/Si multilayer mirrors with an initial reflectivity of 67.0% presented a reflectivity drop of 0.6% after an irradiation dose of 760 J/mm2. The reflectivity drop was explained by the partial oxidation of the silicon sub-layer. No reflectivity loss after similar irradiation dose was found for RuO II-capped Mo/Si multilayer mirrors having initial peak reflectivity of 66%. In this paper we present data on improved reflectivity of interface-engineered TiO II- and RuO II-capped Mo/Si multilayer mirrors due to the minimization of both interdiffusion processes inside the multilayer stack and absorption loss in the oxide layer. Reflectivities of 68.5% at the wavelength of 13.4 nm were achieved for both TiO II- and RuO II-capped Mo/Si multilayer mirrors.

  2. Physical properties of monolithic U8 wt.%-Mo

    Science.gov (United States)

    Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.

    2010-07-01

    As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.

  3. Structural transformation of MoO3 nanobelts into MoS2 nanotubes

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    The structural transformation of MoO 3 nanobelts into MoS 2 nanotubes using a simple sulfur source has been reported. This transformation has been extensively investigated using electron microscopic and spectroscopic techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and energy-dispersive X-ray analysis (SEM-EDAX and TEM-EDX). The method described in this report will serve as a generic route for the transformation of other oxide nanostructures into the chalcogenide nanostructures. (orig.)

  4. Present status of the use of LEU in aqueous reactors to produce Mo-99

    International Nuclear Information System (INIS)

    Ball, Russell M.; Pavshook, V.A.; Khvostionov, V.Ye.

    1998-01-01

    An operating aqueous homogeneous reactor, the ARGUS at Kurchatov Institute, has been used to produce fission product molybdenum-99 (Mo-99), widely used in nuclear medicine to produce technetium-99m (Tc-99m). The Mo-99 has been extracted from the sulfate solution using an organic sorbent after operation at 1 kW/liter. after purification, the material has been assayed and the result is well within required specification of the USPharmacopaeia. Operation calculation are presented to show the sources and quantity of alpha activity when LEU is used. (author)

  5. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Hosoi, Y.; Wade, N.; Kunimitsu, S.; Urita, T.

    1986-01-01

    This study clarified the relationship between the toughness of a 9Cr-2Mo dual phase steel and precipitates formed during aging, with special attention to the Laves phase (Fe 2 Mo). The ductile-brittle transition temperature (DBTT) is increased and the upper shelf energy decreased when the Laves phase begins to precipitate during aging. Electron microscopy and X-ray diffraction indicate that elimination of Si in the steel reduces the precipitation of the Laves phase and results in maintaining good toughness. It is also noted that the toughness of the steel is controlled by the total amount of precipitates (Laves + carbides) in the aging at 873 K for more than 3.6x10 3 ks. A time-temperature-precipitation diagram for the Laves phase is established and it clearly shows that the precipitation of the Laves phase is markedly retarded by the decrease of Si content. In Si-free steel, no Laves phase is observed in the temperature and time range investigated. (orig.)

  6. A first principle Comparative study of electronic and optical properties of 1H –MoS2 and 2H –MoS2

    International Nuclear Information System (INIS)

    Kumar, Ashok; Ahluwalia, P.K.

    2012-01-01

    First principle calculations of electronic and optical properties of monolayer MoS 2 , so called 1H –MoS 2 , is performed which has emerged as a new direct band gap semiconductor. Before calculations of the properties of 1H –MoS 2 , we have calculated structural parameters, electronic properties (electronic band structure and electronic density of states) and frequency dependent optical response (real and imaginary part of dielectric function, energy loss function, absorption and reflectance spectra) of 2H –MoS 2 and compared with existing experimental results and found that our calculated results are in very good agreements with experimental results. To compare the dielectric functions of bulk (2H –MoS 2 ) and monolayer (1H –MoS 2 ) phases we have further extended these calculations to the single layer MoS 2 (1H –MoS 2 ) which is analogous to graphene. Structural parameters of 1H –MoS 2 are found very close to its bulk 2H –MoS 2 . We find direct electronic band gap at ‘K’ high symmetry point as compared to indirect band gap in its bulk 2H – MoS2. Our calculated dielectric function for 1H – MoS2 shows structure at nearly same energy positions as compared to 2H – MoS2 with additional structure at 3.8 eV. Also additional well defined energy loss peaks revealing the plasmonic resonances at 15.7 eV and 16.0 eV for E vector perpendicular and parallel to c axis respectively for 1H – MoS2 have been found, which are the signatures of surface plasmons at these energies. -- Highlights: ► Structural parameters of 2H-MoS2 and 1H-MoS2 are nearly identical. ► States around the Fermi energy are mainly due to the metal d states. ► Strong hybridization between Mo-d and S-p states below the Fermi energy has been found. ► Optical spectra of 2H-MoS2 finds very good agreements with experimental optical spectra. ► The band gap is found to be direct for 1H-MoS2 as compared to indirect for 2H-MoS2.

  7. Phase transformations in Mo-doped FINEMETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveyra, Josefina M., E-mail: jsilveyra@fi.uba.a [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina); Illekova, Emilia; Svec, Peter; Janickovic, Dusan [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Rosales-Rivera, Andres [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Manizales (Colombia); Cremaschi, Victoria J. [Lab. de Solidos Amorfos, INTECIN, FIUBA-CONICET, Paseo Colon 850, (C1063ACV) Buenos Aires (Argentina)

    2010-06-15

    In this paper, the phase transformations occurring during the crystallization process of FINEMETs in which Nb has been gradually replaced by Mo have been studied by a variety of techniques including DSC, DTA, TGA, XRD and TEM. The thermal stability of the alloy was deteriorated as a consequence of Mo's smaller atomic size. The gradual replacement of Nb by Mo reduced the onset temperature of Fe-Si and of the borides. The Curie temperature of the amorphous phase slightly decreased from 594 K for x=0 to 587 K for x=3. The borides compounds Fe{sub 2}B and Fe{sub 23}B{sub 6} as well as the (Nb,Mo){sub 5}Si{sub 3} phase were found to precipitate in the second and third crystallization.

  8. Ligand bridging-angle-driven assembly of molecular architectures based on quadruply bonded Mo-Mo dimers.

    Science.gov (United States)

    Li, Jian-Rong; Yakovenko, Andrey A; Lu, Weigang; Timmons, Daren J; Zhuang, Wenjuan; Yuan, Daqiang; Zhou, Hong-Cai

    2010-12-15

    A systematic exploration of the assembly of Mo2(O2C-)4-based metal-organic molecular architectures structurally controlled by the bridging angles of rigid organic linkers has been performed. Twelve bridging dicarboxylate ligands were designed to be of different sizes with bridging angles of 0, 60, 90, and 120° while incorporating a variety of nonbridging functional groups, and these ligands were used as linkers. These dicarboxylate linkers assemble with quadruply bonded Mo-Mo clusters acting as nodes to give 13 molecular architectures, termed metal-organic polygons/polyhedra with metal cluster node arrangements of a linear shape, triangle, octahedron, and cuboctahedron/anti-cuboctahedron. The syntheses of these complexes have been optimized and their structures determined by single-crystal X-ray diffraction. The results have shown that the shape and size of the resulting molecular architecture can be controlled by tuning the bridging angle and size of the linker, respectively. Functionalization of the linker can adjust the solubility of the ensuing molecular assembly but has little or no effect on the geometry of the product. Preliminary gas adsorption, spectroscopic, and electrochemical properties of selected members were also studied. The present work is trying to enrich metal-containing supramolecular chemistry through the inclusion of well-characterized quadruply bonded Mo-Mo units into the structures, which can widen the prospect of additional electronic functionality, thereby leading to novel properties.

  9. Tetracarbonylbis(η5-cyclopentadienylbis(diphenylphosphinedimolybdenum(Mo—Mo hexane solvate

    Directory of Open Access Journals (Sweden)

    David R. Tyler

    2008-07-01

    Full Text Available The title compound, [Mo2(C5H52(C12H11P2(CO4]·C6H14, is a centrosymmetric Mo complex in which two Mo atoms are connected by an Mo—Mo bond [3.2072 (12 Å]. Each Mo atom is coordinated by an η5-cyclopentadienyl ligand, two carbonyl ligands and a diphenylphosphine ligand in a piano-stool fashion.

  10. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  11. Development of Molybdenum Adsorbent for 99Mo/99mTc Radioisotope Generator Based on Irradiated Natural Molybdenum

    International Nuclear Information System (INIS)

    Rohadi Awaludin; Hotman Lubis; Sriyono; Abidin; Herlina; Endang Sarmini; Indra Saptiama; Hambali

    2011-01-01

    Preparation of 99 Mo/ 99m Tc radioisotope generator using irradiated natural molybdenum requires an adsorbent with high absorption capacity. Zirconium-based materials (ZBM), adsorbent with adsorption capacity of about 183 mg(Mo) / g(adsorbent), has been successfully synthesized. However, the adsorbent was easily broken in the Mo adsorption process due to many fractures in the grain. To increase the hardness, the material was immersed in tetraethyl orthosilicate (TEOS) and coated by TEOS flow in a column. The hardness test results showed that the ZBM with TEOS treatment was not broken when immersed into the Mo solution. Observations using SEM showed that the fractures formed on the ZBM were successfully removed by TEOS treatment. Measurements using EDS showed that after TEOS treatment, the silicon was detected and the oxygen content increased in the material surface. Adsorption test results showed that the TEOS immersion decreased the adsorption capacity of molybdenum from 183 to 79.8 mg of Mo per gram of adsorbent. The TEOS flow-in a column gave material with relatively high adsorption capacity, 140 mgMo per gram adsorbent. The content of Silicon in the surface was lower than that of adsorbent immersed in TEOS. (author)

  12. PREPARATION AND CATALYTIC ACTIVITY FOR ISOPROPYL BENZENE CRACKING OF Co, Mo AND Co/Mo-Al2O3-PILLARED MONTMORILLONITE CATALYSTS

    Directory of Open Access Journals (Sweden)

    Hasanudin Hasanudin

    2010-06-01

    Full Text Available It has been prepared Co, Mo and Co/Mo-Al2O3-pillared montmorillonite catalysts using montmorillonite clay  as raw material. The structure and porosity of the catalysts were determined using N2 adsorption-desorption and FT-IR spectroscopy analysis methods. Isopropyl benzene cracking using these catalysts were used to test the catalytic activity and performance of Co, Mo and Co/Mo-Al2O3-pillared montmorillonites.  Characterization results showed that pillarization resulted in the increase of the total pore volume and specific surface area of the clay. Meanwhile, transition metals (Co, Mo and Co/Mo loaded on Al2O3-pillared monmorillonites could increase the catalytic activity of the catalysts for isopropyl benzene cracking significantly.   Keywords: pillared monmorillonite, isopropyl benzene  and cracking catalyst

  13. Double molybdates in Li2MoO4 - Na2MoO4 - H2O system at 25 grad C

    International Nuclear Information System (INIS)

    Karov, Z.G.; Mirzoev, R.S.; Makitova, D.D.; Zhilova, S.B.; Podnek, A.G.; Urusova, R.Kh.

    1989-01-01

    Solubility in Li 2 MoO 4 - Na 2 MoO 4 - H 2 O system at 25 deg C is first stuied. Formation of two Li 2 MoO 4 · Na 2 MoO 4 · 4H 2 O and Li 2 MoO 4 · 3Na 2 MoO 4 · 12H 2 O compounds in a system is ascertained. Density, refractive index, viscosity, surface tension, electric conductivity and pH of saturated solutions are determined. Isothermes of mole volume, equivalent and reduced electric conductivity and seeming mole volume of salts sum in solutions are calculated. All these properties adequtely confirm the character of components interaction in a system determined by solubility method. Crystallhydrates of binary molybdates are separated, indentified and studied

  14. Effects of Mo on microstructure of as-cast 28 wt.% Cr–2.6 wt.% C–(0–10) wt.% Mo irons

    Energy Technology Data Exchange (ETDEWEB)

    Imurai, S. [Department of Physics and Materials Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thanachayanont, C.; Pearce, J.T.H. [National Metal and Materials Technology Center, Pathumthani 12120 (Thailand); Tsuda, K. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chairuangsri, T., E-mail: tchairuangsri@gmail.com [Department of Industrial Chemistry, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-04-01

    Microstructures of as-cast 28 wt.% Cr–2.6 wt.% C irons containing (0–10) wt.% Mo with the Cr/C ratio of about 10 were studied and related to hardness. The experimental irons were cast into dry sand molds. Microstructural investigation was performed by light microscopy, X-ray diffractometry, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectrometry. It was found that the iron with about 10 wt.% Mo was eutectic/peritectic, whereas the others with less Mo content were hypoeutectic. The matrix in all irons was austenite, partly transformed to martensite during cooling. Mo addition promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C. At 1 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3}, M{sub 23}C{sub 6} and M{sub 6}C were observed. M{sub 23}C{sub 6} existed as a transition zone between eutectic M{sub 7}C{sub 3} and M{sub 6}C, indicating a carbide transition as M{sub 7}C{sub 3}(M{sub 2.3}C) → M{sub 23}C{sub 6}(M{sub 3.8}C) → M{sub 6}C. At 6 wt.% Mo, multiple eutectic carbides including M{sub 7}C{sub 3} and M{sub 23}C{sub 6} were observed together with fine cellular/lamellar M{sub 6}C aggregates. In the iron with 10 wt.% Mo, only eutectic/peritectic M{sub 23}C{sub 6} and M{sub 6}C were found without M{sub 7}C{sub 3}. Mo distribution to all carbides has been determined to be increased from ca. 0.4 to 0.7 in mass fraction as the Mo content in the irons was increased. On the other hand, Cr distribution to all carbides is quite constant as ca. 0.6 in mass fraction. Mo addition increased Vickers macro-hardness of the irons from 495 up to 674 HV{sub 30}. High Mo content as solid-solution in the matrix and the formation of M{sub 6}C or M{sub 23}C{sub 6} aggregates were the main reasons for hardness increase, indicating potentially improved wear performance of the irons with Mo addition. - Highlights: • Mo promoted the formation of M{sub 23}C{sub 6} and M{sub 6}C in the irons with Cr/C ratio of about 10

  15. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  16. MixedNotes

    DEFF Research Database (Denmark)

    Jokela, Tero; Lucero, Andrés

    2014-01-01

    Affinity Diagramming is a technique to organize and make sense of qualitative data. It is commonly used in Contextual Design and HCI research. However, preparing notes for and building an Affinity Diagram remains a laborious process, with a wide variety of different approaches and practices....... In this paper, we present MixedNotes, a novel technique to prepare physical paper notes for Affinity Diagramming, and a software tool to support this technique. The technique has been tested with large real-life Affinity Diagrams with overall positive results....

  17. Influence of Mo/MoSe{sub 2} microstructure on the damp heat stability of the Cu(In,Ga)Se{sub 2} back contact molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Theelen, Mirjam, E-mail: mirjam.theelen@tno.nl [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands); Harel, Sylvie [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Verschuren, Melvin [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Tomassini, Mathieu [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Hovestad, Arjan [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Barreau, Nicolas [Institut des Matériaux Jean Rouxel (IMN)-UMR 6502, Université de Nantes, CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Berkum, Jurgen van [Philips Innovation Services, High Tech Campus 11, 5656 AE Eindhoven (Netherlands); Vroon, Zeger [TNO Solliance, Thin Film Technology, High Tech Campus 21, 5656 AE Eindhoven (Netherlands); Zeman, Miro [Delft University of Technology, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft (Netherlands)

    2016-08-01

    The degradation behavior of Mo/MoSe{sub 2} layers have been investigated using damp heat exposure. The two studied molybdenum based films with different densities and microstructures were obtained by lifting off Cu(In,Ga)Se{sub 2} layers from a bilayer molybdenum stack on soda lime glass. Hereby, a glass/Mo/MoSe{sub 2} was obtained, which resembles the back contact as present in Cu(In,Ga)Se{sub 2} solar cells. The samples were degraded for 150 h under standard damp heat conditions and analyzed before, during and after degradation. It was observed that the degradation resulted in the formation of needles and molybdenum oxide layers near the glass/Mo and the Mo/Cu(In,Ga)Se{sub 2} interfaces. X-ray Photoelectron Spectroscopy measurements have shown that the sodium was also present at the surface of the degraded material and it is proposed that the degraded material consists mostly of MoO{sub 3} with intercalated Na{sup +}. This element has likely migrated from the soda lime glass. This intercalation process could have led to the formation of Na{sub x}MoO{sub 3} ‘molybdenum bronze’ following this redox reaction: xNa{sup +} + MoO{sub 3} + xe{sup −} ↔ Na{sub x}MoO{sub 3} It is proposed that the formed oxide layer contains Na{sub x}MoO{sub 3} with different Na{sup +} contents and different grades of conductivity. This intercalation process can also explain the high mobility of Na{sup +} via the grain boundaries in molybdenum. It was also observed that the molybdenum film with a top layer deposited at a high pressure is more susceptible for damp heat degradation. - Highlights: • SLG/high pressure Mo/low pressure Mo/MoSe{sub 2} stacks were exposed to damp heat. • Molybdenum deposited at low pressure retained the best reflectivity and conductivity. • Damp heat exposure leads to a Na{sub x}MoO{sub 3}/Mo multilayer structure. • The Na{sub x}MoO{sub 3} probably consists of Na{sup +} intercalated in a (reduced) MoO{sub 3} matrix. • Intercalation can explain the

  18. Photochemical studies of alkylammonium molybdates. Part 12. O→Mo charge-transfer triplet-states-initiated self-assembly to {Mo154} ring- and tube-molybdenum-blues

    Science.gov (United States)

    Yamase, T.; Prokop, P.; Arai, Y.

    2003-08-01

    The chemically induced dynamic electron-spin-polarization technique is employed in order to investigate the primary steps of the photoredox reaction between polyoxomolybdates and alkylammonium cations as both proton and electron-donors in solutions. An observation of emissive electron-spin-polarization signals of alkylamino radical cations for the photoredox reaction between polyoxomolybdates and alkylammonium cations in solutions reveals that the O→Mo ligand-to-metal charge-transfer triplet states are involved in the transfers of both proton and electron from alkylammonium cation to polyoxomolybdate anions. Prolonged photolysis of aqueous solutions containing [Mo36O112(H2O)16]8-, [iPrNH3]+, and LaCl3 at pH 1.0 leads to formation of two kinds of {Mo154} molybdenum-blues, [Mo28VMo126VIO462H28(H2O)70]·156.5H2O (1) and [iPrNH3]8 [Mo28VMo126VIO458H12(H2O)66]·127H2O (2), which were X-ray crystallographically characterized. The former exhibits the intact car-tire-shaped {Mo154} ring structure (with thickness of about 1.1 nm and with outer- and inner-rings of approximately 3.5- and 2.3-nm diameters, respectively) derived formally from the dehydrated cyclic heptamerization of four-electron reduced building blocks of {Mo22} (≡[Mo4VMo18VIO70H12(H2O)10]) with overall symmetry of D7d. The anion for the latter, [Mo28VMo126VIO458H12(H2O)66]8- (2a), exhibits a nanotube structure of {Mo154} rings, each inner ring of which contains a bis(μ-oxo)-linkaged [MoO2(μ-O)(μ-H2O)MoO2]2+ unit replacing one of seven [Mo(H2O)O2(μ-O)Mo(H2O)O2]2+linker units. The neighboring {Mo154} rings are connected by six Mo-O-Mo bridge between inner-rings consisting of 7 head- and 14 linkers-MoO6 octahedra for each.

  19. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  20. Coke formation during the hydrotreatment of bio-oil using NiMo and CoMo catalysts

    NARCIS (Netherlands)

    Kadarwati, Sri; Hu, Xun; Gunawan, Richard; Westerhof, Roel; Gholizadeh, Mortaza; Hasan, M. D.Mahmudul; Li, Chun-Zhu

    2017-01-01

    This study aims to investigate the coke formation during the hydrotreatment of bio-oil at low temperature. The catalytic hydrotreatment of bio-oil produced from the pyrolysis of mallee wood was carried out using pre-sulphided NiMo and CoMo catalysts at a temperature range of 150–300 °C. Our results

  1. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from activation and fission 99Mo

    International Nuclear Information System (INIS)

    Lopez M, I.Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2007-01-01

    The 99m Tc is used for diagnostic and therapy. It is produced starting from 99 Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99 Mo with high specific activities of 99 Mo, obtained from the 235 U fission. Given these conditions and limitations, new preparation procedures of 99 Mo/ 99m Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of 99 Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the 99m Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the 99 Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the 99 Mo/ 99m Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using 99 Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the 99m Tc eluates. (Author)

  2. Quality control studies of 99Mo used in 99Mo/99mTc generators produced at IPEN/CNEN-SP, Brazil

    International Nuclear Information System (INIS)

    Said, Daphne S.; Brambilla, Tania P.; Matsuda, Margareth M.N.; Osso Junior, Joao A.

    2015-01-01

    99m Tc is the most used radionuclide in nuclear medicine. In Brazil, the 99 Mo/ 99m Tc generators are produced exclusively by the Center of Radiopharmacy at IPEN-CNEN/SP, by importing 99 Mo from different suppliers. 99 Mo (t 1/2 = 66 h) is a fission product of 235 U, therefore, it can be accompanied by several radioisotopes that are highly prejudicial for human health, demanding a strict quality control of this product for generators safe use. The European Pharmacopoeia established some parameters and limits that evaluate the quality of the solution of sodium [ 99 Mo]molybdate, that is used as raw material for generator's production. The European Pharmacopoeia also recommends some analytical methods to perform these evaluations, however, it has been observed difficulties on the implementation of these methods by the generator's producers. These difficulties are probably related to the lack of practicability of the proposed methods and the extensive list of utilized reagents. In this work some procedures of the European Pharmacopoeia's quality control method for 99 Mo were evaluated. Different types of solid phase exchanger cartridges were tested for retention of 99 Mo in 3 different conditions. Cartridges that presented percentages of retention higher than 90% were also tested for separation of 99 Mo from possible contaminants (Ru e Te). The results shown that solid phase exchanger cartridges that presented percentages of retention of Mo higher than 90% also presented significant percentages of retention of Ru and Te. An alternative method for separation of 99 Mo from 131 I (other contaminant) are also proposed. (author)

  3. Revising Lecture Notes: How Revision, Pauses, and Partners Affect Note Taking and Achievement

    Science.gov (United States)

    Luo, Linlin; Kiewra, Kenneth A.; Samuelson, Lydia

    2016-01-01

    Note taking has been categorized as a two-stage process: the recording of notes and the review of notes. We contend that note taking might best involve a three-stage process where the missing stage is revision. This study investigated the benefits of revising lecture notes and addressed two questions: First, is revision more effective than…

  4. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  5. Grotrian diagrams for highly ionized molybdenum Mo VI through Mo XLII

    International Nuclear Information System (INIS)

    Shirai, Toshizo; Sugar, J.; Wiese, W.L.

    1997-07-01

    Grotrian diagrams are presented to provide graphical overviews for 1,930 spectral lines of highly ionized molybdenum, Mo VI through Mo XLII. In the usual diagram display such as that by Bashkin and Stoner (North-Holland, Amsterdam, 1975), the density of transitions is often too high to allow each transition to be drawn separately. Here in our modified diagrams, the transitions are also represented by lines connecting the upper and lower energy levels, but the lower energy levels are extended and repeated for successive configurations as needed. As a sequence, dense packing is avoided and all lines in a multiplet can be accommodated. (author)

  6. Digital archives. Alcune note

    Directory of Open Access Journals (Sweden)

    Francesca Zanella

    2014-12-01

    Full Text Available MoRE is a digital native museum where projects of artworks are exposed, and also a digital archive where documents about art projectsare collected. MoRE is a multi-layered platform where artists, curators, art historians confront each other collecting art projects, organizing their documentation and defining tools for the communication and surveys on the public. In this paper some critical referencesare identified, that constitute a model for the project as they reflect on the impact of the digital dimension on the transformation of the museum and archive.

  7. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  8. Intercalation of Si between MoS2 layers

    Directory of Open Access Journals (Sweden)

    Rik van Bremen

    2017-09-01

    Full Text Available We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si on molybdenum disulfide (MoS2. At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1 Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2 The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3 I(V scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4 Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5 X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater. 2014, 26, 2096–2101 that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

  9. Excitation functions of the 98Mo+d reactions

    International Nuclear Information System (INIS)

    Zarubin, P.P.; Padalko, V.Yu.; Khrisanfov, Yu.V.; Lebedev, P.P.; Podkopaev, Yu.N.

    The excitation functions of the 98 Mo+d reactions were studied. The energy dependence of (d,p),(d,n) and (d,α) reactions was investigated by the activation analysis. The energies of deuterons in the range (6-12) MeV were determined by means of the aluminium filters. 98 Mo foils with surface densities of 1.02, 0.23 and 0.14 mgxcm -2 with 98 Mo enrichment of 94.1% were used as targets. The gamma spectra were measured by a Ge(Li) detector. The 98 Mo(d,p) 99 Mo reaction excitation function was determined via detection of 739 and 181 keV γ-radiation of 99 Mo (Tsub(1/2)=66.47h); 140 keV γ-radiation of 99 Tc (Tsub(1/2)=6h) was detected for the 98 Mo(d,n) 99 Tc reaction excitation function determination and 460, 568, 1091, 1200 and 1492 keV γ-quanta of 96 Nb (Tsub(1/2)=23.35h) - for the 98 Mo(d,α) 96 Nb reaction. In the excitation function the wide extremum was observed at Esub(d) approximately 10 MeV. The ratio of cross sections σsup(m)(d,n)/σ(d,p) on the 98 Mo target was determined. The ratio σsup(m)(d,n)/σ(d,p) was found to be decreasing function of the deuteron energy. The relative cross sections were determined with an accuracy of +-5%, while for the absolute values of cross sections the accuracy was +-15%

  10. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    Science.gov (United States)

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  11. Coordination of {Mo142} Ring to La3+ Provides Elliptical {Mo134La10} Ring with a Variety of Coordination Modes

    Directory of Open Access Journals (Sweden)

    Eri Ishikawa

    2009-12-01

    Full Text Available A28-electron reduced C2h-Mo-blue 34Ǻ outer ring diameter circular ring, [Mo142O429H10(H2O49(CH3CO25(C2H5CO2]30- (≡{Mo142(CH3CO25(C2H5CO2} comprising eight carboxylate-coordinated (with disorder {Mo2} linkers and six defect pockets in two inner rings (four and three for each, respectively, reacts with La3+ in aqueous solutions at pH 3.5 to yield a 28-electron reduced elliptical Ci-Mo-blue ring of formula [Mo134O416H20(H2O46{La(H2O5}4{La(H2O7}4{LaCl2(H2O5}2]10- (≡{Mo134La10}, isolated as the Na10[Mo134O416H20(H2O46{La(H2O5}4{La(H2O7}4{LaCl2(H2O5}2]·144 H2O Na+ salt. The elliptical structure of {Mo134La10} showing 36 and 31 Å long and short axes for the outer ring diameters is attributed to four (A-D modes of LaO9/LaO7Cl2 tricapped-trigonal-prismatic coordination (TTP geometries. Two different LaO2(H2O7 and one LaO2(H2O2Cl2 TTP geometries (as A-C modes for each of two inner rings result from the coordination of all three defect pockets of the inner ring for {Mo142(CH3CO25(C2H5CO2}, and two LaO4(H2O5 TTP geometries (as D mode result from the displacement of two (acetate/propionate-coordinated binuclear {Mo2} linkers with La3+ in each inner ring. The isothermal titration calorimetry (ITC of the ring modification from circle to ellipsoid, showing the endothermic reaction of [La3+]/[{Mo142(CH3CO25(C2H5CO2}] = 6/1 with DH = 22 kJ×mol-1, DS = 172 J×K-1×mol-1, DG = −28 kJ×mol-1, and K = 9.9 ´ 104 M-1 at 293 K, leads to the conclusion that the coordination of the defect pockets to La3+ precedes the replacement of the {Mo2} linkers with La3+. 139La- NMR spectrometry of the coordination of {Mo142(CH3CO25(C2H5CO2} ring to La3+ is also discussed.

  12. A modified {sup 99} Mo- {sup 99} Tc generator on Zirconium molybdo- phosphate-{sup 99} Mo gel. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    El-Kolaly, M T; Talaat, H [Labelled Compounds Department, Cairo (Egypt); Botros, N [Radioistspe and Generator Department, Radioisotope Production and Sealed Source Division, Hot Laboratories Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    A modified {sup 99} Mo - {sup 99} Tc gel generator is described. The new generator is based on the use of zirconium molybdophosphate - {sup 99} Mo gel in which {sup 99} Mo chemically combined in the gel structure, where {sup 99m}Tc can be easily eluted with distilled water or saline. The gel was prepared via chemical reaction between zirconyl chloride and molybdophosphate - {sup 99} Mo solution. The PH of the reaction mixture was adjusted with NaOH. Different gels have been prepared by varying the molar ratio of Mo:Zr:p. The PH and time of digeston on complete gel formation was also investigated in order to optimize the condition of gel preparation. Molybdophosphate {sup 32} P solution was used to determine the phosphorous content in the gel and in the {sup 99m}Tc eluate. The temperature and time of drying of the gel and their effect on {sup 99m}Tc elution efficiency were also studied. From the data obtained, the optimum conditions for routine production of {sup 99} Mo - {sup 99m}Tc generator are presented and discussed. 2 figs., 6 tabs.

  13. Theoretical calculations of valence states in Fe-Mo compounds

    International Nuclear Information System (INIS)

    Estrada, F; Navarro, O; Noverola, H; Suárez, J R; Avignon, M

    2014-01-01

    The half-metallic ferromagnetic double perovskite compound Sr 2 FeMoO 6 is considered as an important material for spintronic applications. It appears to be fundamental to understand the role of electronic parameters controlling the half-metallic ground state. Fe-Mo double perovskites usually present some degree of Fe/Mo disorder which generally increases with doping. In this work, we study the valence states of Fe-Mo cations in the off-stoichiometric system Sr 2 Fe 1+x Mo 1−x O 6 (−1 ≤ x ≤ 1/3) with disorder. Our results for Fe and Mo valence states are obtained using the Green functions and the renormalization perturbation expansion method. The model is based on a correlated electron picture with localized Fe-spins and conduction Mo-electrons interacting with the local spins via a double-exchange-type mechanism

  14. A Survey On Mean Glandular Dose From Full-Field Digital Mammography Systems, Operate Using Mo/ Mo And W/Rh Target/ Filter Combinations

    International Nuclear Information System (INIS)

    Noriah Jamal; Siti Selina Abdul Hamid; Humairah Samad Cheung; Siti Kamariah Che Mohamed; Ellyda Muhammed Nordin; Radhiana Hassan; Rehir Dahalan

    2013-01-01

    We had conducted a survey on Mean Glandular Dose (MGD) from Full-Field Digital Mammography systems (FFDM) operate using Molybdenum/ Molybdenum (Mo/ Mo) and Tungsten/ Rhodium (W/ Rh) target/ filter combinations. A survey was carried out at two randomly selected mammography centres in Malaysia, namely National Cancer Society and International Islamic University of Malaysia. The first centre operates using a W/ Rh, while the second centre operates using an Mo/ Mo target/ filter combinations. On the basis of recorded information, data on mammographic views, MGD, age and Compressed Breast Thickness (CBT) were recorded for 100 patients, for each mammographic centre respectively. The MGD data were analyzed for variation with age group, with 5 years increment. The MGD data were also analyzed for variation with CBT, with 5 mm increment. We found that for both CC and MLO views, FFDM systems operated using Mo/ Mo and W/ Rh target/ filter combinations present the same trend on MGD. The average MGD decreases as age increases. While average MGD increases with the increasing of CBT. However, FFDM system operates using Mo/ Mo gives higher MGD as compared with FFDM system operates using W/ Rh. (author)

  15. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shuhei, E-mail: miwa.shuhei@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Osaka, Masahiko [Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki, 311-1393 (Japan); Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya [Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395 (Japan)

    2015-10-15

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO{sub 2−x} were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO{sub 2−x} below the oxygen potential of Mo/MoO{sub 2} oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO{sub 2−x} with those of pure PuO{sub 2−x} were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO{sub 2−x} below the oxygen potential for Mo/MoO{sub 2}. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO{sub 2}. • Mo matrix and PuO{sub 2−x} in Mo-cermet fuel can thus be thermochemically individual.

  16. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    International Nuclear Information System (INIS)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-01-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO_2_−_x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO_2_−_x below the oxygen potential of Mo/MoO_2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO_2_−_x with those of pure PuO_2_−_x were discussed in terms of the microstructure. - Highlights: • Oxygen potential of Mo-cermet fuel was investigated by thermogravimetric analysis. • It was the same as that of pure PuO_2_−_x below the oxygen potential for Mo/MoO_2. • Gradual oxidation of Mo matrix occurred only above the oxygen potential for Mo/MoO_2. • Mo matrix and PuO_2_−_x in Mo-cermet fuel can thus be thermochemically individual.

  17. Preparation of 99Mo/99mTc generators based on 99Mo zirconium molybdates in the Gel Synthesis Device for Generators

    International Nuclear Information System (INIS)

    Lopez M, I. Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2008-01-01

    The 99m Tc is used for diagnosis and therapy. It is produced commercially from 99 Mo obtained from the fission of 235 U, which is retained in chromatographic columns filled with alumina whose maximum capacity is 0.2%. Given these constraints new methods of preparation 99 Mo/ 99m Tc generators have been developed using zirconium molybdates gels containing up to 30% of Mo, which is part of the generator matrix, and retaining quality and purity similar characteristics to those commercial generators. The present study aims to determine the flow of agitation, temperature and drying time optimal to prepare 99 Mo/ 99m Tc generators based on 99 Mo zirconium molybdates in the Gel Synthesis Device 99 Mo/ 99m Tc Generators designed and built by groups of the Radioactive Materials Research Laboratory and Automation and Instrumentation Department of the National Institute of Nuclear Research. (Author)

  18. Few-layer MoS2 as nitrogen protective barrier

    Science.gov (United States)

    Akbali, B.; Yanilmaz, A.; Tomak, A.; Tongay, S.; Çelebi, C.; Sahin, H.

    2017-10-01

    We report experimental and theoretical investigations of the observed barrier behavior of few-layer MoS2 against nitrogenation. Owing to its low-strength shearing, low friction coefficient, and high lubricity, MoS2 exhibits the demeanor of a natural N-resistant coating material. Raman spectroscopy is done to determine the coating capability of MoS2 on graphene. Surface morphology of our MoS2/graphene heterostructure is characterized by using optical microscopy, scanning electron microscopy, and atomic force microscopy. In addition, density functional theory-based calculations are performed to understand the energy barrier performance of MoS2 against nitrogenation. The penetration of nitrogen atoms through a defect-free MoS2 layer is prevented by a very high vertical diffusion barrier, indicating that MoS2 can serve as a protective layer for the nitrogenation of graphene. Our experimental and theoretical results show that MoS2 material can be used both as an efficient nanocoating material and as a nanoscale mask for selective nitrogenation of graphene layer.

  19. Adsorption of DNA/RNA nucleobases onto single-layer MoS2 and Li-Doped MoS2: A dispersion-corrected DFT study

    Science.gov (United States)

    Sadeghi, Meisam; Jahanshahi, Mohsen; Ghorbanzadeh, Morteza; Najafpour, Ghasem

    2018-03-01

    The kind of sensing platform in nano biosensor plays an important role in nucleic acid sequence detection. It has been demonstrated that graphene does not have an intrinsic band gap; therefore, transition metal dichalcogenides (TMDs) are desirable materials for electronic base detection. In the present work, a comparative study of the adsorption of the DNA/RNA nucleobases [Adenine (A), Cytosine (C) Guanine (G), Thymine (T) and Uracil (U)] onto the single-layer molybdenum disulfide (MoS2) and Li-doped MoS2 (Li-MoS2) as a sensing surfaces was investigated by using Dispersion-corrected Density Functional Theory (D-DFT) calculations and different measure of equilibrium distances, charge transfers and binding energies for the various nucleobases were calculated. The results revealed that the interactions between the nucleobases and the MoS2 can be strongly enhanced by introducing metal atom, due to significant charge transfer from the Li atom to the MoS2 when Lithium is placed on top of the MoS2. Furthermore, the binding energies of the five nucleobases were in the range of -0.734 to -0.816 eV for MoS2 and -1.47 to -1.80 eV for the Li-MoS2. Also, nucleobases were adsorbed onto MoS2 sheets via the van der Waals (vdW) force. This high affinity and the renewable properties of the biosensing platform demonstrated that Li-MoS2 nanosheet is biocompatible and suitable for nucleic acid analysis.

  20. Research Note:

    DEFF Research Database (Denmark)

    Behuria, Pritish; Buur, Lars; Gray, Hazel

    2017-01-01

    its core conceptual and methodological features. This Research Note starts by setting out our understanding of political settlements and provides an overview of existing political settlements literature on African countries. The note then explores how the key concept of ‘holding power’ has been...

  1. Converting MMSE to MoCA and MoCA 5-minute protocol in an educationally heterogeneous sample with stroke or transient ischemic attack.

    Science.gov (United States)

    Wong, Adrian; Black, Sandra E; Yiu, Stanley Y P; Au, Lisa W C; Lau, Alexander Y L; Soo, Yannie O Y; Chan, Anne Y Y; Leung, Thomas W H; Wong, Lawrence K S; Kwok, Timothy C Y; Cheung, Theodore C K; Leung, Kam-Tat; Lam, Bonnie Y K; Kwan, Joseph S K; Mok, Vincent C T

    2018-05-01

    The Montreal Cognitive Assessment (MoCA) is psychometrically superior over the Mini-mental State Examination (MMSE) for cognitive screening in stroke or transient ischemic attack (TIA). It is free for clinical and research use. The objective of this study is to convert scores from the MMSE to MoCA and MoCA-5-minute protocol (MoCA-5 min) and to examine the ability of the converted scores in detecting cognitive impairment after stroke or TIA. A total of 904 patients were randomly divided into training (n = 623) and validation (n = 281) samples matched for demography and cognition. MMSE scores were converted to MoCA and MoCA-5 min using (1) equipercentile method with log-linear smoothing and (2) Poisson regression adjusting for age and education. Receiver operating characteristics curve analysis was used to examine the ability of the converted scores in differentiating patients with cognitive impairment. The mean education was 5.8 (SD = 4.6; ranged 0-20) years. The entire spectrum of MMSE scores was converted to MoCA and MoCA-5 min using equipercentile method. Relationship between MMSE and MoCA scores was confounded by age and education, and a conversion equation with adjustment for age and education was derived. In the validation sample, the converted scores differentiated cognitively impaired patients with area under receiver operating characteristics curve 0.826 to 0.859. We provided 2 methods to convert scores from the MMSE to MoCA and MoCA-5 min based on a large sample of patients with stroke or TIA having a wide range of education and cognitive levels. The converted scores differentiated patients with cognitive impairment after stroke or TIA with high accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Thermal spreading of MoO3 in H-ZY

    International Nuclear Information System (INIS)

    Mosqueira, L.; Angeles-Chavez, C.; Torres-Garcia, E.

    2011-01-01

    Research highlights: → Molybdenum oxo-species were formed during thermally driven migration on H-ZY. → Oxo-species were identified according to the edge energy (E g ) values of bulk molybdenum oxide reference compounds. → The migration occurred via MoO 2 (OH) 2 species leading first to (MoO 4 ) 2- and (Mo 2 O 7 ) 2- formation, and finally of (Mo 7 O 24 ) 6- . - Abstract: This work provides a structural, optical and kinetics approach to the molybdenum oxo-species formed during thermally driven migration on H-ZY starting from mechanical mixtures with MoO 3 . The samples were characterized as a function of time of treatment by UV-vis diffuse reflectance, X-ray diffraction, N 2 adsorption and scanning transmission electron microscopy (STEM). Local analysis of elemental compositions obtained from linear scan of characteristic X-ray signal show a direct evidence of molybdenum presence into the zeolite crystals. Ultraviolet absorption spectra were used to determine both the kinetics of the spreading and the speciation of MoO x in the H-ZY. Besides MoO 3 , three surface molybdenum oxo-species were identified according to the edge energy (E g ) values of bulk molybdenum oxide reference compounds. This study shows that the tetrahedral species prevailed on H-ZY. This is consistent with limitations in the migration and growth of MoO x in the channel structure of the zeolite. Kinetic study suggest that migration of MoO x in the H-ZY at low temperature (ca. 723 K) occurs across the formation and diffusion of hydrated species such as MoO 2 (OH) 2 , which interact with the zeolite and form monomeric and dimeric structures (like (MoO 4 ) 2- and (Mo 2 O 7 ) 2- ). Migration of MoO x species in the H-ZY studied is significant even at 723 K and after very short periods of treatment (<5 min).

  3. Electron microscopy studies on MoS2 nanocrystals

    DEFF Research Database (Denmark)

    Hansen, Lars Pilsgaard

    Industrial-style MoS2-based hydrotreating catalysts are studied using electron microscopy. The MoS2 nanostructures are imaged with single-atom sensitivity to reveal the catalytically important edge structures. Furthermore, the in-situ formation of MoS2 crystals is imaged for the first time....

  4. Continuously increasing δ98Mo values in Neoarchean black shales and iron formations from the Hamersley Basin

    Science.gov (United States)

    Kurzweil, Florian; Wille, Martin; Schoenberg, Ronny; Taubald, Heinrich; Van Kranendonk, Martin J.

    2015-09-01

    We present Mo-, C- and O-isotope data from black shales, carbonate- and oxide facies iron formations from the Hamersley Group, Western Australia, that range in age from 2.6 to 2.5 billion years. The data show a continuous increase from near crustal δ98Mo values of around 0.50‰ for the oldest Marra Mamba and Wittenoom formations towards higher values of up to 1.51‰ for the youngest sample of the Brockman Iron Formation. Thereby, the trend in increasing δ98Mo values is portrayed by both carbonate facies iron formations and black shales. Considering the positive correlation between Mo concentration and total organic carbon, we argue that this uniformity is best explained by molybdate adsorption onto organic matter in carbonate iron formations and scavenging of thiomolybdate onto sulfurized organic matter in black shales. A temporal increase in the seawater δ98Mo over the period 2.6-2.5 Ga is observed assuming an overall low Mo isotope fractionation during both Mo removal processes. Oxide facies iron formations show lowest Mo concentrations, lowest total organic carbon and slightly lower δ98Mo compared to nearly contemporaneous black shales. This may indicate that in iron formation settings with very low organic matter burial rates, the preferential adsorption of light Mo isotopes onto Fe-(oxyhydr)oxides becomes more relevant. A similar Mo-isotope pattern was previously found in contemporaneous black shales and carbonates of the Griqualand West Basin, South Africa. The consistent and concomitant increase in δ98Mo after 2.54 billion years ago suggests a more homogenous distribution of seawater molybdate with uniform isotopic composition in various depositional settings within the Hamersley Basin and the Griqualand West Basin. The modeling of the oceanic Mo inventory in relation to the Mo in- and outflux suggests that the long-term build-up of an isotopically heavy seawater Mo reservoir requires a sedimentary sink for isotopically light Mo. The search for this

  5. Thermophysical properties of Na2Th (MoO4)3 (s) and Na4Th (MoO4)4 (s)

    International Nuclear Information System (INIS)

    Dash, Smruti; Rakshit, S.K.; Singh, Ziley; Keskar, Meera; Dahale, N.D.

    2009-01-01

    The heat capacity of Na 2 Th (MoO 4 ) 3 (s) and Na 4 Th (MoO 4 ) 4 (s) have been measured by differential scanning calorimeter in the temperature range 318 to 845 K. The corresponding values are: C p,m (Na 2 Th (MoO 4 ) 3 ,s,T) (JK-1 mol-1) 368.710+ 1.0 10-1 (T/K) - 4950267 (K/T)2 (318 ≤ T (K) ≤ 845). C p,m (Na 4 Th (MoO 4 ) 4 ,s,T) (JK-1 mol-1) = 638.761+ 5.12 10-3 (T/K) - 12691691 (K/T)-2 (318 ≤ T (K) ≤ 845). Experimental heat capacity values for Na 2 Th (MoO 4 ) 3 (s) match reasonably well with that of additive oxide values. But C p,m (T) values of Na 4 Th (MoO 4 ) 4 (s) deviates substantially from the additive oxide values above 700 K. The uncertainty of the measurements reported in this study is calculated to be within 1 to 3 % . (author)

  6. Contact-Engineered Electrical Properties of MoS2 Field-Effect Transistors via Selectively Deposited Thiol-Molecules.

    Science.gov (United States)

    Cho, Kyungjune; Pak, Jinsu; Kim, Jae-Keun; Kang, Keehoon; Kim, Tae-Young; Shin, Jiwon; Choi, Barbara Yuri; Chung, Seungjun; Lee, Takhee

    2018-05-01

    Although 2D molybdenum disulfide (MoS 2 ) has gained much attention due to its unique electrical and optical properties, the limited electrical contact to 2D semiconductors still impedes the realization of high-performance 2D MoS 2 -based devices. In this regard, many studies have been conducted to improve the carrier-injection properties by inserting functional paths, such as graphene or hexagonal boron nitride, between the electrodes and 2D semiconductors. The reported strategies, however, require relatively time-consuming and low-yield transfer processes on sub-micrometer MoS 2 flakes. Here, a simple contact-engineering method is suggested, introducing chemically adsorbed thiol-molecules as thin tunneling barriers between the metal electrodes and MoS 2 channels. The selectively deposited thiol-molecules via the vapor-deposition process provide additional tunneling paths at the contact regions, improving the carrier-injection properties with lower activation energies in MoS 2 field-effect transistors. Additionally, by inserting thiol-molecules at the only one contact region, asymmetric carrier-injection is feasible depending on the temperature and gate bias. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Microstructure of Multi-wire U-Mo Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Sang; Park, Eun Kee; Cho, Woo Hyoung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm {approx} 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix as shown. This multi-wire fuels showed very good fuel performance during the KOMO-3 irradiation test. At the KOMO-3 test, the specimen of the multi-wire fuels were U-7Mo/Al and U-7Mo-1Si/Al. In this study we investigate the microstructure change of the U-7Mo and U-7Mo-1Ti with some variation of annealing conditions. In addition to this, we want to check the effect of adding Ti element to U-7Mo on the gamma phase stability

  8. Gold nanoparticles on MoS2 layered crystal flakes

    International Nuclear Information System (INIS)

    Cao, Wei; Pankratov, Vladimir; Huttula, Marko; Shi, Xinying; Saukko, Sami; Huang, Zhongjia; Zhang, Meng

    2015-01-01

    Inorganic layered crystal MoS 2 is considered as one of the most promising and efficient semiconductor materials for future transistors, photoelectronics, and electrocatalysis. To boost MoS 2 -based material applications, one direction is to grow physically and chemically reactive nanoparticles onto MoS 2 . Here we report on a simple route to synthesis crystalized MoS 2 –Au complexes. The gold nanoparticles were grown on MoS 2 flakes through a wet method in the oxygen free environment at room temperature. Nanoparticles with diameters varying from 9 nm to 429 nm were controlled by the molar ratios of MoS 2 and HAuCl 4 precursors. MoS 2 host flakes keep intrinsic honeycomb layered structures and the Au nanoparticles cubic-center crystal microstructures. From product chemical states analysis, the synthesis was found driven by redox reactions between the sulphide and the chloroauric acid. Photoluminescence measurement showed that introducing Au nanoparticles onto MoS 2 stacks substantially prompted excitonic transitions of stacks, as an analogy for doping Si wafers with dopants. Such composites may have potential applications in wide ranges similar as the doped Si. - Highlights: • The Au nanoparticles were decorated on MoS 2 in oxygen free ambiences via a wet method. • The Au nanoparticles are size-controllable and crystalized. • Chemical reaction scheme was clarified. • The MoS 2 –Au complexes have strong photoluminescent properties

  9. NMR and XAS Study of Fe-Mo Double Perovskites

    International Nuclear Information System (INIS)

    Zajac, D.A.; Kapusta, C.; Borowiec, M.; Sikora, M.; Marquina, C.; Blasco, J.; Ibarra, M.R.

    2005-01-01

    The results of NMR and XAS measurements of the A 2 FeMoO 6 double perovskites (DP) (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) at the Fe and Mo K edges are reported and the information on the individual site electronic and magnetic properties is analysed. The compounds studied belong to the family of materials exhibiting a high field '' colossal '' magnetoresistance as well as a low field '' giant '' magnetoresistance. Magnetoresistive properties of the compounds arise from their half-metallicity, i.e. only one spin direction being populated in the conduction band, which consists of overlapping spin down 3d Fe, 2p O and 4d Mo electron bands. Within the model, a spin-down electron undergoes a fast hopping through unoccupied oxygen 2p orbitals between Fe 3+ (3d 5 - spin up) and Mo 6+ (4d 0 ) ionic cores. This mechanism implicates an anti-parallel coupling of the Fe and Mo spins and leads to non-integer magnetic moments and a metallic character below TC. The interaction, in analogy with the '' double exchange '' (DE) in manganites, is called '' double exchange-like '' interaction. The superexchange interaction (SE) is also expected to be present, resulting also in an anti-parallel coupling of 3d Fe 3+ and 4d Mo 5+ spins through occupied oxygen 2p orbitals. The insulating character of SE is connected with an increase of the tilt angle of the Fe-O-Mo bond, which is related to a change of the structural tolerance factor f and results in structural distortions. The molybdenum NMR measurements revealed the existence of a non-integer magnetic moment at Mo and Fe, which can be attributed to the DE-like interaction. However, experiments using Moessbauer spectroscopy have shown the existence of two Fe ionisation states - with integer (SE) and non integer (DE) magnetic moments. The 95 Mo and 97 Mo NMR measurements on A 2 FeMoO 6 (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) presented in this work show different values of the Mo hyperfine field and the corresponding magnetic moment. This is attributed

  10. Cyanide-limited complexation of molybdenum(III): synthesis of octahedral [Mo(CN)(6)](3-) and cyano-bridged [Mo(2)(CN)(11)](5-).

    Science.gov (United States)

    Beauvais, Laurance G; Long, Jeffrey R

    2002-03-13

    Octahedral coordination of molybdenum(III) is achieved by limiting the amount of cyanide available upon complex formation. Reaction of Mo(CF(3)SO(3))(3) with LiCN in DMF affords Li(3)[Mo(CN)(6)] x 6DMF (1), featuring the previously unknown octahedral complex [Mo(CN)(6)](3-). The complex exhibits a room-temperature moment of mu(eff) = 3.80 mu(B), and assignment of its absorption bands leads to the ligand field parameters Delta(o) = 24800 cm(-1) and B = 247 cm(-1). Further restricting the available cyanide in a reaction between Mo(CF(3)SO(3))(3) and (Et(4)N)CN in DMF, followed by recrystallization from DMF/MeOH, yields (Et(4)N)(5)[Mo(2)(CN)(11)] x 2DMF x 2MeOH (2). The dinuclear [Mo(2)(CN)(11)](5-) complex featured therein contains two octahedrally coordinated Mo(III) centers spanned by a bridging cyanide ligand. A fit to the magnetic susceptibility data for 2, gives J = -113 cm(-1) and g = 2.33, representing the strongest antiferromagnetic coupling yet observed through a cyanide bridge. Efforts to incorporate these new complexes in magnetic Prussian blue-type solids are ongoing.

  11. A facile route to large-scale synthesis MoO{sub 2} and MoO{sub 3} as electrode materials for high-performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xuan, H.C.; Du, Y.W. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 (China); Zhang, Y.Q.; Xu, Y.K.; Li, H.; Han, P.D. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024 (China); Wang, D.H. [Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093 (China)

    2016-09-15

    MoO{sub 3} and MoO{sub 2} materials have been successfully synthesized by thermal decomposition of ammonium paramolybdate in air and a sealed quartz tube, respectively. The microstructure of as-synthesized MoO{sub 3} is composed of irregular lamellar plates with a plate thickness around 100 nm and MoO{sub 2} has the larger grain size with lamellar plates connected with each other. A maximum specific capacitance of 318 F/g at 0.5 A/g is obtained for MoO{sub 2} prepared in a closed environment. On the other hand, the sample MoO{sub 3} exhibits excellent rate capacity with specific capacitances of 218, 209, 196, 188, 176, and 160 F/g at current densities of 0.5, 1, 2, 3, 4, and 5 A/g, respectively. These results pave the way to consider MoO{sub 3} and MoO{sub 2} as prospective materials for energy-storage applications. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Electrochemical behavior of Ni-Mo electro catalyst for water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez V, S. M.; Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Cabanas M, G. [IPN, Centro de Nanociencias y Micro y Nanotecnologias, A. P. 75-874, 07300 Mexico D. F. (Mexico); Solorza F, O., E-mail: suilma.fernandez@inin.gob.m [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Quimica, A. P. 14-740, 07000 Mexico D. F. (Mexico)

    2010-07-01

    Nickel-molybdenum based electrocatalysts were synthesized in organic media for the hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The structure, morphology and chemical composition of the catalysts were evaluated by X-ray diffraction, scanning electron microscopy and Aas. Results revealed nanocrystalline powder materials with Ni{sub 0.006}Mo, Ni{sub 0.1}Mo and Ni Mo compositions. The best performance for hydrogen evolution reaction, was obtained on Ni{sub 0.1}Mo electrode, whereas Ni Mo was for the oxygen evolution reaction. Results suggest that the material with 1:1 stoichiometric ratio could be considered as a promising electro catalyst for oxygen evolution reaction. This nanocrystalline powder is formed by Ni{sub 2}Mo{sub 3}O{sub 8} and a crystalline structure attributed to the possible formation of a Ni Mo cluster, becomes NiMoO{sub 4} after thermal treatment at 1073 K in air. The Ni Mo 1:1 cluster catalyst presented electrochemical stability during the oxygen evolution reaction. (Author)

  13. Electrochemical behavior of Ni-Mo electro catalyst for water electrolysis

    International Nuclear Information System (INIS)

    Fernandez V, S. M.; Ordonez R, E.; Cabanas M, G.; Solorza F, O.

    2010-01-01

    Nickel-molybdenum based electrocatalysts were synthesized in organic media for the hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The structure, morphology and chemical composition of the catalysts were evaluated by X-ray diffraction, scanning electron microscopy and Aas. Results revealed nanocrystalline powder materials with Ni 0.006 Mo, Ni 0.1 Mo and Ni Mo compositions. The best performance for hydrogen evolution reaction, was obtained on Ni 0.1 Mo electrode, whereas Ni Mo was for the oxygen evolution reaction. Results suggest that the material with 1:1 stoichiometric ratio could be considered as a promising electro catalyst for oxygen evolution reaction. This nanocrystalline powder is formed by Ni 2 Mo 3 O 8 and a crystalline structure attributed to the possible formation of a Ni Mo cluster, becomes NiMoO 4 after thermal treatment at 1073 K in air. The Ni Mo 1:1 cluster catalyst presented electrochemical stability during the oxygen evolution reaction. (Author)

  14. Tunneling in BP-MoS2 heterostructure

    Science.gov (United States)

    Liu, Xiaochi; Qu, Deshun; Kim, Changsik; Ahmed, Faisal; Yoo, Won Jong

    Tunnel field effect transistor (TFET) is considered to be a leading option for achieving SS mV/dec. In this work, black phosphorus (BP) and molybdenum disulfide (MoS2) heterojunction devices are fabricated. We find that thin BP flake and MoS2 form normal p-n junctions, tunneling phenomena can be observed when BP thickness increases to certain level. PEO:CsClO4 is applied on the surface of the device together with a side gate electrode patterned together with source and drain electrodes. The Fermi level of MoS2 on top of BP layer can be modulated by the side gating, and this enables to vary the MoS2-BP tunnel diode property from off-state to on-state. Since tunneling is the working mechanism of MoS2-BP junction, and PEO:CsClO4\\ possesses ultra high dielectric constant and small equivalent oxide thickness (EOT), a low SS of 55 mV/dec is obtained from MoS2-BP TFET. This work was supported by the Global Research Laboratory and Global Frontier R&D Programs at the Center for Hybrid Interface Materials, both funded by the Ministry of Science, ICT & Future Planning via the National Research Foundation of Korea (NRF).

  15. Effect of Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratio on the microstructure and mechanical properties of Ti(C,N)-based cermet tool materials

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingzhong; Zhao, Jun, E-mail: zhaojun@sdu.edu.cn; Ai, Xing; Qin, Wenzhen; Wang, Dawei; Huang, Weimin

    2015-11-15

    To optimize the Mo{sub 2}C content in Ti(C,N)-based cermet tool materials used for cutting the high-strength steel of 42CrMo (AISI 4140/4142 steel), the cermets with different Mo{sub 2}C/(Mo{sub 2}C + WC) weight ratios were prepared. And the microstructure and mechanical properties of cermets were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of transverse rupture strength (TRS), Vickers hardness (HV) and fracture toughness (K{sub IC}). The results indicate that the Mo{sub 2}C/(Mo{sub 2}C + WC) ratios have great influences on the microstructure features and mechanical properties of Ti(C,N)-based cermets. When the Mo{sub 2}C/(Mo{sub 2}C + WC) ratio increases, the Ti(C,N) grains become finer with smaller black cores surrounded by thinner rims, and the structure of cermets tends to be more compact with smaller binder mean free path. Owing to the medium grains and moderate rims, the cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 exhibit better mechanical properties, and can be chosen as the tool material for machining 42CrMo steel due to the lower Mo content. - Highlights: • Mo{sub 2}C/(Mo{sub 2}C + WC) ratios affect microstructure and mechanical properties of cermets. • Grains become fine and structure of cermets tends to be compact with raised Mo{sub 2}C. • The cermets with a Mo{sub 2}C/(Mo{sub 2}C + WC) ratio of 0.4 can be used to machine 42CrMo steel.

  16. PRoMoTo 2013 proceedings

    OpenAIRE

    Bishop, Judith; Tillmann, Nikolai; Puder, Arno; Naik, Vinayak

    2013-01-01

    Programming for Mobile and Touch (PRoMoTo'13) was held at the 2013 ACM SIGPLAN conference on Systems, Programming, Languages and Applications (SPLASH 2013), October 2013 in Indianapolis, USA. Submissions for this event were invited in the general area of mobile and touch-oriented programming languages and programming environments, and teaching of programming for mobile devices. These are proceedings of the PRoMoTo'13.

  17. Synthesis and characterization of MoO3 films by acid hydrolysis of K2Mo4O13

    International Nuclear Information System (INIS)

    Hernan, L.; Morales, J.

    1989-01-01

    The behaviour of K 2 Mo 4 O 13 heated under reflux in an acid medium has been studied. A metastable polymorphic MoO 3 phase crystallizing in the hexagonal system was obtained. Lengthy treatment led to the formation of orthorhombic MoO 3 with the (010) planes perfectly oriented parallel to the substrate. SEM images do not support a topotactic mechanism for the successive transformations. The reactions involved probably take place through the polymerization of discrete units formed in the bulk solution

  18. The Tribological Performance of CrMoN/MoS2 Solid Lubrication Coating on a Piston Ring

    Directory of Open Access Journals (Sweden)

    Yuelan Di

    2017-05-01

    Full Text Available In order to improve the tribological properties of an engine piston ring and enhance its service life, magnetron sputtering technology and low temperature ion sulphurizing treatment technology were used to prepare CrMoN/MoS2 solid lubricant coating on the surface of an engine piston ring. The morphologies and compositions of the surface and cross-section of the sulfuration layer were analyzed by field emission scanning electron microscopy (FESEM, and wear property under high load, high speed and high temperature conditions were tested by a SRV®4 friction and wear testing machine. The results show that the CrMoN/MoS2 composite coatings appear as a dense grain structure, and the coating is an ideal solid lubrication layer that possesses an excellent high temperature wear resistance, reducing the engine operating temperature abrasion effectively and prolonging the service life of the engine.

  19. Influence of Mo on the structure of borosilicate glass for the immobilization of high level waste

    International Nuclear Information System (INIS)

    Petrov, I.; Dimitriev, Y.; Kashchieva, E.

    2015-01-01

    It has been shown that the classic multi-borosilicate glass with concentration of MoO 3 has a low melting in the range of 1300 to 1400 ° C, but for achieving of complete homogenization and vitrification it is required temperature above 1400 ° C. Under this temperature in all tested samples areas of crystallization were observed, due to incomplete vitrification processes. It is understood that in all multicomponent borosilicate glass featuring MoO 3 , occur micro vitrification processes, and at a concentration of MoO 3 above 20% - macro segregation; It has been shown that the introduction of Nd in compound borosilicate glass featuring MoO 3 is observed crystallization of the phase Na 0.5 Nd 0.5 Mo, and it has been also found that the phase Na 0.5 Nd 0.5 Mo 4 can be synthesized either by solid phase reaction or supercooled melt. The results of surveys show that It is possible to prevent the occurrence of liquid phase separation in the studied multicomponent glass. From a structural point of view, the cause of liquid phase separation is the result of structural incompatibility of molybdenum units with structural units borosilicate network since not been established links Mo-O-B-O and Mo-Si. From a thermodynamic point of view in the lamination multi windows may be due to overlapping areas of delamination in component binary and triple systems. From the kinetic point of view of course the liquid phase by settling, and crystallization may be due to imbalances conditions the cooling process, in the course of which flow various processes of imbalances metastable settling, followed by crystallization of molybdate phases

  20. Energy dispersive X-ray fluorescence analysis with Bragg polarized Mo radiation. Energiedispersive Roentgenfluoreszenzanalyse mit Bragg-polarisierter Mo Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Gloeckl, H

    1983-01-01

    The aim of introducing energy dispersive analysis into X-ray fluorescence analysis is to suppress background from the Bremsstrahlung spectrum and the characteristic radiation without an undue reduction of the signal. The variant under consideration uses linearly polarization radiation obtained after a Bragg reflection,under delta = 90/sup 0/. In an introductory part, Bragg reflection, fluorescence and strong radiation are considered quantitatively with respect to counting statistics and detection limits. In the experimental part two combinations are describe, of a Ta crystal with a Cr tube and of a Mo crystal with a Mo tube. Details of adjustment, sample preparation and calibration and detection limits are given. The pros and cons of the Ta/Cr and the Mo/Mo are contrasted and proposals for further improvements are given.

  1. Characterization of the interaction layer in diffusion couples U-Mo-Zr/Al and U-Mo-Zr/Al-A356 at 550 C degrees; Caracterizacion de la zona de interaccion en pares de difusion a 550 grados C U-Mo-Zr/Al y U-Mo-Zr/Al-A356

    Energy Technology Data Exchange (ETDEWEB)

    Komar Varela, Carolina; Arico, Sergio; Mirandou, Marcela; Balart, Silvia; Gribaudo, Luis [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; com, carolinakomar@gmail

    2007-07-01

    Out-of-pile diffusion experiments were performed between U-7 wt.% Mo-1 wt.% Zr and Al or Al A356 (7,1 wt.% Si) at 550 C degrees. In this work morphological characterization and phase identification on both interaction layers are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-ray diffraction and WDS microanalysis. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al, the phases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U and Al{sub 43}Mo{sub 4}U{sub 6} were identified. Similar results in the interaction layer of the U-7 % Mo/Al at 580 C degrees were previously obtained. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al A356, the phases U(Al,Si){sub 3} with 25 at.% Si and Si{sub 5}U{sub 3} were identified. This last phase, with a higher Si concentration, was identified with X-ray diffraction synchrotron radiation performed at the National Synchrotron Light Laboratory, Campinas, Brazil. (author) [Spanish] Se realizaron experiencias fuera de reactor en pares de difusion quimica U-7 % Mo-1 % Zr/Al y U-7 % Mo-1 % Zr/Al A356. En este trabajo se presentan los resultados de la caracterizacion morfologica e identificacion de fases presentes en la zona de interaccion que se forma al ser sometidos a un tratamiento isotermico de 1,5 h a 550 grados C. Las tecnicas utilizadas fueron: microscopia optica y electronica de barrido, difraccion de rayos X y microanalisis cuantitativo por sonda electronica. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al se identificaron las fases UAl{sub 3}, UAl{sub 4}, Al{sub 20}Mo{sub 2}U y Al{sub 43}Mo{sub 4}U{sub 6}. Estas cuatro fases fueron identificadas en pares U-7 % Mo/Al a 580 grados C en trabajos anteriores. En la zona de interaccion correspondiente al par U-7 % Mo-1 % Zr/Al A356 se identificaron las fases U(Al,Si){sub 3} (con una concentracion de 25 %at.Si) y Si{sub 5}U{sub 3}. Este compuesto rico en Si solo pudo ser identificado mediante la utilizacion de

  2. MoOx modified ZnGaO based transparent conducting oxides

    Science.gov (United States)

    Dutta, Titas; Gupta, P.; Bhosle, V.; Narayan, J.

    2009-03-01

    We report here the growth of high work function bilayered structures of thin MoOx (2.0MoOx layer, molybdenum exists in Mo4+, Mo5+, and Mo6+ oxidation states, and the ratio of (Mo4++Mo5+) to Mo6+ was determined to be ˜2:1. The bilayer films showed good optical transparency (≥80%) and low resistivity of ˜10-4 Ω cm. Different transport behavior of the MoOx/ZnGa0.05O films grown at different Ts (substrate temperature) was observed in temperature-dependent resistivity measurements. The bilayer film at higher Ts showed metallic conductivity behavior down to 113 K. Moreover, a blueshift of the absorption edge in the transmission spectrum was observed with the increase in Ts, indicating an increase in the carrier concentration. It was observed that the ZnGa0.05O films with ultrathin MoOx (˜1-2 nanometers) overlayer showed a higher work function (varying from 4.7 to 5.1 eV) as compared to the single layer ZnGa0.05O film work function (˜4.4 eV). A correlation between the surface work function and MoOx layer thickness is observed. The higher work function of the MoOx overlayer is envisaged to improve the transport of the carriers across the heterojunction in a solid state device, thus resulting an increase in device efficiency.

  3. U-target irradiation at FRM II aiming the production of Mo-99 - A feasibility study

    International Nuclear Information System (INIS)

    Gerstenberg, H.; Mueller, C.; Neuhaus, I.; Roehrmoser, A.

    2010-01-01

    Following the shortage in radioisotope availability the Technische Unversitaet Muenchen and the Belgian Institut National des Radioelements conducted a common study on the suitability of the FRM II reactor for the generation of Mo-99 as a fission product. A suitable irradiation channel was determined and neutronic calculations resulted in sufficiently high neutron flux densities to make FRM II a promising candidate for Mo-99 production. In addition the feasibility study provides thermohydraulic calculations as input for the design and integration of the additional cooling circuit into the existing heat removal systems of FRM II. The required in-house processes for a regular uranium target irradiation programme have been defined and necessary upgrades identified. Finally the required investment cost was estimated and a possible time schedule was given. (author)

  4. A note on notes: note taking and containment.

    Science.gov (United States)

    Levine, Howard B

    2007-07-01

    In extreme situations of massive projective identification, both the analyst and the patient may come to share a fantasy or belief that his or her own psychic reality will be annihilated if the psychic reality of the other is accepted or adopted (Britton 1998). In the example of' Dr. M and his patient, the paradoxical dilemma around note taking had highly specific transference meanings; it was not simply an instance of the generalized human response of distracted attention that Freud (1912) had spoken of, nor was it the destabilization of analytic functioning that I tried to describe in my work with Mr. L. Whether such meanings will always exist in these situations remains a matter to be determined by further clinical experience. In reopening a dialogue about note taking during sessions, I have attempted to move the discussion away from categorical injunctions about what analysis should or should not do, and instead to foster a more nuanced, dynamic, and pair-specific consideration of the analyst's functioning in the immediate context of the analytic relationship. There is, of course, a wide variety of listening styles among analysts, and each analyst's mental functioning may be affected differently by each patient whom the analyst sees. I have raised many questions in the hopes of stimulating an expanded discussion that will allow us to share our experiences and perhaps reach additional conclusions. Further consideration may lead us to decide whether note taking may have very different meanings for other analysts and analyst-patient pairs, and whether it may serve useful functions in addition to the one that I have described.

  5. Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies.

    Science.gov (United States)

    Mahatha, S K; Patel, K D; Menon, Krishnakumar S R

    2012-11-28

    Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).

  6. Direct laser-patterned micro-supercapacitors from paintable MoS2 films.

    Science.gov (United States)

    Cao, Liujun; Yang, Shubin; Gao, Wei; Liu, Zheng; Gong, Yongji; Ma, Lulu; Shi, Gang; Lei, Sidong; Zhang, Yunhuai; Zhang, Shengtao; Vajtai, Robert; Ajayan, Pulickel M

    2013-09-09

    Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.5 mm length, 820 μm wide for each electrode, 200 μm spacing between two electrodes and the thickness of electrode is ∼0.45 μm. The optimum MoS2 -based micro-supercapacitor exhibits excellent electrochemical performance for energy storage with aqueous electrolytes, with a high area capacitance of 8 mF cm(-2) (volumetric capacitance of 178 F cm(-3) ) and excellent cyclic performance, superior to reported graphene-based micro-supercapacitors. This strategy could provide a good opportunity to develop various micro-/nanosized energy storage devices to satisfy the requirements of portable, flexible, and transparent micro-electronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diagnostic pure transgastric NOTES in an intensive therapy unit patient

    Directory of Open Access Journals (Sweden)

    Maciej Michalik

    2011-06-01

    Full Text Available Natural orifice transluminal endoscopic surgery (NOTES is a natural consequence of evolution in minimally invasivesurgery. It allows one to reduce surgical trauma and the number of complications and to improve cosmetic outcomes.It also shortens the patient’s recovery time. So far there have been only nine NOTES procedures performed in Polandand around 200 NOTES interventions performed worldwide. In this paper a transgastric diagnostic NOTES procedurein a critically ill patient is described. A 60-year-old male patient with multi-organ failure (circulatory, respiratory andrenal insufficiency, with co-morbid hypothyroidism and diabetes mellitus hospitalized in the intensive therapy unit(ITU with unknown cause of his condition was qualified for transgastric diagnostic NOTES procedure. This interventionrevealed the diagnosis of metastatic neoplastic disease and allowed persistent therapy to be avoided. DiagnosticNOTES in selected patients seems to be a very useful. It provides fast diagnosis with relatively small perioperativetrauma. It is an easy procedure that requires a regular or operative endoscope, one surgeon and an endoscopic nurse.It can be done anywhere, including at the patient’s bedside. It provides specimens for histopathology and speeds updiagnostics and decision making, especially in terminally ill patients.

  8. MoS₂ nanocube structures as catalysts for electrochemical H₂ evolution from acidic aqueous solutions.

    Science.gov (United States)

    Maijenburg, A Wouter; Regis, Morrisa; Hattori, Azusa N; Tanaka, Hidekazu; Choi, Kyoung-Shin; ten Elshof, Johan E

    2014-02-12

    Core-shell PMMA-Au nanocube structures made by a combination of nanoimprint lithography and sidewall deposition were used as template for electrodeposition of MoS2, Ni, and Pt. Linear sweep voltammetry experiments obtained in an aqueous solution containing 0.29 M H2SO4 (pH 0.24) showed that the onset potential of the core-shell-shell PMMA-Au-MoS2 nanocube electrode for the hydrogen evolution reaction (HER) was shifted to the positive direction (i.e., requiring a lower overpotential) by 20-40 mV compared to planar MoS2 films. This indicates that the nanocube electrodes have a significantly increased HER activity, which is probably because of a higher density of catalytically active edge sites available at the nanocube surface. It was also found that the HER activity initially increased with increasing MoS2 deposition time, but decreased after deposition for 60 min because the edges of the nanocubes became rounded, thereby decreasing the number of active edge sites. By depositing Ni and Pt on top of PMMA-Au nanocubes, it was shown that this method can also be used for the synthesis of nanocube structures with varying compositions.

  9. Study of the 99Mo production effect on some of research reactor core specification using DARE-P

    International Nuclear Information System (INIS)

    Khamis, I.; Ezzuddin, H.

    2006-12-01

    In this study, the major basis of Mo- production using irradiation method for targets of enriched uranium is presented. Factors such as neutron flux, time of irradiation, and enrichment ration have also been analyzed. It was concluded that Mo-production requires nuclear reactors having high neutron fluxes, and that raising the neutron flux results in increasing the Mo-activities especially at fluxes that are higher than 10 14 n.cm -2 .s -1 . Time of irradiation was found to have adverse i.e. positive and negative effects on Mo activity. Therefore, the optimum irradiation time should be determined. The Mo-production was modeled through a set of differential equation with respect to time with aim to study the most influencing factors on Mo production, especially the effects of neutron flux and time of irradiation. In addition, the mass of plutonium produced during the irradiation of low enriched uranium has been evaluated. An investigation as to whether 99 Mo could be produced in the Syrian MNSR has been made. The result shows that a specific activity of 0.3773 Ci/g for 99 Mo could be produced. In future, a nuclear research reactor having neutron flux of 10 14 n.cm -2 .s -1 and 8 irradiation sites suitable for targets of 5 g of 235 U could produce about 5000 Ci on a weekly. Calculation and simulation have been achieved using the already developed DARE-P simulation language which was modified and improved in the nuclear Engineering Department in the Atomic Energy Commission of Syria. (author)

  10. Interdiffusion and reactions between U-Mo and Zr at 650 °C as a function of time

    Science.gov (United States)

    Park, Y.; Keiser, D. D.; Sohn, Y. H.

    2015-01-01

    Development of monolithic U-Mo alloy fuel (typically U-10 wt.%Mo) for the Reduced Enrichment for Research and Test Reactors (RERTR) program entails a use of Zr diffusion barrier to eliminate the interdiffusion-reactions between the fuel alloy and Al-alloy cladding. The application of Zr barrier to the U-Mo fuel system requires a co-rolling process that utilizes a soaking temperature of 650 °C, which represents the highest temperature the fuel system is exposed to during both fuel manufacturing and reactor application. Therefore, in this study, development of phase constituents, microstructure and diffusion kinetics of U-10 wt.%Mo and Zr was examined using solid-to-solid diffusion couples annealed at 650 °C for 240, 480 and 720 h. Phase constituents and microstructural development were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Concentration profiles were mapped as diffusion paths on the isothermal ternary phase diagram. Within the diffusion zone, single-phase layers of β-Zr and β-U were observed along with a discontinuous layer of Mo2Zr between the β-Zr and β-U layers. In the vicinity of Mo2Zr phase, islands of α-Zr phases were also found. In addition, acicular α-Zr and U6Zr3Mo phases were observed within the γ-U(Mo) terminal alloy. Growth rate of the interdiffusion-reaction zone was determined to be 7.75 (± 5.84) × 10-16 m2/s at 650 °C, however with an assumption of a certain incubation period.

  11. TEM investigation of irradiated U-7 weight percent Mo dispersion fuel

    International Nuclear Information System (INIS)

    Van den Berghe, S.

    2009-01-01

    In the FUTURE experiment, fuel plates containing U-7 weight percent Mo atomized powder were irradiated in the BR2 reactor. At a burn-up of approximately 33 percent 235 U (6.5 percent FIMA or 1.41 10 21 fissions/cm 3 meat), the fuel plates showed an important deformation and the irradiation was stopped. The plates were submitted to detailed PIE at the Laboratory for High and Medium level Activity. The results of these examinations were reported in the scientific report of last year and published in open literature. Since then, the microstructural aspects of the FUTURE fuel were studied in more detail using transmission electron microscopy (TEM), in an attempt to understand the nature of the interaction phase and the fission gas behavior in the atomized U(Mo) fuel. The FUTURE experiment is regarded as the definitive proof that the classical atomized U(Mo) dispersion fuel is not stable under irradiation, at least in the conditions required for normal operation of plate-type fuel. The main cause for the instability was identified to be the irradiation behavior of the U(Mo)-Al interaction phase which is formed between the U(Mo) particles and the pure aluminum matrix during irradiation. It is assumed to become amorphous under irradiation and as such cannot retain the fission gas in stable bubbles. As a consequence, gas filled voids are generated between the interaction layer and the matrix, resulting in fuel plate pillowing and failure. The objective of the TEM investigation was the confirmation of this assumption of the amorphisation of the interaction phase. A deeper understanding of the actual nature of this layer and the fission gas behaviour in these fuels in general can allow a more oriented search for a solution to the fuel failures

  12. Computation of beam quality parameters for Mo/Mo, Mo/Rh, Rh/Rh, and W/Al target/filter combinations in mammography

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Zarrad, Boubaker

    2003-01-01

    A computer program was implemented to predict mammography x-ray beam parameters in the range 20-40 kV for Mo/Mo, Mo/Rh, Rh/Rh, and W/Al target/filter combinations. The computation method used to simulate mammography x-ray spectra is based on the Boone et al. model. The beam quality parameters such as the half-value layer (HVL), the homogeneity coefficient (HC), and the average photon energy were computed by simulating the interaction of the spectrum photons with matter. The checking of this computation was done using a comparison of the results with published data and measured values obtained at the Netherlands Metrology Institute Van Swinden Laboratorium, National Institute of Standards and Technology, and International Atomic Energy Agency. The predicted values with a mean deviation of 3.3% of HVL, 3.7% of HC, and 1.5% of average photon energy show acceptable agreement with published data and measurements for all target/filter combinations in the 23-40 kV range. The accuracy of this computation can be considered clinically acceptable and can allow an appreciable estimation for the beam quality parameters

  13. Hierarchical structure graphitic-like/MoS2 film as superlubricity material

    Science.gov (United States)

    Gong, Zhenbin; Jia, Xiaolong; Ma, Wei; Zhang, Bin; Zhang, Junyan

    2017-08-01

    Friction and wear result in a great amount of energy loss and the invalidation of mechanical parts, thus it is necessary to minimize friction in practical application. In this study, the graphitic-like/MoS2 films with hierarchical structure were synthesized by the combination of pulse current plasma chemical-vapor deposition and medium frequency unbalanced magnetron sputtering in preheated environment. This hierarchical structure composite with multilayer nano sheets endows the films excellent tribological performance, which easily achieves macro superlubricity (friction coefficient ∼0.004) under humid air. Furthermore, it is expected that hierarchical structure of graphitic-like/MoS2 films could match the requirements of large scale, high bear-capacity and wear-resistance of actual working conditions, which could be widely used in the industrial production as a promising superlubricity material.

  14. A comparison of computer- and hand-generated clinical dental notes with statutory regulations in record keeping.

    Science.gov (United States)

    McAndrew, R; Ban, J; Playle, R

    2012-02-01

    Dental patient records should be of high quality, contain information to allow for good continuity of care and clinical defence (should the need ever arise) and, ideally, facilitate clinical audit. Handwritten dental records have been assessed for their compliance to statutory regulations, but the same cannot be levelled at computer-generated notes. This study aimed to compare and analyse the compliance of both methods of data recording with statutory regulations. Fifty consecutive sets of handwritten notes and 50 sets of computer-generated notes were audited for compliance with a number of legal requirements and desirable characteristics for dental records and the results compared. The standard set for compliance with all characteristics was 100%. The computer-generated notes satisfied the set standard for 8 of the 11 legal requirements and three of six desirable characteristics. The handwritten notes satisfied the set standard for 1 of 11 legal requirements and none of the desirable characteristics. A statistical difference (using a 95% confidence interval) between the two methods was observed in 5 of 11 legal characteristics and three of six desirable characteristics, all of which were in favour of computer-generated notes. Within the limitations of this study, computer-generated notes achieved a much higher compliance rate with the set parameters, making defence in cases of litigation, continuity of care and clinical audit easier and more efficient. © 2011 John Wiley & Sons A/S.

  15. Creep Rupture Analysis and Life Estimation of 1.25Cr-0.5Mo, 2.25Cr-1Mo and Modified 9Cr-1Mo Steel: A Comparative Study

    Science.gov (United States)

    Roy, Prabir Kumar

    2018-04-01

    This paper highlights a comparative assessment of creep life of 1.25Cr-0.5Mo, 2.25Cr-1Mo and modified 9Cr-1Mo steels based on accelerated creep rupture tests. Creep rupture test data have been analysed and creep life of the above mentioned materials have been assessed using Larson Miller parameter at the stress levels of 60 and 42 MPa for different temperatures. Limiting steam temperatures for minimum design life of 105 h at 42 and 60 MPa for the above mentioned steels have also been calculated. Microstructural studies for the three above mentioned steels are also done.

  16. Stable MoS2 Field-Effect Transistors Using TiO2 Interfacial Layer at Metal/MoS2 Contact

    KAUST Repository

    Park, Woojin

    2017-09-07

    Molybdenum disulphide (MoS2) is an emerging 2-dimensional (2D) semiconductor for electronic devices. However, unstable and low performance of MoS2 FETs is an important concern. In this study, inserting an atomic layer deposition (ALD) titanium dioxide (TiO2) interfacial layer between contact metal and MoS2 channel is suggested to achieve more stable performances. The reduced threshold voltage (VTH) shift and reduced series resistance (RSD) were simultaneously achieved.

  17. Atomic structure calculations of Mo XV-XL

    International Nuclear Information System (INIS)

    Kubo, Hirotaka; Sugie, Tatsuo; Shiho, Makoto; Suzuki, Yasuo; Ishii, Keishi; Maeda, Hikosuke.

    1986-06-01

    Energy levels and oscillator strengths were calculated for Mo XV - Mo XL. The computer program for atomic structure calculation, developed by Dr. Robert D. Cowan, Los Alamos National Laboratory, was used in the present work. The scaled energy parameters were empirically determined from the observed spectral data. We present wavelengths and transition probabilities of Mo XV-XL. Energy levels and spectral patterns are presented in figures that are useful for the identification of spectral lines. (author)

  18. Phase diagrams for the M2MoO4–Ln2(MoO43–Hf(MoO42 systems, where M = Li–Cs, Tl and Ln = La–Lu

    Directory of Open Access Journals (Sweden)

    Zh. G. Bazarova

    2017-12-01

    Full Text Available In this paper, the results of systematic studies of complex molybdate systems M2MoO4–Ln2(MoO43–Hf(MoO42 (M = Li–Cs, Tl; Ln = La–Lu are presented. Subsolidus phase diagrams of ternary systems were constructed and new triple molybdates were obtained. The optimum synthesis conditions for poly- and monocrystalline form were determined. According to single-crystal data, the structure of one of the representatives of triple molybdates was determined.

  19. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    coated Mo cladding design to meet the challenging requirements for improving fuel tolerance to severe loss of coolant accidents.

  20. Characterization of interaction between U-Mo alloy and Al diffusion-couple

    International Nuclear Information System (INIS)

    Liu Yunming; Yin Changgeng; Sun Changlong; Chen Jiangang; Sun Xudong

    2011-01-01

    In this paper, the interaction behavior of U-Mo/Al was studied with the diffusion-couple method, and the couple was continuously jointed by hot-pressing with special device. Annealing experiments were accomplished in a vacuum hot-pressing furnace, and at 550∼570℃ for 5∼21 hours. The results show that the morphology and composition of interaction Layer depend on the interaction layer thickness. The content of U (Mo) and Al is mutational at the interface of U-Mo/interaction layer/Al. The layer close to U-Mo side is mainly composed of product (U, Mo)Al 3 , while the Al side is composed of (U, Mo)Al 4 and UMO 2 Al 20 . Diffusion process of U-Mo/Al is Al immigrating over the Al/U-Mo original interface into U-Mo side and reacting with U-Mo, subsequently the interaction layer is growing into Al. (authors)

  1. Preparation of i.v. 99mTc radiopharmaceuticals from spent moly 99Mo

    International Nuclear Information System (INIS)

    Noronha, O.P.D.

    1998-01-01

    Full text: Expiry dating is an important quality assurance precept in (radio) pharmacy. There are occasions when for the sake of patient service one may be forced to continue using an over aged source of 99 Mo to generate 99m Tc beyond 7d, especially when there is short/no supply of 99 Mo, (In the early days the expiry date was 3 d or 3 extractions, whichever one was earlier). With the passage of time a few physico-chemical changes (apart from decay) do occur in the 99 Mo/ 99m Tc milieu. The cocktail also begins to contain traces of carried over MEK which is subjected to strong β-, γ irradiation. These impurity (in trace amounts) is soluble in MEK and even, to an extent, in aqueous media. Furthermore, the concentrated impurity tends to seemingly increase in the bulk 99m TcO 4 - since one is compelled to leach TcO 4 - in lower volume of saline. On many occasions we have been constrained to extend the use of 99 Mo beyond 7 - 14 d. Adequate activities were obtained by pooling the previous week's lot of 99 Mo with the current over aged lot. On a few occasions over the past 26 years we have used 99 Mo much beyond 14 d and 2 - 3 occasions for 26 - 28 d (i.e. >10 t 1 /2 of 99 Mo). On each of these occasions the purity of 99m TcO- 4 was ascertained by pharmacopoeial procedures. It was found that despite depleting activities, the purity was not compromised and the trace impurities, even if present, did not cause any interference. We have profitably utilised the bulk TcO- 4 to formulate a variety of i.v. dosage forms of 99m Tc radiodiagnostics. The following strategy was adopted for the patient services - the agents requiring larger activity levels/patients dose were made available in the earlier period, the other during the latter half. It is concluded that pure 99m TcO- 4 can be obtained over the entire useful life-period of 99 Mo, even > 10t l/2

  2. Mo-Mo Quintuple Bond is Highly Reactive in H-H, C-H, and O-H σ-Bond Cleavages Because of the Polarized Electronic Structure in Transition State.

    Science.gov (United States)

    Chen, Yue; Sakaki, Shigeyoshi

    2017-04-03

    The recently reported high reactivity of the Mo-Mo quintuple bond of Mo 2 (N ∧ N) 2 (1) {N ∧ N = μ-κ 2 -CH[N(2,6-iPr 2 C 6 H 3 )] 2 } in the H-H σ-bond cleavage was investigated. DFT calculations disclosed that the H-H σ-bond cleavage by 1 occurs with nearly no barrier to afford the cis-dihydride species followed by cis-trans isomerization to form the trans-dihydride product, which is consistent with the experimental result. The O-H and C-H bond cleavages by 1 were computationally predicted to occur with moderate (ΔG° ⧧ = 9.0 kcal/mol) and acceptable activation energies (ΔG° ⧧ = 22.5 kcal/mol), respectively, suggesting that the Mo-Mo quintuple bond can be applied to various σ-bond cleavages. In these σ-bond cleavage reactions, the charge-transfer (CT Mo→XH ) from the Mo-Mo quintuple bond to the X-H (X = H, C, or O) bond and that (CT XH→Mo ) from the X-H bond to the Mo-Mo bond play crucial roles. Though the HOMO (dδ-MO) of 1 is at lower energy and the LUMO + 2 (dδ*-MO) of 1 is at higher energy than those of RhCl(PMe 3 ) 2 (LUMO and LUMO + 1 of 1 are not frontier MO), the H-H σ-bond cleavage by 1 more easily occurs than that by the Rh complex. Hence, the frontier MO energies are not the reason for the high reactivity of 1. The high reactivity of 1 arises from the polarization of dδ-type MOs of the Mo-Mo quintuple bond in the transition state. Such a polarized electronic structure enhances the bonding overlap between the dδ-MO of the Mo-Mo bond and the σ*-antibonding MO of the X-H bond to facilitate the CT Mo→XH and reduce the exchange repulsion between the Mo-Mo bond and the X-H bond. This polarized electronic structure of the transition state is similar to that of a frustrated Lewis pair. The easy polarization of the dδ-type MOs is one of the advantages of the metal-metal multiple bond, because such polarization is impossible in the mononuclear metal complex.

  3. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov

    2017-07-15

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  4. Development of the Mo loading apparatus for adsorbing high level 99Mo to PZC and packing in 99mTc generator column

    International Nuclear Information System (INIS)

    Hishinuma, Yukio; Ohmori, Hiroyuki; Noguchi, Tuneyuki; Tatenuma, Katsuyoshi; Genka, Tsuguo; Machi, Sueo

    2006-01-01

    For developing the automatic system to produce the PZC- 99m Tc generator column based on (n, gamma) method, we developed and fabricated the proto-type apparatus for semi hot test to prepare and pack PZC adsorbed 99 Mo produced by (n, gamma) method into the generator column; PZC is Mo adsorbent with practical performance for (n, gamma) 99m Tc generator with high 99 Mo adsorption and high 99m Tc elution. For conducting the constant supply and delivery of 99m Tc generator, it is necessary to establish the technology of (n, gamma) method 99m Tc generator using PZC and to develop the fabrication system for 99 Mo loading to PZC and packing the 99m Tc generator column. By the reason, we are developing the Mo loading apparatus. In order to automatically conduct the process of 99 Mo adsorption to PZC and PZC- 99 Mo packing into the generator column, based on one channel system developed by JAERI-KAKEN at 3 years ago, an advanced automatic loading system functioned with 8 channels was developed as FNCA project proceeded by the core with Kaken Co. and JAIF for realizing a mass production of 99m Tc generators, and moreover the Japanese patent regarding the PZC- 99m Tc generator including the automatic loading system of 99 Mo to PZC and making 99m Tc generator columns has already been applied with joint applicants of BATAN and Kaken Co. Regarding the multi-type Mo loading apparatus mentioned above, we set it up in a hot of BATAN at December 2003 year. In this report, we will introduce mainly about the multi-channel automatic loading system of 99 Mo. (author)

  5. Nanostructured metal oxides: promise opportunity and challenge to develop clinically useful 99Mo/99mTc generators using (n, gamma)99Mo

    International Nuclear Information System (INIS)

    Dash, Ashutosh

    2014-01-01

    The role of 99m Tc diagnostic nuclear medicine needs hardly to be reiterated. Today, it is the most widely used radionuclide for single photon emission computed tomography (SPECT) imaging procedures. The current strategy of availing 99m Tc is ensured from column chromatographic 99 Mo/ 99m Tc generators using a bed of acidic alumina. While the column chromatographic 99 Mo/ 99m Tc generator constitute a successful exemplar of availing 99m Tc, the limited capacity of alumina (2-20 mg Mo per g of alumina) for taking up molybdate ions necessitates the use of 99 Mo of the highest specific activity available, as can be found in fission produced 99 Mo (F 99 Mo). In order to reduce dependence of F 99 Mo, the scope of using low specific activity (n,γ) 99 Mo along with high capacity adsorbent is an interesting prospect. In this context, the scope of using nanomaterials as a viable adsorbent seemed attractive by virtue of their huge surface to volume ratios, altered physical properties, tailored surface chemistry, favorable adsorption characteristics, and enhanced surface reactivity resulting from the nanoscale dimensions. This emerging class of adsorbent represents an innovative paradigm and is expected to play an important role in the development of 99 Mo/ 99m Tc generators adaptable to the existing and foreseeable demands. This talk outlines a critical assessment on the role of nanostructured metal oxides, recent developments, the contemporary status, and key challenges and apertures to the near future. (author)

  6. Toroidal deuteron accelerator for Mo-98 neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L., E-mail: wagner.leite@ifnmg.edu.br, E-mail: tprcampos@pq.cnpq.br [Instituto Federal do Norte de Minas Gerais (IFN-MG), Montes Claros, MG (Brazil); Campos, Tarcisio P.R. Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The radionuclide Tc-{sup 99m} is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10{sup 13} n.s{sup -1}. In a arrangement of 30 column samples, TTS provides 230 mCi s{sup -1} Mo{sup 99} in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  7. Toroidal deuteron accelerator for Mo-98 neutron activation

    International Nuclear Information System (INIS)

    Araujo, Wagner L.; Campos, Tarcisio P.R. Universidade Federal de Minas Gerais

    2017-01-01

    The radionuclide Tc- 99m is the most useful radioisotope in nuclear medicine. It can be produced by the Mo-99 beta minus decay. Mo-99 has often been produced in a high- flux nuclear reactor through radioactive neutron capture reactions on Mo-98. The present paper provides a preliminary design of a toroidal transmutation system (TTS) based on a toroidal compact deuteron accelerator, which can provide the Mo-98 transmutation into Mo-99. This system is essentially composed of a multi-aperture plasma electrode and a target, submitted to 180 kV, where a positive deuteron beam is accelerated toward a titanium-target loaded with deuterium in which nuclear d-d fusion reactions are induced. The Particle Studio package of the Computer Simulation Technology (CST) software was applied to design, simulate and optimize the deuteron beam on the target. MCNP code provided to neutronic analysis. Based on electromagnetic and neutronic simulations, the neutron yield and reaction rates were estimated. The simulated data allowed appraising the Mo-99 activity. A TTS, in a specific configuration, could produce a total deuterium current of 1.6 A at the target and a neutron yield of 10 13 n.s -1 . In a arrangement of 30 column samples, TTS provides 230 mCi s -1 Mo 99 in each column, which represents 80% of Tc-99m in secular equilibrium. As conclusion, the system holds potential for generating Mo-99 and Tc-99m in a suitable activity in secular equilibrium. (author)

  8. Mo-99 production by fission and future projections

    International Nuclear Information System (INIS)

    Carranza, E.C.; Novello, A.; Bronca, M.; Cestau, D.; Bavaro, R.; Centurion, R.; Bravo, C.; Bronca, P.; Gualda, E.; Fraguas, F.; Giomi, A.; Ivaldi, L.

    2012-01-01

    Description of the I-131 and Mo-99 production process: The process starts with the irradiation of uranium-aluminum mini plates in the RA-3, Argentinean Reactor No.3, Ezeiza Atomic Center. In a nuclear reactor there is a constant flow of neutrons and when a neutron with proper energy impacts on a nucleus of U-235, it is absorbed at the same time generate an unstable configuration nuclear. For this reason, the nucleus formed is fission, getting two different atoms. Approximately 6% of the fissions produce Mo-99 and 3% produce I-131; the percentage remaining corresponds to formation of atoms without interest for use in medicine. In conclusion, the objective of the process developed in the Fission Plant, is starting from uranium mini plates, separate the Mo-99 and I-131 generated, the remaining elements formed. - Evolution of Mo-99 Production in the last 10 years: The Fission Mo-99 Plant Production begins routine production of Mo-99 in 1985, using targets made of uranium enriched at 90% U-235. In the 1990s, global concern regarding the use of highly enriched uranium, due to non-proliferation issues, caused the interruption of supply of nuclear material (HEU enriched at 90% of U-235). Following this, Argentina developed target based on low-enriched uranium (less than 20% U-235), becoming in 2002 the first country in the world to produce Mo-99 with LEU targets. From 2002 to date, the activity produced of Mo-99 has been tripled annually (author)

  9. Synthesis of nanometre-thick MoO3 sheets

    Science.gov (United States)

    Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.

    2010-03-01

    The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.

  10. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  11. Fixation Of Mo In Uranium Leach Liquor By Activated Carbon

    International Nuclear Information System (INIS)

    Mainar, S.; Guswita, A.; Erni, R.A.; Susilaningtyas

    1996-01-01

    The use of activated carbon for Mo fixation by bulk system is reported. Several factors influencing the fixation process were examined, including contact time, carbon particle size, carbon porosity and the effect of other elements present in Mo containing solutions. Experimental data showed that an adsorption equilibrium of Mo on of activated carbon and 0,85 to 1,18 mm of carbon particle size under forced-convection mass transfer in 100 ml solution that contains + 0,56 m mol of Mo and +. 0,25 m mol Of U was reached after 6 hours period. Under those conditions, about 0,50 m mol of Mo and 0,026 m mol of U were adsorbed into carbon. High concentration of rare earth elements decreased Mo adsorption, hence, the use of activated carbon was not effective to separate Mo from the digestion liquor of Rirang are where Mo was adsorbed, into the carbon + 34,5 %

  12. Development of Commercial-scale Fission Mo-99 Production System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Kon; Lee, Suseung; Hong, Soon-Bog; Jang, Kyung-Duk; Park, Ul Jael; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    These days, worldwide {sup 99} Mo supply is not only insufficient but also unstable. Because, most of the main {sup 99}Mo production reactors are more than years old and suffered from frequent and unscheduled shutdown. Therefore, movement to replace old reactors to keep stable supply is now active. Under these conditions, KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016. For the fission Mo production process development, hot experiments with irradiated LEU targets will be done in 4th quarter of 2016. Then, verification of the production process with quality control will be followed until the commercial production of fission {sup 99}Mo scheduled in 2019.

  13. A novel three dimensional semimetallic MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Kun [Beijing Computational Science Research Center, Beijing 100084 (China); Departments of Physics and Electronics, Hengyang Normal University, Hengyang 421008 (China); Zhang, Hui; Liu, Li-Min, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Liu, Hao [Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing 100084 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan 610207 (China)

    2014-05-28

    Transition metal dichalcogenides (TMDs) have many potential applications, while the performances of TMDs are generally limited by the less surface active sites and the poor electron transport efficiency. Here, a novel three-dimensional (3D) structure of molybdenum disulfide (MoS{sub 2}) with larger surface area was proposed based on first-principle calculations. 3D layered MoS{sub 2} structure contains the basal surface and joint zone between the different nanoribbons, which is thermodynamically stable at room temperature, as confirmed by first principles molecular dynamics calculations. Compared the two-dimensional layered structures, the 3D MoS{sub 2} not only owns the large surface areas but also can effectively avoid the aggregation. Interestingly, although the basal surface remains the property of the intrinsic semiconductor as the bulk MoS{sub 2}, the joint zone of 3D MoS{sub 2} exhibits semimetallic, which is derived from degenerate 3d orbitals of the Mo atoms. The high stability, large surface area, and high conductivity make 3D MoS{sub 2} have great potentials as high performance catalyst.

  14. Homogenization of compacted blends of Ni and Mo powders

    International Nuclear Information System (INIS)

    Lanam, R.D.; Yeh, F.C.H.; Rovsek, J.E.; Smith, D.W.; Heckel, R.W.

    1975-01-01

    The homogenization behavior of compacted blends of Ni and Mo powders was studied primarily as a function of temperature, mean compact composition, and Mo powder particle size. All compact compositions were in the Ni-rich terminal solid-solution range; temperatures were between 950 and 1200 0 C (in the region of the phase diagram where only the Mo--Ni intermediate phase forms); average Mo particle sizes ranged from 8.4 mu m to 48 mu m. Homogenization was characterized in terms of the rate of decrease of the amounts of the Mo-rich terminal solid-solution phase and the Mo--Ni intermediate phase. The experimental results were compared to predictions based upon the three-phase, concentric-sphere homogenization model. In general, agreement between experimental data and model predictions was fairly good for high-temperature treatments and for compact compositions which were not close to the solubility limit of Mo in Ni. Departures from the model are discussed in terms of surface diffusion contributions to homogenization and non-uniform mixing effects. (U.S.)

  15. Na2MoO2As2O7

    Directory of Open Access Journals (Sweden)

    Raja Jouini

    2012-12-01

    Full Text Available Disodium molybdenum dioxide diarsenate, Na2MoO2As2O7, has been synthesized by a solid-state reaction. The structure is built up from MoAs2O12 linear units sharing corners to form a three-dimensional framework containing tunnels running along the a-axis direction in which the Na+ cations are located. In this framework, the AsV atoms are tetrahedrally coordinated and form an As2O7 group. The MoVI atom is displaced from the center of an octahedron of O atoms. Two Na+ cations are disordered about inversion centres. Structural relationships between different compounds: A2MoO2As2O7 (A = K, Rb, AMOP2O7 (A = Na, K, Rb; M = Mo, Nb and MoP2O7 are discussed.

  16. Interaction Layer Characteristics in U-xMo Dispersion/Monolithic Fuels

    International Nuclear Information System (INIS)

    Porter, D.L.

    2010-01-01

    Published data concerning the interaction layer (IL) formed between U-xMo fuel alloy and aluminum (Al)-based matrix or cladding materials was reviewed, including the effects of silicon (Si) content in the matrix/cladding, molybdenum (Mo) content in the fuel, pre irradiation thermal treatments, irradiation, and test temperature. The review revealed that tests conducted in the laboratory produce results different from those conducted in an irradiation environment. However, the laboratory testing relates well to thermal treatments performed prior to irradiation and helps in understanding the effects that these pre irradiation treatments have on in reactor performance. A pre-formed, Si-enriched IL seems to be important in delaying the onset of rapid growth of fission gas bubbles at low irradiation temperatures. Several other conclusions can be drawn: (1) An IL with phases akin to UAl3 is desired for optimum fuel performance, but at low temperatures, and especially in an irradiation atmosphere, the desired (Al+Si)/(U+Mo) ratio of three is difficult to produce. When the fuel operating temperature is low, it is important to create a pre-irradiation IL, enriched in Si. This pre-formed IL is relatively stable, performs well in terms of swelling resistance, and prevents rapid IL growth during irradiation. (2) At higher operating temperatures (>150-170 C), IL formation in reactor may not be so dependent on pre-irradiation IL formation, especially at high burnup; a pre-fabricated IL seems to be less stable at high burnup and high operating temperature. Moreover, the (Al+SI)/(U+Mo) ratio of three occurs more often at higher temperature. For these two reasons, it is important at high operating temperature to also have a matrix with significant Si content to create an IL in reactor with the right characteristics. (3) Out-of-reactor testing seems to indicate that Si in the matrix material is required in some concentration (2%, 5%, ?) to provide for a thin, Si-enriched IL formed

  17. Interaction Layer Characteristics in U-xMo Dispersion/Monolithic Fuels

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Porter

    2010-11-01

    Published data concerning the interaction layer (IL) formed between U-xMo fuel alloy and aluminum (Al)-based matrix or cladding materials was reviewed, including the effects of silicon (Si) content in the matrix/cladding, molybdenum (Mo) content in the fuel, pre irradiation thermal treatments, irradiation, and test temperature. The review revealed that tests conducted in the laboratory produce results different from those conducted in an irradiation environment. However, the laboratory testing relates well to thermal treatments performed prior to irradiation and helps in understanding the effects that these pre irradiation treatments have on in reactor performance. A pre-formed, Si-enriched IL seems to be important in delaying the onset of rapid growth of fission gas bubbles at low irradaiiation temperatures. Several other conclusions can be drawn: 1. An IL with phases akin to UAl3 is desired for optimum fuel performance, but at low temperatures, and especially in an irradiation atmosphere, the desired (Al+Si)/(U+Mo) ratio of three is difficult to produce. When the fuel operating temperature is low, it is important to create a pre-irradiation IL, enriched in Si. This pre-formed IL is relatively stable, performs well in terms of swelling resistance, and prevents rapid IL growth during irradiation. 2. At higher operating temperatures (>150–170°C), IL formation in reactor may not be so dependent on pre-irradiation IL formation, especially at high burnup; a pre-fabricated IL seems to be less stable at high burnup and high operating temperature. Moreover, the (Al+SI)/(U+Mo) ratio of three occurs more often at higher temperature. For these two reasons, it is important at high operating temperature to also have a matrix with significant Si content to create an IL in reactor with the right characteristics. 3. Out-of-reactor testing seems to indicate that Si in the matrix material is required in some concentration (2%, 5%, ?) to provide for a thin, Si-enriched IL formed

  18. Oxidation of atomically thin MoS2 on SiO2

    Science.gov (United States)

    Yamamoto, Mahito; Cullen, William; Einstein, Theodore; Fuhrer, Michael

    2013-03-01

    Surface oxidation of MoS2 markedly affects its electronic, optical, and tribological properties. However, oxidative reactivity of atomically thin MoS2 has yet to be addressed. Here, we investigate oxidation of atomic layers of MoS2 using atomic force microscopy and Raman spectroscopy. MoS2 is mechanically exfoliated onto SiO2 and oxidized in Ar/O2 or Ar/O3 (ozone) at 100-450 °C. MoS2 is much more reactive to O2 than an analogous atomic membrane of graphene and monolayer MoS2 is completely etched very rapidly upon O2 treatment above 300 °C. Thicker MoS2 (> 15 nm) transforms into MoO3 after oxidation at 400 °C, which is confirmed by a Raman peak at 820 cm-1. However, few-layer MoS2 oxidized below 400 °C exhibits no MoO3 Raman mode but etch pits are formed, similar to graphene. We find atomic layers of MoS2 shows larger reactivity to O3 than to O2 and monolayer MoS2 transforms chemically upon O3 treatment even below 100 °C. Work supported by the U. of Maryland NSF-MRSEC under Grant No. DMR 05-20741.

  19. Carbon potential measurement on the Mo-MoC0.47 system by methane - hydrogen equilibration

    International Nuclear Information System (INIS)

    Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Anthonysamy, S.; Vasudeva Rao, P.R.; Mathews, C.K.

    1993-01-01

    Uranium plutonium mixed carbides are potential candidate fuel materials for liquid metal cooled fast breeder reactors. The carbon potential of the fuel is an important thermochemical property which strongly influences the carbon transport between the clad and the fuel. The carbon potential of the fuel is altered during irradiation of the fuel in the reactor. This is due to the formation of various fission products and their binary and ternary carbides. Molybdenum is a fission product with a high yield which can alter the carbon potential of the fuel. The present work forms part of our studies on the carbon potential measurements in the U - Mo - C ternary system. The carbon potential of the Mo-Mo 2 C couple measured by the methane hydrogen gas equilibration technique is presented here and the results are compared with the values cited in the literature. (author)

  20. Influence of H2O and H2S on the Composition, Activity, and Stability of Sulfided Mo, CoMo, and NiMo Supported on MgAl2O4 for Hydrodeoxygenation of Ethylene Glycol

    DEFF Research Database (Denmark)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    2018-01-01

    In this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS2, Ni-MoS2, and Co-MoS2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon...

  1. Absorption spectra of CsNd(MoO4)2 and CsGd(MoO4)2-Nd3+ crystals in strong magnetic fields

    International Nuclear Information System (INIS)

    Gorban', I.S.; Kozeeva, L.P.; Slobodyanyuk, A.V.; Shevchenko, V.A.

    1987-01-01

    The comparison of the electronic structure of Nd 3+ in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 - Nd 3+ crystals is made. It is established that in these crystals the activator centers, mainly, of the certain type with the symmetry of the local environment C 2 are formed. The absorption spectra of self-activated CsNd(MoO 4 ) 2 crystal differ from spectra of CsGd(MoO 4 ) 2 - Nd 3+ by the presence of the vibrating structure. The Stark splittings of energy levels of Nd 3+ in the investigated crystalline matrices are more sensitive to the environment effect than the Zeeman ones. The ground state of Nd 3+ ion in CsNd(MoO 4 ) 2 and CsGd(MoO 4 ) 2 molybdates is characterized by the similar values of g-factors

  2. Open Oncology Notes: A Qualitative Study of Oncology Patients' Experiences Reading Their Cancer Care Notes.

    Science.gov (United States)

    Kayastha, Neha; Pollak, Kathryn I; LeBlanc, Thomas W

    2018-04-01

    Electronic medical records increasingly allow patients access to clinician notes. Although most believe that open notes benefits patients, some suggest negative consequences. Little is known about the experiences of patients with cancer reading their medical notes; thus we aimed to describe this qualitatively. We interviewed 20 adults with metastatic or incurable cancer receiving cancer treatment. The semistructured qualitative interviews included four segments: assessing their overall experience reading notes, discussing how notes affected their cancer care experiences, reading a real note with the interviewer, and making suggestions for improvement. We used a constant comparison approach to analyze these qualitative data. We found four themes. Patients reported that notes resulted in the following: (1) increased comprehension; (2) ameliorated uncertainty, relieved anxiety, and facilitated control; (3) increased trust; and (4) for a subset of patients, increased anxiety. Patients described increased comprehension because notes refreshed their memory and clarified their understanding of visits. This helped mitigate the unfamiliarity of cancer, addressing uncertainty and relieving anxiety. Notes facilitated control, empowering patients to ask clinicians more questions. The transparency of notes also increased trust in clinicians. For a subset of patients, however, notes were emotionally difficult to read and raised concerns. Patients identified medical jargon and repetition in notes as areas for improvement. Most patients thought that reading notes improved their care experiences. A small subset of patients experienced increased distress. As reading notes becomes a routine part of the patient experience, physicians might want to elicit and address concerns that arise from notes, thereby further engaging patients in their care.

  3. Vedinių su priesaga *-mo- raida

    Directory of Open Access Journals (Sweden)

    Saulius Ambrazas

    2011-12-01

    Full Text Available DEVELOPMENT OF DERIVATIVES WITH THE SUFFIX *-mo-SummaryAdjectives with the suffix *-mo- have been formed from substantives (cf. Lith. tólimas / tólymas and Latv. dial. tuôl’eims ‘distant’; Pruss. *auktimas ‘high’; Skr. agrimá- ‘the first, who is at the head’ and verbs (cf. Lith. dial. ãpsukmas ‘sewn round’, pliùkšmas ‘deflated, limp’; OLith. laimas ‘happy’ and Pruss. etnīstislaims (gnadenreich III 631; Lith. liñksmas and Latv. lìksms ‘merry, gay, joyfull’, Gmc. *werma- ‘warm’, Skr. bhīmá- ‘terrible, frightfull’, Toch. A, B cämpamo- ‘well-to-do, rich’, Hitt. kišamma- ‘combed’ from the Late Proto-Indo-European. The gratest part of them became participles in the Baltic, Slavic and Albanian languages.On the other hand, the use of derivatives with the suffix *-mo- in the position of abstract nouns is also very old, cf. semanticaly concretized and derivationaly indissoluble abstract noun, in herited from Proto-Indo-European, Lith. dmas (dmai, Latv. dũmi, Pruss. dumis (rauch E 39, Slav. *dymъ, Latv. fūmus, Skr. dhūmó- ‘smoke’ and Gk. θῡ‑μός with abstract meaning ‘soal, vitality, passion,    need’ : dhe-/dh-/dhū- ‘blow; breathe; choke; smoke; rush; disperse; whirl, move, stir’.In the East Baltic languages abstract nouns with the derived suffixes, based on *-mo-, became productive, cf. nomina actionis with *-i-mo- in Lithuanian (cf. gyvẽnimas ‘life’ and corresponding derivatives with *-u-mo- in Latvian (cf. ìeradums ‘custom, habit’.

  4. Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Chen

    2018-02-01

    Full Text Available The co-processing of an unconventional type of Jatropha bio-oil with petroleum distillates over mesoporous alumina-supported CoMo and NiMo sulfide catalysts (denoted CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was studied. Either a stainless-steel high-pressure batch-type reactor or an up-flow fixed-bed reaction system was used under severe reaction conditions (330–350 °C and 5–7 MPa, similar to the conditions of the conventional diesel hydrodesulfurization (HDS process. To understand the catalytic performance of the mesoporous sulfide catalysts for co-processing, we prepared two series of oil feedstocks. First, model diesel oils, consisting of hydrocarbons and model molecules with various heteroatoms (sulfur, oxygen, and nitrogen were used for the study of the reaction mechanisms. Secondly, low-grade oil feedstocks, which were prepared by dissolving of an unconventional type of Jatropha bio-oil (ca. 10 wt % in the petroleum distillates, were used to study the practical application of the catalysts. Surface characterization by gas sorption, spectroscopy, and electron microscopy indicated that the CoMo/γ-Al2O3 sulfide catalyst, which has a larger number of acidic sites and coordinatively unsaturated sites (CUS on the mesoporous alumina framework, was associated with small Co-incorporated MoS2-like slabs with high stacking numbers and many active sites at the edges and corners. In contrast, the NiMo/γ-Al2O3 sulfide catalyst, which had a lower number of acidic sites and CUS on mesoporous alumina framework, was associated with large Ni-incorporated MoS2-like slabs with smaller stacking numbers, yielding more active sites at the brims and corresponding to high hydrogenation (HYD activity. Concerning the catalytic performance, the mesoporous CoMo/γ-Al2O3 sulfide catalyst with large CUS number was highly active for the conventional diesel HDS process; unfortunately, it was deactivated when oxygen- and nitrogen-containing model molecules or Jatropha bio

  5. MoSbTe for high-speed and high-thermal-stability phase-change memory applications

    Science.gov (United States)

    Liu, Wanliang; Wu, Liangcai; Li, Tao; Song, Zhitang; Shi, Jianjun; Zhang, Jing; Feng, Songlin

    2018-04-01

    Mo-doped Sb1.8Te materials and electrical devices were investigated for high-thermal-stability and high-speed phase-change memory applications. The crystallization temperature (t c = 185 °C) and 10-year data retention (t 10-year = 112 °C) were greatly enhanced compared with those of Ge2Sb2Te5 (t c = 150 °C, t 10-year = 85 °C) and pure Sb1.8Te (t c = 166 °C, t 10-year = 74 °C). X-ray diffraction and transmission electron microscopy results show that the Mo dopant suppresses crystallization, reducing the crystalline grain size. Mo2.0(Sb1.8Te)98.0-based devices were fabricated to evaluate the reversible phase transition properties. SET/RESET with a large operation window can be realized using a 10 ns pulse, which is considerably better than that required for Ge2Sb2Te5 (∼50 ns). Furthermore, ∼1 × 106 switching cycles were achieved.

  6. ITO-free organic light-emitting diodes with MoO3/Al/MoO3 as semitransparent anode fabricated using thermal deposition method

    International Nuclear Information System (INIS)

    Lu, Hsin-Wei; Huang, Ching-Wen; Kao, Po-Ching; Chu, Sheng-Yuan

    2015-01-01

    Highlights: • In this paper, the structure of the proposed devices is substrate (glass; polyethersulfone (PES))/anode (MoO 3 /Al/MoO 3 ; MoO 3 /Al)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (60 nm)/LiF (1 nm)/Al (150 nm). • The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO 3 ) and metal (Al) layers. • The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. • The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m 2 and 3.18 cd/A, respectively. • The bending effects on PES substrate by depositing metal oxidation (MoO 3 ) and metal (Al) layers were also investigated. • MoO 3 covering the Al layer modifies the surface of the electrode and enhances the durability. The surface roughness of the bi-layer films was higher than that of the tri-layer films. Therefore, OLEDs with OMO anode outperform those with bi-layer films anode. - Abstract: In this paper, semitransparent electrodes with the structure substrate/MoO 3 /Al/MoO 3 (OMO) were fabricated via the thermal deposition method for use as the anode in organic light-emitting diodes (OLEDs). The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO 3 ) and metal (Al) layers. The optimal thickness of the Al thin films was determined to be 15 nm for high optical transmittance and good electrical conductivity. The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m 2 and 3.18 cd/A, respectively. In addition, bending effects on the polyethersulfone (PES) substrate/MoO 3 /Al/MoO 3 and PES substrate/MoO 3 /Al structures were

  7. MoS2 Nanocube structures as catalysts for electrochemical H2 evolution from acidic aqueous solutions

    OpenAIRE

    Maijenburg, A.W.; Regis, M.; Hattori, A.N.; Tanaka, H.; Choi, K.-S.; ten Elshof, Johan E.

    2014-01-01

    Core–shell PMMA–Au nanocube structures made by a combination of nanoimprint lithography and sidewall deposition were used as template for electrodeposition of MoS2, Ni, and Pt. Linear sweep voltammetry experiments obtained in an aqueous solution containing 0.29 M H2SO4 (pH 0.24) showed that the onset potential of the core–shell–shell PMMA–Au–MoS2 nanocube electrode for the hydrogen evolution reaction (HER) was shifted to the positive direction (i.e., requiring a lower overpotential) by 20–40 ...

  8. U-Mo/Al-Si interaction: Influence of Si concentration

    International Nuclear Information System (INIS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M.C.; Lemoine, P.

    2010-01-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 deg. C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 , when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6 Mo 4 Al 43 . For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3 (Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 . On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  9. Teens join the MoEDAL collaboration

    CERN Multimedia

    Stephanie Hills

    2013-01-01

    The principal investigator for any institute joining an experimental collaboration is generally a self-assured researcher with evident leadership skills and an in-depth knowledge of their subject gained over many years. Katherine Evans fits the brief in every respect, except that she is 17 years old and her research institute is the Langton Star Centre, based at the Simon Langton Grammar School for Boys. The school has just joined the MoEDAL experiment.   Teacher Becky Parker (left) with two students from the Simon Langton Grammar School for Boys in the MoEDAL experimental area. MoEDAL, the latest LHC experiment has detectors located close to the interaction point of the LHCb experiment. This new experiment is designed to search for the highly ionizing avatars of new physics at the LHC, specifically the magnetic monopole or dyon and other highly ionizing stable massive particles from a number of beyond-the-Standard-Model scenarios. MoEDAL was approved in 2010 and is due to start taking data i...

  10. Tailored MoS2 nanorods: a simple microwave assisted synthesis

    Science.gov (United States)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Roy, Anupam; Basu, Palash Kumar; Bhattacharjee, K.

    2017-11-01

    We report here the synthesis of MoS2 nanostructures by a simple liquid phase exfoliation of MoS2 powder in organic solvents followed by microwave treatment. The probe sonication and the microwave treatment play an important role in rolling and curling of the MoS2 nanosheets to give rise to MoS2 spheres and rod/tube like-structures with diameter approximately 150-200 nm. The MoS2 nanorods formed in this fashion are hollow inside with a wall thickness of 15-20 nm and the length of the nanorods is found in the order of several micrometers. Synthesis of such tailored MoS2 nanorods by liquid phase exfoliation is not yet reported. Our observations suggest the 2H phase of bulk MoS2 remains preserved in the nanostructures with high crystalline quality.

  11. Amorphous-crystalline transition studied in hydrated MoO3

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Lartundo-Rojas, L.; Livage, J.; Julien, C.M.

    2006-01-01

    In this work we study the thermal behavior of hydrated MoO 3 synthesized via acidification of sodium molybdate. MoO 3 .nH 2 O (n = 1.4) amorphous compound was heated in air at increasing temperatures in order to obtain the crystalline MoO 3 phase. We have studied the structural changes as a function of annealing temperature by Raman spectroscopy. A statistical study to determine the average size of the crystallites at each annealing step has been realized by scanning electron microscopy. Results show that the hydrated MoO 3 .1.4H 2 O glass transforms in an amorphous MoO 3 .0.7H 2 O phase prior to its crystallization, while the sample heated at 500 deg. C crystallizes into the orthorhombic α-MoO 3 phase with micro-crystallites having an average size of 6.8 μm

  12. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  13. Thermal transport properties of MoS 2 and MoSe 2 monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, Ali; Yapicioglu, Haluk; Kinaci, Alper; Çağın, Tahir; Sevik, Cem

    2016-01-11

    Isolation of single to few layer transition metal dichalgogenides open alternate venues in application of 2 dimensional materials to nanoelectronics. Either for general overheating issues or specific application in thermoelectric devices, the characterization of the thermal transport in these new low dimensional materials is needed for their efficient implementation. In this study, lattice thermal conductivities of single layer MoS2 and MoSe2 are evaluated using classical molecular dynamics method. The interactions between atoms are defined by Stillinger-Weber type empirical potentials that are developed to represent structural, mechanical, and vibrational properties of the given materials. In parameterization of the potentials, a stochastic optimization algorithm, namely particle swarm optimization is utilized. The final parameter sets produce quite consistent results with DFT in terms of lattice parameters, bond distances, elastic constants and vibrational properties of both single layer MoS2 and MoSe2. The predicted thermal properties of both materials are in very good agreement with earlier first principles calculations. The discrepancies between calculations and experimental measurements are most likely to be caused by pristine nature of the structures in our simulations.

  14. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.

    Science.gov (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  15. Coated U(Mo) Fuel: As-Fabricated Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Ann Leenaers; Sven Van den Berghe; Tom Wiencek

    2014-04-01

    As part of the development of low-enriched uranium fuels, fuel plates have recently been tested in the BR-2 reactor as part of the SELENIUM experiment. These fuel plates contained fuel particles with either Si or ZrN thin film coating (up to 1 µm thickness) around the U-7Mo fuel particles. In order to best understand irradiation performance, it is important to determine the starting microstructure that can be observed in as-fabricated fuel plates. To this end, detailed microstructural characterization was performed on ZrN and Si-coated U-7Mo powder in samples taken from AA6061-clad fuel plates fabricated at 500°C. Of interest was the condition of the thin film coatings after fabrication at a relatively high temperature. Both scanning electron microscopy and transmission electron microscopy were employed. The ZrN thin film coating was observed to consist of columns comprised of very fine ZrN grains. Relatively large amounts of porosity could be found in some areas of the thin film, along with an enrichment of oxygen around each of the the ZrN columns. In the case of the pure Si thin film coating sample, a (U,Mo,Al,Si) interaction layer was observed around the U-7Mo particles. Apparently, the Si reacted with the U-7Mo and Al matrix during fuel plate fabrication at 500°C to form this layer. The microstructure of the formed layer is very similar to those that form in U-7Mo versus Al-Si alloy diffusion couples annealed at higher temperatures and as-fabricated U-7Mo dispersion fuel plates with Al-Si alloy matrix fabricated at 500°C.

  16. Comparative study of {sup 99}Mo/{sup 99m}Tc generators at base of synthesized gels starting from activation and fission {sup 99}Mo; Estudio comparativo de generadores {sup 99}Mo/{sup 99m}Tc a base de geles sintetizados a partir de {sup 99}Mo de activacion y de fision

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, I Z [UAEM, Paseo Colon esq. Paseo Tollocan, 50120 Toluca, Estado de Mexico (Mexico); Monroy G, F; Rivero G, T; Rojas N, P [ININ, Carretera Mexico -Toluca S/N, 52045 La Marquesa Ocoyoacac, Estado de Mexico (Mexico)

    2007-07-01

    The {sup 99m}Tc is used for diagnostic and therapy. It is produced starting from {sup 99}Mo, absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of {sup 99}Mo with high specific activities of {sup 99}Mo, obtained from the {sup 235}U fission. Given these conditions and limitations, new preparation procedures of {sup 99}Mo/{sup 99m}Tc generators, its have been developed, using zirconium molybdates gels that incorporates until 30% of {sup 99}Mo, conserve similar characteristics of quality and purity that the traditional generator. The radiochemical characteristics of the {sup 99m}Tc elution, depend strongly on the gel preparation conditions. In particular, the present work has by object to determine the influence of the {sup 99}Mo used type, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the {sup 99}Mo/{sup 99m}Tc generators quality. When diminishing the flow of agitation air the efficiency it increases and in the radionuclide purity of the eluates and when using {sup 99}Mo from fission for the gels production it increases in an important way the elutriation efficiency, the radiochemical and radionuclide purity of the {sup 99m}Tc eluates. (Author)

  17. MoCha: Molecular Characterization of Unknown Pathways.

    Science.gov (United States)

    Lobo, Daniel; Hammelman, Jennifer; Levin, Michael

    2016-04-01

    Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.

  18. Low enrichment Mo-99 target development program at ANSTO

    International Nuclear Information System (INIS)

    Donlevy, Therese M.; Anderson, Peter J.; Beattie, David; Braddock, Ben; Fulton, Scott; Godfrey, Robert; Law, Russell; McNiven, Scott; Sirkka, Pertti; Storr, Greg; Wassink, David; Wong, Alan; Yeoh, Guan

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO, formerly AAEC) has been producing fission product Mo-99 in HIFAR, from the irradiation of Low Enrichment Uranium (LEU) UO 2 targets, for nearly thirty years. Over this period, the U-235 enrichment has been increased in stages, from natural to 1.8% to 2.2%. The decision to provide Australia with a replacement research reactor (RRR) for HIFAR has created an ideal opportunity to review and improve the current Mo-99 production process from target design through to chemical processing and waste management options. ANSTO has entered into a collaboration with Argonne National Laboratory (RERTR) to develop a target using uranium metal foil with U-235 enrichment of less than 20% The initial focus has been to demonstrate use of LEU foil targets in HIFAR, using existing irradiation methodology. The current effort focussed on designing a target assembly with optimised thermohydraulic characteristics to accommodate larger LEU foils to meet Mo-99 production needs. The ultimate goal is to produce an LEU target suitable for use in the Replacement Research Reactor when it is commissioned in 2005. This paper reports our activities on: - The regulatory approval processes required in order to undertake irradiation of this new target; -Supporting calculations (neutronics, computational fluid dynamics) for safety submission; - Design challenges and changes to prototype irradiation; - Trial irradiation of LEU foil target in HIFAR; - Future target and rig development program at ANSTO. (author)

  19. Two-dimensional MoS2 electromechanical actuators

    Science.gov (United States)

    Hung, Nguyen T.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2018-02-01

    We investigate the electromechanical properties of two-dimensional MoS2 monolayers with 1H, 1T, and 1T‧ structures as a function of charge doping by using density functional theory. We find isotropic elastic moduli in the 1H and 1T structures, while the 1T‧ structure exhibits an anisotropic elastic modulus. Moreover, the 1T structure is shown to have a negative Poisson’s ratio, while Poisson’s ratios of the 1H and 1T‧ are positive. By charge doping, the monolayer MoS2 shows a reversible strain and work density per cycle ranging from  -0.68% to 2.67% and from 4.4 to 36.9 MJ m-3, respectively, making them suitable for applications in electromechanical actuators. We also examine the stress generated in the MoS2 monolayers and we find that 1T and 1T‧ MoS2 monolayers have relatively better performance than 1H MoS2 monolayer. We argue that such excellent electromechanical performance originate from the electrical conductivity of the metallic 1T and semimetallic 1T‧ structures and also from their high Young’s modulus of about 150-200 GPa.

  20. Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus.

    Directory of Open Access Journals (Sweden)

    Soonok Kim

    2010-05-01

    Full Text Available Significant progress has been made in defining the central signaling networks in many organisms, but collectively we know little about the downstream targets of these networks and the genes they regulate. To reconstruct the regulatory circuit of calcineurin signal transduction via MoCRZ1, a Magnaporthe oryzae C2H2 transcription factor activated by calcineurin dephosphorylation, we used a combined approach of chromatin immunoprecipitation - chip (ChIP-chip, coupled with microarray expression studies. One hundred forty genes were identified as being both a direct target of MoCRZ1 and having expression concurrently differentially regulated in a calcium/calcineurin/MoCRZ1 dependent manner. Highly represented were genes involved in calcium signaling, small molecule transport, ion homeostasis, cell wall synthesis/maintenance, and fungal virulence. Of particular note, genes involved in vesicle mediated secretion necessary for establishing host associations, were also found. MoCRZ1 itself was a target, suggesting a previously unreported autoregulation control point. The data also implicated a previously unreported feedback regulation mechanism of calcineurin activity. We propose that calcium/calcineurin regulated signal transduction circuits controlling development and pathogenicity manifest through multiple layers of regulation. We present results from the ChIP-chip and expression analysis along with a refined model of calcium/calcineurin signaling in this important plant pathogen.

  1. Absolute pitch: effects of timbre on note-naming ability.

    Science.gov (United States)

    Vanzella, Patrícia; Schellenberg, E Glenn

    2010-11-11

    Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP. A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age. Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  2. Absolute pitch: effects of timbre on note-naming ability.

    Directory of Open Access Journals (Sweden)

    Patrícia Vanzella

    2010-11-01

    Full Text Available Absolute pitch (AP is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names, it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician's first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones than for vocal (natural and synthesized voices test tones. This difference could not be attributed solely to vibrato (pitch variation, which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.

  3. Thermal spreading of MoO{sub 3} in H-ZY

    Energy Technology Data Exchange (ETDEWEB)

    Mosqueira, L., E-mail: mmosquei@imp.mx [Instituto Mexicano del Petroleo, Eje Central Norte, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Eje Central Norte, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico); Torres-Garcia, E., E-mail: etorresg@imp.mx [Instituto Mexicano del Petroleo, Eje Central Norte, Lazaro Cardenas 152, San Bartolo Atepehuacan, 07730 Mexico, D.F. (Mexico)

    2011-04-15

    Research highlights: {yields} Molybdenum oxo-species were formed during thermally driven migration on H-ZY. {yields} Oxo-species were identified according to the edge energy (E{sub g}) values of bulk molybdenum oxide reference compounds. {yields} The migration occurred via MoO{sub 2}(OH){sub 2} species leading first to (MoO{sub 4}){sup 2-} and (Mo{sub 2}O{sub 7}){sup 2-} formation, and finally of (Mo{sub 7}O{sub 24}){sup 6-}. - Abstract: This work provides a structural, optical and kinetics approach to the molybdenum oxo-species formed during thermally driven migration on H-ZY starting from mechanical mixtures with MoO{sub 3}. The samples were characterized as a function of time of treatment by UV-vis diffuse reflectance, X-ray diffraction, N{sub 2} adsorption and scanning transmission electron microscopy (STEM). Local analysis of elemental compositions obtained from linear scan of characteristic X-ray signal show a direct evidence of molybdenum presence into the zeolite crystals. Ultraviolet absorption spectra were used to determine both the kinetics of the spreading and the speciation of MoO{sub x} in the H-ZY. Besides MoO{sub 3}, three surface molybdenum oxo-species were identified according to the edge energy (E{sub g}) values of bulk molybdenum oxide reference compounds. This study shows that the tetrahedral species prevailed on H-ZY. This is consistent with limitations in the migration and growth of MoO{sub x} in the channel structure of the zeolite. Kinetic study suggest that migration of MoO{sub x} in the H-ZY at low temperature (ca. 723 K) occurs across the formation and diffusion of hydrated species such as MoO{sub 2}(OH){sub 2}, which interact with the zeolite and form monomeric and dimeric structures (like (MoO{sub 4}){sup 2-} and (Mo{sub 2}O{sub 7}){sup 2-}). Migration of MoO{sub x} species in the H-ZY studied is significant even at 723 K and after very short periods of treatment (<5 min).

  4. Probing topological electronic effects in catalysis: thiophene adsorption on NiMoS and CoMoS clusters

    Energy Technology Data Exchange (ETDEWEB)

    Borges Junior, Itamar; Silva, Alexander M., E-mail: itamar@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro-RJ (Brazil). Programa de Pos-Graduacao em Engenharia de Defesa

    2012-10-15

    A general two-step theoretical approach to study electronic redistributions in catalytic processes is presented. In the first step, density functional theory (DFT) is used to fully optimize two geometries: the cluster representing the catalyst and the cluster plus adsorbed molecule system. In the second step, the converged electron density is divided into multipoles centered on atomic sites according to a distributed multipole analysis which provides detailed topological information on the charge redistribution of catalyst and molecule before and after adsorption. This approach is applied to thiophene adsorption on the 10{sup -}10 metal edge of Ni(Co)MoS catalysts and compared to the same reaction on bare MoS{sub 2}. Calculated adsorption energies, geometries and multipole analysis indicate weak thiophene chemisorption on both cases. A Coulombic bond model showed that surface metal-sulfur bond strengths in Ni(Co)MoS promoted catalysts are considerably smaller than in bare MoS{sub 2}, thus confirming the origin of the enhancement of hydrodesulfurization (HDS) activity in these catalysts. (author)

  5. Comparative study of 99Mo/99mTc generators at base of synthesized gels starting from 99Mo of activation and of fission

    International Nuclear Information System (INIS)

    Lopez M, I.Z.; Monroy G, F.; Rivero G, T.; Rojas N, P.

    2007-01-01

    At the present time the more used and diffused radionuclide in nuclear medicine it is the Technetium 99 metastable ( 99 mTc) it is used for diagnostic and therapy. It is produced starting from molybdenum 99 ( 99 Mo), which is absorbed in chromatographic columns, loaded with alumina that absorb only 0.2% of 99 Mo situation that forces to use high specific activities of 99 Mo that it is obtained starting from the fission of the 235 U. Given these conditions and limitations, new preparation procedures of 99 Mo/ 99m Tc generators, of low or medium specific activity, its have been developed, using gels of zirconium molybdates that incorporates until 30% in weight of 99 Mo in the gel, and also conserve similar characteristics of quality and purity that those obtained by the traditional generator; reducing by this way the cost of production of the 99m Tc, when using 99 Mo of low specific activity, in the preparation of 99 Mo/ 99m Tc generators. The radiochemical characteristics of the elution of 99m Tc, depends strongly on the gel preparation conditions. In particular, the present work has for object to determine the influence of the used type of 99 Mo, fission or activation product, during the gels synthesis, as well as the used air flow for the agitation in the gels preparation and its influence in the quality of the 99 Mo/ 99m Tc generators. When diminishing the agitation air flow the efficiency it increases and in the radionuclide purity of the eluates and when using 99 Mo of fission for the gels production it increases in an important way the elution efficiency, the radiochemical purity and radionuclide of the eluates of 99m Tc. (Author)

  6. MoPCoM Methodology: Focus on Models of Computation

    Science.gov (United States)

    Koudri, Ali; Champeau, Joël; Le Lann, Jean-Christophe; Leilde, Vincent

    Today, developments of Real Time Embedded Systems have to face new challenges. On the one hand, Time-To-Market constraints require a reliable development process allowing quick design space exploration. On the other hand, rapidly developing technology, as stated by Moore's law, requires techniques to handle the resulting productivity gap. In a previous paper, we have presented our Model Based Engineering methodology addressing those issues. In this paper, we make a focus on Models of Computation design and analysis. We illustrate our approach on a Cognitive Radio System development implemented on an FPGA. This work is part of the MoPCoM research project gathering academic and industrial organizations (http://www.mopcom.fr).

  7. Non-stoichiometry of MoS2 phase prepared by sputtering

    International Nuclear Information System (INIS)

    Ito, T.; Nakajima, K.

    1978-01-01

    The lattice parameters and S/Mo atomic ratio in sputtered MoS 2 films have been examined as a function of sputtering conditions, especially the vacuum pressure in the chamber. It was found that the deposited films had a defect MoS 2 structure ranging from 1.6 to 2 in S/Mo ratio, depending on the pressure. (author)

  8. Synthesis of Monolayer MoS2 by Chemical Vapor Deposition

    Science.gov (United States)

    Withanage, Sajeevi; Lopez, Mike; Dumas, Kenneth; Jung, Yeonwoong; Khondaker, Saiful

    Finite and layer-tunable band gap of transition metal dichalcogenides (TMDs) including molybdenum disulfide (MoS2) are highlighted over the zero band gap graphene in various semiconductor applications. Weak interlayer Van der Waal bonding of bulk MoS2 allows to cleave few to single layer MoS2 using top-down methods such as mechanical and chemical exfoliation, however few micron size of these flakes limit MoS2 applications to fundamental research. Bottom-up approaches including the sulfurization of molybdenum (Mo) thin films and co-evaporation of Mo and sulfur precursors received the attention due to their potential to synthesize large area. We synthesized monolayer MoS2 on Si/SiO2 substrates by atmospheric pressure Chemical Vapor Deposition (CVD) methods using sulfur and molybdenum trioxide (MoO3) as precursors. Several growth conditions were tested including precursor amounts, growth temperature, growth time and flow rate. Raman, photoluminescence (PL) and atomic force microscopy (AFM) confirmed monolayer islands merging to create large area were observed with grain sizes up to 70 μm without using any seeds or seeding promoters. These studies provide in-depth knowledge to synthesize high quality large area MoS2 for prospective electronics applications.

  9. Performance of Tc-99m generator prepared with Mo adsorbent PZC and irradiated nature MoO3

    International Nuclear Information System (INIS)

    Liu Yishu

    2006-01-01

    This paper describes the technical process of Tc-99m generator prepared with reactor actived Mo-99 and PZC and the performance of the generator was also reported. Two generators were prepared with different batch of PZC and by different technical process. The results show that the adsorption rate was ∼65% and the adsorption efficiency of 99 Mo can be seriously affected by the adsorption process (the temperature, intensity and frequency of shaking and the PZC volume in solution etc.). The elution efficiency was 43-73%. The Mo breakthrough 1.2 - 16% without safe column and its can be decreased to be very low by connecting a hydrate zirconia (HZO) safe column. (author)

  10. Synthesis of Epitaxial Single-Layer MoS2 on Au(111).

    Science.gov (United States)

    Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A

    2015-09-08

    We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.

  11. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  12. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  13. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  14. Interdiffusion studies on hot rolled U-10Mo/AA1050

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, A.M.; Martins, I.C.; Carvalho, E.U.; Durazzo, M.; Riella, H.G. [Instituto de Pesquisas Energeticas e Nucleares (CCN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear], e-mail: saliba@ipen.br

    2010-07-01

    The U-Mo alloys are investigated with the goal of becoming nuclear material to fabricate high-density fuel elements for high performance research reactors. This enrichment level suggests that the U-Mo alloys should be between 6 to 10wt%, which can give up to 9gU/cm{sup 3} as fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperature (150 degree C and 550 degree C) with three soaking times (5h, 40h and 80h). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 degree C during 15 min, reaching 8 at%Al in a range of 200 {mu}m towards U-10Mo. Longer time (5, 40, 80h) at 550 degree C maintain this level of Al-content up to 1000 {mu}m inside U-10Mo. A minor depth ({approx}1 {mu}m) near the interdiffusion contact had higher Al-content, but not sufficient to form identifiable (U,Mo)Al{sub x} structures. Probably, residual elements reduced drastically the interdiffusion phenomena between U-10Mo and AA1050, maybe due to silicon presence. (author)

  15. Characterization of Thin Walled Mo Tubing produced by FBCVD

    Energy Technology Data Exchange (ETDEWEB)

    Beaux, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-21

    The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form of Mo2C and oxygen in the form of MoO2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.

  16. High temperature interdiffusion and phase equilibria in U-Mo

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1988-01-01

    Experimental data for interdiffusion and phase equilibria in the U-Mo system have been obtained over the temperature range 1400 to 1525 K as a fallout from compatibility experiments in which UO 2 was decomposed by lithium in closed molybdenum capsules. Composition-position, x-ray diffraction and microstructural data from the interdiffusion zones indicate that the intermediate phase U 2 Mo is found in this temperature range, contrary to the currently accepted equilibrium U-Mo phase diagram. The U-Mo interdiffusion data are in good agreement with published values. Inclusion of the U 2 Mo phase in a theoretical correlation of interdiffusion and phase equilibria data using Darken's equation indicate that high temperature interdiffusion of uranium and molybdenum follows the usual thermodynamic rules. Significant changes in the value of the thermodynamic based Darken factor near the U 2 Mo phase boundary on the high uranium side are indicated from both the new and published interdiffusion data. 9 refs., 10 figs., 3 tabs

  17. Nuclear structure of 94,95Mo at high spins

    International Nuclear Information System (INIS)

    Kharraja, B.; Ghugre, S.S.; Garg, U.; Janssens, R.V.; Carpenter, M.P.; Crowell, B.; Khoo, T.L.; Lauritsen, T.; Nisius, D.; Reviol, W.; Mueller, W.F.; Riedinger, L.L.; Kaczarowski, R.

    1998-01-01

    The high-spin level structures of 94,95 Mo (N=52,53) have been investigated via the 65 Cu( 36 S, αp2n) 94 Mo and 65 Cu( 36 S, αpn) 95 Mo reactions at 142 MeV. The level schemes have been extended up to spin J∼19ℎ and excitation energies E x ∼12 MeV. Spherical shell-model calculations have been performed and compared with the experimental energy levels. The level structure of 94 Mo exhibits a single-particle nature and the higher-angular-momentum states are dominated by the excitation of a g 9/2 neutron across the N=50 shell gap. The level sequences observed in 95 Mo have been interpreted on the basis of the spherical shell model and weak coupling of a d 5/2 or a g 7/2 neutron to the 94 Mo core. copyright 1998 The American Physical Society

  18. Phase transformation in a Ni-Mo-Cr alloy

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.

    2001-01-01

    The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)

  19. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  20. Needs analysis for developing a virtual-reality NOTES simulator.

    Science.gov (United States)

    Sankaranarayanan, Ganesh; Matthes, Kai; Nemani, Arun; Ahn, Woojin; Kato, Masayuki; Jones, Daniel B; Schwaitzberg, Steven; De, Suvranu

    2013-05-01

    INTRODUCTION AND STUDY AIM: Natural orifice translumenal endoscopic surgery (NOTES) is an emerging surgical technique that requires a cautious adoption approach to ensure patient safety. High-fidelity virtual-reality-based simulators allow development of new surgical procedures and tools and train medical personnel without risk to human patients. As part of a project funded by the National Institutes of Health, we are developing the virtual transluminal endoscopic surgery trainer (VTEST) for this purpose. The objective of this study is to conduct a structured needs analysis to identify the design parameters for such a virtual-reality-based simulator for NOTES. A 30-point questionnaire was distributed at the 2011 National Orifice Surgery Consortium for Assessment and Research meeting to obtain responses from experts. Ordinal logistic regression and the Wilcoxon rank-sum test were used for analysis. A total of 22 NOTES experts participated in the study. Cholecystectomy (CE, 68 %) followed by appendectomy (AE, 63 %) (CE vs AE, p = 0.0521) was selected as the first choice for simulation. Flexible (FL, 47 %) and hybrid (HY, 47 %) approaches were equally favorable compared with rigid (RI, 6 %) with p virtual NOTES simulator in training and testing new tools for NOTES were rated very high by the participants. Our study reinforces the importance of developing a virtual NOTES simulator and clearly presents expert preferences. The results of this analysis will direct our initial development of the VTEST platform.

  1. New security features and their impact on low-cost note readers

    Science.gov (United States)

    Bernardini, Ronald R.

    2004-06-01

    Banknote security features are evolving and changing. New features are constantly being developed and slowly being incorporated into banknotes. The assumption is that these features make the notes more secure for everyone; but do they? This paper looks at some of the features incorporated in today's banknotes and how (or if) they add security to banknotes processed by low cost banknote readers. The sensing technology used in low cost note readers has changed somewhat in the last few years but the industry is still faced by the cost constraints of a very competitive market. Some of the new note features require high-resolution image capture, complex optical measurements or expensive emission/detection devices. Paper watermarks, digital watermarks, OVI, Holograms, Stokes conversion, IR and magnetic features are examined, as well as the technologies used and the relative cost/benefit developed for these note features.

  2. Determination of 131I as contaminant in samples of fission 99Mo

    International Nuclear Information System (INIS)

    Aghazarian, V.P.; Nunez, O.J.; Duran, Adrian P.; Mondino, Angel V.

    2003-01-01

    A method for 99 Mo production from fission products was developed at the Ezeiza Atomic Center 15 years ago. A complete quality control of the product, preceding its use in nuclear medicine, is a basic requirement. One of the main purposes of this work was to improve the resolution of the 364.5 keV and 366.4 keV peaks, from respectively 131 I and 99 Mo, due to the fact that the former could not be detected in the presence of high activities of the later. A new procedure is described for determination of 131 I impurity contents present in the 99 Mo samples. A highly specific 131 I separation from an alkaline solution has been developed, which utilizes porous metallic silver. Elemental silver was prepared by reduction of Ag + with ascorbic acid. The isotopes of iodine were fixed as Ag 131 I and then, the iodide ion was eluted from the column with a Na 2 S solution. Finally, the 131 I activity could be quantitatively determined. All the parameters were fitted in order to obtain a suitable statistic in counting times within 2000-5000 seconds, short enough for on-line controls. (author)

  3. Phase formation, structural and microstructural characterization of novel oxynitride-perovskites synthesized by thermal ammonolysis of (Ca,Ba)MoO4 and (Ca,Ba)MoO3

    International Nuclear Information System (INIS)

    Logvinovich, D.; Aguirre, M.H.; Hejtmanek, J.; Aguiar, R.; Ebbinghaus, S.G.; Reller, A.; Weidenkaff, A.

    2008-01-01

    Reactions of AMoO 4 and AMoO 3 (A=Ca 2+ , Ba 2+ ) with ammonia were investigated at 873 K 3 and to study their crystal structure. CaMo(O,N) 3 and BaMo(O,N) 3 were prepared by thermal ammonolysis of the corresponding CaMoO 3 and BaMoO 3 precursors at T=898 and 998 K, respectively. The structural parameters of the oxynitrides were obtained from Rietveld refinements of X-ray and neutron powder diffraction data. CaMo(O,N) 3 crystallizes in the GdFeO 3 distorted perovskite structure with orthorhombic space group Pbnm and a=5.5029(1) A, b=5.5546(1) A, c=7.8248(1) A as determined by X-ray powder diffraction. Its O/N content refined from the neutron diffraction data corresponds to the composition CaMoO 1.7(1) N 1.3(1) . BaMo(O,N) 3 crystallizes in the cubic perovskite structure with space group Pm3-bar m and a=4.0657(1) A as determined by X-ray powder diffraction. Transmission electron microscopy reveals a complex microstructure for both CaMoO 3 and CaMoO 1.7(1) N 1.3(1) represented by twin domains of different orientation. - Graphical abstract: Reactions of AMoO 4 and AMoO 3 (A=Ca 2+ , Ba 2+ ) oxides with ammonia have been studied at T=873-1123 K. Orthorhombic CaMoO 1.7(1) N 1.3(1) (Pbnm) and cubic BaMo(O,N) 3 (Pm3-bar m) were prepared by thermal ammonolysis of the corresponding CaMoO 3 and BaMoO 3 precursors at T=898 and 998 K, respectively. Display Omitted

  4. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    Science.gov (United States)

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti 20 Zr 20 Nb 20 Ta 20 Mo 20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σ y =1390MPa and apparent plastic strain of ε p ≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Edge Epitaxy of Two-dimensional MoSe2 and MoS2 Nanosheets on One-dimensional Nanowires

    KAUST Repository

    Chen, Junze

    2017-06-05

    Rational design and synthesis of heterostructures based on transition metal dichalcogenides (TMDs) have attracted increasing interests because of their promising applications in electronics, catalysis, etc. However, the construction of epitaxial heterostructures with interface at the edges of TMD nanosheets (NSs) still remains great challenge. Here, we report a strategy for controlled synthesis of a new type of heterostructures in which TMD NSs, including MoS2 and MoSe2, vertically grow along the longitudinal direction of one-dimensional (1D) Cu2-xS nanowires (NWs) in an epitaxial manner. The obtained Cu2-xS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on Cu2-xS NWs through the gradually injection of chalcogen precursors. After cation exchange of Cu in Cu2-xS-TMD heterostructures with Cd, the obtained CdS-MoS2 heterostructures remained their original architectures. Compared to the pure CdS NWs, the CdS-MoS2 heterostructures with 7.7 wt% loading of MoS2 NSs exhibit the best performance in the photocatalytic hydrogen evolution reaction with the H2 production rate up to 4,647 μmol·h-1·g-1, about 58 times that catalyzed with pure CdS NWs. Our synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures which could have various promising applications.

  6. First-principle study of hydrogenation on monolayer MoS2

    International Nuclear Information System (INIS)

    Xu, Yong; Li, Yin; Chen, Xi; Zhang, Ru; Zhang, Chunfang; Lu, Pengfei

    2016-01-01

    The structural and electronic properties of hydrogenation on 1H-MoS 2 and 1T-MoS 2 have been systematically explored by using density functional theory (DFT) calculations. Our calculated results indicate an energetically favorable chemical interaction between H and MoS 2 monolayer for H adsorption when increasing concentration of H atoms. For 1H-MoS 2 , single H atom adsorption creates midgap approaching the Fermi level which increases the n-type carrier concentration effectively. As a consequence, its electrical conductivity is expected to increase significantly. For 1T-MoS 2 , H atoms adsorption can lead to the opening of a direct gap of 0.13 eV compared to the metallic pristine 1T-MoS 2 .

  7. Atomic scale onset of Al adhesion on Mo2BC

    International Nuclear Information System (INIS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-01-01

    We have explored interfacial interactions between a Mo–C terminated Mo 2 BC(040) surface and an Al cluster using ab initio molecular dynamics. The Al cluster is disrupted and wets the Mo 2 BC(040) surface. This can be understood based on the electronic structure. Across the Al–MoC interface C s–Al s hybridized states are formed. These bonds are stronger than the Al–Al intra-cluster bonds. Hence, the onset of Al adhesion is caused by bond formation across the Al–MoC interface. - Highlights: • Interfacial interactions between Mo 2 BC and an Al cluster were explored. • Al forms bonds to C constituting the onset of Al adhesion on Mo 2 BC. • These data are relevant for other carbide coatings

  8. Anisotropy of heat conduction in Mo/Si multilayers

    International Nuclear Information System (INIS)

    Medvedev, V. V.; Yakshin, A. E.; Kruijs, R. W. E. van de; Bijkerk, F.; Yang, J.; Schmidt, A. J.; Zoethout, E.

    2015-01-01

    This paper reports on the studies of anisotropic heat conduction phenomena in Mo/Si multilayers with individual layer thicknesses selected to be smaller than the mean free path of heat carriers. We applied the frequency-domain thermoreflectance technique to characterize the thermal conductivity tensor. While the mechanisms of the cross-plane heat conduction were studied in detail previously, here we focus on the in-plane heat conduction. To analyze the relative contribution of electron transport to the in-plane heat conduction, we applied sheet-resistance measurements. Results of Mo/Si multilayers with variable thickness of the Mo layers indicate that the net in-plane thermal conductivity depends on the microstructure of the Mo layers

  9. 1. On note taking.

    Science.gov (United States)

    Plaut, Alfred B J

    2005-02-01

    In this paper the author explores the theoretical and technical issues relating to taking notes of analytic sessions, using an introspective approach. The paper discusses the lack of a consistent approach to note taking amongst analysts and sets out to demonstrate that systematic note taking can be helpful to the analyst. The author describes his discovery that an initial phase where as much data was recorded as possible did not prove to be reliably helpful in clinical work and initially actively interfered with recall in subsequent sessions. The impact of the nature of the analytic session itself and the focus of the analyst's interest on recall is discussed. The author then describes how he modified his note taking technique to classify information from sessions into four categories which enabled the analyst to select which information to record in notes. The characteristics of memory and its constructive nature are discussed in relation to the problems that arise in making accurate notes of analytic sessions.

  10. What happens when patients can see their doctors' note? - the Open Notes movement

    OpenAIRE

    Mende, Susan

    2017-01-01

    Introduction:  The Open Notes movement represents a culture change, enabling patients’ access to their providers’ notes, thereby increasing transparency and patient engagement.Policy context, objective and highlights:  OpenNotes involves allowing patients on-line or hard copy access to their providers’ notes. The one-year initial pilot began in 2010 with twenty thousand patients and one hundred primary care physicians at three medical centers in the United States.  The pilot’s evaluation foun...

  11. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  12. Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.

    Science.gov (United States)

    Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae

    2015-09-22

    In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.

  13. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  14. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  15. Materials selection for a transport packaging of Mo-99

    International Nuclear Information System (INIS)

    Hara, Debora H.S.; Lucchesi, Raquel F.; Mancini, Victor A.; Rossi, Jesualdo L.; Fiore, Marina

    2015-01-01

    The radiopharmaceuticals are radioactive isotopes used in nuclear medicine for more accurate diagnosis and treatment of diseases or dysfunctions. Currently, the most important radionuclide for the preparation of radiopharmaceuticals for diagnostic purposes is technetium-99m ( 99m Tc), a product of the radioactive decay of molybdenum-99 (Mo-99). The aim of this work was the materials selection that can enable the manufacture of a package for Mo-99 transport with the aid of CES EduPack program and the methodology developed by Ashby. The ESTAR program was used to check the occurrence of Bremsstrahlung and the XCOM program was used to calculate the attenuation coefficient of gamma radiation from some of the selected materials for the shield; after, the thickness required for radiation shielding was calculated. From the results, the materials selected as potential candidates for the manufacture of the shielding were the tungsten alloys. Related to the thermal insulation and the impact protection, woods, plywoods and particle boards stand out. With regard to internal and external coatings, the selected materials focus on groups of steels and nickel alloys. (author)

  16. Hybrid MoS2/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites.

    Science.gov (United States)

    Ribeiro, Hélio; Trigueiro, João Paulo C; Silva, Wellington M; Woellner, Cristiano F; Owuor, Peter S; Cristian Chipara, Alin; Lopes, Magnovaldo C; Tiwary, Chandra S; Pedrotti, Jairo J; Villegas Salvatierra, Rodrigo; Tour, James M; Chopra, Nitin; Odeh, Ihab N; Silva, Glaura G; Ajayan, Pulickel M

    2017-09-26

    Two-dimensional (2D) nanomaterials as molybdenum disulfide (MoS 2 ), hexagonal boron nitride (h-BN), and their hybrid (MoS 2 /h-BN) were employed as fillers to improve the physical properties of epoxy composites. Nanocomposites were produced in different concentrations and studied in their microstructure, mechanical and thermal properties. The hybrid 2D mixture imparted efficient reinforcement to the epoxy leading to increases of up to 95% in tensile strength, 60% in ultimate strain, and 58% in Young's modulus. Moreover, an enhancement of 203% in thermal conductivity was achieved for the hybrid composite as compared to the pure polymer. The incorporation of MoS 2 /h-BN mixture nanofillers in epoxy resulted in nanocomposites with multifunctional characteristics for applications that require high mechanical and thermal performance.

  17. LEUbased Fission Mo-99 Process with Reduced Solid Wastes

    International Nuclear Information System (INIS)

    Lee, Seungkon; Lee, Suseung; Jung, Sunghee; Hong, Soonbog; Jang, Kyungduk; Choi, Sang Mu; Lee, Jun Sig; Lim, Incheol

    2014-01-01

    99m Tc emits 140 keV of very low gamma-ray radiation energy, as low as conventional diagnostic X-ray, and has short half-life of 6.0058 hours. Therefore, as radioactive tracer, 99m Tc provides high quality diagnostic images but keeps total patient radiation exposure low. Depending on the tagging pharmaceuticals and procedures, 99m Tc can be applied for the diagnostics of various target organs and diseases: brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and tumors. More than 95% of 99 Mo is produced through fission of 235 U worldwide because, 99m o generated from the fission (fission 99 Mo) exhibits very high specific activity (<100 Ci/g). Over 90% of fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, the IAEA recommends the use of low enriched uranium (LEU) to the 99 Mo producers for nonproliferation reason. These days, worldwide 99 Mo supply is not only insufficient but also unstable. Because, most of the main 99 Mo production reactors are about 50 years old and suffered from frequent and unscheduled shutdown. Planned weekly productivity of 2000 Ci fission 99 Mo, in a 6-day reference, will cover 100% domestic demand of Korea, as well as 20% of international market. It is expected to replace 4.3 million USD ($800/Ci) of 99 Mo import for domestic market while exporting 82.8 million USD for world market, annually

  18. Epitaxial growth of AlN on single crystal Mo substrates

    International Nuclear Information System (INIS)

    Okamoto, Koichiro; Inoue, Shigeru; Nakano, Takayuki; Kim, Tae-Won; Oshima, Masaharu; Fujioka, Hiroshi

    2008-01-01

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30 o rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices

  19. Epitaxial growth of AlN on single crystal Mo substrates

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koichiro; Inoue, Shigeru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Nakano, Takayuki; Kim, Tae-Won [Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan); Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Fujioka, Hiroshi [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 (Japan); Kanagawa Academy of Science and Technology (KAST) KSP east 301, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012 (Japan)], E-mail: hfujioka@iis.u-tokyo.ac.jp

    2008-06-02

    We have grown AlN films on single-crystalline Mo(110), (100), and (111) substrates using a low temperature pulsed laser deposition (PLD) growth technique and investigated their structural properties. Although c-axis oriented AlN films grow on Mo(100), the films contain 30{sup o} rotated domains due to the difference in the rotational symmetry between AlN(0001) and Mo(100). AlN films with only poor crystalline quality grow on Mo(111) substrates, probably due to the poor surface morphology and high reactivity of the substrates. On the other hand, single crystal AlN films grow epitaxially on Mo(110) substrates with an in-plane relationship of AlN[11-20] // Mo[001]. Reflection high-energy electron diffraction or electron backscattered diffraction analysis has revealed that neither in-plane 30 deg. rotated domains nor cubic phase domains exist in the AlN films. X-ray reflectivity measurements have revealed that the heterointerface between AlN and Mo prepared by PLD at 450 deg. C is quite abrupt. These results indicate that PLD epitaxial growth of AlN on single crystal Mo substrates is quite promising for the fabrication of future high frequency filter devices.

  20. A review on the process technology for Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hoh; Yoo, Jae Hyung; Jung, Won Myung; Lee, Kyoo Il; Woo, Moon Sik; Hwang, Doo Sung; Kim, Yun Koo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Tc-99m is most frequently used in nuclear medical diagnostics because of its favourable nuclear properties and reasonable prices, and the demand of Tc-99m, is on the increase recently. Mo-99, the parent radionuclide of Tc-99m, is the only source of Tc-99m. This review described overall aspects of process technologies for Mo-99 production. Firstly, the chemical, physical and radioactive properties of Tc-99m, Mo-99 were examined to understand Mo-99 separation process. Also, the technology for Mo-99 production with both the neutron capture and nuclear fission method were examined. But the neutron capture method was scarcely used for large production of Mo-99 because of its low specific activity and high production cost. This review also described mainly process technologies in the nuclear fission method, fabrication and condition for irradiation of targets, transport and dissolution of targets irradiated, separation and purification of Mo-99, etc. Especially, for Mo-99 separation and purification process, the characteristics, merits and demerits of various processes, which have been developed in a few countries, were examined and analyzed. 30 figs., 16 tabs., 60 refs. (Author).

  1. Oxidation Behavior of Mo-Si-B Alloys in Wet Air; TOPICAL

    International Nuclear Information System (INIS)

    M. Kramer; A. Thom; O. Degirmen; V. Behrani; M. Akinc

    2002-01-01

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1= Mo(sub 5)Si(sub 3)B(sub x) (T1)- MoSi(sub 2)- MoB, Alloy 2= T1- Mo(sub 5)SiB(sub 2) (T2)- Mo(sub 3)Si, and Alloy 3= Mo- T2- Mo(sub 3)Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H(sub 2)O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO(sub 3). All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO(sub 2). This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO(sub 2) that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air

  2. Revaluation of 99Mo production by (n,γ) method at HANARO

    International Nuclear Information System (INIS)

    Jun, Byung Jin; Kimura, Akihiro; Hori, Naohiko; Izumo, Hironobu; Tsuchiya, Kunihiko; Lee, Byung Cheol

    2010-07-01

    After the feasibility study on 99 Mo production by (n,γ) method at HANARO was published by a KAERI report, worldwide supply of 99 Mo became worse and a need for early available alternative 99 Mo became stronger. Previous study indicated that the (n,γ) 99 Mo has a potential to be an alternative mass 99 Mo available earlier than those by any other methods. It can be realized when radioisotope industry of each country accepts the use of (n,γ) 99 Mo for a meaningful portion of national demand. A good backup supply system among high flux reactors in the region is a prerequisite to guarantee a stable and sufficient availability of the (n,γ) 99 Mo for the region, for which active collaboration among reactors is essential. As the initial stage of collaboration between HANARO and JMTR for the (n,γ) 99 Mo supply, the specific experience and 99 Mo production capability in HANARO have been discussed and revisited on the base of the previous report. (author)

  3. Conceptual study of 99Mo production in JRR-3

    International Nuclear Information System (INIS)

    Hirose, Akira; Komeda, Masao; Kinase, Masami; Sorita, Takami; Wada, Shigeru

    2010-06-01

    We investigated the production process of 99 Mo, which is parent nuclide of 99m Tc, in JRR-3. 99m Tc is most commonly used as a radiopharmaceutical in the field of nuclear medicine. Currently the supplying of 99 Mo is only dependent on imports from foreign countries, so JAEA is aiming at domestic production of a part of 99 Mo in cooperation with the industrial arena. This report presents the technical study for the production process of 99 Mo by using the neutron radiation method of (n, γ) reaction in JRR-3. (author)

  4. Reaction of LaB6 with MoSi2

    International Nuclear Information System (INIS)

    Ordan'yan, S.S.; Gardagina, E.N.; Barabanova, S.N.

    1989-01-01

    Investigation results of interaction in LaB 6 -MoSi 2 system within wide concentration and temperature ranges are presented. LaB 6 and MoSi 2 powders were preliminary squeezed out in vacuum at 1470 K. Presence of LaB 6 and MoSi 2 initial phases only is determined using X-ray pahse analysis of sintered and melted specimens of all compositions. Traces of MoB (probably, due to quick crystallization after melting and partial evaporation of silicon from the melt) are detected in some alloys exposed to melting

  5. Thermodynamic evidence for phase transition in MoO2-δ

    International Nuclear Information System (INIS)

    Jacob, K.T.; Saji, V.S.; Gopalakrishnan, J.; Waseda, Y.

    2007-01-01

    The standard Gibbs free energy of formation of MoO 2-δ , Δ f G 0 (MoO 2-δ ), has been measured over a wide temperature range (925 to 1925) K using an advanced version of bi-electrolyte solid-state electrochemical cell incorporating a buffer electrode: Pt vertical bar Mo + MoO 2-δ -parallel (Y 2 O 3 )ThO 2 -parallel (CaO)ZrO 2 -parallel O 2 (0.1 MPa) vertical bar Pt The Gibbs free energy of formation of MoO 2-δ , which is directly related to the measured cell e.m.f., can be represented by two linear segments: Δ f G 0 (MoO 2-δ )±570/(J.mol -1 )=-579,821+170.003(T/K), in the temperature range (925 to 1533) K, and Δ f G 0 (MoO 2-δ )±510/(J.mol -1 )=-564,634+160.096(T/K), in the temperature range (1533 to 1925) K. The change in slope at T = 1533 K is probably related to the phase transition of MoO 2 from monoclinic structure with space group P2 1 /c to tetragonal structure characteristic of rutile with space group P4 2 /mnm. The enthalpy and entropy change for the phase transition are: ΔH tr = (15.19 ± 2.1) kJ . mol -1 ; ΔS tr (9.91 ± 1.27) J . mol -1 . K -1 . The standard enthalpy of formation of MoO 2-δ at T = 298.15 K assessed by the third-law method is: Δ f H 0 (MoO 2-δ ) = (-592.28 ± 0.33) kJ . mol -1 . The new measurements refine thermodynamic data for MoO 2

  6. Determination of 99Mo contamination in 99mTc elute obtained from 99Mo/99mTc- generator

    International Nuclear Information System (INIS)

    Momennezhad, M.; Zakavi, S. R.; Sadeghi, R.

    2010-01-01

    99m Tc is a widely used radioisotope in nuclear medicine centers which is obtained by elution from Mo-99/Tc-99m generators. Usually the generators are either supplied by the Iran Atomic Energy Agency or by private companies from foreign countries. In this study we have measured 99 Mo contamination in 99m Tc elute from different generators in a period of one year. Materials and Methods: The radionuclide impurity of the 99m Tc elute were studied in two types of radionuclide generators (A: produced in Iran and B: Imported from other country). In-vitro measurements were performed using dose calibrator. Direct measurements were made, using a standard canister at the time of milking of the generators and also in Subsequent hours after milking. Results: The results showed a mean of 99 Mo impurity in generators A and B to be 0.00932±0.0043 and 0.0170±0.0127 respectively. Although the results showed that the 99 Mo contamination in 99 mTc elute was lesser than the maximum accepted activity limit of 0.015%, the difference in these two types may reflect different methods of productions of generator, as well as the quality control procedures. Conclusion: The mean of 99 Mo contamination in generators produced in Iran Atomic Energy Organization was lesser than generators imported from foreign origin.

  7. A note on clique-web facets for multicut polytopes

    DEFF Research Database (Denmark)

    Sørensen, Michael Malmros

    2002-01-01

    In this note we provide a previously undiscovered necessary condition for the facet-defining property of clique-web inequalities for the multicut polytope. This condition imposes a minimum cardinality requirement on the node set of the clique, thus implying, in general, that clique-web inequaliti...

  8. Detecting the Extent of Eutectoid Transformation in U-10Mo

    International Nuclear Information System (INIS)

    Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.; Lombardo, Nicholas J.; Joshi, Vineet V.; Sweet, Lucas E.; Manandhar, Sandeep; Lavender, Curt A.

    2016-01-01

    During eutectoid transformation of U-10Mo alloy, uniform metastable ? UMo phase is expected to transform to a mixture of ?-U and ?'-U_2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the ? phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the ? phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only ? phase and no ?' was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise ? phase with close to 0 at% Mo and ? phase with 28-32 at% Mo, and the Mo concentration was highest at the ?/? interface.

  9. Crystal structure and thermal stability of AgIn(MoO4)2

    International Nuclear Information System (INIS)

    Klevtsov, P.V.; Solodovnikov, S.F.; Perepelitsa, A.P.; Klevtsova, R.F.

    1984-01-01

    Tetragonal crystals of double molybdate AgIn(MoO 4 ) 2 are prepared bi crystallization from solution in Ag 2 Mo 2 O 7 melt (a=4.998, c=36.725 A, space group I4 1 , Z=6). Its crystal structure is determined (autodaffractometer ''Syntex P2 1 '', MoKsub(α)-radiation, 876 reflections, R=0.054) in which along with Mo-tetrahedrons Mo-octahedrons are present. By mutual edges latter are united into bands forming fragments of wolframite structure alonside with (In, Ag) octahedrons. In the direction of c axis wolframite fragments alternate with scheelite fragments consisting of Mo-tetrahedrons and Ag-octavertices. The crystallochemical formula of the compound is Ag(Insub(0.75)Agsub(0.25))sub(2)Mosub(2)Osub(8) [MoO 4 ]. At a temperature of about 600 deq C AgIn-molybdate transforms into modification with NaIn(MoO 4 ) 2 structure NaIn(MoO 4 ) 2 and melts at 650 deg C decomposing into In 2 (MoO 4 ) 3 solid phase and Ag 2 MoO 4 melt

  10. Note Taking and Recall

    Science.gov (United States)

    Fisher, Judith L.; Harris, Mary B.

    1974-01-01

    To study the effect of note taking and opportunity for review on subsequent recall, 88 college students were randomly assigned to five treatment groups utilizing different note taking and review combinations. No treatment effects were found, although quality of notes was positively correlated with free recall an multiple-choice measures.…

  11. FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution

    International Nuclear Information System (INIS)

    Zhao, Xue; Ma, Xiao; Lu, Qingqing; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2017-01-01

    Well-established methods to improve the hydrogen evolution reaction (HER) performances include, but are not limited to, tailoring the morphology and electronic structure of transition metal dichalcogenides (TMDs), and doping of earth abundant chemicals such as iron pyrite FeS 2 into existing TMDs. In this work, MoS 2 nanoflowers with the majority being octahedral MoS 2 (1T-MoS 2 ) and doped with FeS 2 were prepared and applied to HER. The as-prepared catalysts were characterized by X-ray absorption fine structure at the K-edge of Mo, S, and Fe to probe the local electronic structures. The resulting nanomaterial was identified to be FeS 2 doped MoS 2 nanoflower (denoted as Fe-MoS 2 NF) with 66% 1T-MoS 2 which was the metallic phase and could drastically boost the HER properties. The Fe-MoS 2 NF exhibited high HER performance with a Tafel slope of 82 mV dec −1 and it needs 136 mV to achieve a current density of 10 mA cm −2 . The synthesis of Fe-MoS 2 NF with refined morphology and active electronic structure is expected to open a new era for improving the catalytic activity and stability of MoS 2 .

  12. Reaction layer in U-7WT%MO/Al diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S.

    2003-01-01

    New results of the reaction layer characterization between γ (U-7wt%Mo) alloy and Al, in chemical diffusion couples, are presented. The analysis was performed using optical and scanning electron microscopy with EDAX and X-ray diffraction techniques. Besides the main components (U, Mo)Al 3 and (U, Mo)Al 4 , already reported, two ternary compounds of high Al content have been identified in the reaction layer when it grew in retained or decomposed γ (U, Mo) phase, respectively. The drastic consequence on the interdiffusion behavior due to the thermal instability of the retained γ (U, Mo) phase is discussed. (author)

  13. The lanthanum(III molybdate(VI La4Mo7O27

    Directory of Open Access Journals (Sweden)

    Petra Becker

    2009-08-01

    Full Text Available Crystals of the orthorhombic phase La4Mo7O27 (lanthanum molybdenum oxide were obtained from a non-stoichiometric melt in the pseudo-ternary system La2O3–MoO3–B2O3. In the crystal structure, distorted square-antiprismatic [LaO8] and monocapped square-antiprismatic [LaO9] polyhedra are connected via common edges and faces into chains along [010]. These chains are arranged in layers that alternate with layers of [MoO4] and [MoO5] polyhedra parallel to (001. In the molybdate layers, a distorted [MoO5] trigonal bipyramid is axially connected to two [MoO4] tetrahedra, forming a [Mo3O11] unit.

  14. Fission induced swelling of U–Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Jeong, G.Y. [Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Uljoo-gun, Ulsan 689-798 (Korea, Republic of); Park, J.M. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Robinson, A.B. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-10-15

    Fission-induced swelling of U–Mo/Al dispersion fuel meat was measured using microscopy images obtained from post-irradiation examination. The data of reduced-size plate-type test samples and rod-type test samples were employed for this work. A model to predict the meat swelling of U–Mo/Al dispersion fuel was developed. This model is composed of several submodels including a model for interaction layer (IL) growth between U–Mo and Al matrix, a model for IL thickness to IL volume conversion, a correlation for the fission-induced swelling of U–Mo alloy particles, a correlation for the fission-induced swelling of IL, and models of U–Mo and Al consumption by IL growth. The model was validated using full-size plate data that were not included in the model development.

  15. Plasmons on the edge of MoS2 nanostructures

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2014-01-01

    Using ab initio calculations we predict the existence of one-dimensional (1D), atomically confined plasmons at the edges of a zigzag MoS2 nanoribbon. The strongest plasmon originates from a metallic edge state localized on the sulfur dimers decorating the Mo edge of the ribbon. A detailed analysis...... of the dielectric function reveals that the observed deviations from the ideal 1D plasmon behavior result from single-particle transitions between the metallic edge state and the valence and conduction bands of the MoS2 sheet. The Mo and S edges of the ribbon are clearly distinguishable in calculated spatially...... resolved electron energy loss spectrum owing to the different plasmonic properties of the two edges. The edge plasmons could potentially be utilized for tuning the photocatalytic activity of MoS2 nanoparticles....

  16. Thermal expansion studies on UMoO5, UMoO6, Na2U(MoO4)3 and Na4U(MoO4)4

    International Nuclear Information System (INIS)

    Keskar, Meera; Dahale, N.D.; Krishnan, K.

    2009-01-01

    In the present work, thermal expansion behavior of lower valent sodium uranium molybdates, i.e., Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were studied under vacuum in the temperature range of 298-873 K using high temperature X-ray diffractometry (HTXRD). Expansion behaviors of UMoO 5 and UMoO 6 were also studied in vacuum from 298 to 873 K and 773 K, respectively. UMoO 5 was synthesized by reacting UO 2 with MoO 3 in equi-molar proportion in evacuated sealed quartz ampoule at 1173 K for 14 h. Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were prepared by reacting UMoO 5 and MoO 3 with 1 and 2 moles of Na 2 MoO 4 , respectively, at 873 K in evacuated sealed quartz ampoule. XRD data of UMoO 5 and UMoO 6 were indexed on orthorhombic and monoclinic systems, respectively, whereas, the data of Na 2 U(MoO 4 ) 3 and Na 4 U(MoO 4 ) 4 were indexed on tetragonal system. The lattice parameters and cell volume of all the four compounds, fit into polynomial expression with respect to temperature, showed positive thermal expansion (PTE) up to 873 K.

  17. Hydrothermal synthesis and polymorphism of RbPr(MoO4)2

    International Nuclear Information System (INIS)

    Protasova, V.I.; Kharchenko, L.Yu.; Klevtsov, P.V.

    1977-01-01

    Hydrothermal method has been successfully used to obtain crystals of rubidium-rare-earth molibdates of RbLn(MoO 4 ) 2 composition (Ln is a rare earth element). In Rb 2 MoO 4 solutions at 575-600degC the RbPr(MoO 4 ) 2 crystals were obtained in a modification new for Rb-Ln-molibdates, i.e. isostructural to triclinic α-KEu(MoO 4 ) 2 , and in a structural modification of laminated rhombic KY(MoO 4 ) 2 type. Polymorphism of RbPr(MoO 4 ) 2 has been studied, four crystalline modifications found and their complex interchanges investigated

  18. Redox and oxo-abstraction reactions of silylamine with MoOCl4

    International Nuclear Information System (INIS)

    Vasisht, S.K.; Singh, G.

    1985-01-01

    Trimethylsilyldiethylamine Me 3 SiNEt 2 and MoOCl 4 (1:1) undergo a free radical redox reaction in CH 2 Cl 2 or Et 2 O to form MoCl 3 O(HNEt 2 ). Reduction occurs even in aprotic media like CCl 4 and CS 2 to give Mo(V) complexes Mo 2 Cl 6 O 2 (N 2 Et 4 ) and Mo 2 Cl 6 O 2 [(SCNEt 2 ) 2 S 2 ], respectively. A 2:1 reaction in nonionizing protic solvents undergoes redox cum cleavage to provide MoCl 2 O(NEt 2 )(HNEt 2 ) but a reaction at reflux temperature in 1,2-dichloroethane leads to diethylammonium salt, [Et 2 NH 2 ][MoCl 4 O(HNEt 2 )]. Higher molar reactions (3:1, 4:1) in CH 2 Cl 2 or Et 2 O are associated with redox reaction as well as oxygen atom abstraction to form de-oxo Mo(IV) complex MoCl 3 (NEt 2 )(HNEt 2 ) 2 , whereas, a 3:1 reaction in CS 2 forms Mo 2 Cl 4 O(S 2 CNEt 2 ) 4 . Compounds have been characterized by elemental analyses, redox titration, magnetic moment, conductance, infrared, electronic absorption and 1 H-NMR measurements. (author)

  19. Observation of Vacancies, Faults, and Superstructures in Ln5Mo2O12 (Ln = La, Y, and Lu) Compounds with Direct Mo-Mo Bonding.

    Science.gov (United States)

    Colabello, Diane M; Sobalvarro, Elizabeth M; Sheckelton, John P; Neuefeind, Joerg C; McQueen, Tyrel M; Khalifah, Peter G

    2017-11-06

    Among oxide compounds with direct metal-metal bonding, the Y 5 Mo 2 O 12 (A 5 B 2 O 12 ) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2 O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5 Mo 2 O 12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2 O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5 Mo 2 O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one

  20. The conversion to electronic hospital notes at Mayo Clinic. Overcoming barriers and challenges.

    Science.gov (United States)

    Andreen, Debra L; Dobie, Linda J; Jasperson, Jan C; Lucas, Thomas A; Wubbenhorst, Cathryn L

    2010-01-01

    This article describes the conversion to electronic hospital notes at a large, multi-specialty group practice: Mayo Clinic in Rochester, Minnesota. Because of the size of the institution and the barriers to the adoption of electronic notes, the process was a gradual one that took several years. Making a convincing case for change to institutional leaders and maintaining their support was crucial to success. Equally vital was the careful investigation of user requirements and the development of software features that allowed providers to complete their notes quickly in the fast-paced hospital environment. Care providers discovered the value of having immediate access to legible hospital notes throughout the campus and from remote locations.

  1. Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries.

    Science.gov (United States)

    Hung, Yu-Han; Lu, Ang-Yu; Chang, Yung-Huang; Huang, Jing-Kai; Chang, Jeng-Kuei; Li, Lain-Jong; Su, Ching-Yuan

    2016-08-17

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 10(8) were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm(2) and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials.

  2. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  3. Radionuclidic contamination of 99Mo, 131I and 103Ru in the eluate of 99Mo-99mTc chromatographic generator: comparision on fission produced 99Mo from RPC, Nordio and ARI

    International Nuclear Information System (INIS)

    Soenarjo, Sunarhadijoso; Gunawan, Adang Hardi

    1996-01-01

    The 99 Mo- 99m Tc Chromatographic generators is the most popular system to provide 99m Tc medical radioisotope. Radioisotope Production Centre (RPC)- BATAN has routinely produced the generator loaded with 99 Mo prepared by 235 U fission. By using fission produced 99 Mo, the resulting 99m Tc is potentially contaminated by other fission products which are difficult to eliminate completely. In order to study the characteristic of the generator and radionuclidic impurity pattern of the 99m Tc eluates, an evaluation of gamma spectrometric determination has been carried out. The bulk solutions of 99 Mo produced by RPC BATAN (Indonesia), Nordion (Canada) and ARI (Australia) were loaded to generators manufactured between July 1993 to May 1994. The saline-eluate 99m Tc, in a total volume of 10 ml each, was subjected to gamma spectrometric determination. The radiation of 99m Tc was eliminated by lead shield of 0.6913 cm thickness. The 99m Tc yield fluctuation from 28 generators indicated that the characteristics of the generator columns were very good. The 99m Tc eluates were consistently contaminated by 99 Mo, 131 I and 103 Ru, although the contamination level in all cases did not exceed the maximum permissible levels. The fluctuation of radionuclidic impurities were probably caused by variation in the irradiation parameter or by variation in the 99 Mo separation methods. (author), 23 refs, 1 tab, 3 figs

  4. Effect of Silicon in U-10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, Elizabeth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showed that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.

  5. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    Science.gov (United States)

    Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya

    2016-02-01

    MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.

  6. Notes in Colombian Herpetology, II Notes in Colombian Herpetology, II

    Directory of Open Access Journals (Sweden)

    Dunn Emmett Reid

    1944-03-01

    Full Text Available The Lizard Genus Echinosaura (Teiidae in Colombia / Notes on the habits of the Tadpole-Carrying Frog Hyloxalus granuliventris / A New Marsupian Frog (Gastrotheca from Colombia The Lizard Genus Echinosaura (Teiidae in Colombia / Notes on the habits of the Tadpole-Carrying Frog Hyloxalus granuliventris / A New Marsupian Frog (Gastrotheca from Colombia.

  7. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite

    Science.gov (United States)

    Wasylenki, L.E.; Weeks, C.L.; Bargar, J.R.; Spiro, T.G.; Hein, J.R.; Anbar, A.D.

    2011-01-01

    Fractionation of Mo isotopes during adsorption to manganese oxides is a primary control on the global ocean Mo isotope budget. Previous attempts to explain what drives the surprisingly large isotope effect ??97/95Modissolved-??97/95Moadsorbed=1.8??? have not successfully resolved the fractionation mechanism. New evidence from extended X-ray absorption fine structure analysis and density functional theory suggests that Mo forms a polymolybdate complex on the surfaces of experimental and natural samples. Mo in this polynuclear structure is in distorted octahedral coordination, while Mo remaining in solution is predominantly in tetrahedral coordination as MoO42- Our results indicate that the difference in coordination environment between dissolved Mo and adsorbed Mo is the cause of isotope fractionation. The molecular mechanism of metal isotope fractionation in this system should enable us to explain and possibly predict metal isotope effects in other systems where transition metals adsorb to mineral surfaces. ?? 2011 Elsevier Ltd.

  8. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys; Influencia da composicao quimica na textura cristalografica de ligas Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Moura, L.B.; Guimaraes, R.F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Fortaleza, CE (Brazil). Dept. da Industria; Abreu, H.F.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2010-07-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  9. Study of the effect of irradiation of Mo targets at nuclear reactor

    International Nuclear Information System (INIS)

    Nieto, Renata C.; Lima, Ana Lucia V.P.; Silva, Nestor C. da; Osso Junior, Joao Alberto

    2000-01-01

    The most used radioisotope in nuclear medicine is 99m Tc, in the 99 Mo- 99m Tc generator form. 99 Mo can be produced by several nuclear reactions in reactors and cyclotrons. The cyclotron production is not technically and economically viable. The production in the reactor can be done in two different ways: by the fission of 235 U and by the 98 Mo(n,γ) 99 Mo reaction. A project for the production of 99 Mo by the activation of Mo and the preparation of gel type generators is under development at the 'Instituto de Pesquisas Energeticas e Nucleares'. In the present work, the radionuclidic impurities produced in the activation of MoO 3 , metallic Mo and Mo Zr gel were evaluated, as well as the radionuclidic purity of 99m Tc eluted from generators prepared. (author)

  10. Quality control studies of {sup 99}Mo used in {sup 99}Mo/{sup 99m}Tc generators produced at IPEN/CNEN-SP, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Said, Daphne S.; Brambilla, Tania P.; Matsuda, Margareth M.N.; Osso Junior, Joao A., E-mail: daphnesaid@usp.br, E-mail: taniabrambilla@yahoo.com.br, E-mail: mmatsuda@ipen.br, E-mail: jaosso@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    {sup 99m}Tc is the most used radionuclide in nuclear medicine. In Brazil, the {sup 99}Mo/{sup 99m}Tc generators are produced exclusively by the Center of Radiopharmacy at IPEN-CNEN/SP, by importing {sup 99}Mo from different suppliers. {sup 99}Mo (t{sub 1/2} = 66 h) is a fission product of {sup 235}U, therefore, it can be accompanied by several radioisotopes that are highly prejudicial for human health, demanding a strict quality control of this product for generators safe use. The European Pharmacopoeia established some parameters and limits that evaluate the quality of the solution of sodium [{sup 99}Mo]molybdate, that is used as raw material for generator's production. The European Pharmacopoeia also recommends some analytical methods to perform these evaluations, however, it has been observed difficulties on the implementation of these methods by the generator's producers. These difficulties are probably related to the lack of practicability of the proposed methods and the extensive list of utilized reagents. In this work some procedures of the European Pharmacopoeia's quality control method for {sup 99}Mo were evaluated. Different types of solid phase exchanger cartridges were tested for retention of {sup 99}Mo in 3 different conditions. Cartridges that presented percentages of retention higher than 90% were also tested for separation of {sup 99}Mo from possible contaminants (Ru e Te). The results shown that solid phase exchanger cartridges that presented percentages of retention of Mo higher than 90% also presented significant percentages of retention of Ru and Te. An alternative method for separation of {sup 99}Mo from {sup 131}I (other contaminant) are also proposed. (author)

  11. Mullite/Mo interfaces formed by Intrusion bonding

    Energy Technology Data Exchange (ETDEWEB)

    Bartolome, Jose F.; Diaz, Marcos; Moya, Jose S.; Saiz, Eduardo; Tomsia, Antoni P.

    2003-04-30

    The microstructure and strength of Mo/mullite interfaces formed by diffusion bonding at 1650 C has been analyzed. Interfacial metal-ceramic interlocking contributes to flexural strength of approx. 140 MPa as measured by 3 point bending. Saturation of mullite with MoO2 does not affect the interfacial strength.

  12. Development of Fission Mo-99 Process for LEU Dispersion Target

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission {sup 99}Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission {sup 99}Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, {sup 99}Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission {sup 99}Mo increases significantly with the conversion of fission {sup 99}Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of {sup 99}Mo production process that is optimized for the LEU target become an important issue. In this study, fission {sup 99}Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission {sup 99}Mo target will be done in 4th quarter of 2016.

  13. In situ X-ray analysis of MoO3 reduction

    International Nuclear Information System (INIS)

    Leisegang, T.; Levin, A.A.; Meyer, D.C.; Walter, J.

    2005-01-01

    The reduction of MoO 3 to MoO 2 under hydrogen/argon atmosphere (5 vol. % H 2 /95 vol. % Ar) in the temperature range 323 K..623 K was studied in situ by means of wide-angle X-ray scattering. It has been found that the starting material, MoO 3 , consists of two different orthorhombic MoO 3 phases A and B with nearly the same structure parameters. The phase A (fraction of 37.1 wt%) describes the larger crystallites whereas the phase B (fraction of 62.9 wt.%) describes the smaller crystallites. Under the reduction to monoclinic MoO 2 phase during the heating, the thermal evolution of the phase fractions is different. A conclusion is drawn that MoO 2 is formed preferably in big crystallites. About 10 wt. % of MoO 2 has been found to form at 623 K resulting in about 69 wt. % after cooling to room temperature followed by holding in Ar/H 2 atmosphere about 24 h. Additionally, about 4.4 wt. % of the Mo 4 O 11 oxide probably formed in large crystallites was detected in the reduced powder after the cooling. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Development of Fission Mo-99 Process for LEU Dispersion Target

    International Nuclear Information System (INIS)

    Lee, Seung Kon; Lee, Su Seung; Hong, Soon Bog; Jang, Kyung Duk; Park, Ul Jae; Lee, Jun Sig

    2016-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing LEU-based fission 99 Mo production process which is connected to the new research reactor (Kijang New Research Reactor, KJRR), which is being constructed in Gijang, Busan, Korea. Historically, the most fission 99 Mo producers have been used highly enriched uranium (HEU) targets so far. However, to reduce the use of HEU in private sector for non-proliferation, 99 Mo producers are forced to convert their HEU-based process to use low enriched uranium (LEU) targets. Economic impact of a target conversion from HEU to LEU is significant. Overall cost for the production of the fission 99 Mo increases significantly with the conversion of fission 99 Mo targets from HEU to LEU. It is not only because the yield of LEU is only 50% of HEU, but also because radioactive waste production increases 200%. On the basis, worldwide efforts on the development of 99 Mo production process that is optimized for the LEU target become an important issue. In this study, fission 99 Mo process with non-irradiated LEU targets was presented except separation and purification steps. Pre- and post-irradiation tests of the fission 99 Mo target will be done in 4th quarter of 2016

  15. Structure of MoCN films deposited by cathodic arc evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gilewicz, A., E-mail: adam.gilewicz@tu.koszalin.pl [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland); Jedrzejewski, R.; Kochmanska, A.E. [West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, 19 Piastów Ave., 70-313 Szczecin (Poland); Warcholinski, B. [Koszalin University of Technology, Faculty of Technology and Education, Sniadeckich 2, 75-453 Koszalin (Poland)

    2015-02-27

    Molybdenum carbonitride (MoCN) coatings were deposited onto HS6-5-2 steel substrate using pure Mo targets in mixed acetylene and nitrogen atmosphere by cathodic arc evaporation. The structural properties of MoCN coatings with different carbon contents (as an effect of the C{sub 2}H{sub 2} flow rate) were investigated systematically. Phase and chemical composition evolution of the coatings were characterized both by the glancing angle of X-ray diffraction (XRD) and wavelength dispersive spectrometry, respectively. These analyses have been supplemented by estimates of grain sizes and stress in the coatings. The XRD results show that the increase in acetylene flow rate causes the formation of molybdenum carbide (MoC) hexagonal phase in the coatings, a reduction of grain size and an increase in internal stress. - Highlights: • MoN and MoCN coatings were deposited by cathodic arc evaporation in nitrogen atmosphere. • MoCN coatings were formed using different acetylene flow rates. • Phase composition evolution was observed. • Crystallite size and stress were calculated.

  16. Quatenary Na//F, Cl, CO3, MoO4 system

    International Nuclear Information System (INIS)

    Kochkarov, Zh.A.; Lok''yaeva, S.M.; Shurdumov, G.K.; Gasanaliev, A.M.; Trunin, A.S.

    1999-01-01

    Perspective in applied respect quatenary system (NaF) 2 -(NaCl)-Na 2 CO 3 -Na 2 MoO 4 being element of narrowing of more complex six-membered mutual Na//F, Cl, CO 3 , MoO 4 (WO 4 ) system is investigated by differential thermal analysis with the use of projection-thermographic method for the first time. Crystallization tree of Na//F, Cl, CO 3 , MoO 4 system is established. It is shown that this system by tetrahedrating (NaF) 2 -Na 2 CO 3 -Na 3 ClMoO 4 section is triangulated on two stable system: (NaF) 2 -Na 3 ClMoO 4 -Na 2 CO 3 -(NaCl) 2 and (NaF) 2 -Na 3 ClMoO 4 -Na 2 CO 3 -Na 2 MoO 4 . Phase single units are determined too. Coordinates of desired quatenary nonvariant points are calculated on analytical models of surfaces by mutual crystallization of two phases and are refined by differential thermal analysis [ru

  17. Characterization of the interaction layer in diffusion couples U-Mo-Zr/Al and U-Mo-Zr/Al-A356 at 550 C degrees

    International Nuclear Information System (INIS)

    Komar Varela, Carolina; Arico, Sergio; Mirandou, Marcela; Balart, Silvia; Gribaudo, Luis

    2007-01-01

    Out-of-pile diffusion experiments were performed between U-7 wt.% Mo-1 wt.% Zr and Al or Al A356 (7,1 wt.% Si) at 550 C degrees. In this work morphological characterization and phase identification on both interaction layers are presented. They were carried out by the use of different techniques: optical and scanning electron microscopy, X-ray diffraction and WDS microanalysis. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al, the phases UAl 3 , UAl 4 , Al 20 Mo 2 U and Al 43 Mo 4 U 6 were identified. Similar results in the interaction layer of the U-7 % Mo/Al at 580 C degrees were previously obtained. In the interaction layer U-7 wt.% Mo-1 wt.% Zr/Al A356, the phases U(Al,Si) 3 with 25 at.% Si and Si 5 U 3 were identified. This last phase, with a higher Si concentration, was identified with X-ray diffraction synchrotron radiation performed at the National Synchrotron Light Laboratory, Campinas, Brazil. (author) [es

  18. From nitrides to carbides: topotactic synthesis of the eta-carbides Fe3Mo3C and Co3Mo3C.

    Science.gov (United States)

    Alconchel, Silvia; Sapiña, Fernando; Martínez, Eduardo

    2004-08-21

    The molybdenum bimetallic interstitial carbides Fe(3)Mo(3)C and Co(3)Mo(3)C have been synthesized by temperature-programmed reaction (TPR) between the molybdenum bimetallic interstitial nitrides Fe(3)Mo(3)N and Co(3)Mo(3)N and a flowing mixture of CH(4) and H(2) diluted in Ar. These compounds have been characterized by X-ray diffraction, laser Raman spectroscopy, elemental analysis, energy dispersive analysis of X rays, thermal analysis (in air) and scanning electron microscopy (field emission). Their structures have been refined from X-ray powder diffraction data. These carbides crystallize in the cubic system, space group Fd3m[a= 11.11376(6) and 11.0697(3)[Angstrom] for Fe and Co compounds, respectively].

  19. Thermodiffusion Mo-B-Si coating on VN-3 niobium alloy

    International Nuclear Information System (INIS)

    Kozlov, A.T.; Lazarev, Eh.M.; Monakhova, L.A.; Shestova, V.F.; Romanovich, I.V.

    1985-01-01

    Protective properties of complex Mo-B-Si-coating on niobium alloy VN-3 (4.7 mass.% Mo, 1.1 mass.% Zr, 0.1 mass.% C) have been studied. It is established, that the complex Mo-B-Si-coating ensures protection from oxidation of niobium alloys in the temperature range of 800-1200 degC for 1000-1500 hr, at 1600 degC - for 10 hr. High heat resistance of Mo-B-Si - coating at 800-1200 degC is determined by the presence of amorphous film of SiOΛ2 over the layer MoSiΛ2 and barrier boride layer on the boundary with the metal protected; decrease in the coating heat resistance at 1600 degC is related to the destruction of boride layer, decomposition of MoSiΛ2 for lower cilicides and loosening of SiOΛ2 film

  20. Experimental observations of transient phases during long-range ordering to Ni4Mo in a Ni-Mo-Fe-Cr alloy

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    1987-01-01

    Experimental observations are reported of transient phases which form during long-range ordering to Ni 4 Mo (f.c.c. → Dl/sub a/ superlattice) in the quaternary alloy Ni-19.2 at% Mo-1.2 at% Fe-1.06 at% Cr using electron diffraction. In the early stages of ordering during isothermal annealing, diffuse intensity maxima centered at the short-range order reflections (1 1/2 O)/sub f.c.c./ and along /sub f.c.c./ directions are observed. Subsequently, a DO 22 superlattice is generated from the short-range order state. The coexistence of the DO 22 , Pt 2 Mo-type, and Dl/sub a/ superlattices is observed in this alloy system which indicates that these three superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices disappear, indicating that they are transient phases. These results are not inconsistent with the theoretical treatments of ordered alloys which are based on an Ising model with pairwise atomic interactions. (author)

  1. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X.S. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Wang, H.J.; Feng, L. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Shao, L.X. [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China); Zou, C.W., E-mail: qingyihaiyanas@163.com [School of Physics Science and Technology, Zhanjiang Normal University, Zhanjiang 524048 (China); Development Center for New Materials Engineering and Technology in Universities of Guangdong, Zhanjiang 524048 (China)

    2014-08-30

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent.

  2. Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties

    International Nuclear Information System (INIS)

    Tang, X.S.; Wang, H.J.; Feng, L.; Shao, L.X.; Zou, C.W.

    2014-01-01

    Highlights: • Mo doped diamond like carbon coatings were deposited by magnetron sputtering. • The blood compatibility of Mo-DLC coatings was observed through platelet adhesion. • The amount of thrombus on the Mo-DLC is much less than that of pyrolytic carbon. - Abstract: Mo (molybdenum) doped diamond like carbon (Mo-DLC) coatings with improved mechanical and blood compatibility properties were deposited by closed field unbalanced magnetron sputtering. The undoped and Mo-doped DLC coatings were analyzed by various characterization techniques such as Raman spectra, Atomic force microscopy, and temperature-dependent frictional wear testing. The results showed that the Mo-DLC coating with low Mo concentration was a effective protective coating with reduced residual stress and increased cohesive strength, and kept good wear resistance at the ambient temperature of 500 °C. The blood compatibility of Mo-DLC coatings was investigated by platelet adhesion. The results showed that the amount of thrombus on the Mo-DLC nanocomposite coatings was much less than that of thrombus on pyrolytic carbon films. The Mo-DLC nanocomposite coatings would be a new kind of promising materials applied to artificial heart valve and endovascula stent

  3. Strength and low temperature toughness of Fe-13%Ni-Mo alloys

    International Nuclear Information System (INIS)

    Ishikawa, Keisuke; Maruyama, Norio; Tsuya, Kazuo

    1978-01-01

    Mechanical tests were made on newly developed Fe-13%Ni-Mo alloys for eryogenic service. The effects of the additional elements were investigated from the viewpoint of the strength and the low temperature toughness. The alloys added by Al, Ti or V have the better balance of these properties. They did not show low temperature brittleness induced by cleavage fracture in Charpy impact test at 77 K. The microfractography showed the utterly dimple rupture patterns on the broken surface of all specimens. It would be supposed that the cleavage fracture stress is considerably higher than the flow stress. These alloys are superior to some commercial structural materials for low temperature use in the balance between the strength at 300 K and the toughness at 77 K. Additionally, it is noted that these experimental alloys have a good advantage in getting high strength and high toughness by the rather simple heat treatment. (auth.)

  4. Note Taking for Geography Students.

    Science.gov (United States)

    Kneale, Pauline E.

    1998-01-01

    Addresses geography students' questions about why, when, and how to take notes. Outlines a step-by-step process for taking notes from written sources and from class lectures. Discusses what types of notes are appropriate for various types of sources. Suggests some ideas for making notes useful for individual learning styles. (DSK)

  5. Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2

    Science.gov (United States)

    Prabhakar Vattikuti, S. V.; Shim, Jaesool

    2018-03-01

    Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has gained huge attention and importance for photocatalytic energy conversion because of their unique properties. Molybdenum disulfide (MoS2) nanosheets were synthesized via one-pot method and exfoliated in (dimethylformamide) DMF solution. Subsequent exfoliated MoS2 nanosheets (e-MoS2) were used as photocatalysts for degradation of Rhodamine B (RhB) pollutant under solar light irradiation. The e-MoS2 nanosheets exhibited excellent photocatalytic activity than that of pristine MoS2, owing to high specific surface area with enormous active sites and light absorption capacity. In addition, e-MoS2 demonstrated remarkable photocatalytic stability.

  6. On that Note...

    Science.gov (United States)

    Stein, Harry

    1988-01-01

    Provides suggestions for note-taking from books, lectures, visual presentations, and laboratory experiments to enhance student knowledge, memory, and length of attention span during instruction. Describes topical and structural outlines, visual mapping, charting, three-column note-taking, and concept mapping. Benefits and application of…

  7. Structure and thermal properties of as-fabricated U-7Mo/Mg and U-10Mo/Mg low-enriched uranium research reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kulakov, Mykola, E-mail: mykola.kulakov@cnl.ca [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Saoudi, Mouna [Fuel Development Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Piro, Markus H.A. [Fuel and Fuel Channel Safety Branch, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0 Canada (Canada); Donaberger, Ronald L. [Canadian Neutron Beam Centre, Chalk River, ON K0J 1J0 Canada (Canada)

    2017-02-15

    Aluminum-clad U-7Mo/Mg and U-10Mo/Mg pin-type mini-elements (with a core uranium loading of 4.5 gU/cm{sup 3}) have been fabricated at the Canadian Nuclear Laboratories for experimental tests and ultimately for use in research and test reactors. In this study, the microstructure and phase composition of unirradiated U-7Mo/Mg and U-10Mo/Mg fuel cores were analyzed using optical and scanning electron microscopy, and neutron powder diffraction. Thermal properties were characterized using a combination of experimental measurements and thermodynamic calculations. The thermal diffusivity was measured using the laser flash method. The temperature-dependent specific heat capacities were calculated based on the linear rule of mixture using the weight fraction of different crystalline phases and their specific heat capacity values taken from the literature. The thermal conductivity was then calculated using the measured thermal diffusivity, the measured density and the calculated specific heat capacity. The resulting thermal conductivity is practically identical for both types of fuel. The in-reactor temperatures were predicted using conjugate heat transfer simulations. - Highlights: • Neutron diffraction analysis shows that most of the γ-U(Mo) phase was retained in as-fabricated U-7Mo/Mg and U-10Mo/Mg fuel cores. • The experimental thermal conductivity of both types of fuel is practically identical. • Based on conjugate heat transfer simulations, under normal operating conditions, the in-reactor fuel centreline temperature is about 510 K.

  8. Synthesis and evaluation of MoWCoS/G and MoWCuS/G as new transition metal dichalcogenide nanocatalysts for electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Askari, Mohammad Bagher; Beheshti-Marnani, Amirkhosro; Banizi, Zoha Tavakoli; Seifi, Majid; Ramezan zadeh, Mohammad Hassan

    2018-01-01

    New nanocomposites based on transition metal dichalcogenides, MoWCoS and MoWCuS, were synthesized through one step hydrothermal method. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) techniques as well as field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images confirmed the synthesis of nanocomposites. For investigation of hydrogen evolution reaction (HER) properties of new nanocomposites, linear sweep voltammetry (LSV) was applied for this purpose. According to the results of similar previous works, the prepared nanocomposites showed promising HER properties as low overpotential equal to 41.4 mV/dec for MoWCoS hybridized with reduced graphene (G) and a little higher one equal to 49 mV/dec for MoWCuS hybridized with reduced graphene. Based on obtained Tafel slopes 38 and 53 mV/dec for MoWCoS/G and MoWCuS/G, respectively, the "Heyrovsky-Volmer" mechanism was suggested for the new HER three component nanocatalysts as the first effort to this purpose.

  9. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  10. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  11. Mullite/Mo interfaces formed by Intrusion bonding

    OpenAIRE

    Bartolome, Jose F.; Diaz, Marcos; Moya, Jose S.; Saiz, Eduardo; Tomsia, Antoni P.

    2003-01-01

    The microstructure and strength of Mo/mullite interfaces formed by diffusion bonding at 1650oC has been analyzed. Interfacial metal-ceramic interlocking contributes to flexural strength of approx. 140 MPa as measured by 3 point bending. Saturation of mullite with MoO2 does not affect the interfacial strength.

  12. Microstructural studies on chemical interactions in U-Mo with Al

    International Nuclear Information System (INIS)

    Martins, Ilson Carlos

    2010-01-01

    This research refers to the study of U-Mo alloy as an alternative material for producing nuclear fuel elements with high density of uranium, for research reactors of high performance. The international non-proliferation of nuclear weapons has enrichment level limited to 20% U 23 '5. U-Mo alloys with 6-10 wt% Mo can lead to a density up to 9 gU/cm 3 , inside the fuel core. The MTR fuel element plates are made from briquettes (U-Mo powder + Al) encapsulated in Al plates, then welded and rolled However, the U-Mo alloy is very reactive in the presence of Al. The reaction products of this interaction are undesirable from the standpoint of nuclear usage, since they cause a chemical interaction layer (IL) formed during thermal cycling and exposure to nuclear fission neutrons. As the IL has low thermal conductivity, they may cause structural failure in the fuel element during operation. The present study provides a new preparation technique for interdiffusion pairs made by hot rolling. The U-Mo alloy, in tablet format, is involved by matrix Al-plates, which is sealed and then hot rolled. This way to prepare the diffusion couples is an ideal condition to avoid the oxidation at the contact interface at U-Mo/Al. The hot rolling preparation also simulates the first reduction pass during MTR fuel plate manufacture. We chose to work with a Mo content of 10 wt% in U-Mo alloy to ensure greater phase formation, since this level favors a greater chemical stability in this phase. The Al alloy matrix was used as the AA1050 since it contains small impurity amounts. The interdiffusion couples U-10Mo/AA1050 were thermally treated in two temperature ranges (1500C and 5500C) and three soaking times (5h, 40h and 80h) to simulate the interdiffusion process and formation of chemical interaction layer. The analysis of the interaction layer U-10Mo/AA1050 was made by SEM/EDS and X-ray diffraction. It revealed a general trend of low interdiffusion of Al (about 8 atomic %) inside U-Mo. There was

  13. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  14. Detecting the Extent of Eutectoid Transformation in U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnis, Colleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sweet, Lucas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the

  15. A spindle pole antigen gene MoSPA2 is important for polar cell growth of vegetative hyphae and conidia, but is dispensable for pathogenicity in Magnaporthe oryzae.

    Science.gov (United States)

    Li, Chao; Yang, Jun; Zhou, Wei; Chen, Xiao-Lin; Huang, Jin-Guang; Cheng, Zhi-Hua; Zhao, Wen-Sheng; Zhang, Yan; Peng, You-Liang

    2014-11-01

    Spa2 is an important component of the multiprotein complex polarisome, which is involved in the establishment, maintenance, termination of polarized cell growth and is important for defining tip growth of filamentous fungi. In this study, we isolated an insertional mutant of the rice blast fungus Magnaporthe oryzae that formed smaller colony and conidia compared with the wild type. In the mutant, a spindle pole antigen gene MoSPA2 was disrupted by the integration of an exogenous plasmid. Targeted gene deletion and complementation assays demonstrated the gene disruption was responsible for the defects of the insertional mutant. Interestingly, the MoSpa2-GFP fusion protein was found to accumulate as a spot at hyphal tips, septa of hyphae and conidial tip cells where germ tubes are usually produced, but not in appressoria, infection hyphae or at the septa of conidia. Furthermore, the deletion mutants of MoSPA2 exhibited slower hyphal tip growth, more hyphal branches, and smaller size of conidial tip cells. However, MoSPA2 is not required for plant infection. These results indicate that MoSPA2 is required for vegetative hyphal growth and maintaining conidium morphology and that spotted accumulation of MoSpa2 is important for its functions during cell polar growth.

  16. ITO-free organic light-emitting diodes with MoO{sub 3}/Al/MoO{sub 3} as semitransparent anode fabricated using thermal deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hsin-Wei; Huang, Ching-Wen [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Kao, Po-Ching [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2015-08-30

    Highlights: • In this paper, the structure of the proposed devices is substrate (glass; polyethersulfone (PES))/anode (MoO{sub 3}/Al/MoO{sub 3}; MoO{sub 3}/Al)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (60 nm)/LiF (1 nm)/Al (150 nm). • The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers. • The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. • The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m{sup 2} and 3.18 cd/A, respectively. • The bending effects on PES substrate by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers were also investigated. • MoO{sub 3} covering the Al layer modifies the surface of the electrode and enhances the durability. The surface roughness of the bi-layer films was higher than that of the tri-layer films. Therefore, OLEDs with OMO anode outperform those with bi-layer films anode. - Abstract: In this paper, semitransparent electrodes with the structure substrate/MoO{sub 3}/Al/MoO{sub 3} (OMO) were fabricated via the thermal deposition method for use as the anode in organic light-emitting diodes (OLEDs). The optical transmittance of the metal layer was enhanced by depositing metal oxidation (MoO{sub 3}) and metal (Al) layers. The optimal thickness of the Al thin films was determined to be 15 nm for high optical transmittance and good electrical conductivity. The optimized films show the typical sheet resistance of 7 Ω/sq and a high transmittance of 70% at 550 nm. The indium-tin-oxide (ITO)-free OLEDs with the fabricated composite anodes on a glass substrate exhibited the high luminance and current efficiency of 21,750 cd/m{sup 2} and 3.18 cd/A, respectively. In addition, bending effects on the polyethersulfone (PES) substrate/MoO{sub 3

  17. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  18. MoS{sub 2} spaser

    Energy Technology Data Exchange (ETDEWEB)

    Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin [Advanced Computing and Simulation Laboratory (A chi L), Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800 (Australia); Gunapala, Sarath D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States); Stockman, Mark I. [Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303 (United States)

    2016-04-07

    We present a comprehensive analysis of a spaser made of a circular shaped highly doped molybdenum disulfide (MoS{sub 2}) resonator. “Spaser” is an acronym for “surface plasmon amplification by stimulated emission of radiation”–a nanoscale source of surface plasmons generated by stimulated emission in a plasmonic resonator which receives energy nonradiatively. By considering localized surface plasmon modes, operation characteristics of the model are analysed, and tunability of the design is demonstrated. We find the optimum geometric and material parameters of the spaser that provides efficient outputs and carryout a comparative analysis with a similar circular spaser made of graphene. Owing to physical and chemical properties of MoS{sub 2} and the active medium, the proposed design delivers efficient outputs in terms of spaser mode energy, operating thresholds, Q-factor, and electric field amplitude. Lower operating thresholds and higher mode energies are notable advantages of the design. Owing to having many superior features to existing similar designs, this MoS{sub 2} spaser may be much suited for applications in nanoplasmonic devices.

  19. An EXAFS study of the structure of Co-Mo hydrodesulfurization catalysts

    International Nuclear Information System (INIS)

    Clausen, B.S.; Topsoe, H.; Candia, R.; Villadsen, J.; Lengeler, B.

    1981-05-01

    By analysing the extended X-ray absorption fine structure (EXAFS) of the Mo absorption edge, structural information about both calcined and sulfided Mo/Al 2 O 3 and Co-Mo/Al 2 O 3 catalysts has been obtained. The calcined catalysts show only one strong backscatterer peak in the radial distribution function, which indicates that molybdenum is present in a highly disordered structure. For the Co-Mo/Al 2 O 3 catalyst the presence of cobalt seems to have some effect on the immediate surroundings of molybdenum. Upon sulfiding the catalysts, an ordering of the molybdenum-containing phase takes place as evidenced by the observation of a contribution from the second coordination shell. From a comparison with EXAFS data obtained on well-crystallized MoS 2 it is concluded that the molybdenum atoms in the catalysts are present in MoS 2 -like structures. Furthermore, from a comparison of the amplitude of the Mo-backscatterer peak it is found that these MoS 2 -like structures are ordered in very small domains. (orig.)

  20. Plasma nanocoating of thiophene onto MoS{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Türkaslan, Banu Esencan [Suleyman Demirel University, Faculty of Engineering, Department of Chemical Engineering, 32260 Isparta (Turkey); Dikmen, Sibel [Suleyman Demirel University, Faculty of Arts and Science, Department of Chemistry, 32260 Isparta (Turkey); Öksüz, Lütfi [Suleyman Demirel University, Faculty of Arts and Science, Department of Physics, 32260 Isparta (Turkey); Öksüz, Aysegul Uygun, E-mail: ayseguluygun@sdu.edu.tr [Suleyman Demirel University, Faculty of Arts and Science, Department of Chemistry, 32260 Isparta (Turkey)

    2015-12-01

    Highlights: • MoS{sub 2} nanotubes were coated with thiophene by atmospheric pressure radio-frequency (RF) glow discharge. • Among nanohybrid preparation methods, the plasma methods appear as new technology. • The effect of plasma power on PTh/MoS{sub 2} nanocomposite properties has been investigated. • When the discharge power is increased between 117 and 360 W the chemical structure of PTh is not changed and the structure of nanocomposites become more uniformly. - Abstract: MoS{sub 2} nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS{sub 2} nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS{sub 2} precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS{sub 2} nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS{sub 2} nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS{sub 2} nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS{sub 2} nanotube nanocomposites are changed and the structure become more uniformly.

  1. Interactions in the NiO-MoO3 system upon reduction

    International Nuclear Information System (INIS)

    Afanas'ev, P.V.; Tsurov, M.A.; Kostik, B.G.; Turakulova, A.O.

    1993-01-01

    Interactions in the system NiO-MoO 3 (MoO 2 ) heated in the air and in H 2 were studied by the methods of differential-thermal analysis, thermally programmed reduction, X-ray phase analysis and measurement of magnetization. In the presence of NiO the temperature of MoO 3 reduction start decreases by > 150 K. Simultaneously, in the range of temperatures 5730623 K inhibition of NiO reduction occurs, which is related to the formation of NiMo x alloy. For the samples of NiO+MoO 2 no inhibition of NiO reduction was detected, NiMo x alloy was formed after quantitative reduction of NiO

  2. Scalable Patterning of MoS2Nanoribbons by Micromolding in Capillaries

    KAUST Repository

    Hung, Yu-Han

    2016-07-27

    In this study, we report a facile approach to prepare dense arrays of MoS2 nanoribbons by combining procedures of micromolding in capillaries (MIMIC) and thermolysis of thiosalts ((NH4)2MoS4) as the printing ink. The obtained MoS2 nanoribbons had a thickness reaching as low as 3.9 nm, a width ranging from 157 to 465 nm, and a length up to 2 cm. MoS2 nanoribbons with an extremely high aspect ratio (length/width) of ∼7.4 × 108 were achieved. The MoS2 pattern can be printed on versatile substrates, such as SiO2/Si, sapphire, Au film, FTO/glass, and graphene-coated glass. The degree of crystallinity of the as-prepared MoS2 was discovered to be adjustable by varying the temperature through postannealing. The high-temperature thermolysis (1000 °C) results in high-quality conductive samples, and field-effect transistors based on the patterned MoS2 nanoribbons were demonstrated and characterized, where the carrier mobility was comparable to that of thin-film MoS2. In contrast, the low-temperature-treated samples (170 °C) result in a unique nanocrystalline MoSx structure (x ≈ 2.5), where the abundant and exposed edge sites were obtained from highly dense arrays of nanoribbon structures by this MIMIC patterning method. The patterned MoSx was revealed to have superior electrocatalytic efficiency (an overpotential of ∼211 mV at 10 mA/cm2 and a Tafel slope of 43 mV/dec) in the hydrogen evolution reaction (HER) when compared to the thin-film MoS2. The report introduces a new concept for rapidly fabricating cost-effective and high-density MoS2/MoSx nanostructures on versatile substrates, which may pave the way for potential applications in nanoelectronics/optoelectronics and frontier energy materials. © 2016 American Chemical Society.

  3. Analysis of MoDOT communication and outreach effectiveness

    Science.gov (United States)

    2008-07-01

    Personal interviews were held with MoDOT personnel to assess MoDOTs current communication practices and existing customer segmentation practices. Focus groups were then held to help gauge the effectiveness of existing communication practices and t...

  4. Final report of MoReMO 2011-2012. Modelling resilience for maintenance and outage

    International Nuclear Information System (INIS)

    Gotcheva, N.; Macchi, L.; Oedewald, P.; Eitrheim, M.H.R.; Axelsson, C.; Reiman, T.; Pietikaeinen, E.

    2013-04-01

    The project Modelling Resilience for Maintenance and Outage (MoReMO) represents a two-year joint effort by VTT Technical Research Centre of Finland, Institute for Energy Technology (IFE, Norway) and Vattenfall (Sweden) to develop and test new approaches for safety management. The overall goal of the project was to present concepts on how resilience can be operationalized and built in a safety critical and socio-technical context. Furthermore, the project also aimed at providing guidance for other organizations that strive to develop and improve their safety performance in a business driven industry. We have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. During 2011 and 2012 the MoReMO project team has collected data through field observations, interviews, workshops, and document analysis on the work practices and adjustments in maintenance and outage in Nordic NPPs. The project consisted of two sub-studies, one focused on identifying and assessing adjustments and supporting resilient work practices in maintenance activities, while the other focused on handling performance trade-offs in maintenance and outage, as follows: A. Adjustments in maintenance work in Nordic nuclear power plants (VTT and Vattenfall). B. Handling performance trade-offs - the support of adaptive capacities (IFE and Vattenfall). The historical perspective of maintenance and outage management (Chapter 1.1) was provided by Vattenfall. Together, the two sub-studies have provided valuable insights for understanding the rationale behind work practices and adjustments, their effects on resilience, promoting flexibility and balancing between flexibility and reliability. (Author)

  5. Final report of MoReMO 2011-2012. Modelling resilience for maintenance and outage

    Energy Technology Data Exchange (ETDEWEB)

    Gotcheva, N.; Macchi, L.; Oedewald, P. [Technical Research Centre of Finland (VTT), Espoo (Finland); Eitrheim, M.H.R. [Institute for Energy Technology (IFE) (Norway); Axelsson, C.; Reiman, T.; Pietikaeinen, E. [Ringhals AB (NPP), Vattenfall AB (Sweden)

    2013-04-15

    The project Modelling Resilience for Maintenance and Outage (MoReMO) represents a two-year joint effort by VTT Technical Research Centre of Finland, Institute for Energy Technology (IFE, Norway) and Vattenfall (Sweden) to develop and test new approaches for safety management. The overall goal of the project was to present concepts on how resilience can be operationalized and built in a safety critical and socio-technical context. Furthermore, the project also aimed at providing guidance for other organizations that strive to develop and improve their safety performance in a business driven industry. We have applied four approaches in different case studies: Organisational Core Task modelling (OCT), Functional Resonance Analysis Method (FRAM), Efficiency Thoroughness Trade-Off (ETTO) analysis, and Work Practice and Culture Characterisation. During 2011 and 2012 the MoReMO project team has collected data through field observations, interviews, workshops, and document analysis on the work practices and adjustments in maintenance and outage in Nordic NPPs. The project consisted of two sub-studies, one focused on identifying and assessing adjustments and supporting resilient work practices in maintenance activities, while the other focused on handling performance trade-offs in maintenance and outage, as follows: A. Adjustments in maintenance work in Nordic nuclear power plants (VTT and Vattenfall). B. Handling performance trade-offs - the support of adaptive capacities (IFE and Vattenfall). The historical perspective of maintenance and outage management (Chapter 1.1) was provided by Vattenfall. Together, the two sub-studies have provided valuable insights for understanding the rationale behind work practices and adjustments, their effects on resilience, promoting flexibility and balancing between flexibility and reliability. (Author)

  6. Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: Their cytotoxicity towards lung and breast cancer cells

    International Nuclear Information System (INIS)

    Kumar, Neeraj; George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Parashar, Vyom; Ngila, Jane Catherine

    2017-01-01

    Highlights: • Microspheres of PEGylated MoS 2 nanosheets were synthesised by hydrothermal route. • PEGylated MoS 2 have shown good cytotoxicity towards breast cancer (MCF-7) cells. • For comparison, h-MoO 3 nanorods were prepared by simple chemical route. • h-MoO 3 have exhibited excellent cytotoxicity towards lung (A549) cancer cells. - Abstract: Nanotechnology provides an emerging potent alternate mode of cancer therapy. Nanomaterials dispersion or solubility is of particular concern in utilising their full potential applications in biomedical fields. PEGylation of nanomaterials is considered to provide products with stealth properties, and physiological environment with no obvious adverse effects. The purpose of this work was to develop a sustainable one-step method for fabrication of hierarchical microspheres of PEGylated MoS 2 nanosheets using a stoichiometric ratio of Mo(VI) and thiourea. This study further investigated the cytotoxicity of the PEGylated MoS 2 nanosheets towards lung (A549) and breast cancer (MCF-7) cell lines by analysing morphological changes and performing dose-dependent cell proliferation, and cytotoxicity analysis using adenosine 5′-triphosphate (ATP), and lactate dehydrogenase (LDH) assay. For comparison, MoO 3 nanorods were synthesised by simple chemical route and their cytotoxicity towards lung (A549) and breast cancer (MCF-7) cell lines were checked. The findings suggested that PEGylated MoS 2 nanosheets have excellent cytotoxicity towards breast cancer (MCF-7) cell lines, and MoO 3 have better cytotoxicity towards lung (A549) cancer cell lines. This work envisages an accessible foundation for engineering sophisticated biomolecule–MoS 2 nanosheets conjugation due to the defect-rich biocompatible surface, to achieve great versatility, additional functions, and further advances in the biomedical field.

  7. Compatibility studies on Mo-coating systems for nuclear fuel cladding applications

    Science.gov (United States)

    Koh, Huan Chin; Hosemann, Peter; Glaeser, Andreas M.; Cionea, Cristian

    2017-12-01

    To improve the safety factor of nuclear power plants in accident scenarios, molybdenum (Mo), with its high-temperature strength, is proposed as a potential fuel-cladding candidate. However, Mo undergoes rapid oxidation and sublimation at elevated temperatures in oxygen-rich environments. Thus, it is necessary to coat Mo with a protective layer. The diffusional interactions in two systems, namely, Zircaloy-2 (Zr2) on a Mo tube, and iron-chromium-aluminum (FeCrAl) on a Mo rod, were studied by aging coated Mo substrates in high vacuum at temperatures ranging from 650 °C to 1000° for 1000 h. The specimens were characterized using scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and nanoindentation. In both systems, pores in the coating increased in size and number with increasing temperature over time, and cracks were also observed; intermetallic phases formed between the Mo and its coatings.

  8. Synthesis and investigation of uranyl molybdate UO2MoO4

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Sato, Nobuaki; Kitawaki, Shin-ichi; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Myochin, Munetaka

    2013-01-01

    In order to examine easily synthetic conditions of uranyl molybdate, UO 2 MoO 4 , used for the reprocessing process study of spent nuclear oxide fuels in alkaline molybdate melts, the uranium molybdate compounds were produced from U 3 O 8 powder and anhydrous MoO 3 reagent. The results of having investigated them in solid state by using X-ray diffractometry and Raman spectrometry, it was confirmed that UO 2 MoO 4 could be synthesized by heating mixed powder of U 3 O 8 and MoO 3 with stoichiometric mole ratio at 770 °C for 4 h under air atmosphere. Moreover, adding this UO 2 MoO 4 into Li 2 MoO 4 -Na 2 MoO 4 eutectic melt, most of the dissolved uranium species in the melt were observed as hexa–valent uranyl ions by absorption spectrophotometry

  9. Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co-Mo-S hydrotreating catalysts

    DEFF Research Database (Denmark)

    Topsøe, Nan-Yu; Tuxen, Anders Kyrme; Hinnemann, Berit

    2011-01-01

    nfrared (IR) spectroscopy using NO as a probe molecule has been one of the important methods for characterizing hydrotreating catalysts, since this technique provides information on the nature and quantity of active edge sites of these catalysts. However, due to the strong adsorption of NO, which......) calculations, we present new atomic-scale insight into the nature of NO adsorption on MoS2 and Co-Mo-S nanoclusters. The DFT calculations and STM experiments show that NO does not adsorb at fully sulfided MoS2 edges not containing hydrogen. However, typical sulfided catalysts will have hydrogen present...... NO as a probe molecule to obtain detailed atomic-scale information on hydrotreating catalysts and the origins of activity differences. (C) 2011 Published by Elsevier Inc....

  10. Temperature dependence of residual stress in TiC coated Mo

    International Nuclear Information System (INIS)

    Yoshizawa, I.; Fukutomi, M.; Kamada, K.

    1984-01-01

    The effects of fabrication temperature and heat treatment on the residual stress in TiC coated Mo have been studied by using X-ray diffractometry. TiC coatings on Mo single crystal substrates with (100) and (111) surfaces were carried out with the Activated Reactive Evaporation (ARE) method. It was found that all Mo substrates measured show tensile residual stresses, and their values decrease as the fabrication temperature increases from 300 to 700 0 C. On the other hand, TiC films measured showed compressive residual stresses, for both TiC/Mo(100) and TiC/Mo(111) specimens. These compressive stresses also decreased with increasing the fabrication temperature. The residual stresses measured were higher in TiC/Mo(100) than in TiC/Mo(111). It was found that the compressive stresses in as-grown TiC films change to the tensile stresses after annealing at 1700 0 C for 30 min. The preferred orientations of TiC films were observed to depend on the fabrication temperature. However, no epitaxial growth of TiC films was found as far as the present experiment was concerned. (orig.)

  11. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong

    2013-06-13

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  12. First-principles analysis of MoS2/Ti2C and MoS2/Ti2CY2 (Y=F and OH) all-2D semiconductor/metal contacts

    KAUST Repository

    Gan, Liyong; Huang, Dan; Schwingenschlö gl, Udo; Zhao, Yu-Jun

    2013-01-01

    First-principles calculations are used to explore the geometry, bonding, and electronic properties of MoS2/Ti2C and MoS2/Ti2CY2 (Y = F and OH) semiconductor/metal contacts. The structure of the interfaces is determined. Strong chemical bonds formed at the MoS2/Ti2C interface result in additional states next to the Fermi level, which extend over the three atomic layers of MoS2 and induce a metallic character. The interaction in MoS2/Ti2CY2, on the other hand, is weak and not sensitive to the specific geometry, and the semiconducting nature thus is preserved. The energy level alignment implies weak and strong n-type doping of MoS2 in MoS2/Ti2CF2 and MoS2/Ti2C(OH)2, respectively. The corresponding n-type Schottky barrier heights are 0.85 and 0.26 eV. We show that the MoS2/Ti2CF2 interface is close to the Schottky limit. At the MoS2/Ti2C(OH)2 interface, we find that a strong dipole due to charge rearrangement induces the Schottky barrier. The present interfaces are well suited for application in all-two-dimensional devices.

  13. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  14. European Union's efforts to sustain the supply of 99Mo

    International Nuclear Information System (INIS)

    Remigiusz Baranczyk; Stamatios Tsalas; Turquet de Beauregard, G.Y.

    2015-01-01

    The Molybdenum-99/Technetium-99m ( 99 Mo/ 99m Tc) supply disruptions occurred in the recent years prompted the European Commission and industry to establish in 2012 a European Observatory on the Supply of Medical Radioisotopes, aimed at bringing together all relevant information to the decision makers in the European Union (EU) institutions and national governments in order to assist them in defining strategies as well as policies for their implementation. The Observatory follows the Organisation for Economic Co-operation and Development/Nuclear Energy Agency-OECD/NEA principles established by the High Level Group on the Security of Supply of Medical Radioisotopes (HLG-MR), of which the European Commission is a Member, and focuses on the specificities of their implementation in the EU, recognizing at the same time that the supply is of a global nature and requires broader international cooperation. The Observatory has four general strategic objectives: to support a secure 99 Mo/ 99m Tc supply across the European Union, ensure that the issue of 99 Mo/ 99m Tc supply is given high political visibility, encourage the creation of a sustainable economic structure of the supply chain and establish periodic reviews of the supply capacities and demand. (author)

  15. Creep-fatigue life prediction method using Diercks equation for Cr-Mo steel

    International Nuclear Information System (INIS)

    Sonoya, Keiji; Nonaka, Isamu; Kitagawa, Masaki

    1990-01-01

    For dealing with the situation that creep-fatigue life properties of materials do not exist, a development of the simple method to predict creep-fatigue life properties is necessary. A method to predict the creep-fatigue life properties of Cr-Mo steels is proposed on the basis of D. Diercks equation which correlates the creep-fatigue lifes of SUS 304 steels under various temperatures, strain ranges, strain rates and hold times. The accuracy of the proposed method was compared with that of the existing methods. The following results were obtained. (1) Fatigue strength and creep rupture strength of Cr-Mo steel are different from those of SUS 304 steel. Therefore in order to apply Diercks equation to creep-fatigue prediction for Cr-Mo steel, the difference of fatigue strength was found to be corrected by fatigue life ratio of both steels and the difference of creep rupture strength was found to be corrected by the equivalent temperature corresponding to equal strength of both steels. (2) Creep-fatigue life can be predicted by the modified Diercks equation within a factor of 2 which is nearly as precise as the accuracy of strain range partitioning method. Required test and analysis procedure of this method are not so complicated as strain range partitioning method. (author)

  16. Fuel Performance Modeling of U-Mo Dispersion Fuel: The thermal conductivity of the interaction layers of the irradiated U-Mo dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mistarhi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    U-Mo/Al dispersion fuel performed well at a low burn-up. However, higher burn-up and higher fission rate irradiation testing showed enhanced fuel meat swelling which was caused by high interaction layer growth and pore formation. The performance of the dispersion type fuel in the irradiation and un-irradiation environment is very important. During the fabrication of the dispersion type fuel an Interaction Layer (IL) is formed due to the inter-diffusion between the U-Mo fuel particles and the Al matrix which is an intermetallic compound (U,Mo)Alx. During irradiation, the IL becomes amorphous causing a further decrease in the thermal conductivity and an increase in the centerline temperature of the fuel meat. Several analytical models and numerical methods were developed to study the performance of the unirradiated U-Mo/Al dispersion fuel. Two analytical models were developed to study the performance of the irradiated U-Mo/Al dispersion fuel. In these models, the thermal conductivity of the IL was assumed to be constant. The properties of the irradiated U-Mo dispersion fuel have been investigated recently by Huber et al. The objective of this study is to develop a correlation for IL thermal conductivity during irradiation as a function of the temperature and fission density from the experimentally measured thermal conductivity of the irradiated U-Mo/Al dispersion fuel. The thermal conductivity of IL during irradiation was calculated from the experimentally measured data and a correlation was developed from the thermal conductivity of IL as a function of T and fission density.

  17. Explosive anisotropic grain growth of delta-NiMo by solid-state diffusion

    International Nuclear Information System (INIS)

    Chou, T.C.; Nieh, T.G.

    1991-01-01

    Anomalous, anisotropic grain growth has been observed in delta(δ)-NiMo intermetallic compound during the annealings of Mo/Ni thin-film diffusion couples at 700 and 800 degree C. Two layered microstructures showing median-sized, equiaxed grains and large columnar single crystalline grains were generated. The growth direction of the columnar grains was parallel to the direction of Ni diffusion flux. Electron diffraction indicated that both the median-sized and the columnar grains were δ-NiMo. The composition of δ-NiMo was determined to be Ni48-Mo52 (at.%). According to the thickness of reaction-formed δ-NiMo, the apparent interdiffusion coefficient was measured to be about 10 -10 cm 2 /s which is 4 to 5 orders of magnitude greater than literature data. The enhanced diffusion rate in Ni-Mo, and the anomalous anisotropic grain growth of δ-NiMo compound are discussed on the basis of exothermic reactions between Ni and Mo during diffusional intermixing. The enthalpy of the formation of δ-NiMo is calculated and demonstrated to be sufficient to cause melting/solidification of the compound

  18. Separation of 99Mo from 132Te using thiourea as complexing agent. Application to the separation of 99Mo from the fission products

    International Nuclear Information System (INIS)

    Mestnik, S.A.C.; Silva, C.P.G. da.

    1989-02-01

    A radiochemical method to isolate 99 Mo from 132 Te both produced in the fission of 235 U has been developed. The methods is based on the formation of a cationic complex of tellerium with thiourea in acid medium which is retained (98.7 +- 0.5)% on a cation exchange resin (Dowex 50W-X8, 100 - 200 mesh) while (99.8 +- 0.05)% 99 Mo passes through it, due to the non formation of such complex in the same experimental conditions. The radionuclidic purity of the separated 99 Mo verified by using gamma spectrometry was found to be suitable for the preparation of 99 Mo - 99 sup (m)Tc generators. The retention of 99 Mo on an alumina column as function of ph was investigated. the best pH range for this purpose was found to be between 4.0 - 4.5. the 99 Mo - 99m Tc generator was prepared. the elution of 99m Tc was carried out with physiologic saline solution. The radionuclidic purity of the eluate was found suitable and the product can be used for Nuclear Medicine applications. (author) [pt

  19. 76 FR 43576 - Amendment of Class E Airspace; Hannibal, MO

    Science.gov (United States)

    2011-07-21

    ...-0046; Airspace Docket No. 11-ACE-1] Amendment of Class E Airspace; Hannibal, MO AGENCY: Federal... Hannibal, MO. Decommissioning of the Hannibal non-directional beacon (NDB) at Hannibal Regional Airport, Hannibal, MO, has made this action necessary to enhance the safety and management of Instrument Flight Rule...

  20. Internet application: production-technical information system MoNET

    International Nuclear Information System (INIS)

    Tomiga, J.

    2004-01-01

    MoNET is the production-technical information system supporting engineering, operational and maintenance processes of distribution network administrator. It utilizes the model of distribution network that is situated in the geo-space relational database. The geo-space database represents an information base of operational-technical processes. It contains elements and equipment s of the distribution network, failures, operational events, maintenance records, but also, parcels, reference planimetry, e.g. and other subjects for which is relevant the positional datum - geo-space information. MoNET is typically exploited in the fields: - evidence of the subjects and equipment of network, technical documentation; - property administration; - planning of network development, support of designing and construction; - technical calculation; - breakdown controller centre; - maintenance management. MoNET can be implemented as the desktop application, however its first benefit is derived from its usage as the intranet application MoNET WEB for the whole enterprise or organisation. This version enables an unrestricted number of end-users to enter this system. The end-users don't need any special software to enter the data of MoNet WEB application, the pre-installed Internet Explorer will do. (author)