WorldWideScience

Sample records for mo base alloys

  1. Development of Mo base alloys for conductive metal-alumina cermet applications

    International Nuclear Information System (INIS)

    Stephens, J.J.; Damkroger, B.K.; Monroe, S.L.

    1996-01-01

    A study of thermal expansion for binary Mo-V and ternary Mo-V-Fe/Mo-V-Co alloys has been conducted, with the aim of finding a composition which matches the CTE of 94% alumina ceramic. The overall goal was to identify an alloy which can be used in conductive 27 vol.% metal/73 vol.% alumina cermets. Besides thermal expansion properties, two additional requirements exist for this alloy: (1) compatibility with a hydrogen sinter fire atmosphere and (2) a single phase BCC microstructure. They have identified a ternary alloy with a nominal composition of Mo-22wt.% V-3Fe for use in cermet fabrication efforts. This paper summarizes thermal expansion properties of the various alloys studied, and compares the results with previous CTE data for Mo-V binary alloys

  2. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment

    International Nuclear Information System (INIS)

    Abbasi, A.R.; Shamanian, M.

    2011-01-01

    Research highlights: → α-Mo-Mo 5 SiB 2 nanocomposite was produced after 20 h milling of Mo-Si-B powders. → Heat treatment of 5 h MAed powders led to the formation of boride phases. → Heat treatment of 10 h MAed powders led to the formation of Mo 5 SiB 2 phase. → By increasing heat treatment time, quantity of Mo 5 SiB 2 phase increased. → 5 h heat treatment of 20 h MAed powders led to the formation of Mo 5 SiB 2 -based composite. - Abstract: In this study, systematic investigations were conducted on the synthesis of Mo 5 SiB 2 -based alloy by mechanical alloying and subsequent heat treatment. In this regard, Mo-12.5 mol% Si-25 mol% B powder mixture was milled for different times. Then, the mechanically alloyed powders were heat treated at 1373 K for 1 h. The phase transitions and microstructural evolutions of powder particles during mechanical alloying and heat treatment were studied by X-ray diffractometry and scanning electron microscopy. The results showed that the phase evolutions during mechanical alloying and subsequent heat treatment are strongly dependent on milling time. After 10 h of milling, a Mo solid solution was formed, but, no intermetallic phases were detected at this stage. However, an α-Mo-Mo 5 SiB 2 nanocomposite was formed after 20 h of milling. After heat treatment of 5 h mechanically alloyed powders, small amounts of MoB and Mo 2 B were detected and α-Mo-MoB-Mo 2 B composite was produced. On the other hand, heat treatment of 10 h and 20 h mechanically alloyed powders led to the formation of an α-Mo-Mo 5 SiB 2 -MoSi 2 -Mo 3 Si composite. At this point, there is a critical milling time (10 h) for the formation of Mo 5 SiB 2 phase after heat treatment wherein below that time, boride phase and after that time, Mo 5 SiB 2 phase are formed. In the case of 20 h mechanically alloyed powders, by increasing heat treatment time, not only the quantity of α-Mo was reduced and the quantity of Mo 5 SiB 2 was increased, but also new boride

  3. Ternary alloying study of MoSi2

    International Nuclear Information System (INIS)

    Yi, D.; Li, C.; Akselsen, O.M.; Ulvensoen, J.H.

    1998-01-01

    Ternary alloying of MoSi 2 with adding a series of transition elements was investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS). Iron, Co, Ni, Cr, V, Ti, and Nb were chosen as alloying elements according to the AB 2 structure map or the atomic size factor. The studied MoSi 2 base alloys were prepared by the arc melting process from high-purity metals. The EDS analysis showed that Fe, Co, and Ni have no solid solubility in as-cast MoSi 2 , while Cr, V, Ti, and Nb exhibit limited solid solubilities, which were determined to be 1.4 ± 0.7, 1.4 ± 0.4, 0.4 ± 0.1, and 0.8 ± 0.1. Microstructural characterization indicated that Mo-Si-M VIII (M VIII = Fe, Co, Ni) and Mo-Si-Cr alloys have a two-phase as-cast microstructure, i.e., MoSi 2 matrix and the second-phase FeSi 2 , CoSi, NiSi 2 , and CrSi 2 , respectively. In as-cast Mo-Si-V, Mo-Si-Ti, and Mo-Si-Nb alloys, besides MoSi 2 and C40 phases, the third phases were observed, which have been identified to be (Mo, V) 5 Si 3 , TiSi 2 , and (Mo, Nb) 5 Si 3

  4. Acoustic properties of TiNiMoFe base alloys

    International Nuclear Information System (INIS)

    Gyunter, V.Eh.; Chernyshev, V.I.; Chekalkin, T.L.

    2000-01-01

    The regularity of changing the acoustic properties of the TiNi base alloys in dependence on the alloy composition and impact temperature is studied. It is shown that the oscillations of the TiNiMoFe base alloys within the temperature range of the B2 phase existence and possible appearance of the martensite under the load differ from the traditional materials oscillations. After excitation of spontaneous oscillations within the range of M f ≤ T ≤ M d there exists the area of long-term and low-amplitude low-frequency acoustic oscillations. It is established that free low-frequency oscillations of the TH-10 alloy sample are characterized by the low damping level in the given temperature range [ru

  5. AB INITIO Modeling of Thermomechanical Properties of Mo-Based Alloys for Fossil Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim

    2013-12-31

    In this final scientific/technical report covering the period of 3.5 years started on July 1, 2011, we report the accomplishments on the study of thermo-mechanical properties of Mo-based intermetallic compounds under NETL support. These include computational method development, physical properties investigation of Mo-based compounds and alloys. The main focus is on the mechanical and thermo mechanical properties at high temperature since these are the most crucial properties for their potential applications. In particular, recent development of applying ab initio molecular dynamic (AIMD) simulations to the T1 (Mo{sub 5}Si{sub 3}) and T2 (Mo{sub 5}SiB{sub 2}) phases are highlighted for alloy design in further improving their properties.

  6. Microstructures and Electrochemical Behavior of Ti-Mo Alloys for Biomaterials

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2015-01-01

    Full Text Available The Ti alloy with 7 wt% Mo revealed a microstructure that contained only the orthorhombic α′′ phase of a fine acicular martensitic structure. The corrosion resistance of the Ti-Mo alloys increased as the Mo content increased. Based on the results obtained from the polarization curve and electrochemical impedance, the Ti-Mo alloys were shown to be corrosion resistant because of the passive films formed on their surfaces. No ion release was detected in SBF (simulated body fluid solution, while Ti ions were released in 0.1% lactic acid ranging from 0.05 to 0.12 μg/mL for the Ti-Mo alloys. In vitro tests showed that MC3T3-E1 cell proliferation on Ti-7 wt% Mo alloy was rather active compared to other Ti-Mo alloys and commercial-grade pure Ti.

  7. Corrosion behavior of Nb-based and Mo-based super heat-resisting alloys in liquid Li

    International Nuclear Information System (INIS)

    Saito, J.; Kano, S.; Morinaga, M.

    1998-07-01

    Research on structural materials which will be utilized even in the severe environment of high-temperature liquid alkali metals has been promoted in order to develop the frontiers of materials techniques. The super-heat resisting alloys which are based on refractory metals, Nb and Mo, are aimed as promising materials used in such an environment. The corrosion resistance in liquid Li and the mechanical properties such as creep and tensile strengths at high temperatures are important for these structural materials. On the basis of many experiments and analyses of these properties at 1473 K, the material design of Nb-based and Mo-based alloys has been carried out successfully. In this report, all the previous experimental results of corrosion tests in liquid Li were summarized systematically for Nb-based and Mo-based alloys. The corrosion mechanism was proposed on the basis of a series of analyses, in particular, focussing on the deposition mechanism of corrosion products on the surface and also on the initiation and growth mechanism of cracks on the corroded surface of Nb-based alloys. The principal results are as follows. (1) For the deposition mechanism, a reaction took place first between dissolved metallic elements and nitrogen which existed as an impurity in liquid Li and then corrosion products (nitrides) precipitated on the metal surface. Subsequently, another reaction took place between dissolved metallic elements in liquid Li, and corrosion products (intermetallic compounds) precipitated on the metal surface. The composition of deposited corrosion products could be predicted on the basis of the deposition mechanism. (2) For the crack initiation mechanism, the chemical potential diagrams were utilized in order to understand the formation of Li-M-O ternary oxides which caused cracks to be formed on the corroded surface. Consequently, it was evident that not only the concentration of the dissolved oxygen in the alloy but also the concentration of Li which

  8. Preparation and Oxidation Resistance of Mo-Si-B Coating on Nb-Si Based Alloy Surface

    Directory of Open Access Journals (Sweden)

    PANG Jie

    2018-02-01

    Full Text Available Mo-Si-B coating was prepared on Nb-Si alloys to improve the high-temperature oxidation. The influence of the halide activators (NaF and AlF3 on Si-B co-depositing to obtain Mo-Si-B coating on Nb-Si alloys was analyzed by thermochemical calculations. The results show that NaF proves to be more suitable than AlF3 to co-deposit Si and B. Then Mo-Si-B can be coated on Nb-Si based alloys using detonation gun spraying of Mo followed by Si and B co-deposition. The fabricated coatings consist of outer MoSi2 layer with fine boride phase and inner unreacted Mo layer. The mass gain of the Mo-Si-B coating is 1.52mg/cm2 after oxidation at 1250℃ for 100h. The good oxidation resistance results in a protective borosilicate scale formed on the coating.

  9. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    Science.gov (United States)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  10. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  11. Monte Carlo simulation of ordering transformations in Ni-Mo-based alloys

    International Nuclear Information System (INIS)

    Kulkarni, U.D.

    2004-01-01

    The quenched in state of short range order (SRO) in binary Ni-Mo alloys is characterized by intensity maxima at {1 (1/2) 0} and equivalent positions in the reciprocal space. Ternary addition of a small amount of Al to the binary alloy, on the other hand, leads to a state of SRO that gives rise to intensity maxima at {1 0 0} and equivalent, in addition to {1 (1/2) 0} and equivalent, positions in the selected area electron diffraction patterns. Different geometric patterns of streaks of diffuse intensity, joining the SRO maxima with the superlattice positions of the emerging long range ordered (LRO) structures or in some cases between the superlattice positions of different LRO structures, are observed during the SRO-to-LRO transitions in the Ni-Mo-based and other 1 (1/2) 0 alloys. Monte Carlo simulations have been carried out here in order to shed some light on the atomic structures of the SRO and the SRO-to-LRO transition states in these alloys

  12. Oxidation Behavior of Mo-Si-B Alloys in Wet Air; TOPICAL

    International Nuclear Information System (INIS)

    M. Kramer; A. Thom; O. Degirmen; V. Behrani; M. Akinc

    2002-01-01

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1= Mo(sub 5)Si(sub 3)B(sub x) (T1)- MoSi(sub 2)- MoB, Alloy 2= T1- Mo(sub 5)SiB(sub 2) (T2)- Mo(sub 3)Si, and Alloy 3= Mo- T2- Mo(sub 3)Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H(sub 2)O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO(sub 3). All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO(sub 2). This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO(sub 2) that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air

  13. Microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of Zr-Mo alloys.

    Science.gov (United States)

    Zhou, F Y; Wang, B L; Qiu, K J; Li, L; Lin, J P; Li, H F; Zheng, Y F

    2013-02-01

    In this study, the microstructure, mechanical properties, corrosion behaviors, and in vitro biocompatibility of Zr-Mo alloys as a function of Mo content after solution treatment were systemically investigated to assess their potential use in biomedical application. The experimental results indicated that Zr-1Mo alloy mainly consisted of an acicular structure of α' phase, while ω phase formed in Zr-3Mo alloy. In Zr-5Mo alloy, retained β phase and a small amount of precipitated α phase were observed. Only the retained β phase was obtained in Zr-10Mo alloy. Zr-1Mo alloy exhibited the greatest hardness, bending strength, and modulus among all experimental Zr-Mo alloys, while β phase Zr-10Mo alloy had a low modulus. The results of electrochemical corrosion indicated that adding Mo into Zr improved its corrosion resistance which resulted in increasing the thermodynamic stability and passivity of zirconium. The cytotoxicity test suggested that the extracts of the studied Zr-Mo alloys produced no significant deleterious effect to fibroblast cells (L-929) and osteoblast cells (MG 63), indicating an excellent in vitro biocompatibility. Based on these facts, certain Zr-Mo alloys potentially suitable for different biomedical applications were proposed. Copyright © 2012 Wiley Periodicals, Inc.

  14. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  15. Oxidation Behavior of TiAl-Based Alloy Modified by Double-Glow Plasma Surface Alloying with Cr-Mo

    Science.gov (United States)

    Wei, Xiangfei; Zhang, Pingze; Wang, Qiong; Wei, Dongbo; Chen, Xiaohu

    2017-07-01

    A Cr-Mo alloyed layer was prepared on a TiAl-based alloy using plasma surface alloying technique. The isothermal oxidation kinetics of the untreated and treated samples was examined at 850 °C. The microstructure and phase composition of the alloyed layer were analyzed by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray powder diffraction (XRD). The morphology and constituent of the oxide scales were also analyzed. The results indicated that the oxidation resistance of TiAl was improved significantly after the alloying treatment. The oxide scale eventually became a mixture of Al2O3, Cr2O3 and TiO2. The oxide scale was dense and integrated throughout the oxidation process. The improvement was mainly owing to the enhancing of scale adhesion and the preferential oxidation of aluminum brought by the alloying effect for TiAl-based alloy.

  16. Phase transitions in alloys of the Ni-Mo system

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.; Shabanova, I.

    2011-01-01

    Graphical abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys was studied by methods of TEM and XPS. It is shown that at high temperatures the tendency toward phase separation takes place in the alloys and crystalline bcc Mo particles precipitate in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the dissolution of Mo particles and precipitation of the particles of Ni 3 Mo, Ni 2 Mo or Ni 4 Mo chemical compounds. Highlights: → 'Chemical' phase transition 'ordering-phase separation' is first discovered in alloys of the Ni-Mo system. → It is first shown that the phase separation in the alloys studied begins at temperatures above the liquidus one. → The formation of Ni 3 Mo from A1 has gone through the intervening stage of the Ni 4 Mo and Ni 2 Mo coexistence. - Abstract: The structure of Ni-20 at.% Mo and Ni-25 at.% Mo alloys heat treated at different temperatures was studied by the method of transmission electron microscopy. X-ray photoelectron spectroscopy was used to detect the sign of the chemical interaction between Ni and Mo atoms at different temperatures. It is shown that at high temperatures the tendency toward phase separation takes place. The system of additional reflections at positions {1 1/2 0} on the electron diffraction patterns testifies that the precipitation of crystalline bcc Mo particles begins in the liquid solution. At 900 deg. C and below, the tendency toward ordering leads to the precipitation of the particles of the chemical compounds. A body-centered tetragonal phase Ni 4 Mo (D1 a ) is formed in the Ni-20 at.% Mo alloy. In the Ni-25 at.% Mo alloy, the formation of the Ni 3 Mo (D0 22 ) chemical compound from the A1 solid solution has gone through the intervening stage of the Ni 4 Mo (D1 a ) and Ni 2 Mo (Pt 2 Mo) formation.

  17. A new type of Ce-Mo based conversion coatings for aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Di; Li Guoqiang; Guo Baolan; Peng Mingxia [Coll. of Materials Science and Engineering, Beijing Univ. of Aeronautics and Astronautics, Beijing, BJ (China)

    2002-07-01

    A new type of process for forming Ce-Mo conversion coatings on Al-alloys has been developed. Conversion coatings about 3.6 {mu}m thickness were obtained by immersing Al-alloys for 20 minutes in boiling film forming solutions containing (NH{sub 4}){sub 2}Ce(NO{sub 3}){sub 6} 2.5 g/l, NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O 2.5 g/l, Na{sub 2}CO{sub 3} 7.5 g/l and Na{sub 2}MoO{sub 4} 5.0 g/l. In the case of LF4 Al-alloy, polarization curves and immersion tests in 5% NaCl indicated that the conversion coatings exhibited more excellent resistance to localized corrosion than the conventional chromate conversion coatings. However, its resistance to localized corrosion was not satisfactory on LC4 Al alloy. Scanning electron microscopy (SEM) and energy dispersion analyzer of X-ray (EDAX) analysis revealed that the conversion coatings having complex surface microstructure on both LC4 and LF6 Al alloys consist mainly of O, Al and other alloying elements in addition to significant Ce and Mo. A mechanism of film formation was proposed to explain the experimental results. (orig.)

  18. Effect of Silicon in U-10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, Elizabeth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-31

    This document details a method for evaluating the effect of silicon impurity content on U-10Mo alloys. Silicon concentration in U-10Mo alloys has been shown to impact the following: volume fraction of precipitate phases, effective density of the final alloy, and 235-U enrichment in the gamma-UMo matrix. This report presents a model for calculating these quantities as a function of Silicon concentration, which along with fuel foil characterization data, will serve as a reference for quality control of the U-10Mo final alloy Si content. Additionally, detailed characterization using scanning electron microscope imaging, transmission electron microscope diffraction, and atom probe tomography showed that Silicon impurities present in U-10Mo alloys form a Si-rich precipitate phase.

  19. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    Energy Technology Data Exchange (ETDEWEB)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  20. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  1. Fabrication of nanocrystalline alloys Cu–Cr–Mo super satured solid solution by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzmán, D. [Departamento de Ingeniería en Metalurgia, Facultad de Ingeniería, Universidad de Atacama y Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Av. Copayapu 485, Copiapó (Chile); Castro, F.; Martínez, V.; Cuevas, F. de las [Centro de Estudios e Investigaciones Técnicas de Gipuzkoa, Paseo de Manuel Lardizábal, N° 15, 20018 San Sebastián (Spain); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Muthiah, T. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)

    2014-08-01

    This work discusses the extension of solid solubility of Cr and Mo in Cu processed by mechanical alloying. Three alloys processed, Cu–5Cr–5Mo, Cu–10Cr–10Mo and Cu–15Cr–15Mo (weight%) using a SPEX mill. Gibbs free energy of mixing values 10, 15 and 20 kJ mol{sup −1} were calculated for these three alloys respectively by using the Miedema's model. The crystallite size decreases and dislocation density increases when the milling time increases, so Gibbs free energy storage in powders increases by the presence of crystalline defects. The energy produced by crystallite boundaries and strain dislocations were estimated and compared with Gibbs free energy of mixing values. The energy storage values by the presence of crystalline defects were higher than Gibbs free energy of mixing at 120 h for Cu–5Cr–5Mo, 130 h for Cu–10Cr–10Mo and 150 h for Cu–15Cr–15Mo. During milling, crystalline defects are produced that increases the Gibbs free energy storage and thus the Gibbs free energy curves are moved upwards and hence the solubility limit changes. Therefore, the three alloys form solid solutions after these milling time, which are supported with the XRD results. - Highlights: • Extension of solid solution Cr and Mo in Cu achieved by mechanical alloying. • X-ray characterization of Cu–Cr–Mo system processed by mechanical alloying. • Thermodynamics analysis of formation of solid solution of the Cu–Cr–Mo system.

  2. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  3. Phase transformation of metastable cubic γ-phase in U-Mo alloys

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Dey, G.K.; Kamath, H.S.

    2010-01-01

    Over the past decade considerable efforts have been put by many fuel designers to develop low enriched uranium (LEU 235 ) base U-Mo alloy as a potential fuel for core conversion of existing research and test reactors which are running on high enriched uranium (HEU > 85%U 235 ) fuel and also for the upcoming new reactors. U-Mo alloy with minimum 8 wt% molybdenum shows excellent metastability with cubic γ-phase in cast condition. However, it is important to characterize the decomposition behaviour of metastable cubic γ-uranium in its equilibrium products for in reactor fuel performance point of view. The present paper describes the phase transformation behaviour of cubic γ-uranium phase in U-Mo alloys with three different molybdenum compositions (i.e. 8 wt%, 9 wt% and 10 wt%). U-Mo alloys were prepared in an induction melting furnace and characterized by X-ray diffraction (XRD) method for phase determination. Microstructures were developed for samples in as cast condition. The alloys were hot rolled in cubic γ-phase to break the cast structure and then they were aged at 500 o C for 68 h and 240 h, so that metastable cubic γ-uranium will undergo eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and body centered tetragonal U 2 Mo intermetallic compound. U-Mo alloy samples with different ageing history were then characterized by XRD for phase and development of microstructure.

  4. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  5. Density of liquid NiCrAlMo quarternary alloys measured by a modified sessile drop method

    International Nuclear Information System (INIS)

    Fang, L.; Wang, Y.F.; Xiao, F.; Tao, Z.N.; MuKai, K.

    2006-01-01

    The densities of liquid NiCrAlMo quaternary alloys with a fixed molar ratio of Ni:Cr:Al (approximately as 73:14:13) and molybdenum concentration from 0 to 10 mass% were measured by a modified sessile drop method (MSDM). It was found that the density of the liquid NiCrAlMo quaternary alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration. The molar volume of liquid NiCrAlMo quaternary alloys increases with the increase of temperature and molybdenum concentration. The density of liquid NiCrAlMo quaternary alloys calculated from the partial molar volumes of nickel, chromium, aluminum and molybdenum in the corresponding Ni-based binary alloys are in good agreement with the experimental results, means, within the error tolerance range the density of liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state

  6. Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology

    Directory of Open Access Journals (Sweden)

    Frank Ferrer Sene

    2013-04-01

    Full Text Available A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.

  7. Effect of alloying Mo on mechanical strength and corrosion resistance of Zr-1% Sn-1% Nb-1% Fe alloy

    International Nuclear Information System (INIS)

    Sugondo

    2011-01-01

    It had been done research on Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy. The ingot was prepared by means of electrical electrode technique. The chemical analysis was identified by XRF, the metallography examination was perform by an optical microscope, the hardness test was done by Vickers microhardness, and the corrosion test was done in autoclave. The objective of this research were making Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy with Mo concentration; comparing effect of Mo concentration to metal characteristics of Zr-1%Sn-1%Nb-1%Fe which covered microstructure; composition homogeneity, mechanical strength; and corrosion resistance in steam, and determining the optimal Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)% Mo alloy for nuclear fuel cladding which had corrosion resistance and high hardness. The results were as follow: The alloying Mo refined grains at concentration in between 0,1%-0,3% and the concentration more than that could coarsened grains. The hardness of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled either by the flaw or the dislocation, the intersection of the harder alloying element, the solid solution of the alloying element and the second phase formation of ZrMo 2 . The corrosion rate of the Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was controlled by the second phase of ZrMo 2 . The 0.3% Mo concentration in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was the best for second phase formation. The Mo concentration in between 0,3-0,5% in Zr-1%Sn-1%Nb-1%Fe-(x)%Mo alloy was good for the second phase formation and the solid solution. (author)

  8. Preparation and characterization of sintered Mo-Re alloys

    International Nuclear Information System (INIS)

    Morito, F.

    1993-01-01

    By the method of powder metallurgy, we have tried to fabricate Mo-Re alloys, which were electron beam weldable. Severe quality control was carried out during the whole fabrication process focused to reducing oxygen contamination. It is inevitable that the starting raw powders of Mo and Re were both high purity with 99.99 mass% up. Moreover, high vacuum sintering was performed before final sintering with high-purity hydrogen gas. As a result, we obtained electron beam weldable Mo-Re alloys, the total oxygen content of which was about 10 mass ppm or less, respectively. Several specimens were melted by electron beam welding (EBW) method. It was found that EBW gives an easy and effective survey to examine the weldability and the quality of the materials. Fracture surfaces examined by AES exhibited very low content of oxygen, carbon and nitrogen or that less than detectability limit. In conclusion, we have succeeded to obtain defect-free welds of sintered Mo-Re alloys. Furthermore it was found that Mo-Re alloys showed excellent potentialities not only in mechanical properties at low temperature but also in the respects of microstructure. (orig.)

  9. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  10. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  11. Oxidation behavior of Mo-based alloys coated with silicide using the halide-activated pack cementation method

    International Nuclear Information System (INIS)

    Ito, K.; Hayashi, T.; Yamaguchi, M.; Murakami, T.

    2003-01-01

    This article summarizes recent progress in research on oxidation behavior of pack-cemented Mo-9Si-18B alloys with a Mo 5 SiB 2 /Mo two-phase eutectic microstructure. The deposited layer of as-cemented Mo-9Si-18B alloy consists of MoSi 2 . Upon heating to temperatures above 1500 C, the deposited layer is transformed into B-doped Mo 5 Si 3 through a reaction between the deposited layer and the matrix containing B. Steady-state oxidation is observed at 1300-1500 C and its rates are almost equal to those of MoSi 2 . No significant increase in weight loss was observed in a short-term cyclic oxidation test, since the columnar structure with orientation preference in B-doped Mo 5 Si 3 coating layer must be reduced thermal stress in the cyclic oxidation test. (orig.)

  12. Improved Mo-Re VPS Alloys for High-Temperature Uses

    Science.gov (United States)

    Hickman, Robert; Martin, James; McKechnie, Timothy; O'Dell, John Scott

    2011-01-01

    Dispersion-strengthened molybdenum- rhenium alloys for vacuum plasma spraying (VPS) fabrication of high-temperature-resistant components are undergoing development. In comparison with otherwise equivalent non-dispersion-strengthened Mo-Re alloys, these alloys have improved high-temperature properties. Examples of VPS-fabricated high-temperature-resistant components for which these alloys are expected to be suitable include parts of aircraft and spacecraft engines, furnaces, and nuclear power plants; wear coatings; sputtering targets; x-ray targets; heat pipes in which liquid metals are used as working fluids; and heat exchangers in general. These alloys could also be useful as coating materials in some biomedical applications. The alloys consist of 60 weight percent Mo with 40 weight percent Re made from (1) blends of elemental Mo and Re powders or (2) Re-coated Mo particles that have been subjected to a proprietary powder-alloying-and-spheroidization process. For most of the dispersion- strengthening experiments performed thus far in this development effort, 0.4 volume percent of transition-metal ceramic dispersoids were mixed into the feedstock powders. For one experiment, the proportion of dispersoid was 1 volume percent. In each case, the dispersoid consisted of either ZrN particles having sizes <45 m, ZrO2 particles having sizes of about 1 m, HfO2 particles having sizes <45 m, or HfN particles having sizes <1 m. These materials were chosen for evaluation on the basis of previously published thermodynamic stability data. For comparison, Mo-Re feedstock powders without dispersoids were also prepared.

  13. DENSITY-FUNCTIONAL STUDY OF U-Mo AND U-Zr ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P; Turchi, P A

    2010-11-01

    Density-functional theory previously used to describe phase equilibria in U-Zr alloys [A. Landa, P. Soederlind, P.E.A. Turchi, J. Alloys Comp. 478 (2009) 103-110] is extended to investigate the ground-state properties of U-Mo solid solutions. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components, and how the specific behavior of the density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. Our calculations prove that, due to the existence of a single {gamma}-phase over the typical fuel operation temperatures, {gamma}-U-Mo alloys should indeed have much lower constituent redistribution than {gamma}-U-Zr alloys for which binodal decomposition causes a high degree of constituent redistribution.

  14. Nickel and cobalt base alloys

    International Nuclear Information System (INIS)

    Houlle, P.

    1994-01-01

    Nickel base alloys have a good resistance to pitting, cavernous or cracks corrosion. Nevertheless, all the nickel base alloys are not equivalent. Some differences exit between all the families (Ni, Ni-Cu, Ni-Cr-Fe, Ni-Cr-Fe-Mo/W-Cu, Ni-Cr-Mo/W, Ni-Mo). Cobalt base alloys in corrosive conditions are generally used for its wear and cracks resistance, with a compromise to its localised corrosion resistance properties. The choice must be done from the perfect knowledge of the corrosive medium and of the alloys characteristics (chemical, metallurgical). A synthesis of the corrosion resistance in three medium (6% FeCl 3 , 4% NaCl + 1% HCl + 0.1% Fe 2 (SO 4 ) 3 , 11.5% H 2 SO 4 + 1.2% HCl + 1% Fe 2 (SO 4 ) 3 + 1% CuCl 2 ) is presented. (A.B.). 11 refs., 1 fig., 12 tabs

  15. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    Science.gov (United States)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  16. Improving tribological properties of Ti-5Zr-3Sn-5Mo-15Nb alloy by double glow plasma surface alloying

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lili; Qin, Lin, E-mail: qinlin@tyut.edu.cn; Kong, Fanyou; Yi, Hong; Tang, Bin

    2016-12-01

    Highlights: • The Mo alloyed layers were successfully prepared on TLM surface by DG-PSA. • The surface microhardness of TLM is remarkably enhanced by Mo alloying. • The TLM samples after Mo alloying exhibit good wettability. • The Mo alloyed TLM samples show excellent tribological properties. - Abstract: Molybdenum, an alloying element, was deposited and diffused on Ti-5Zr-3Sn-5Mo-15Nb (TLM) substrate by double glow plasma surface alloying technology at 900, 950 and 1000 °C. The microstructure, composition distribution and micro-hardness of the Mo modified layers were analyzed. Contact angles on deionized water and wear behaviors of the samples against corundum balls in simulated human body fluids were investigated. Results show that the surface microhardness is significantly enhanced after alloying and increases with treated temperature rising, and the contact angles are lowered to some extent. More importantly, compared to as-received TLM alloy, the Mo modified samples, especially the one treated at 1000 °C, exhibit the significant improvement of tribological properties in reciprocating wear tests, with lower specific wear rate and friction coefficient. To conclude, Mo alloying treatment is an effective approach to obtain excellent comprehensive properties including optimal wear resistance and improved wettability, which ensure the lasting and safety application for titanium alloys as the biomedical implants.

  17. Comparative study of NiW, NiMo and MoW prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Villalba, R.; Ochoa, J.

    2007-01-01

    The present work concern the amorphisation process induced by mechanical alloying in the NiW, NiMo and MoW systems. The alloys chosen combine a group of transition elements varying from very similar atomic radius and electronic valences (MoW) to different ones (NiW and NiMo). The three systems achieved an amorphous state after 50 h of milling. The mechanism of amorphisation proposed for NiW and NiMo was the combined effect of an excess concentration of the solute atoms entering into the structure of one of the elements and a critical concentration of defects. Continuous formation of an amorphous phase at the interface of the crystalline phase was observed during the process. MoW seems to amorphize by continuous reduction of grain size down to a critical value where the amorphisation takes place

  18. Plain defects and their vortex configuration in dilute Mo-B alloys in dissipative structure

    International Nuclear Information System (INIS)

    Sofronova, R.M.

    1992-01-01

    Electron microscopic study of single crystal of Mo-0.003 mas.% B alloy after zone melting and annealing at 2373 K was conducted to reveal the nature of planar defects and the role of boron in their formation. It was shown that planar defects should be considered as preprecipitations of MoB nonequilibrous phase out of molybdenum base solid solution. A planar defect was found to constitute a monolayer of boron atoms which consisted of B-B zigzag-like chains. Inturn the chains were surrounded by Mo atoms which formed hexagonal prism. The coherency of planar defects with matrix was due to close lattice parameters of Mo, β-MoB and δ-MoB. The planar defects in molybdenum base alloy were considered as elements of dissipative structure. They determined formation of supercellular dislocation structure under deformation

  19. Modeling solute segregation during the solidification of γ-phase U-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.A., E-mail: mas4cw@virginia.edu [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States); Garlea, E. [Y-12 National Security Complex, Oak Ridge, TN 37831 (United States); Agnew, S.R. [University of Virginia, Material Science and Engineering, 395 McCormick Rd, Charlottesville, VA 22904 (United States)

    2016-06-15

    Using first principles calculations, it is demonstrated that solute segregation during U-Mo solidification can be modeled using the classic Brody-Fleming limited diffusion framework. The necessary supporting equations specific to the U-Mo alloy, along with careful verification of the assumptions underpinning the Brody-Fleming model are developed, allowing for concentration profile predictions as a function of alloy composition and cooling rate. The resulting model is compared to experimental solute concentration profiles, showing excellent agreement. Combined with complementary modeling of dendritic feature sizes, the solute segregation model can be used to predict the complete microstructural state of individual U-Mo volume elements based upon cooling rates, informing ideal processing routes.

  20. Density of Liquid Ni-Mo Alloys Measured by a Modified Sessile Drop Method

    Institute of Scientific and Technical Information of China (English)

    Liang FANG; Zushu LI; ZaiNan TAO; Feng XIAO

    2004-01-01

    The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) was measured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreases with increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molar volume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. The partial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18 - 2.65 × 10-3T + (-47.94 + 3.10 × 10-2T) × 10-2XMo] × 10-6m3·mol-1. The molar volume of Ni-Mo alloy determined in the present work shows a negative deviation from the ideal linear mixing molar volume.

  1. Combustion synthesis of CoCrMo orthopedic implant alloys: microstructure and properties

    International Nuclear Information System (INIS)

    Li, Bingyun; Mukasyan, Alexander; Varma, Arvind

    2003-01-01

    Because of their excellent properties, such as corrosion resistance, fatigue strength and biocompatibility, cobalt-based alloys are widely used in total hip and knee replacements, dental devices and support structures for heart valves. In this work, CoCrMo alloys were synthesized using a novel method based on combustion synthesis (CS), an advanced technique to produce a wide variety of materials including alloys and near-net shape articles. This method possesses several advantages over conventional processes, such as low energy requirements, short processing times and simple equipment. The evaluated material properties included density and yield measurements, composition and microstructure analysis, hardness, friction and tensile tests. It was shown that microstructure of CS-material is finer and more uniform as compared to the conventional standard. It was also found that among various additives, Cr 3 C 2 is the most effective one for increasing material hardness. In addition, synthesized CoCrMo alloys exhibited good friction and mechanical properties. (orig.)

  2. Experimental observations of transient phases during long-range ordering to Ni4Mo in a Ni-Mo-Fe-Cr alloy

    International Nuclear Information System (INIS)

    Tawancy, H.M.; Aboelfotoh, M.O.

    1987-01-01

    Experimental observations are reported of transient phases which form during long-range ordering to Ni 4 Mo (f.c.c. → Dl/sub a/ superlattice) in the quaternary alloy Ni-19.2 at% Mo-1.2 at% Fe-1.06 at% Cr using electron diffraction. In the early stages of ordering during isothermal annealing, diffuse intensity maxima centered at the short-range order reflections (1 1/2 O)/sub f.c.c./ and along /sub f.c.c./ directions are observed. Subsequently, a DO 22 superlattice is generated from the short-range order state. The coexistence of the DO 22 , Pt 2 Mo-type, and Dl/sub a/ superlattices is observed in this alloy system which indicates that these three superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices have similar energy. With continued annealing, both the DO 22 and Pt 2 Mo-type superlattices disappear, indicating that they are transient phases. These results are not inconsistent with the theoretical treatments of ordered alloys which are based on an Ising model with pairwise atomic interactions. (author)

  3. Precipitation of the sigma-phase in Mo-Re alloys

    International Nuclear Information System (INIS)

    Freze, N.I.; Levitskij, A.D.; Tyumentsev, A.N.; Korotaev, A.D.

    1975-01-01

    Disintegration processes in thin foils and replicas of alloys Mo+(52 - 56) wpc Re and Mo+(52 - 56)% Re+(0.05 - 0.10)% Fe wpc were studied by electronic microscopy. Alloying with iron was conducted to determine the effect of iron atom segregations at the grain boundaries on separation of the sigma-phase in these regions. Since the nature of disintegration in all alloys was identical, the experimental data were considered on the example of alloy Mo + 54 wpc Re. The laminated specimens of 1 - 2 mm in thickness subjected to cold rolling with subsequent tempering at T = 1100 deg C for 15 min were characterized by intensive disintegration. As a result finelydispersed laminated sigma-phase uniformly distributed throughout the entire volume of the material was formed. The non-deformed specimens did not show separation of the sigma-phase. As a result of separation of the finely-dispersed sigma-phase plasticity of the alloys was increased. So that a foil of Δh = 0.2 mm in thickness can be produced by cold rolling of the laminated specimens without intermediate annealing. By changing the initial state of the specimens and temperature of annealing dispersity and spatial distribution of the sigma-phase may be substantially modified. It provides for considerably increasing plasticity of the two-phase alloys. During separation of the sigma-phase hardness of the deformed specimens becomes greater. Therefore the low-temperature disintegration accompanied by separation of the sigma-phase may be employed for disperse strengthening of the Mo-Re alloys. The refractory properties of such alloye will not be high, since it is coagulated the finely-dispersed segregations of the sigma-phase even at T > 1100 deg C

  4. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys

    International Nuclear Information System (INIS)

    Matkovic, Tanja; Matkovic, Prosper; Malina, Jadranka

    2004-01-01

    Influences of adding Ni and Mo on the microstructure and properties of as-cast Co-Cr base alloys have been investigated in order to determine the region of their optimal characteristics for biomedical application. The alloys were produced by arc-melting technique under argon atmosphere. Using optical metallography and scanning electron micro analyser it has been established that among 10 samples of Co-Cr-Ni alloys only samples 5 and 9 with the composition Co 55 Cr 40 Ni 5 and Co 60 Cr 30 Ni 10 have appropriate dendritic solidification microstructure. This microstructure, typical for commercial dental alloys, appears and beside greater number of as-cast Co-Cr-Mo alloys. The results of hardness and corrosion resistance measurements revealed the strong influence of different alloy chemistry and of as-cast microstructure. Hardness of alloys decreases with nickel content, but increases with chromium content. Therefore all Co-Cr-Ni alloys have significantly lower hardness than Co-Cr-Mo alloys. Corrosion resistance of alloys in artificial saliva was evaluated on the base of pitting potential. Superior corrosion characteristics have the samples with typical dendritic microstructure and higher chromium content, until nickel content have not significant effect. According to this, in ternary Co-Cr-Ni phase diagram was located the small concentration region (about samples 5 and 9) in them alloy properties can satisfied the high requirements for biomedical applications. This region is considerably larger in Co-Cr-Mo phase diagram

  5. Structure and Mechanical Properties of As-Cast Ti–5Sn–xMo Alloys

    Science.gov (United States)

    Yu, Hsing-Ning; Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Ho, Wen-Fu

    2017-01-01

    Ti–5Sn–xMo (x = 0, 1, 3, 5, 7.5, 10, 12.5, 15, 17.5, and 20 wt %) alloys were designed and prepared for application as implant materials with superior mechanical properties. The results demonstrated that the crystal structure and mechanical properties of Ti–5Sn–xMo alloys are highly affected by their Mo content. The as-cast microstructures of Ti–5Sn–xMo alloys transformed in the sequence of phases α′ → α″ → β, and the morphologies of the alloys changed from a lath structure to an equiaxed structure as the Mo content increased. The α″-phase Ti–5Sn–7.5Mo (80 GPa) and β-phase Ti–5Sn–10Mo (85 GPa) exhibited relatively low elastic moduli and had excellent elastic recovery angles of 27.4° and 37.8°, respectively. Furthermore, they exhibited high ductility and moderate strength, as evaluated using the three-point bending test. Search for a more suitable implant material by this study, Ti–5Sn–xMo alloys with 7.5 and 10 wt % Mo appear to be promising candidates because they demonstrate the optimal combined properties of microhardness, ductility, elastic modulus, and elastic recovery capability. PMID:28772820

  6. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  7. Quantitative evaluation of safety use limit for crevice corrosion in Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    The most important problem with corrosion-resistant alloys such as stainless steels is localized corrosion. Crevice corrosion, which is a typical localized corrosion, occurs under the mildest environmental conditions. Consequently, whether crevice corrosion occurs or not is an important issue in structural material selection. This study investigated highly corrosion-resistant Ni-Cr-Mo alloys whose resistance for crevice corrosion is difficult to evaluate with the JIS G 0592 standard for common strainless steels. The optimized procedures for determining the critical potential and temperature for crevice corrosion of the alloys were developed based on the JIS method. The limits of safety usage of various Ni-Cr-Mo alloys were evaluated quantitatively in chloride solution environments. (author)

  8. Corrosion resistance of Ni-Cr-Mo alloys. Chemical composition and metallurgical condition's effects

    International Nuclear Information System (INIS)

    Zadorozne, N.S.; Rebak, Raul B.

    2009-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly-corrosive environments. This versatility is due to the excellent performance of nickel in hot alkaline solutions and the beneficial effect of chromium and molybdenum in oxidizing and reducing conditions, respectively. Alloy C-22 (22 % Cr-13 % Mo-3% W) is a well known versatile member of this family. Due to its excellent corrosion resistance in a wide variety of environments, Alloy C-22 has been selected for the fabrication of the corrosion-resistant outer shell of the high-level nuclear waste container. The increasing demand of the industry for corrosion resistant alloys with particular properties of corrosion and mechanical resistance has led to the development of new alloys. Alloy C-22HS (Ni-21 % Cr-17 % Mo) is a new high-strength corrosion resistant material recently developed and introduced into the market. This alloy provides a corrosion resistance comparable with that of other C-type alloys, and it can also be age hardened to effectively double its yield strength. HASTELLOY HYBRID-BC1 (Ni-22 % Mo-15 % Cr) is a new development intended for filling the gap between Ni-Mo and Ni-Cr-Mo alloys. This novel alloy is able to withstand HCl and H 2 SO 4 , even in the presence of dissolved oxygen and other oxidizing species. Its resistance to chloride-induced pitting corrosion, crevice corrosion and stress corrosion cracking is also remarkable. Thermal aging of Ni-Cr-Mo alloys leads to microstructure changes depending on the temperature range and exposure time at temperature. A Long Range Ordering (LRO) reaction can occur in the range of 350 C degrees to 600 C degrees, producing an ordered Ni 2 (Cr,Mo) phase. This ordering reaction does not seem to affect the corrosion resistance and produces only a slight loss in ductility. LRO transformation is homogeneous and has proven to be useful to fabricate the age-hard enable Alloy C22-HS. Tetrahedral Close Packed (TCP) phases, like μ, σ and

  9. Development of Ti-12Mo-3Nb alloy for biomedical application

    International Nuclear Information System (INIS)

    Panaino, J.V.P.; Gabriel, S.B.; Mei, P.; Brum, M.V.; Nunes, C.A.

    2010-01-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  10. Effect of boron on the properties of ordered Ni-Mo alloys

    International Nuclear Information System (INIS)

    Tawancy, H.M.

    1994-01-01

    Ordered alloys and intermetallic compounds have long been known to possess a number of technologically useful properties, however, their structural applications is limited by relatively poor ductility. Efforts to improve the mechanical strength of these materials have led to the recognition that small additions of B improve the ductility of intermetallic compounds, based upon the L1 2 , superlattice such as Ni 3 Al and Ni 3 Si. Also it has been demonstrated that small additions of B improve the ductility of binary ordered Ni-Ni 4 Mo alloys. The objective of this study is to demonstrate that critical additions of B to selected Ni-Mo alloys could significantly improve their ductility and corrosion properties in the ordered state while maintaining a similar level of other properties, particularly, weldability. The effect of B on the ordered microstructure was emphasized

  11. Analysis of PTA hardfacing with CoCrWC and CoCrMoSi alloys

    Directory of Open Access Journals (Sweden)

    Adriano Scheid

    2013-12-01

    Full Text Available CoCrWC alloys are widely used to protect components that operate under wear and high temperature environments. Enhanced performance has been achieved with the CoCrMoSi alloys but processing this alloy system is still a challenge due to the presence of the brittle Laves phase, particularly when welding is involved. This work evaluated Plasma Transferred Arc coatings processed with the Co-based alloy CoMoCrSi - Tribaloy T400, reinforced with Laves phase, comparing its weldability to the CoCrWC - Stellite 6, reinforced with carbides. Coatings were also analyzed regarding the response to temperature exposure at 600°C for 7 days and subsequent effect on microstructure and sliding abrasive wear. Coatings characterization was carried out by light and scanning electron microscopy, X-ray diffraction and Vickers hardness. CoCrWC coatings exhibited a Cobalt solid solution dendritic microstructure and a thin interdendritic region with eutectic carbides, while CoCrMoSi deposits exhibit a large lamellar eutectic region of Laves phase and Cobalt solid solution and a small fraction of primary Laves phase. Although phase stability was observed by X-ray diffraction, coarsening of the microstructure occurred for both alloys. CoCrMoSi showed thicker lamellar Laves phase and CoCrWC coarser eutectic carbides. Coatings stability assessed by wear tests revealed that although the wear rate of the as-deposited CoCrMoSi alloy was lower than that of CoCrWC alloy its increase after temperature exposure was more significant, 22% against 15%. Results were discussed regarding the protection of industrial components in particular, bearings in 55AlZn hot dip galvanizing components.

  12. Postirradiation tensile properties of Mo and Mo alloys irradiated with 600 MeV protons

    International Nuclear Information System (INIS)

    Mueller, G.V.; Gavillet, D.; Victoria, M.; Martin, J.L.

    1994-01-01

    Tensile specimens of pure Mo and Mo-5 Re, Mo-41 Re and TZM alloys have been irradiated with 600 MeV protons in the PIREX facility at 300 and 660 K to 0.5 dpa. Results of the postirradiation tensile testing show a strong radiation hardening and a severe loss of ductility for all the materials tested at room temperature. ((orig.))

  13. Effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and wear resistance of laser cladding Ni-based alloy coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lin; Hu, Shengsun; Shen, Junqi [Tianjin University, Tianjin Key Laboratory of Advanced Joining Technology, School of Materials Science and Engineering, Tianjin (China); Quan, Xiumin [Lu' an Vocation Technology College, School of Automobile and Mechanical and Electrical Engineering, Lu' an (China)

    2016-04-15

    Three kinds of coatings were successfully prepared on Q235 steel by laser cladding technique through adulterating with Mo and nano-Nd{sub 2}O{sub 3} into Ni-based alloys. The effect of Mo and nano-Nd{sub 2}O{sub 3} on the microstructure and properties of Ni-based coatings was investigated systematically by means of optical microscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, and microhardness testing and wear testing. The results indicated a certain amount of fine grains and polygonal equiaxed grains synthesized after adding Mo and nano-Nd{sub 2}O{sub 3}. Both the microhardness and wear resistance of Ni-based coatings improved greatly with a moderate additional amount of Mo and nano-Nd{sub 2}O{sub 3}. The largest improvement in microhardness was 31.9 and 14.7 %, and the largest reduction in loss was 45.0 and 30.7 %, respectively, for 5.0 wt% Mo powders and 1.0 wt% nano-Nd{sub 2}O{sub 3}. The effect of Mo on microhardness and wear resistance of laser cladding Ni-based alloy coatings is greater than the effect of nano-Nd{sub 2}O{sub 3}. (orig.)

  14. Investigation of point defects diffusion in bcc uranium and U–Mo alloys

    International Nuclear Information System (INIS)

    Smirnova, D.E.; Kuksin, A.Yu.; Starikov, S.V.

    2015-01-01

    We present results of investigation of point defects formation and diffusion in pure γ-U and γ-U–Mo fuel alloys. The study was performed using molecular dynamics simulation with the different interatomic potentials. The point defects formation and migration energies were estimated for bcc γ-U and U–9 wt.%Mo alloy. The calculated diffusivities of atoms via defects are provided for pure γ-U and for the alloy components. Analysis of simulation results shows that self-interstitial atoms play a leading role in the self-diffusion processes in the materials studied. This fact can explain a remarkably high self-diffusion mobility observed experimentally for γ-U. The self-diffusion coefficients in γ-U calculated in this assumption agree with the data measured experimentally. It is shown that alloying of γ-U with Mo increase formation energy for self-interstitial atoms and decelerate their mobility. These changes lead to decrease of self-diffusion coefficients in U–Mo alloy compared to pure U

  15. Thermodiffusion Mo-B-Si coating on VN-3 niobium alloy

    International Nuclear Information System (INIS)

    Kozlov, A.T.; Lazarev, Eh.M.; Monakhova, L.A.; Shestova, V.F.; Romanovich, I.V.

    1985-01-01

    Protective properties of complex Mo-B-Si-coating on niobium alloy VN-3 (4.7 mass.% Mo, 1.1 mass.% Zr, 0.1 mass.% C) have been studied. It is established, that the complex Mo-B-Si-coating ensures protection from oxidation of niobium alloys in the temperature range of 800-1200 degC for 1000-1500 hr, at 1600 degC - for 10 hr. High heat resistance of Mo-B-Si - coating at 800-1200 degC is determined by the presence of amorphous film of SiOΛ2 over the layer MoSiΛ2 and barrier boride layer on the boundary with the metal protected; decrease in the coating heat resistance at 1600 degC is related to the destruction of boride layer, decomposition of MoSiΛ2 for lower cilicides and loosening of SiOΛ2 film

  16. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    Science.gov (United States)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  17. Cyclic tensile response of Mo-27 at% Re and Mo-0.3 at% Si solid solution alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yu, X.J.; Kumar, K.S., E-mail: Sharvan_Kumar@brown.edu

    2016-10-31

    Stress-controlled uniaxial cyclic tensile tests were conducted on binary Mo-27 at% Re and Mo-0.3 at% Si solid solutions as a function of temperature and compared against the previously reported cyclic response of pure Mo. The Mo-27 at% Re alloy with a recrystallized grain size of ~30 µm was evaluated in the temperature range 25 °C–800 °C at R=0.1 and stress range that was 80% of the ultimate tensile strength (UTS); a peak in fatigue life was observed between 300 °C and 500 °C. The decrease in fatigue life at the higher temperatures of 700 °C and 800 °C is attributed to dynamic strain aging. Transmission electron microscopy of the cyclically-deformed alloy revealed parallel bands of dislocation at room temperature that transitioned to a uniform cell structure at 500 °C and back to orthogonal planar arrays at 800 °C. The as-extruded Mo-0.3 at% Si alloy was evaluated from 25 °C to 1200 °C and showed superior fatigue life and ratcheting strain resistance as compared to pure Mo and the Mo-27 at% Re alloy (within the temperature range where data were available for comparison). The superior resistance is attributed to the high density of dislocations within the material in this mostly unrecrystallized state rather than Si in solid solution. Above 800 °C, the ratcheting strain increases and fatigue life decreases rapidly with increasing temperature and is associated with dynamic recovery.

  18. Effect of alloying element on mechanical and oxidation properties of Ni-Cr-Mo-Co alloys at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Jin, E-mail: djink@kaeri.re.kr; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo; Kim, Woo Gon; Hwang, Seong Sik; Kim, Hong Pyo

    2016-12-01

    Graphical abstract: Mo rich carbide was developed leading to significant increase of elongation to rupture and creep rupture time of Ni-Cr-Co-Mo alloy at 950 °C. Al addition improved corrosion resistance caused by enhancement of oxide/matrix interface stability. Abstract: The very-high-temperature reactor (VHTR) is a promising Generation-IV reactor design given its clear advantage regarding the production of massive amounts of hydrogen and in generating highly efficient electricity despite the fact that a material challenge remains at a high temperature of around 950 °C, where hydrogen production is possible under high pressure. In particular, among the many components composing a VHTR, the temperature of the intermediate heat exchanger (IHX) is expected to be the highest, with a coolant environment of up to 950 °C. Therefore, this work focuses on the mechanical and oxidation properties at 950 °C as a function of the alloying elements of Cr, Co, Mo, Al, and Ti constituting nickel-based alloys fabricated in a laboratory. The tensile, creep, and oxidation properties of the alloying elements were analyzed with SEM, TEM-EDS, and by assessing the weight change.

  19. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  20. Powder fabrication of U-Mo alloys for nuclear dispersion fuels

    International Nuclear Information System (INIS)

    Durazzo, Michelangelo; Rocha, Claudio Jose da; Mestnik Filho, Jose; Leal Neto, Ricardo Mendes

    2011-01-01

    For the last 30 years high uranium density dispersion fuels have been developed in order to accomplish the low enrichment goals of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Gamma U-Mo alloys, particularly with 7 to 10 wt% Mo, as a fuel phase dispersed in aluminum matrix, have shown good results concerning its performance under irradiation tests. That's why this fissile phase is considered to be used in the nuclear fuel of the Brazilian Multipurpose Research Reactor (RMB), currently being designed. Powder production from these ductile alloys has been attained by atomization, mechanical (machining, grinding, cryogenic milling) and chemical (hydriding-de hydriding) methods. This work is a part of the efforts presently under way at IPEN to investigate the feasibility of these methods. Results on alloy fabrication by induction melting and gamma-stabilization of U-10Mo alloys are presented. Some results on powder production and characterization are also discussed. (author)

  1. Magnetic and structural characterization of Mo-Hitperm alloys with different Fe/Co ratio

    Energy Technology Data Exchange (ETDEWEB)

    Conde, C.F., E-mail: conde@us.es [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Borrego, J.M.; Blazquez, J.S.; Conde, A. [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Svec, P.; Janickovic, D. [Department of Metal Physics, Institute of Physics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava (Slovakia)

    2011-02-03

    Research highlights: > Nanocrystallization kinetics results based on isothermal (TMG) and non-isothermal (DSC) experiments agree describing a strongly inhibited grain growth process. > The crystalline volume fraction at the end of the nanocrystallization process is practically not affected with the increase of Co in the alloy, although it is lower than in the corresponding Co free alloy. The lattice parameter and the crystal size of the {alpha}-FeCo(Mo) phase nanocrystals decreases as the Co content in the alloy increases. > Moessbauer spectra were analyzed in the frame of three different contributions: pure crystalline, interface and amorphous contribution. Comparison between TEM, XRD and Moessbauer data indicates that some Mo could be present inside the nanocrystals. > Changing the Fe/Co ratio allows to increase the Curie temperature of the amorphous alloys for these compositions between room temperature and {approx}800 K, and therefore, allows tuning the temperature at which the maximum magnetocaloric effect takes place opening a possibility for these alloys as potential low cost magnetic refrigerants. - Abstract: The influence of the Co content on the microstructure and magnetic behaviour of a series of amorphous and nanocrystalline (FeCo){sub 79}Mo{sub 8}Cu{sub 1}B{sub 12} alloys is reported. Changes in the magnetic properties provoked by the microstructural evolution upon different thermal treatments of as-cast samples are analyzed as well. Kinetics of nanocrystallization process can be described by an isokinetic approach. As the Co content in the alloy increases, the Curie temperature of the amorphous as-cast samples increases while the crystallization onset temperature decreases. The crystalline volume fraction as well as the mean grain size of the nanocrystals at the end of the nanocrystallization process are slightly higher for the lowest Co content alloy but smaller than in similar Hitperm Mo-free alloys. The average magnetic field and the average isomer

  2. Study on the Ni Mo alloy nano crystals

    International Nuclear Information System (INIS)

    Goncalves, Lidice A. Pereira; Pontes, Luiz Renato de Araujo

    1996-01-01

    Materials with nanocrystalline microstructures are solids that contain such a high density of defects, with the spacings between neighboring defects approaching interatomic distances. As result, nanocrystalline solids exhibit physical and chemical properties different from those usually found in normal crystalline s or amorphous materials with the same chemical composition. In this work, the nanocrystalline Ni Mo alloy was prepared by melt-spinning method. The novelly synthesized nanocrystalline Ni Mo alloy was characterized by X-ray diffraction (XRD), differential scanning calorimetry (D S C) and microscopy. The estimated average crystalline size by the Debye-Scherrer formulas was 20 nm. (author)

  3. Deposition and cyclic oxidation behavior of a protective (Mo,W)(Si,Ge) 2 coating on Nb-base alloys

    International Nuclear Information System (INIS)

    Mueller, A.; Wang, G.

    1992-01-01

    A multicomponent diffusion coating has been developed to protect Nb-base alloys from high-temperature environmental attach. A solid solution of molybdenum and tungsten disilicide (Mo, W)Si 2 , constituted the primary coating layer which supported a slow-growing protective silica scale in service. Germanium additions were made during the coating process to improve the cyclic oxidation resistance by increasing the thermal expansion coefficient of the vitreous silica film formed and to avoid pesting by decreasing the viscosity of the protective film. In this paper, the development of the halide-activated pack cementation coating process to produce this (Mo,W)(Si,Ge) 2 coating on Nb-base alloys is described. The results of cyclic oxidation for coupons coated under different conditions in air at 1370 degrees C are presented. Many coupons have successfully passed 200 1 h cyclic oxidation tests at 1370 degrees C with weight-gain values in the range of 1.2 to 1.6 mg/cm 2

  4. High heat load properties of TiC dispersed Mo alloys

    International Nuclear Information System (INIS)

    Tokunaga, Kazutoshi; Yoshida, Naoaki; Miura, Yasushi; Kurishita, Hiroaki; Kitsunai, Yuji; Kayano, Hideo.

    1996-01-01

    Electron beam high heat load experiment of new developed three kinds of TiC dispersed Mo alloys (Mo-0.1wt%TiC, Mo-0.5wt%TiC and Mo-1.0wt%TiC) was studied so as to evaluate it's high heat load at using as the surface materials of divertor. The obtained results indicated that cracks were not observed by embrittlement by recrystallization until about 2200degC of surface temperature and the gas emission properties were not different from sintered molibdenum. However, at near melting point, deep cracks on grain boundary and smaller gas emission than that of sintered Mo were observed. So that, we concluded that TiC dispersed Mo alloy was good surface materials used under the conditions of the stationary heat flux and less than the melting point, although not good one to be melted under nonstationary large heat flux. (S.Y.)

  5. Interdiffusion between U(Mo,Pt) or U(Mo,Zr) and Al or Al A356 alloy

    International Nuclear Information System (INIS)

    Komar Varela, C.; Mirandou, M.; Arico, S.; Balart, S.; Gribaudo, L.

    2009-01-01

    Solid state reactions in chemical diffusion couples U-7 wt.%Mo-0.9 wt.%Pt/Al at 580 deg. C and U-7 wt.%Mo-0.9 wt.%Pt/Al A356 alloy, U-7 wt.%Mo-1 wt.%Zr/Al and U-7 wt.%Mo-1 wt.%Zr/Al A356 alloy at 550 deg. C were characterized. Results were obtained from optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction. The UAl 3, UAl 4 and Al 20 Mo 2 U phases were identified in the interaction layers of γU(Mo,Pt)/Al and γU(Mo,Zr)/Al diffusion couples. Al 43 Mo 4 U 6 ternary compound was also identified in γU(Mo,Zr)/Al due to the decomposition of γU(Mo,Zr) phase. The U(Al,Si) 3 and U 3 Si 5 phases were identified in the interaction layers of γU(Mo,Pt)/Al A356 and γU(Mo,Zr)/Al A356 diffusion couples. These phases are formed due to the migration of Si to the interaction layer. In the diffusion couple U(Mo,Zr)/Al A356, Zr 5 Al 3 phase was also identified in the interaction layer. The use of synchrotron radiation at Brazilian Synchrotron Light Laboratory (LNLS, CNPq, Campinas, Brazil) was necessary to achieve a complete crystallographic characterization.

  6. Cellular microstructure of chill block melt spun Ni-Mo alloys

    Science.gov (United States)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient. Microsegregation across cells and its variation with distance from the quench surface and alloy composition have been examined and compared with theoretical predictions.

  7. Evolution of microstructure of U-Mo alloys in as cast and sintered forms

    International Nuclear Information System (INIS)

    Sinha, V.P.; Hegde, P.V.; Prasad, G.J.; Kamath, H.S.; Dey, G.K.

    2009-01-01

    Over the years U 3 Si 2 compound dispersed in aluminium matrix has been successfully used as potential Low Enriched Uranium (LEU 235 ) base dispersion fuel in new research and test reactors and also for converting High Enriched Uranium (HEU > 85% U 235 ) cores to LEU in most of the existing research and test reactors. The maximum density achievable with U 3 Si 2 -AI dispersion fuel is around 4.8 g U cm -3 . To achieve a uranium density of 8.0 to 9.0 g U cm -3 in dispersion fuel with aluminium as matrix material, it is required to use γ-stabilized uranium metal powders. At Metallic Fuels Division, R and D efforts are on to develop these high density uranium alloys. Molybdenum plays a crucial role in metastabilising the γ-phase of uranium at room temperature which is very much evident when we see the microstructures of different U-Mo alloys with varying molybdenum concentration as solute atom. The paper describes the role of molybdenum in imparting metastability in U-Mo alloys from their microstructures in as cast and sintered forms. The paper also covers the role of tailored microstructure in U-Mo alloy for the purpose of hydriding and dehydriding treatment to generate alloy powders. (author)

  8. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  9. Microstructure Evolution and Chemical Analysis on Carbon Steels and Fe-Cr-Mo Alloys after FAC Simulation Tests

    International Nuclear Information System (INIS)

    Kim, Seunghyun; Kim, Taeho; Lee, Yun Ju; Kim, Ji Hyun

    2017-01-01

    Flow-accelerated corrosion (FAC) is an environment assisted degradation of structural materials, which usually occurs in pipelines of power plants. There have been many studies to investigate the fundamental mechanism and corresponding countermeasures against FAC, and recently the carbon steels have been replaced by ASTM A 335 P22, which contains approximately 2.2 wt.% of Cr and 1 wt.% of Mo. By enhancing passivity of P22 by Cr, it is reported that FAC rate has been greatly reduced. However, while corrosion behavior of Fe-based alloys is relatively well known, their behavior under high-temperature flowing water is not well investigated. In other words, effects of Cr and its corrosion and oxidation behavior is not clearly revealed. Furthermore, it is known that Mo enhances the pitting corrosion resistance of alloys however its mechanism is not clearly investigated. Recently, replacement of Mo in alloy contents has been widely studied because of the cost of Mo. Carbon steels undergo severe environmental-assisted degradation behavior so called FAC, and as its countermeasure the carbon steel has been replaced by P22 which contains Cr and Mo. It is generally known that Cr and Mo enhances passivity of Fe-based alloys however their corrosion and oxidation behavior has not been fully investigated especially in high-temperature flowing water environments. In this study, we employed HRTEM and synchrotron XAS techniques in order to investigate detailed microstructure evolution and chemical bonding of the commercialized carbon steel and the Fe-Cr-Mo alloys. From the analysis, it is found that while carbon steels exhibit porous oxide P22 exhibit oxide structures with thin Cr-rich oxide and spinel. Therefore, carbon steel undergoes severe FAC compared to P22 however effects of Cr and Mo and their behavior in high-temperature flowing water will be investigated.

  10. Properties of the passive films on Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Lloyd, A.C.; Noel, J.J.; McIntyre, N.S.; Shoesmith, D.W.

    2003-01-01

    Ni-Cr-Mo alloys are among the most corrosion resistant materials known, showing exceptional localized corrosion resistance under extreme industrial conditions. Accordingly, one such alloy, Alloy-22. is a candidate material for the outer sheathing of nuclear waste packages for the Yucca Mountain repository. Nevada, USA. We briefly report our results on the passive behaviour for a series of Ni-Cr-Mo alloys, with the emphasis on determining if there is a temperature dependence associated with it. The change of passive corrosion rate with temperature is a critical parameter required for long-term performance assessment calculations. The results show that alloy C22 performed better than the other members of the C-series of alloys under acidic conditions. This indicates that its selection as a waste package material is appropriate, and that it possess the potential for long-term containment of radio-nuclides. (author)

  11. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    International Nuclear Information System (INIS)

    Charlena; Sukaryo, S.G.; Fajar, M.

    2016-01-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO 3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed. (paper)

  12. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    Science.gov (United States)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  13. Atomistic simulation of the point defects in B2-type MoTa alloy

    International Nuclear Information System (INIS)

    Zhang Jianmin; Wang Fang; Xu Kewei; Ji, Vincent

    2009-01-01

    The formation and migration mechanisms of three different point defects (mono-vacancy, anti-site defect and interstitial atom) in B 2 -type MoTa alloy have been investigated by combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM). From minimization of the formation energy, we find that the anti-site defects Mo Ta and Ta Mo are easier to form than Mo and Ta mono-vacancies, while Mo and Ta interstitial atoms are difficult to form in the alloy. In six migration mechanisms of Mo and Ta mono-vacancies, one nearest-neighbor jump (1NNJ) is the most favorable due to its lowest activation and migration energies, but it will cause a disorder in the alloy. One next-nearest-neighbor jump (1NNNJ) and one third-nearest-neighbor jump (1TNNJ) can maintain the ordered property of the alloy but require higher activation and migration energies, so the 1NNNJ and 1TNNJ should be replaced by straight [1 0 0] six nearest-neighbor cyclic jumps (S[1 0 0]6NNCJ) or bent [1 0 0] six nearest-neighbor cyclic jumps (B[1 0 0]6NNCJ) and [1 1 0] six nearest-neighbor cyclic jumps ([1 1 0]6NNCJ), respectively. Although the migrations of Mo and Ta interstitial atoms need much lower energy than Mo and Ta mono-vacancies, they are not main migration mechanisms due to difficult to form in the alloy.

  14. Ultrasonic impact treatment of CoCrMo alloy: Surface composition and properties

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@list.ru; Filatova, V.S.; Makeeva, I.N.; Vasylyev, M.A.

    2017-06-30

    Highlights: • Ultrasonic impact treatment in air enhances oxidation of CoCrMo alloy. • Impact treatment promotes segregation and accumulation of carbon on the surface. • Intense deformation brings about partial dissolution of carbides. • Impact-induced fcc-to-hcp transformation and hardening of the alloy. • Impact treatment improves corrosion properties of the alloy. - Abstract: X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry and X-ray diffraction were employed to study the effect of intense mechanical treatment on the surface chemical state, composition and structure of a commercial biomedical CoCrMo alloy (‘Bondi-Loy’). The ultrasonic impact treatment of the alloy in air with duration up to 30 s was found to cause the deformation-enhanced oxidation and deformation-induced surface segregation of the components and impurities from the bulk. The compositionally inhomogeneous mixed oxide layer formed under impact treatment was composed mainly of Cr{sub 2}O{sub 3} and silicon oxide with admixture of CoO, MoO{sub 2}, MoO{sub 3} and iron oxide/hydroxide, the latter being transferred onto the alloy surface from the steel pin. The impact treatment promoted a progressive accumulation of carbon on the alloy surface due to its deformation-induced segregation from the bulk and deformation-induced uptake of hydrocarbons from the ambient; concurrently, the dissolution/refinement of carbides originally present in the as-cast CoCrMo alloy occurred. The impact treatment gave rise to a two-fold increase in the volume fraction of the martensitic hcp ε-phase, a 30% increase in the surface microhardness and improved resistance to corrosion in the solution of artificial saliva compared to the as-polished alloy.

  15. Corrosion Resistance of Co-Cr-Mo Alloy Used in Dentistry

    Directory of Open Access Journals (Sweden)

    Łukaszczyk A.

    2015-04-01

    Full Text Available The presented paper studies the effect of the casting technology on the corrosion resistance of Co-Cr-Mo alloy. The investigations were conducted on a commercial alloy with the brand name ARGELOY N.P SPECIAL (Co-Cr-Mo produced by Argen as well as the same alloy melted and cast by the lost wax casting method performed by a dental technician. The corrosion behavior of the dental alloys in an artificial saliva was studied with the use of the following electrochemical techniques: open circuit potential and voltammetry. After the electrochemical tests, studies of the surface of the examined alloys were performed by means of a scanning electron microscope with an X-ray microanalyzer. The results of the electrochemical studies show that the dependence of the corrosion resistance on the microstructure associated with the recasting process is marginal. The results of the electrochemical studies of the considered alloy clearly point to their good corrosion resistance in the discussed environment.

  16. Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Karaköse, Ercan, E-mail: ekarakose@karatekin.edu.tr [Karatekin University, Faculty of Sciences, Department of Physics, 18100 Çankırı (Turkey); Keskin, Mustafa [Erciyes University, Faculty of Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2015-01-15

    Highlights: • A ternary Ni–Cr–Mo alloy is the crucial for many industrial applications. • Microstructure of Ni–25Cr–18Mo alloy mostly depends upon the undercooling rate. • Increasing the applied undercooling range the average dendrite arm thickness decreases from 5 to 0.5 μm. - Abstract: This paper characterizes the impact of solidification rate on the morphology and type of microstructural and mechanical properties of a nickel-based superalloy with a nominal composition of Ni–25Cr–18Mo (at.%) in a wide cooling range (5–100 K/s). The microstructures of the alloys were identified by scanning electron microscopy (SEM) and the phase composition was examined by X-ray diffractometry (XRD). The phase transitions during the solidification process were investigated by differential thermal analysis (DTA) under an Ar atmosphere. It was found that the final microstructure of Ni–25Cr–18Mo alloy mostly depends upon the solidification rate; the microstructures evolve from a coarse dendritic structure to a refined dendritic structure. The mechanical properties of Ni–25Cr–18Mo alloys were examined by using Vickers and Rockwell hardness tests at room temperature and at elevated temperatures from 400 °C to 800 °C. It was found that the hardness values of the samples were connected with the cooling rate and test temperatures.

  17. Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys

    International Nuclear Information System (INIS)

    Karaköse, Ercan; Keskin, Mustafa

    2015-01-01

    Highlights: • A ternary Ni–Cr–Mo alloy is the crucial for many industrial applications. • Microstructure of Ni–25Cr–18Mo alloy mostly depends upon the undercooling rate. • Increasing the applied undercooling range the average dendrite arm thickness decreases from 5 to 0.5 μm. - Abstract: This paper characterizes the impact of solidification rate on the morphology and type of microstructural and mechanical properties of a nickel-based superalloy with a nominal composition of Ni–25Cr–18Mo (at.%) in a wide cooling range (5–100 K/s). The microstructures of the alloys were identified by scanning electron microscopy (SEM) and the phase composition was examined by X-ray diffractometry (XRD). The phase transitions during the solidification process were investigated by differential thermal analysis (DTA) under an Ar atmosphere. It was found that the final microstructure of Ni–25Cr–18Mo alloy mostly depends upon the solidification rate; the microstructures evolve from a coarse dendritic structure to a refined dendritic structure. The mechanical properties of Ni–25Cr–18Mo alloys were examined by using Vickers and Rockwell hardness tests at room temperature and at elevated temperatures from 400 °C to 800 °C. It was found that the hardness values of the samples were connected with the cooling rate and test temperatures

  18. Mechanical and electrochemical characterization of Ti-12Mo-5Zr alloy for biomedical application

    International Nuclear Information System (INIS)

    Zhao Changli; Zhang Xiaonong; Cao Peng

    2011-01-01

    Highlights: → A new β metastable titanium alloy with composition of Ti-12Mo-5Zr that comprised of non-toxic elements Mo and Zr has been developed. → The elastic modulus of the Ti-12Mo-5Zr alloy is as low as 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. → The Ti-12Mo-5Zr alloy has moderate strength and much higher microhardness as compared with Ti-6Al-4V, which showing better mechanical biocompatibility. → The corrosion resistance is much higher than that of Ti-6Al-4V in a simulated body fluid (Hank's solution). - Abstract: We have fabricated a new β metastable titanium alloy that comprised of non-toxic elements Mo and Zr. Ingot with composition of Ti-12Mo-5Zr is prepared by melting pure metals in a vacuum non-consumable arc melting furnace. The alloy is then homogenized and solution treated under different temperature. The alloy is characterized by optical microscopy, X-ray diffraction, tensile tests and found to have an acicular martensitic α'' + β structure and dominant β phase for the 1053 K and 1133 K solution treatment samples, respectively. The elastic modulus of the latter is about 64 GPa, which is much lower than those of pure Ti and Ti-6Al-4V alloy. In addition, it had moderate strength and much higher microhardness as compared with Ti-6Al-4V alloy. The results show better mechanical biocompatibility of this alloy, which will avoid stress shielding and thus prevent bone resorption in orthopedic implants applications. As long-term stability in biological environment is required, we have also evaluated the electrochemical behavior in a simulated body fluid (Hank's solution). Potentiodynamic polarization curves exhibits that the 1133 K solution treatment Ti-12Mo-5Zr sample has better corrosion properties than Ti-6Al-4V and is comparable to the pure titanium. The good corrosion resistance combined with better mechanical biocompatibility makes the Ti-12Mo-5Zr alloy suitable for use as orthopedic implants.

  19. Formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bei, H., E-mail: beih@ornl.gov [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States); Yang, Y., E-mail: ying.yang@computherm.com [CompuTherm LLC, Madison, WI 53719 (United States); Viswanathan, G.B. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Rawn, C.J.; George, E.P. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831 (United States)] [University of Tennessee, Department of Materials Science and Engineering, Knoxville, TN 37996 (United States); Tiley, J. [Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 (United States); Chang, Y.A. [CompuTherm LLC, Madison, WI 53719 (United States)] [University of Wisconsin-Madison, Madison, WI 53705 (United States)

    2010-10-15

    The formation, stability and crystal structure of the {sigma} phase in Mo-Re-Si alloys were investigated. Guided by thermodynamic calculations, six critically selected alloys were arc melted and annealed at 1600 deg. C for 150 h. Their as-cast and annealed microstructures, including phase fractions and distributions, the compositions of the constituent phases and the crystal structure of the {sigma} phase were analyzed by thermodynamic modeling coupled with experimental characterization by scanning electron microscopy, electron probe microanalysis, X-ray diffraction and transmission electron microscopy. Two key findings resulted from this work. One is the large homogeneity range of the {sigma} phase region, extending from binary Mo-Re to ternary Mo-Re-Si. The other is the formation of a {sigma} phase in Mo-rich alloys either through the peritectic reaction of liquid + Mo{sub ss} {yields} {sigma} or primary solidification. These findings are important in understanding the effects of Re on the microstructure and providing guidance on the design of Mo-Re-Si alloys.

  20. Surface hardness behaviour of Ti–Al–Mo alloys

    Indian Academy of Sciences (India)

    Wintec

    Such a report is lacking in literature in this class of alloys. Keywords. Ti–Al–Mo alloys; microhardness; slip steps. 1. Introduction. Ti-aluminides containing α2 and γ phases with lamellar morphology are expected to possess hardness that is higher than the β and γ phases (Li and Loretto 1994). Room temperature ductility is ...

  1. Selected Properties And Tribological Wear Alloys Co-Cr-Mo And Co-Cr-Mo-W Used In Dental Prosthetics

    Directory of Open Access Journals (Sweden)

    Augustyn-Pieniążek J.

    2015-09-01

    Full Text Available The presented work provides the results of the abrasive wear resistance tests performed on Co-Cr-Mo and Co-Cr-Mo-W alloys with the use of the Miller’s apparatus. The analyzed alloys underwent microstructure observations as well as hardness measurements, and the abraded surfaces of the examined materials were observed by means of electron scanning microscopy. The performed examinations made it possible to state that the Co-Cr alloys characterized in a high hardness, whereas the changes in the mass decrement were minimal, which proved a high abrasive wear resistance.

  2. Corrosion resistance of Mo-Fe-Ti alloy for overpack in simulating underground environment

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Toshiyasu, E-mail: NISHIMURA.Toshiyasu@nims.go.jp [Structural metals Center, National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Aging heat-treated Mo-Fe-Ti alloy showed lower corrosion resistance than solution treated one, but much higher than pure Ti in EIS measurement. Black-Right-Pointing-Pointer As {alpha}-phases showed lower Mo content by TEM, they were preferentially dissolved from base metal in the corrosion test. Black-Right-Pointing-Pointer As Fe was involved in {beta} (b)-phase with Mo which increased the corrosion resistance, the addition of Fe did not decrease the corrosion resistance. - Abstract: In order to examine the application of Mo-Fe-Ti alloy for overpak, the corrosion resistance of heat-treated its alloys was investigated by electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM). The sample subjected to solution heat treatment (ST) had a single {beta} phase and samples subjected to aging heat treatment at 600-700 Degree-Sign C had {alpha} phase precipitation in {beta} phase. EIS results showed that the corrosion resistance of the aging heat-treated samples was lower than that of the ST sample, but much higher than that of pure Ti in 10% NaCl solution of pH 0.5 at 97 Degree-Sign C which simulating the crevice solution. Laser micrographs of the aging heat-treated samples indicated that {alpha} phase was caused selective dissolution in test solution. The TEM combined with EDAX (energy dispersive X-ray) analyses showed that {beta} phase matrix composed of 2.7 wt.% Mo and 4.8 wt.% Fe, and {alpha} phase composed of 0.7 wt.% Mo and 0.1 wt.% Fe in sample aged at 600 Degree-Sign C. Thus, Mo-poor {alpha} phase was selectively dissolved in a test solution. In EIS, the ST sample of only {beta} phase showed the highest resistance, and aging heat-treated samples containing {alpha} phase (0.7 wt.% Mo) showed higher values than pure Ti in the corrosion test. As Fe was involved in {beta} phase with Mo which increased remarkably the corrosion resistance, the addition of Fe did not decrease the corrosion resistance

  3. MoRe-based and NbN-based tunnel junctions and their characteristics

    International Nuclear Information System (INIS)

    Shaternik, V.E.; Noskov, V.L.; Chubatyy, V.V.; Larkin, S.Yu.; Sizontov, V.M.; Miroshnikov, A.M.; Karmazin, A.A.

    2007-01-01

    Full text: Perspective [1] Josephson Mo-Re alloy-oxide-Pb, Mo-Re alloy-normal metal-oxide-Pb and Mo-Re alloy-normal metal-oxide- normal metal-Mo-Re alloy junctions have been fabricated and investigated. Thin (∼50-100 nm) MoRe superconducting films are deposited on Al 2 O 3 substrates by using a dc magnetron sputtering of MoRe target. Normal metal (Sn, Al) thin films are deposited on the MoRe films surfaces by thermal evaporation of metals in vacuum and oxidized to fabricate junctions oxide barriers. Quasiparticle I-V curves of the fabricated junctions were measured in wide range of voltages. To investigate a transparency spread for the fabricated junctions barriers the computer simulation of the measured quasiparticle I-V curves have been done in framework of the model of multiple Andreev reflections in double-barrier junction interfaces. It's demonstrated the investigated junctions can be described as highly asymmetric double-barrier Josephson junctions with great difference between the two barrier transparencies [2,3]. The result of the comparison of experimental quasiparticle I-V curves and calculated ones is proposed and discussed. Results of computer simulation of quasiparticles I-V curves of NbN-based junctions are presented and discussed. Also I-V curves of the fabricated junctions have been measured under microwave irradiation with 60 GHz frequency , clear Shapiro steps in the measured I-V curves were observed and discussed. (authors)

  4. Effect of rare earth elements yttrium and lanthanum on high temperature oxidation resistance of Mo-Si-B alloys

    International Nuclear Information System (INIS)

    Majumdar, Sanjib

    2014-01-01

    In the present investigation, 0.2 to 2 at% Y and La alloyed Mo-9Si-8B were consolidated using mechanical alloying followed by spark plasma sintering. Isothermal oxidation studies were conducted in a wide temperature range from 650 to 1300℃. Detailed characterization studies of the oxide scale using SEM, EDS, FIB, TEM reveal the formation of Y x Mo 18 O 32 and 3La 2 O 3 ·MoO 3 oxide phases, respectively, for Y and La-containing alloys reduce the evaporation of MoO 3 . The growth rate of protective silica scale is also enhanced due to faster formation of Y and La rich oxide particles which probably act as nucleation sites for silica. At higher temperatures (at 1100℃), the oxidation behavior of unalloyed and RE-alloyed Mo-9Si-8B are comparable. A transient weight loss followed by a steady state is reached due to protective amorphous silica-rich scale formation beyond 1100℃. Therefore, alloying with rare earth elements provides a broader application temperature window for silicide based materials starting from 750℃ to 1300℃

  5. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  6. Effect of Sn addition on the microstructure and superelasticity in Ti-Nb-Mo-Sn alloys.

    Science.gov (United States)

    Zhang, D C; Yang, S; Wei, M; Mao, Y F; Tan, C G; Lin, J G

    2012-09-01

    Ti-7.5Nb-4Mo-xSn (x=0-4at%) alloys were developed as the biomedical materials. The effect of the Sn content on the microstructure and superelasticity of the alloys was investigated. It is found that Sn is a strong stabilizer of the β phase, which is effective in suppressing the formation of α″ and ω phases in the alloys. Moreover, the Sn addition has a significant impact on the mechanical properties of the alloys. With the increase of Sn addition, the yield stress of the alloys increase, but their elastic modulus, the fracture strength and the ductility decrease, and the deformation mode of the alloys changes from (322) twining to α″ transformation and then to slip. The Ti-7.5Nb-4Mo-1Sn and Ti-7.5Nb-4Mo-3Sn alloys exhibit a good superelasticity with a high σ(SIM) due to the relatively high athermal ω phases containing or the solution hardening at room temperature. Under the maximum strain of 5%, Ti-7.5Nb-4Mo-3Sn (at%) alloy exhibits higher super elastic stability than that of Ti-7.5Nb-4Mo-1Sn alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Moura, L.B.; Guimaraes, R.F.

    2010-01-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  8. Simple thermodynamic model of the extension of solid solution of Cu-Mo alloys processed by mechanical alloying

    International Nuclear Information System (INIS)

    Aguilar, C.; Guzman, D.; Rojas, P.A.; Ordonez, Stella; Rios, R.

    2011-01-01

    Highlights: → Extension of solid solution in Cu-Mo systems achieved by mechanical alloying. → Simple thermodynamic model to explain extension of solid solution of Mo in Cu. → Model gives results that are consistent with the solubility limit extension reported in other works. - Abstract: The objective of this work is proposing a simple thermodynamic model to explain the increase in the solubility limit of the powders of the Cu-Mo systems or other binary systems processed by mechanical alloying. In the regular solution model, the effects of crystalline defects, such as; dislocations and grain boundary produced during milling were introduced. The model gives results that are consistent with the solubility limit extension reported in other works for the Cu-Cr, Cu-Nb and Cu-Fe systems processed by mechanical alloying.

  9. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    Science.gov (United States)

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  10. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  11. Microstructures and room temperature fracture toughness of Nb/Nb5Si3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Xiong, Bowen; Cai, Changchun; Wang, Zhenjun

    2014-01-01

    Highlights: • Microstructure of Nb/Nb 5 Si 3 composite alloyed with W and Mo is change obviously. • W and Mo elements can solid solution in Nb and Nb 5 Si 3 phase respectively. • Alloyed with W and Mo together, the solid solubility of Nb 5 Si 3 phases is undetected. • The Nb/Nb 5 Si 3 composite alloyed with W and Mo together has high fracture toughness. - Abstract: Microstructures and room temperature fracture toughness of Nb/Nb 5 Si 3 composites alloyed with W, Mo and W–Mo fabricated by spark plasma sintering were investigated. The microstructures were examined using scanning electron microscope (SEM). X-ray diffraction (XRD) was performed on the bulk specimens for identification of phases. The chemical species were analyzed using electron-probe micro-analysis (EPMA). Results indicated that the microstructures of Nb/Nb 5 Si 3 composites alloyed with W or Mo is unaltered, including primary Nb and eutectic mixtures of Nb and Nb 5 Si 3 , and the coarse and fine eutectic mixtures. The W and Mo elements solid solution in Nb and Nb 5 Si 3 phase are detected. But that alloyed with W and Mo together, The microstructures are change obviously, including Nb phase, the solid solubility phases of W and Mo atoms in Nb, and the solid solubility phases of Nb atoms in W are also found, but the solid solubility phenomenon of Nb 5 Si 3 phases is not detected. The microhardness of Nb and Nb 5 Si 3 phases increases obviously because of solid solution strengthening. The Nb/Nb 5 Si 3 composite alloyed with W and Mo together hashing high fracture toughness is attributable to the big eutectic Nb and interface of eutectic phases, which can bear large deformation to absorb the crack energy and form the decohesion between eutectic phases

  12. Microstructure control of Zr-Nb-Sn alloy with Mo addition for HWR pressure tube application

    International Nuclear Information System (INIS)

    Hwang, S. K.; Kim, M. H.; Kim, J. H.; Kwon, S. I.; Kim, Y. S.

    1997-01-01

    As a basic research to develop the material for heavy water reactor pressure tube application the effect of Mo addition to Zr-Nb-Sn alloy was studied for the purpose of minimizing the amount of cold working while maintaining a high strength. To select the target alloy system we first designed various alloy compositions and chose Zr-Nb-Sn and Zr-Nb-Mo through multi-regression analysis of the relationship between the basic properties and the compositions. Plasma arc melting was used to produce the alloys and the microstructure change introduced by the processing steps including hot forging, beta-heat treatment, hot rolling, cold rolling and recrystallization heat treatment was investigated. Recrystallization of Zr-Nb-Sn was retarded by adding Mo and this resulted in a fine grain structure in Zr-Nb-Sn-Mo alloy. Beside the retarding effect recrystallization, Mo increased the amount of residual beta phase and showed an indication of precipitation hardening, which added up to the possibility of applying the alloy for the desired usage. (author)

  13. Reaction layer between U-7WT%Mo and Al alloys in chemical diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.; Granovsky, M.; Ortiz, M.; Balart, S.; Arico, S.; Gribaudo, L.

    2005-01-01

    Several failures in U-Mo dispersion fuel plates like pillowing and large porosities have been reported during irradiation experiments. These failures have been assigned to the formation of a large (U-Mo)/Al interaction product under high operating conditions. The modification of the matrix by alloying Al to change the interaction layer and improve its irradiation behavior, has been proposed. This paper reports diffusion experiments performed between U-7wt%Mo and various Al alloys containing Mg and / or Si. By the use of Optical Microscopy, SEM and X-Ray diffraction, it was found that with a concentration of 5.2wt% or 7.1 wt%Si the interaction layer is constituted mainly by (U,Mo)(Si,Al) 3 and no (U,Mo)Al 4 is detected. As part of the studies of properties of the U-Mo alloys the time for isothermal transformation start at different temperatures of the γ phase is being evaluated for the present U-7wt%Mo alloy. These results are used to plan the future diffusion program that will include diffusion under irradiation at CNEA RA3 reactor. (author)

  14. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  15. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    Science.gov (United States)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  16. Effect of Mo content on thermal and mechanical properties of Mo–Ru–Rh–Pd alloys

    International Nuclear Information System (INIS)

    Masahira, Yusuke; Ohishi, Yuji; Kurosaki, Ken; Muta, Hiroaki; Yamanaka, Shinsuke; Komamine, Satoshi; Fukui, Toshiki; Ochi, Eiji

    2015-01-01

    Metallic inclusions are precipitated in irradiated oxide fuels. The composition of the phases varies with the burnup and the conditions such as temperature gradients and oxygen potential of the fuel. In the present work, Mo x/(0.7+x) (Ru 0.5 Rh 0.1 Pd 0.1 ) (0.7)/(0.7+x) (x = 0, 0.05, 0.1, 0.15, 0.2, and 0.25) alloys were prepared by arc melting, followed by annealing in a high vacuum. The thermal and mechanical properties of the alloys such as elastic moduli, Debye temperature, micro-Vickers hardness, electrical resistivity, and thermal conductivity have been evaluated to elucidate the effect of Mo content on these physical properties of the alloys. The alloys with lower Mo contents show higher thermal conductivity. The thermal conductivity of the alloy with x = 0 is almost twice of that of the alloy with x = 0.25. The thermal conductivities of the alloys are dominated by electronic contribution, which has been evaluated using the Wiedemann–Franz–Lorenz relation from the electrical resistivity data. It is confirmed that the variation of the Mo contents of the alloys considerably affects the mechanical and thermal properties of the alloys

  17. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    Science.gov (United States)

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  18. Development of Ti-12Mo-3Nb alloy for biomedical application; Desenvolvimento da liga Ti-12Mo-3Nb para aplicacao biomedica

    Energy Technology Data Exchange (ETDEWEB)

    Panaino, J.V.P.; Gabriel, S.B., E-mail: josevicentepanaino@hotmail.co [Centro Universidade de Volta Redonda (UNIFOA), RJ (Brazil); Mei, P. [Universidade Estadual de Campinas (DEMa/UNICAMP), SP (Brazil). Dept. de Materiais; Brum, M.V. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Nunes, C.A. [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    The titanium alloys are quite satisfactory for biomedical applications due to their physical, mechanical and biological properties. Recent studies focuses on the development of beta type titanium alloys, composed of toxic elements (Nb, Mo, Ta ,...), because they have more advantages than alpha and alpha + beta (Ti- 6Al-4V) alloys such as lower modulus of elasticity, better plasticity and, moreover, the process variables can be controlled to produce selected results. This project focused on the development and characterization of Ti-12Mo-3Nb alloy in the condition 'as cast' and after thermomechanical treatment. The material was characterized in different conditions by X-ray diffraction, optical microscopy, microhardness measurements and elasticity modulus. The results showed that the forged Ti-12Mo-3Nb alloy showed the best combination of properties, being a promising candidate for use as implant. (author)

  19. In vitro biocompatibility of CoCrMo dental alloys fabricated by selective laser melting.

    Science.gov (United States)

    Hedberg, Yolanda S; Qian, Bin; Shen, Zhijian; Virtanen, Sannakaisa; Wallinder, Inger Odnevall

    2014-05-01

    Selective laser melting (SLM) is increasingly used for the fabrication of customized dental components made of metal alloys such as CoCrMo. The main aim of the present study is to elucidate the influence of the non-equilibrium microstructure obtained by SLM on corrosion susceptibility and extent of metal release (measure of biocompatibility). A multi-analytical approach has been employed by combining microscopic and bulk compositional tools with electrochemical techniques and chemical analyses of metals in biologically relevant fluids for three differently SLM fabricated CoCrMo alloys and one cast CoCrMo alloy used for comparison. Rapid cooling and strong temperature gradients during laser melting resulted in the formation of a fine cellular structure with cell boundaries enriched in Mo (Co depleted), and suppression of carbide precipitation and formation of a martensitic ɛ (hcp) phase at the surface. These features were shown to decrease the corrosion and metal release susceptibility of the SLM alloys compared with the cast alloy. Unique textures formed in the pattern of the melting pools of the three different laser melted CoCrMo alloys predominantly explain observed small, though significant, differences. The susceptibility for corrosion and metal release increased with an increased number (area) of laser melt pool boundaries. This study shows that integrative and interdisciplinary studies of microstructural characteristics, corrosion, and metal release are essential to assess and consider during the design and fabrication of CoCrMo dental components of optimal biocompatibility. The reason is that the extent of metal release from CoCrMo is dependent on fabrication procedures. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    Science.gov (United States)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  1. Development and Validation of Capabilities to Measure Thermal Properties of Layered Monolithic U-Mo Alloy Plate-Type Fuel

    Science.gov (United States)

    Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-01

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  2. A survey of the mechanical properties of uranium alloys U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, G.

    1969-04-15

    In a continuing program on the development of soft and ductile uranium alloys for armament applications, two compositions were studied. These gamma extruded uranium alloys were U-5Mo-3Nb wt.% and U-3Mo-3Nb wt.%. This study was carried out to determine the influence of tempering heat treatments associated with extrusion on the ductility of these uranium alloys. The mechanical properties of both alloys were measured in the extruded condition, in the extruded and annealed condition and in the quenched and tempered condition. A maximum elongation of 13.7% in tension with a low amount of work hardening was obtained for the U-3Mo-3Nb wt.% alloy after 1 1/2 hours anneal at 1200 deg F (650 deg C) followed by a rapid cooling in water at 70 deg F (21 deg C). A maximum elongation of 17.3% with a large amount of work hardening was obtained for alloy U-5Mo-3Nb wt.% after vacuum annealing, normalizing, gamma phase solubilizing at 1500 deg F (815 deg C) and quenching in water at 700 deg F (210 deg C). The maximum ductility achieved in these two alloys by our approaches is low compared with the ductility of Armco Iron employed for the same applications in the field of ballistics.

  3. First-principles studies of Te line-ordered alloys in a MoS2 monolayer

    Science.gov (United States)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2018-04-01

    The thermodynamic stability, structural and electronic properties of Te line-ordered alloys are investigated using density functional theory (DFT) methods. Thirty four possible Te line-ordered alloy configurations are found in a 5×5 supercell of a MoS2 monolayer. The calculated formation energies show that the Te line-ordered alloy configurations are thermodynamically stable at 0 K and agree very well with the random alloys. The lowest energy configurations at each concentration correspond to the configuration where the Te atom rows are far apart from each other (avoiding clustering) within the supercell. The variation of the lattice constant at different concentrations obey Vegard's law. The Te line-ordered alloys fine tune the band gap of a MoS2 monolayer although deviating from linearity behavior. Our results suggest that the Te line-ordered alloys can be an effective way to modulate the band gap of a MoS2 monolayer for nanoelectronic, optoelectronic and nanophotonic applications.

  4. Determination of thermodynamical coefficients for Mo-W alloys according to short-range order parameters

    International Nuclear Information System (INIS)

    Erokhin, L.N.; Mokrov, A.P.; Shivrin, O.N.; Khanina, N.I.

    1986-01-01

    A method is proposed for determining thermodynamical coefficients according to short-range order parameters. The method approbation for Mo-W alloys has shown a good agreement between the thermodynamical and diffusion data. The Mo-W system in the concentration range under study is close to the ideal one. The calculated relative error of determination of interdiffusion coefficients in alloys of the Mo-W system does not exceed 16%

  5. Supporting data for senary refractory high-entropy alloy CrxMoNbTaVW

    Directory of Open Access Journals (Sweden)

    B. Zhang

    2015-12-01

    Full Text Available This data article is related to the research paper entitled “senary refractory high-entropy alloy CrxMoNbTaVW [1]”. In this data article, the pseudo-binary Cr-MoNbTaVW phase diagram is presented to show the impact of Cr content to the senary Cr-MoNbTaVW alloy system; the sub-lattice site fractions are presented to show the disordered property of the Cr-MoNbTaVW BCC structures; the equilibrium and Scheil solidification results with the actual sample elemental compositions are presented to show the thermodynamic information of the melted/solidified CrxMoNbTaVW samples; and the raw EDS scan data of the arc-melted CrxMoNbTaVW samples are also provided.

  6. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  7. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    Science.gov (United States)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  8. Fission product induced swelling of U–Mo alloy fuel

    International Nuclear Information System (INIS)

    Kim, Yeon Soo; Hofman, G.L.

    2011-01-01

    Highlights: ► We measured fuel swelling of U–Mo alloy by fission products at temperatures below 250 °C. ► We quantified the swelling portion of U–Mo by fission gas bubbles. ► We developed an empirical model as a function of fission density. - Abstract: Fuel swelling of U–Mo alloy was modeled using the measured data from samples irradiated up to a fission density of ∼7 × 10 27 fissions/m 3 at temperatures below ∼250 °C. The overall fuel swelling was measured from U–Mo foils with as-fabricated thickness of 250 μm. Volume fractions occupied by fission gas bubbles were measured and fuel swelling caused by the fission gas bubbles was quantified. The portion of fuel swelling by solid fission products including solid and liquid fission products as well as fission gas atoms not enclosed in the fission gas bubbles is estimated by subtracting the portion of fuel swelling by gas bubbles from the overall fuel swelling. Empirical correlations for overall fuel swelling, swelling by gas bubbles, and swelling by solid fission products were obtained in terms of fission density.

  9. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties.

    Science.gov (United States)

    Wang, Shao-Ping; Xu, Jian

    2017-04-01

    Combining the high-entropy alloy (HEA) concept with property requirement for orthopedic implants, we designed a Ti 20 Zr 20 Nb 20 Ta 20 Mo 20 equiatomic HEA. The arc-melted microstructures, compressive properties and potentiodynamic polarization behavior in phosphate buffer solution (PBS) were studied in detail. It was revealed that the as-cast TiZrNbTaMo HEA consisted of dual phases with bcc structure, major bcc1 and minor bcc2 phases with the lattice parameters of 0.3310nm and 0.3379nm, respectively. As confirmed by nanoindentation tests, the bcc1 phase is somewhat harder and stiffer than the bcc2 phase. The TiZrNbTaMo HEA exhibited Young's modulus of 153GPa, Vickers microhardness of 4.9GPa, compressive yield strength of σ y =1390MPa and apparent plastic strain of ε p ≈6% prior to failure. Moreover, the TiZrNbTaMo HEA manifested excellent corrosion resistance in PBS, comparable to the Ti6Al4V alloy, and pitting resistance remarkably superior to the 316L SS and CoCrMo alloys. These preliminary advantages of the TiZrNbTaMo HEA over the current orthopedic implant metals in mechanical properties and corrosion resistance offer an opportunity to explore new orthopedic-implant alloys based on the TiZrNbTaMo concentrated composition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  11. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-04-01

    Full Text Available A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt % were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA route followed by spark plasma sintering (SPS and rapid cooling. Neutron Powder Diffraction (NPD, Electron Back Scattering Diffraction (EBSD, and Transmission Electron Microscopy (TEM were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  12. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  13. Corrosion resistance of amorphous NiCrZr and NiCrMoZr alloys

    International Nuclear Information System (INIS)

    Naka, M.; Miyake, M.; Okamoto, I.

    1987-01-01

    One of the authors has reported that the corrosion resistance of chromium containing amorphous alloys is extremely improved by alloying phosphorus among metalloids. Two factors operate for the improvement of corrosion resistance of the amorphous alloys. First, phosphorus serves for the rapid formation of protective passive film. Second, the compositional and structural homogeneity in amorphous state also account for the formation of protective film. The latter factor has been clearly seen in the high corrosion resistance of CoCrMoZr and CoCrWZr alloys without metalloids. In order to clarify the separately two factors in the corrosion resistance of amorphous alloys, the corrosion resistance of amorphous alloys without metalloids has to be further investigated. This paper also deals with the corrosion resistance and electrochemical behavior of NiCrZr and NiCrMoZr alloys in 1N HCl, and compare them with the corrosion behavior of the crystalline alloys containing the same composition as that of the amorphous alloys

  14. Interdiffusion among U-Mo-Zr and alloys of Al to 550oC

    International Nuclear Information System (INIS)

    Komar Varela, C.L; Arico, S.F; Gribaudo, L.M

    2006-01-01

    The international community, by means of the project 'Reduced Enrichment for Research and Test Reactors' is interested in the development of a new nuclear fuel of very high density of uranium and low enrichment (≤ 20% de U 235 ) for reactors of investigation and production of radioisotopes, that permit to reach greater neutron flows, with good capacity to be reprocessed One of these assemblies are the alloys of U with Mo contents between 7 and 10% in weight. In the fuels 'dispersed type plate' the particles of U-Mo are mixed with dust of aluminum and are co - laminated between two plates of an alloy of the same material. The existing contact among the particles permits the interdiffusion of the materials with the consequent apparition of new phases. Studies pursuit-irradiation have shown a badly behavior of these new phases. It is for this that is necessary to control the presence of these products of interaction. The aggregate of a third element to the alloys U - Mo has begun to be practiced with this purpose. In this work the modification of the start of the disorder of the phase γU in the alloy U-7%Mo-1%Zr was studied and the interdiffusion between pure aluminum and the same alloy to 550 o C. The results obtained are compared with other obtained for peers U-Mo/Al. The techniques of characterization utilized were: optical microscopy, analysis by diffraction of X-rays and microanalysis quantitative by microprobe electronic. It was observed that the aggregate of Zr refines the grain for a processing of homogenized in composition of Mo to 1000 o C and accelerates the start of the disorder of the phase γU to 550 o C. As for the zone of interaction, was found that the composed identifying do not they differ to them reported in the in peers U-Mo/Al. These are: (U,Mo)Al 4 y UAl 3 (AG)

  15. Interdiffusion between U-Mo alloys and Al or Al alloys at 340 deg. C. Irradiation plan

    International Nuclear Information System (INIS)

    Fortis, A.M.; Mirandou, M.; Ortiz, M.; Balart, S.; Denis, A.; Moglioni, A.; Cabot, P.

    2005-01-01

    Out of reactor interdiffusion experiments between U-Mo alloys and Al alloys made close to fuel operation temperature are needed to validate the results obtained above 500 deg. C. A study of interdiffusion between U-Mo and Al or Al alloys, out and in reactor, has been initiated. The objective is to characterize the interdiffusion layer around 250 deg. C and study the influence of neutron irradiation. Irradiation experiments will be performed in the Argentine RA3 reactor and chemical diffusion couples will be fabricated by Friction Stir Welding (FSW) technique. In this work out-of-pile diffusion experiments performed at 340 deg. C are presented. Friction Stir Welding (FSW) was used to fabricate some of the samples. One of the results is the presence of Si, in the interaction layer, coming from the Al alloy. This is promising in the sense that the absence of Al rich phases may also be expected at low temperature. (author)

  16. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy

    International Nuclear Information System (INIS)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R.

    2010-01-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal ω phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  17. Evaluation of AS-CAST U-Mo alloys processed in graphite crucible coated with boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Marra, Kleiner M., E-mail: kleiner.marra@prof.una.br [Centro Universitario UNA, Belo Horizonte, MG (Brazil). Curso de Engenharia Mecânica; Reis, Sérgio C.; Paula, João B. de; Pedrosa, Tércio A., E-mail: reissc@cdtn.br, E-mail: jbp@cdtn.br, E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5w%, 7w%, and 10w%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (γ-phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. (author)

  18. Superaerophobic Ultrathin Ni-Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Qian; Li, Pengsong; Zhou, Daojin; Chang, Zheng; Kuang, Yun; Sun, Xiaoming

    2017-11-01

    Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm -2 , along with a Tafel slope of 45 mV decade -1 , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal

    International Nuclear Information System (INIS)

    Chen, Y.X.; Cui, C.Y.; Guo, J.T.; Li, D.X.

    2004-01-01

    The microstructure of a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal in as-processed and heat-treated states has been studied by means of scanning electron microscopy and high resolution electron microscopy (HREM). The microstructure of the NiAl-Cr(Mo) eutectic was characterized by lamellar Cr(Mo) phases embedded within NiAl matrix with common growth direction of . The interface between NiAl and lamellar Cr(Mo) did not have any transition layers. Misfit dislocations were observed at the NiAl-Cr(Mo) interface. In addition to lamellar Cr(Mo) phases, coherent Cr(Mo, Ni, Al) precipitates and NiAl precipitates were also observed in the NiAl matrix and lamellar Cr(Mo) phases, respectively. After hot isostatic pressing and heat treatment, the NiAl-Cr(Mo) interfaces became smooth and straight. Square array of misfit dislocations was directly observed at the (0 0 1) interface between NiAl and Cr(Mo, Ni, Al) precipitate. The configuration of misfit dislocation network showed a generally good agreement with prediction based on the geometric O-lattice model

  20. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    Nickel based alloy, the characteristic of which is that it mainly includes in percentages by weight: 57-63 Ni, 7-18 Cr, 10-20 Fe, 4-6 Mo, 1-2 Nb, 0.2-0.8 Si, 0.01-0.05 Zr, 1.0-2.5 Ti, 1.0-2.5 Al, 0.02-0.06 C and 0.002-0.015 B. The aim is to create new nickel-chromium alloys, hardened in a solid solution and by precipitation, that are stable, exhibit reduced swelling and resistant to plastic deformation inside the reactor. These alloys of the gamma prime type have improved mechanical strengthm swelling resistance, structural stability and welding properties compared with Inconel 625 [fr

  1. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth; Arey, Bruce; Jana, Saumyadeep; Lavender, Curt; Joshi, Vineet

    2018-06-01

    Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grain boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.

  2. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    Science.gov (United States)

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  3. Spin injection and magnetoresistance in MoS2-based tunnel junctions using Fe3Si Heusler alloy electrodes.

    Science.gov (United States)

    Rotjanapittayakul, Worasak; Pijitrojana, Wanchai; Archer, Thomas; Sanvito, Stefano; Prasongkit, Jariyanee

    2018-03-19

    Recently magnetic tunnel junctions using two-dimensional MoS 2 as nonmagnetic spacer have been fabricated, although their magnetoresistance has been reported to be quite low. This may be attributed to the use of permalloy electrodes, injecting current with a relatively small spin polarization. Here we evaluate the performance of MoS 2 -based tunnel junctions using Fe 3 Si Heusler alloy electrodes. Density functional theory and the non-equilibrium Green's function method are used to investigate the spin injection efficiency (SIE) and the magnetoresistance (MR) ratio as a function of the MoS 2 thickness. We find a maximum MR of ~300% with a SIE of about 80% for spacers comprising between 3 and 5 MoS 2 monolayers. Most importantly, both the SIE and the MR remain robust at finite bias, namely MR > 100% and SIE > 50% at 0.7 V. Our proposed materials stack thus demonstrates the possibility of developing a new generation of performing magnetic tunnel junctions with layered two-dimensional compounds as spacers.

  4. Modeling the homogenization kinetics of as-cast U-10wt% Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie, E-mail: zhijie.xu@pnnl.gov [Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Joshi, Vineet [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Hu, Shenyang [Reactor Materials & Mechanical Design, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Paxton, Dean [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lavender, Curt [Energy Processes & Materials Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Burkes, Douglas [Nuclear Engineering and Analysis Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2016-04-01

    Low-enriched U-22at% Mo (U–10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U–10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding of the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.

  5. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  6. Metastable beta Ti-Nb-Mo alloys with improved corrosion resistance in saline solution

    International Nuclear Information System (INIS)

    Chelariu, R.; Bolat, G.; Izquierdo, J.; Mareci, D.; Gordin, D.M.; Gloriant, T.; Souto, R.M.

    2014-01-01

    Graphical abstract: - Highlights: • Microstructural and electrochemical characterization of metastable beta Ti-Nb-Mo alloys for biomedical implantation. • Corrosion resistance was established in 0.9 wt% NaCl saline solution at 25 °C using conventional and microelectrochemical techniques. • The materials spontaneously form passivating oxide films on their surface. • Surface films are stable for polarizations more positive than those encountered in the human body. • The addition of niobium to Ti12Mo enhances the capacitive characteristics of the passivating oxide layers. - Abstract: The present study explores the microstructural characteristics and electrochemical responses of four metastable beta Ti-Nb-Mo alloys for biomedical implantation. They were synthesized by the cold crucible levitation melting technique, and compositions were selected to keep the molybdenum equivalency close to 12 wt% Mo eq . For the sake of comparison, Ti12Mo was also investigated. Microstructural characterization reveals that all the alloys are β (body-centred cubic structure), and the surface is composed by β equiaxial grains with dimensions in the range of tens to hundreds μm. The corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy) of the alloys was determined in 0.9 wt% NaCl saline solution at 25 °C. The materials spontaneously form a passivating oxide film on their surface, and they are stable for polarizations up to +1.0 V SCE . No evidence of localized breakdown of the oxide layers is found for polarizations more positive than those encountered in the human body. The passive layers show dielectric characteristics, and the wide frequency ranges displaying capacitive characteristics occur for both higher niobium contents in the alloy and longer exposures to the saline solution. The insulating characteristics of the oxide-covered surfaces were investigated by scanning electrochemical microscopy operated in the feedback mode

  7. Kinetics of the U-1% Mo alloy transformation during continual cooling; Kinetika transformacije legura U-1% Mo pri kontinuiranom hladjenju

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlovic, A; Djuric, B; Tepavac, P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Study of continuous cooling of the U-1% Mo alloy is significant if it could be used as fuel in the nuclear reactor. Previous studies were dealing with relatively low cooling rate up to 3 deg C/s{sup 1}, which produced alpha + gamma structure. This task was devoted to testing the U-1% Mo alloy properties at higher cooling rates in order to discover whether bainite reaction and favourable alpha grain could be achieved under certain conditions.

  8. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    Science.gov (United States)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  9. Alloy Design and Property Evaluation of Ti-Mo-Nb-Sn Alloy for ...

    African Journals Online (AJOL)

    Ti-Mo alloy containing Nb and Sn were arc melted and composition analyzed by EDX. The XRD analysis indicates that the crystal structure and mechanical properties are sensitive to Sn concentration. A combination of Sn and Nb elements in synergy hindered formation athermal w phase and significantly enhanced b phase ...

  10. The stability of DLC film on nitrided CoCrMo alloy in phosphate buffer solution

    International Nuclear Information System (INIS)

    Zhang, T.F.; Liu, B.; Wu, B.J.; Liu, J.; Sun, H.; Leng, Y.X.; Huang, N.

    2014-01-01

    CoCrMo alloy is often used as the material for metal artificial joint, but metal debris and metal ions are the main concern on tissue inflammation or tissue proliferation for metal prosthesis. In this paper, nitrogen ion implantation and diamond like carbon (DLC) film composite treatment was used to reduce the wear and ion release of biomedical CoCrMo substrate. The mechanical properties and stability of N-implanted/DLC composite layer in phosphate buffer solution (PBS) was evaluated to explore the full potential of N-implanted/DLC composite layer as an artificial joint surface modification material. The results showed that the DLC film on N implanted CoCrMo (N-implanted/DLC composite layer) had the higher surface hardness and wear resistance than the DLC film on virgin CoCrMo alloy, which was resulted from the strengthen effect of the N implanted layer on CoCrMo alloy. After 30 days immersion in PBS, the structure of DLC film on virgin CoCrMo or on N implanted CoCrMo had no visible change. But the adhesion and corrosion resistance of DLC on N implanted CoCrMo (N-implanted/DLC composite layer) was weakened due to the dissolution of the N implanted layer after 30 days immersion in PBS. The adhesion reduction of N-implanted/DLC composite layer was adverse for in vivo application in long term. So researcher should be cautious to use N implanted layer as an inter-layer for increasing CoCrMo alloy load carrying capacity in vivo environment.

  11. Microstructure, tensile deformation mode and crevice corrosion resistance in Ti-10Mo-xFe alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Nishimura, T.; Tsuchiya, K.; Tsuzaki, K.

    2010-01-01

    The microstructure, the tensile deformation mode at ambient temperature and the crevice corrosion resistance at a high temperature of 373 K were investigated in the Ti-10Mo-xFe (x = 0, 1, 3, 5) alloys. The stability of the β phase increased, and the formation of the α'' martensite and the athermal ω phase was suppressed by the increase in the Fe content. EPMA examinations indicated that the existence of the α'' martensite in the Ti-10Mo alloy was caused by the solidification segregation of Mo atoms. EBSD observations showed that the deformation mode changed from a {3 3 2} twinning to a slip by an increase in the Fe content, which coincided with the prediction by the electron/atom (e/a) ratio. The Ti-10Mo-3Fe alloy showed the highest yield strength of 935 MPa among all the alloys, while the Ti-10Mo-1Fe alloy showed the lowest value of 563 MPa due to the change in the deformation mode. On the other hand, all the alloys exhibited a high crevice corrosion resistance in a high chloride and high acidic solution at the high temperature, although the corrosion resistance decreased with an increase in the Fe content. The decrease in the corrosion resistance can be explained by the bond order (Bo). A good combination of tensile properties and crevice corrosion resistance may be obtainable through a further optimization of the Fe content by the e/a ratio and the Bo.

  12. Electrodeposition and characterization of Fe–Mo alloys as cathodes for hydrogen evolution in the process of chlorate

    Directory of Open Access Journals (Sweden)

    B. N. GRGUR

    2005-06-01

    Full Text Available Fe–Mo alloys were electrodeposited from a pyrophosphate bath using a single diode rectified AC current. Their composition and morphology were investigated by SEM, optical microscopy and EDS, in order to determine the influence of the deposition conditions on the morphology and composition of these alloys. It was shown that the electrodeposition parameters, such as: chemical bath composition and current density, influenced both the composition of the Fe–Mo alloys and the current efficiency for their deposition, while the micro and macro-morphology did not change significantly with changing conditions of alloy electrodeposition. It was found that the electrodeposited Fe–Mo alloys possessed a 0.15 V to 0.30 V lower overvoltage than mild steel for hydrogen evolution in an electrolyte commonly used in commercial chlorate production, depending on the alloy composition, i.e., the conditions of alloy electrodeposition.

  13. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  14. Surface Characterization, Corrosion Resistance and in Vitro Biocompatibility of a New Ti-Hf-Mo-Sn Alloy

    Science.gov (United States)

    Ion, Raluca; Drob, Silviu Iulian; Ijaz, Muhammad Farzik; Vasilescu, Cora; Osiceanu, Petre; Gordin, Doina-Margareta; Cimpean, Anisoara; Gloriant, Thierry

    2016-01-01

    A new superelastic Ti-23Hf-3Mo-4Sn biomedical alloy displaying a particularly large recovery strain was synthesized and characterized in this study. Its native passive film is very thick (18 nm) and contains very protective TiO2, Ti2O3, HfO2, MoO2, and SnO2 oxides (XPS analysis). This alloy revealed nobler electrochemical behavior, more favorable values of the corrosion parameters and open circuit potentials in simulated body fluid in comparison with commercially pure titanium (CP-Ti) and Ti-6Al-4V alloy taken as reference biomaterials in this study. This is due to the favorable influence of the alloying elements Hf, Sn, Mo, which enhance the protective properties of the native passive film on alloy surface. Impedance spectra showed a passive film with two layers, an inner, capacitive, barrier, dense layer and an outer, less insulating, porous layer that confer both high corrosion resistance and bioactivity to the alloy. In vitro tests were carried out in order to evaluate the response of Human Umbilical Vein Endothelial Cells (HUVECs) to Ti-23Hf-3Mo-4Sn alloy in terms of cell viability, cell proliferation, phenotypic marker expression and nitric oxide release. The results indicate a similar level of cytocompatibility with HUVEC cells cultured on Ti-23Hf-3Mo-4Sn substrate and those cultured on the conventional CP-Ti and Ti-6Al-4V metallic materials. PMID:28773939

  15. Structural transformations in the Co53Mo35Cr12 alloy at different temperatures

    International Nuclear Information System (INIS)

    Ustinovshikov, Y.

    2014-01-01

    Highlights: • Phase separation microstructures are formed in the alloy studied below solidus line. • Co 3 Mo chemical compound precipitates in the liquidus–solidus temperature interval. • Ordering-phase separation transition takes place in Co/Mo diffusional couple only. - Abstract: Structural transformations of the Co 53 Mo 35 Cr 12 alloy were studied at temperatures of 1250, 1000 and 700 °C, when in all the three diffusion couples of the alloy there takes place a tendency to phase separation and at a temperature above the solidus, when in the Co/Mo diffusion couple there appears a tendency to ordering and the So 3 Mo phase is formed. It has been shown that at a temperature of 1250 °C, this phase is completely dissolved, and in the process of such dissolution, a Co-enriched fcc solid solution with a large number of stacking faults is formed. Simultaneously, there occurs precipitation of particles of Sr atoms, the sizes of which grow with lowering the temperature of heat treatment. The stacking faults, formed at 1250 °C, turn out to be the place, where laths enriched in Mo atoms, begin to form. After a heat treatment at 700 °C, the whole structure of the alloy consists of light-color and dark laths, arranged along the elastically- soft directions of the matrix. Each of these laths is enriched in atoms of either cobalt (fcc lattice) or molybdenum (bcc lattice)

  16. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Santa Coloma, P., E-mail: patricia.santacoloma@tecnalia.com [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J. [TECNALIA Research & Innovation, Parque Tecnológico de San Sebastián, Mikeletegi Pasealekua 2, E-20009 Donostia-San Sebastián, Gipuzkoa (Spain); Lapeña, N. [Boeing Research & Technology Europe, S.L.U., Avenida Sur del Aeropuerto de Barajas 38, Building 4 – 3rd Floor, E-28042 Madrid (Spain)

    2015-08-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  17. Chromium-free conversion coatings based on inorganic salts (Zr/Ti/Mn/Mo) for aluminum alloys used in aircraft applications

    International Nuclear Information System (INIS)

    Santa Coloma, P.; Izagirre, U.; Belaustegi, Y.; Jorcin, J.B.; Cano, F.J.; Lapeña, N.

    2015-01-01

    Highlights: • Chromium-free conversion coatings for corrosion protection of aluminum alloys. • Salt spray and potentiodynamic sweep tests to study the corrosion behavior. • Local deposits on Cu-rich intermetallic particles enhanced corrosion resistance. • Surface characterization to relate bath's composition and corrosion resistance. • Best corrosion protection with conversion baths without titanium salts. - Abstract: Novel chromium-free conversion coatings based on Zr/Ti/Mn/Mo compounds were developed at a pilot scale to improve the corrosion resistance of the AA2024-T3 and AA7075-T6 aluminum alloys for aircraft applications. The influence of the presence of Zr and Ti in the Zr/Ti/Mn/Mo conversion bath's formulation on the corrosion resistance of the coated alloys was investigated. The corrosion resistance provided by the conversion coatings was evaluated by salt spray exposure and potentiodynamic sweeps. Optical and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) and atomic force microscopy (AFM) operating in the Kelvin Probe mode (SKPFM) were used to provide microstructural information of the coated samples that achieved the best results in the corrosion tests. The salt spray test evidenced the higher corrosion resistance of the coated samples compared to the bare surfaces for both alloys. The potentiodynamic tests showed that the corrosion current density decreased for coated AA7075-T6 and AA2024-T3 alloys, which indicated an obvious improvement of the corrosion resistance with all the processes for both alloys. Although the corrosion resistance of the coated samples appeared to be higher for the alloy AA7075-T6 than for the alloy AA2024-T3, both alloys achieved the best corrosion protection with the coatings deposited from conversion bath formulations containing no titanium salts. The microscopy analysis on the coated AA7075-T6 samples revealed that a local deposition of Zr compounds and, possibly, an

  18. Self propagating high temperature synthesis (SHS) of the Fe(TiMo)C master alloy using ferroalloys

    International Nuclear Information System (INIS)

    Erauskin, J. I.; Sargyan, A.; Arana, J. L.

    2009-01-01

    Titanium monocarbide TiC is very hard, stable both at high and low temperatures and relatively easy to synthesize from its constituent elements by SHS. Nevertheless, it is difficult to use, as alloying element, in the reinforcement of steels manufactured by liquid metallurgy due to its low wettability by molten steel. To achieve this purpose and due to its better wettability, it is more appropriate to use a master alloy formed by the complex carbide (TiMo)C bonded in Fe. The simplest and most economic way to fabricate such a master alloy Fe(TiMo)C is, again, by SHS, with the added advantage that it can be manufactured using the commercial ferroalloys FeTi and FeMo instead of the individual elements Fe, Ti and Mo. In this work, we describe such a process as well as the characteristics of the master alloy obtained. (Author) 13 refs

  19. Microstructure and properties of MoSi2-MoB and MoSi2-Mo5Si3 molybdenum silicides

    International Nuclear Information System (INIS)

    Schneibel, J.H.; Sekhar, J.A.

    2003-01-01

    MoSi 2 -based intermetallics containing different volume fractions of MoB or Mo 5 Si 3 were fabricated by hot-pressing MoSi 2 , MoB, and Mo 5 Si 3 powders in vacuum. Both classes of alloys contained approximately 5 vol.% of dispersed silica phase. Additions of MoB or Mo 5 Si 3 caused the average grain size to decrease. The decrease in the grain size was typically accompanied by an increase in flexure strength, a decrease in the room temperature fracture toughness, and a decrease in the hot strength (compressive creep strength) measured around 1200 deg. C, except when the Mo 5 Si 3 effectively became the major phase. Oxidation measurements on the two classes of alloys were carried out in air. Both classes of alloys were protected from oxidation by an in-situ adherent scale that formed on exposure to high temperature. The scale, although not analyzed in detail, is commonly recognized in MoSi 2 containing materials as consisting mostly of SiO 2 . The MoB containing materials showed an increase in the scale thickness and the cyclic oxidation rate at 1400 deg. C when compared with pure MoSi 2 . However, in contrast with the pure MoSi 2 material, oxidation at 1400 deg. C began with a weight loss followed by a weight gain and the formation of the protective silica layer. The Mo 5 Si 3 containing materials experienced substantial initial weight losses followed by regions of small weight changes. Overall, the MoB and Mo 5 Si 3 additions to MoSi 2 tended to be detrimental for the mechanical and oxidative properties

  20. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    Xu Jiang; Tao Jie; Jiang Shuyun; Xu Zhong

    2008-01-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2 O 3 , MoO 3 , SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  1. Crevice Corrosion on Ni-Cr-Mo Alloys

    International Nuclear Information System (INIS)

    P. Jakupi; D. Zagidulin; J.J. Noel; D.W. Shoesmith

    2006-01-01

    Ni-Cr-Mo alloys were developed for their exceptional corrosion resistance in a variety of extreme corrosive environments. An alloy from this series, Alloy-22, has been selected as the reference material for the fabrication of nuclear waste containers in the proposed Yucca Mountain repository located in Nevada (US). A possible localized corrosion process under the anticipated conditions at this location is crevice corrosion. therefore, it is necessary to assess how this process may, or may not, propagate if the use of this alloy is to be justified. Consequently, the primary objective is the development of a crevice corrosion damage function that can be used to assess the evolution of material penetration rates. They have been using various electrochemical methods such as potentiostatic, galvanostatic and galvanic coupling techniques. Corrosion damage patterns have been investigated using surface analysis techniques such as scanning electron microscopy (SEM) and optical microscopy. All crevice corrosion experiments were performed at 120 C in 5M NaCl solution. Initiating crevice corrosion on these alloys has proven to be difficult; therefore, they have forced it to occur under either potentiostatic or galvanostatic conditions

  2. Study on Tribological Properties of CoCrMo Alloys against Metals and Ceramics as Bearing Materials for Artificial Cervical Disc

    Science.gov (United States)

    Xiang, Dingding; Song, Jian; Wang, Song; Liao, Zhenhua; Liu, Yuhong; Tyagi, Rajnesh; Liu, Weiqiang

    2018-02-01

    CoCrMo alloys are believed to be a kind of potential material for artificial cervical disc. However, the tribological properties of CoCrMo alloys against different metals and ceramics are not systematically studied. In this study, the tribological behaviors of CoCrMo alloys against metals (316L, Ti6Al4V) and ceramics (Si3N4, ZrO2) were focused under dry friction and 25 wt.% newborn calf serum (NCS)-lubricated conditions using a ball-on-disc apparatus under reciprocating motion. The microstructure, composition and hardness of CoCrMo alloys were characterized using x-ray diffraction, scanning electron microscopy (SEM) and hardness testers, respectively. The contact angles of the CoCrMo alloys with deionized water and 25 wt.% NCS were measured by the OCA contact angle measuring instrument. The maximum wear width, wear depth and wear volume were measured by three-dimensional white light interference. The morphology and the EDX analysis of the wear marks on CoCrMo alloys were examined by SEM to determine the basic mechanism of friction and wear. The dominant wear mechanism in dry friction for CoCrMo alloys against all pairings was severe abrasive wear, accompanied with a lot of material transfer. Under 25 wt.% NCS-lubricated condition, the wear mechanism for CoCrMo alloys against ceramics (Si3N4, ZrO2) was also mainly severe abrasive wear. However, severe abrasive wear and electrochemical corrosion occurred for the CoCrMo-316L pairing under lubrication. Severe abrasive wear, adhesive wear and electrochemical corrosion occurred for the CoCrMo-Ti6Al4V pairing under lubrication. According to the results, the tribological properties of CoCrMo alloys against ceramics were better than those against metals. The CoCrMo-ZrO2 pairing displayed the best tribological behaviors and could be taken as a potential candidate bearing material for artificial cervical disc.

  3. In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-11-01

    We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.

  4. In search of zero thermal expansion anisotropy in Mo{sub 5}Si{sub 3} by strategic alloying

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardhana, C.C., E-mail: ccdxz8@mail.umkc.edu; Sakidja, R., E-mail: sakidjar@umkc.edu; Aryal, S.; Ching, W.Y.

    2015-01-25

    Highlights: • For the first time, theoretical prediction of achieving isotropic thermal expansion anisotropy (TEA) for T1 phase Mo{sub 5}Si{sub 3} by alloying with a mere 17.5% Al substitution on the Si sites. Most effective alloying proposed for the said system up to date. • The theoretical approach is verified by simulating the experimentally observed unusual TEA behaviour for (Mo,V){sub 5}Si{sub 3} alloys as a function of percent alloying. • The 2nd order and 3rd order elastic constants we explain the origin of the TEA in T1 phase for Mo{sub 5}Si{sub 3} system and how Al effect in reducing the TEA. • We use directional dependent phonon density of state, a novel approach, to identify the origin of the anisotropy and show this method of analysis could be used for other intermetallic alloys as well. - Abstract: Reducing the thermal expansion anisotropy (TEA) of alloy compounds is one of the most important issues for their potential applications in high temperature environment. The Mo{sub 5}Si{sub 3} (T1 phase) is known to be an important intermetallic compound with high melting temperature. Unfortunately, its large TEA renders it unsuitable for high temperature structural/coating applications. Many attempts have been made in the past to reduce TEA by substituting Mo by other transition metal ions such as V with little success and some unexpected observations. Here we use accurate ab initio molecular dynamics (AIMD) simulations to obtain the TEA from thermal expansion coefficients for two T1 phase alloy systems (Mo,V){sub 5}Si{sub 3} and Mo{sub 5}(Si,Al){sub 3}. We demonstrate that strategic alloying with Al substituting Si can achieve zero TEA for T1 phase. The microscopic origin of this outstanding thermomechanical properties in this alloy is explained by the calculation of higher order elastic constants in conjunction with atom and direction-resolved phonon density of states.

  5. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  6. Development of multilayer perceptron networks for isothermal time temperature transformation prediction of U-Mo-X alloys

    Energy Technology Data Exchange (ETDEWEB)

    Johns, Jesse M., E-mail: jesse.johns@pnnl.gov; Burkes, Douglas, E-mail: douglas.burkes@pnnl.gov

    2017-07-15

    In this work, a multilayered perceptron (MLP) network is used to develop predictive isothermal time-temperature-transformation (TTT) models covering a range of U-Mo binary and ternary alloys. The selected ternary alloys for model development are U-Mo-Ru, U-Mo-Nb, U-Mo-Zr, U-Mo-Cr, and U-Mo-Re. These model's ability to predict 'novel' U-Mo alloys is shown quite well despite the discrepancies between literature sources for similar alloys which likely arise from different thermal-mechanical processing conditions. These models are developed with the primary purpose of informing experimental decisions. Additional experimental insight is necessary in order to reduce the number of experiments required to isolate ideal alloys. These models allow test planners to evaluate areas of experimental interest; once initial tests are conducted, the model can be updated and further improve follow-on testing decisions. The model also improves analysis capabilities by reducing the number of data points necessary from any particular test. For example, if one or two isotherms are measured during a test, the model can construct the rest of the TTT curve over a wide range of temperature and time. This modeling capability reduces the cost of experiments while also improving the value of the results from the tests. The reduced costs could result in improved material characterization and therefore improved fundamental understanding of TTT dynamics. As additional understanding of phenomena driving TTTs is acquired, this type of MLP model can be used to populate unknowns (such as material impurity and other thermal mechanical properties) from past literature sources.

  7. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng

    2018-03-18

    The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro study, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. KINETICS OF CATHODIC REDUCTION OF OXYGEN ON NI-CR-MO-W ALLOY

    International Nuclear Information System (INIS)

    NA

    2006-01-01

    Ni-Cr-Mo-W alloys (C-group alloys) are well known as materials with very high Corrosion resistance in very aggressive environments, an asset that has motivated the selection of Alloy 22 as a waste package material in the Yucca Mountain Project for the long-term geologic disposal of spent nuclear fuel and other high-level radioactive wastes. The aim of this project is to elucidate the corrosion performance of Alloy 22 under aggressive conditions and to provide a conceptual understanding and parameter data base that could act as a basis for modeling the corrosion performance of waste packages under Yucca Mountain conditions. A key issue in any corrosion process is whether or not the kinetics of the cathodic reactions involved can support a damaging rate of anodic metal (alloy) dissolution. Under Yucca Mountain conditions the primary oxidant available to drive corrosion (most likely in the form of crevice, or under-deposit, corrosion) will be oxygen. Here, we present results on the kinetics of oxygen reduction at the Alloy 22/solution interface

  9. Comparative study of cytotoxicity of direct metal laser sintered and cast Co-Cr-Mo dental alloy

    Directory of Open Access Journals (Sweden)

    T. Puskar

    2015-07-01

    Full Text Available The presented work investigated the cytotoxicity of direct metal laser sintered (DMLS and cast Co-Cr-Mo (CCM dental alloy. In vitro tests were done on human fibroblast cell line MRC-5. There was no statistically significant difference in the cytotoxic effects of DMLS and CCM alloy specimens. The results of this investigation show good potential of DMLS Co-Cr-Mo alloy for application in dentistry.

  10. MoNbTaV Medium-Entropy Alloy

    Directory of Open Access Journals (Sweden)

    Hongwei Yao

    2016-05-01

    Full Text Available Guided by CALPHAD (Calculation of Phase Diagrams modeling, the refractory medium-entropy alloy MoNbTaV was synthesized by vacuum arc melting under a high-purity argon atmosphere. A body-centered cubic solid solution phase was experimentally confirmed in the as-cast ingot using X-ray diffraction and scanning electron microscopy. The measured lattice parameter of the alloy (3.208 Å obeys the rule of mixtures (ROM, but the Vickers microhardness (4.95 GPa and the yield strength (1.5 GPa are about 4.5 and 4.6 times those estimated from the ROM, respectively. Using a simple model on solid solution strengthening predicts a yield strength of approximately 1.5 GPa. Thermodynamic analysis shows that the total entropy of the alloy is more than three times the configurational entropy at room temperature, and the entropy of mixing exhibits a small negative departure from ideal mixing.

  11. Influence of chemical composition in crystallographic texture Fe-Cr-Mo alloys; Influencia da composicao quimica na textura cristalografica de ligas Fe-Cr-Mo

    Energy Technology Data Exchange (ETDEWEB)

    Moura, L.B.; Guimaraes, R.F. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Fortaleza, CE (Brazil). Dept. da Industria; Abreu, H.F.G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil)

    2010-07-01

    The use of steels with higher contents of Mo in the oil industry has been an alternative to reduce the effect of naphthenic corrosion in refining units. The addition of Mo in Fe-Cr alloys in the same manner that increases resistance to corrosion naphthenic causes some difficulties such as difficulty of forming, welding and embrittlement. In this work, experimental ingots of Fe-Cr-Mo alloys (Cr - 9, 15 and 17%, Mo - 5, 7 and 9%) were melted in vacuum induction furnace and hot and cold rolled in a laboratory rolling mill. The influence of chemical composition on crystallographic texture of samples subjected to the same thermo-mechanical treatment was analyzed by x-ray diffraction. The results indicate that fiber (111) becomes more intense with increasing Mo and/or Cr contents. (author)

  12. Structural studies of amorphous Mo-Ge alloys using synchrotron radiation

    International Nuclear Information System (INIS)

    Kortright, J.B.

    1984-06-01

    Structural changes in sputtered amorphous Mo-Ge alloy films with composition varying from a-Ge to about 70 at. % Mo have been studied with several x-ray techniques. Results of individual techniques are presented and discussed in separate chapters. The complementary nature of information obtained from EXAFS and scattering for these materials is discussed in a separate chapter. A concluding chapter summarizes the results and structural changes with composition

  13. Characterization of hydrogenation behavior on Mo-modified Zr-Nb alloys as nuclear fuel cladding materials

    International Nuclear Information System (INIS)

    Yang, H.L.; Shibukawa, S.; Abe, H.; Satoh, Y.; Matsukawa, Y.; Kido, T.

    2014-01-01

    The effects of Mo in Zr-Nb alloys are investigated in terms of their mechanical properties associated with microstructure, as well as their behavior under hydrogen environment. Zr-Nb-Mo alloys were fabricated by arc melting and subsequently cold rolling and annealing below the eutectoid temperature. Hydrogen was absorbed in a furnace under argon and hydrogen gas flow environment at high temperature. X-Ray diffraction, electron backscatter diffraction, and tensile test were jointly utilized to carry out detailed microstructural characterization and mechanical properties. Results showed that fcc-δ-ZrH 1.66 was formed in all hydrogen-absorbed alloys, and the amount of hydride enhanced with increasing of hydrogen content. In addition, it was clear that δ-ZrH 1.66 was precipitated both in grain boundary and interior, and preferential precipitation was observed on the habit planes of (0001) and {101-bar7}. Moreover, the strengthening effect by Mo addition was observed. The ductility loss by hydrogen absorption was found from fracture surface observation. Large area cleavage facets were found in Mo-free specimen, and less cleavage facets was observed in Mo-containing specimen, showing an appropriate addition of Mo can increase the tolerance to hydrogen embrittlement. (author)

  14. Effect of composition and heat treatment on carbide phases in Ni-Mo alloys

    International Nuclear Information System (INIS)

    Svistunova, T.V.; Tsvigunov, A.N.; Stegnukhina, L.V.; Sakuta, N.D.

    1984-01-01

    The investigation results of vanadium, iron, carbon and silicon effect and heat treatment regime on the type and composition of carbides in Ni-(26...31)%Mo alloys are presented. It is shown that type, composition and quantity of carbide phases forming in alloys are determined not only by molybdenum and carbon content, but presence of other elements (V, Fe), admixtures (C, Si) and reducers as well as by regime of thermal treatment. In the alloy, containing 26...31% Mo, 0.01...0.03% C ( 12 C type with a=1.083...1.089 nm lattice parameter, in which V and Ti, Fe and Si are presented besides Mo and Ni. In the temperature range of 600-800 deg C high dispersed carbides segregate on grain boundaries. Silicon initiates segregation of the carbide phases among them by grain boundaries at the temperatures of 800 deg C as well as regulates carbide of M 12 C type with a=1.094...1.098 nm lattice parameter

  15. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  16. Corrosion resistance of tantalum base alloys

    International Nuclear Information System (INIS)

    Gypen, L.A.; Brabers, M.; Deruyttre, A.

    1984-01-01

    The corrosion behaviour of substitutional Ta-Mo, Ta-W, Ta-Nb, Ta-Hf, Ta-Zr, Ta-Re, Ta-Ni, Ta-V, Ta-W-Mo, Ta-W-Nb, Ta-W-Hf and Ta-W-Re alloys has been investigated in various corrosive media, i.e. (1) concentrated sulfuric acid at 250 0 C and 200 0 C, (2) boiling hydrochloric acid of azeotropic composition, (3) concentrated hydrochloric acid at 150 0 C under pressure, (4) HF-Containing solutions and (5) 0.5% H 2 SO 4 at room temperature (anodisation). In highly corrosive media such as concentrated H 2 SO 4 at 250 0 C and concentrated HCl at 150 0 C tantalum is hydrogen embrittled, probably by stress induced precipitation of β-hydride. Both corrosion rate and hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C are strongly influenced by alloying elements. Small alloying additions of either Mo or Re decrease the corrosion rate and the hydrogen embrittlement, while Hf has the opposite effect. Hydrogen embrittlement in concentrated H 2 SO 4 at 250 0 C is completely eliminated by alloying Ta with 1 to 3 at % Mo (0.5 to 1.5 wt % Mo). These results can be explained in terms of oxygen deficiency of the Ta 2 O 5 film and the electronic structure of these alloys. (orig.) [de

  17. Structure and properties of heat-treated Ti-(40-4X)%Nb-X%Mo alloys with IE (SME)

    International Nuclear Information System (INIS)

    Silva, Marcia Almeida; Matlakhova, Lioudmila Aleksandrovna; Matlakhov, Anatoliy Nikolaevich; Paes Junior, Herval Ramos; Goncharenko, Boris Andreevich

    2010-01-01

    Whereas the inelastic effects (IE) are related with reversible martensitic transformation, in this work, was analyzed the structure and properties of heat treated Ti-(40-4x)%Nb-x%Mo alloys, where the contents of niobium and molybdenum are between 24-40%Nb and 0-4%Mo (% weight). The structural and phase analysis were done through optical microscopy and X-rays diffraction. The properties measured in this study were electrical resistivity and density. The Ti-40%Nb alloy shows a structure consisting of the β phase and αα’’ martensite with a minor participation of the α’ and ω. The alloys with 1 to 4%Mo have similar structures consisting of the β phase and traces of the α’’ phase. Thus, was observed greater capacity of Mo as a β stabilizer. The increase in Mo content in the composition of the alloys causes an increase in electrical resistivity of these. The samples may have undergone change in volume, caused by phase transformation, what possibly caused the difference between the density values calculated (theoretical) and experimental. (author)

  18. Mechanical characterization of Ti-12Mo-13Nb alloy for biomedical application hot swaged and aged

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema; Rezende, Monica Castro; Almeida, Luiz Henrique de, E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Dille, Jean [Universite Libre de Bruxelles, Brussels (Belgium); Mei, Paulo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Departamento de Engenharia Mecanica; Baldan, Renato; Nunes, Carlos Angelo [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Departamento de Engenharia de Materiais

    2015-07-01

    Beta titanium alloys were developed for biomedical applications due to the combination of its mechanical properties including low elasticity modulus, high strength, fatigue resistance, good ductility and with excellent corrosion resistance. With this perspective a metastable beta titanium alloy Ti-12Mo-13Nb was developed with the replacement of both vanadium and aluminum from the traditional alloy Ti-6Al-4V. This paper presents the microstructure, mechanical properties of the Ti-12Mo-13Nb hot swaged and aged at 500 deg C for 24 h under high vacuum and then water quenched. The alloy structure was characterized by X-ray diffraction and transmission electron microscopy. Tensile tests were carried out at room temperature. The results show a microstructure consisting of a fine dispersed α phase in a β matrix and good mechanical properties including low elastic modulus. The results indicate that Ti-12Mo-13Nb alloy can be a promising alternative for biomedical application. (author)

  19. Formation and Applications of Bulk Glassy Alloys in Late Transition Metal Base System

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Shen Baolong

    2006-01-01

    This paper reviews our recent results of the formation, fundamental properties, workability and applications of late transition metal (LTM) base bulk glassy alloys (BGAs) developed since 1995. The BGAs were obtained in Fe-(Al,Ga)-(P,C,B,Si), Fe-(Cr,Mo)-(C,B), Fe-(Zr,Hf,Nb,Ta)-B, Fe-Ln-B(Ln=lanthanide metal), Fe-B-Si-Nb and Fe-Nd-Al for Fe-based alloys, Co-(Ta,Mo)-B and Co-B-Si-Nb for Co-based alloys, Ni-Nb-(Ti,Zr)-(Co,Ni) for Ni-based alloys, and Cu-Ti-(Zr,Hf), Cu-Al-(Zr,Hf), Cu-Ti-(Zr,Hf)-(Ni,Co) and Cu-Al-(Zr,Hf)-(Ag,Pd) for Cu-based alloys. These BGAs exhibit useful properties of high mechanical strength, large elastic elongation and high corrosion resistance. In addition, Fe- and Co-based glassy alloys have good soft magnetic properties which cannot be obtained for amorphous and crystalline type magnetic alloys. The Fe- and Ni-based BGAs have already been used in some application fields. These LTM base BGAs are promising as new metallic engineering materials

  20. Study on soft magnetic properties of Finemet-type nanocrystalline alloys with Mo substituting for Nb

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Dehui; Zhou, Bingwen; Jiang, Boyu; Ya, Bin; Zhang, Xingguo [School of Materials Science and Engineering, Dalian University of Technology, Dalian (China)

    2017-10-15

    The thermal stability, microstructure, and soft magnetic properties as a function of annealing time were studied for Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3-x}Mo{sub x} (x = 0, 1, 2, 3) (atom percent, at.%,) ribbons. It was found that substituting Nb by Mo reduced the thermal stability. After 15 min short time vacuum annealing, Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples obtained higher permeability and similar coercivity compared to the original Finemet alloy (Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 3}), Mo substituting Nb reduced the optimum annealing time in Finemet-type alloys, and meanwhile marginally increased the saturation magnetization. Substituting all Nb by Mo led to the earlier formation of non-soft magnetic phase, thus deteriorated the soft magnetic properties. XRD and TEM structural analysis showed that in Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 2}Mo{sub 1} and Fe{sub 73.5}Si{sub 13.5}B{sub 9}Cu{sub 1}Nb{sub 1}Mo{sub 2} samples (annealed for 15 min), nanocrystals ∝10 nm in size were obtained, and the good soft magnetic properties of these alloys could be attributed to the small grain size. The relationship between annealing time, soft magnetic properties, and microstructure was established. Reducing annealing time and temperature to obtain best soft magnetic properties could cut down the production costs of Finemet-type alloys. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Precipitation hardening and microstructure evolution of the Ti-7Nb-10Mo alloy during aging.

    Science.gov (United States)

    Yi, Ruowei; Liu, Huiqun; Yi, Danqing; Wan, Weifeng; Wang, Bin; Jiang, Yong; Yang, Qi; Wang, Dingchun; Gao, Qi; Xu, Yanfei; Tang, Qian

    2016-06-01

    A biomedical β titanium alloy (Ti-7Nb-10Mo) was designed and prepared by vacuum arc self-consumable melting. The ingot was forged and rolled to plates, followed by quenching and aging. Age-hardening behavior, microstructure evolution and its influence on mechanical properties of the alloy during aging were investigated, using X-ray diffraction, transmission electron microscopy, tensile and hardness measurements. The electrochemical behavior of the alloy was investigated in Ringer's solution. The microstructure of solution-treated (ST) alloy consists of the supersaturated solid solution β phase and the ωath formed during athermal process. The ST alloy exhibits Young's modulus of 80 GPa, tensile strength of 774 MPa and elongation of 20%. The precipitation sequences during isothermal aging at different temperatures were determined as β+ωath→β+ωiso (144 h) at Taging=350-400 °C, β+ωath→β+ωiso+α→β+α at Taging=500°C, and β+ωath→β+α at Taging=600-650 °C, where ωiso forms during isothermal process. The mechanical properties of the alloy can be tailored easily through controlling the phase transition during aging. Comparing with the conventional Ti-6Al-4V alloy, the Ti-7Nb-10Mo alloy is more resistant to corrosion in Ringer's solution. Results show that the Ti-7Nb-10Mo alloy is promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electronic properties of γ-U and superconductivity of U–Mo alloys

    International Nuclear Information System (INIS)

    Tkach, I.; Kim-Ngan, N.-T.H.; Warren, A.; Scott, T.; Gonçalves, A.P.; Havela, L.

    2014-01-01

    Highlights: • The bcc phase of uranium was stabilized to low temperature in U–Mo alloys. • Ultrafast cooling was utilized. • Negative coefficient dρ/dT indicates very strong disorder. • The alloys are superconducting with T c ≈ 2.1 K. • They exhibit high critical field exceeding 5 T. - Abstract: Fundamental electronic properties of γ-Uranium were determined using Mo doping combined with ultrafast (splat) cooling, which allowed stabilization of the bcc structure to low temperatures. The Sommerfeld coefficient γ e is enhanced to 16 mJ/mol K 2 from 11 mJ/mol K 2 for α-U. Magnetic susceptibility remains weak and T-independent, ≈5 × 10 −8 m 3 /mol. The Mo-doped γ-U exhibits a conventional BCS superconductivity with T c ≈ 2.1 K and critical field exceeding 5 T for 15 at.% Mo. This type of superconductivity is qualitatively different from the one found for pure U splat, which has T c higher than 1 K but the weak specific heat anomaly proves that it is not real bulk effect

  3. Electronic structure of Mo1-x Re x alloys studied through resonant photoemission spectroscopy

    Science.gov (United States)

    Sundar, Shyam; Banik, Soma; Sharath Chandra, L. S.; Chattopadhyay, M. K.; Ganguli, Tapas; Lodha, G. S.; Pandey, Sudhir K.; Phase, D. M.; Roy, S. B.

    2016-08-01

    We studied the electronic structure of Mo-rich Mo1-x Re x alloys (0≤slant x≤slant 0.4 ) using valence band photoemission spectroscopy in the photon energy range 23-70 eV and density of states calculations. Comparison of the photoemission spectra with the density of states calculations suggests that, with respect to the Fermi level E F, the d states lie mostly in the binding energy range 0 to  -6 eV, whereas s states lie in the binding energy range  -4 to  -10 eV. We observed two resonances in the photoemission spectra of each sample, one at about 35 eV photon energy and the other at about 45 eV photon energy. Our analysis suggests that the resonance at 35 eV photon energy is related to the Mo 4p-5s transition and the resonance at 45 eV photon energy is related to the contribution from both the Mo 4p-4d transition (threshold: 42 eV) and the Re 5p-5d transition (threshold: 46 eV). In the constant initial state plot, the resonance at 35 eV incident photon energy for binding energy features in the range E F (BE  =  0) to  -5 eV becomes progressively less prominent with increasing Re concentration x and vanishes for x  >  0.2. The difference plots obtained by subtracting the valence band photoemission spectrum of Mo from that of Mo1-x Re x alloys, measured at 47 eV photon energy, reveal that the Re d-like states appear near E F when Re is alloyed with Mo. These results indicate that interband s-d interaction, which is weak in Mo, increases with increasing x and influences the nature of the superconductivity in alloys with higher x.

  4. Microstructural study on gamma phase stability in U-9 wt% Mo alloy system

    International Nuclear Information System (INIS)

    Saify, M.T.; Jha, S.K.; Hussain, M.M.; Singh, R.P.; Neogy, S.; Srivastava, D.; Dey, G.K.

    2009-01-01

    Uranium exists in three polymorphic forms viz., orthorhombic α phase - stable up to 667 deg C, tetragonal β phase - stable between 667 deg C and 771 deg C and bcc γ phase - stable above 771 deg C. When alloying of uranium is done, the alloying additions alter the temperature ranges over which the α, β and γ phases are stable. In addition, they frequently retard the rates at which phase transformations occur. As a result, a number of metastable phases can be obtained in uranium alloys. It has been well known among reactor designers that a pure uranium metal is not suitable for power reactor fuel mainly because of (i) phase changes occurring at lower temperatures and (ii) poor irradiation behavior of α phase. γ phase uranium alloys containing small amount of another metal to stabilize the γ-U solid solution provides good prospects in this respect. U-Mo alloy is one of the prospective materials for low enrichment uranium fuel with high U loading because a solid solution of Mo in the γ-U phase possesses acceptable irradiation and mechanical properties and is formed over a wide range of Mo concentration. In the present work vacuum induction melted and cast U-9 wt% Mo alloy was subjected to different thermo mechanical processing to investigate the stability of the γ phase. The as cast alloy was rolled at 550 deg C and then homogenized at 1000 deg C in the γ phase field for 24 hours followed by (i) water quenching and (ii) furnace cooling to generate two different starting conditions. Two of the water-quenched samples were aged at 500 deg C for 5 days and 14 days and one as-rolled sample was aged at 500 deg C for 5 days. The as-cast, as-rolled, homogenized and aged samples were subjected to optical microscopy and X-ray Diffraction (XRD) investigations. All the samples were also subjected to microhardness measurements. The as cast sample contained predominantly the gamma phase along with inclusions. After homogenizing the alloy at 1000 deg C and quenching in

  5. The structural phases and vibrational properties of Mo1-xWxTe2 alloys

    Science.gov (United States)

    Oliver, Sean M.; Beams, Ryan; Krylyuk, Sergiy; Kalish, Irina; Singh, Arunima K.; Bruma, Alina; Tavazza, Francesca; Joshi, Jaydeep; Stone, Iris R.; Stranick, Stephan J.; Davydov, Albert V.; Vora, Patrick M.

    2017-12-01

    The structural polymorphism in transition metal dichalcogenides (TMDs) provides exciting opportunities for developing advanced electronics. For example, MoTe2 crystallizes in the 2H semiconducting phase at ambient temperature and pressure, but transitions into the 1T‧ semimetallic phase at high temperatures. Alloying MoTe2 with WTe2 reduces the energy barrier between these two phases, while also allowing access to the T d Weyl semimetal phase. The \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloy system is therefore promising for developing phase change memory technology. However, achieving this goal necessitates a detailed understanding of the phase composition in the MoTe2-WTe2 system. We combine polarization-resolved Raman spectroscopy with x-ray diffraction (XRD) and scanning transmission electron microscopy (STEM) to study bulk \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys over the full compositional range x from 0 to 1. We identify Raman and XRD signatures characteristic of the 2H, 1T‧, and T d structural phases that agree with density-functional theory (DFT) calculations, and use them to identify phase fields in the MoTe2-WTe2 system, including single-phase 2H, 1T‧, and T d regions, as well as a two-phase 1T‧  +  T d region. Disorder arising from compositional fluctuations in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys breaks inversion and translational symmetry, leading to the activation of an infrared 1T‧-MoTe2 mode and the enhancement of a double-resonance Raman process in \\text{2H-M}{{\\text{o}}1-\\text{x}} WxTe2 alloys. Compositional fluctuations limit the phonon correlation length, which we estimate by fitting the observed asymmetric Raman lineshapes with a phonon confinement model. These observations reveal the important role of disorder in \\text{M}{{\\text{o}}1-\\text{x}} WxTe2 alloys, clarify the structural phase boundaries, and provide a foundation for future explorations of phase transitions and electronic phenomena in this

  6. Evaluation of mechanical properties of nanocrystalline Ti-Mo-Fe-Sn alloys system; Avaliacao de propriedades mecanicas de ligas nanocristalinas do sistema Ti-Mo-Fe-Sn

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.O.A; Vidilli, A.L.; Afonso, C.R.M., E-mail: andre.vidilli@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2014-07-01

    The Ti-6Al-4V, widely used in biomaterials, exhibits elastic modulus (E) of approximately 110GPa, which is significantly higher than the one of human bone (E = 10 to 30 GPa). In this project, a process of rapid solidification was utilized in 4 different alloys of Ti-Mo-Fe-Sn, in order to produce ultrafine nanocrystalline eutectic alloys, which present high strength (1800-2500 MPa), low elastic modulus (50-110 GPa) and good corrosion resistance. The alloys Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9} show Vickers microhardness de, respectively, 745 (1mm), 733 (1mm), 609 (1mm) e 651(1mm) HV. The characterization was performed using scanning electron microscopy (SEM) and X- ray diffraction (XRD). The results indicated the presence of a β-Ti (bcc) matrix and the intermetallic TiFe and Ti{sub 3}Sn phases, and the microstructure were formed by dendrites, and eutectic constituents, which were present in the compositions Ti{sub 62}Fe{sub 30}Mo{sub 8}, Ti{sub 56}Fe{sub 30}Mo{sub 8}Sn{sub 6}, Ti{sub 63}Fe{sub 23}Mo{sub 8}Sn{sub 6}, Ti{sub 60}Fe{sub 23}Mo{sub 8}Sn{sub 9}. (author)

  7. Mechanical properties of molybdenum alloyed liquid phase-sintered tungsten-based composites

    International Nuclear Information System (INIS)

    Kemp, P.B.; German, R.M.

    1995-01-01

    Tungsten-based composites are fabricated from mixed elemental powders using liquid phase sintering, usually with a nickel-iron matrix. During sintering, the tungsten undergoes grain growth, leading to microstructure coarsening that lowers strength but increases ductility. Often the desire is to increase strength at the sacrifice of ductility, and historically, this has been performed by postsintering deformation. There has been considerable research on alloying to adjust the as-sintered mechanical properties to match those of swaged alloys. Prior reports cover many additions, seemingly including much of the periodic table. Unfortunately, many of the modified alloys proved disappointing, largely due to degraded strength at the tungsten-matrix interface. Of these modified alloys, the molybdenum-containing systems exhibit a promising combination of properties, cost, and processing ease. For example, the 82W-8Mo-7Ni-3Fe alloy gives a yield strength that is 34% higher than the equivalent 90W-7Ni-3Fe alloy (from 535 to 715 MPa) but with a 33% decrease in fracture elongation (from 30 to 20% elongation). This article reports on experiments geared to promoting improved properties in the W-Mo-Ni-Fe alloys. However, unlike the prior research which maintained a constant Ni + Fe content and varied the W:Mo ratio, this study considers the Mo:(Ni + Fe) ratio effect for 82, 90, and 93 wt pct W

  8. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  9. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  10. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  11. On the corrosion testing of weldments of high alloyed CrNiMo-stainless steels and NiCrMo-alloys

    International Nuclear Information System (INIS)

    Riedel, G.; Voigt, C.; Werner, H.

    1997-01-01

    Weldments of high-alloyed CrNiMo stainless steels and NiCrMo alloys can be more susceptible to localized corrosion than the solution annealed basic material owing to segregations and precipitations in the heat affected zone, the high temperature zone and/or in the weld. To investigate these differences the FeCl 3 -test (10% FeCl 3 . 6aq), the test ''green death'' (11.5% H 2 SO 4 , 1.2% HCl, 1% CuCl 2 , 1% FeCl 3 ) as well as chronopotentiostatic tests in artificial sea water or in 3% NaCl-solution are used. In particular for testing the highest alloyed materials a CaCl 2 -test was developed (4.5 M CaCl 2 , chronopotentiostatic test in duration of 8 to 10 hours at + 200 mV (SCE)), which can be carried out to a temperature of 115 C at atmospheric pressure. The aggressivity increases in the range FeCl 3 -test, ''green death''-test, CaCl 2 -test. Matching and graduated over-alloyed weldments (TIG, heat input of 7 and 15.5 kJ/cm) of materials 1.4529, 1.4562, 2.4856, 2.4819 (german materials No.) are comparingly examined in various tests, of materials 1.4406, 1.4539, 1.4439 and 1.4563 (german materials No.) only matching weldments in the FeCl 3 -test. In strongly oxidizing media only a highly over-alloyed performed weldment (filler material 2.4607, german material No.) produces the best corrosion behaviour, measured as the critical temperatures of localized corrosion. Measurements of critical current densities of passivation can be used for investigations of corrosion behaviour of weldments, too. Critical current densities of passivation are showing a tendency to inverse proportion to the critical temperatures of localized corrosion. Suitable electrolytes are among others 0.2 M H 2 SO 4 + 1 M NaCl + 10 -3 % KSCN, N 2 -bubbled, 25 to 60 C and xM H 2 SO 4 + 4 M NaCl + 10 -3 % KSCN (x = 0.05 to 1), 25 C, in contact with air. An influence of heat input at the welding is indicated in the test of localized corrosion, but it is only small. It is sometimes more clearly shown at

  12. Surface alloy formation by adsorption of holmium on Ag/Mo(112) bimetallic surfaces

    Science.gov (United States)

    Kołaczkiewicz, Jan; Oleksy, Czesław

    2018-03-01

    Work function change measurements, low energy electron diffraction (LEED) and density functional theory (DFT) are used to determine the structures formed on Ag/Mo(112) bimetallic surfaces upon deposition of 0.5 monolayer (ML) of holmium. As the bimetallic surfaces, we have chosen the Mo(112) substrate covered with 1 or 2 ML of Ag. Such surfaces have the same symmetry as the Mo(112) face but different electronic properties. LEED experiment indicates that the c(2 × 2) structure is formed on (1 ML Ag)/Mo(112) bimetallic surface upon deposition of 0.5 ML of Ho. DFT calculations show that a type of Ag-Ho surface alloy is formed, with Ho atoms 0.6 Å below the distorted layer of Ag. This is neither a substitutional nor a subsurface alloy. It is found that the adsorption structure formed on the (2 ML Ag)/Mo(112) bimetallic surface depends on the annealing temperature. After deposition of 0.5 ML of Ho at 300 K, the LEED pattern of p(2 × 2) symmetry is observed. Annealing of the overlayer at 640 K irreversibly changes the p(2 × 2) pattern into a pattern of c(2 × 2) type. The results of DFT computations show that the c(2 × 2) structure of the Ag-Ho surface alloy is energetically most favorable. In this structure, 0.5 ML of Ho is between the two monolayers of Ag, and the symmetry of the topmost layer is changed. The work function change calculated for the c(2 × 2) structure is in a good agreement with the measured value (0.22 eV). The results show that adsorption of Ho on the Ag/Mo(112) bimetallic surfaces is substantially different than on the clean Mo(112).

  13. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    Selle, J.E.

    1976-01-01

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1 / 4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1 / 4 percent Cr-1 percent Mo steel at 600 0 C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  14. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  15. Theoretical Model for Volume Fraction of UC, 235U Enrichment, and Effective Density of Final U 10Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Prabhakaran, Ramprashad [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); McGarrah, Eric J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL)

    2016-04-12

    The purpose of this document is to provide a theoretical framework for (1) estimating uranium carbide (UC) volume fraction in a final alloy of uranium with 10 weight percent molybdenum (U-10Mo) as a function of final alloy carbon concentration, and (2) estimating effective 235U enrichment in the U-10Mo matrix after accounting for loss of 235U in forming UC. This report will also serve as a theoretical baseline for effective density of as-cast low-enriched U-10Mo alloy. Therefore, this report will serve as the baseline for quality control of final alloy carbon content

  16. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    Science.gov (United States)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  17. Atomic displacements in dilute alloys of Cr, Nb and Mo

    Indian Academy of Sciences (India)

    physics pp. 497–514. Atomic displacements in dilute alloys of Cr, Nb and Mo ... used to calculate dynamical matrix and the impurity-induced forces up to second nearest ... origin, the lattice is strained, and the host atoms get displaced to new ...

  18. Effects of Alloying Elements (Mo, Ni, and Cu on the Austemperability of GGG-60 Ductile Cast Iron

    Directory of Open Access Journals (Sweden)

    Erkan Konca

    2017-08-01

    Full Text Available The interest in austempered ductile irons (ADI is continuously increasing due to their various advantageous properties over conventional ductile irons and some steels. This study aimed to determine the roles of alloying elements Ni, Cu, and Mo, on the austemperability of GGG-60 ductile cast iron. Two different sets of GGG-60 (EN-GJS-600-3 samples, one set alloyed with Ni and Cu and the other set alloyed with Mo, Ni, and Cu, were subjected to austempering treatments at 290 °C, 320 °C, and 350 °C. A custom design heat treatment setup, consisting of two units with the top unit (furnace serving for austenitizing and the 200 L capacity bottom unit (stirred NaNO2-KNO3 salt bath serving for isothermal treatment, was used for the experiments. It was found that austempering treatment at 290 °C increased the hardness of the Ni-Cu alloyed GGG-60 sample by about 44% without causing a loss in its ductility. In the case of the Mo-Ni-Cu alloyed sample, the increase in hardness due to austempering reached to almost 80% at the same temperature while some ductility was lost. Here, the microstructural investigation and mechanical testing results of the austempered samples are presented and the role of alloying elements (Mo, Ni, and Cu on the austemperability of GGG-60 is discussed.

  19. Laser deposition of (Cu + Mo) alloying reinforcements on AA1200 substrate for corrosion improvement

    CSIR Research Space (South Africa)

    Popoola, API

    2011-10-01

    Full Text Available Poor corrosion performance of aluminium alloys in marine environment has been a subject of intensive research recently. Aluminium substrate was alloyed with a combination of two metallic powders (Cu + Mo) using an Nd: YAG solid state laser...

  20. Effect of Mo-Fe substitution on glass forming ability, thermal stability, and hardness of Fe-C-B-Mo-Cr-W bulk amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham E.; Cheney, Justin L. [University of California, San Diego Materials Science and Engineering Program, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States); Vecchio, Kenneth S. [University of California, San Diego Department of NanoEngineering, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)], E-mail: kvecchio@ucsd.edu

    2008-08-25

    Amorphous Fe{sub 67-x}C{sub 10}B{sub 9}Mo{sub 7+x}Cr{sub 4}W{sub 3} (x = 1-7 at.%) plates with 640 {mu}m thickness were prepared by copper mold casting. The thermal properties and microstructural development during heat treatments were investigated by a combination of differential scanning calorimetry (DSC), differential thermal analysis, and X-ray diffractometry (XRD). The glass forming ability (GFA) and activation energy for crystallization have a distinct dependence on Mo content. Fe{sub 62}C{sub 10}B{sub 9}Mo{sub 12}Cr{sub 4}W{sub 3} is the best glass former in this study, demonstrating a supercooled liquid region, {delta}T{sub x} = 51 K, and an activation energy for crystallization, Q = 453 kJ/mol. The GFA of alloys in this system was governed by elastic strain optimization resulting directly from the variation in Mo content. Heat treatments were performed to demonstrate resistance to crystallization under typical processing conditions. Alloys in this system exhibited a three-phase evolution during crystallization. A second set of heat treatments was performed to identify each phase. Hardness data was collected at each of the heat treatment conditions, and a bulk metallic glasses (BMG)-derived composite containing a Mo-rich phase exhibited Vickers Hardness in excess of 2000. The fully amorphous alloys had an average hardness approaching 1500.

  1. Characters of alloy Zr-0.4%Mo-0.5%Fe-0.5%Cr post heat treatment and cold rolling

    International Nuclear Information System (INIS)

    Sungkono; Siti Aidah

    2014-01-01

    Research and development of Zr-Mo-Fe-Cr alloys aimed to obtain PWR fuel element structure material with high burn up. In this study of the Zr-0.4%Mo-0.5%Fe-0.5%Cr alloys was prepared from zirconium sponge, molybdenum, iron and chromium powder. The alloy were heat treated at varying temperatures of 650 and 750 °C and retention time of 1, 1.5 and 2 hours. The objectives of this research was to obtain effect of thickness reduction on the character of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy. The results of this experiment showed that the microstructures of Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment and cold rolling exhibits that the higher of the thickness reduction has applied on the alloy caused the microstructure to evolve from deformed equiaxial grains into flat bar grains and then into deformed flat bar grains. However, the higher of the temperature and the retention time then the larger grain structures so that the cold rolling causes the shape of the grains structure into a flat bar with a relatively larger size which affects the lower hardness. The Zr-0.4%Mo-0.5%Fe-0.5%Cr alloy after heat treatment (650-750°C; 1.5-2 hours) can undergo cold deformation without cracking at a thickness reduction between 5 to 15%. (author)

  2. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  3. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    International Nuclear Information System (INIS)

    Baldenebro-Lopez, F.J.; Herrera-Ramírez, J.M.; Arredondo-Rea, S.P.; Gómez-Esparza, C.D.; Martínez-Sánchez, R.

    2015-01-01

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying

  4. Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baldenebro-Lopez, F.J. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Herrera-Ramírez, J.M. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Arredondo-Rea, S.P. [Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Prol. Ángel Flores y Fuente de Poseidón, S.N., 81223 Los Mochis, Sinaloa (Mexico); Gómez-Esparza, C.D. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, 31109 Chihuahua, Chih. (Mexico)

    2015-09-15

    Highlights: • Multi-component systems of AlCoFeMoNiTi were produced by mechanical alloying. • Consolidated samples were fabricated by two different processing routes, sintering and arc melting. • Effect of routes of consolidation on microstructural evolution and microhardness is reported. • High hardness values are found in consolidated samples. • Alloying elements, grain size, and precipitates have a high effect on microhardness. - Abstract: A nanostructured AlCoFeMoNiTi high entropy alloy was synthesized through the mechanical alloying process. Bulk samples were obtained by two different routes to compare the microstructural evolution and hardness behavior: sintering and arc melting. Through electron microscopy analyses the formation of Mo-rich and Ti-rich phases were identified in the melted sample, while Ti-rich nano-precipitates were observed in the sintered sample. A higher microhardness value was achieved on the sintered sample than for the melted sample. The disadvantage of porosity in the sintered sample in comparison to the melted one was overcome by the hardening effect produced by the mechanical alloying.

  5. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging

    International Nuclear Information System (INIS)

    Oliveira, Nathalia Rodrigues; Baldan, Renato; Gabriel, Sinara Borborema

    2014-01-01

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  6. Influência do teor de Mo na microestrutura de ligas Fe-9Cr-xMo Effect of the content of molybdenum in the microstructure of Fe-9Cr-xMo alloy

    Directory of Open Access Journals (Sweden)

    Rodrigo Freitas Guimarães

    2010-12-01

    Full Text Available Aços Cr-Mo são usados na indústria do petróleo em aplicações com óleos crus ricos em compostos sulfurosos. Aços comerciais como 2.5Cr1Mo ou 9Cr1Mo têm se mostrado ineficientes em consequência de altos índices de corrosão naftênica. Uma estratégia para resolver este problema é o aumento do teor de molibdênio destes aços. Neste trabalho foi estudado o efeito do aumento do teor de molibdênio na microestrutura de ligas Fe-9Cr-xMo, solubilizadas e soldadas. Foram levantados os diagramas de fases com auxílio de um programa comercial para verificar as possíveis fases a serem formadas e identificar os problemas de soldagem. A microestrutura das ligas solubilizadas foi analisada por microscopia óptica e EBSD, além da medição da dureza. Foram realizadas soldagens autógenas para verificar o efeito do aporte térmico na microestrutura e na dureza das ligas. O aumento do teor de molibdênio resultou no aumento da dureza das ligas. A análise microestrutural das ligas soldadas apresentou uma particularidade para a liga com menor teor de molibdênio, a presença de martensita. Já as ligas com maior teor de molibdênio apresentaram uma microestrutura completamente ferrítica. A formação de martensita pode ser um problema na solda da liga com menor teor de molibdênio, uma vez que a mesma pode causar perdas nas propriedades mecânicas comprometendo sua aplicação.Cr-Mo steels are used in the petroleum industry in applications with crude oils rich in sulfur compounds. 2.5Cr1Mo or 9Cr1Mo do not resist to operating conditions when in contact with crude oils. The increasing of molybdenum content can improve the corrosion resistance of these alloys. This paper studied the effect of increased concentration of molybdenum in the microstructure of Fe-9Cr-xMo alloys, annealed and welded. Phase diagrams were built with the aid of commercial program to check the possible phases to be formed and to identify the problems of welding. Analyses were

  7. Microstructural development from interdiffusion and reaction between U−Mo and AA6061 alloys annealed at 600° and 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Perez, E., E-mail: Emmanuel.Perez@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Keiser, D.D., E-mail: dennis.keiser@inl.gov [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Sohn, Y.H., E-mail: yongho.sohn@ucf.edu [Department of Materials Science and Engineering, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (United States)

    2016-08-15

    The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the U−Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, U−7 wt%Mo, U−10 wt%Mo, and U−12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples U−Mo vs. high purity Al and binary Al−Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061. - Highlights: • Diffusion couples of U−7Mo, U−10Mo, and U−12Mo vs. AA6061 were analyzed by SEM with XEDS. • The couples were annealed at 600 °C for 24 h and at 550 °C for 1, 5 and 20 h. • The interaction regions were more complex than those in diffusion couples of U−Mo vs. high purity Al and Al−Si alloys. • Analysis showed that the alloying additions of the AA6061 were present in the interaction regions. • Phase development was significantly influenced by the alloying additions of the AA6061.

  8. Microstructure of As-cast Co-Cr-Mo Alloy Prepared by Investment Casting

    Science.gov (United States)

    Park, Jong Bum; Jung, Kyung-Hwan; Kim, Kang Min; Son, Yong; Lee, Jung-Il; Ryu, Jeong Ho

    2018-04-01

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by an investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants owing to its high strength, good corrosion resistance, and excellent biocompatibility. This work focuses on the resulting microstructures arising from normal industrial environmental conditions. The characterization of the samples was carried out using optical microscopy, field emission scanning electron microscopy and energy-dispersive spectroscopy. In this study, the as-cast microstructure is an γ-Co (face-centered cubic) dendritic matrix with the presence of a secondary phase, such as M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloy. Other minority phases, such as the σ phase, were also detected, and their presence could be linked to the manufacturing process and environment.

  9. Effect of Mo concentration and aging time on the magnetic and mechanical hardness of Fe-xMo-5Ni-0.05C alloys (x = 5, 8, 11 and 15 wt. (%

    Directory of Open Access Journals (Sweden)

    Mauro Carlos Lopes Souza

    2009-01-01

    Full Text Available Changes to the microestructure during thermal aging treatment at 610 ºC in Fe-xMo-5Ni-0.05C alloys were studied for different aging times with different Mo concentrations. The heat treatment at 610 ºC induces carbide precipitation into the metallic matrix near Fe2Mo phase. The X-ray diffraction studies revealed a more intense precipitation of α-FeMo, Fe3Mo, R(Fe63Mo37 phases and MoC, Fe2MoC carbides for the alloys containing 15 and 11% Mo, respectively. This work shows that hardness and coercive force changes are function of the molybdenum content and aging time variation. Vickers hardness and coercive force both increase with the increase of molybdenum content and reach maximum values at 4 and 1h of aging, respectively.

  10. Effect of finishing process on the surface quality of Co-Cr-Mo dental alloys

    Directory of Open Access Journals (Sweden)

    Dorota Klimecka -Tatar

    2016-09-01

    Full Text Available Preparatory procedures for the material have a significant influence on the surface stereometry of the material. This study investigated the effect of the electropolishing process on the surface quality of metallic prosthetic constructions based on Co-Cr-Mo alloys. It has been found that the process of electropolishing prevents to excessive development of the surface of a material and consequently improves surface quality.

  11. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...... and wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  12. Similarities and Differences in Mechanical Alloying Processes of V-Si-B and Mo-Si-B Powders

    Directory of Open Access Journals (Sweden)

    Manja Krüger

    2016-10-01

    Full Text Available V-Si-B and Mo-Si-B alloys are currently the focus of materials research due to their excellent high temperature capabilities. To optimize the mechanical alloying (MA process for these materials, we compare microstructures, morphology and particles size as well as hardness evolution during the milling process for the model alloys V-9Si-13B and Mo-9Si-8B. A variation of the rotational speed of the planetary ball mill and the type of grinding materials is therefore investigated. These modifications result in different impact energies during ball-powder-wall collisions, which are quantitatively described in this comparative study. Processing with tungsten carbide vials and balls provides slightly improved impact energies compared to vials and balls made of steel. However, contamination of the mechanically alloyed powders with flaked particles of tungsten carbide is unavoidable. In the case of using steel grinding materials, Fe contaminations are also detectable, which are solved in the V and Mo solid solution phases, respectively. Typical mechanisms that occur during the MA process such as fracturing and comminution are analyzed using the comminution rate KP. In both alloys, the welding processes are more pronounced compared to the fracturing processes.

  13. A Comparative Physics Study of Commercial PWR Cores using Metallic Micro-cell UO{sub 2}-Cr (or Mo) Pellets with Cr-based Cladding Coating

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); In, Wang Kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this work, a comparative neutronic analysis of the cores using ATFs which include metallic micro-cell UO{sub 2}-Cr, UO{sub 2}-Mo pellets and Cr-based alloy coating on cladding was performed to show the effects of the ATF fuels on the core performance. In this study, the cores having different ATFs use the same initial uranium enrichments. The ATF concepts studied in this work are the metallic microcell UO{sub 2} pellets containing Cr or Mo with cladding outer coating composed of Cr-based alloy which have been suggested as the ATF concepts in KAERI (Korea Atomic Energy Research Institute). The metallic micro-cell pellets and Cr-based alloy coating can enhance thermal conductivity of fuel and reduce the production of hydrogen from the reaction of cladding with coolant, respectively. The objective of this work is to compare neutronic characteristics of commercial PWR equilibrium cores utilizing the different variations of metallic micro-cell UO{sub 2} pellets with cladding coating composed of Cr-based alloy. The results showed that the cores using UO{sub 2}-Cr and UO{sub 2}-Mo pellets with Cr-based alloy coating on cladding have reduced cycle lengths by 60 and 106 EFPDs, respectively, in comparison with the reference UO{sub 2} fueled core due to the reduced heavy metal inventories and large thermal absorption cross section but they do not have any significant differences in the core performances parameters. However, it is notable that the core fueled the micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating has considerably more negative MTC and slightly more negative FTC than the other cases. These characteristics of the core using micro-cell UO{sub 2}-Mo pellet and Cr-based alloy coating is due to the hard neutron spectrum and large capture resonance cross section of Mo isotopes.

  14. Effect of Fe and Zr additions on ω phase formation in β-type Ti-Mo alloys

    International Nuclear Information System (INIS)

    Min, X.H.; Emura, S.; Zhang, L.; Tsuzaki, K.

    2008-01-01

    The effect of 1% Fe and/or 5% Zr (mass%) additions on ω phase formation was investigated for the Ti-15Mo alloy by means of X-ray diffraction analysis and hardness testing. Upon water quenching following solution treatment in the β phase region, the athermal ω phase formation could not be observed in all the alloys, regardless of Fe and Zr additions. The lattice parameter of the β phase decreases with Fe addition, while it increases with Zr addition. Solid solution strengthening by Fe and Zr is not recognized for the β phase. The isothermal ω phase formed after aging at 723 K and 773 K for 3.6 ks, which results in a decrease in the lattice parameter of the β phase and an increase in the hardness. The isothermal ω phase formation is suppressed with Fe and/or Zr additions. This is interpreted as the consequence of the increase in the average value of the bond order (Bo) for the Ti-15Mo-5Zr and Ti-15Mo-5Zr-1Fe alloys, and of the decrease in the average value of the metal d-orbital energy level (Md) for the Ti-15Mo-1Fe alloy. In addition, the degree of the suppression of isothermal ω phase can be predicted by the average values of Bo and Md

  15. Ordering in rapidly solidified Ni/sub 2/Mo

    International Nuclear Information System (INIS)

    Kulkarni, U.D.; Dey, G.K.; Banerjee, S.

    1988-01-01

    Ordering processes in the Ni-Mo system have been a subject of several investigations. Although the ordering behaviour of the Ni/sub 4/Mo and the Ni/sub 3/Mo has been examined in detail, no such study has been reported in the case of the Ni/sub 2/Mo alloy. The lack of experimental work on ordering transformations in Ni/sub 2/Mo is presumably due to the difficulty in obtaining a single phase fcc alloy of this composition. Enhanced solid solubility of Mo in Ni, which accompanies rapid solidification processing (RSP) makes the formation of such a phase possible. The ordering processes in Ni-Mo based alloys show several remarkable features. Firstly, the alloy (15 - 28 at % Mo) quenched from the α -phase filed exhibit a short range order (SRO) characterized by the presence of intensity maxima at /1 1/2 0/ fcc positions of the reciprocal space. This state of SRO has been attributed to the occurrence of 1 1/2 O spinodal ordering in the system. Secondly, the transformation from the state of SRO to the equilibrium/metastable coherent long range ordered (LRO) structures appears to take place in a continuous manner at relatively low temperatures of aging. Three different coherent LRO structures, namely: the equilibrium Ni/sub 4/Mo (prototype structure D1/sub a/) and the metastable Ni/sub 3/Mo (DO/sub 22/) and Ni/sub 2/Mo (Pt/sub 2/Mo) structures have reported to evolve from the SRO alloy, depending upon the aging treatment and the composition of the alloy

  16. Mechanically Activated Combustion Synthesis of MoSi2-Based Composites

    Energy Technology Data Exchange (ETDEWEB)

    Shafirovich, Evgeny [Univ. of Texas, El Paso, TX (United States)

    2015-09-30

    The thermal efficiency of gas-turbine power plants could be dramatically increased by the development of new structural materials based on molybdenum silicides and borosilicides, which can operate at temperatures higher than 1300 °C with no need for cooling. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. One approach is based on the fabrication of MoSi2-Mo5Si3 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of Mo5Si3. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, materials based on Mo5SiB2 phase are promising materials that offer favorable combinations of high temperature mechanical properties and oxidation resistance. However, the synthesis of Mo-Si-B multi-phase alloys is difficult because of their extremely high melting temperatures. Mechanical alloying has been considered as a promising method, but it requires long milling times, leading to large energy consumption and contamination of the product by grinding media. In the reported work, MoSi2-Mo5Si3 composites and several materials based on Mo5SiB2 phase have been obtained by mechanically activated self-propagating high-temperature synthesis (MASHS). Short-term milling of Mo/Si mixture in a planetary mill has enabled a self-sustained propagation of the combustion front over the mixture pellet, leading to the formation of MoSi2-T1 composites. Combustion of Mo/Si/B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of MoB, TiC, or TiB2. Upon ignition, Mo/Si/B and Mo/Si/B/Ti mixtures exhibited spin combustion, but the products were porous, contained undesired secondary phases, and had low oxidation resistance. It has been shown that use of

  17. Postirradiation fracture toughness tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Reed, J.R.; Sprague, J.A.

    1984-01-01

    Alloy HT-9 and Modified 9Cr-1Mo are being evaluated for potential applications as first wall materials in magnetic fusion reactors. Objectives of the current research task were to test fatigue-precracked Charpy-V (PCC/sub v/) specimens from representative plates irradiated in the UBR reactor at 149 0 C or 300 0 C, and, to compare the results against postirradiation notch ductility data developed previously for the materials. Both plates represent electroslag refined (ESR) melt processing. PCC/sub v/ specimens of Alloy HT-9 and Modified 9Cr-1Mo alloy were irradiated at 300 0 C and 149 0 C, respectively, to approx.0.8 X 10 20 n/cm 2 , E > 0.1 MeV. During this period, postirradiation tests for fracture toughness were completed and results compared to notch ductility determinations from standard Charpy-V (C/sub v/) specimens irradiated in the same reactor experiments. Fracture surface examinations by SEM are also reported

  18. The influence of Ni, Mo, Si, Ti on the surface alloy layer quality

    Directory of Open Access Journals (Sweden)

    A. Walasek

    2011-07-01

    Full Text Available The paper presents research results of microstructure and selected mechanical properties of alloy layer. The aim of the researches was to determine the influence of Ni, Mo, Si and Ti with high-carbon ferrochromium (added separately to pad on the alloy layer on the steel cast. Metallographic studies were made with use of light microscopy. During studies of usable properties measurements of hardness, microhardness and abrasive wear resistance of type metal-mineral for creation alloy layer were made. As thick as possible composite layer without any defects and discontinuity was required. The conducted researches allowed to take the suitable alloy addition of the pad material which improved the quality of the surface alloy layer.

  19. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E [Tohoku University, Sendai (Japan); Yoshimi, K; Hanada, S [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  20. Development of silicide coating over molybdenum based refractory alloy and its characterization

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Banerjee, S.; Sharma, I.G.; Suri, A.K.

    2010-01-01

    Molybdenum based refractory alloys are potential candidate materials for structural applications in high temperature compact nuclear reactors and fusion reactors. However, these alloys being highly susceptible to oxidation in air or oxygen at elevated temperature, undergoes severe losses from highly volatile molybdenum trioxide species. Present investigation, therefore, examines the feasibility of development of silicide type of coating over molybdenum base TZM alloy shape (Mo > 99 wt.%) using pack cementation coating technique. TZM alloy was synthesized in this laboratory from oxide intermediates of MoO 2 , TiO 2 and ZrO 2 in presence of requisite amount of carbon, by alumino-thermic reduction smelting technique. The arc melted and homogenized samples of TZM alloy substrate was then embedded in the chosen and intimately mixed pack composition consisting of inert matrix (Al 2 O 3 ), coating powder (Si) and activator (NH 4 Cl) taken in the judicious proportion. The sealed charge packs contained in an alumina crucible were heated at temperatures of 1000 o C for 8-16 h heating cycle to develop the coating. The coating phase was confirmed to be of made of MoSi 2 by XRD analysis. The morphology of the coating was studied by SEM characterization. It had revealed that the coating was diffusion bonded where Si from coating diffused inward and Mo from TZM substrate diffused outward to form the coating. The coating was found to be resistant to oxidation when tested in air up to 1200 o C. A maximum 100 μm of coating thickness was achieved on each side of the substrate.

  1. Phase composition of Al-Ti-Nb-Mo γ alloys in the heat-treatment temperature range: Calculation and experiment

    Science.gov (United States)

    Belov, N. A.; Dashkevich, N. I.; Bel'tyukova, S. O.

    2015-07-01

    The phase composition of TNM-type Al-Ti-Nb-Mo γ alloys at heat-treatment temperatures is quantitatively studied using the Thermo-Calc program package and experimental methods. Isothermal cross sections are calculated and the joint influence of two alloying elements on the phase composition of the alloy is determined at the mean concentration of a third component. Based on the calculations of vertical cross sections, the boundaries of the four-phase eutectoid reaction α → α2 + β + γ are found. The temperature is shown to significantly influence the phase compositions of the γ alloys, among them the mass fractions of various phases (α, β, γ,α2) and the element concentration in them.

  2. A study on corrosion resistance of the Ti-10Mo experimental alloy after different processing methods

    International Nuclear Information System (INIS)

    Alves, A.P.R.; Santana, F.A.; Rosa, L.A.A.; Cursino, S.A.; Codaro, E.N.

    2004-01-01

    The purpose of this work was to evaluate the microstructure and corrosion resistance of the experimental Ti-10Mo (wt.%) alloy as-cast and treated. These alloys were divided into three groups for analysis: as-cast, after solution heat treatment at 1000 deg. C in argon atmosphere and remelting in centrifugal machine (investment casting). The microstructure formed from each condition was studied using optical microscopy. Corrosion behavior of titanium-molybdenum alloys in fluoridated physiological serum (0.15 M NaCl+0.03 M NaF [pH=6]) was studied and compared with Ti-6Al-4V alloy. In all electrodes systems, similar electrochemical response was obtained. In naturally aerated physiological serum, the corrosion rate is mainly controlled by dissolution process of a complex passive film. This film appears to be formed by titanium species with different oxidation states. Experimental Ti-10Mo alloy exhibit the lowest passive current densities, in particular, samples after heat treatment

  3. Investigation of processing effects on the corrosion resistance of Ti20Mo alloy in saline solutions

    International Nuclear Information System (INIS)

    Bolat, G.; Izquierdo, J.; Gloriant, T.; Chelariu, R.; Mareci, D.; Souto, R.M.

    2015-01-01

    Graphical abstract: - Highlights: • Alloy fabrication method affects both surface finish and corrosion resistance. • More porous surface finish and higher wettability produced by powder sintering. • Passive layer formed on sintered alloy breaks down in saline solution. • Increase in surface porosity facilitated electron transfer through the oxide film. • More corrosion resistant alloy produced by cold crucible levitation melting. - Abstract: The electrochemical properties of Ti20Mo alloys prepared using different fabrication procedures, namely cold crucible levitation melting (CCLM) and powder sintering, were investigated using linear potentiodynamic polarization and EIS measurements. The surface condition was established using AFM, with the observation of a more porous surface finish in the case of powder sintering. A major effect of surface conditioning on the corrosion resistance of Ti20Mo alloys was observed, where the compact finish exhibits a superior corrosion resistance in chloride-containing saline solutions. Less insulating surfaces towards electron exchange resulted for the more porous finish as revealed by scanning electrochemical microscopy (SECM)

  4. Non-destructive Residual Stress Analysis Around The Weld-Joint of Fuel Cladding Materials of ZrNbMoGe Alloys

    Directory of Open Access Journals (Sweden)

    Parikin

    2003-08-01

    Full Text Available The residual stress measurements around weld-joint of ZrNbMoGe alloy have been carried out by using X-ray diffraction technique in PTBIN-BATAN. The research was performed to investigate the structure of a cladding material with high temperature corrosion resistance and good weldability. The equivalent composition of the specimens (in %wt. was 97.5%Zr1%Nb1%Mo½%Ge. Welding was carried out by using TIG (tungsten inert gas technique that completed butt-joint with a current 20 amperes. Three region tests were taken in specimen while diffraction scanning, While diffraction scanning, tests were performed on three regions, i.e., the weldcore, the heat-affected zone (HAZ and the base metal. The reference region was determined at the base metal to be compared with other regions of the specimen, in obtaining refinement structure parameters. Base metal, HAZ and weldcore were diffracted by X-ray, and lattice strain changes were calculated by using Rietveld analysis program. The results show that while the quantity of minor phases tend to increase in the direction from the base metal to the HAZ and to the weldcore, the quantity of the ZrGe phase in the HAZ is less than the quantity of the ZrMo2 phase due to tGe element evaporation. The residual stress behavior in the material shows that minor phases, i.e., Zr3Ge and ZrMo2, are more dominant than the Zr matrix. The Zr3Ge and ZrMo2 experienced sharp straining, while the Zr phase was weak-lined from HAZ to weldcore. The hydrostatic residual stress ( in around weld-joint of ZrNbMoGe alloy is compressive stress which has minimum value at about -2.73 GPa in weldcore region

  5. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    Science.gov (United States)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  6. Study on characterization of interaction layer between U-10wt%Mo alloy and LT24Al

    International Nuclear Information System (INIS)

    Chen Jiangang; Yin Changgeng; Sun Changlong; Pang Xiaoxuan; Liu Yunming

    2009-01-01

    The characterization of interaction layer(IL) between U-10wt%Mo alloy and LT24 Al was studied in detail in this paper. Sandwich structured U-Mo/LT24 Al diffusion couples were hot pressed at different temperature and pressure for different time. Then they were analyzed by Optical Microscope (OM) and Scanning Electron Microscope (SEM) to observe the width of the IL. The distribution of the diffusion elements and the phases in the IL were determined by Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD). Analysis results are as follows: the diffusion manner was reaction diffusion, and diffusion direction mainly was that Al atoms diffused to U-Mo alloy; diffusion mechanism was vacancy diffusion and growth kinetics showed reaction was controlled by the diffusion speed; the IL containing single phase was constituted mainly by (U, Mo) Al 3 ; the IL containing two phases or more was constituted mainly by (U, Mo) Al 3 and (U, Mo) Al 4 and Al 20 Mo 2 U; and Si impurity in the LT24 Al was easy to enrich in the IL which showed Si added to Al could play positive role on improve compatibility between U-Mo and Al. (authors)

  7. Welding and corrosion resistance of the new nitrogen alloyed steel X2 CrNiMnMoN241764

    International Nuclear Information System (INIS)

    Arit, N.; Henser, H.; GroB, V.

    1994-01-01

    Remanit 4565 S is a new developed nitrogen alloyed austenitic stainless steel. Characteristic features are: improved strength and toughness, delayed precipitation of carbides and intermetallic phases, improved corrosion resistance. Welding fabrication is possible without the risk of pore formation. TIG-welded joints are as resistant as the base metal, using filler metal SG-NiCr 20 Mo 15 (Thermanit Nimo C) respectively SG-NiCr 28 Mo(Thermanit 30/40 E) according to the area of application. (Author) 8 refs

  8. Crevice corrosion propagation on alloy 625 and alloy C276 in natural seawater

    International Nuclear Information System (INIS)

    McCafferty, E.; Bogar, F.D.; Thomas, E.D. II; Creegan, C.A.; Lucas, K.E.; Kaznoff, A.I.

    1997-01-01

    Chemical composition of the aqueous solution within crevices on two different Ni-Cr-Mo-Fe alloys immersed in natural seawater was determined using a semiquantitative thin-layer chromatographic method. Active crevices were found to contain concentrated amounts of dissolved Ni 2+ , Cr 3+ , Mo 3+ , and Fe 2+ ions. Propagation of crevice corrosion for the two alloys was determined from anodic polarization curves in model crevice solutions based upon stoichiometric dissolution or selective dissolution of alloy components. Both alloys 625 (UNS N06625) and C276 (UNS N10276) underwent crevice corrosion in the model crevice electrolytes. For the model crevice solution based upon selective dissolution of alloy constituents, the anodic dissolution rate for alloy 625 was higher than that for alloy C276. This trend was reversed for the model crevice solution based upon uniform dissolution of alloy constituents

  9. Study of relationships between microstructures and service properties, of U(Mo) fissile alloys particles

    International Nuclear Information System (INIS)

    Champion, G.

    2013-01-01

    This thesis enters in the Material and Testing Reactors (MTRs) framework where the necessity to use a Low- Enriched Uranium (LEU) fuel has led to the development of a dense fissile material based on U(Mo) alloys. The designed fuel is a composite material, made of dispersed U(Mo) particles embedded in an Al based matrix. Post- Irradiation Examinations of these LEU fuel plates showed that the irradiation behaviour of the fuel is not fit for purpose yet. This is mainly due to the growth of an interaction layer between the fuel and the matrix and to the bad gas retention efficiency of the fuel particles. This thesis had for purpose the development of several solutions in order to modify and/or decrease or even inhibit the fuel/matrix interaction and to increase the gas retention capacities of the fuel. In order to achieve so, two solutions have been tested during this thesis, (i) optimization of the U(Mo) alloy intrinsic microstructural properties and (ii) modification of the fuel meat/matrix interface, through the deposition of a layer acting as a 'diffusion barrier'. Concerning the first axis of study, a characterization campaign of the reference powders has been performed, as a first step, in order to identify the key parameters for the development of products showing an 'optimized' microstructure. Two novel products have then been developed: one based on a combined process associating 'atomization + grinding' and another, which consists in a magnesiothermy process. These products were subjected to characterization: X-Ray and neutron diffraction, electron backscattered diffraction and transmission electron microscopy have been performed in particular. We managed to show that these powders can be an advantage concerning the issue with the gas retention capacities of the fuel. Concerning the growth of the interaction layer, a third product has been developed: an U(Mo) atomized powder, coated with an alumina layer. We managed to show that a thickness between 100 and

  10. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Science.gov (United States)

    Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek

    2018-05-01

    DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  11. Annealing effect on redistribution of atoms in austenite of Fe-Ni-Mo and Fe-Ni-Si alloys

    International Nuclear Information System (INIS)

    Rodionov, Yu.L.; Isfandiyarov, G.G.; Zambrzhitskij, V.N.

    1980-01-01

    Using the Moessbauer spectrum method, studied has been the change in the fine atomic structure of the Fe-(28-36)%Ni austenite alloys with Mo and Si additives during annealing in the 200-800 deg C range. Also, the energy of the activation of processes, occurring at the annealing temperatures of below 500 deg C has been researched. On the basis of the obtained results a conclusion is drawn that the annealing of the investigated alloys at 300-500 deg C is conducive to the redistribution of the atoms of the alloying element and to the formation of regions with a higher content of Ni and Mo(Si) atoms

  12. Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co-Cr-Mo alloys containing nitrogen.

    Science.gov (United States)

    Mori, Manami; Yamanaka, Kenta; Kuramoto, Koji; Ohmura, Kazuyo; Ashino, Tetsuya; Chiba, Akihiko

    2015-10-01

    This paper investigated the effect of carbon addition on the microstructure and tensile properties of Ni-free biomedical Co-29Cr-6Mo (mass%) alloys containing 0.2 mass% nitrogen. The release of metal ions by the alloys was preliminarily evaluated in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid, after which samples with different carbon contents were subjected to hot rolling. All specimens were found to primarily consist of a γ-phase matrix due to nitrogen doping, with only the volume fraction of M23C6 increasing with carbon concentration. Owing to the very fine size of these carbide particles (less than 1 μm), which results from fragmentation during hot rolling, the increased formation of M23C6 increased the 0.2% proof stress, but reduced the elongation-to-failure. Carbon addition also increased the amount of Co and Cr released during static immersion; Co and Cr concentrations at the surfaces, which increased with increasing the bulk carbon concentrations, possibly enhanced the metal ion release. However, only a very small change in the Mo concentration was noticed in the solution. Therefore, it is not necessarily considered a suitable means of improving the strength of biomedical Co-Cr-Mo alloys, even though it has only to date been used in this alloy system. The results of this study revealed the limitations of the carbon strengthening and can aid in the design of biomedical Co-Cr-Mo-based alloys that exhibit the high durability needed for their practical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, Claire [University of California, Berkeley & LBNL; Bei, Hongbin [ORNL; Lowry, M. B. [University of California, Berkeley; Oh, Jason [Hysitron, Inc., MN; Asif, S.A. Syed [Hysitron, Inc., MN; Warren, O. [Hysitron, Inc., MN; Shan, Zhiwei [Xi' an Jiaotong University, China & Hysitron, Inc., MN; George, Easo P [ORNL; Minor, Andrew [University of California, Berkeley & LBNL

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  14. Impact of the B2 ordering behavior on the mechanical properties of a FeCoMo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Turk, C., E-mail: chris.turk@unileoben.ac.at [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Leitner, H.; Kellezi, G. [Böhler Edelstahl GmbH & Co KG, Mariazellerstraße 25, 8605 Kapfenberg (Austria); Clemens, H. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria); Gan, W.M.; Staron, P. [German Engineering Materials Science Centre, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht (Germany); Primig, S. [Montanuniversität Leoben, Department of Physical Metallurgy and Materials Testing, Franz-Josef Straße 18, 8700 Leoben (Austria)

    2016-04-26

    A Fe - 25 at% Co - 9 at% Mo alloy can be hardened by nm-sized (Fe, Co){sub 7}Mo{sub 6} µ-phase precipitates which is accomplished by solution annealing in the austenite region followed by rapid quenching to room temperature and subsequent aging below the austenite transition temperature. In overaged condition the Mo-content in the remaining matrix drops towards zero and, therefore, the matrix consist of 71 at% Fe and 29 at% Co. The binary Fe-Co system shows a disorder-order, A2↔B2 transition at a critical ordering temperature between 25 at% and 72 at% Co. It is expected that the remaining matrix of an overaged Fe - 25 at% Co - 9 at% Mo alloy also exhibits such an ordering reaction. It will be demonstrated that the formation of a B2 ordered FeCo phase can be delayed or completely prevented by rapid quenching from temperatures above the critical ordering temperature. This has a strong impact on the mechanical properties of this alloy which have been studied by means of tensile, impact toughness and hardness testing. The evidence for a disorder-order transition in this alloy has been given by neutron diffraction as well as high resolution transmission electron microscopy.

  15. Detecting the Extent of Eutectoid Transformation in U-10Mo

    International Nuclear Information System (INIS)

    Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.; Lombardo, Nicholas J.; Joshi, Vineet V.; Sweet, Lucas E.; Manandhar, Sandeep; Lavender, Curt A.

    2016-01-01

    During eutectoid transformation of U-10Mo alloy, uniform metastable ? UMo phase is expected to transform to a mixture of ?-U and ?'-U_2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the ? phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the ? phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only ? phase and no ?' was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise ? phase with close to 0 at% Mo and ? phase with 28-32 at% Mo, and the Mo concentration was highest at the ?/? interface.

  16. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  17. A Preliminary Study to Enhance the Tribological Performance of CoCrMo Alloy by Fibre Laser Remelting for Articular Joint Implant Applications

    Directory of Open Access Journals (Sweden)

    Chi-Wai Chan

    2018-03-01

    Full Text Available CoCrMo alloy has long been used as a pairing femoral head material for articular joint implant applications because of its biocompatibility and reliable tribological performance. However, friction and wear issues are still present for CoCrMo (metal/CoCrMo (metal or CoCrMo (metal/ultrahigh molecular weight polyethylene (UHMWPE (plastic pairs in clinical observations. The particulate wear debris generated from the worn surfaces of CoCrMo or UHMWPE can pose a severe threat to human tissues, eventually resulting in the failure of implants and the need for revision surgeries. As a result, a further improvement in tribological properties of this alloy is still needed, and it is of great interest to both the implant manufacturers and clinical surgeons. In this study, the surface of CoCrMo alloy was laser-treated by a fibre laser system in an open-air condition (i.e., no gas chamber required. The CoCrMo surfaces before and after laser remelting were analysed and characterised by a range of mechanical tests (i.e., surface roughness measurement and Vickers micro-hardness test and microstructural analysis (i.e., XRD phase detection. The tribological properties were assessed by pin-on-disk tribometry and dynamic light scattering (DLS. Our results indicate that the laser-treated surfaces demonstrated a friction-reducing effect for all the tribopairs (i.e., CoCrMo against CoCrMo and CoCrMo against UHHMWPE and enhanced wear resistance for the CoCrMo/CoCrMo pair. Such beneficial effects are chiefly attributable to the presence of the laser-formed hard coating on the surface. Laser remelting possesses several competitive advantages of being a clean, non-contact, fast, highly accurate and automated process compared to other surface coating methods. The promising results of this study point to the possibility that laser remelting can be a practical and effective surface modification technique to further improve the tribological performance of CoCr-based

  18. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    Directory of Open Access Journals (Sweden)

    Mariusz Hasiak

    2018-05-01

    Full Text Available DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  19. A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy

    Science.gov (United States)

    Li, Ruidi; Yuan, Tiechui; Qiu, Zili

    2014-07-01

    A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.

  20. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.

    Science.gov (United States)

    Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z

    2015-12-01

    CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. Nd Fe10 Mo2 alloys production through reduction-diffusion for nitrogenation

    International Nuclear Information System (INIS)

    Guilherme, Eneida da G.; Rechenberg, Hercilio R.

    1996-01-01

    In this work we have examined the effect of various processing variables on the Nd Fe 10 Mo 2 phase formation by reduction-diffusion calciothermic process (R D C). The best results were obtained for 4 hours treatment at 950 deg C with 40% excess content Nd Cl 3 and 50% excess content of Ca, for alloy Nd Fe 10.5 Mo 1.5 . Preliminary nitrogen absorption experiments have been done, without any further powder size reduction at temperatures between 300 and 350 deg C. (author)

  2. Combined thermodynamic study of nickel-base alloys. Progress report

    International Nuclear Information System (INIS)

    Brooks, C.R.; Meschter, P.J.

    1981-01-01

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni 4 Mo, (4) heat capacities of Ni and disordered Ni 3 Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys

  3. Carbon supported Pd-Co-Mo alloy as an alternative to Pt for oxygen reduction in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Ch. Venkateswara [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India); Viswanathan, B., E-mail: bvnathan@acer.iitm.ernet.i [National Centre for Catalysis Research, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, TN (India)

    2010-03-01

    Carbon black (CDX975) supported Pd and Pd-Co-Mo alloy nanoparticles are prepared by the reduction of metal precursors with hydrazine in reverse microemulsion of water/Triton-X-100/propanol-2/cyclohexane. The as-synthesized Pd-Co-Mo/CDX975 is heat treated at 973, 1073 and 1173 K to promote alloy formation. The prepared materials are characterized by powder XRD and EDX. Face-centred cubic structure of Pd is evident from XRD. The chemical composition of the respective elements in the catalysts is evaluated from the EDX analysis and observed that it is in good agreement with initial metal precursor concentrations. Oxygen reduction measurements performed by linear sweep voltammetry indicate the good catalytic activity of Pd-Co-Mo alloys compared to Pd. This is due to the suppression of (hydr)oxy species on Pd surface by the presence of alloying elements, Co and Mo. Among the investigated catalysts, heat-treated Pd-Co-Mo/CDX975 at 973 K exhibited good ORR activity compared to the catalysts heat treated at 1073 and 1173 K. This is due to the small crystallite size and high surface area. Rotating disk electrode (RDE) measurements indicated the comparable ORR activity of heat-treated Pd-Co-Mo/CDX975 at 973 K with that of commercial Pt/C. Kinetic analysis reveals that the ORR on Pd-Co-Mo/CDX975 follows the four-electron pathway leading to water. Moreover, Pd-Co-Mo/CDX975 exhibited substantially higher ethanol tolerance during the ORR than Pt/C. Good dispersion of metallic nanoparticles on the carbon support is observed from HRTEM images. Single-cell direct ethanol fuel cell tests indicated the comparable performance of Pd-Co-Mo/CDX975 with that of commercial Pt/C. Stability under DEFC operating conditions for 50 h indicated the good stability of Pd-Co-Mo/CDX975 compared with that of Pt/C.

  4. Effect of Sn addition on phases stability and mechanical properties of aged Ti-10Mo Alloy; Efeito da adicao de Sn na estabilidade de fases e propriedades de ligas Ti-10Mo resfriadas rapidamente e envelhecidas

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, F.F.; Lopes, E.S.N.; Cremasco, A.; Contieri, R.J.; Mello, M.G.; Caram, R., E-mail: flaviamec@fem.unicamp.b [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    Nowadays there is considerable effort in order to develop new titanium alloys using non-toxic elements such as Mo and Sn. This work deals with the alloys Ti-Mo-Sn. The samples were melted, homogenized and hot swaged. Afterwards they were solubilized and water quenched. The alloys were also aged at several temperatures Characterization involved determination of Young's modulus, hardness, X-ray diffraction and optical microscopy. The X-ray diffraction indicated the presence of athermal and isothermal {omega} phase for Ti-10Mo alloy. One also evidenced that the Vickers hardness varies with the temperature and the time of aging heat treatment. (author)

  5. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    Science.gov (United States)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  6. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    Science.gov (United States)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  7. Effect of composition and heat treatment on the phase formation of mechanically alloyed Cr-B and Mo-B powders

    International Nuclear Information System (INIS)

    Wu, H M; Hu, C J; Pai, K Y

    2009-01-01

    Blended elemental Cr-B and Mo-B powders in atomic ratio of 67:33, 50:50, and 20:80 were subjected to mechanical alloying up to 60 h and subsequent heat treatment to investigate effect of composition and heat treatment on the phase formation of Cr-B and Mo-B powders. It was studied by X-ray diffraction and differential thermal analysis. Mechanical alloying these powder mixtures for 60 h leads essentially to a amorphous structure except for the Mo 20 B 80 powder, which creates a partially amorphous MoB 4 structure. Annealing at lower temperatures relieves the strains cumulative in the milled powders and creates no new phase. The structures obtained after annealing the milled powders at higher temperature vary and depend on the overall composition of the powder mixtures. Annealing the milled Mo-B powders having greater Mo content ends up with a dissociation reaction at higher temperature.

  8. Interplay between lattice distortions, vibrations and phase stability in NbMoTaW high entropy alloys

    NARCIS (Netherlands)

    Kormann, F.H.W.; Sluiter, M.H.F.

    2016-01-01

    Refractory high entropy alloys (HEA), such as BCC NbMoTaW, represent a promising materials class for next-generation high-temperature applications, due to their extraordinary mechanical properties. A characteristic feature of HEAs is the formation of single-phase solid solutions. For BCC NbMoTaW,

  9. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  10. Strength and low temperature toughness of Fe-13%Ni-Mo alloys

    International Nuclear Information System (INIS)

    Ishikawa, Keisuke; Maruyama, Norio; Tsuya, Kazuo

    1978-01-01

    Mechanical tests were made on newly developed Fe-13%Ni-Mo alloys for eryogenic service. The effects of the additional elements were investigated from the viewpoint of the strength and the low temperature toughness. The alloys added by Al, Ti or V have the better balance of these properties. They did not show low temperature brittleness induced by cleavage fracture in Charpy impact test at 77 K. The microfractography showed the utterly dimple rupture patterns on the broken surface of all specimens. It would be supposed that the cleavage fracture stress is considerably higher than the flow stress. These alloys are superior to some commercial structural materials for low temperature use in the balance between the strength at 300 K and the toughness at 77 K. Additionally, it is noted that these experimental alloys have a good advantage in getting high strength and high toughness by the rather simple heat treatment. (auth.)

  11. Formation of Ni(Al, Mo) solid solutions by mechanical alloying and their ordering on heating

    International Nuclear Information System (INIS)

    Portnoj, V.K.; Tomilin, I.A.; Blinov, A.M.; Kulik, T.

    2002-01-01

    The Ni(Al, Mo) solid solutions with different crystalline lattice periods (0.3592 and 0.3570 nm correspondingly) are formed in the course of the Ni 70 Al 25 Mo 5 and Ni 75 Al 20 Mo 5 powder mixtures mechanical alloying (MA) (through the mechanical activation in a vibrating mill). After MA the Mo atoms in the Ni 75 Al 20 Mo 5 mixture completely replace the aluminium positions with formation of the Ni 75 (AlMo) 25 (the L1 2 -type) ternary ordered phase, whereby such a distribution remains after heating up to 700 deg C. The Ni(Al, Mo) metastable solution is formed by MA in the Ni 75 Al 20 Mo 5 mixture, which decays with the release of molybdenum and the remained aluminide undergoes ordering by the L1 2 -type [ru

  12. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior.

    Science.gov (United States)

    Cardoso, Flavia F; Ferrandini, Peterson L; Lopes, Eder S N; Cremasco, Alessandra; Caram, Rubens

    2014-04-01

    The correlation between the composition, aging heat treatments, microstructural features and mechanical properties of β Ti alloys is of primary significance because it is the foundation for developing and improving new Ti alloys for orthopedic biomaterials. However, in the case of Ti-Mo alloys, this correlation is not fully described in the literature. Therefore, the purpose of this study was to experimentally investigate the effect of composition and aging heat treatments on the microstructure, Vickers hardness and elastic modulus of Ti-Mo alloys. These alloys were solution heat-treated and water-quenched, after which their response to aging heat treatments was investigated. Their microstructure, Vickers hardness and elastic modulus were evaluated, and the results allow us to conclude that stabilization of the β phase is achieved with nearly 10% Mo when a very high cooling rate is applied. Young's modulus was found to be more sensitive to phase variations than hardness. In all of the compositions, the highest hardness values were achieved by aging at 723K, which was attributed to the precipitation of α and ω phases. All of the compositions aged at 573K, 623K and 723K showed overaging within 80h. © 2013 Published by Elsevier Ltd.

  13. Density of states in Mo-Ru amorphous alloys

    International Nuclear Information System (INIS)

    Miyakawa, W.

    1985-01-01

    The density of states is calculated for several compositions of amorphous Mo 1-x Ru x . In order to simulate amorphous clusters, the structures (atomic positions) utilized in the calculations were built from a small dense randomly packed unit of hard spheres with periodic boundary conditions. The density of states is calculated from a tight-binding Hamiltonian with hopping integrals parametrized in terms of the ddσ, ddΠ and ddδ molecular integrals. The results for pure Mo and pure Ru, compared in the canonical band aproximation, agree well with the literature. For binary alloys, the comparison of the calculated density of states with the rigid band aproximation results indicates that a more complex approach than the rigid band model must be used, even when the two atoms have similar bands, with band centers at nearly the same energy. The results also indicate that there is no relation between the peak in the superconducting critical temperature as a function of the number of valence eletrons per atom (e/a) in the region near Mo(e/a=6) and the peak of the density of states at the Fermi level in the same region, as has been sugested by some authors. (Author) [pt

  14. Effect of the Remelting on Transformations in Co-Cr-Mo Prosthetics Alloy

    Directory of Open Access Journals (Sweden)

    Kacprzyk B.

    2013-09-01

    Full Text Available In the article we were studing the impact of the remelting on transformations in Co-Cr-Mo prosthetics alloy. The TDA curves were analyzed, the microstructure was examined, the analysis of the chemical composition and hardness using the Brinell method was made. It was found that the obtained microstructure of the alloys that we studied do not differ significantly. In all four samples, microscopic images were similar to each other. The volume, size and distribution of the phases remain similar. Analysis of the chemical composition showed that all the samples fall within the compositions provided for the test alloy. Further to this the hardness of the samples, regardless of the number of remeltings did not show any significant fluctuations and remained within the error limit.After analyzing all the results, it can be concluded that the remeltings of the alloys should not have a significant impact on their properties. Secondarily melted alloys can be used for prosthetics works.

  15. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wen-Fu, E-mail: fujiiwfho@yahoo.com.tw [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Li, Yu-Chi [Department of Materials Science and Engineering, Da-Yeh University, Changhua, Taiwan (China); Hsu, Hsueh-Chuan, E-mail: hchsu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan (China)

    2012-04-01

    The effects of molybdenum on the structure and mechanical properties of a Ti-10Zr-based system were studied with an emphasis on improving the strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-10Zr and a series of Ti-10Zr-xMo (x = 1, 3, 5, 7.5, 10, 12.5, 15, 17.5 and 20 wt.%) alloys prepared using a commercial arc-melting vacuum pressure casting system were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The experimental results indicated that these alloys had different structures and mechanical properties when various amounts of Mo were added. The as-cast Ti-10Zr has a hexagonal {alpha} Prime phase, and when 1 wt.% Mo was introduced into the Ti-10Zr alloy, the structure remained essentially unchanged. However, with 3 or 5 wt.%, the martensitic {alpha} Double-Prime structure was found. When increased to 7.5 wt.% or greater, retention of the metastable {beta} phase began. The {omega} phase was observed only in the Ti-10Zr-7.5Mo alloy. Among all Ti-10Zr-xMo alloys, the {alpha} Double-Prime -phase Ti-10Zr-5Mo alloy had the lowest elastic modulus. It is noteworthy that all the Ti-10Zr and Ti-10Zr-xMo alloys had good ductility. In addition, the Ti-10Zr-5Mo and Ti-10Zr-12.5Mo alloys exhibited higher bending strength/modulus ratios at 20.1 and 20.4, respectively. Furthermore, the elastically recoverable angles of these two alloys (26.4 Degree-Sign and 24.6 Degree-Sign , respectively) were much greater than those of c.p. Ti (2.7 Degree-Sign ). Given the importance of these properties for implant materials, the low modulus, excellent elastic recovery capability and high strength/modulus ratio of {alpha} Double-Prime phase Ti-10Zr-5Mo and {beta} phase Ti-10Zr-12.5Mo alloys appear to make them promising candidates. - Highlights: Black-Right-Pointing-Pointer The effects of Mo on the structure

  16. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  17. Electrochemical hydrogen storage alloys and batteries fabricated from Mg containing base alloys

    Science.gov (United States)

    Ovshinsky, Stanford R.; Fetcenko, Michael A.

    1996-01-01

    An electrochemical hydrogen storage material comprising: (Base Alloy).sub.a M.sub.b where, Base Alloy is an alloy of Mg and Ni in a ratio of from about 1:2 to about 2:1, preferably 1:1; M represents at least one modifier element chosen from the group consisting of Co, Mn, Al, Fe, Cu, Mo, W, Cr, V, Ti, Zr, Sn, Th, Si, Zn, Li, Cd, Na, Pb, La, Mm, and Ca; b is greater than 0.5, preferably 2.5, atomic percent and less than 30 atomic percent; and a+b=100 atomic percent. Preferably, the at least one modifier is chosen from the group consisting of Co, Mn, Al, Fe, and Cu and the total mass of the at least one modifier element is less than 25 atomic percent of the final composition. Most preferably, the total mass of said at least one modifier element is less than 20 atomic percent of the final composition.

  18. The effects of minor alloy modifications and heat treatment on the microstructure and creep rupture behavior of 2.25Cr-1Mo Steel

    International Nuclear Information System (INIS)

    Todd, J.A.; Chung, D.W.; Parker, E.R.

    1983-01-01

    The effects of alloy additions on the microstructure of simulated cooled and tempered 2.25Cr-1Mo steels have been studied using transmission electron microscopy. Carbide precipitation sequences have been identified in the modification 3Cr-1Mo-1Mn-1Ni and compared to those in 2.25Cr-1Mo steels modified with Mn and Ni and also with Ti, V and B. The influence of minor compositional changes on the creep rupture behavior of 2.25Cr-1Mo steel has been studied at 500 C, 560 C, and 600 C. The most significant effect of alloy modifications on creep properties resulted from additions of Mn and Cr. Preliminary studies show that 1% Mn and 0.5Mn + 1Ni + 0.75Cr additions significantly reduce creep strength at all three temperatures for tests up to 2000 hours duration. The 3Cr-1Mo-1Mn-1Ni steel showed improvements in rupture ductility at all temperatures when compared with the base 2.25Cr-1Mo steel and the manganese-nickel modifications. Plots of the Larson-Miller parameter for both these modifications lay within the scatter band for commercial 2.25Cr-1Mo steels

  19. Detecting the Extent of Eutectoid Transformation in U-10Mo

    Energy Technology Data Exchange (ETDEWEB)

    Devaraj, Arun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jana, Saumyadeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnis, Colleen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lombardo, Nicholas J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sweet, Lucas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manandhar, Sandeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-08-31

    During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloy as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the

  20. Refining of cast intermetallic alloy Ti - 43 % Al - X (Nb, Mo, B) microstructure using heat treatment

    International Nuclear Information System (INIS)

    Imaev, R.M.; Imaev, V.M.; Khismatullin, T.G.

    2006-01-01

    The microstructure and high temperature mechanical properties are studied in a cast alloy Ti - 43 % Al - X (Nb, Mo, B) using methods of optical and scanning electron microscopy, X ray spectrum microanalysis and differential thermal analysis. The alloy belongs to a new class of β-solidifying γ-TiAl+α 2 -Ti 3 Al alloys. The alloy is investigated as cast and after heat treatment that promotes grain refinement. Mechanical properties are determined on tensile tests at 1000 and 1100 deg C in the air [ru

  1. Segregation in welded nickel-base alloys

    International Nuclear Information System (INIS)

    Akhtar, J.I.; Shoaib, K.A.; Ahmad, M.; Shaikh, M.A.

    1990-05-01

    Segregation effects have been investigated in nickel-base alloys monel 400, inconel 625, hastelloy C-276 and incoloy 825, test welded under controlled conditions. Deviations from the normal composition have been observed to varying extents in the welded zone of these alloys. Least effect of this type occurred in Monel 400 where the content of Cu increased in some of the areas. Enhancement of Al and Ti has been found over large areas in the other alloys which has been attributed to the formation of low melting slag. Another common feature is the segregation of Cr, Fe or Ti, most likely in the form of carbides. Enrichment of Al, Ti, Nb, Mb, Mo, etc., to different amounts in some of the areas of these materials is in- terpretted in terms of the formation of gamma prime precipitates or of Laves phases. (author)

  2. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  3. Corrosion of nickel-base heat resistant alloys in simulated VHTR coolant helium at very high temperatures

    International Nuclear Information System (INIS)

    Shindo, Masami; Kondo, Tatsuo

    1976-01-01

    A comparative evaluation was made on three commercial nickel-base heat resistant alloys exposed to helium-base atmosphere at 1000 0 C, which contained several impurities in simulating the helium cooled very high temperature nuclear reactor (VHTR) environment. The choice of alloys was made so that the effect of elements commonly found in commercial alloys were typically examined. The corrosion in helium at 1000 0 C was characterized by the sharp selection of thermodynamically unstable elements in the oxidizing process and the resultant intergranular penetration and internal oxidation. Ni-Cr-Mo-W type solution hardened alloy such as Hastelloy-X showed comparatively good resistance. The alloy containing Al and Ti such as Inconel-617 suffered adverse effect in contrast to its good resistance to air oxidation. The alloy nominally composed only of noble elements, Ni, Fe and Mo, such as Hastelloy-B showed least apparent corrosion, while suffered internal oxidation due to small amount of active impurities commonly existing in commercial heats. The results were discussed in terms of selection and improvement of alloys for uses in VHTR and the similar systems. (auth.)

  4. Development of new zirconium based alloys for burn-up extension of light water reactor fuels, (1)

    International Nuclear Information System (INIS)

    Isobe, Takeshi; Matsuo, Yutaka

    1992-01-01

    Steam corrosion tests and tensile were conducted to investigate the effects of alloying elements such as Sn, Nb, Fe, Cr, Mo and V, and the mechanical properties of Nb-containing Zr-base alloys. The corrosion resistance of Zr-base alloys in comparison to Zr'y-4 was significantly improved by the reduction of the Sn content by 0.5 wt% and by a small addition of Nb (about 0.05 to 0.2 wt%). However, the decrease in solute Sn atoms degraded mechanical properties. The increase of the total content of Fe and Cr from 0.3 to 0.7 wt% improved the mechanical properties without affecting the corrosion resistance. The decrease of the Fe/Cr ratio from 6.0 to 0.5 increased the corrosion resistance. Small addition of Mo and/or V resulted in a further improvement of mechanical properties. Based on these experiments, three Nb-containing Zr-base alloys with equivalent mechanical properties and superior corrosion resistance to Zr'y-4 were developed. (author)

  5. Microstructural stability of a NiAl-Mo eutectic alloy

    International Nuclear Information System (INIS)

    Kush, M.T.; Holmes, J.W.; Gibala, R.

    1999-01-01

    The microstructural stability of a directionally-solidified NiAl-9 at.% Mo quasi-binary alloy was investigated under conditions of thermal cycling between the temperatures 973K and 1,473K utilizing time-temperature heating and cooling profiles which approximate potential engine applications. Two different microstructures were examined: a cellular microstructure in which the faceted second-phase Mo rods in the NiAl matrix formed misaligned cell boundaries which separated aligned cells approximately 0.4 mm in width and 5--25 mm in length, and a nearly fault-free fully columnar microstructure well aligned along the [001] direction. Both microstructures resisted coarsening under thermal cycling, but plastic deformation induced by thermal stresses introduced significant specimen shape changes. Surprisingly, the cellular microstructure, for which the cell boundary region apparently acts as a deformation buffer, exhibited better resistance to thermal fatigue than the more fault-free and better aligned columnar microstructure

  6. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Silveyra, J.M.; Chromcikova, M.; Janickovic, D.; Sitek, J.; Svec, P.; Vlasak, G.

    2010-01-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  7. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P., E-mail: pavol.butvin@savba.s [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Butvinova, B. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Silveyra, J.M. [Instituto de Technologias y Ciencias de la Ingenieria H.F. Long, Facultad de Ingenieria, UBA-CONICET, Buenos Aires (Argentina); Chromcikova, M. [Vitrum Laugaricio - Joint Glass Centre of the Inst. of Inorg. Chem., SAS Bratislava and A. Dubcek University of Trencin, 911 50 Trencin (Slovakia); Janickovic, D. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, J. [Dept. of Nuclear Phys. and Technol., FEI, Slovak University of Technology, 812 19 Bratislava (Slovakia); Svec, P.; Vlasak, G. [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2010-10-15

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  8. Effects of substitution of Mo for Nb on less-common properties of Finemet alloys

    Science.gov (United States)

    Butvin, P.; Butvinová, B.; Silveyra, J. M.; Chromčíková, M.; Janičkovič, D.; Sitek, J.; Švec, P.; Vlasák, G.

    2010-10-01

    Particular properties of Fe-Nb/Mo-Cu-B-Si rapidly quenched ribbons were examined. Apart from minor variation, no significant difference due to the Mo for Nb substitution was observed in alloy density and its annealing-induced changes. The same holds for the anisotropic thermal expansion of as-cast ribbon when annealed and for induced anisotropy when annealed under stress. The Mo-substituted ribbons show only slightly higher crystallinity and lower coercivity if annealed in inert gas ambience than in vacuum. Some diversity in surface to interior heterogeneity of the differently annealed ribbons can still be distinguished. Preserving a minor percentage of Nb together with Mo does not seem substantiated to obtain favorable soft magnetic properties of ribbons annealed in inert gas.

  9. Stability range of MoC (hp2). II. Thermodynamic properties of generalized Lewis acid-base intermetallics

    International Nuclear Information System (INIS)

    Koukouvetakis, J.

    1988-01-01

    The γ-MoC phase with the hexagonal WC structure was prepared without the presence of metal stabilizers at temperatures below 1000 degree C. This phase was found to be thermodynamically stable at low temperatures and decomposed to Mo 2 C and graphite at 1400 K. Using equilibrium and thermodynamic data, the thermodynamic quantities of this phase were calculated. Oxide equilibration and solid-state galvanic cell experiments were used to study thermodynamic properties of binary Lewis acid-base stabilized transition-metal alloys. The activity of vanadium was determined in alloys of vanadium with platinum-group metals such as Rh, Pd, and Ir at 1000 degree C. The activities of titanium in titanium-iridium alloys and of niobium in Nb 3 Ir were determined at 1400 degree C. The ternary phase diagram of V-Pd-O at 1000 degree C was obtained. Based on the vanadium-palladium results, a partial titration curve of palladium by vanadium was constructed. The excess partial molar Gibbs free energy of vanadium at infinite dilution was found to be -36.4 kcal mol -1 at 1000 degree C. Results are in agreement with the predictions of Brewer's theory of transition-metal alloy acid-base behavior

  10. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  11. Inconel type resistive alloys based on ultrahigh purity nickel

    International Nuclear Information System (INIS)

    Matsarin, K.A.; Matsarin, S.K.

    2000-01-01

    The new nickel high-ohm alloys (ρ = 1.2-1.4 μOhm · m), containing the W, Al, Mo alloying elements in the quantity, not exceeding their solubility in a solid solution, are developed on the basis of the Inconel-type standard alloy. The optical composition of the alloy was determined by the results of the alloy was determined by the results of the electric resistance measurement and technological effectiveness indices (relative to the pressure and workable metal yield). The following optimal component concentrations were established: 14-17 %Cr; 10-12 %Fe; 0.5-1.0 %Cu; 1.0-1.5 %Mn; 0.1-0.2 %C; 0.4-0.6 %Si; 0.5-3.0 %W; 5-16 %Mo; 0.5-2.0 %Al; the remainder - Ni. The new alloys are recommended as materials for resistive elements of direct-glow cathode nodes of low capacity electron tubes [ru

  12. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  13. Transmission electron microscopy of aged Ti-10Mo-20Nb alloy after hot swaging; Microscopia eletronica de transmissao da liga Ti-10Mo-20Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara Borborema, E-mail: sinarab@msn.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Baldan, Renato, E-mail: renatobaldan@gmail.com [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia; Torres, Juliana; Oliveira, Nathalia Rodrigues, E-mail: juliana_torres_5@hotmail.com, E-mail: nathalia_roliveira@yahoo.com.br [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Mei, Paulo Roberto, E-mail: cnunes@demar.eel.usp.br, E-mail: pmei@fem.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2014-08-15

    Ti alloys are widely used in biomedical applications. Within this class, metastable β -Ti alloys stand, because through thermomechanical processing it is possible to obtain mechanical properties and in particular one suitable Young's modulus for biomedical applications. These alloys require high mechanical strength and a low Young's modulus to avoid stress shielding. Preliminary studies showed that the microstructure of the Ti-10Mo- 20Nb alloy after cold forging and aging 500 °C/24 h consisted in bimodal distribution of α phase in the β matrix. The aim of this study was to characterize the microstructure of Ti-10Mo-20Nb alloy after hot forging and aging at 500 °C for 24 hours. Microstructural characterization consisted of analyzes by X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in a bimodal α distribution in the β matrix, hot forging resulted in a thin and homogeneous α precipitation in the β matrix. (author)

  14. Influence of cold-working and subsequent heat-treatment on young's modulus and strength of Co-Ni-Cr-Mo alloy

    International Nuclear Information System (INIS)

    Otomo, Takuma; Matsumoto, Hiroaki; Chiba, Akihiko; Nomura, Naoyuki

    2009-01-01

    Changes in Young's modulus of the Co-31 mass%Ni-19 mass%Cr-10 mass%Mo alloy (Co-Ni based alloy) with cold-swaging, combined with heat-treatment at temperatures from 673 to 1323 K, was investigated to enhance the Young's modulus of Co-Ni based alloy. After cold-swaging, the Co-Ni based alloy, forming fiber deformation texture, shows the Young's modulus of 220 GPa. Furthermore, after ageing the cold-swaged alloy at temperature from 673 to 1323 K, the Young's modulus increased to 230 GPa, accompanied by a decrease in the internal fiction and an increase in the tensile strength. This suggests that the increment in Young's modulus is caused by a moving of the vacancies to the dislocation cores and a continuous locking of the dislocations along their entire length with solute atoms (trough model). By annealing at 1323 K after cold swaging, Young's modulus slightly increased to 236 GPa. On the other hand, the tensile strength decreases to almost the same value as that before cold swaging due to recrystallization. These results suggest that the Young's modulus and the strength in the present alloy are simultaneously enhanced by the continuous dislocation locking during aging as well as the formation of fiber deformation texture. (author)

  15. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    Science.gov (United States)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  16. Effects of air melting on Fe/0.3/3Cr/0.5Mo/2Mn and Fe/0.3C/3Cr/0.5Mo/2Ni structural alloy steels

    International Nuclear Information System (INIS)

    Steinberg, B.

    1979-06-01

    Changing production methods of a steel from vacuum melting to air melting can cause an increase in secondary particles, such as oxides and nitrides, which may have detrimental effects on the mechanical properties and microstructure of the alloy. In the present study a base alloy of Fe/0.3C/3Cr/0.5Mo with either 2Mn or 2Ni added was produced by air melting and its mechanical properties and microstructure were compared to an identical vacuum melted steel. Significant differences in mechanical behavior, morphology, and volume fraction of undissolved inclusions have been observed as a function of composition following air melting. For the alloy containing manganese, all properties remained very close to vacuum melted values but the 2Ni alloy displayed a marked loss in Charpy impact toughness and plane strain fracture toughness. This loss is attributed to an increase in volume fraction of secondary particles in the nickel alloy, as opposed to both the Mn alloy and vacuum melted alloys, as well as to substaintially increased incidence of linear coalescence of voids. Microstructural features are discussed

  17. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jian Gan; Brandon Miller; Dennis Keiser; Adam Robinson; James Madden; Pavel Medvedev; Daniel Wachs

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists of fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.

  18. Local atomic order in nanocrystalline Fe-based alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Jartych, E.

    2003-01-01

    Using the 57 Fe Moessbauer spectroscopy, a local atomic order in nanocrystalline alloys of iron with Al, Ni, W and Mo has been determined. Alloys were prepared by mechanical alloying method. Analysis of Moessbauer spectra was performed on the basis of the local environment model in terms of Warren-Cowley parameters. It was shown that impurity atoms are not randomly distributed in the volume of the first and the second co-ordination spheres of 57 Fe nuclei and they form clusters

  19. Effect of crystallization on corrosion behavior of Fe40Ni38B18Mo4 amorphous alloy in 3.5% sodium chloride solution

    DEFF Research Database (Denmark)

    Wu, Y.F.; Chiang, Wen-Chi; Wu, J.K.

    2008-01-01

    After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix.......After the crystallization of F40Ni38B18Mo4 amorphous alloy by vacuum annealing, the corrosion resistance of its crystalline state shows inferior to its amorphous state due to the local cell action between Ni phase and (Fe, Ni, Mo)(23)B-6 phase in matrix....

  20. Observation on the irradiation behavior of U-Mo alloy dispersion fuel

    International Nuclear Information System (INIS)

    Hofman, Gerard L.; Meyer, Mitchell K.; Park, Jong-Man

    2000-01-01

    Initial results from the postirradiation examination of high-density dispersion fuel test RERTR-3 are discussed. The U-Mo alloy fuels in this test were irradiated to 40% U-235 burnup at temperature ranging from 140 0 C to 240 0 C. Temperature has a significant effect on overall swelling of the test plates. The magnitude of the swelling appears acceptable and no unstable irradiation behavior is evident. (author)

  1. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  2. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  3. Improved hardness of laser alloyed X12CrNiMo martensitic stainless steel

    CSIR Research Space (South Africa)

    Adebiyi, DI

    2011-07-01

    Full Text Available The improvement in hardness of X12CrNiMo martensitic stainless steel laser alloyed with 99.9% pure titanium carbide, stellite 6 and two cases of premixed ratio of titanium carbide and stellite 6 [TiC (30 wt.%)- stellite 6 (70 wt.%) and TiC (70 wt...

  4. Alloying as a Route to Monolayer Transition Metal Dichalcogenides with Improved Optoelectronic Performance: Mo(S1–xSex)2 and Mo1–yWyS2

    KAUST Repository

    Shi, Zhiming

    2018-04-26

    On the basis of first-principles and cluster expansion calculations, we propose an effective approach to realize monolayer transition metal dichalcogenides with sizable band gaps and improved optoelectronic performance. We show that monolayer Mo(S1–xSex)2 and Mo1–yWyS2 with x = 1/3, 2/3 and y = 1/3, 1/2, 2/3 are stable according to phonon calculations and realize 1T′ or 1T″ phases. The transition barriers from the 2H phase are lower than for monolayer MoS2, implying that the 1T′ or 1T″ phases can be achieved experimentally. Furthermore, it turns out that the 1T″ monolayer alloys with x = 1/3, 2/3 and y = 1/3, 2/3 are semiconductors with band gaps larger than 1 eV, due to trimerization. The visible light absorption and carrier mobility are strongly improved as compared to 2H monolayer MoS2, MoSe2, and WS2. Thus, the 1T″ monolayer alloys have the potential to expand the applications of transition metal dichalcogenides, for example, in solar cells.

  5. Electrochemical and corrosion behavior of a 304 stainless-steel-based metal alloy wasteform in dilute aqueous environments

    International Nuclear Information System (INIS)

    Chen, Jian; Asmussen, R. Matthew; Zagidulin, Dmitrij; Noël, James J.; Shoesmith, David W.

    2013-01-01

    Highlights: ► We investigated the corrosion behavior of a metal alloy in six reference solutions. ► Majority of rhenium used as a technetium surrogate contained within a Fe 2 Mo phase. ► This prototype alloy exhibited generally passive behavior in all environments. ► Passivity breakdown events can occur and lead to localized corrosion. - Abstract: The electrochemical and corrosion behavior of a stainless-steel-based alloy made as a prototype metallic nuclear wasteform to immobilize 99 Tc, has been studied in a number of reference solutions ranging in pH from 4 to 10. The results showed the 47SS(304)-9Zr–23Mo prototype alloy contained at least five distinct phases with the majority of the Re, used as a Tc surrogate, contained within a Fe 2 Mo intermetallic phase. Polarization studies showed this alloy exhibited generally passive behavior in a range of dilute aqueous environments. Impedance measurements indicated passivity breakdown events can occur and lead to localized corrosion, especially in slightly alkaline conditions.

  6. Transmission electron microscopy of Ti-12Mo-13Nb Alloy aged after heat forging; Microscopia eletronica de transmissao da liga Ti-12Mo-13Nb envelhecida apos forjamento a quente

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Nathalia Rodrigues [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Baldan, Renato [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Nunes, Carlos Angelo; Mei, Paulo Roberto [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil); Gabriel, Sinara Borborema [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2014-06-15

    Metastable β-Ti alloys possess mechanical properties, in particular a elastic modulus that depends not only on its composition but also the applied thermomechanical treatments. These alloys require high mechanical strength and a low Young’s modulus to avoid stress shielding. Preliminary studies on the development of Ti- 13Nb-12Mo alloy showed than the better properties were obtained at aged at 500 ° C / 24 h after cold forging , whose microstructure consisted of bimodal α phase in the β matrix. In this work, Ti-12Mo-13Nb alloy was heat forged and aged at 500 deg C for 24h and the microstructure was analyzed by employing X-ray diffraction and transmission electron microscopy. According to the results, while the cold forging resulted in bimodal α phase in the β matrix, hot forging resulted in a fine and homogeneous α phase in the β matrix. (author)

  7. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys

    International Nuclear Information System (INIS)

    Guilherme, Eneida da Graca

    1999-01-01

    Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl 3 ), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl 3 , heating rate, and composition variation of the Nd Fe 12-x Mo x (1 ≥ x ≥ 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N 2 and by chemical reaction with sodium zide (Na N 3 ). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N 3 were studied. As prepared and interstitially modified Nd Fe 11 Ti, Nd Fe 10.5 Mo 1.5 and Nd Fe 10.75 Mo 1.25 alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N 2 is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N 3 was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-α phase increase. (author)

  8. Phase Stability in the Mo-Ti-Zr-C System via Thermodynamic Modeling and Diffusion Multiple Validation

    Science.gov (United States)

    Kar, Sujoy Kumar; Dheeradhada, Voramon S.; Lipkin, Don M.

    2013-08-01

    Alloys in the Mo-rich corner of the Mo-Ti-Zr-C system have found broad applications in non-oxidizing environments requiring structural integrity well beyond 1273 K (1000 °C). Alloys such as TZM (Mo-0.5Ti-0.08Zr-0.03C by weight %) and TZC (Mo-1.2Ti-0.3Zr-0.1C by weight) owe much of their high temperature strength and microstructural stability to MC and M2C carbide phases. In turn, the stability of the respective carbides and the subsequent mechanical behavior of the alloys are strongly dependent on the alloying additions and thermal history. A CALPHAD-based thermodynamic modeling approach is employed to develop a quaternary thermodynamic database for the Mo-Ti-Zr-C system. The thermodynamic database thus developed is validated with diffusion multiple experiments and the validated database is exercised to elucidate the effects of alloying and thermal history on the phase equilibrium in Mo-rich alloys.

  9. Nickel base alloys

    International Nuclear Information System (INIS)

    Gibson, R.C.; Korenko, M.K.

    1980-01-01

    The specified alloys consist of Ni, Cr and Fe as main constituents, and Mo, Nb, Si, Zr, Ti, Al, C and B as minor constituents. They are said to exhibit high weldability and long-time structural stability, as well as low swelling under nuclear radiation conditions, making them especially suitable for use as a duct material and control element cladding for sodium-cooled nuclear reactors. (U.K.)

  10. On the Correlation between Morphology of alpha and Its Crystallographic Orientation Relationship with TiB and Beta in Boron Containing Ti-5Al-5Mo-5V-3Cr-0.5Fe Alloy (Preprint)

    Science.gov (United States)

    2012-01-01

    orientation microscopy studies on a boron containing version of the commercial Ti- 5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. 15. SUBJECT TERMS Ti5553 ...of the commercial Ti-5Al-5Mo-5V-3Cr-0.5Fe ( Ti5553 ) alloy. Keywords: Ti5553 , TiB, EBSD, crystallography, orientation relationship. Paper There has...absence of orientation relationships between the α, β and TiB phases, on the morphology of α nucleating from TiB in the Ti5553 alloy.. The base

  11. The influence of temperature on σ-phase formation and the resulting hardening of Fe-Cr-Mo-alloys

    International Nuclear Information System (INIS)

    Waanders, F.B.; Vorster, S.W.; Pollak, H.

    1999-01-01

    Hardening in Fe-Cr-Mo-alloys due to the formation of σ-phase, has been the subject of theoretical and experimental interest. In the present investigation Fe-Cr-alloys containing 0, 2, 4 and 6% Mo were prepared and were fully transformed to the σ-phase by isothermally annealing the samples for various periods at temperatures of 600-800 deg. C. After each annealing cycle room temperature CEMS-spectra were recorded and micro-hardness tests were performed. The micro-hardness increases with annealing time and temperature, in accordance with the fraction of σ-phase present, and ranged from about 140 HV to 200 HV. From the measurements, activation energies were also deduced

  12. Investigation of the microstructure influence in the thermo-physical properties of U-Mo alloys through the laser flash method

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Alves, Fabio F.; Kelmer, Paula F.; Santos, Ana Maria M.; Camarano, Denise das M.; Ferraz, Wilmar B., E-mail: tap@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The U-Mo alloys are the most investigated and promising nuclear fuel material to be used in research and test reactors, according to the premises of the RERTR program, whose objective is to minimize the threats of nuclear weapons proliferation through the conversion of the nuclear fuels of research and test reactors form a high enrichment grade, HEU (235U>90%, to a low enrichment grade, LEU ({sup 235}U<20%). The high density of the U-Mo alloys associated with its ability to keep the gamma phase metastable at room temperature are the main advantages of these alloys, with Mo contents of 5, 7 and 10 wt% were induction melted and ageing heat treated at 300 and 500 deg C for 72, 120 and 240 h. Microstructural characterization was carried out in the as-cast and aged conditions through XRD and OM techniques. The laser Flash Method at environmental temperature was employed to investigate the variation of the thermal diffusivity as a function of the microstructure obtained in the as-cast and aged conditions. (author)

  13. Investigation of the microstructure influence in the thermo-physical properties of U-Mo alloys through the laser flash method

    International Nuclear Information System (INIS)

    Pedrosa, Tercio A.; Alves, Fabio F.; Kelmer, Paula F.; Santos, Ana Maria M.; Camarano, Denise das M.; Ferraz, Wilmar B.

    2013-01-01

    The U-Mo alloys are the most investigated and promising nuclear fuel material to be used in research and test reactors, according to the premises of the RERTR program, whose objective is to minimize the threats of nuclear weapons proliferation through the conversion of the nuclear fuels of research and test reactors form a high enrichment grade, HEU (235U>90%, to a low enrichment grade, LEU ( 235 U<20%). The high density of the U-Mo alloys associated with its ability to keep the gamma phase metastable at room temperature are the main advantages of these alloys, with Mo contents of 5, 7 and 10 wt% were induction melted and ageing heat treated at 300 and 500 deg C for 72, 120 and 240 h. Microstructural characterization was carried out in the as-cast and aged conditions through XRD and OM techniques. The laser Flash Method at environmental temperature was employed to investigate the variation of the thermal diffusivity as a function of the microstructure obtained in the as-cast and aged conditions. (author)

  14. Fission induced swelling and creep of U–Mo alloy fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cheon, J.S. [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-06-15

    Tapering of U–Mo alloy fuel at the end of plates is attributed to lateral mass transfer by fission induced creep, by which fuel mass is relocated away from the fuel end region where fission product induced fuel swelling is in fact the highest. This mechanism permits U–Mo fuel to achieve high burnup by effectively relieving stresses at the fuel end region, where peak stresses are otherwise expected because peak fission product induced fuel swelling occurs there. ABAQUS FEA was employed to examine whether the observed phenomenon can be simulated using physical–mechanical data available in the literature. The simulation results obtained for several plates with different fuel fabrication and loading scheme showed that the measured data were able to be simulated with a reasonable creep rate coefficient. The obtained creep rate constant lies between values for pure uranium and MOX, and is greater than all other ceramic uranium fuels.

  15. Physical and welding metallurgy of Gd-enriched austenitic alloys for spent nuclear fuel applications. Part II, nickel base alloys

    International Nuclear Information System (INIS)

    Mizia, Ronald E.; Michael, Joseph Richard; Williams, David Brian; Dupont, John Neuman; Robino, Charles Victor

    2004-01-01

    The physical and welding a metallurgy of gadolinium- (Gd-) enriched Ni-based alloys has been examined using a combination of differential thermal analysis, hot ductility testing. Varestraint testing, and various microstructural characterization techniques. Three different matrix compositions were chosen that were similar to commercial Ni-Cr-Mo base alloys (UNS N06455, N06022, and N06059). A ternary Ni-Cr-Gd alloy was also examined. The Gd level of each alloy was ∼2 wt-%. All the alloys initiated solidification by formation of primary austenite and terminated solidification by a Liquid γ + Ni 5 Gd eutectic-type reaction at ∼1270 C. The solidification temperature ranges of the alloys varied from ∼100 to 130 C (depending on alloy composition). This is a substantial reduction compared to the solidification temperature range to Gd-enriched stainless steels (360 to 400 C) that terminate solidification by a peritectic reaction at ∼1060 C. The higher-temperature eutectic reaction that occurs in the Ni-based alloys is accompanied by significant improvements in hot ductility and solidification cracking resistance. The results of this research demonstrate that Gd-enriched Ni-based alloys are excellent candidate materials for nuclear criticality control in spent nuclear fuel storage applications that require production and fabrication of large amounts of material through conventional ingot metallurgy and fusion welding techniques

  16. Evaluation of ferritic alloy Fe-2 1/4Cr-1Mo after neutron irradiation: Microstructural development

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1986-10-01

    As part of a program to provide a data base on the bainitic alloy Fe-2-1/4-1Mo for fusion energy applications, microstructural examinations are reported for nine specimen conditions for 2-1/4Cr-1Mo steel which had been irradiated by fast neutrons over the temperature range 390 to 510 0 C. Void swelling is found following irradiation at 400 0 C to 480 0 C. Concurrently dislocation structure and precipitation developed. Peak void swelling, void density, dislocation density and precipitate number density formed at the lowest temperature, approximately 400 0 C, whereas mean void size, and mean precipitate size increased with increasing irradiation temperature. The examination results are used to provide interpretation of in-reactor creep, density change and post irradiation tensile behavior

  17. 3D-imaging of selective laser melting defects in a Co–Cr–Mo alloy by synchrotron radiation micro-CT

    International Nuclear Information System (INIS)

    Zhou, Xin; Wang, Dianzheng; Liu, Xihe; Zhang, DanDan; Qu, Shilian; Ma, Jing; London, Gary; Shen, Zhijian; Liu, Wei

    2015-01-01

    Microstructure defects set the mechanical property limits for solid Co–Cr–Mo alloy prepared by selective laser melting (SLM). Previous studies were mainly based on 2D SEM images and thus not able to provide information of the 3D morphologies of the complex defects. In this paper, the remaining porosities in Co–Cr–Mo alloy parts prepared by selective laser melting were presented in relation to the laser processing parameters. In order to understand the defect forming mechanism, accurate 3D images of defects inside SLM fabricated Co–Cr–Mo samples were provided by synchrotron radiation micro-CT imaging of 300 μm thick slices cut from a 10 mm cube. With 3D reconstructed images distinctive morphologies of SLM defects spanning across the consolidated powder layers were generated. The faults can be classified as single layer or multi-layers defects. The accidental single layer defects form as gaps between adjacent laser melt tracks or melt track discontinuousness caused by inherent fluid instability under various disturbances. The first formed single layer defect generates often a multi-layer defect spanning for 2–3 subsequent powder layers. By stabilizing the melt pool flow and by reducing the surface roughness through adjusting processing parameters it appears possible to reduce the defect concentrations

  18. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy.

    Science.gov (United States)

    Puskar, Tatjana; Jevremovic, Danimir; Williams, Robert J; Eggbeer, Dominic; Vukelic, Djordje; Budak, Igor

    2014-09-11

    Dental alloys for direct metal laser sintering (DMLS) are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM) samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS). The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  19. A Comparative Analysis of the Corrosive Effect of Artificial Saliva of Variable pH on DMLS and Cast Co-Cr-Mo Dental Alloy

    Directory of Open Access Journals (Sweden)

    Tatjana Puskar

    2014-09-01

    Full Text Available Dental alloys for direct metal laser sintering (DMLS are available on the market today, but there is little scientific evidence reported on their characteristics. One of them is the release of ions, as an indicator of the corrosion characteristics of a dental alloy. Within this research, the difference in the elution of metals from DMLS and cast (CM samples of Co-Cr-Mo dental alloy in saliva-like medium of three different pH was examined by inductively-coupled plasma mass spectrometry (ICP-MS. The obtained results show that the metal elution in artificial saliva from the DMLS alloy was lower than the elution from the CM alloy. The release of all investigated metal ions was influenced by the acidity, both from the DMLS and CM alloy, throughout the investigated period of 30 days. The change in acidity from a pH of 6.8 to a pH of 2.3 for the cast alloy led to a higher increase of the elution of Co, Cr and Mo from CM than from the DMLS alloy. The greatest release out of Co, Cr and Mo was for Co for both tested alloys. Further, the greatest release of all ions was measured at pH 2.3. In saliva of pH 2.3 and pH 4.5, the longer the investigated period, the higher the difference between the total metal ion release from the CM and DMLS alloys. Both alloys showed a safe level of elution according to the ISO definition in all investigated acidic environments.

  20. Investigation of the structure and properties of the titanium alloy of the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system

    International Nuclear Information System (INIS)

    Moiseev, V.N.; Dolzhanskij, Yu.M.; Zakharov, Yu.I.; Znamenskaya, E.V.

    1979-01-01

    The alloys of martensitic type in the Ti-Al-Mo-V-Fe-Cu-Zr-Sn system after heat treatment are investigated. To determine the composition of the titanium alloy methods of mathematical planning of the experiment are applied. Results of mechanical tests of the alloys are presented, as well as coefficients of models for the properties, calculated according to these data. The investigation establishes the composition of a high-strength titanium alloy of a martensitic type, containing 4.5-60 % Al, 2.0-4.0 % Mo, 0.5-1.9 % V, 0.3-1.5 % Fe, 0.3-1.5 % Cu, 1.5-3.0 % Sn, 2.0-4.0 % Zr. The semiproducts, produced by deformation in β-field, after heat treatment have an ultimate strength >=120 kg/mm 2 , satisfactory ductility and reliability. The alloy possesses rather a high heat resistance and can be operated at 400-500 deg C

  1. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong

    2014-10-21

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  2. Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te)

    KAUST Repository

    Gan, Liyong; Zhang, Qingyun; Zhao, Yu-Jun; Cheng, Yingchun; Schwingenschlö gl, Udo

    2014-01-01

    A combination of density functional theory, an empirical model, and Monte Carlo simulations is used to shed light on the evolution of the atomic distribution in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1−xWxX2 (X = S, Se, and Te) as a function of the W concentration and temperature. Both random and ordered phases are discovered and the origin of the phase transitions is clarified. While the empirical model predicts at x = 1/3 and 2/3 ordered alloys, Monte Carlo simulations suggest that they only exist at low temperature due to a small energetic preference of Mo-X-W over Mo-X-Mo and W-X-W interactions, explaining the experimental observation of random alloy Mo1−xWxS2. Negative formation energies point to a high miscibility. Tunability of the band edges and band gaps by alteration of the W concentration gives rise to a broad range of applications.

  3. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  4. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    Science.gov (United States)

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  5. Phase transformation in a Ni-Mo-Cr alloy

    International Nuclear Information System (INIS)

    Dymek, S.; Wrobel, M.; Blicharski, M.; Dollar, M.

    2001-01-01

    The paper gives a characteristic of a nickel-based superalloy containing 25 wt.% Mo and 8 wt.% Cr with particular attention to the influence of a thermochemical and heat treatment on phase transformations. The applied heat treatments are comprised of soaking temperature 1100 o C followed by aging at 650 o C at three conditions: conventional aging for 72 hours, prolonged aging for 4000 hours and prolonged aging for 4000 hours followed by cold working and subsequent aging for 1000 hours. The conventional aging led to the formation of lenticular precipitates of the dispersed metastable Ni 2 (Mo,Cr) phase. The aging for 4000 hours brought about coarsening of the ordered domains without changing their crystallographic and ordering characteristics. The plastic deformation preceded the further aging for 1000 hours accelerated the decomposition of the Ni 2 (Mo,Cr) phase on the mixture of the Ni 3 Mo and Ni 4 Mo-based phases. (author)

  6. Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier

    International Nuclear Information System (INIS)

    Hsu, Kuo-Chung; Perng, Dung-Ching; Wang, Yi-Chun

    2012-01-01

    Highlights: ► A 5 nm-thick Mo added Ru film has been investigated as a Cu diffusion barrier layer. ► RuMo film provides over 175 °C improvement in thermal stability than that of pure Ru layer. ► The 5 nm-thick RuMo film shows excellent barrier performance against Cu diffusion upon 725 °C. - Abstract: This study investigated the properties of 5 nm-thick RuMo film as a Cu diffusion barrier. The sheet resistance variation and X-ray diffraction patterns show that the RuMo alloy film has excellent barrier performance and that it is stable upon annealing at 725 °C against Cu. The transmission electron microscopy micrograph and diffraction patterns show that the RuMo film is an amorphous-like structure, whereas pure Ru film is a nano-crystalline structure. The elements’ depth profiles, analyzed by X-ray photoelectron spectroscopy, indicate no inter-diffusion behavior between the Cu and Si layer, even annealing at 700 °C. Lower leakage current has been achieved from the Cu/barrier/insulator/Si test structure using RuMo film as the barrier layer. A 5 nm ultrathin RuMo film provided two orders of magnitude improvement in leakage current and also exhibited a 175 °C improvement in thermal stability than that of the pure Ru film. It is a potential candidate as a seedless Cu diffusion barrier for advanced Cu interconnects.

  7. Phase and microstructural characterization of Mo–Si–B multiphase intermetallic alloys produced by pressureless sintering

    International Nuclear Information System (INIS)

    Taleghani, P.R.; Bakhshi, S.R.; Borhani, G.H.; Erfanmanesh, M.

    2014-01-01

    Highlights: • Active and ultra-fine Mo–Si–B powders were produced by mechanical alloying. • The phases of MoSi 2 and MoB were obtained by sintering Mo–57Si–10B at 1400 °C for 2 h. • Composite based on MoB/MoSi 2 was obtained by sintering Mo–47Si–23B at 1300 °C for 3 h. • High content of MoB in the composite based on MoB/MoSi 2 increased density. • High hardness of the composite based on MoB/MoSi 2 is related to MoB matrix. -- Abstract: In this study Mo–47Si–23B and Mo–57Si–10B powders (at.%) was milled for 20 h in attritor ball mill with a rotational speed of 365 rpm and the ball/powder mass ratio 20/1. After degassing of As-mechanically alloyed powders at 450 °C, the powders were pressed into cylindrical samples with 25 mm diameter under 600 MPa pressure. The samples were sintered by using of a tube resistance furnace under Ar atmosphere. Phase and microstructure characteristic of mechanically alloyed powders and sintered samples, were investigated by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. Also hardness test was performed. Homogeneous distribution of active and ultra-fine powders were obtained after milling for 20 h. Mo–57Si–10B alloy with MoB and MoSi 2 dominant phases was produced by sintering at 1400 °C for 2 h. Dominant phases similar to Mo–57Si–10B alloy sintered at 1400 °C for 2 h could be synthesized in Mo–47Si–23B alloy after sintering at 1300 °C for 3 h, but volume fraction of MoB phase was different. The Mo–47Si–23B alloy contained a higher phase fraction of MoB compound as compared to Mo–57Si–10B alloy. Very high density in Mo–47Si–23B alloys was obtained, due to the presence of high volume fraction of MoB phase. Formation heat of MoB acted as a positive potential to increase driving force of sintering and consequently bulk density. Finally, a uniform and fine distribution of MoSi 2 particles in MoB continuous matrix in the microstructure of Mo-47Si

  8. Effect of Boron on Microstructure and Microhardness Properties of Mo-Si-B Based Coatings Produced Via TIG Process

    Directory of Open Access Journals (Sweden)

    Islak S.

    2016-09-01

    Full Text Available In this study, Mo-Si-B based coatings were produced using tungsten inert gas (TIG process on the medium carbon steel because the physical, chemical, and mechanical properties of these alloys are particularly favourable for high-temperature structural applications. It is aimed to investigate of microstructure and microhardness properties of Mo-Si-B based coatings. Optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM were used to characterize the microstructures of Mo-Si-B based coatings. The XRD results showed that microstructure of Mo–Si–B coating consists of α-Mo, α-Fe, Mo2B, Mo3Si and Mo5SiB2 phases. It was reported that the grains in the microstructure were finer with increasing amounts of boron which caused to occur phase precipitations in the grain boundary. Besides, the average microhardness of coatings changed between 735 HV0.3 and 1140 HV0.3 depending on boron content.

  9. The use of nitrogen to improve the corrosion resistance of FeCrNiMo alloys for the chemical process industries

    Energy Technology Data Exchange (ETDEWEB)

    Kearns, J.R.; Deverell, H.E.

    1987-06-01

    The addition of 0.1 to 0.25 wt% nitrogen to austenitic alloys has been shown to enhance resistance to localized corrosion in oxidizing chloride and reducing acid solutions. Further tests of FeCrNiMo alloys assess the effects of nitrogen additions on: mechanical properties, chloride and caustic stress corrosion cracking resistance, passivation characteristics, and general corrosion rates in various acid, alkali, and salt solutions pertinent to the chemical process industries. The precipitation of chromium-rich secondary phases was retarded by solid solution additions of 0.1 to 0.25 wt% nitrogen. The corrosion resistance of FeCrNiMoN alloys in the welded condition was improved by using shield-gas mixtures of argon and 2.5 to 5.0 wt% nitrogen.

  10. Wear behavior of 2-1/4 Cr-1Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    International Nuclear Information System (INIS)

    Wilson, W.L.

    1983-05-01

    A series of prototypic steam generator 2-1/4 Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, ''over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-1/4 Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 μm (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 μm (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 μm maximum tube wear allowance would not be exceeded in service. Softer, ''over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-1/4 Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-1/4 Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs

  11. Effects of thermal treatments on microstructure and mechanical properties of a Co-Cr-Mo-W biomedical alloy produced by laser sintering.

    Science.gov (United States)

    Mengucci, P; Barucca, G; Gatto, A; Bassoli, E; Denti, L; Fiori, F; Girardin, E; Bastianoni, P; Rutkowski, B; Czyrska-Filemonowicz, A

    2016-07-01

    Direct Metal Laser Sintering (DMLS) technology based on a layer by layer production process was used to produce a Co-Cr-Mo-W alloy specifically developed for biomedical applications. The alloy mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments. Roughness and hardness measurements, and tensile and flexural tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate the microstructure in different conditions. Results showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix responsible of the high UTS and hardness values in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  13. Characterization of a High Strength, Refractory High Entropy Alloy, AlMo0.5NbTa0.5TiZr

    Science.gov (United States)

    Jensen, Jacob

    High entropy alloys (HEAs) are a relatively new class of materials that have garnered significant interest over the last decade due to their intriguing balance of properties including high strength, toughness, and corrosion resistance. In contrast to conventional alloy systems, HEAs are based on four or more principal elements with near equimolar concentrations and tend to have simple microstructures due to the preferential formation of solid solution phases. HEAs appear to offer new pathways to lightweighting in structural applications, new alloys for elevated temperature components, and new magnetic materials, but more thorough characterization studies are needed to assess the viability of the recently developed multicomponent materials. One such HEA, AlMo0.5NbTa0.5TiZr, was selected to be the basis for this characterization study in part due to its strength at elevated temperatures (sigma0.2 = 1600 MPa at T = 800 °C) and low density compared with commercially available Ni-based superalloys. The refractory element containing HEA composition was developed in order to balance the high temperature strength of the refractory elements with the desirable properties achieved by the high entropy alloying design approach for potential use in aerospace thermal protection and structural applications. Ingots of AlMo0.5NbTa0.5TiZr were cast by vacuum arc melting followed by hot isostatic pressing (HIP) and homogenization at 1400 °C for 24 hrs with a furnace cool of 10 °C/min. The resulting microstructure was characterized at multiple length scales using x-ray diffraction (XRD), scanning transmission electron microscopy (SEM), conventional and scanning transmission electron microscopy (TEM and STEM), and x-ray energy dispersive spectroscopy (XEDS). The microstructure was found to consist of a periodic, coherent two phase mixture, where a disordered bcc phase is aligned orthogonally in an ordered B2 phase. Through microstructural evolution heat treatment studies, the

  14. Electrochemical and metallurgical characterization of ZrCr{sub 1-x}NiMo{sub x} AB{sub 2} metal hydride alloys

    Energy Technology Data Exchange (ETDEWEB)

    Erika, Teliz [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); Ricardo, Faccio [Universidad de la República, Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Centro NanoMat, Polo Tecnológico de Pando, Espacio Interdisciplinario, Facultad de Química, Montevideo (Uruguay); Fabricio, Ruiz [Consejo Nacional de Investigaciones Científicas y Técnicas , CONICET, Av. Rivadavia 1917, C1033AAJ Ciudad de Buenos Aires (Argentina); Centro Atómico Bariloche , Comisión Nacional de Energía Atómica (CAB-CNEA), Av. Bustillo 9500, CP 8400 S.C. de Bariloche, RN (Argentina); Fernando, Zinola [Universidad de la República, Facultad de Ciencias, Laboratorio de Electroquímica Fundamental, Núcleo Interdisciplinario Ingeniería Electroquímica, Igua 4225, CP 11400 Montevideo (Uruguay); and others

    2015-11-15

    The effects of partial replacement of chromium by molybdenum was studied on the structure and electrochemical kinetic properties of ZrCr{sub 1-x}NiMo{sub x}(x = 0.0, 0.3 and 0.6) metal hydride alloys. The arc-melting prepared alloys were metallurgically characterized by X-ray diffraction and energy dispersive spectroscopy microanalysis, which showed AB{sub 2} (with hexagonal C14 structure) and Zr{sub x}Ni{sub y} (Zr{sub 7}Ni{sub 10}, Zr{sub 9}Ni{sub 11}) phases. After a partial substitution of chromium by molybdenum, secondary phases monotonically increase with the C14 unit cell volume indicating that most of molybdenum atoms locate in the B-site. The alloys were electrochemically characterized using charge/discharge cycling, electrochemical impedance spectroscopy and rate capability experiments that allowed the determination of hydriding reaction kinetic parameters. The presence of molybdenum produces a positive effect for hydrogen diffusion in the alloy lattice, and ZrCr{sub 0.7}NiMo{sub 0.3} alloy depicts the better kinetics associated with a fast activation, lower charge transfer resistance and the best high rate discharge behavior. This fact would be related to a lower diffusion time constant and a bigger value of the product between exchange density current and surface active area. There is a trade-off in the amounts of secondary phase and Laves phases in order to improve the kinetic performance. - Highlights: • Metallurgical characterization evidences the presence of Zr{sub x}Ni{sub y} and C14 phases. • The partial replacement of Cr by Mo promotes the segregation of Zr{sub x}Ni{sub y} phase. • The incorporation of molybdenum improves the kinetics for the hydriding process. • Mo produces a decrease in the diffusion time constant.

  15. Strengthening of the brazed joint for single-crystalline molybdenum by using Mo-40%Ru-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Y. [Okayama Univ. of Science (Japan). Department of Applied Physics; Igarashi, T. [Tokyo Tungsten Co. Ltd., Toyama (Japan). Research and Development Division

    1998-12-01

    In this study, the bend properties of the single-crystalline molybdenum brazed by using Mo-40%Ru alloys containing boron of 1-6 mass%Ru alloy for the improvement of the joint strength was determined. (orig.) [Deutsch] Durchgefuehrt wurde die Herstellung von Verbindungen aus einkristallinem Molybdaen. Hierbei kamen Mo-40%Ru-Legierungen mit 1 bis 6 Gew.-% Bor als Lotmaterialien zum Einsatz. Festigkeit und Duktilitaet der Verbindungen wurden mittels 3-Punkt-Biegepruefung bei Raumtemperatur und unter fluessigem Stickstoff ermittelt. Die Bruchflaechen der Proben wurden mit Hilfe eines Rasterelektronenmikroskopes untersucht. Die Ergebnisse lassen sich wie folgt zusammenfassen: Der optimale Borgehalt bezueglich Festigkeit und Duktilitaet der geloeteten Verbindung liegt bei 2 Gew.-%. Die entsprechende Probe hat bei einem Biegewinkel von 100 bei Raumtemperatur nicht versagt. Auch unter fluessigem Stickstoff zeigte diese Probe eine Festigkeit in der Groessenordnung des einkristallinen Vollmaterials. (orig.)

  16. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    Science.gov (United States)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  17. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.

    2017-03-08

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition cross over at ∼50 at. % of Mo and W in ReS2 in both monolayer and bulk form, respectively. Experimentally, two different types of structural modulations at 50% and a modulation corresponding to trimerization at 75% alloy composition are observed for RexMo1-xS2 and only one type of modulation is observed at the 50% RexW1-xS2 alloy system. The 50% alloy system is found to be a suitable monolithic candidate for metal semiconductor transition with minute external perturbation. ReS2 is known to be in the 2D Peierls distorted 1Td structure and forms a chain like superstructure. Incorporation of Mo and W atoms into the ReS2 lattice modifies the metal-metal hybridization between the cations and influences the structural modulation and electronic properties of the system. The results offer yet another effective way to tune the electronic structure and poly-type phases of this class of materials other than intercalation, strain, and vertical stacking arrangement.

  18. Effect of Elemental Sulfur and Sulfide on the Corrosion Behavior of Cr-Mo Low Alloy Steel for Tubing and Tubular Components in Oil and Gas Industry.

    Science.gov (United States)

    Khaksar, Ladan; Shirokoff, John

    2017-04-20

    The chemical degradation of alloy components in sulfur-containing environments is a major concern in oil and gas production. This paper discusses the effect of elemental sulfur and its simplest anion, sulfide, on the corrosion of Cr-Mo alloy steel at pH 2 and 5 during 10, 20 and 30 h immersion in two different solutions. 4130 Cr-Mo alloy steel is widely used as tubing and tubular components in sour services. According to the previous research in aqueous conditions, contact of solid sulfur with alloy steel can initiate catastrophic corrosion problems. The corrosion behavior was monitored by the potentiodynamic polarization technique during the experiments. Energy dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) have been applied to characterize the corrosion product layers after each experiment. The results show that under the same experimental conditions, the corrosion resistance of Cr-Mo alloy in the presence of elemental sulfur is significantly lower than its resistance in the presence of sulfide ions.

  19. Martensite. gamma. -->. cap alpha. transformations in various purity Fe-Ni-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, I.I.; Rozhkova, A.S. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-06-01

    Kinetics of isothermal and athermal ..gamma.. ..-->.. ..cap alpha.. martensitic transitions in the Fe-25.5% Ni-4.5% Mo alloys with different degree of purity is studied. The determinant role of dislocation blocking by interstitials in stabilization of isothermal martensitic transformation is displayed. Presented are the data permitting to consider that the character of martensitic transition kinetics is determined by the ratio of the process moving force and resistance to microplastic deformation.

  20. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  1. Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results

    Energy Technology Data Exchange (ETDEWEB)

    Okuniewski, Maria A. [Purdue Univ., West Lafayette, IN (United States); Ganapathy, Varsha [Purdue Univ., West Lafayette, IN (United States); Hamilton, Brenden [Purdue Univ., West Lafayette, IN (United States); Cassutt, Paul [Purdue Univ., West Lafayette, IN (United States); Zhang, Fan [Purdue Univ., West Lafayette, IN (United States); Velaquez, Daniel [Illinois Inst. of Technology, Chicago, IL (United States); Seibert, Rachel [Illinois Inst. of Technology, Chicago, IL (United States); Terry, Jeff [Illinois Inst. of Technology, Chicago, IL (United States); Sprouster, David [Brookhaven National Lab. (BNL), Upton, NY (United States); Ecker, Lynne [Brookhaven National Lab. (BNL), Upton, NY (United States); Elbakhshwan, Mohamed [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-09-01

    ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated to 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.

  2. A detailed study of the amorphisation reaction in NiMo alloys by diffraction and scattering methods

    International Nuclear Information System (INIS)

    Rose, P.

    1995-01-01

    X-ray and neutron diffraction and neutron small angle scattering (SAS) measurements have been made on NiMo specimens prepared by mechanical alloying (MA). We have extended our earlier studies and measured a new series of MA treated NiMo samples. Molybdenum scatters X-rays more strongly than nickel, but with neutrons, the reverse is the case. Analysis of the X-ray and neutron diffraction patterns together, therefore provides an accurate measurement of the consumption of both constituents in the reaction. The diffraction data on the new samples confirm that the consumption of the parent crystalline materials follows an exponential dependence with the time of MA treatment and also provides evidence of a ''delayed start'' to the reaction. This is consistent with an initial period of mixing of the constituents before the onset of (atomic) interdiffusion and amorphisation. The neutron SAS experiments have been made on Ni 47.7 Mo 52.3 MA treated specimens, which can be ''contrast-matched'' to reduce the scattering from the external surfaces of the powder grains. The new neutron SAS data confirm the presence of fractal surfaces between the alloy constituents, for samples in the early stages of the MA process. (orig.)

  3. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  4. Hydrogen Induced Intergranular Cracking of Nickel-Base Alloys.

    Science.gov (United States)

    1982-02-01

    alloys are discussed. Experimental The steel used in the present investigation is a fully bainitic 2 1/4 Cr-lMo pressure vessel steel , ASTM A542 Class 3...Appendix A describes recent experiments performed in order to study the influence of plastic deformation on hydrogen transport in a 214 Cr-lMo steel (8...PLASTIC DEFORMATION ON HYDROGEN TRANSPORT IN 2 1/4 Cr-lMo STEEL M. Kurkela, G.S. Frankel, and R.M. Latanision Department of Materials Science and

  5. Preparation and characterization of Ti-15Zr-12.5Mo alloy for use as biomaterial

    International Nuclear Information System (INIS)

    Lourenco, M.L.; Correa, D.R.N.; Grandini, C.R.

    2014-01-01

    Titanium alloys exhibit favorable properties for biomedical applications. With the zirconium and molybdenum addition, the microstructure and mechanical properties can be changed. Moreover, these alloying elements have certified non-toxicity. The aim of this paper is to prepare and characterize the microstructure and some mechanical properties of Ti-15Zr-12,5Mo (wt%). The alloy was produced by arc-melting and heat treated at 1000 °C for 24 h. Chemical analysis was made by ICP-OES, EDS and density measurements. The crystalline structure and microstructure were analyzed by X-ray diffraction, optical and scanning electron microscopy. An analysis of the mechanical properties was evaluated by Vickers microhardness measurements. The alloy presented a β-type structure (bcc crystalline structure), with the formation of typical equiaxial grains, with higher hardness value than the cp-Ti. (author)

  6. Direct observation of solute segregation to voids in a fast-neutron irradiated (Mo/1.0 at. % Ti alloy

    International Nuclear Information System (INIS)

    Wagner, A.; Seidman, D.N.

    1978-11-01

    The atom-probe field-ion microscope was used to study segregation effects to voids in a Mo--Ti alloy which had been irradiated with fast neutrons. The Ti does not segregate significantly to voids, concentration of Ti in solid solution and the spacial distribution of Ti was not affected by irradiation, carbon was not detected, resolution of TiC or MoC precipitates did not occur

  7. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    Science.gov (United States)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  8. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    International Nuclear Information System (INIS)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K.B.; Kumar, Arun

    2015-01-01

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U_2Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  9. Micro-structural study and Rietveld analysis of fast reactor fuels: U–Mo fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S., E-mail: sibasis@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Choudhuri, G. [Atomic Fuels Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Banerjee, J. [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Agarwal, Renu [Product Development Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Khan, K.B.; Kumar, Arun [Radiometallurgy Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2015-12-15

    U–Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U–Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U–Mo alloys as fast reactor fuel. - Highlights: • U–Mo alloys in as-cast as well as in annealed conditions have been studied using Optical Microscope, SEM, XRD. • The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. • The dendritic microstructure of γ-(U,Mo) and B.C.C. ‘Mo’ phase of 33 at.% U–Mo alloy have been analysed. • Rietveld analysis has been done to optimize lattice parameters and calculate phase fractions in annealed alloys. • The Vickers microhardness of U{sub 2}Mo phase shows lower hardness than two phase microstructures in annealed alloys.

  10. Superconductivity in U-T alloys (T = Mo, Pt, Pd, Nb, Zr stabilized in the cubic γ-U structure by splat-cooling technique

    Directory of Open Access Journals (Sweden)

    N.-T.H. Kim-Ngan

    2016-06-01

    Full Text Available We succeed to retain the high-temperature (cubic γ-U phase down to low temperatures in U-T alloys with less required T alloying concentration (T = Mo, Pt, Pd, Nb, Zr by means of splat-cooling technique with a cooling rate better than 106 K/s. All splat-cooled U-T alloys become superconducting with the critical temperature Tc in the range of 0.61 K–2.11 K. U-15 at.% Mo splat consisting of the γ-U phase with an ideal bcc A2 structure is a BCS superconductor having the highest critical temperature (2.11 K.

  11. Low in reactor creep Zr-base alloy tubes

    International Nuclear Information System (INIS)

    Cheadle, B.A.; Holt, R.A.

    1984-01-01

    This invention relates to zirconium alloy tubes especially for use in nuclear power reactors. More particularly it relates to quaternary 3.5 percent Sn, 1 percent Mo, 1 percent Nb, balance Zr alloy tubes which have been extruded, cold worked and heat treated to lower their dislocation density. In one embodiment the alloys are cold worked less than 5 percent and stress relieved to produce a low dislocation density and in another embodiment the alloys are cold worked up to about 50 percent and annealed to produce a very low dislocation density and also small equiaxed β grains

  12. 微量TiC对Mo-Ti-Zr-TiC合金性能与显微组织的影响%Effect of Trace TiC on Property and Microstructure of Mo-Ti-Zr-TiC Alloy

    Institute of Scientific and Technical Information of China (English)

    钱昭; 范景莲; 成会朝; 田家敏

    2012-01-01

    采用粉末冶金方法制备Mo-Ti-Zr-TiC合金,研究微量TiC的添加对Mo-Ti-Zr-TiC合金的拉伸性能和显微组织的影响.结果表明,在Mo-Ti-Zr合金中添加微量TiC(0.1%~0.5%,质量分数)后,合金的相对密度和室温抗拉强度得到了提高,当TiC添加量为0.4%时,合金强度最高,较Mo-Ti-Zr合金提高了28.1%.微量TiC的添加,阻碍了合金烧结过程中的晶粒长大,合金晶粒尺寸随TiC添加量的增加而降低.添加的细小TiC粒子在高温烧结过程中或与坯体中的微量氧发生反应形成了由Mo、Ti、C及O 4种元素组成的(Mo,Ti)xOyCz细小复合第二相粒子,或发生团聚结成大颗粒,对合金起到净化晶界氧和弥散强化的作用,因而合金的性能相比Mo-Ti-Zr合金有了较明显的提高.%Mo-Ti-Zr-TiC alloy was prepared via powder metallurgy method. The effects of trace TiC additive on the mechanical properties and microstructure of TiC reinforced Mo-Ti-Zr-TiC alloy were studied. The results indicate that the relative density and the tensile strength at room temperature of Mo-Ti-Zr-TiC alloy is effectively enhanced by adding trace TiC (0.1wt%~0.5wt%). The tensile strength achieves the highest value when the content of TiC is 0.4wt%, which is 28.1% higher than that of Mo-Ti-Zr alloy. The adding of trace TiC can inhibit the grain growth during alloy sintering process, which leads to the decrease of grain sizes with the rise of TiC content. A part of the fine TiC particles react with trace oxygen in molybdenum matrix to form (Mo,Ti)xOyC2 compound second phase particles during high temperature sintering, while the other part are agglomerated into large particles, which play a role in grain boundaries purification and dispersion-strengthening.

  13. Effect of annealing temperature on microstructure and superelastic properties of a Ti-18Zr-4.5Nb-3Sn-2Mo alloy.

    Science.gov (United States)

    Fu, Jie; Kim, Hee Young; Miyazaki, Shuichi

    2017-01-01

    In this study a new superelastic Ti-18Zr-4.5Nb-3Sn-2Mo alloy was prepared by adding 2at% of Mo as a substitute for Nb to the Ti-18Zr-11Nb-3Sn alloy, and heat treatment at different temperatures was conducted. The temperature dependence of superelasticity and annealing texture was investigated. Texture showed a dependence of annealing temperature: the specimen annealed at 923K for 0.3ks exhibited {113} β β type texture which was similar to the deformation texture, while specimens annealed at 973, 1073K, and 1173K showed {001} β β type recrystallization texture which was preferable for recovery strain. The largest recovery strain of 6.2%, which is the same level as that of the Ti-18Zr-11Nb-3Sn alloy, was obtained in the specimen annealed at 1173K for 0.3ks due to the well-developed {001} β β type recrystallization texture. The Ti-18Zr-3Nb-3Sn-2Mo alloy presented a higher tensile strength compared with the Ti-18Zr-11Nb-3Sn alloy when heat treated at 1173K for 0.3ks, which was due to the solid solution strengthening effect of Mo. Annealing at 923K for 0.3ks was effective in obtaining a good combination of a high strength as 865MPa and a large recovery strain as 5.6%. The high recovery strain was due to the high stress at which the maximum recovery stain was obtained which was attributed to the small grain size formed at low annealing temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anomalous temperature dependence of the superelastic behavior of Ti-Nb-Mo alloys

    International Nuclear Information System (INIS)

    Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S.

    2011-01-01

    The effect of test temperature on the superelasticity of Ti-27Nb and various Ti-Nb-Mo alloys is investigated. A deviation in the stress at which martensitic transformation starts (σ β-α'' ) from the behavior expected from the Clausius-Clapeyron relationship is confirmed in all alloys. The degree of deviation is found to be in inverse proportion to the electron-to-atom ratio. However, no deviation is observed in the stress at which the reverse transformation finishes (σ α''-β ). All alloys exhibit anomalous electrical resistivity during cooling. X-ray diffraction (XRD) and transmission electron microscopy investigations show that the volume fraction of the athermal ω (ω ath ) phase increases with a decrease in temperature. An in situ XRD experiment obtained during a loading-unloading cycle shows that the β and ω ath phases transform into the α'' phase during loading. The annihilation of the ω ath phase within the α'' phase allows σ α''-β to obey the Clausius-Clapeyron relationship. As a result, a large hysteresis loop is produced.

  15. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    Science.gov (United States)

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  16. A new high-strength iron base austenitic alloy with good toughness and corrosion resistance (GE-EPRI alloy-TTL)

    International Nuclear Information System (INIS)

    Ganesh, S.

    1989-01-01

    A new high strength, iron based, austenitic alloy has been successfully developed by GE-EPRI to satisfy the strength and corrosion resistance requirements of large retaining rings for high capacity generators (>840Mw). This new alloy is a modified version of the EPRI alloy-T developed by the University of California, Berkeley, in an earlier EPRI program. It is age hardenable and has the nominal composition (weight %): 34.5 Ni, 5Cr, 3Ti, 1Nb, 1Ta, 1Mo, .5Al, .3V, .01B. This composition was selected based on detailed metallurgical and processing studies on modified versions of alloy-T. These studies helped establish the optimum processing conditions for the new alloy and enabled the successful scale-up production of three large (50-52 inch dia) test rings from a 5,000 lb VIM-VAR billet. The rings were metallurgically sound and exhibited yield strength capabilities in the range 145 to 220 ksi depending on the extent of hot/cold work induced. The test rings met or exceeded all the property goals. The above alloy can provide a good combination of strength, toughness and corrosion resistance and, through an suitable modification of chemistry or processing conditions, could be a viable candidate for high strength LWR internal applications. 3 figs

  17. Thermal compatibility of U-2wt.%Mo and U-10wt.%Mo fuel prepared by centrifugal atomization for high density research reactor fuels

    International Nuclear Information System (INIS)

    Kim Ki Hwan; Lee Don Bae; Kim Chang Kyu; Kuk Il Hyun; Hofman, G.E.

    1997-01-01

    Research on the intermetallic compounds of uranium was revived in 1978 with the decision by the international research reactor community to develop proliferation-resistant fuels. The reduction of 93% 235 U (HEU) to 20% 235 U (LEU) necessitates the use of higher U-loading fuels to accommodate the addition 238 U in the LEU fuels. While the vast majority of reactors can be satisfied with U 3 Si 2 -Al dispersion fuel, several high performance reactors require high loadings of up to 8-9 g U cm -3 . Consequently, in the renewed fuel development program of the Reduced Enrichment for Research and Test Reactors (RERTR) Program, attention has shifted to high density uranium alloys. Early irradiation experiments with uranium alloys showed promise of acceptable irradiation behavior, if these alloys can be maintained in their cubic γ-U crystal structure. It has been reported that high density atomized U-Mo powders prepared by rapid cooling have metastable isotropic γ-U phase saturated with molybdenum, and good γ-U phase stability, especially in U-10wt.%Mo alloy fuel. If the alloy has good thermal compatibility with aluminium, and this metastable gamma phase can be maintained during irradiation, U-Mo alloy would be a prime candidate for dispersion fuel for research reactors. In this paper, U-2w.%Mo and U-10w.%Mo alloy powder which have high density (above 15 g-U/cm 3 ), are prepared by centrifugal atomization. The U-Mo alloy fuel meats are made into rods extruding the atomized powders. The characteristics related to the thermal compatibility of U-2w.%Mo and U-10w.%Mo alloy fuel meat at 400 o C for time up to 2000 hours are examined. (author)

  18. Kinetics of cellular transformation and competing precipitation mechanisms during sub-eutectoid annealing of U10Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Saumyadeep; Devaraj, Arun; Kovarik, Libor; Arey, Bruce W.; Sweet, Lucas E.; Varga, Tamas; Lavender, Curt A.; Joshi, Vineet V.

    2017-11-01

    Transformation kinetics of metastable body-centered cubic γ-UMo phase in U-10 wt.percent Mo alloy during annealing at sub-eutectoid temperatures of 500C and 400C has been determined as a function of time using detailed microstructural characterization by scanning electron microscopy, X-ray diffraction analysis, scanning transmission electron microscopy, and atom probe tomography. Based on the results, we found that the phase transformation is initiated by cellular transformation at both the temperatures, which results in formation of a lamellar microstructure along prior γ-UMo grain boundaries.

  19. Comparison of U-Pu-Mo, U-Pu-Nb, U-Pu-Ti and U-Pu-Zr alloys

    International Nuclear Information System (INIS)

    Boucher, R.; Barthelemy, P.

    1964-01-01

    The data concerning the U-Pu, U-Pu-Mo and U-Pu-Nb are recalled. The results obtained with U-Pu-Ti and U-Pu-Zr alloys containing 15-20 per cent Pu and 10 wt. per cent ternary element are reported. The transformation temperatures, the expansion coefficients, the nature of phases, the thermal cycling behaviour have been determined. A list of the principal properties of these different alloys is presented and the possibilities of their use as fast reactor's fuel element are considered. The U-Pu-Ti alloys seem to be quite promising: easiness of fabrication, large thermal stability, excellent behaviour in air, small quantity of zeta phase, temperature of solidus superior to 1100 deg. C. (authors) [fr

  20. Mechanical properties of Mo and TZM alloy neutron-irradiated at high temperatures

    International Nuclear Information System (INIS)

    Ueda, Kazukiyo; Satou, Manabu; Hasegawa, Akira; Abe, Katsunori

    1997-01-01

    This work reports the mechanical properties of irradiated molybdenum (Mo) and its alloy, TZM. Recrystallized and stress-relieved specimens were irradiated at five temperatures between 373 and 800degC in FFTF/MOTA to fluence levels of 6.8 to 34 dpa. Irradiation embrittlement and hardening were evaluated by three-point bend test and Vickers hardness test, respectively. Stress-relieved materials showed the enough ductility even after high fluence irradiation. The role of layered structure of stress-relieved specimen was discussed. (author)

  1. Manufacture and properties of molybdenum-rhenium alloys

    International Nuclear Information System (INIS)

    Fischer, B.; Freund, D.

    2001-01-01

    It is necessary to measure strength and creep behavior to guarantee the safe and reliable usage of refractory alloys at extremely high temperatures. In the literature there is very little information available about the properties of Mo-Re alloys at temperatures higher than 1000 C. A special test facility has been designed and built for stress-rupture testing at very high temperatures (up to 3000 C) of refractory metals and alloys in inert atmospheres. - The stress-rupture strength as well as the creep behavior of molybdenum-rhenium alloys with rhenium contents between 41 and 51 wt.% have been determined at temperatures ranging from 1200 to 2000 C, and rupture times of up to 10 hours using this facility. Previous measurements of stress-rupture strength and creep behavior of pure rhenium have been compared with the measurement results of Mo-Re alloys. - The discussion of the values measured is based on metallographic test results and scanning electron microscopy (SEM) images of Mo-Re alloy samples after stress-rupture testing. (orig.) [de

  2. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  3. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    Science.gov (United States)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  4. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Pedro Akira Bazaglia [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil); Buzalaf, Marília Afonso Rabelo [USP – Universidade de São Paulo, Departamento de Ciências Biológicas, 17.012-901, Bauru, SP (Brazil); Grandini, Carlos Roberto, E-mail: betog@fc.unesp.br [UNESP - Univ Estadual Paulista, Laboratório de Anelasticidade e Biomateriais, 17.033-360, Bauru, SP (Brazil); IBTN/Br – Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, 17.033-360 Bauru, SP (Brazil)

    2016-10-01

    Titanium has an allotropic transformation around 883 °C. Below this temperature, the crystalline structure is hexagonal close-packed (α phase), changing to body-centered cubic (β phase). Zirconium has the same allotropic transformation around 862 °C. Molybdenum has body-centered cubic structure, being a strong β-stabilizer for the formation of titanium alloys. In this paper, the effect of substitutional molybdenum was analyzed on the structure, microstructure and selected mechanical properties of Ti-20 Zr-Mo (wt%) alloys to be used in biomedical applications. The samples were prepared by arc-melting and characterized by x-ray diffraction with subsequent refinement by the Rietveld method, optical and scanning electron microscopy. The mechanical properties were analyzed by Vickers microhardness and dynamic elasticity modulus. X-ray measurements and Rietveld analysis revealed the presence of α′ phase without molybdenum, α′ + α″ phases with 2.5 wt% of molybdenum, α″ + β phases with 5 and 7.5 wt% of molybdenum, and only β phase with 10 wt% of molybdenum. These results were corroborated by microscopy results, with a microstructure composed of grains of β phase and lamellae and needles of α′ and α″ phase in intra-grain the region. The hardness of the alloy was higher than the commercially pure titanium, due to the action of zirconium and molybdenum as hardening agents. The samples have a smaller elasticity modulus than the commercially pure titanium. - Highlights: • Ti-20Zr-Mo system alloys were developed. • β-Stabilizer effect of Zr in the presence of another β-stabilizer element • Alloys with low elastic modulus.

  5. XPS study on the electronic structure of hydrided Ti-V, Ti-Nb and Ti-Mo alloys

    International Nuclear Information System (INIS)

    Tanaka, Kazuhide; Aoki, Hiromasa

    1989-01-01

    Effects of hydrogenation on the core and valence electronic structures of β(bcc)-stabilized Ti-25at%V, Ti-50at%Nb and Ti-20at%Mo alloys are studied with XPS technique using monochromatized Al K α radiation. Small but uniform binding-energy shifts are observed upon hydrogenation for all the core spectra measured. Their valence-band spectra are significantly distorted, providing an evidence of the formation of metal-hydrogen bonding bands in these Ti alloys. Interrelations between the core binding-energy shifts and the valence-band distortion are discussed. (orig.)

  6. A comparison of etchants for quantitative metallography of bainite and martensite microstructures in Fe-C-Mo alloys

    International Nuclear Information System (INIS)

    Shui, C.K.; Reynolds, W.T. Jr.; Shiflet, G.J.; Aaronson, H.I.

    1988-01-01

    Quantitative metallography is the most reliable method available for evaluating isothermal transformation kinetics in steel. However, the accuracy of this method depends on the metallographer's ability to reveal the microstructural constituents of a specimen with sufficient contrast to allow rapid identification either by manual techniques or through the use of an automatic image analyzer. Many of the reagents commonly employed to etch steels do not consistently expose all orientations of ferrite and are thus unsatisfactory for quantitative metallographic studies. Recent research on the kinetics of the bainite reaction in Fe-C-Mo alloys has led to the development of reliable methods for etching microstructures consisting of bainite andor ferrite and various proportions of martensite. This article compares a number of reagents used in studying Fe-C-Mo alloys, having carbon contents ranging from 0.08 to 0.27 wt% and molybdenum contents from 0.25 to 4.28 wt%. These alloys are isothermally reacted at temperatures ranging from slightly above that of the bay in the TTT curve for initiation of transformation down nearly to the M/sub s/. The authors evaluate their suitability for quantitative metallography

  7. Estimation of the effect of molybdenum on chemical and electrochemical stability of iron-based alloys

    International Nuclear Information System (INIS)

    Tyurin, A.G.

    2003-01-01

    The E-pH diagram for Mo-H 2 O system is made more precise. It is shown that a passivating film on molybdenum in weakly acid, neutral and alkali solutions may constitute MoO 2 only. In strongly acid solutions at anodic polarization the film should transform according to the following scheme: MoO 2 → Mo 4 O 11 → Mo 9 O 26 → MoO 3 . Sections of a Fe-Mo-O system phase diagram and a Fe-Mo-H 2 O system E-pH diagram at 25 deg C are plotted. MoO 2 is found to be a product of iron-molybdenum alloy oxidation in the air and in water. For the system of alloy Kh17N13M2-H 2 O the section of a E-pH diagram is plotted at 25 deg C [ru

  8. A study on corrosion resistance of electrodeposited Zn-base alloy steel sheet

    International Nuclear Information System (INIS)

    Park, Hyun Soon

    1986-01-01

    Effects of electrodeposits of Zn-Ni or Zn-Co alloy with small amounts of Mo or W in sulphate bath on the corrosion resistance of plated steel sheet were studied. 1) The electrodeposition of Zn-Ni and Zn-Co alloy shows both anomalous codeposition behavior. The grade of anomalous codeposition of Zn-Co alloy rises with adding Mo or W in bath. 2) The Ni content in Zn-Ni deposits increases with decreasing cathode current density and with increasing bath temperature. 3) In case of electroplating of Zn-Co, the increase of cathodic current density of bath bring on increasing of the Co content, but on decreasing of the Mo content in deposits. And rising bath temperature increases both Co and Mo deposits. 4) The corrosion resistance of the Zn-Ni electrodeposited steel sheet is shown a maximum at the Ni content of 10-17%. The structure of Zn-Ni of these composition range was finegrained γ-phase. 5) The corrosion resistance of the Zn-Co electrodeposited steel sheet is improved with increasing Co content. The corrosion resistance of the Zn-Co-Mo or Zn-Co-W deposits electroplated by proper plating conditions was improved much more than that of Zn-Co deposits. (Author)

  9. Anodic characteristics and stress corrosion cracking behavior of nickel rich alloys in bicarbonate and buffer solutions

    International Nuclear Information System (INIS)

    Zadorozne, Natalia S.; Giordano, Mabel C.; Ares, Alicia E.; Carranza, Ricardo M.; Rebak, Raul B.

    2016-01-01

    Highlights: • We investigate which element in alloy C-22 may be responsible for the cracking susceptibility of the high nickel alloy. • Six nickel based alloys with different amount of Cr and Mo were selected for the electrochemical tests and response to SSRT. • Polarization tests showed that an anodic peak appear in the passive region in Cr containing alloys. • Cracking of Ni alloys in carbonate solutions seem to be a consequence of the instability of the passivating chromium oxide. • Alloys containing both Cr and Mo have the highest susceptibility. - Abstract: The aim of this work is to investigate which alloying element in C-22 is responsible for the cracking susceptibility of the alloy in bicarbonate and two buffer solutions (tungstate and borate). Six nickel based alloys, with different amount of chromium (Cr) and molybdenum (Mo) were tested using electrochemical methods and slow strain rate tests (SSRT) at 90 °C. All Cr containing alloys had transgranular cracking at high anodic potential; however, C-22 containing high Cr and high Mo was the most susceptible alloy to cracking. Bicarbonate was the most aggressive of three tested environments of similar pH.

  10. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  11. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    Science.gov (United States)

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  12. Wear tests in a hip joint simulator of different CoCrMo counterfaces on UHMWPE

    International Nuclear Information System (INIS)

    Gonzalez-Mora, V.A.; Hoffmann, M.; Stroosnijder, R.; Gil, F.J.

    2009-01-01

    The objective in this work was to study the effect of different material counterfaces on the Ultra High Molecular Weight Polyethylene (UHMWPE) wear behavior. The materials used as counterfaces were based on CoCrMo: forged with hand polished and mass finished, CoCrMo coating applied on the forged CoCrMo alloy obtained by Physical Vapour Deposition (PVD). A hip joint simulator was designed and built for these studies. The worn surfaces were observed by optical and scanning electron microscopy. The results showed that the hand polished CoCrMo alloy caused the higher UHMWPE wear of the acetabular cups. The CoCrMo coating caused the least UHMWPE wear, while the mass finished CoCrMo alloy caused an intermediate UHMWPE wear. It is shown that the wear rates obtained in this work are closer to clinical studies than to similar hip joints simulator studies

  13. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol−gel coatings on CoCrMo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Romonţi, D. Covaciu [University “Politehnica” of Bucharest, Faculty of Applied Chemistry and Materials Science 1-7, Polizu Str., 011061, Bucharest (Romania); Iskra, J. [Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-6280 (Slovenia); Bele, M. [National Institute of Chemistry, Laboratory for Materials Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Demetrescu, I. [University “Politehnica” of Bucharest, Faculty of Applied Chemistry and Materials Science 1-7, Polizu Str., 011061, Bucharest (Romania); Milošev, I., E-mail: ingrid.milosev@ijs.si [Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova 39, SI-6280 (Slovenia)

    2016-04-25

    The surface of CoCrMo alloy used in orthopedic and dental applications was modified in order to improve its osseointegration. Fluorohydroxyapatite and fluoroapatite coatings were prepared by the sol–gel procedure and deposited on CoCrMo substrate by immersion. The steps of sol–gel synthesis were studied using Fourier transform infrared spectroscopy. The surfaces of the coatings were characterized using scanning electron microscopy and X-ray diffraction. The electrochemical properties of coatings were tested in Fusayama artificial saliva using polarization measurements. The most stable coating was fluorohydroxyapatite. It also has the strongest adhesion. - Highlights: • Fluorohydroxyapatite and fluoroapatite coatings were deposited by sol–gel process. • Synthesis was optimized in situ using Fourier transform infrared spectroscopy. • Coatings provide corrosion protection of CoCrMo substrate in artificial saliva. • Coatings are macroscopically dense, homogeneous and adhere well to the substrate.

  14. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol−gel coatings on CoCrMo alloy

    International Nuclear Information System (INIS)

    Romonţi, D. Covaciu; Iskra, J.; Bele, M.; Demetrescu, I.; Milošev, I.

    2016-01-01

    The surface of CoCrMo alloy used in orthopedic and dental applications was modified in order to improve its osseointegration. Fluorohydroxyapatite and fluoroapatite coatings were prepared by the sol–gel procedure and deposited on CoCrMo substrate by immersion. The steps of sol–gel synthesis were studied using Fourier transform infrared spectroscopy. The surfaces of the coatings were characterized using scanning electron microscopy and X-ray diffraction. The electrochemical properties of coatings were tested in Fusayama artificial saliva using polarization measurements. The most stable coating was fluorohydroxyapatite. It also has the strongest adhesion. - Highlights: • Fluorohydroxyapatite and fluoroapatite coatings were deposited by sol–gel process. • Synthesis was optimized in situ using Fourier transform infrared spectroscopy. • Coatings provide corrosion protection of CoCrMo substrate in artificial saliva. • Coatings are macroscopically dense, homogeneous and adhere well to the substrate.

  15. Effect of oxygen content on deformation mode and corrosion behavior in β-type Ti-Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiaohua, E-mail: minxiaohua@dlut.edu.cn [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Bai, Pengfei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Emura, Satoshi; Ji, Xin [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, Congqian; Jiang, Beibei [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Tsuchiya, Koichi [Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-01-27

    This study examined microstructural characteristics and mechanical properties in a β-type Ti-15Mo alloy (mass%) with different oxygen contents, and their corrosion behavior in simulated physiological media. With increasing oxygen content from 0.1–0.5%, lattice parameter of parent β-phase increased from X-ray diffraction profiles, and spots of athermal ω-phase became weak and diffuse through transmission electron microscopy observations. {332}<113> twin density decreased with an increase in oxygen content from 0.1–0.3% based on electron backscattered diffraction analyses, and it became almost zero when further increased oxygen content up to 0.5%. The solute oxygen atoms led to both a transition of {332}<113> twinning to dislocation slip and a suppression of β-phase to ω-phase transformation. Room-temperature tensile testing of this alloy with oxygen content ranging from 0.1–0.5%, revealed that yield strength ranged from 420 MPa to 1180 MPa and that uniform elongation ranged from 47–0.2%. The oxygen-added alloys kept a low elastic modulus obtained from stress-strain curves, and exhibited good corrosion resistance in Ringer's solution from open-circuit potential and potentiodynamic polarization measurements. A desirable balance between mechanical properties and corrosion resistance is obtainable in this alloy as biomaterials through utilizing oxygen to control the deformation mode.

  16. A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface

    International Nuclear Information System (INIS)

    Badwe, Sunil; Raja, K.S.; Misra, M.

    2006-01-01

    Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Most of the corrosion studies on Alloy 22 have been conducted using conventional chemical or electrochemical methods. In the present investigation, the specimen was directly heated instead of heating the electrolyte, thereby simulating the nuclear waste package container temperature profile. Corrosion behavior of Alloy 22 and evaporation conditions of water diffusing on the container were evaluated using the newly devised heated electrode corrosion test (HECT) method in simulated acidified water (SAW) and simulated concentrated water (SCW) environments. In this method, the concentration of the environment varied with test duration. The corrosion rate of Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HECT was the aging characteristics of the passive film of Alloy 22. The heated electrode corrosion test can be used for evaluating materials for construction of heat transfer equipments such as evaporators

  17. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  18. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  19. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    OpenAIRE

    Fan Zhang; Oleg N. Senkov; Jonathan D. Miller

    2013-01-01

    Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively....

  20. Glow discharge mass spectrometric analysis of nickel-based heat-resisting alloys

    International Nuclear Information System (INIS)

    Itoh, Shinji; Yamaguchi, Hitoshi; Kobayashi, Takeshi; Hasegawa, Ryosuke

    1996-01-01

    GD-MS analysis of nickel-based heat-resisting alloys has been performed using a VG 9000 glow discharge (GD) mass spectrometer. Concentrations of not only alloying elements (Al, Si, Ti, V, Cr, Mn, Fe, Co, Cu, Y, Nb, Mo and W) but also trace elements (B, C, Mg, P, S, Zn, Ga, As, Zr, Cd, Sn, Sb, Te, Pb and Bi) were successfully determined in disk shaped samples. The examination of spectral interference confirmed the following. The influence of manganese argide ( 55 Mn 40 Ar + ) on the ion beam intensity of 95 Mo + was negligible because manganese content of the alloys is usually less than 1 mass%. Mass spectra of 31 P + and 32 S + may be affected by the spectral interference of 62 Ni 2+ and 64 Ni 2+ , respectively, due to the matrix element. However, these ion species were sufficiently separated at the mass resolution 5000 (m/Δm, at 5% peak height) used in this study. Relative sensitivity factors (RSFs) were determined by analyzing standard reference materials: JAERI CRMs, a NIST SRM, a BS CRM, BCS CRMs and the alloys prepared in our Institute. The average RSF-values obtained for Ni=1 were 0.436 for Al, 0.826 for Si, 0.281 for Ti, 0.375 for V, 1.480 for Cr, 1.122 for Mn, 0.754 for Fe, 0.653 for Co, 3.321 for Cu, 0.303 for Y, 0.436 for Nb, 0.862 for Mo, 0.935 for Ta and 1.052 for W. The analytical accuracy (σ d ) obtained was comparable to that of FP-XRF analysis, except for chromium and iron determinations. Relative standard deviations (RSDs) of five replicate measurements were within about 2.5%, except for phosphorus (P; 0.003 mass%, RSD; 3.31%) and sulfur (S; 0.005 mass%, RSD; 3.08%). GD-MS analytical values for ODS MA6000 alloy were obtained using a RSF correction program, and the values were in good agreement with those obtained by FP-XRF and by chemical analysis (author)

  1. Characterization of Co–Cr–Mo alloys after a thermal treatment for high wear resistance

    International Nuclear Information System (INIS)

    Balagna, C.; Spriano, S.; Faga, M.G.

    2012-01-01

    The cobalt–chromium–molybdenum alloys are characterized by a high resistance to wear and corrosion, as well as good mechanical properties, allowing their use in the substitution of hip and knee joints. Five alloys were used as substrates for a coating deposition by a thermal treatment in molten salts, as reported elsewhere, in order to form a tantalum‐rich coating on the sample surface, able to improve the biocompatibility and wear resistance of the materials. However, the temperature (970 °C), reached during this process, is considered critical for the phase transformation of the Co-based alloys. The aim of this work is the evaluation of the temperature effects on the structure, microstructure, mechanical and tribological properties of the considered substrates, after the removal of the coating by polishing. The substrates are characterized through X-ray diffraction (XRD), scanning electron microscopy with energy dispersion spectrometry (SEM-EDS) and profilometry. The mechanical behavior is evaluated by the macro- and micro-hardness and bending tests, whereas the tribological properties are analyzed through a ball on disc test. A comparison between the as-received alloys and thermal treated substrates is reported. The biocompatibility feature is not reported in this work. The substrate crystalline structure changed during the heat treatment, inducing the formation of the hexagonal cobalt phase and the decrement of the cubic one. This crystallographic modification does not seem to influence the tribological behavior of the substrates. On the contrary, it affects the strength and ductility of the substrates. - Highlights: ► Effect of a thermal treatment on different CoCrMo alloys suitable for hip and knee joint substitution. ► The temperature induced an increment in the amount of hexagonal phase and a change in the grain size. ► The increment of the hexagonal phase decreases the hardness of the substrates but not the tribological properties.

  2. Micro-structural study and Rietveld analysis of fast reactor fuels: U-Mo fuels

    Science.gov (United States)

    Chakraborty, S.; Choudhuri, G.; Banerjee, J.; Agarwal, Renu; Khan, K. B.; Kumar, Arun

    2015-12-01

    U-Mo alloys are the candidate fuels for both research reactors and fast breeder reactors. In-reactor performance of the fuel depends on the microstructural stability and thermal properties of the fuel. To improve the fuel performance, alloying elements viz. Zr, Mo, Nb, Ti and fissium are added in the fuel. The first reactor fuels are normally prepared by injection casting. The objective of this work is to compare microstructure, phase-fields and hardness of as-cast four different U-Mo alloy (2, 5, 10 and 33 at.% Mo) fuels with the equilibrium microstructure of the alloys. Scanning electron microscope with energy dispersive spectrometer and optical microscope have been used to characterize the morphology of the as-cast and annealed alloys. The monoclinic α'' phase in as-cast U-10 at.% Mo alloy has been characterized through Rietveld analysis. A comparison of metallographic and Rietveld analysis of as-cast (dendritic microstructure) and annealed U-33 at.% Mo alloy, corresponding to intermetallic compound, has been reported here for the first time. This study will provide in depth understanding of microstructural and phase evolution of U-Mo alloys as fast reactor fuel.

  3. Effect of the leaching of Ru-Se-Fe and Ru-Mo-Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Ezeta, A.; Arce, E.M.; Solorza, O.; Gonzalez, R.G.; Dorantes, H.

    2009-01-01

    In the present work, Ru-Se-Fe and Ru-Mo-Fe alloyed nanoparticles were synthesized from high purity powders (Ru, Se and Mo) by means of the high-energy mechanical alloying. Fe was integrated to the alloys because of the erosion of the mill balls. The ORR electrocatalytic performance of the alloys (lixiviated or not) was evaluated in a rotating disc electrode (RDE) at room temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the structure characterization of the materials. Small-particle clusters with granular morphology and nanometric sizes were obtained in all the cases. According to the Tafel parameters from the RDE results, a first order ORR is present in both electrocatalytic systems through a 4e - global multielectron transference to form water: O 2 + 4H + + e - → H 2 O. The electrocatalytic activity showed that the mechanical alloying enabled to obtain nanoparticle electrocatalysts with good ORR performance. Lixiviation of the mechanical alloying powders not improves the catalytical responses.

  4. Local Conduction in Mo xW1- xSe2: The Role of Stacking Faults, Defects, and Alloying.

    Science.gov (United States)

    Bampoulis, Pantelis; Sotthewes, Kai; Siekman, Martin H; Zandvliet, Harold J W

    2018-04-18

    Here, we report on the surface conductivity of WSe 2 and Mo x W 1- x Se 2 (0 ≤ x ≤ 1) crystals investigated with conductive atomic force microscopy. We found that stacking faults, defects, and chemical heterogeneities form distinct two-dimensional and one-dimensional conduction paths on the transition metal dichalcogenide surface. In the case of WSe 2 , in addition to step edges, we find a significant amount of stacking faults (formed during the cleaving process) that strongly influence the surface conductivity. These regions are attributed to the alternation of the 2H and 3R polytypism. The stacking faults form regular 2D patterns by alternation of the underlying stacking order, with a periodicity that varies significantly between different regions and samples. In the case of Mo x W 1- x Se 2 , its conductivity has a localized nature, which depends on the underlying chemical composition and the Mo/W ratio. Segregation to W-rich and Mo-rich regions during the growth process leads to nonuniform conduction paths on the surface of the alloy. We found a gradual change of the conductivity moving from one region to the other, reminiscent of lateral band bending. Our results demonstrate the use of C-AFM as a nanoscopic tool to probe the electrical properties of largely inhomogeneous samples and show the complicated nature of the surface conductivity of TMDC alloys.

  5. Mo-Si-B Alloys and Diboride Systems for High Enthalpy Environments: Design and Evaluation

    Science.gov (United States)

    2016-01-15

    material scientists from two universities (ISU and UW-M) and aerothermodynamicists from two institutions (SRI and UVM), each group pursued individual...that we would have hoped, but each group has benefited from the learning engendered from this ambitious collaborative investigation. While it was...significant amount of WO3 remaining entrapped in the scale. The uncoated alloy presents a virgin surface containing all four elements Mo, W, Si and

  6. Successes and failures of Ni-Cr-Mo family alloys in FGD systems of coal-fired power plants

    International Nuclear Information System (INIS)

    Agarwal, D.C.

    1986-01-01

    At first glance, operation of a typical limestone FGD system seems deceptively simple. However, the first generation scrubbers of the early to mid 70's proved to be a financial and operational disaster due to metals corroding in a rather short time period and non-metallic linings failing by blistering, debonding, cracking, flaking and peeling. Extensive research programs at various institutions and utilities to find better construction materials led to higher alloys up the ladder of the Ni-Cr-Mo family, other materials and new non-metallic coatings. This paper describes case histories showing both success and failures of the various alloys in the Ni-Cr-Mo family. This information will not only be useful to the various scrubber system suppliers and A/E's, but should be of value to utility corrosion/scrubber engineers and maintenance personnel who, on a day-to-day basis, are involved in keeping their systems functional in a cost-effective manner

  7. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  8. Investigation of powdering ductile gamma U-10 wt%Mo alloy for dispersion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leal Neto, R.M., E-mail: lealneto@ipen.br [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Rocha, C.J. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Urano de Carvalho, E. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Riella, H.G. [Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil); Chemical Engineering Department, Santa Catarina Federal University, Florianópolis (Brazil); Durazzo, M. [Nuclear and Energy Research Institute, IPEN/CNEN-SP, São Paulo (Brazil); Science and Technology Brazilian Institute, Innovating Nuclear Reactors (Brazil)

    2014-02-01

    This work forms part of the studies presently ongoing at Nuclear and Energy Research Institute – IPEN/CNEN-SP investigating the feasibility of powdering ductile U-10 wt%Mo alloy by hydriding–milling–dehydriding of the gamma phase (HMD). Hydriding was conducted at room temperature in a Sievert apparatus following heat treatment activation. Hydrided pieces were fragile enough to be hand milled to the desired particle size range. Hydrogen was removed by heating the samples under high vacuum. X-ray diffraction analysis of the hydrided material showed an amorphous-like pattern that is completely reversed following dehydriding. The hydrogen content of the hydrided samples corresponds to a trihydride, i.e. (U,Mo)H{sub 3}. SEM analysis of HMD powder particles revealed equiaxial powder particles together with some plate-like particles. A hypothesis for the amorphous hydride phase formation is suggested.

  9. Crevice-corrosion kinetics on titanium and a Ti-Ni-Mo alloy in chloride solutions at elevated temperature

    International Nuclear Information System (INIS)

    McKay, P.

    1987-01-01

    The results of an electrochemical investigation of the crevice-corrosion kinetics on titanium and a dilute Ti-Ni-Mo alloy (0.8% Ni, 0.3% Mo), in concentrated chloride solutions at 150 0 C, are presented. The current-time transients, obtained on creviced electrodes under both potentiostatic and galvanic (coupling to a large area of uncreviced titanium) conditions, are interpreted in terms of crevice acidification leading to the formation of an active-passive cell, maintained by iR gradient in the electrolyte. The passivating effect of the Ni and Mo additions on the crevice corrosion of titanium are described, together with the results of an electrochemical study, carried out in bulk acid chloride solutions, that were used to substantiate a proposed mechanism of crevice passivation. (author)

  10. A comparison of the microstructure and high temperature tensile properties of a novel P/M Mo-Hf-Zr-Ta-C alloy and TZM

    International Nuclear Information System (INIS)

    Warren, J.; Reznikov, G.

    2001-01-01

    The microstructure and elevated temperature quasi-static tensile yield and ultimate strength observed in a novel, forged Mo-based alloy (Mo-0.25 Hf-0.25 Zr-0.25 Ta-0.025 C) has been analyzed and compared to a standard forged TZM composition (Mo-0.50 Ti-0.08 Zr-0.02 C). The novel material exhibits the desirable forging characteristics typical of the widely used TZM composition yet possess a higher ultimate strength and 0.2 % offset yield strength in both the stress-relieved and recrystallized conditions over a 400 o -1200 o C temperature range. The greater strength measured in the novel composition has been attributed to the combined effects of precipitation of Hf, Zr and Mo-(carbide) precipitates that strengthen the matrix in the classical Orowan fashion and improved resistance to recrystallization after high temperature exposure. Elevated temperature creep behavior, not addressed in the study presented here, will be reported on in a subsequent analysis. (author)

  11. Corrosion report for the U-Mo fuel concept

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bennett, Wendy D. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fuller, E. S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hardy, John S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2014-08-28

    The Fuel Cycle Research and Development (FCRD) program of the Office of Nuclear Energy (NE) has implemented a program to develop a Uranium-Molybdenum (U-Mo) metal fuel for Light Water Reactors (LWR)s. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties, which includes high thermal conductivity for less stored heat energy. With sufficient development, it may be able to provide the Light Water industry with a melt-resistant accident tolerant fuel with improved safety response. However, the corrosion of this fuel in reactor water environments needs to be further explored and optimized by additional alloying. The Pacific Northwest National Laboratory has been tasked with performing ex-reactor corrosion testing to characterize the performance of U-Mo fuel. This report documents the results of the effort to characterize and develop the U-Mo metal fuel concept for LWRs with regard to corrosion testing. The results of a simple screening test in buffered water at 30°C using surface alloyed U-10Mo is documented and discussed. The screening test was used to guide the selection of several potential alloy improvements that were found and are recommended for further testing in autoclaves to simulate PWR water conditions more closely.

  12. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations.

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Hauser, Filipe; Cordill, Megan J; Franz, Robert; Köstenbauer, Harald; Winkler, Jörg; Schneider, Jochen M; Mitterer, Christian

    2017-08-07

    A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo 1-x Re x films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo 3 Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

  13. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  14. Role of alloying elements and carbides in the chlorine-induced corrosion of steels and alloys

    Directory of Open Access Journals (Sweden)

    Hans Jürgen Grabke

    2004-03-01

    Full Text Available The high temperature corrosion of steels and Ni-base alloys in oxidizing and chloridizing environments is of practical interest in relation to problems in waste incineration plants and power plants using Cl containing fuels. The behaviour of the most important alloying elements Fe, Cr, Ni, Mo, Mn, Si, Al upon corrosion in an oxidizing and chloridizing atmosphere was elucidated: the reactions and kinetics can be largely understood on the base of thermodynamic data, i.e. free energy of chloride formation, vapor pressure of the chlorides and oxygen pressure pO2 needed for the conversion chlorides -> oxides. The mechanism is described by 'active oxidation', comprising inward penetration of chlorine into the scale, formation of chlorides at the oxide/metal interface, evaporation of the chlorides and conversion of the evaporating chlorides into oxides, which occurs in more or less distance from the surface (depending on pO2. This process leads to loose, fragile, multilayered oxides which are unprotective (therefore: active oxidation. Fe and Cr are rapidly transferred into such scale, Ni and Mo are relatively resistant. In many cases, the grain boundaries of the materials are strongly attacked, this is due to a susceptibility of chromium carbides to chloridation. In contrast the carbides Mo2C, TiC and NbC are less attacked than the matrix. Alloys on the basis Fe-Cr-Si proved to be rather resistant, and the alloying elements Ni and Mo clearly retard the attack in an oxidizing and chloridizing environment.

  15. Two phase titanium aluminide alloy

    Science.gov (United States)

    Deevi, Seetharama C.; Liu, C. T.

    2001-01-01

    A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.

  16. Microstructure and creep behavior of an orthorhombic Ti-25Al-17Nb-1Mo alloy

    International Nuclear Information System (INIS)

    Zhang, J.W.; Zou, D.X.; Li, S.Q.; Lee, C.S.; Lai, J.K.L.

    1998-01-01

    Microstructural evolution during three heat-treatment schedules and the terminal microstructures in an orthorhombic alloy of Ti-25Al-17Nb-1Mo were observed and analyzed with optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The creep behavior of the alloy with three different microstructures (a coarse-lath, fine-lath, and fine equiaxed microstructure) was studied over a temperature range of 600 C to 750 C and over a stress range of 150 to 400 MPa in air. The steady-state creep rates, apparent stress exponents, and apparent creep activation energies of the various samples have been determined. The results show that creep behaviors in the alloy are strongly influenced by microstructure. The effect on creep by some of the microstructural features, such as the multivariants within the coarse laths and the interfaces of the laths and the equiaxed grains, is also discussed

  17. Liquid phase interaction in TiC0,5N0,5-TiNi-Mo and TiC0,5N0,5-TiNi-Ti-Mo

    International Nuclear Information System (INIS)

    Askarova, L.Kh; Grigorov, I.G.; Zajnulin, Yu.G.

    1998-01-01

    Using the methods of X ray diffraction analysis, electron microscopy and X ray spectrum microanalysis a study was made into specific features of phase and structure formation in alloys TiC 0,5 N 0,5 -TiNi-Mo and TiC 0,5 N 0,5 -TiNi-Mo in the presence of a liquid phase at temperatures of 1380-1600 deg C. It is revealed that the physical and chemical processes taking place during the liquid-phase sintering result in the formation of a three-phase alloy consisting of nonstoichiometric titanium carbonitride TiC 0.5-x N 0.5-x , a molybdenum base solid solution of titanium, nickel and carbon Mo(Ti, Ni, C) and one of two intermetallic compounds, either TiNi or Ni 3 Ti. Metallic element concentration in individual phase constituents of the alloy is determined by means of X ray spectrum microanalysis

  18. Portevin-Le Chatelier effect in a Ni–Cr–Mo alloy containing ordered phase with Pt{sub 2}Mo-type structure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Liang, E-mail: yuanliang031@163.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Hu, Rui, E-mail: rhu@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Jinshan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Zhang, Xiaoqing; Yang, Yan’an [Xi’an Filter Metal Materials Co., Ltd., Xi’an 710072 (China)

    2016-01-05

    Serrated flow behavior or the Portevin-Le Chatelier (PLC) effect in a Ni–Cr–Mo alloy containing ordered phase was investigated at uniaxial tensile and nanoindentation tests at room temperature. Results demonstrate that the periodic arrangement of atoms for nano-sized ordered phase with Pt{sub 2}Mo-type structure obtained by ageing treatment at 600 °C, induces the appearance of an embedded serration (a small serration is embedded in two adjacent large serrations) in the alloy during uniaxial tensile tests at room temperature with strain rates of 10{sup −3} and 10{sup −4} s{sup −1}. The behavior characteristic of small serration is almost independent on strain rate, but that of large serration is significantly dependent on strain rate. Both the stress drop (Δσ) of the large serration and the interval (t{sub w}) between adjacent large serrations increase with decreasing strain rate from 10{sup −3} to 10{sup −4} s{sup −1}. Moreover, a single serration also appears in load-displacement curve of aged sample at loading rate of 10{sup −3} s{sup −1}. Both formation of order-disorder transformation-induced twins and twinning of ordered phase itself are responsible for the occurrence of the embedded serrations.

  19. Fe-based bulk amorphous alloys with iron contents as high as 82 at%

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jin-Feng; Liu, Xue; Zhao, Shao-Fan; Ding, Hong-Yu [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Yao, Ke-Fu, E-mail: kfyao@tsinghua.edu.cn [School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-07-15

    Fe-based bulk amorphous alloys (BAAs) with high Fe contents are advantageous due to their high saturation magnetization and low cost. However, preparing Fe-based BAAs with Fe contents higher than 80 at% is difficult due to their poor glass forming abilities (GFA). In this study, an Fe{sub 81}P{sub 8.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA with a diameter of 1 mm and a saturation magnetization of 1.56 T was successfully prepared using the fluxing and copper mold casting methods. In addition, by introducing a small amount of elemental Mo to the alloy, an Fe{sub 82}Mo{sub 1}P{sub 6.5}C{sub 5.5}B{sub 2}Si{sub 3} BAA rod with a diameter of 1 mm, a high saturation magnetization of 1.59 T, a high yield stress of 3265 MPa, and a clear plasticity of 1.3% was prepared in the same way. The cost effectiveness and good magnetic properties of these newly-developed Fe-based BAAs with Fe contents as high as 82 at% would be advantageous and promising for industrial applications. - Highlights: • Novel Fe-based BAA with no other metallic element except 81 at% Fe was prepared. • Fe-based bulk amorphous alloy (BAA) with the highest Fe content (82%) was prepared. • Very high saturation magnetization of 1.59 T has been achieved. • A new thought for designing Fe-based BAA with high Fe content was provided.

  20. Nanocrystalline electrodeposited Ni-Mo-C cathodes for hydrogen production

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sasaki, T.; Meguro, S.; Asami, K.

    2004-01-01

    Tailoring active nickel alloy cathodes for hydrogen evolution in a hot concentrated hydroxide solution was attempted by electrodeposition. The carbon addition to Ni-Mo alloys decreased the nanocrystalline grain size and remarkably enhanced the activity for hydrogen evolution, changing the mechanism of hydrogen evolution. The Tafel slope of hydrogen evolution was about 35 mV per decade. This suggested that the rate-determining step is desorption of adsorbed hydrogen atoms by recombination. As was distinct from the binary Ni-Mo alloys, after open circuit immersion, the overpotential, that is, the activity of nanocrystalline Ni-Mo-C alloys for hydrogen evolution was not changed, indicating the sufficient durability in the practical electrolysis

  1. Update on Fresh Fuel Characterization of U-Mo Alloys

    International Nuclear Information System (INIS)

    Burkes, D.E.; Wachs, D.M.; Keiser, D.D.; Okuniewski, M.A.; Jue, J.F.; Rice, F.J.; Prabhakaran, R.

    2009-01-01

    The need to provide more accurate property information on U-Mo fuel alloys to operators, modellers, researchers, fabricators, and government increases as success of the GTRI Reactor Convert program continues. This presentation provides an update on fresh fuel characterization activities that have occurred at the INL since the RERTR 2008 conference in Washington, D.C. The update is particularly focused on properties recently obtained and on the development progress of new measurement techniques. Furthermore, areas where useful and necessary information is still lacking is discussed. The update deals with mechanical, physical, and microstructural properties for both integrated and separate effects. Appropriate discussion of fabrication characteristics, impurities, thermodynamic response, and effects on the topic areas are provided, along with a background on the characterization techniques used and developed to obtain the information. Efforts to measure similar characteristics on irradiated fuel plates are discussed.

  2. Tribological research of cobalt alloys used as biomaterials

    Directory of Open Access Journals (Sweden)

    Robert Karpiński

    2015-12-01

    Full Text Available This study provides information about the cobalt alloys used in dentistry and medicine. The work includes a review of the literature describing the general properties of cobalt alloys. In addition it describes the impact of the manufacturing conditions and alloy additives used , on the structure and mechanical properties of these alloys. The research methodology and the results obtained has been presented in the study. Two cobalt-based alloys Co-CrMo-W and Co-Cr-Ni-Mo were selected for the tests. The first one was prepared with the use of casting technique whereas the second was obtained due to plastic forming. An analysis of the chemical composition and in vitro tribological tests with the use of tribotester of "ball-on-disc" type was conducted. Comparative tribological characteristics of these alloys has been presented.

  3. Thermal stability and microstructural changes of some Ni-Cr-Mo alloys as detected by corrosion testing

    International Nuclear Information System (INIS)

    Koehler, M.; Agarwal, D.C.

    1998-01-01

    Wrought Ni-Cr-Mo alloys of the C-family show a sensitivity to intercrystalline attack especially after exposure in the temperature range of 650 C to 950 C. Nevertheless, microstructural changes due to precipitation of intermetallic phases can occur up to a temperature level of 1050 C and this can affect the localized corrosion resistance. Thermal stability of wrought Alloy C-276 is a lot lower in comparison to Alloy 59. Sensitized at 870 C for only 1 hour, Alloy C-276 fails in the ASTM-G 28 B test due to rapid intercrystalline penetration and pitting whereas Alloy 59 can be aged up to 3 hours without any increase of the corrosion rate or any pitting attack. The same ranking applies during polythermal cooling cycles. Alloy C-276 requires a cooling rate of 150 C/min. between the solution annealing temperature and 600 C to avoid any sensitization whereas for Alloy 59 a relative slow cooling rate of 25 C/min. is acceptable. The critical pitting temperature of Alloy 59 when tested in the Green Death solution had been determined to be > 125 C. The temperature was not lowered during aging up to 3 hours at 1050 C or if a cooling speed of 25 C/min. was applied. However, cooling rates of 50 C/min. or less reduced the critical pitting temperature of Alloy C-276 from 115 C in the solution annealed and water quenched condition to only 105 C

  4. Laser-assisted development of titanium alloys: the search for new biomedical materials

    Science.gov (United States)

    Almeida, Amelia; Gupta, Dheeraj; Vilar, Rui

    2011-02-01

    Ti-alloys used in prosthetic applications are mostly alloys initially developed for aeronautical applications, so their behavior was not optimized for medical use. A need remains to design new alloys for biomedical applications, where requirements such as biocompatibility, in-body durability, specific manufacturing ability, and cost effectiveness are considered. Materials for this application must present excellent biocompatibility, ductility, toughness and wear and corrosion resistance, a large laser processing window and low sensitivity to changes in the processing parameters. Laser deposition has been investigated in order to access its applicability to laser based manufactured implants. In this study, variable powder feed rate laser cladding has been used as a method for the combinatorial investigation of new alloy systems that offers a unique possibility for the rapid and exhaustive preparation of a whole range of alloys with compositions variable along a single clad track. This method was used as to produce composition gradient Ti-Mo alloys. Mo has been used since it is among the few elements biocompatible, non-toxic β-Ti phase stabilizers. Alloy tracks with compositions in the range 0-19 wt.%Mo were produced and characterized in detail as a function of composition using microscale testing procedures for screening of compositions with promising properties. Microstructural analysis showed that alloys with Mo content above 8% are fully formed of β phase grains. However, these β grains present a cellular substructure that is associated to a Ti and Mo segregation pattern that occurs during solidification. Ultramicroindentation tests carried out to evaluate the alloys' hardness and Young's modulus showed that Ti-13%Mo alloys presented the lowest hardness and Young's modulus (70 GPa) closer to that of bone than common Ti alloys, thus showing great potential for implant applications.

  5. Design of Refractory High-Entropy Alloys

    Science.gov (United States)

    Gao, M. C.; Carney, C. S.; Doğan, Ö. N.; Jablonksi, P. D.; Hawk, J. A.; Alman, D. E.

    2015-11-01

    This report presents a design methodology for refractory high-entropy alloys with a body-centered cubic (bcc) structure using select empirical parameters (i.e., enthalpy of mixing, atomic size difference, Ω-parameter, and electronegativity difference) and CALPHAD approach. Sixteen alloys in equimolar compositions ranging from quinary to ennead systems were designed with experimental verification studies performed on two alloys using x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy. Two bcc phases were identified in the as-cast HfMoNbTaTiVZr, whereas multiple phases formed in the as-cast HfMoNbTaTiVWZr. Observed elemental segregation in the alloys qualitatively agrees with CALPHAD prediction. Comparisons of the thermodynamic mixing properties for liquid and bcc phases using the Miedema model and CALPHAD are presented. This study demonstrates that CALPHAD is more effective in predicting HEA formation than empirical parameters, and new single bcc HEAs are suggested: HfMoNbTiZr, HfMoTaTiZr, NbTaTiVZr, HfMoNbTaTiZr, HfMoTaTiVZr, and MoNbTaTiVZr.

  6. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    International Nuclear Information System (INIS)

    Wang, Hui; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-01-01

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  7. Research on low strain magnetic mechanical hysteresis damping performance of Fe-15Cr-3Mo-0.5Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui, E-mail: qinghe5525@163.com; Huang, Huawei; Hong, Xiaofeng; Yin, Changgeng; Huang, Zhaohua; Chen, Le

    2015-02-15

    Highlights: • Heat treatment system has a great effect on the alloy damping performance. • Damping performance does not improve monotonously with temperature. • Furnace cooling is higher than that of alloy after air cooling. • There is an optimum annealing temperature and grain size to obtain high damping. - Abstract: This paper studies the preparation of Fe-15Cr-3Mo-0.5Si alloy by using vacuum induction melting furnace and vacuum annealing furnace, the damping performance of which in different heat treatment states is tested with dynamic mechanical thermal analyzer (DMA). Through microstructure observation with metallographic microscope (OM), grain boundary observation with scanning electron microscopy (SEM), phase structure analysis with X-ray diffraction (XRD) and internal stress of S-B model analysis, the effect law of annealing temperature, types of cooling, holding time and grain sizes on the damping performance of alloy and the related mechanism can be concluded as follows. The annealing temperature and grain sizes have a significant impact on the damping strain amplitude as well as the magnetic and mechanical damping performance of this ferromagnetic alloy. Proper annealing temperature and grain size is the necessary condition to get high damping performance of the alloy. It is not conducive to improvement of the damping performance if the annealing temperature is too high or too low and the grain size is too small or too large. For Fe-15Cr-3Mo-0.5Si alloy, within the range of the low strain amplitude, alloy damping performance does not improve monotonously with the increase of the annealing temperature and grain size. The maximum value appears at the annealing temperature of 1100 °C/1 h with the grain size of about 300 μm. At high annealing temperature of 1100 °C, the damping performance of alloy in the slow cooling furnace is higher than that with air cooling treatment. The extension or shortening of the holding time, to a certain extent

  8. About oxide dispersion particles chemical compatibility with areas coherent dissipation/sub-grains of bcc-alloys in Fe - (Cr, V, Mo, W systems

    Directory of Open Access Journals (Sweden)

    Udovsky A.

    2016-01-01

    Full Text Available A concept of partial magnetic moments (PMM of the iron atoms located in the first ч four coordination spheres (1÷4 CS for bcc lattice have been introduced based on analysis of results obtained by quantum-mechanical calculations (QMC for volume dependence of the average magnetic moment ferromagnetic (FM Fe. The values of these moments have been calculated for pure bcc Fe and bcc - Fe-Cr alloys. This concept has been used to formulate a three sub-lattice model for binary FM alloys of the Fe-M systems (M is an alloying paramagnetic element. Physical reason for sign change dependence of the short-range order and mixing enthalpy obtained by QMCs for Fe-(Cr, V bcc phases has been found. Using this model it has been predicted that static displacements of Fe - atoms in alloy matrix increase with increasing the of CS number and result in reducing of the area of coherent dissipation (ACD size with growth of the dimension factor (DF in the Fe-(Cr, V, Mo, W systems in agreement with the X-ray experiments. It has been shown theoretically that anisotropy of spin- density in bcc lattice Fe and DF in binary Fe - (Cr, V, Mo, W systems is main factor for origins of segregations on small angle boundaries of ACD and sub-grains boundaries To prevent the coagulation of both ACD and sub-grains, and to increase the strength of alloys, it is advisable to add oxide dispersion particles into ferrite steel taking into account their chemical compatibility and coherent interfacing with the crystalline lattice of a ferrite matrix. Application of phase diagrams for binary and ternary the Fe-(Y, Zr-O systems to verify chemical compatibility of oxide dispersion particles with ferrite matrix have been discussed

  9. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.

    Science.gov (United States)

    Gabriel, Sinara B; de Almeida, Luiz H; Nunes, Carlos A; Dille, Jean; Soares, Glória A

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti-12Mo-13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000°C for 24h, water quenching, cold forging to reduce 80% of the area, and ageing at 500°C for 24h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240±100 nm length) and massive particles of 200-500 nm size. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    Quang, K.V.; Da Cunha Belo, M.; Benabed, M.S.; Bourelier, F.; Jallerat, N.; Pari, F.L.

    1985-01-01

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 20 0 C and 90 0 C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 90 0 C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  11. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  12. Effects of thermal treatments on protein adsorption of Co-Cr-Mo ASTM-F75 alloys.

    Science.gov (United States)

    Duncan, L A; Labeed, F H; Abel, M-L; Kamali, A; Watts, J F

    2011-06-01

    Post-manufacturing thermal treatments are commonly employed in the production of hip replacements to reduce shrinkage voids which can occur in cast components. Several studies have investigated the consequences of these treatments upon the alloy microstructure and tribological properties but none have determined if there are any biological ramifications. In this study the adsorption of proteins from foetal bovine serum (FBS) on three Co-Cr-Mo ASTM-F75 alloy samples with different metallurgical histories, has been studied as a function of protein concentration. Adsorption isotherms have been plotted using the surface concentration of nitrogen as a diagnostic of protein uptake as measured by X-ray photoelectron spectroscopy. The data was a good fit to the Langmuir adsorption isotherm up to the concentration at which critical protein saturation occurred. Differences in protein adsorption on each alloy have been observed. This suggests that development of the tissue/implant interface, although similar, may differ between as-cast (AC) and heat treated samples.

  13. Microstructural defects modeling in the Al-Mo system

    International Nuclear Information System (INIS)

    Pascuet, Maria I.; Fernandez, Julian R.; Monti, Ana M.

    2006-01-01

    In this work we have utilized computer simulation techniques to study microstructural defects, such as point defects and interfaces, in the Al-Mo alloy. Such alloy is taken as a model to study the Al(fcc)/U-Mo(bcc) interface. The EAM interatomic potential used has been fitted to the formation energy and lattice constant of the AlMo 3 intermetallic. Formation of vacancies for both components Al and Mo and anti-sites, Al Mo and Mo Al , as well as vacancy migration was studied in this structure. We found that the lowest energy defect complex that preserves stoichiometry is the antisite pair Al Mo +Mo Al , in correspondence with other intermetallics of the same structure. Our results also suggest that the structure of the Al(fcc)/Mo(bcc) interface is unstable, while that of the Al(fcc)/Al 5 Mo interface is stable, as observed experimentally. (author) [es

  14. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  15. Low temperature irradiation effects on iron boron based amorphous metallic alloys

    International Nuclear Information System (INIS)

    Audouard, A.

    1982-09-01

    Three Fe-B amorphous alloys (Fe 80 B 20 , Fe 27 Mo 2 B 20 and Fe 75 B 25 ) and the crystallized Fe 3 B alloy have been irradiated at the temperature of liquid hydrogen. Electron irradiation and irradiation by 10 B fission fragments induce point defects in amorphous alloys. These defects are characterized by an intrinsic resistivity and a formation volume. The threshold energy for the displacement of iron atoms has also been calculated. Irradiation by 235 U fission fragments induces some important structural modifications in the amorphous alloys [fr

  16. An investigation of the fatigue and fracture behavior of a Nb-12Al-44Ti-1.5Mo intermetallic alloy

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Dipasquale, J.; Ye, F.; Mercer, C.

    1999-01-01

    This article presents the results of a study of the fatigue and fracture behavior of a damage-tolerant Nb-12Al-44Ti-1.5Mo alloy. This partially ordered B2 + orthorhombic intermetallic alloy is shown to have attractive combinations of room-temperature ductility (11 to 14 pct), fracture toughness (60 to 92 MPa√m), and comparable fatigue crack growth resistance to IN718, Ti-6Al-4V, and pure Nb at room temperature. The studies show that tensile deformation in the Nb-12Al-44Ti-1.5Mo alloy involves localized plastic deformation (microplasticity via slip-band formation) which initiates at stress levels that are significantly below the uniaxial yield stress (∼9.6 pct of the 0.2 pct offset yield strength (YS)). The onset of bulk yielding is shown to correspond to the spread of microplasticity completely across the gage sections of the tensile specimen. Fatigue crack initiation is also postulated to occur by the accumulation of microplasticity (coarsening of slip bands). Subsequent fatigue crack growth then occurs by the unzipping of cracks along slip bands that form ahead of the dominant crack tip. The proposed mechanism of fatigue crack growth is analogous to the unzipping crack growth mechanism that was suggested originally by Neumann for crack growth in single-crystal copper. Slower near-threshold fatigue crack growth rates at 750 C are attributed to the shielding effects of oxide-induced crack closure. The fatigue and fracture behavior are also compared to those of pure Nb and emerging high-temperature niobium-based intermetallics

  17. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

    Science.gov (United States)

    Hasemann, Georg; Baumann, Torben; Dieck, Sebastian; Rannabauer, Stefan; Krüger, Manja

    2015-04-01

    A preceramic polymer precursor, perhydropolysilazane, is used to investigate its function as a new type of oxidation barrier coating on Mo-Si-B alloys. After dip-coating and pyrolysis at 1073 K (800 °C), dense and well-adhering SiON ceramic coatings could be achieved, which were investigated by SEM and cyclic oxidation tests at 1073 K and 1373 K (800 °C and 1100 °C). The coating is promising in reducing the mass loss during the initial stage of oxidation exposure at 1373 K (1100 °C) significantly.

  18. An investigation of the γ → α martensitic transformation in uranium alloys

    International Nuclear Information System (INIS)

    Speer, J.G.; Edmonds, D.V.

    1988-01-01

    A detailed study of the γ → chi martensite transformation in uranium alloys is presented. Five binary uranium-base alloys containing 0.77 Ti, 1.2 Mo, 2.2 Mo, 4.3 Mo and 5.0 Mo, respectively, were examined. As quenched, the U-0.77 Ti and U-1.2 Mo alloys consisted of an orthorhombic α'/sub a/ martensite phase with an acicular morphology. The acicular martensite plates contain deformation twins which result from transformation stresses. The U-2.2 Mo and U-4.3 Mo alloys transformed during quenching to orthorhomic chi'/sub b/ and monoclinic chi'/sub b/ martensite phases, respectively. The banded morphology observed in these two alloys consists of long, parallel martensite plates containing fine arrays of transformation twins. The type I transformation twinning modes were identified as /021/, /130/ and /131/. There was also evidence for a type II /111/ mode. It was found that adjacent bands could contain different kinds of transformation twins. In the U-5.0 Mo alloy, some of the cubic parent phase was retained during water quenching, and chi/γ orientation relationship was determined. The γ phase was completely retained in this alloy by slow cooling from the solution treatment temperature of 800 0 C, and it was found that a martensitic reaction could be induced by deformation. The strain-induced martensite plates contained /021/ transformation twins. The chi/γ orientation relationship was found to be different than the one determined in the quenched condition, and both orientation relationships are irrational. The invariant plane strain theory of martensite crystallography was applied to the twinned martensites, and a number of different parent/product lattice correspondences were considered for the γ → chi transformations. It was concluded that more than one correspondence may be operative during these transformations

  19. Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

    International Nuclear Information System (INIS)

    Regan, M.J.

    1993-12-01

    Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe x Ge 1-x and Mo x Ge 1-x are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x 2 or MoGe 3 . Finally, by manipulating the deposited power flux and rates of growth, Fe x Ge 1-x films which have the same Fe composition x can be grown to different states of phase separation. These results may help explain the difficulty workers have had in isolating the metal/insulator transition for these and other vapor-deposited amorphous alloys

  20. Synthesis of Complex-Alloyed Nickel Aluminides from Oxide Compounds by Aluminothermic Method

    Directory of Open Access Journals (Sweden)

    Victor Gostishchev

    2018-06-01

    Full Text Available This paper deals with the investigation of complex-alloyed nickel aluminides obtained from oxide compounds by aluminothermic reduction. The aim of the work was to study and develop the physicochemical basis for obtaining complex-alloyed nickel aluminides and their application for enhancing the properties of coatings made by electrospark deposition (ESD on steel castings, as well as their use as grain refiners for tin bronze. The peculiarities of microstructure formation of master alloys based on the Al–TM (transition metal system were studied using optical, electronic scanning microscopy and X-ray spectral microanalysis. There were regularities found in the formation of structural components of aluminum alloys (Ni–Al, Ni-Al-Cr, Ni-Al-Mo, Ni-Al-W, Ni-Al-Ti, Ni-Cr-Mo-W, Ni-Al-Cr-Mo-W-Ti, Ni-Al-Cr-V, Ni-Al-Cr-V-Mo and changes in their microhardness, depending on the composition of the charge, which consisted of oxide compounds, and on the amount of reducing agent (aluminum powder. It is shown that all the alloys obtained are formed on the basis of the β phase (solid solution of alloying elements in nickel aluminide and quasi-eutectic, consisting of the β′ phase and intermetallics of the alloying elements. The most effective alloys, in terms of increasing microhardness, were Al-Ni-Cr-Mo-W (7007 MPa and Al-Ni-Cr-V-Mo (7914 MPa. The perspective is shown for applying the synthesized intermetallic master alloys as anode materials for producing coatings by electrospark deposition on steel of C1030 grade. The obtained coatings increase the heat resistance of steel samples by 7.5 times, while the coating from NiAl-Cr-Mo-W alloy remains practically nonoxidized under the selected test conditions. The use of NiAl intermetallics as a modifying additive (0.15 wt. % in tin bronze allows increasing the microhardness of the α-solid solution by 1.9 times and the microhardness of the eutectic (α + β phase by 2.7 times.

  1. Structural high-temperature and (βNiAl+γ)-alloys based on Ni-Al-Co-Me systems with an improved low-temperature ductility

    International Nuclear Information System (INIS)

    Povarova, K.B.; Kazanskaya, N.K.; Drozdov, A.A.; Lomberg, B.S.; Gerasimov, V.V.

    2001-01-01

    The βNiAl-based alloys (B2) have lower density higher resistance to oxidation, and higher melting temperature relative to those of Ni-superalloys or γ'Ni 3 Al-base alloys. An improved low-temperature ductility of advanced Ni-AI-Co-M β+γ alloys(El=9-16 % at 293-1173 K is achieved due to the formation γ-Ni solid solution intergranular interlayers of eutectic origin. Secondary γ and/or γ' precipitates form in the grains of the supersaturated β-solid solution upon heat treatment at 1473-1573 K and 1073-1173 K. The limiting contents of alloying elements (Ti, Hf, Nb, Ta, Cr, Mo) for the (β+γ) alloys Ni - (19-29) % AI - (22-35) % Co, are determined which allowed to avoid the formation of primary γ'-phase (decrease solidus temperature ≤1643 K) and hard phases of the types σ, η and δ (decrease ductility). Alloying affects the morphology of the secondary γ and γ' precipitates: globular equiaxed precipitates are formed in the alloys containing Cr, Mo, and needle precipitates are formed in alloys alloys containing γ'-forming elements Nb, Ta and, especially, Ti and Hf. After directional solidification, (β+γ')-alloys have directed columnar special structure with a low extension of transverse grain boundaries. This microstructure allows one to increase UTS, by a factor 1,5-2 and long-term strength (time to rupture increase by a factor of 5-10 at 1173 K). (author)

  2. Optimization of the method for determining the corrosion-crevice repassivation potential of Ni-Cr-Mo alloys

    International Nuclear Information System (INIS)

    Fukaya, Yuichi; Akashi, Masatsune; Sasaki, Hidetsugu; Tsujikawa, Shigeo

    2007-01-01

    In order to quantitatively evaluate the resistance of a candidate overpack material for geological disposal of high-level nuclear waste to the crevice corrosion, the optimized test method for determining the corrosion-crevice repassivation potential, E R,CREV , of a Ni-Cr-Mo alloy (Alloy 22) was developed based on that of stainless steels (JIS G0592). It was found that two restrictions shall be satisfied for determining the valid value of E R,CREV for Alloy 22. Restriction (a) was to avoid transpassive dissolution, and (b) was to obtain a penetration depth of 65 μm or more in creviced areas. The recommended procedure in JIS G 0592 at the corrosion-crevice initiation stage, which involved the potentiodynamic anodic polarization at a scan rate of 30 mV min -1 , could not satisfy the restriction (a). Consequently, we adopted the potentiostatic holding at the potential below the critical potential for transpassive dissolution. The recommended procedure in JIS G 0592 at the corrosion-crevice propagation stage, which involved the galvanostatic holding at an applied current of 200 μA for 2 hours, could not always satisfy the restriction (b), and the applied current of 1600 μA or more could not satisfy the restriction (a). Therefore, we adopted the galvanostatic holding at a current of 800 μA for 2 hours. The limits of safety usage of Alloy 22 were evaluated by values of E R,CREV which were measured with the optimized procedure in 0.1 to 4 mol dm -3 sodium chloride solutions at 90degC. (author)

  3. Solute grain boundary segregation during high temperature plastic deformation in a Cr-Mo low alloy steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.; Weng, L.-Q.; Liu, S.-J.

    2011-01-01

    Highlights: → The segregation of P and Mo is evidently enhanced by plastic deformation. → The boundary concentrations of P and Mo increase with increasing strain. → A model with consideration of site competition in grain boundary segregation in a ternary system is developed. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary segregation of Cr, Mo and P to austenite grain boundaries in a P-doped 1Cr0.5Mo steel is examined using field emission gun scanning transmission electron microscopy for the specimens undeformed and deformed by 10% with a strain rate of 2 x 10 -3 s -1 at 900 deg. C, and subsequently water quenched to room temperature. Before deformation, there is some segregation for Mo and P, but the segregation is considerably increased after deformation. The segregation of Cr is very small and there is no apparent difference between the undeformed and deformed specimens. Since the thermal equilibrium segregation has been attained prior to deformation, the segregation produced during deformation has a non-equilibrium characteristic. A theoretical model with consideration of site competition in grain boundary segregation between two solutes in a ternary alloy is developed to explain the experimental results. Model predictions are made, which show a reasonable agreement with the observations.

  4. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  5. Anodic behavior of alloy 22 in bicarbonate containing media: Effect of alloying

    International Nuclear Information System (INIS)

    Zadorozne, N S; Giordano, C M; Rebak, R B; Ares, A E; Carranza, R M

    2012-01-01

    Alloy 22 is one of the candidates for the manufacture of high level nuclear waste containers. These containers provide services in natural environments characterized by multi-ionic solutions.It is estimated they could suffer three types of deterioration: general corrosion, localized corrosion (specifically crevice corrosion) and stress corrosion cracking (SCC). It has been confirmed that the presence of bicarbonate and chloride ions is necessary to produce cracking, . It has also been determined that the susceptibility to SCC could be related to the occurrence of an anodic peak in the polarization curves in these media at potentials below transpassivity. The aim of this work is to study the effect of alloying elements on the anodic behavior of Alloy 22 in media containing bicarbonate and chloride ions at different concentrations and temperatures. Polarization curves were made on alloy 22 (Ni-22% Cr-13% Mo), Ni-Mo (Ni-28, 5% Mo) and Ni-Cr (Ni-20% Cr) in the following solutions: 1 mol/L NaCl at 90 o C, and 1.148 mol/L NaHCO 3 ; 1.148 mol/L NaHCO 3 + 1 mol/L NaCl; 1.148 mol/L NaHCO 3 + 0.1 mol/L NaCl, at 90 o C, 75 o C, 60 o C and 25 o C. It was found that alloy 22 has a anodic current density peak at potentials below transpassivity, only in the presence of bicarbonate ions. Curves performed in 1 mol/L NaCl did not show any anodic peak, in any of the tested alloys. The curves made on alloys Ni-Mo and Ni-Cr in the presence of bicarbonate ions, allowed to determine that Cr, is responsible for the appearance of the anodic peak in alloy 22. The curves of alloy Ni-Mo showed no anodic peak in the studied conditions. The potential at which the anodic peak appears in alloy 22 and Ni-Cr alloy, increases with decreasing temperature. The anodic peak was also affected by solution composition. When chloride ion is added to bicarbonate solutions, the anodic peak is shifted to higher potential and current densities, depending on the concentration of added chloride ions (author)

  6. The distribution trends and site preferences of alloying elements in precipitates within a Zr alloy: A combined first-principles and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Luan, B.F., E-mail: bfluan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Wang, J.M.; Qiu, R.S.; Tao, B.R.; He, W.J. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Zhang, X.Y.; Liu, R.P. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu, Q., E-mail: qingliu@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2016-09-05

    Energy dispersive X-ray spectroscopy in scanning transmission electron microscope (STEM-EDS) technique and first-principles calculation are jointly utilized to investigate the distribution trends and site preferences of alloying elements in the precipitates within Zr-1.0Cr-0.4Fe-0.4Mo-0.4Bi alloy. Based on selected area electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDS) results, the precipitates within the studied alloy are confirmed to be ZrCr{sub 2}-based Laves phase with FCC (C15) type structure. The STEM-EDS elemental mapping is acquired to clarify the distribution trends of alloying elements in precipitates, i.e. Fe>Mo>Bi. To better verify this distribution behavior, substitutional formation energies and equilibrium concentrations of ternary alloying elements in ZrCr{sub 2} Laves phase are calculated by first-principles. The calculated results show a good consistence with the STEM-EDS results. In addition, the site preferences of ternary alloying elements in ZrCr{sub 2} Laves phase are predicted by the calculation of transfer energies. Finally, the reasons accounting for different distribution trends and site preferences of alloying elements in ZrCr{sub 2} Laves phase are discussed in terms of density of states, which attributed to the pseudogap effect and hybridizations between atoms. - Highlights: • Clarified the distribution trends of Fe>Mo>Bi in precipitates by STEM-EDS. • Verified the experimental results by first-principles calculation. • Predicted the site preferences of alloying elements by first-principles calculation. • Hybridization and pseudogap lead to the strong distribution and site preferences.

  7. Phase Composition of a CrMo0.5NbTa0.5TiZr High Entropy Alloy: Comparison of Experimental and Simulated Data

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-09-01

    Full Text Available Microstructure and phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy were studied in the as-solidified and heat treated conditions. In the as-solidified condition, the alloy consisted of two disordered BCC phases and an ordered cubic Laves phase. The BCC1 phase solidified in the form of dendrites enriched with Mo, Ta and Nb, and its volume fraction was 42%. The BCC2 and Laves phases solidified by the eutectic-type reaction, and their volume fractions were 27% and 31%, respectively. The BCC2 phase was enriched with Ti and Zr and the Laves phase was heavily enriched with Cr. After hot isostatic pressing at 1450 °C for 3 h, the BCC1 dendrites coagulated into round-shaped particles and their volume fraction increased to 67%. The volume fractions of the BCC2 and Laves phases decreased to 16% and 17%, respectively. After subsequent annealing at 1000 °C for 100 h, submicron-sized Laves particles precipitated inside the BCC1 phase, and the alloy consisted of 52% BCC1, 16% BCC2 and 32% Laves phases. Solidification and phase equilibrium simulations were conducted for the CrMo0.5NbTa0.5TiZr alloy using a thermodynamic database developed by CompuTherm LLC. Some discrepancies were found between the calculated and experimental results and the reasons for these discrepancies were discussed.

  8. A Study on Silicide Coatings as Diffusion barrier for U-7Mo Dispersion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Won, Ju Jin; Kim, Sung Hwan; Lee, Kyu Hong; Jeong, Yong Jin; Kim, Ki Nam; Park, Jong Man; Lee, Chong Tak [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Gamma phase U-Mo alloys are regarded as one of the promising candidates for advanced research reactor fuel when it comes to the irradiation performance. However, it has been reported that interaction layer formation between the UMo alloys and Al matrix degrades the irradiation performance of U-Mo dispersion fuel. The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Al matrix with Si. In addition, silicide or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of the interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at 900 .deg. C for 1hr. U-Mo alloy powder was mixed with MoSi{sub 2}, Si and ZrSi{sub 2} powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. Silicide coated U-Mo powders and characterized using scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and X-ray diffractometer (XRD). The ZrSi{sub 2} coating layers has a thickness of about 1∼ 2μm. The surface of a silicide coated particle was very rough and silicide powder attached to the surface of the coating layer. 3. The XRD analysis of the coating layers showed that, they consisted of compounds such as U3Si{sub 2}, USi{sub 2}.

  9. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  10. Alloying principles for magnesium base heat resisting alloys

    International Nuclear Information System (INIS)

    Drits, M.E.; Rokhlin, L.L.; Oreshkina, A.A.; Nikitina, N.I.

    1982-01-01

    Some binary systems of magnesium-base alloys in which solid solutions are formed, are considered for prospecting heat resistant alloys. It is shown that elements having essential solubility in solid magnesium strongly decreasing with temperature should be used for alloying maqnesium base alloys with high strength properties at increased temperatures. The strengthening phases in these alloys should comprise essential quantity of magnesium and be rather refractory

  11. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  12. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  13. Optimizing Wear Resistance and Impact Toughness in High Chromium Iron Mo-Ni Alloy

    Science.gov (United States)

    Singh, K. K.; Verma, R. S.; Murty, G. M. D.

    2009-06-01

    An alloy with carbon and chromium in the range of 2.0 to 2.5% and 20 to 25%, respectively, with the addition of Mo and Ni in the range of 1.0 to 1.5% each when heat-treated at a quenching temperature of 1010 °C and tempering temperature of 550 °C produces a hardness in the range of 54 to 56 HRC and a microstructure that consists of discontinuous bands of high volume (35-40%) of wear resistant primary (eutectic) carbides in a tempered martensitic matrix with uniformly dispersed secondary precipitates. This alloy has been found to possess adequate impact toughness (5-6 J/cm2) with a wear resistance of the order of 3-4 times superior to Mn steel and 1.25 times superior to martensitic stainless steel with a reduction in cost-to-life ratio by a factor of 1.25 in both the cases.

  14. Solid state amorphisation in binary systems prepared by mechanical alloying

    International Nuclear Information System (INIS)

    Gonzalez, G.; Sagarzazu, A.; Bonyuet, D.; D'Angelo, L.; Villalba, R.

    2009-01-01

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  15. MO-HF-C alloy composition

    International Nuclear Information System (INIS)

    Whelan, E.P.; Kalns, E.

    1987-01-01

    This patent describes, as an article of manufacture, a cast ingot of a molybdenum-hafnium-carbon alloy consisting essentially by weight of about 0.6% to about 1% Hf, about 0.045% to about 0.08% C, and the balance essentially molybdenum. The amount of Hf and C present are substantially stoichiometric with respect to HfC and within about +-15% of stoichiometry. The ingot is characterized in that it has a substantially less tendency to crack compared to alloys containing Hf in excess of about 1% by weight and carbon in excess of 0.08% by weight, without substantial diminution in strength properties of the alloy

  16. Electrochemical impedance spectroscopy on Co-Cr-Mo alloy in two media simulating physiological liquid. Caractérisation par spectroscopie d'impédance électrochimique d'un alliage de Co-Cr-Mo dans différents milieux simulant le liquide physiologique.

    OpenAIRE

    Geringer , Jean; Normand , Bernard; Diemiaszonek , Robert; Alémany-Dumont , Catherine; Mary , Nicolas

    2007-01-01

    National audience; Co-Cr-Mo is an alloy which allows manufacturing orthopedic implants, especially hip total joint prostheses. This alloy has good tribological and biocompatibility properties. This work aims at studying electrochemical behavior of this alloy. Moreover, measurements reproductibility has been improved: polarization and electrochemical impedance spectroscopy. Measurements have been carried out with phosphate buffered solution and this one containing albumin, 1 g.L-1. Three diffe...

  17. First-principles study on the effect of alloying elements on the elastic deformation response in β-titanium alloys

    International Nuclear Information System (INIS)

    Gouda, Mohammed K.; Gepreel, Mohamed A. H.; Nakamura, Koichi

    2015-01-01

    Theoretical deformation response of hypothetical β-titanium alloys was investigated using first-principles calculation technique under periodic boundary conditions. Simulation was carried out on hypothetical 54-atom supercell of Ti–X (X = Cr, Mn, Fe, Zr, Nb, Mo, Al, and Sn) binary alloys. The results showed that the strength of Ti increases by alloying, except for Cr. The most effective alloying elements are Nb, Zr, and Mo in the current simulation. The mechanism of bond breaking was revealed by studying the local structure around the alloying element atom with respect to volume change. Moreover, the effect of alloying elements on bulk modulus and admissible strain was investigated. It was found that Zr, Nb, and Mo have a significant effect to enhance the admissible strain of Ti without change in bulk modulus

  18. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  19. Microstructural studies on chemical interactions in U-Mo with Al

    International Nuclear Information System (INIS)

    Martins, Ilson Carlos

    2010-01-01

    This research refers to the study of U-Mo alloy as an alternative material for producing nuclear fuel elements with high density of uranium, for research reactors of high performance. The international non-proliferation of nuclear weapons has enrichment level limited to 20% U 23 '5. U-Mo alloys with 6-10 wt% Mo can lead to a density up to 9 gU/cm 3 , inside the fuel core. The MTR fuel element plates are made from briquettes (U-Mo powder + Al) encapsulated in Al plates, then welded and rolled However, the U-Mo alloy is very reactive in the presence of Al. The reaction products of this interaction are undesirable from the standpoint of nuclear usage, since they cause a chemical interaction layer (IL) formed during thermal cycling and exposure to nuclear fission neutrons. As the IL has low thermal conductivity, they may cause structural failure in the fuel element during operation. The present study provides a new preparation technique for interdiffusion pairs made by hot rolling. The U-Mo alloy, in tablet format, is involved by matrix Al-plates, which is sealed and then hot rolled. This way to prepare the diffusion couples is an ideal condition to avoid the oxidation at the contact interface at U-Mo/Al. The hot rolling preparation also simulates the first reduction pass during MTR fuel plate manufacture. We chose to work with a Mo content of 10 wt% in U-Mo alloy to ensure greater phase formation, since this level favors a greater chemical stability in this phase. The Al alloy matrix was used as the AA1050 since it contains small impurity amounts. The interdiffusion couples U-10Mo/AA1050 were thermally treated in two temperature ranges (1500C and 5500C) and three soaking times (5h, 40h and 80h) to simulate the interdiffusion process and formation of chemical interaction layer. The analysis of the interaction layer U-10Mo/AA1050 was made by SEM/EDS and X-ray diffraction. It revealed a general trend of low interdiffusion of Al (about 8 atomic %) inside U-Mo. There was

  20. Fabrication of Fe-Cr-Mo powder metallurgy steel via a mechanical-alloying process

    Science.gov (United States)

    Park, Jooyoung; Jeong, Gowoon; Kang, Singon; Lee, Seok-Jae; Choi, Hyunjoo

    2015-11-01

    In this study, we employed a mechanical-alloying process to manufacture low-alloy CrL and CrM steel powders that have similar specifications to their water-atomized counterparts. X-ray diffraction showed that Mo and Cr are alloyed in Fe after four cycles of planetary milling for 1 h at 150 RPM with 15-min pauses between the cycles (designated as P2C4 process). Furthermore, the measured powder size was found to be similar to that of the water-atomized counterparts according to both scanning electron microscope images and laser particle size analysis. The samples were sintered at 1120 °C, after which the P2C4-milled CrL showed similar hardness to that of water-atomized CrL, whereas the P2C4-milled CrM showed about 45% lower hardness than that of its water-atomized counterpart. Water-atomized CrM consists of a well-developed lathtype microstructure (bainite or martensite), while a higher fraction of polygonal ferrite is observed in P2C4-milled CrM. This phase difference causes the reduction of hardness in the P2C4-milled CrM, implying that the phase transformation behavior of specimens produced via powder metallurgy is influenced by the powder fabrication method.

  1. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    International Nuclear Information System (INIS)

    Ai, Zhiyong; Jiang, Jinyang; Sun, Wei; Song, Dan; Ma, Han; Zhang, Jianchun; Wang, Danqian

    2016-01-01

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  2. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhiyong, E-mail: 230139452@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Jiang, Jinyang, E-mail: jiangjinyang16@163.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Sun, Wei, E-mail: sunwei@seu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); Song, Dan, E-mail: songdancharls@hhu.edu.cn [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China); College of Mechanics and Materials, Hohai University, Nanjing 210098, Jiangsu (China); Ma, Han, E-mail: mahan-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Zhang, Jianchun, E-mail: Zhangjc-iris@shasteel.cn [Research Institute of Jiangsu Shasteel Iron and Steel, Zhangjiagang 215625, Jiangsu (China); Wang, Danqian, E-mail: wonderbaba@126.com [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Construction Materials, Nanjing 211189, Jiangsu (China)

    2016-12-15

    Highlights: • A new alloy corrosion-resistant steel Cr10Mo1 is developed for reinforcing rebar of concrete in severe environments. • The effects of pH on the passive behaviour of Cr10Mo1 steel compared with plain carbon steel were studied systematically by electrochemical techniques and surface analysis. • The mechanism for self-reinforcing passivity against carbonation of the corrosion-resistant steel is revealed. - Abstract: The passive behaviour of new alloy corrosion-resistant steel Cr10Mo1 and plain carbon steel (as a comparison) in simulating concrete pore solutions of different pH (ranging from 13.5 to 9.0) under open circuit potential conditions, was evaluated by various electrochemical techniques: potentiodynamic polarization, capacitance measurements and electrochemical impedance spectroscopy. The chemical composition and structure of passive films were investigated by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The electrochemical responses of passive films show that Cr10Mo1 steel has an increasing passivity with pH decreasing while carbon steel dose conversely, revealing carbonation does no negative effect on passivation of the corrosion-resistant steel. SIMS reveals that the passive film on the corrosion-resistant steel presents a bilayer structure: an outer layer mainly consisting of Fe oxides and hydroxides, and an inner layer enriched in Cr species, while only a Fe-concentrated layer for carbon steel. According to the XPS analysis results, as the pH decreases, more stable and protective Cr oxides are enriched in the film on Cr10Mo1 steel while Fe oxides gradually decompose. Higher content of Cr oxides in the film layer provides Cr10Mo1 corrosion-resistant steel more excellent passivity at lower pH.

  3. The electrochemical behaviour of various non-precious Ni and Co based alloys in artificial saliva

    Directory of Open Access Journals (Sweden)

    Mareci D.

    2005-07-01

    Full Text Available Five non-precious Ni-Co based alloys were analyzed with respect to their corrosion behaviour. The correlation between the amount of the elements Cr, Mo, V and the corrosion behaviour, expressed by the PREN (pitting resistance equivalent number index in the case of the allied steels, was extended for Ni-Cr and Co-Cr dental alloys characterization. Open circuit potential, corrosion current densities, as a measure of the corrosion rate, and main parameters of the corrosion process were evaluated from linear and cyclic polarization curves, for five Ni-Cr or Co-Cr alloys in an Afnor type artificial saliva. The maintenance times of the alloy in the corrosive medium influence the corrosion rate; the corrosion current values decrease with the maintenance time due to their passivation in solution. The microscopic analysis of the alloy surfaces shows that this passivation in solution does not modify the corrosion type. The alloys with PREN 32.9 are susceptible of localized corrosion.

  4. Progress in development of low-enriched U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Hayes, S.L.; Meyer, M.K.

    2002-01-01

    Results from post irradiation examinations and analyses of U-Mo/Al dispersion mini plates are presented. Irradiation test RERTR-5 contained mini- fuel plates with fuel loadings of 6 and 8 g U cm -3 . The fuel material consisted of 6, 7 and 10 wt. % Mo-uranium-alloy powders in atomized and machined form. The swelling behavior of the various fuel types is analyzed, indicating athermal swelling of the U-Mo alloy and temperature-dependent swelling owing to U-Mo/Al interdiffusion. (author)

  5. Microstructure characteristic for high temperature deformation of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy

    International Nuclear Information System (INIS)

    Zhang, Dan-yang; Li, Hui-zhong; Liang, Xiao-peng; Wei, Zhong-wei; Liu, Yong

    2014-01-01

    Highlights: • With temperature increasing and strain rate decreasing, the β phase decreases. • With temperature increasing and strain rate decreasing, DRX grains increase. • The high temperature deformation mechanism of TiAl alloy was clearly. - Abstract: Hot compression tests of a powder metallurgy (P/M) Ti–47Al–2Cr–0.2Mo (at. pct) alloy were carried out on a Gleeble-3500 simulator at the temperatures ranging from 1000 °C to 1150 °C with low strain rates ranging from 1 × 10 −3 s −1 to 1 s −1 . Electron back scattered diffraction (EBSD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to investigate the microstructure characteristic and nucleation mechanisms of dynamic recrystallization. The stress–strain curves show the typical characteristic of working hardening and flow softening. The working hardening is attributed to the dislocation movement. The flow softening is attributed to the dynamic recrystallization (DRX). The number of β phase decreases with increasing of deformation temperature and decreasing of strain rate. The ratio of dynamic recrystallization grain increases with the increasing of temperature and decreasing of strain rate. High temperature deformation mechanism of powder metallurgy Ti–47Al–2Cr–0.2Mo alloy mainly refers to twinning, dislocations motion, bending and reorientation of lamellae

  6. Thermal cooling effects in the microstructure and properties of cast cobalt-base biomedical alloys

    Science.gov (United States)

    Vega Valer, Vladimir

    Joint replacement prosthesis is widely used in the biomedical field to provide a solution for dysfunctional human body joints. The demand for orthopedic knee and hip implants motivate scientists and manufacturers to develop novel materials or to increase the life of service and efficiency of current materials. Cobalt-base alloys have been investigated by various researchers for biomedical implantations. When these alloys contain Chromium, Molybdenum, and Carbon, they exhibit good tribological and mechanical properties, as well as excellent biocompatibility and corrosion resistance. In this study, the microstructure of cast Co-Cr-Mo-C alloy is purposely modified by inducing rapid solidification through fusion welding processes and solution annealing heat treatment (quenched in water at room temperature. In particular the effect of high cooling rates on the athermal phase transformation FCC(gamma)↔HCP(epsilon) on the alloy hardness and corrosion resistance is investigated. The Co-alloy microstructures were characterized using metallography and microscopy techniques. It was found that the as cast sample typically dendritic with dendritic grain sizes of approximately 150 microm and containing Cr-rich coarse carbide precipitates along the interdendritic boundaries. Solution annealing gives rise to a refined microstructure with grain size of 30 microm, common among Co-Cr-Mo alloys after heat treating. Alternatively, an ultrafine grain structure (between 2 and 10 microm) was developed in the fusion zone for specimens melted using Laser and TIG welding methods. When laser surface modification treatments were implemented, the developed solidification microstructure shifted from dendritic to a fine cellular morphology, with possible nanoscale carbide precipitates along the cellular boundaries. In turn, the solidified regions exhibited high hardness values (461.5HV), which exceeds by almost 110 points from the alloy in the as-cast condition. The amount of developed athermal

  7. Anodic electrochemical treatment of amorphous alloys

    International Nuclear Information System (INIS)

    Isaev, N.I.; Yakovlev, V.B.; Osipov, Eh.K.; Isaev, A.V.; Trofimova, E.A.; Vasil'ev, V.Yu.

    1983-01-01

    The aim of the investigation is to reveal peculiarities of the process of anodic oxidation and properties of anode oxide films, formed on the surface of amorphous alloys. Amorphous alloys on the base of rectifying metals of Zr-Ni, Zr-Cu-Ni, Zr-Al-Ni, Zr-Cu-Sn, Zr-Al, Zr-Mo systems are studied. Electrolytes which do not dissolve or weakly dissolve oxide film, such as boric acid electrolyte (40-45 g/l H 3 BO 3 and 18 cm 3 /l of the 25% aqueous NH 4 OH solution) and 20% H 2 SO 4 solution, are used for oxidation. Results of investigations, carried out on amorphous alloys, contaning noticeable quantities of non-rectifying components - Cu, Ni, Sn, Fe, Mo etc - have shown that non-rectifying components harden a process of anodic oxidation and decrease the current efficiency. Amorphous alloys, containing only rectifying components are oxidated in anodic way, the regularities of film growth being similar to those obtained for crystalline materials

  8. U-Mo/Al-Si interaction: Influence of Si concentration

    International Nuclear Information System (INIS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M.C.; Lemoine, P.

    2010-01-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 deg. C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 , when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6 Mo 4 Al 43 . For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3 (Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 . On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  9. Microstructural characterization of spray formed Fe-based amorfizable alloy; Caracterizacao microestrutural de ligas ferrosas amorfizaveis processadas por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, A.H.G.; Ananias, M.Jr. da S.; Lucena, F.A.; Santos, L.S. dos; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.; Afonso, C.R.M., E-mail: guimaraes.andreh@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil)

    2014-07-01

    Iron-based amorphous alloys show outstanding characteristics such as high hardness and wear resistance, with microstructure partially amorphous, making them favorable to spray forming process (SF), which has cooling rates between 10{sup 3}-10{sup 5} K/s. Thus, this work aims to use the SF in one of the alloy cast iron present in this project, being chosen the alloy with a better set of results, through the performed characterizations. The alloys studied in this project were: (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 100-x}B{sub x} (x = 5, 8 and 12% at) and (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B{sub 8} (at.%), being all processed through Discovery® Plasma and 'melt- spinning' and characterized using: TEM, SEM, DSC, XRD and microhardness test. The cast iron alloy selected were (Fe{sub 65}Cr{sub 17}Mo{sub 2}C{sub 14}Si{sub 1}Cu{sub 1}){sub 88}Nb{sub 4}B+8, getting by the spray forming process, deposit and overspray powder. With them, were realized almost the same characterizations, except for the TEM. The results showed 1044±102 (HV1) in Vickers microhardness and nanocrystalline overspray powder from 20-45 μm to > 180 μm. (author)

  10. Adsorption behavior of glycidoxypropyl-trimethoxy-silane on titanium alloy Ti-6.5Al-1Mo-1V-2Zr

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhua; Zhan Zhongwei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Yu Mei, E-mail: yumei@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li Songmei [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The adsorption isotherm of glycidoxypropyl-trimethoxy-silane (GTMS) on a titanium alloy was found fitting Temkin isotherm by XPS. Black-Right-Pointing-Pointer From an electrochemical point of view, the in situ adsorption process of GTMS molecules agreed with XPS results. Black-Right-Pointing-Pointer At 30 Degree-Sign C, the adsorption of GTMS molecules is spontaneous, and follows a chemisorption-based mechanism. - Abstract: The adsorption behavior of glycidoxypropyl-trimethoxy-silane (GTMS) on titanium alloy Ti-6.5Al-1Mo-1V-2Zr was investigated by using X-ray photoelectron spectroscopy (XPS), Tafel polarization test, and electrochemical impedance spectroscopy (EIS). From the XPS results, it was found that the silane coverage on the titanium surface generally increased with GTMS concentration, with a slight decrease at concentration of 0.1%. Based on the relationship between isoelectronic point (IEP) of titanium surface and the pH values of silane solutions, adsorption mechanisms at different concentrations were proposed. The surface coverage data of GTMS on titanium surface was also derived from electrochemical measurements. By linear fitting the coverage data, it revealed that the adsorption of GTMS on the titanium alloy surface at 30 Degree-Sign C was of a physisorption-based mechanism, and obeyed Langmuir adsorption isotherm. The adsorption equilibrium constant (K{sub ads}) and free energy of adsorption process ({Delta}G{sub ads}) were calculated to elaborate the mechanism of GTMS adsorption.

  11. Tribological coating of titanium alloys by laser processing

    Science.gov (United States)

    Pang, Wang

    Titanium-based alloys have been used for aerospace materials for many years. Recently, these alloys are now being increasingly considered for automotive, industrial and consumer applications. Their excellent creep resistance, corrosion resistance and relative higher specific strength ratio are attractive for many applications. However, the main obstacle for the wide adoption of Ti alloys in various industries is their poor tribological properties. In slide wear, Ti deforms and adhesive wear readily occurs. Their poor tribological properties are mainly due to low hardness and absolute values of tensile and shear strength. Different surface modification techniques have been studied in order to improve the tribological characteristics of Ti alloys, i.e. PVD, nitrding, carburizing, boriding, plating etc. Coatings produced by these techniques have their own limitations such as thermal distortion and grain growth. A different approach is to introduce hard particles in the Ti alloy matrix to form a MMC coating, which has tailor-made hardness and wear resistance properties. Laser cladding or laser alloying techniques facilitate the fabrication of surface MMC on Ti alloys without thermal distortion to the substrate. In this project, the fabrication of hard and wear resistant layers of metal matrix composite on titanium alloys substrate by laser surface alloying was investigated. Powder mixtures of Mo and WC were used to form the MMC layer. By optimizing the processing parameters and pre-placed powder mixture compositions, surface MMC of different properties have been successfully fabricated on CP-Ti and Ti6A14V respectively. The structure and characteristics of the MMC surface were investigated by metallography, SEM, XRD, and E-DAX. It was found that the hardness of the laser alloyed Mo/WC MMC surface was 300% higher than that of the CP-Ti substrate Excellent metallurgical bonding with the MMC layer of the substrate has been achieved. The relative kinetic frictional tests

  12. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant

  13. A systematic first principle method to study magnetic properties of FeMo, CoMo and NiMo

    International Nuclear Information System (INIS)

    Bhattacharjee, Ashis Kumar; Touheed, Md.; Ahmed, Mesbahuddin; Halder, A.; Mookerjee, A.

    2003-06-01

    We use the first principle TB-LMTO (Tight-Binding Linear Muffin Tin Orbital) method combined with the ASM (Augmented Space Method) to take care of disorder beyond the mean field (CPA - Cohetent Potential Approximation) approximation. We analyze binary alloys between magnetic transition metals Fe, Co, Ni and non-magnetic Mo to find out the effect of disorder on electronic structure and consequently magnetic properties of the alloys. (author)

  14. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    Science.gov (United States)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-06-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  15. Development of Ultra-high Purity (UHP) Fe-Based Alloys with High Creep and Oxidation Resistance for A-USC Technology

    Science.gov (United States)

    Hamdani, Fethi; Das, Nishith K.; Shoji, Tetsuo

    2018-03-01

    The design of ultra-high purity (UHP) Fe-based model alloys for advanced ultra-supercritical (A-USC) technology is attempted in this work. Creep testing has been performed in air at 700 °C and a stress level of 150 MPa. Analysis of the fracture surface and cross section of the crept specimen was performed. To evaluate the oxidation resistance in A-USC conditions, oxidation testing was performed in supercritical water (SCW) at 700 °C and 25 MPa. Weight gain (WG) measurements and meticulous characterization of the oxide scale were carried out. Based on thermodynamics and density functional theory calculations, some reactive elements in the Fe-Cr-Ni system were designated to promote precipitation strengthening and to improve the hydrogen-accelerated oxidation resistance. The addition of a 2 wt pct Mo into Fe-22Cr-22Ni-0.6Nb wt pct-based matrix did not significantly improve the creep resistance. The addition of 0.26 wt pct Zr coupled with cold working was effective for improving creep properties. The Mo-modified model alloy showed almost the same WG value as SUS310, while the Zr-modified alloy showed a higher WG value. Meanwhile, a Cr-enriched continuous oxide layer was formed at the oxidation front of the Zr-modified alloy and SUS310S after exposure to SCW conditions.

  16. Nd Fe{sub 10} Mo{sub 2} alloys production through reduction-diffusion for nitrogenation; Obtencao de ligas NdFe{sub 10}Mo{sub 2} por reducao-difusao para posterior nitrogenacao

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, Eneida da G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Rechenberg, Hercilio R. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1996-12-31

    In this work we have examined the effect of various processing variables on the Nd Fe{sub 10} Mo{sub 2} phase formation by reduction-diffusion calciothermic process (R D C). The best results were obtained for 4 hours treatment at 950 deg C with 40% excess content Nd Cl{sub 3} and 50% excess content of Ca, for alloy Nd Fe{sub 10.5} Mo{sub 1.5}. Preliminary nitrogen absorption experiments have been done, without any further powder size reduction at temperatures between 300 and 350 deg C. (author) 9 refs., 6 figs., 1 tab.

  17. High chromium nickel base alloys hot cracking susceptibility

    International Nuclear Information System (INIS)

    Tirand, G.; Primault, C.; Robin, V.

    2014-01-01

    High Chromium nickel based alloys (FM52) have a higher ductility dip cracking sensitivity. New filler material with higher niobium and molybdenum content are developed to decrease the hot crack formation. The behavior of these materials is studied by coupling microstructural analyses and hot cracking test, PVR test. The metallurgical analyses illustrate an Nb and Mo enrichment of the inter-dendritic spaces of the new materials. A niobium high content (FM52MSS) induces the formation of primary carbide at the end of solidification. The PVR test reveal a solidification crack sensitivity of the new materials, and a lowest ductility dip cracking sensitivity for the filler material 52MSS. (authors)

  18. Preparation of hard magnetic materials based on nitrogenated rare-earth iron alloys; Preparacao de materiais magneticamente duros a base de ligas de terra rara - ferro nitrogenadas

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, Eneida da Graca

    1999-07-01

    Nd Fe{sub 11}Ti, Nd Fe{sub 10.5} Mo{sub 1.5} and Nd Fe{sub 10.75} Mo{sub 1.25} alloys were synthesized by reduction-diffusion calciothermic process (RDC) from neodymium chloride (NdCl{sub 3}), iron, titanium, molybdenum and reduction agent (metallic calcium). The effect of process variables, like temperature, time, excess amount of NdCl{sub 3}, heating rate, and composition variation of the Nd Fe{sub 12-x}Mo{sub x} (1 {>=} x {>=} 2). Mother alloys in which 1:12 phase is major were nitrogenated by gas-solid reaction with N{sub 2} and by chemical reaction with sodium zide (Na N{sub 3}). In addition, the influence of reducing particle size of the powdered mother alloys in the nitrogenation step with Na N{sub 3} were studied. As prepared and interstitially modified Nd Fe{sub 11} Ti, Nd Fe{sub 10.5} Mo{sub 1.5} and Nd Fe{sub 10.75} Mo{sub 1.25} alloys with nitrogen , were characterized by X-ray diffraction, Moessbauer spectroscopy, thermomagnetic, SEM and EDS. Nitrogenation by gas-solid reaction with N{sub 2} is found to be not promising, since resulted Curie temperatures (Tc) were lower than literature values. However, nitrogenation by chemical reaction with Na N{sub 3} was efficient with higher or same Tc than previous reported results. The average increases on Tc and volumetric expansion were 200 deg C and 4%, respectively. Milling of the mother alloys before nitrogenation at 330 deg C is preferred because reaction kinetics is enhanced. Nevertheless, at 450 deg C, a competition between the interstitially modified compound formation (alloy + N) and alloy dissociation has occurred, resulting in a Fe-{alpha} phase increase. (author)

  19. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  20. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications.

    Science.gov (United States)

    Takaichi, Atsushi; Suyalatu; Nakamoto, Takayuki; Joko, Natsuka; Nomura, Naoyuki; Tsutsumi, Yusuke; Migita, Satoshi; Doi, Hisashi; Kurosu, Shingo; Chiba, Akihiko; Wakabayashi, Noriyuki; Igarashi, Yoshimasa; Hanawa, Takao

    2013-05-01

    The selective laser melting (SLM) process was applied to a Co-29Cr-6Mo alloy, and its microstructure, mechanical properties, and metal elution were investigated to determine whether the fabrication process is suitable for dental applications. The microstructure was evaluated using scanning electron microscopy with energy-dispersed X-ray spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and electron back-scattered diffraction pattern analysis. The mechanical properties were evaluated using a tensile test. Dense builds were obtained when the input energy of the laser scan was higher than 400 J mm⁻³, whereas porous builds were formed when the input energy was lower than 150 J mm⁻³. The microstructure obtained was unique with fine cellular dendrites in the elongated grains parallel to the building direction. The γ phase was dominant in the build and its preferential orientation was confirmed along the building direction, which was clearly observed for the builds fabricated at lower input energy. Although the mechanical anisotropy was confirmed in the SLM builds due to the unique microstructure, the yield strength, UTS, and elongation were higher than those of the as-cast alloy and satisfied the type 5 criteria in ISO22764. Metal elution from the SLM build was smaller than that of the as-cast alloy, and thus, the SLM process for the Co-29Cr-6Mo alloy is a promising candidate for fabricating dental devices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of the dentistry alloy Ni-Cr-Nb; Desenvolvimento de ligas odontologicas Ni-Cr-Nb

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.A.; Ramos, A.S.; Hashimoto, T.M., E-mail: mari_sou@hotmail.co [UNESP/FEG, Guaratingueta, SP (Brazil). Fac. de Engenharia. Dept. de Materiais e Tecnologia

    2010-07-01

    This work reports on the structural characterization of Ni-Cr-Mo and Ni-Cr-Nb alloys produced by arc melting. Samples were characterized by means of optical microscopy, X-ray diffraction, scanning electron microscopy, and EDS analysis. Results indicated that the arc melting process was efficient to produce homogeneous structures in Ni-Cr-Mo and Ni-Cr-Nb alloys. The nickel dissolved large amounts of Cr, Mo and Nb, which was detected by EDS analysis and X-ray diffraction. The alloy containing molybdenum indicated the presence of structure based on Ni{sub SS}, while that the alloys containing niobium presented primary grains of Ni{sub SS} and precipitates formed by the simultaneous transformation of the Ni and Ni{sub 3}Nb phases. (author)

  2. Anodic solubility and electrochemical machining of hard alloys on the base of chromium and titanium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A D; Klepikov, A N; Malofeeva, A N; Moroz, I I

    1985-01-01

    The regularities of anodic behaviour and electrochemical machining (ECM) of the samples of three materials with the following compositions: 25% of Cr/sub 3/C/sub 2/, 15% of Ni, 70% of TiC, 25% of Ni, 5% of Cr, 70% of TiC, 15% of Ni, 15% of Mo are investigated. It is shown that the electrochemical method is applicable to hard alloys machining on the base of chromium and titanium carbides, the machining of which mechanically meets serious difficulties. The alloys machining rate by a mobile cathode constitutes about 0.5 mm/min.

  3. Corrosion resistance of titanium alloy on the overpack for high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Nishimura, Toshiyasu

    2008-01-01

    Crevice corrosion of titanium and its alloys were investigated in 10% sodium chloride at 100 degC simulating the environment of the overpack near the seaside. The pH and Chloride ion concentration inside the crevice were monitored by using W/WO 3 and Ag/AgCl microelectrode, respectively. The pH and Cl - concentration within the crevice were calculated from the standard potential-pH and potential-log [Cl - ] calibration curves. The effect of Mo on the crevice corrosion of titanium was mainly studied. The passivation behavior of the titanium and Ti-15% Mo alloy were also studied using electrochemical impedance studies. A marginal decrease in pH and increase in Cl - ion concentration were observed for pure titanium at 100 degC, where there was large increase of the crevice current. On other hand, there was no apparent change in pH and Cl - ion activity inside the crevice for Ti-15% Mo alloy, where there was no increase of the crevice current. Based on the results, it has been documented that the Ti-15% Mo alloy was not susceptible to crevice corrosion in 10% NaCl solutions at 100 degC. The corrosion reaction resistance (R t ) was found to increase with addition of Mo as an alloying element and also increase with applied anodic potential. Hence, Mo is able to be an effective alloying element, which enhanced the crevice corrosion resistance of titanium under the environment simulating the overpack near the seaside. (author)

  4. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Soo, E-mail: yskim@anl.gov [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Hofman, G.L. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Robinson, A.B.; Wachs, D.M. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States); Ryu, H.J.; Park, J.M.; Yang, J.H. [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2012-08-15

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the {gamma}-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  5. Phonon broadening in high entropy alloys

    Science.gov (United States)

    Körmann, Fritz; Ikeda, Yuji; Grabowski, Blazej; Sluiter, Marcel H. F.

    2017-09-01

    Refractory high entropy alloys feature outstanding properties making them a promising materials class for next-generation high-temperature applications. At high temperatures, materials properties are strongly affected by lattice vibrations (phonons). Phonons critically influence thermal stability, thermodynamic and elastic properties, as well as thermal conductivity. In contrast to perfect crystals and ordered alloys, the inherently present mass and force constant fluctuations in multi-component random alloys (high entropy alloys) can induce significant phonon scattering and broadening. Despite their importance, phonon scattering and broadening have so far only scarcely been investigated for high entropy alloys. We tackle this challenge from a theoretical perspective and employ ab initio calculations to systematically study the impact of force constant and mass fluctuations on the phonon spectral functions of 12 body-centered cubic random alloys, from binaries up to 5-component high entropy alloys, addressing the key question of how chemical complexity impacts phonons. We find that it is crucial to include both mass and force constant fluctuations. If one or the other is neglected, qualitatively wrong results can be obtained such as artificial phonon band gaps. We analyze how the results obtained for the phonons translate into thermodynamically integrated quantities, specifically the vibrational entropy. Changes in the vibrational entropy with increasing the number of elements can be as large as changes in the configurational entropy and are thus important for phase stability considerations. The set of studied alloys includes MoTa, MoTaNb, MoTaNbW, MoTaNbWV, VW, VWNb, VWTa, VWNbTa, VTaNbTi, VWNbTaTi, HfZrNb, HfMoTaTiZr.

  6. Processing and production of molybdenum and tungsten alloys

    International Nuclear Information System (INIS)

    Hagel, W.C.; Shields, J.A. Jr.; Tuominen, S.M.

    1984-01-01

    The technological means to produce and process Mo and W alloys are summarized because for many Mo and W alloy systems the mechanical properties can be optimized only by thermomechanical processing requiring production and processing capabilities that are not widely available. First, the producers of commercial Mo and W alloys are presented along with currently available product forms. Second, currently disclosed standard capabilities of producers and processors in the United States are presented. 56 references, 13 figures, 9 tables

  7. EFFECTS OF MO ADDITION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CAST MICROALLOYED STEEL

    Directory of Open Access Journals (Sweden)

    H. Torkamani

    2017-09-01

    Full Text Available In industry, the cost of production is an important factor and it is preferred to use conventional and low cost procedures for producing the parts. Heat treatment cycles and alloying additions are the key factors affecting the microstructure and mechanical properties of the cast steels. In this study an attempt was made to evaluate the influence of minor Mo addition on the microstructure and mechanical properties of conventionally heat treated cast micro-alloyed steels. The results of Jominy and dilatometry tests and also microstructural examinations revealed that Mo could effectively increase the hardenability of the investigated steel and change the microstructure features of the air-cooled samples. Acicular microstructure was the consequence of increasing the hardenability in Mo-added steel. Besides, it was found that Mo could greatly affect the isothermal bainitic transformation and higher fraction of martensite after cooling (from isothermal temperature was due to the Mo addition. The results of impact test indicated that the microstructure obtained in air-cooled Mo-added steel led to better impact toughness (28J in comparison with the base steel (23J. Moreover, Mo-added steel possessed higher hardness (291HV, yield (524MPa and tensile (1108MPa strengths compared to the base one.

  8. Effect of low-temperature thermomechanical treatment on mechanical properties of low-alloying molybdenum alloys with carbide hardening

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Veller, M.V.

    1978-01-01

    Presented are results of testing low-temperature thermomechanical treatment of low-alloying molybdenum alloys, including quenching from 2100 deg C, 40% deformation by hydroextrusion and aging at the temperature of 1200-1400 deg C. Tensile tests at room temperature with the following processing of results have shown that low-temperature thermomechanical treatment of low-alloying molybdenum alloys of Mo-Zr-C and Mo-Zr-Nb-C systems leads to a significant increase in low-temperature mechanical properties (strength properties - by 30-35%, ductility - by 30-40%) as compared with conventional heat treatment (aging after quenching). The treatment proposed increases resistance to small, as well as large plastic deformations, and leads to a simultaneous rise of strength and plastic properties at all stages of tensile test. Alloying of the Mo-Zr-C system with niobium increases both strength and plastic characteristics as compared with alloys without niobium when testing samples, subjected to low temperature thermomechanical treatment and conventional heat treatment at room temperature

  9. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  10. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature

    International Nuclear Information System (INIS)

    Nag, Anil Kumar; Praveen, K.V.U.; Singh, Vakil

    2006-01-01

    Low cycle fatigue (LCF) behaviour of the near α titanium alloy, Ti-6Al-5Zr-0.5Mo-0.25Si (LT26A), was investigated in the (α+ β) as well as β treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of Δε t /2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin-Manson (C-M) relationship in both the treated conditions. (author)

  11. Creep deformation, creep damage accumulation and residual life prediction for three low alloyed CrMo-steels

    International Nuclear Information System (INIS)

    Kondyr, A.; Sandstroem, R.; Samuelsson, A.

    1979-02-01

    A detailed analysis of creep strain results for three low alloyed steels of type 0.5 Mo, 1 Cr-0.5 Mo and 2.25 Cr-1 Mo has been undertaken. The results show that, excluding the primary stage, the true strain rate can be described by a simple analytical expression dE/dt = Aexp(B.E) where A and B are constants at constant stress and temperature. A is approximately equal to the minimum strain rate and B inversly proportional to the fracture strain. Furthermore, 1/AB equals the time t sub(r) to rupture. The residual life fraction in creep can be expressed as exp(-B.E) = 1-t/t sub(r) and a creep damage function μ is introduced as μ = 1-ABt. The expressions for strain rate and damage are shown to be a special case of the Rabotnov-Kachanov equations. The analysis has been generalized to account for multiaxial stress states, and as an example creep in a tube with internal pressure is considered. (author)

  12. The Microstructure of Multi-wire U-Mo Monolithic Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Sang; Park, Eun Kee; Cho, Woo Hyoung; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    In order to use low-enriched uranium (LEU) instead of highly enriched uranium (HEU) for high performance research reactors, the reduced enrichment for research and test reactors (RERTR) program is developing high uranium density fuel such as U-Mo/Al dispersion fuel. U-Mo alloys have an excellent irradiation performance when compared to other uranium alloys or compounds. But the results from the post-irradiation examination of the U-Mo/Al dispersion fuels indicate that an interaction between the U-Mo alloy fuel and the Al matrix phases occurs readily during an irradiation and it is sensitively dependent on the temperature. In order to lessen these severe interactions, a concept of a multi-wire type fuel was proposed. The fuel configuration is that three to six U-Mo fuel wires (1.5 mm {approx} 2 mm in diameter) are symmetrically arranged at the periphery side in the Al matrix as shown. This multi-wire fuels showed very good fuel performance during the KOMO-3 irradiation test. At the KOMO-3 test, the specimen of the multi-wire fuels were U-7Mo/Al and U-7Mo-1Si/Al. In this study we investigate the microstructure change of the U-7Mo and U-7Mo-1Ti with some variation of annealing conditions. In addition to this, we want to check the effect of adding Ti element to U-7Mo on the gamma phase stability

  13. Tensile and impact properties of TZM and Mo-5% Re

    International Nuclear Information System (INIS)

    Filacchioni, G.; Casagrande, E.; Angelis, U. de; Santis, G. de; Ferrara, D.

    1994-01-01

    Some aspects of the mechanical behaviour of two molybdenum alloys, one belonging to the precipitation hardened sub-family (TZM) and the other is a solid solution Mo 5% rhenium-bearing alloy, have been investigated. Experimental data (tensile mechanical strength, ductility and impact properties of unirradiated materials) show that a difference in behaviour exists between the precipitation hardened and the solid solution strengthened alloy, but at the same time a serious discrepancy has been found between the present results and previously reported ductile to brittle transition temperature values for Mo alloys. ((orig.))

  14. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers in nuclear waste repositories

    International Nuclear Information System (INIS)

    Hornus, Edgard C.; Rodríguez, Martin A.

    2011-01-01

    Ni-Cr-Mo alloys offer an outstanding corrosion resistance in a wide variety of highly corrosive environments. Alloys 625, C-22, C-22HS and Hybrid-BC1 are considered among candidates as engineered barriers of nuclear repositories. The objective of the present work was to assess the effect of temperature on the crevice corrosion resistance of these alloys. The crevice corrosion re-passivation potential (E CO ) of the tested alloys was determined by the Potentiodynamic-Galvanostatic-Potentiodynamic (PD-GS-PD) method. Alloy Hybrid-BC1 was the most resistant to chloride-induced crevice corrosion, followed by alloys C-22HS, C-22 and 625. E CO showed a linear decrease with temperature. There is a temperature above which E CO does not decrease anymore, reaching a minimum value. This E CO value is a strong parameter for assessing the localized corrosion susceptibility of a material in a long term timescale, since it is independent of temperature, chloride concentration and geometrical variables such as crevicing mechanism, crevice gap and type of crevice formers. (author) [es

  15. Investigation of amorphous RuMoC alloy films as a seedless diffusion barrier for Cu/p-SiOC:H ultralow-k dielectric integration

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Guohua [Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen (China); The Chinese University of Hong Kong, Shatin, Hong Kong (China); Liu, Bo [Sichuan University, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Chengdu (China); Li, Qiran [CNRS-Universite Paris Sud UMR 8622, Institut d' Electronique Fondamentale, Orsay (France)

    2015-08-15

    Ultrathin RuMoC amorphous films prepared by magnetron co-sputtering with Ru and MoC targets in a sandwiched scheme Si/p-SiOC:H/RuMoC/Cu were investigated as barrier in copper metallization. The evolution of final microstructure of RuMoC alloy films show sensitive correlation with the content of doped Mo and C elements and can be easily controlled by adjusting the sputtering power of the MoC target. There was no signal of interdiffusion between the Cu and SiOC:H layer in the sample of Cu/RuMoC/p-SiOC:H/Si, even annealing up to 500 C. Very weak signal of oxygen have been confirmed in the RuMoC barrier layer both as-deposited and after being annealed, and a good performance on preventing oxygen diffusion has been proved. Leakage current and resistivity evaluations also reveal the excellent thermal reliability of this Si/p-SiOC:H/RuMoC/Cu film stack at the temperatures up to 500 C, indicating its potential application in the advanced barrierless Cu metallization. (orig.)

  16. Change in mechanical properties of low-alloyed molybdenum alloys at two-stage strengthening during aging

    International Nuclear Information System (INIS)

    Bernshtejn, L.M.; Zakharov, A.M.; Arbuzov, V.K.

    1977-01-01

    Change in mechanical properties of hardened low-alloyed molybdenum alloys (Mo-Zr-C and Mo-Zr-Nb-C) at two-stage strengthening during ageing at 1400 deg C is studied. The initial strengthening maximum following ageing for 5 hr is caused by separation of dispersed ZrC particles and is accompanied by worsened plasticity, a development characteristic of precipitation hardening processes. The second increase in strength after a 10-hr ageing is not accompanied by reduced plasticity, this being characteristic of strengthening as a result of reconstruction of the dislocation structure. Niobium (0.16 wt.%) added to Mo-Zr-C alloys simultaneously increases their plastic and strength properties. The said effect is caused by prevention of premature decomposition of alloys on account of increased low-temperature plasticity, which permits to obtain high resistance to plastic deformation

  17. Influence of Oxygen Content and Microstructure on the Mechanical Properties and Biocompatibility of Ti–15 wt%Mo Alloy Used for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    José R. S. Martins, Jr.

    2014-01-01

    Full Text Available The Ti–15Mo alloy has its mechanical properties strongly altered by heat treatments and by addition of interstitial elements, such as, oxygen, for example. In this sense, the objective of this paper is to analyze the effect of the introduction of oxygen in selected mechanical properties and the biocompatibility of Ti–15Mo alloy. The samples used in this study were prepared by arc-melting and characterized by density measurements, X-ray diffraction, scanning electron microscopy, microhardness, modulus of elasticity, and biocompatibility tests. Hardness measurements were shown to be sensitive to concentration of oxygen. The modulus results showed interstitial influence in value; this was verified under several conditions to which the samples were exposed. Cytotoxicity tests conducted in vitro showed that the various processing conditions did not alter the biocompatibility of the material.

  18. Effect of domain variations on damping capacity of Fe-16Cr-2.5Mo alloy solution annealed at 1373 K and 1473 K

    International Nuclear Information System (INIS)

    Xu Yonggang; Ning Li; Wen Yuhua

    2011-01-01

    The damping capacity of Fe-16Cr-2.5Mo alloy heat-treated at different temperatures was investigated. A water-based magnetic fluid was used to analyze domain morphologies. The experimental results show that there is a maximum value of damping capacity when the solution annealing temperature of the material is 1373 K. When the annealing temperature is higher, the damping capacity of the alloy drops quickly. The change in damping capacity with the solution annealing temperature is believed to be due to different domain morphologies. The domains are larger and the domain-wall area is smaller in the alloy annealed at a higher temperature. The wedge-shaped domains acted as obstacles for pinning the domain-wall movement, even though movement of the 90 o domains is easy. As a result, the damping capacity of the alloys drops when the annealing temperature is very high. - Research Highlights: →The change in damping capacity with solution annealing temperature is believed to be due to different domain morphologies. →The domains are larger and the domain-wall area is smaller in the alloy annealed at a higher temperature. →The wedge-shaped domains acted as obstacles for pinning the domain-wall movement, even though movement of the 90 o domains is easy.

  19. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, V.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)], E-mail: vedsinha@barc.gov.in; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P. [Metallic Fuels Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2009-04-03

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and {gamma}-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes.

  20. Development, preparation and characterization of uranium molybdenum alloys for dispersion fuel application

    International Nuclear Information System (INIS)

    Sinha, V.P.; Prasad, G.J.; Hegde, P.V.; Keswani, R.; Basak, C.B.; Pal, S.; Mishra, G.P.

    2009-01-01

    Most of the research and test reactors worldwide have undergone core conversion from high enriched uranium base fuel to low enriched uranium base fuel under the Reduced Enrichment for Research and Test Reactor (RERTR) program, which was launched in the late 1970s to reduce the risk of nuclear proliferation. To realize this goal, high density uranium compounds and γ-stabilized uranium alloy powder were identified. In Metallic Fuels Division of BARC, R and D efforts are on to develop these high density uranium base alloys. This paper describes the preparation flow sheet for different compositions of Uranium and molybdenum alloys by an innovative powder processing route with uranium and molybdenum metal powders as starting materials. The same composition of U-Mo alloys were also fabricated by conventional method i.e. ingot metallurgy route. The U-Mo alloys prepared by both the methods were then characterized by XRD for phase analysis. The photomicrographs of alloys with different compositions prepared by powder metallurgy and ingot metallurgy routes are also included in the paper. The paper also covers the comparison of properties of the alloys prepared by powder metallurgy and ingot metallurgy routes

  1. Mechanisms of the plastic deformation of uranium alloys at low temperature

    International Nuclear Information System (INIS)

    Le Poac, P.; Nomine, A.M.; Miannay, D.

    1976-01-01

    The mechanical characteristics of the bcc binary alloys U-6Mo, U-8Mo, U-10Mo, U-12Mo and bcc ternary alloys U-8Mo-1Ti, U-10Mo-1Ti, U-10Mo-1Zr, stressed in compression, were determined between -196 deg C and + 450 deg C. The plastic flow shear stress in non-dependent on temperature above 300 deg C. At lower temperature shear stress is highly activated, except for the alloy U-6Mo and U-12Mo. Athermal shear stress above 300 deg C is due to the hardening of the solid solution described by Mott and Nabarro. In the thermal range, the recombination of the dissociated dislocations controls the plastic deformation [fr

  2. Searching for Next Single-Phase High-Entropy Alloy Compositions

    Directory of Open Access Journals (Sweden)

    David E. Alman

    2013-10-01

    Full Text Available There has been considerable technological interest in high-entropy alloys (HEAs since the initial publications on the topic appeared in 2004. However, only several of the alloys investigated are truly single-phase solid solution compositions. These include the FCC alloys CoCrFeNi and CoCrFeMnNi based on 3d transition metals elements and BCC alloys NbMoTaW, NbMoTaVW, and HfNbTaTiZr based on refractory metals. The search for new single-phase HEAs compositions has been hindered by a lack of an effective scientific strategy for alloy design. This report shows that the chemical interactions and atomic diffusivities predicted from ab initio molecular dynamics simulations which are closely related to primary crystallization during solidification can be used to assist in identifying single phase high-entropy solid solution compositions. Further, combining these simulations with phase diagram calculations via the CALPHAD method and inspection of existing phase diagrams is an effective strategy to accelerate the discovery of new single-phase HEAs. This methodology was used to predict new single-phase HEA compositions. These are FCC alloys comprised of CoFeMnNi, CuNiPdPt and CuNiPdPtRh, and HCP alloys of CoOsReRu.

  3. Development of a high density fuel based on uranium-molybdenum alloys with high compatibility in high temperatures

    International Nuclear Information System (INIS)

    Oliveira, Fabio Branco Vaz de

    2008-01-01

    This work has as its objective the development of a high density and low enriched nuclear fuel based on the gamma-UMo alloys, for utilization where it is necessary satisfactory behavior in high temperatures, considering its utilization as dispersion. For its accomplishment, it was started from the analysis of the RERTR ('Reduced Enrichment for Research and Test Reactors') results and some theoretical works involving the fabrication of gamma-uranium metastable alloys. A ternary addition is proposed, supported by the properties of binary and ternary uranium alloys studied, having the objectives of the gamma stability enhancement and an ease to its powder fabrication. Alloys of uranium-molybdenum were prepared with 5 to 10% Mo addition, and 1 and 3% of ternary, over a gamma U7Mo binary base alloy. In all the steps of its preparation, the alloys were characterized with the traditional techniques, to the determination of its mechanical and structural properties. To provide a process for the alloys powder obtention, its behavior under hydrogen atmosphere were studied, in thermo analyser-thermo gravimeter equipment. Temperatures varied from the ambient up to 1000 deg C, and times from 15 minutes to 16 hours. The results validation were made in a semi-pilot scale, where 10 to 50 g of powders of some of the alloys studied were prepared, under static hydrogen atmosphere. Compatibility studies were conducted by the exposure of the alloys under oxygen and aluminum, to the verification of possible reactions by means of differential thermal analysis. The alloys were exposed to a constant heat up to 1000 deg C, and their performances were evaluated in terms of their reaction resistance. On the basis of the results, it was observed that ternary additions increases the temperatures of the reaction with aluminum and oxidation, in comparison with the gamma UMo binaries. A set of conditions to the hydration of the alloys were defined, more restrictive in terms of temperature, time and

  4. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  5. Applicability of the θ projection method to creep curves of Ni-22Cr-18Fe-9Mo alloy

    International Nuclear Information System (INIS)

    Kurata, Yuji; Utsumi, Hirokazu

    1998-01-01

    Applicability of the θ projection method has been examined for constant-load creep test results at 800 and 1000degC on Ni-22Cr-18Fe-9Mo alloy in the solution-treated and aged conditions. The results obtained are as follows: (1) Normal type creep curves obtained at 1000degC for aged Ni-22Cr-18Fe-9Mo alloy are fitted using the θ projection method with four θ parameters. Stress dependence of θ parameters can be expressed in terms of simple equations. (2) The θ projection method with four θ parameters cannot be applied to the remaining creep curves where most of the life is occupied by a tertiary creep stage. Therefore, the θ projection method consisting of only the tertiary creep component with two θ parameters was applied. The creep curves can be fitted using this method. (3) If the θ projection method with four θ or two θ parameters is applied to creep curves in accordance with creep curve shapes, creep rupture time can be predicted in terms of formulation of stress and/or temperature dependence of θ parameters. (author)

  6. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U{sub 3}Si{sub 5} mixed layer while U{sub 3}Si{sub 2} acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness.

  7. Effects of Silicide Coating on the Interdiffusion between U-7Mo and Al

    International Nuclear Information System (INIS)

    Nam, Ji Min; Kim, Ji Hyun; Kim, Sunghwan; Lee, Kyu Hong; Park, Jong Man; Jeong, Yong Jin; Kim, Ki Nam

    2015-01-01

    The excessive interaction between the U-Mo alloys and their surrounding Al matrix lead to and excessive local swelling called 'pillowing'. For this reason, KAERI suggested several remedies such as alloying U-Mo with Ti, or Al matrix with Si. In addition, silicide, or nitride coatings on the surface of U-Mo particles have also been proposed to hinder the growth of interaction layer. In this study, centrifugally atomized U-7Mo alloy powders were coated with silicide layers at varying T (T = 900 and 1000 .deg. C) for 30 min, respectively. U-Mo alloy powder was blended with Si powders and subsequently heat-treated to form uranium-silicide coating layers on the surface of U-Mo alloy particles. For an annealing test, silicide-coated U-Mo alloy powders were made into a compact, and Al powders were used as a matrix. From EDS results, transformed uranium aluminide intermetallic compounds were mainly U(Al,Si)3. U(Al,Si)3 phase left the silicide coating layer behind, and formed inside of U-7Mo particles, as shown in Fig. 3(a) and (b). In the case of sample B, Al could not penetrate the silicide coating layer and the coating layers were remained constant, as shown in Fig. 3(c) and (d). From the results, we made a comparison between the compacts of sample A and B, and it was shown that Al can easily diffuse into unreacted Si and U 3 Si 5 mixed layer while U 3 Si 2 acted as a good diffusion barrier at 550 .deg. C though those layers had the same thickness

  8. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Davydova, A.D.; Zotov, Yu.P.; Ivashchenko, O.V.; Kushnareva, N.P.; Yarosh, I.P.

    1990-01-01

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  9. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  10. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  11. Interactions in the NiO-MoO3 system upon reduction

    International Nuclear Information System (INIS)

    Afanas'ev, P.V.; Tsurov, M.A.; Kostik, B.G.; Turakulova, A.O.

    1993-01-01

    Interactions in the system NiO-MoO 3 (MoO 2 ) heated in the air and in H 2 were studied by the methods of differential-thermal analysis, thermally programmed reduction, X-ray phase analysis and measurement of magnetization. In the presence of NiO the temperature of MoO 3 reduction start decreases by > 150 K. Simultaneously, in the range of temperatures 5730623 K inhibition of NiO reduction occurs, which is related to the formation of NiMo x alloy. For the samples of NiO+MoO 2 no inhibition of NiO reduction was detected, NiMo x alloy was formed after quantitative reduction of NiO

  12. Effect of Fe Content on the Microstructure and Mechanical Properties of Ti-Al-Mo-V-Cr-Fe Alloys

    Directory of Open Access Journals (Sweden)

    Bae K.C.

    2017-06-01

    Full Text Available To investigate the effect of Fe content on the correlation between the microstructure and mechanical properties in near-b titanium alloys, the Ti-5Al-5Mo-5V-1Cr-xFe alloy system has been characterized in this study. As the Fe content increased, the number of nucleation sites and the volume fraction of the α phase decreased. We observed a significant difference in the shape and size of the α phase in the matrix before and after Fe addition. In addition, these morphological deformations were accompanied by a change in the shape of the α phase, which became increasingly discontinuous, and changed into globular-type α phase in the matrix. These phenomena affected the microstructure and mechanical properties of Ti alloys. Specimen #2 exhibited a high ultimate tensile strength (1071 MPa, which decreased with further addition of Fe.

  13. Análisis del comportamiento mecánico de una aleación Ni-Cr-Mo para pilares dentales/Analysis of Mechanical Behavior of Ni-Cr-Mo alloy for Dental Abutments

    Directory of Open Access Journals (Sweden)

    Luis Alberto Laguado Villamizar

    2012-12-01

    Full Text Available El presente estudio caracteriza una aleación aplicable al diseño de pilares para implantes dentales. Se propone un material biocompatible y de alta resistencia mecánica como alternativa a las aleaciones de Titanio, disminuyendo los costos de materia prima y procesamiento. Se realizan pruebas mecánicas de tracción y de compresión a la aleación de Ni-Cr-Mo, posteriormente se realiza modelado 3D y simulación de sus propiedades mecánicas por medio de análisis de elementos finitos. Como resultado se obtiene que el material disminuye su resistencia mecánica después del proceso de fundición empleado. El modelo de simulación es válido para análisis de resistencia en pilares dentales.This study presents the characterization of a dental implant alloy for abutments. It proposes a biocompatible material and high mechanical resistance as an alternative to Titanium alloys, lowering costs of raw materials and processing. Mechanical testing of the Ni-Cr-Mo alloy and subsequently perform simulations of its mechanical properties by means of finite element analysis. As a result is obtained that the material reduces its mechanical strength after the casting for electric induction molding process. The simulation model is valid to make analysis of resistance to this type of dental devices.

  14. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  15. Interaction of Al with O2 exposed Mo2BC

    International Nuclear Information System (INIS)

    Bolvardi, Hamid; Music, Denis; Schneider, Jochen M.

    2015-01-01

    Highlights: • Al adheres to many surfaces. • Solid–solid interactions challenging for real (oxidized) surfaces. • Dissociative O 2 adsorption on Mo 2 BC(0 4 0). • Al nonamer is disrupted on oxidized Mo 2 BC(0 4 0). • Adhesion of a residual Al on the native oxide. - Abstract: A Mo 2 BC(0 4 0) surface was exposed to O 2 . The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O 2 adsorption whereby Mo−O, O−Mo−O and Mo 2 −C−O bond formation is observed. To validate these results, Mo 2 BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO 2 and MoO 3 bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O 2 exposed Mo 2 BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O 2 exposed Mo 2 BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Al−Al bonds are shown to be significantly weaker than the Al−O bonds formed across the interface. Hence, Al−Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations

  16. Polymorphism in the Laves-phase precipitates of a quinternary Nb-Mo-Cr-Al-Si alloy

    International Nuclear Information System (INIS)

    Hu Yanling; Vasiliev, Alexandre; Zhang Lichun; Song, Kai; Aindow, Mark

    2009-01-01

    Transmission electron microscopy has been used to study the precipitates that develop in the A2 phase of an Nb-Mo-Cr-Al-Si alloy upon heat treatment. The precipitates include a Laves-phase that adopts the cubic C15 structure initially and the hexagonal C14 structure in the later stages of precipitation. The morphologies, orientation relationships and defect microstructures indicate that the metastable C15 phase arises due to tensile coherency stresses and that a synchroshear polymorphic transformation to the equilibrium C14 phase occurs as these relax

  17. Surface relief of α doubleprime martensite in a Ti-Mo alloy

    International Nuclear Information System (INIS)

    Guo, H.; Okuda, K.; Enomoto, M.

    2000-01-01

    The surface relief of αdouble p rime martensite plates in a polycrystalline Ti-4.74 at. pct Mo alloy was studied by atomic force microscopy (AFM). The orientation of matrix grains was measured by electron backscatter diffraction (EBSD), and measured surface tilt angles were compared with calculation by the crystallographic theory of martensite transformation. The observed maximum tilt angle was close to the predicted value of 7.57 deg. The overall agreement between measured and calculated tilt angles was improved significantly by taking into account not only the inclination of habit plane to the specimen surface, but also the shear direction predicted from the theory. The tile angle may vary with the moving direction of the interface unless the habit plane is perpendicular to the specimen surface. However, this effect was small in this transformation

  18. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Mariana G. de, E-mail: marianagm@fem.unicamp.br; Salvador, Camilo F., E-mail: csalvador@fem.unicamp.br; Cremasco, Alessandra, E-mail: alessandra@fem.unicamp.br; Caram, Rubens, E-mail: caram@fem.unicamp.br

    2015-12-15

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.

  19. The effect of Sn addition on phase stability and phase evolution during aging heat treatment in Ti–Mo alloys employed as biomaterials

    International Nuclear Information System (INIS)

    Mello, Mariana G. de; Salvador, Camilo F.; Cremasco, Alessandra; Caram, Rubens

    2015-01-01

    Increases in life expectancy and improvements in necessary healthcare attach great importance to the development of biomaterials. Ti alloys containing β stabilizing elements are often used as biomaterials due to their high specific strength, high corrosion resistance, unusual biocompatibility and low elastic moduli, which benefit bone tissues close to an implant. This study deals with phase stability in β Ti–Mo–Sn alloys processed under different conditions and was performed according to the following steps: a study of the effect of Sn content (a) on phase stability in Ti–Mo alloys, (b) on the suppression of α″ and ω phase precipitation; (c) on α-phase precipitation during aging heat treatments and (d) on mechanical properties, including the elastic modulus, as measured using tensile tests and acoustic techniques. The alloys were prepared by arc melting under a controlled atmosphere followed by homogenization heat treatment and hot rolling. Optical microscopy, scanning and transmission electron microscopy, X-ray diffraction and differential scanning calorimetry were employed for characterization purposes. Samples were also submitted to solution treatment above the β transus temperature and aging heat treatments under a controlled atmosphere. The results suggest that Sn suppresses the formation of the ω and α″ phases in Ti–Mo system. - Highlights: • Sn addition to Ti alloys decreases elastic modulus by suppressing ω phase precipitation. • Sn addition decreases the temperature of martensite decomposition. • Sn addition decreases the temperature of α phase precipitation and β transus. • Mechanical strength decreases with increasing Sn content.

  20. Influence of neutron irradiation on the magnetic properties of the Fe Ni pure alloy and with impurities of Si and Mo

    International Nuclear Information System (INIS)

    Lucki, George

    1971-01-01

    Hysteresis loop, Initial permeability and Curie Temperature measurements were conducted on several pure and polluted (with Si and Mo) Fe Ni 50-50% at. alloys. Isochronal annealings were performed between 25 deg 65 deg C, on each composition in three different ways: quenched (anisotropic) samples; quenched and irradiated samples; quenched irradiated samples annealed with saturating magnetic field. The experiment showed a sharp decrease in all parameters of the polluted alloys. Fast neutron irradiation results indicated that the magnetic properties are affected by the defects created during irradiation. The effect of thermal treatment, magnetic annealing and irradiation is greatest in anisotropic alloys. It is considered that magnetic annealing introduces a uniaxial anisotropy that tends to increase the remanence and hence the squareness of the hysteresis loop; but an increase in both remanence and coercivity was measured even in absence of the magnetic field. Magnetic after effect has been detected and a simple model for the diffusion of defects is presented. Many models have been proposed to explain the resultant properties, the most feasible being that based upon short-range ordering, proposed by Neel and Taniguchi, together with the interesting hypothesis of Heidenreich and Nesbitt. (author)

  1. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  2. Hydrogen effect on the martensite habit planes of titanium alloy quenching

    International Nuclear Information System (INIS)

    Kolachev, B.A.; Fedorova, N.V.; Mamonova, F.S.

    1981-01-01

    The structure of hexagonal α'-martensite in the alloys Ti-2.4% Mo, Ti-4%V and VT6, the structure of rhombic α'' martensite in the alloy Ti-7.5% Mo and hydrogen effect on the martensite structure in the alloys Ti-7.5% Mo and VT6 are studied. It is shown that in the alloy Ti-2.4% Mo martensitic crystals has habit planes (334)sub(β) and (344)sub(β), at that, the (334)sub(β) habit dominates. The increase of molybdenum content up to 7.5% results in the growth of the crystal part with the (344)sub(β) habit. The introduction of 0.05% H into the alloy Ti-7.5% Mo increases the crystal part with the (334)sub(β) habit plane. The habit plane of martensitic crystals in the alloy Ti-4% V is (334)sub(β). The introduction of 6% Al into the alloy results in the appearance in the structure of the alloy Ti-6Al-4 V of the crystals with the (344)sub(β) habit. Hydrogen in the amount of 0.05% does not change the ratio between crystals with the (344)sub(β) habit and (334)sub(β) one in the VT6 alloy [ru

  3. Interdiffusion studies on hot rolled U-10Mo/AA1050

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, A.M.; Martins, I.C.; Carvalho, E.U.; Durazzo, M.; Riella, H.G. [Instituto de Pesquisas Energeticas e Nucleares (CCN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Combustivel Nuclear], e-mail: saliba@ipen.br

    2010-07-01

    The U-Mo alloys are investigated with the goal of becoming nuclear material to fabricate high-density fuel elements for high performance research reactors. This enrichment level suggests that the U-Mo alloys should be between 6 to 10wt%, which can give up to 9gU/cm{sup 3} as fuel density. Nevertheless, the U-Mo alloys are very reactive with Al. Interdiffusion reaction products are formed since nuclear fission promotes chemical interaction layer during operation, leading to potential structural failure. Present studies were made with treated hot rolled diffusion couples of U-10Mo inserted in Al (AA1050). The U-10Mo/AA1050 pairs were treated in two temperature (150 degree C and 550 degree C) with three soaking times (5h, 40h and 80h). From microstructure analyses, rapid diffusion of Al happened inside U-10Mo in the first heating at 540 degree C during 15 min, reaching 8 at%Al in a range of 200 {mu}m towards U-10Mo. Longer time (5, 40, 80h) at 550 degree C maintain this level of Al-content up to 1000 {mu}m inside U-10Mo. A minor depth ({approx}1 {mu}m) near the interdiffusion contact had higher Al-content, but not sufficient to form identifiable (U,Mo)Al{sub x} structures. Probably, residual elements reduced drastically the interdiffusion phenomena between U-10Mo and AA1050, maybe due to silicon presence. (author)

  4. Microstructure, state of internal stress and corrosion resistance of the short-time laser heat-treated nitrogen high-alloyed tool steel X30CrMoN151; Mikrostruktur, Eigenspannungszustand und Korrosionsbestaendigkeit des kurzzeitlaserwaermebehandelten hochstickstofflegierten Werkzeugstahls X30CrMoN151

    Energy Technology Data Exchange (ETDEWEB)

    Bohne, C. (ed.)

    2000-07-01

    This study compares the crystalline structure, state of internal stress and chemical properties of the high-alloyed nitrogen tool steel X30CrMoN15 1 and conventional cold work steel X39CrMo17 1. Transformation points A{sub c}1b and A{sub c}1e were calculated from residual austenite analysis and the c{sub m}/a{sub m} martensite ratios for various heating rates. This was used to generate a TTA (time-temperature-austenitisation) graph for X30CrMoN15 1 for the first time. Transmission electron microscopy and small-angle neutron scattering show that precipitates in nitrogen high-alloyed steel X30CrMoN15 1 can be eliminated completely by short-time laser heat treatment. The corrosion tests show that in contrast to X39CrMo17 1 X30CrMoN15 1 reacts more sensitively to parameter changes during short-time heat treatment in oxidising acid at pH 5-6. [German] Im Rahmen der Arbeit werden die Gefuegeausbildung, Eigenspannungen und chemische Eigenschaften des hochstickstofflegierten Werkzeugstahls X30CrMoN15 1 und des konventionellen Kaltarbeitsstahls X39CrMo17 1 verglichen. Aus den Restaustenitanalysen und den c{sub m}/a{sub m}-Verhaeltnissen des Martensits konnten die Umwandlungspunkte A{sub c1b} und A{sub c1e} fuer verschiedene Aufheizraten bestimmt und daraus ein bisher nicht bekanntes ZTA-Schaubild fuer den X30CrMoN15 1 erstellt werden. Transmissionselektronenmikroskopie und Neutronenkleinwinkelstreuung zeigen, dass sich die Ausscheidungen im hochstickstofflegierten Stahl X30CrMoN14 1 durch die Kurzzeitlaserwaermebehandlung vollstaendig aufloesen koennen. Die Korrosionsversuche zeigen, dass im Gegensatz zum X39CrMo17 1 der X30CrMoN15 1 in oxidierender Saeure bei pH 5-6 empfindlicher auf Parameteraenderungen bei der Kurzzeitwaermebehandlung reagiert. (orig.)

  5. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    International Nuclear Information System (INIS)

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-01-01

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event

  6. Creep-rupture behavior of 2-1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in a simulated HTGR helium environment

    International Nuclear Information System (INIS)

    Lai, G.Y.; Wolwowicz, R.J.

    1979-12-01

    Creep-rupture testing was conducted on 1 1/4 Cr-1 Mo steel, Alloy 800H and Hastelloy Alloy X in flowing helium containing nominal concentration of following gases: 1500 μatm H 2 , 450 μatm CO, 50 μatm CH 4 , 50 μatm H 2 O and 5 μatm CO 2 . This environment is believed to represent maximum permissible levels of impurities in the primary coolant for the steam-cycle system of a high-temperature gas-cooled reactor (HTGR) when it is operating continuously with a water and/or steam leak at technical specification limits. Two or three heats of material for each alloy were investigated. Tests were conducted at 482 0 C and 760 0 C (1200 0 F and 1400 0 F) for Alloy 800H, and at 760 0 C and 871 0 C (1400 0 F and 1600 0 F) for Hastelloy Alloy X for times up to 10,000 h. Selected tests were performed on same heat of material in both air and helium environments to make a direct comparison of creep-rupture behaviors between two environments. Metallurgical evaluation was performed on selected post test specimens with respect to gas-metal interactions which included oxidation, carburization and/or decarburization. Correlation between gaseous corrosion and creep-rupture behavior was attempted. Limited tests were also performed to investigate the specimen size effects on creep-rupture behavior in the helium environment

  7. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  8. Ultrasonic attenuation as a function of heat treatment and grain size in 79Ni--6Mo--15Fe alloy

    International Nuclear Information System (INIS)

    Gieske, J.H.

    1978-03-01

    A pulse echo ultrasonic technique was used to measure the attenuation coefficient for 79Ni-6Mo-15Fe alloy specimens. The attenuation coefficient was determined using a 25 MHz ultrasonic transducer for specimens which had undergone different time-temperature heat treatments. The ultrasonic attenuation data versus heat treat time was used to assess grain size growth in the specimens

  9. The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions

    International Nuclear Information System (INIS)

    Milošev, Ingrid

    2012-01-01

    Highlights: ► The behaviour of CoCrMo alloy is investigated in four simulated physiological solutions. ► The effect of synovial fluid significantly differs from the effect of organic components hitherto studied. ► In the presence of organic components carbon and nitrogen containing species are formed. ► Composition, structure and thickness of surface layers were determined by XPS. - Abstract: CoCrMo orthopaedic alloy was oxidized potentiostatically in various simulated physiological solutions in order to reveal differences in the composition, thickness and structure of the surface layers formed as a function of solution composition. X-ray photoelectron spectroscopy, combined with angle-resolved measurements and depth profiling, was used for the purpose. The following simulated physiological solutions were used: (1) 0.9% NaCl, (2) simulated Hanks physiological solution containing various inorganic salts, (3) simulated Hanks physiological solution containing an aliquot of synovial fluid retrieved at a primary operation, and (4) minimum essential medium containing various inorganic salts, amino acids and vitamins. No significant differences between alloy treated in these solutions were observed after oxidation in the passive region; the oxide films are a few nanometres thick and, except in NaCl solution, contain a small amount of calcium phosphate. After oxidation at a potential in the transpassive range, however, the oxide thickness increases considerably due to incorporation of cobalt and molybdenum oxides. Further, the concentration of calcium phosphate increases. The layers formed in minimum essential medium and Hanks solution containing synovial fluid comprise nitrogen and carbon containing species. The addition of synovial fluid significantly affects the behaviour in Hanks solution.

  10. Effects of La2O3 Content and Rolling on Microstructure and Mechanical Properties of ODS Molybdenum Alloys

    Science.gov (United States)

    Ma, Jingling; Li, Wuhui; Wang, Guangxin; Li, Yaqiong; Guo, Hongbo; Zhao, Zeliang; Li, Wei

    2017-10-01

    In order to study the effects of La2O3 content and rolling on microstructure and mechanical properties of Mo-La2O3 alloys, Mo-0.5% (1%) La2O3 alloys were prepared by liquid-solid doping technique, subsequently rolled either by a single-direction rolling or a cross-rolling. As a result, three different materials were prepared for this study. After being annealed at 1800 °C, the single-directionally rolled Mo-1% La2O3 alloy shows the best mechanical properties in terms of strength, hardness, and sagging deformation among the three materials. This is attributed to the observation that the alloy is only recovered with a microstructure of subgrains and dislocations. The single-directionally rolled Mo-0.5% La2O3 exhibits the worst mechanical property among the three materials. In this material, coarse grains, but no subgrains and dislocations, can be observed after annealing, indicating that it is fully recrystallized. For the cross-rolled Mo-1% La2O3 alloy, grains of dispersed sizes, but no dislocations, are visible after annealing, implying that this alloy is partially recrystallized. Accordingly, the mechanical property of this material is in between the other two materials. Thus, the mechanical properties of the three materials can be well understood based on OM, SEM, and TEM results. Overall, the single-directionally rolled Mo-1% La2O3 alloy possesses good mechanical properties and is more suitable for high-temperature applications.

  11. Effect of alloying elements on martensitic transformation in the binary NiAl(β) phase alloys

    International Nuclear Information System (INIS)

    Kainuma, R.; Ohtani, H.; Ishida, K.

    1996-01-01

    The characteristics of the B2(β) to L1 0 (β') martensitic transformation in NiAl base alloys containing a small amount of third elements have been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It is found that in addition to the normal L1 0 (3R) martensite, the 7R martensite is also present in the ternary alloys containing Ti, Mo, Ag, Ta, or Zr. While the addition of third elements X (X: Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ta, W, and Si) to the binary Ni 64 Al 36 alloy stabilizes the parent β phase, thereby lowering the M s temperature, addition of third elements such as Co, Cu, or Ag destabilizes the β phase, increasing the M s temperature. The occurrence of the 7R martensite structure is attributed to solid solution hardening arising from the difference in atomic size between Ni and Al and the third elements added. The variation in M s temperature with third element additions is primarily ascribed to the difference in lattice stabilities of the bcc and fcc phases of the alloying elements

  12. Analysis of hot rolling and hot forging effects on mechanical properties and microstructure of ZrNbMoGe alloy

    International Nuclear Information System (INIS)

    AH Ismoyo; Parikin; Bandriyana

    2014-01-01

    Research on formation technique by a combined method of rolling and forging has been carried out in order to improve the mechanical properties of ZrNbMoGe alloy to be used as fuel cladding in NPP (Nuclear Power Plant) application. The effects of rolling and forging were analyzed several tests. The tests were conducted for zirconium alloy specimen with a composition of (in % wt.) 97% Zr, 0,5% Mo, 2% Nb and 0,5% Ge, where the specimen was melted with an arc-furnace. The hot rolling and forging were conducted at 900 °C and 950 °C respectively. Hardness test was carried out by using a microhardness testing machine, while microstructure examination and crystal structure analysis were conducted with an optical microscope and an X-ray diffractometer. The results show that the hardness of the alloy increase from 141.21 HV (starting material) to 210.47 HV (hot rolled material) and 365.75 HV (hot forged material). Texturing phenomenon is clearly figured on the microstructure due to hot rolling and forging process. Analysis by diffractogram also indicates that the hot rolling and forging process has influence on the crystal orientation of dominant preferred direction in the reflection plane of (10ī1), recorded from the rise of intensity counting from about 2500 to 3000. In summary, hot forging and rolling process can change the mechanical properties (hardness and texture) and microstructure of materials. (author)

  13. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part...

  14. Study of the effect of heat treatments and the addition of oxygen on the microstructure and mechanical properties of Ti-15Mo alloy used as biomaterials

    International Nuclear Information System (INIS)

    Martins Junior, J.R.S.; Araujo, R.O.; Nogueira, R.A.; Grandini, C.R.; Claro, A.P.R.A.

    2010-01-01

    The Ti-15Mo alloy has its mechanical properties strongly modified by heat treatments and the addition of interstitial elements such as oxygen, for example. In this sense, the objective of this paper is to evaluate the effect of heat treatment and the introduction of oxygen on the microstructure and mechanical properties of Ti-15% pMo alloy. The samples used in this work consist of Ti containing 15% in weight of molybdenum, which were characterized by density measurements, X-ray diffraction, optical and scanning electron microscopy, microhardness and mechanical spectroscopy. The diffraction patterns were analyzed by Rietveld method, where it was possible to obtain the lattice parameters and the amount (in %) of each phase present in the microstructure. The results of optical and scanning electron microscopy are consistent with the X-ray diffraction, showing a predominance of structures of the beta type. The elasticity modulus obtained was about 90 GPa, indicating that this is a promising alloy for use in dental implants. (author)

  15. Effect of Si on the glass-forming ability, thermal stability and magnetic properties of Fe-Co-Zr-Mo-W-B alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.-M. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany); Key Lab of Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gebert, A. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)], E-mail: a.gebert@ifw-dresden.de; Roth, S.; Kuehn, U.; Schultz, L. [Institute for Metallic Materials, IFW Dresden, P.O. 270016, Dresden D-01171 (Germany)

    2008-07-14

    This paper presents investigations on the effect of Si on the glass-forming ability, thermal stability and magnetic properties of the Fe-Co-Zr-Mo-W-B samples (group I: Fe{sub 60}Co{sub 8}Zr{sub 10}Mo{sub 5}W{sub 2}B{sub 15-x}Si{sub x}, 1 {<=} x {<=} 4; group II: Fe{sub 60}Co{sub 8}Zr{sub 10-x}Mo{sub 5}W{sub 2}B{sub 15}Si{sub x}, 0 {<=} x {<=} 4; group III: Fe{sub 60}Co{sub 8}Zr{sub 8}Mo{sub 5}W{sub 2}B{sub 17-x}Si{sub x}, 0 {<=} x {<=} 2) prepared by melt spinning, injection casting, and centrifugal casting methods. It is found that the glass-forming ability (GFA) of the alloys in group I is more deteriorated than that in group II, and that the alloys in group III can be cast into the rods of 1-3 mm diameter without crystalline reflections in their XRD patterns. For the amorphous ribbons and rods, a non-monotonic change of the nearest neighbour distance r{sub 1} with increasing Si content c{sub Si} was detected, which is parallel to that of the glass transition and crystallization temperatures T{sub g} and T{sub x}, but opposite to that of the magnetization at room temperature M{sub RT} and the Curie temperature T{sub c}. This correlation can be interpreted by a structure model presuming that iron atoms appear simultaneously in two types of local structures in the amorphous samples.

  16. Microstructure and properties of Ti-Al intermetallic/Al2O3 layers produced on Ti6Al2Mo2Cr titanium alloy by PACVD method

    Science.gov (United States)

    Sitek, R.; Bolek, T.; Mizera, J.

    2018-04-01

    The paper presents investigation of microstructure and corrosion resistance of the multi-component surface layers built of intermetallic phases of the Ti-Al system and an outer Al2O3 ceramic sub-layer. The layers were produced on a two phase (α + β) Ti6Al2Mo2Cr titanium alloy using the PACVD method with the participation of trimethylaluminum vapors. The layers are characterized by a high surface hardness and good corrosion, better than that of these materials in the starting state. In order to find the correlation between their structure and properties, the layers were subjected to examinations using optical microscopy, X-ray diffraction analysis (XRD), surface analysis by XPS, scanning electron microscopy (SEM), and analyses of the chemical composition (EDS). The properties examined included: the corrosion resistance and the hydrogen absorptiveness. Moreover growth of the Al2O3 ceramic layer and its influence on the residual stress distribution was simulated using finite element method [FEM]. The results showed that the produced layer has amorphous-nano-crystalline structure, improved corrosion resistance and reduces the permeability of hydrogen as compared with the base material of Ti6Al2Mo2Cr -titanium alloy.

  17. Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review.

    Science.gov (United States)

    Toh, Wei Quan; Tan, Xipeng; Bhowmik, Ayan; Liu, Erjia; Tor, Shu Beng

    2017-12-26

    Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM) hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants.

  18. Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Wei Quan Toh

    2017-12-01

    Full Text Available Orthopedic implants first started out as an all-metal hip joint replacement. However, poor design and machinability as well as unsatisfactory surface finish subjected the all-metal joint replacement to being superseded by a polyethylene bearing. Continued improvement in manufacturing techniques together with the reality that polyethylene wear debris can cause hazardous reactions in the human body has brought about the revival of metal-on-metal (MOM hip joints in recent years. This has also led to a relatively new research area that links tribology and corrosion together. This article aims at reviewing the commonly used tribochemical methods adopted in the analysis of tribocorrosion and putting forward some of the models and environmental factors affecting the tribocorrosive behavior of CoCrMo alloys, a widely-used class of biomaterial for orthopedic implants.

  19. Effect of irradiation damage and helium on the swelling and structure of vanadium-base alloys

    International Nuclear Information System (INIS)

    Chung, H.M.; Loomis, B.A.; Smith, D.L.

    1993-12-01

    Swelling behavior and microstructural evolution of V-Ti, V-Cr-Ti, and V-Ti-Si alloys were investigated after irradiation at 420--600C up to 114 dpa. The alloys exhibited swelling maxima between 30 and 80 dpa and swelling decreased on irradiation to higher dpa. This is in contrast to the monotonically increasing swelling of binary alloys that contain Fe, Ni, Cr, Mo, W, and Si. Precipitation of dense Ti 5 Si 3 promotes good resistance to swelling of the Ti-containing alloys and it was concluded that Ti of >3 wt.% and 400--1000 wppm Si are necessary to effectively suppress swelling. Swelling was minimal in V-4Cr-4Ti, identified as the most promising alloy based on good mechanical properties and superior resistance to irradiation embrittlement. V-20Ti doped with B exhibited somewhat higher swelling because of He generation. Lithium atoms, generated from transmutation of 10 B, formed γ-LiV 2 O 5 precipitates and did not seem to produce undesirable effects on mechanical properties

  20. Thermal transport properties of niobium and some niobium-based alloys from 80 to 1600 K

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J P; Graves, R S; Williams, R K [Oak Ridge National Lab., TN (USA)

    1980-01-01

    The electric resistivity, rho, and Seebeck coefficient, S, of 99.8 at% niobium, and Nb-4.8 at% W, Nb-5 at% Mo, Nb-10 at% Mo, and Nb-2.4 at% Mo-2.4 at% Zr alloys were measured from 80 to 1600 K, and the thermal conductivity, lambda, of the niobium and the Nb-5 at% W alloy was measured from 80 to 1300 K. A technique is described for measuring rho and S of a specimen during radial-heat-flow measurements of lambda. The transport property results, which had uncertainties of +-0.4% for rho and +-1.4% for lambda, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.

  1. Controllable Synthesis of Band Gap-Tunable and Monolayer Transition Metal Dichalcogenide Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-Han eSu

    2014-07-01

    Full Text Available The electronic and optical properties of transition metal dichalcogenide (TMD materials are directly governed by their energy gap; thus, the band gap engineering has become an important topic recently. Theoretical and some experimental results have indicated that these monolayer TMD alloys exhibit direct-gap properties and remain stable at room temperature, making them attractive for optoelectronic applications. Here we systematically compared the two approaches of forming MoS2xSe2(1-x monolayer alloys: selenization of MoS2 and sulfurization of MoSe2. The optical energy gap of as-grown CVD MoS2 can be continuously modulated from 1.86 eV (667 nm to 1.57 eV (790 nm controllable by the reaction temperature. Spectroscopic and microscopic evidences show that the Mo-S bonds can be replaced by the Mo-Se bonds in a random and homogeneous manner. By contrast, the replacement of Mo-Se by Mo-S does not randomly occur in the MoSe2 lattice, where the reaction preferentially occurs along the crystalline orientation of MoSe2 and thus the MoSe2/MoS2 biphases are easily observed in the alloys, which makes the optical band gap of these alloys distinctly different. Therefore, the selenization of metal disulfide is preferred and the proposed synthetic strategy opens up a simple route to control the atomic structure as well as optical properties of monolayer TMD alloys.

  2. Corrosion resistant alloy uses in the power industry

    International Nuclear Information System (INIS)

    Nickerson, J.L.; Hall, F.A.; Asphahani, A.I.

    1989-01-01

    Nickel-base alloys have been used as cost-effective measures in a variety of severely corrosive situations in pollution control units for coal-fired power plants. Cost effectiveness and practical answers to corrosion problems are illustrated (specifically the wallpaper concept/metallic lining technique). Numerous cases of successful use of HASTELLOY alloys in Flue Gas Desulfurization (FGD) systems and hazardous waste treatment incineration scrubber systems are listed. In this paper developments in nickel-base alloys and their use in FGD and other segments of the power industry are discussed. In the Ni-Cr-Mo-W alloy family, the C-22 alloy has the best resistance to localized corrosion in halide environments (chloride/fluoride-containing solutions). This alloy is also used effectively as a universal filler metal to weld less-resistant alloys were weld corrosion may be a problem. Field performance of this alloy in the power industry is described

  3. Effect of proteins on the surface microstructure evolution of a CoCrMo alloy in bio-tribocorrosion processes.

    Science.gov (United States)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2016-09-01

    Under tribological contact, the subsurface microstructure of CoCrMo alloys for artificial joint implants can be changed and affect the life and safety of such devices. As one of the most important and abundant components in the synovial fluid, proteins play a key role in affecting the bio-tribocorrosion behaviors of metal implants. The effect of proteins on the subsurface microstructure evolution of a CoCrMo alloy was investigated using a transmission electron microscope (TEM) in this study. The result shows that proteins have two main effects on the subsurface's evolution: forming a multilayered structure and causing severer subsurface deformation. The tribo-film can protect the passive film from scrapping, and then the passive film can reduce or even suppress the stacking fault annihilation by blocking the access to the metal surface. It leads to the stacking fault being diffused towards the deeper area and a strain accumulation in the subsurface, before inducing a severer deformation. On the other hand, the effect of proteins results in the location changing from the top surface to be underneath the top surface, where the maximum frictional shear stress occurs. This can cause a deeper deformation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The influence of heat treatment and process parameters optimization on hardness and corrosion properties of laser alloyed X12CrNiMo steel

    CSIR Research Space (South Africa)

    Popoola, API

    2016-10-01

    Full Text Available Martensitic stainless steels are used in the production of steam turbine blades but their application is limited due to low hardness and poor corrosion resistance. Laser surface alloying and heat treatment of X12CrNiMo Martensitic stainless steel...

  5. Performance of Nb protective diffusion coating on U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hyeon; Sohn, Dong-Seong [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Sunghwan; Nam, Ji Min; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To achieve this aim, it is necessary to increase the volume fraction of fuel particles inside the meat. However, the technical limit is reached at approximately 55 vol.% of fuel particles in the aluminum matrix. As a solution, an uranium compound with an higher uranium density than existing U3Si2 fuel has to be selected. Also alloying the uranium must stabilize γ-phase of uranium at room temperature because adequate properties of the γ -phase of uranium showed a good irradiation behavior in the past. Hence, U-Mo alloys were selected as the best candidates. The formation of interaction phase is a critical problem to apply U-Mo alloys to the high performance research reactor. Different means have been proposed to reduce the interaction between U-Mo fuel and Al matrix. There are three means. : 1. Addition of a diffusion limiting element to the matrix 2. Insertion of a diffusion barrier at the interface between the U-Mo and the Al 3. Alloying of the U-Mo with a third element Here we present the effect of Nb coating as diffusion barrier on formation of interaction layers between UMo powders and Al matrix. We present the effect of Nb coating on formation of interaction layers between U-Mo powders and Al matrix. Centrifugally atomized U-7 wt.% Mo powders were used, and Nb was coated on the surface of U-7 wt.% Mo by sputtering. Subsequently, the Nb-coated U-7 wt.% Mo powders were mixed with pure Al powders, and were made into compacts. The compacts were annealed at 550 .deg. C for 1, 3, 5 hours, respectively, and the result showed that the Nb coating on U-7 wt.% Mo effectively suppressed the growth of interaction layers between U-7 wt.% Mo and Al matrix.

  6. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  7. Nature of low dimensional structural modulations and relative phase stability in RexMo(W)1-xS2 transition metal dichalcogenide alloys

    KAUST Repository

    Sahu, R.; Bhat, U.; Batra, Nitin M; Sharona, H.; Vishal, B.; Sarkar, S.; Devi, Assa Aravindh Sasikala; Peter, S. C.; Roqan, Iman S.; Costa , P. M. F. J.; Datta, Ranjan

    2017-01-01

    We report on the various types of Peierls like two dimensional structural modulations and relative phase stability of 2H and 1T poly-types in the RexMo1-xS2 and RexW1-xS2 alloy system. Theoretical calculation predicts a polytype phase transition

  8. Numerical multi-criteria optimization methods for alloy design. Development of new high strength nickel-based superalloys and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, Ralf; Mueller, Alexander; Ritter, Nils C.; Singer, Robert F. [Institute of Science and Technology of Metals, Department of Materials Science and Engineering, University of Erlangen (Germany)

    2016-07-01

    A new approach for the design of optimum balanced metallic alloys is presented. It is based on a mathematical multi-criteria optimization method which uses different property models to predict the alloy behavior in dependency of composition. These property models are mostly based on computational thermodynamics (CALPHAD-method). The full composition range of the alloying elements can be considered using these models. In alloy design usually several contradicting goals have to be fulfilled. This is handled by the calculation of so-called Pareto-fronts. The aim of our approach is to guide the experimental research towards new alloy compositions that have a high probability of having very good properties. Consequently the number of required test alloys can be massively reduced. The approach will be demonstrated for the computer-aided design of a new Re-free superalloy with nearly identical creep strength as that of Re-containing superalloys. Our starting point for the design was to maintain the good properties of the gamma prime-phase in well-known alloys like CMSX-4 and to maximize the solid solution strengthening of W and Mo. The presented experimental measurements proof the excellent properties.

  9. Hydrogen formation in metals and alloys during fusion reactor operation

    International Nuclear Information System (INIS)

    Zimin, S.; Takatsu, Hideyuki; Mori, Seiji

    1994-08-01

    The results of neutron transport calculations of the hydrogen formation based on the JENDL gas-production cross section file are discussed for some metals and alloys, namely 51 V, Cr, Fe, Ni, Mo, austenitic stainless steel (Ti modified 316SS:PCA), ferritic steel (Fe-8Cr-2W:F82H) and the vanadium-base alloy (V-5Cr-5Ti). Impact of the steel fraction in steel/water homogeneous blanket/shield compositions on the hydrogen formation rate in above-mentioned metals and alloys is discussed both for the hydrogen formation in the first wall and the blanket/shield components. The results obtained for the first wall are compared with those for the helium formation obtained at JAERI by the same calculational conditions. Hydrogen formation rates at the first wall having 51 V, Cr, Fe, Ni and Mo are larger than those of helium by 3-8 times. (author)

  10. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions

    Energy Technology Data Exchange (ETDEWEB)

    Neacsu, Patricia [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gordin, Doina-Margareta [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Mitran, Valentina [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR/Chimie-Métallurgie, 20 avenue des Buttes de Coësmes, F-35043 Rennes, Cedex (France); Costache, Marieta [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91–95 Spl. Independentei, 050095 Bucharest (Romania)

    2015-02-01

    New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti–Mo–Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti–Mo–Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications. - Highlights: • Ti–Mo–Nb compositions show a fully β-microstructural state by XRD analysis. • Similar osteoblast growth and differentiation is displayed by β-Ti alloys and cpTi. • Ti–Mo–Nb alloys elicit a slightly lower inflammatory response than cpTi.

  11. In vitro performance assessment of new beta Ti–Mo–Nb alloy compositions

    International Nuclear Information System (INIS)

    Neacsu, Patricia; Gordin, Doina-Margareta; Mitran, Valentina; Gloriant, Thierry; Costache, Marieta; Cimpean, Anisoara

    2015-01-01

    New β-titanium based alloys with low Young's modulus are currently required for the next generation of metallic implant materials to ensure good mechanical compatibility with bone. Several of these are representatives of the ternary Ti–Mo–Nb system. The aim of this paper is to assess the in vitro biological performance of five new low modulus alloy compositions, namely Ti12Mo, Ti4Mo32Nb, Ti6Mo24Nb, Ti8Mo16Nb and Ti10Mo8Nb. Commercially pure titanium (cpTi) was used as a reference material. Comparative studies of cell activity exhibited by MC3T3-E1 pre-osteoblasts over short- and long-term culture periods demonstrated that these newly-developed metallic substrates exhibited an increased biocompatibility in terms of osteoblast proliferation, collagen production and extracellular matrix mineralization. Furthermore, all analyzed biomaterials elicited an almost identical cell response. Considering that macrophages play a pivotal role in bone remodeling, the behavior of a monocyte-macrophage cell line, RAW 264.7, was also investigated showing a slightly lower inflammatory response to Ti–Mo–Nb biomaterials as compared with cpTi. Thus, the biological performances together with the superior mechanical properties recommend these alloys for bone implant applications. - Highlights: • Ti–Mo–Nb compositions show a fully β-microstructural state by XRD analysis. • Similar osteoblast growth and differentiation is displayed by β-Ti alloys and cpTi. • Ti–Mo–Nb alloys elicit a slightly lower inflammatory response than cpTi

  12. Evaluation of molybdenum and its alloys

    International Nuclear Information System (INIS)

    Lundberg, L.B.

    1981-01-01

    The choice of pure molybdenum as the prime candidate material for space reactor core heat pipes is critically examined. Pure molybdenum's high ductile-brittle transition temperature appears to be its major disadvantage. The candidate materials examined in detail for this application include low carbon arc-cast molybdenum, TZM-molybdenum alloy, and molybdenum-rhenium alloys. Published engineering properties are collected and compared, and it appears that Mo-Re alloys with 10 to 15% rhenium offer the best combination. Hardware is presently being made from electron beam melted Mo-13Re to test this conclusion

  13. Irradiation performance of U-Mo monolithic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M. K.; Gan, J.; Jue, J. F.; Keiser, D. D.; Perez, E.; Robinson, A.; Wachs, D. M.; Woolstenhulme, N. [Idaho National Laboratory, Idaho (Korea, Republic of); Kim, Y.S.; Hofman, G. L. [Argonne National Laboratory, Lemont (United States)

    2014-04-15

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

  14. Development plan of austenitic Fe and Ni based alloys with improved corrosion resistance to sulfuric acid and HI fluids of industrial processes

    International Nuclear Information System (INIS)

    Hirota, Noriaki; Iwatsuki, Jin; Imai, Yoshiyuki; Yan, Xing L.

    2017-12-01

    In this study, austenitic Fe based alloys and Ni based alloys was developed as candidate structural materials for equipment operated in sulfuric acid and hydrogen iodide (HI) environment, which exists in various industrial processes including iodine-sulfur (IS) hydrogen production process and geothermal power generation process. The objectives of the study are to achieve the corrosion resistance performance sufficient under the working condition of these processes and to overcome the practical scale-up difficulty of the ceramic (SiC) material that is presently used in the processes due to the manufacturing size limitation of the ceramic. The chemical composition development plan for the austenitic Fe based alloys is threefold: reinforcement of matrix by addition of Cu and Ta, strength compensation of the surface film by addition of Si and Ti, and prevention of peeling of surface oxide by addition of rare earth elements. Because addition of Cu and Si is known to reduce the ductility of the material and thus manufacturability of the component, it is important to determine the allowable amount of each element to be added. On the other hand, the chemical composition development plan for the Ni based alloys is reinforcement of matrix by addition of Mo, W and Ta, strength compensation of the surface film by addition of Ti, and prevention of peeling of surface oxide by addition of rare earth elements. In particular, the addition of Mo and W to the Ni based alloy is expected to be effective in preventing dimensional deviation of structures from increasing during heating and cooling of process equipment. Various material specimens will be fabricated based on the above chemical composition development plans and tests on these specimens will then be carried out to confirm the corrosion resistance performance under the fluid conditions simulating each industrial process. (author)

  15. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  16. First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer

    Science.gov (United States)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2017-08-01

    Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.

  17. Fission 99Mo production technology

    International Nuclear Information System (INIS)

    Miao Zengxing; Luo Zhifu; Ma Huimin; Liang Yufu; Yu Ningwen

    2003-01-01

    This paper describes a production technology of fission 99 Mo in the Department Isotope, CIAE. The irradiation target is tubular U-Al alloy containing highly enriched uranium. The target is irradiated in the swimming pool reactor core. The neutron flux is about 4x10 13 /cm 2 .sec. The production scale is 3.7-7.4 TBq (100-200Ci) of fission 99 Mo per batch. Total recovery of 99 Mo is more than 70%. The production practice proves that the process and equipment are safe and reliable. (author)

  18. Obtention of uranium-molybdenum alloy ingots technique to avoid carbon contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Tercio A.; Paula, Joao Bosco de; Reis, Sergio C.; Brina, Jose Giovanni M.; Faeda, Kelly Cristina M.; Ferraz, Wilmar B., E-mail: tap@cdtn.b, E-mail: jbp@cdtn.b, E-mail: jgmb@cdtn.b, E-mail: ferrazw@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The replacement of high enriched uranium (U{sup 235} > 85 wt%) by low enriched uranium (U{sup 235} < 20wt%) nuclear fuels in research and test reactors is being implemented as an initiative of the Reduced Enrichment for Research and Test Reactors (RERTR) program, conceived in the USA since mid-70s, in order to avoid nuclear weapons proliferation. Such replacement implies in the use of compounds or alloys with higher uranium densities. Among the several uranium alloys investigated since then, U-Mo presents great application potential due to its physical properties and good behavior during irradiation, which makes it an important option as a nuclear fuel material for the Brazilian Multipurpose Reactor - RMB. The development of the plate-type nuclear fuel based on U-Mo alloy is being performed at the Nuclear Technology Development Centre (CDTN) and also at IPEN. The carbon contamination of the alloy is one of the great concerns during the melting process. It was observed that U-Mo alloy is more critical considering carbon contamination when using graphite crucibles. Alternative melting technique was implemented at CDTN in order to avoid carbon contamination from graphite crucible using Yttria stabilized ZrO{sub 2} crucibles. Ingots with low carbon content and good internal quality were obtained. (author)

  19. X-ray fluorescence analysis of Fe - Ni - Mo systems

    International Nuclear Information System (INIS)

    Belyaev, E.E.; Ershov, A.V.; Mashin, A.I.; Mashin, N.I.; Rudnevskij, N.K.

    1998-01-01

    Procedures for the X-ray fluorescence determination of the composition and thickness of Fe - Ni - Mo thin films and the concentration of elements in thick films of the Fe - Ni - Mo alloy are developed [ru

  20. Interaction of Al with O{sub 2} exposed Mo{sub 2}BC

    Energy Technology Data Exchange (ETDEWEB)

    Bolvardi, Hamid; Music, Denis, E-mail: music@mch.rwth-aachen.de; Schneider, Jochen M.

    2015-03-30

    Highlights: • Al adheres to many surfaces. • Solid–solid interactions challenging for real (oxidized) surfaces. • Dissociative O{sub 2} adsorption on Mo{sub 2}BC(0 4 0). • Al nonamer is disrupted on oxidized Mo{sub 2}BC(0 4 0). • Adhesion of a residual Al on the native oxide. - Abstract: A Mo{sub 2}BC(0 4 0) surface was exposed to O{sub 2}. The gas interaction was investigated using ab initio molecular dynamics and X-ray photoelectron spectroscopy (XPS) of air exposed surfaces. The calculations suggest that the most dominating physical mechanism is dissociative O{sub 2} adsorption whereby Mo−O, O−Mo−O and Mo{sub 2}−C−O bond formation is observed. To validate these results, Mo{sub 2}BC thin films were synthesized utilizing high power pulsed magnetron sputtering and air exposed surfaces were probed by XPS. MoO{sub 2} and MoO{sub 3} bond formation is observed and is consistent with here obtained ab initio data. Additionally, the interfacial interactions of O{sub 2} exposed Mo{sub 2}BC(0 4 0) surface with an Al nonamer is studied with ab initio molecular dynamics to describe on the atomic scale the interaction between this surface and Al to mimic the interface present during cold forming processes of Al based alloys. The Al nonamer was disrupted and Al forms chemical bonds with oxygen contained in the O{sub 2} exposed Mo{sub 2}BC(0 4 0) surface. Based on the comparison of here calculated adsorption energy with literature data, Al−Al bonds are shown to be significantly weaker than the Al−O bonds formed across the interface. Hence, Al−Al bond rupture is expected for a mechanically loaded interface. Therefore the adhesion of a residual Al on the native oxide layer is predicted. This is consistent with experimental observations. The data presented here may also be relevant for other oxygen containing surfaces in a contact with Al or Al based alloys for example during forming operations.