WorldWideScience

Sample records for mn12 single molecule

  1. Organized single-molecule magnets: direct observation of new Mn12 derivatives on gold

    International Nuclear Information System (INIS)

    Cornia, A.; Fabretti, A.C.; Pacchioni, M.; Zobbi, L.; Bonacchi, D.; Caneschi, A.; Gatteschi, D.; Biagi, R.; Del Pennino, U.; De Renzi, V.; Gurevich, L.; Zant, H.S.J. van der

    2004-01-01

    Gold adsorbates of the dodecamanganese(III,IV) single-molecule magnet (SMM) [Mn 12 O 12 (L) 16 (H 2 O) 4 ] where L=16-(acetylthio)hexadecanoate have been prepared and investigated by X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM). The successful imaging of Mn 12 molecules by STM represents a first step toward the magnetic addressing of individual SMMs and the development of molecule-based devices for magnetic information storage

  2. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  3. Organized single-molecule magnets: direct observation of new Mn{sub 12} derivatives on gold

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, A.; Fabretti, A.C.; Pacchioni, M.; Zobbi, L. E-mail: lzobbi@unimo.it; Bonacchi, D.; Caneschi, A.; Gatteschi, D.; Biagi, R.; Del Pennino, U.; De Renzi, V.; Gurevich, L.; Zant, H.S.J. van der

    2004-05-01

    Gold adsorbates of the dodecamanganese(III,IV) single-molecule magnet (SMM) [Mn{sub 12}O{sub 12}(L){sub 16}(H{sub 2}O){sub 4}] where L=16-(acetylthio)hexadecanoate have been prepared and investigated by X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM). The successful imaging of Mn{sub 12} molecules by STM represents a first step toward the magnetic addressing of individual SMMs and the development of molecule-based devices for magnetic information storage.

  4. Electronic and magnetic properties of Mn{sub 12} single-molecule magnets on the Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Soenke; Burgert, Michael; Fonin, Mikhail; Groth, Ulrich; Ruediger, Ulrich [Universitaet Konstanz (Germany); Michaelis, Christian; Brihuega, Ivan; Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Dedkov, Yury S. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany)

    2008-07-01

    The paramount interest in single-molecule magnets (SMMs) like Mn{sub 12}-acetate and its derivatives was inspired by numerous experimental and theoretical insights indicating the feasibility of addressing quantum effects of magnetism on a molecular scale. Due to its relatively high blocking temperature ({proportional_to}3 K) combined with the ability to identify well-defined spin states, Mn{sub 12} still remains the most favoured SMM possibly allowing the detection of magnetic fingerprints in transport properties of a single molecule. In this work, the electronic properties of Mn{sub 12} molecules chemically grafted on Au(111) surfaces have been studied by means of low temperature as well as room temperature scanning tunneling microscopy and spectroscopy (STS), X-ray absorption spectroscopy and photoelectron spectroscopy. The results revealed signatures from most probably intact Mn{sub 12} molecules while STS measurements in magnetic fields indicate the possibility to identify magnetic fingerprints in scanning tunneling spectra. The results will be discussed with respect to previous attempts to perform transport measurements on Mn{sub 12} SMMs.

  5. Anisotropy barrier reduction in fast-relaxing Mn12 single-molecule magnets

    Science.gov (United States)

    Hill, Stephen; Murugesu, Muralee; Christou, George

    2009-11-01

    An angle-swept high-frequency electron paramagnetic resonance (HFEPR) technique is described that facilitates efficient in situ alignment of single-crystal samples containing low-symmetry magnetic species such as single-molecule magnets (SMMs). This cavity-based technique involves recording HFEPR spectra at fixed frequency and field, while sweeping the applied field orientation. The method is applied to the study of a low-symmetry Jahn-Teller variant of the extensively studied spin S=10 Mn12 SMMs (e.g., Mn12 -acetate). The low-symmetry complex also exhibits SMM behavior, but with a significantly reduced effective barrier to magnetization reversal (Ueff≈43K) and, hence, faster relaxation at low temperature in comparison with the higher-symmetry species. Mn12 complexes that crystallize in lower symmetry structures exhibit a tendency for one or more of the Jahn-Teller axes associated with the MnIII atoms to be abnormally oriented, which is believed to be the cause of the faster relaxation. An extensive multi-high-frequency angle-swept and field-swept electron paramagnetic resonance study of [Mn12O12(O2CCH2But)16(H2O)4]ṡCH2Cl2ṡMeNO2 is presented in order to examine the influence of the abnormally oriented Jahn-Teller axis on the effective barrier to magnetization reversal. The reduction in the axial anisotropy, D , is found to be insufficient to account for the nearly 40% reduction in Ueff . However, the reduced symmetry of the Mn12 core gives rise to a very significant second-order transverse (rhombic) zero-field-splitting anisotropy, E≈D/6 . This, in turn, causes a significant mixing of spin projection states well below the top of the classical anisotropy barrier. Thus, magnetic quantum tunneling is the dominant factor contributing to the effective barrier reduction in fast relaxing Mn12 SMMs.

  6. Binding of higher alcohols onto Mn(12) single-molecule magnets (SMMs): access to the highest barrier Mn(12) SMM.

    Science.gov (United States)

    Lampropoulos, Christos; Redler, Gage; Data, Saiti; Abboud, Khalil A; Hill, Stephen; Christou, George

    2010-02-15

    Two new members of the Mn(12) family of single-molecule magnets (SMMs), [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(Bu(t)OH)(H(2)O)(3)].2Bu(t)OH (3.2Bu(t)OH) and [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(C(5)H(11)OH)(4)] (4) (C(5)H(11)OH is 1-pentanol), are reported. They were synthesized from [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1) by carboxylate substitution and crystallization from the appropriate alcohol-containing solvent. Complexes 3 and 4 are new members of the recently established [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(solv)(4)] (solv = H(2)O, alcohols) family of SMMs. Only one bulky Bu(t)OH can be accommodated into 3, and even this causes significant distortion of the [Mn(12)O(12)] core. Variable-temperature, solid-state alternating current (AC) magnetization studies were carried out on complexes 3 and 4, and they established that both possess an S = 10 ground state spin and are SMMs. However, the magnetic behavior of the two compounds was found to be significantly different, with 4 showing out-of-phase AC peaks at higher temperatures than 3. High-frequency electron paramagnetic resonance (HFEPR) studies were carried out on single crystals of 3.2Bu(t)OH and 4, and these revealed that the axial zero-field splitting constant, D, is very different for the two compounds. Furthermore, it was established that 4 is the Mn(12) SMM with the highest kinetic barrier (U(eff)) to date. The results reveal alcohol substitution as an additional and convenient means to affect the magnetization relaxation barrier of the Mn(12) SMMs without major change to the ligation or oxidation state.

  7. The Quest for Nanoscale Magnets: The example of [Mn12] Single Molecule Magnets.

    Science.gov (United States)

    Rogez, Guillaume; Donnio, Bertrand; Terazzi, Emmanuel; Gallani, Jean-Louis; Kappler, Jean-Paul; Bucher, Jean-Pierre; Drillon, Marc

    2009-11-20

    Recent advances on the organization and characterization of [Mn12] single molecule magnets (SMMs) on a surface or in 3D are reviewed. By using nonconventional techniques such as X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM), it is shown that [Mn12]-based SMMs deposited on a surface lose their SMM behavior, even though the molecules seem to be structurally undamaged. A new approach is reported to get high-density information-storage devices, based on the 3D assembling of SMMs in a liquid crystalline phase. The 3D nanostructure exhibits the anisotropic character of the SMMs, thus opening the way to address micrometric volumes by two photon absorption using the pump-probe technique. We present recent developments such as µ-SQUID, magneto-optical Kerr effect (MOKE), or magneto-optical circular dichroism (MOCD), which enable the characterization of SMM nanostructures with exceptional sensitivity. Further, the spin-polarized version of the STM under ultrahigh vacuum is shown to be the key tool for addressing not only single molecule magnets, but also magnetic nano-objects. Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Uniaxial-pressure dependence of the magnetization dynamics in the high-symmetry single-molecule magnet Mn12-MeOH

    Science.gov (United States)

    Atkinson, James H.; Bhaskaran, Lakshmi; Hill, Stephen; Myasoedov, Yuri; Zeldov, Eli; Del Barco, Enrique; Friedman, Jonathan; Fournet, Adeline; Christou, George

    2015-03-01

    The single-molecule magnet [Mn12O12(O2CCH3)16(CH3OH)4]CH3OH (``Mn12-MeOH'') is a high-symmetry sibling of the Mn12-Acetate SMM that offers a prime opportunity to explore the consequences of molecular symmetry. A previous study has shown that applied pressure induced changes in the Mn12-Acetate's anisotropy parameters. Here we present the results of a study in which uniaxial pressure was applied to a crystalline sample of Mn12-MeOH in order to examine how the pressure affects the quantum tunneling of magnetization at low temperature. We find that the pressure induces an increase in the resonant tunneling rate manifested as a change in the height of the tunneling steps in the magnetic hysteresis. These results suggest that pressure is altering symmetry-breaking terms in the molecule's spin Hamiltonian, giving rise to increased tunneling.

  9. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard; Pemmaraju, C. D.; Sanvito, Stefano; Ruiz, Eliseo

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green's function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  10. Spin-polarized transport through single-molecule magnet Mn6 complexes

    KAUST Repository

    Cremades, Eduard

    2013-01-01

    The coherent transport properties of a device, constructed by sandwiching a Mn6 single-molecule magnet between two gold surfaces, are studied theoretically by using the non-equilibrium Green\\'s function approach combined with density functional theory. Two spin states of such Mn6 complexes are explored, namely the ferromagnetically coupled configuration of the six MnIII cations, leading to the S = 12 ground state, and the low S = 4 spin state. For voltages up to 1 volt the S = 12 ground state shows a current one order of magnitude larger than that of the S = 4 state. Furthermore this is almost completely spin-polarized, since the Mn6 frontier molecular orbitals for S = 12 belong to the same spin manifold. As such the high-anisotropy Mn6 molecule appears as a promising candidate for implementing, at the single molecular level, both spin-switches and low-temperature spin-valves. © 2013 The Royal Society of Chemistry.

  11. Magnetic Quantum Tunneling in Single Molecule Magnets: Mn-12 and Others

    Science.gov (United States)

    del Barco, Enrique

    2004-03-01

    Magnetic quantum tunneling (MQT) has been studied in single molecule magnets (SMMs) using a micro-Hall effect magnetometer in a superconducting high field vector magnet system that incorporates the possibility of applying pulsed microwave fields. Mn_12-acetate has been studied extensively over the years. However, only recently the symmetry of MQT and the nature of the transverse interactions important to MQT have been determined [1,2]. Magnetic measurements in the pure quantum tunneling regime (0.6 K) illustrate that an average crystal fourfold MQT symmetry is due to local molecular environments of twofold symmetry that are rotated by 90 degrees with respect to one another, confirming that disorder which lowers the molecule symmetry is important to MQT. We have studied a subset of these lower site symmetry molecules and present evidence for a Berry phase that results from a combination of second and forth order contributions to the transverse magnetic anisotropy. These observations are consistent with high frequency EPR studies of the transverse interactions in Mn_12-acetate [3]. Finally, we discuss recent experiments in which microwave radiation is applied to modulate MQT and characterize the lifetimes and coherence times of states that are superpositions of "up" and "down" high spin-projections. [1] E. del Barco, et al., Phys. Rev. Lett. 91, 047203 (2003) [2] S. Hill, et al., Phys. Rev. Lett. 90, 217204 (2003). [3] E. del Barco, A, D. Kent, R. S. Edwards, S. I. Jones, S. Hill, J. M. North, N. S. Dalal, E. M. Rumnberger, D. N. Hendrickson and G. Christou, to be published.

  12. MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets

    DEFF Research Database (Denmark)

    Bradley, Justin M; Thomson, Andrew J; Inglis, Ross

    2010-01-01

    The hexanuclear cages [Mn(6)O(2)(R-sao)(6)L(2)(EtOH)(x)(H(2)O)(y)] "Mn(6)" behave as single-molecule magnets (SMMs) below a characteristic blocking temperature. As with [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] "Mn(12)" the electronic absorption spectra are rather featureless, yielding little information......)(MeOH)(3)](ClO(4)) (4) cast into polymer film. SMM behaviour has previously been observed using magnetic susceptibility measurements on powder and single-crystal samples. The ligand field environment of the magnetic ions is assumed to be similar in (1) and (2) and their different blocking temperatures...

  13. Quantum Tunneling Symmetry of Single Molecule Magnet Mn_12-acetate

    Science.gov (United States)

    del Barco, E.; Kent, A. D.; Rumberger, E.; Hendrikson, D. N.; Christou, G.

    2003-03-01

    We have studied the symmetry of magnetic quantum tunneling (MQT) in single crystals of single molecular magnet (SMM) Mn_12-acetate. A superconducting high field vector magnet was used to apply magnetic fields in arbitrary directions respect to the axes of the crystal. The MQT probability is extracted from the change in magnetization measured on sweeping the field through a MQT resonance. This is related to the quantum splitting of the molecules relaxing in the time window of the experiment [1]. The dependence of the MQT probability on the angle between the applied transverse field and the crystallographic axes shows a four-fold rotation pattern, with maxima at angles separated by 90 degrees. By selecting a part of the splitting distribution of the sample by applying an initial transverse field in the direction of one of the observed maxima the situation changes completely. The resulting behavior of the MQT probability shows a two-fold rotation pattern with maxima separated by 180 degrees. Moreover, if the selection is made by applying the initial transverse field in the direction of a complementary four-fold maximum the behavior shows again two-fold symmetry. However, the maxima are found to be shifted by 90 degrees respect to the first selection. The fact that we observe two-fold symmetry for different selections is a clear evidence of the existence of different molecules with lower anisotropy than the imposed by the tetragonal crystallographic site symmetry. The general four-fold symmetry observed is thus due in large part to equal populations of molecules with opposite signs of the second order anisotropy, as suggested by Cornia et al. and appears to be a consequence of to the existence of a discrete set of lower symmetry isomers in a Mn_12-acetate crystal [2]. [1] E. del Barco, A. D. Kent, E. Rumberger, D. N. Hendrikson and G. Christou, Europhys. Lett. 60, 768 (2002) [2] A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A. L. Barra and C. Daiguebonne, Phys. Rev

  14. A high-frequency EPR study of a new S = 10 Mn12 single-molecule magnet

    Science.gov (United States)

    Anderson, Norm

    2005-03-01

    We will present a detailed angle-resolved high-frequency EPR study of a recently discovered analog of the Mn12-acetate single-molecule magnet (SMM). Like the acetate, the new complex [Mn12O12(O2CCH2Bu^t)16(CH3OH)4].CH3OH (Mn12-tBuAc), possesses a spin S = 10 ground state and S4 site symmetry. Magnetic measurements also reveal the usual resonant magnetization tunneling steps in the low temperature hysteresis loops. However, we show that the solvent-disorder-induced anomalies reported in the EPR spectra for Mn12-acetate^1 are absent for Mn12-tBuAc. This suggests that Mn12-tBuAc is intrinsically cleaner, and that detailed studies of this compound may reveal important new information concerning the quantum dynamics of large spins. Indeed, our analysis of the EPR line widths suggest that they are close to the intrinsic lifetime broadened limit, which may make it possible to extract information concerning electronic relaxation times (T1 and T2). ^1S. Takahashi et al., Phys. Rev. B 70, 094429 (2004)

  15. Detailed single-crystal EPR line shape measurements for the single-molecule magnets Fe8Br and Mn12-acetate

    Science.gov (United States)

    Hill, S.; Maccagnano, S.; Park, Kyungwha; Achey, R. M.; North, J. M.; Dalal, N. S.

    2002-06-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high-field electron paramagnetic resonance (EPR) spectra for single-crystal samples of the uniaxial and biaxial spin S=10 single-molecule magnets (SMM's) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed line shapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (MS values) associated with the levels involved in the transitions. Measurements at many frequencies allow us to separate various contributions to the EPR linewidths, including significant D strain, g strain, and broadening due to the random dipolar fields of neighboring molecules. We also identify asymmetry in some of the EPR line shapes for Fe8 and a previously unobserved fine structure to some of the EPR lines for both the Fe8 and Mn12 systems. These findings prove relevant to the mechanism of quantum tunneling of magnetization in these SMM's.

  16. Detailed single crystal EPR lineshape measurements for the single molecule magnets Fe8Br and Mn12-ac

    OpenAIRE

    Hill, S.; Maccagnano, S.; Park, K.; Achey, R. M.; North, J. M.; Dalal, N. S.

    2001-01-01

    It is shown that our multi-high-frequency (40-200 GHz) resonant cavity technique yields distortion-free high field EPR spectra for single crystal samples of the uniaxial and biaxial spin S = 10 single molecule magnets (SMMs) [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O and [Fe8O2(OH)12(tacn)6]Br8.9H2O. The observed lineshapes exhibit a pronounced dependence on temperature, magnetic field, and the spin quantum numbers (Ms values) associated with the levels involved in the transitions. Measurements ...

  17. Definitive determination of the transverse Hamiltonian parameters in the single molecule magnet Mn_12-Ac

    Science.gov (United States)

    Edwards, Rachel S.; Hill, Stephen; North, J. Micah; Dalal, Naresh; Jones, Shaela; Maccagnano, Sara

    2003-03-01

    We present high frequency high field electron paramagnetic resonance (EPR) measurements on the single molecule magnet Mn_12-Ac. Using a split coil magnet and highly sensitive resonant cavity techniques we are able to perform an angle dependent study of the single crystal EPR with the field applied in the hard plane, and hence unambiguously determine the transverse Hamiltonian parameters to fourth order. A variation in the line-shape of the resonances with angle supports the recent proposal of a ligand disorder in this material causing local quadratic anisotropy, and is used to determine the magnitude of the second order transverse term. This could have important implications for describing magnetic quantum tunneling in Mn_12-Ac. S. Hill, J.A.A.J. Perenboom, N.S. Dalal, T. Hathaway, T. Stalcup and J.S. Brooks, Phys. Rev. Lett. 80, 2453 (1998). A. Cornia, R. Sessoli, L. Sorace, D. Gatteschi, A.L. Barra and C. Daiguebonne, cond-mat/0112112.

  18. Synthesis, structure, and spectroscopic and magnetic characterization of [Mn12O12(O2CCH2But)16(MeOH)4]·MeOH, a Mn12 single-molecule magnet with true axial symmetry.

    Science.gov (United States)

    Lampropoulos, Christos; Murugesu, Muralee; Harter, Andrew G; Wernsdofer, Wolfgang; Hill, Stephen; Dalal, Naresh S; Reyes, Arneil P; Kuhns, Philip L; Abboud, Khalil A; Christou, George

    2013-01-07

    The synthesis and properties are reported of a rare example of a Mn(12) single-molecule magnet (SMM) in truly axial symmetry (tetragonal, I4). [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(MeOH)(4)]·MeOH (3·MeOH) was synthesized by carboxylate substitution on [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)]·2MeCO(2)H·4H(2)O (1). The complex was found to possess an S = 10 ground state, as is typical for the Mn(12) family, and displayed both frequency-dependent out-of-phase AC susceptibility signals and hysteresis loops in single-crystal magnetization vs DC field sweeps. The loops also exhibited quantum tunneling of magnetization steps at periodic field values. Single-crystal, high-frequency electron paramagnetic resonance spectra on 3·MeOH using frequencies up to 360 GHz revealed perceptibly sharper signals than for 1. Moreover, careful studies as a function of the magnetic field orientation did not reveal any satellite peaks, as observed for 1, suggesting that the crystals of 3 are homogeneous and do not contain multiple Mn(12) environments. In the single-crystal (55)Mn NMR spectrum in zero applied field, three well-resolved peaks were observed, which yielded hyperfine and quadrupole splitting at three distinct sites. However, observation of a slight asymmetry in the Mn(4+) peak was detectable, suggesting a possible decrease in the local symmetry of the Mn(4+) site. Spin-lattice (T(1)) relaxation studies were performed on single crystals of 3·MeOH down to 400 mK in an effort to approach the quantum tunneling regime, and fitting of the data using multiple functions was employed. The present work and other recent studies continue to emphasize that the new generation of truly high-symmetry Mn(12) complexes are better models for thorough investigation of the physical properties of SMMs than their predecessors such as 1.

  19. Site-specific ligation of anthracene-1,8-dicarboxylates to an Mn12 core: a route to the controlled functionalisation of single-molecule magnets.

    Science.gov (United States)

    Pacchioni, Mirko; Cornia, Andrea; Fabretti, Antonio C; Zobbi, Laura; Bonacchi, Daniele; Caneschi, Andrea; Chastanet, Guillaume; Gatteschi, Dante; Sessoli, Roberta

    2004-11-21

    A novel single-molecule magnet of the Mn12 family, [Mn12O12(O2CC6H5)8(L)4(H2O)4].8CH2Cl2, has been synthesised by site-specific ligand exchange using a tailor-made dicarboxylate (L2-), which leads to selective occupation of axial binding sites.

  20. MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets.

    Science.gov (United States)

    Bradley, Justin M; Thomson, Andrew J; Inglis, Ross; Milios, Constantinos J; Brechin, Euan K; Piligkos, Stergios

    2010-11-07

    The hexanuclear cages [Mn(6)O(2)(R-sao)(6)L(2)(EtOH)(x)(H(2)O)(y)] "Mn(6)" behave as single-molecule magnets (SMMs) below a characteristic blocking temperature. As with [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] "Mn(12)" the electronic absorption spectra are rather featureless, yielding little information on the electronic structure of the magnetic ions. Low temperature Magnetic Circular Dichroism (MCD) spectra afford greater resolution of the optical transitions and also probe the magnetic properties of the system. Both the ground state spin and blocking temperature of the Mn(6) cages are determined by subtle structural perturbations of a generic Mn(6)O(2) core. Absorbance and MCD spectra are reported for [Mn(6)O(2)(Et-sao)(6){O(2)CPh(Me)(2)}(2)(EtOH)(6)] (1), [Mn(6)O(2)(Et-sao)(6){O(2)CPh}(2)(EtOH)(4)(H(2)O)(2)] (2), [Mn(6)O(2)(sao)(6){O(2)CPh}(2)(EtOH)(4)]·EtOH (3) and the trinuclear precursor [Mn(3)O(Et-sao)(3)(MeOH)(3)](ClO(4)) (4) cast into polymer film. SMM behaviour has previously been observed using magnetic susceptibility measurements on powder and single-crystal samples. The ligand field environment of the magnetic ions is assumed to be similar in (1) and (2) and their different blocking temperatures are attributed to the magnitude of the effective exchange constant. The MCD spectra of (1) and (2), in which the ground state spin S = 12, show that the ligand field environments of the Mn ions are almost identical and that magnetic hysteresis persists for isolated molecules when crystal packing forces are removed. The subtle structural differences between (1) and (2) are manifested in the field dependence of the MCD response at different wavelengths that reflect changes in band polarisation. The MCD spectrum of (3) contains features not apparent in those of (1) and (2). These are attributed to 5-coordinate Mn(iii), which is unique to (3) among the compounds studied. (3) has ground state spin S = 4, a lower blocking temperature and consequently no observable

  1. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  2. Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study

    Science.gov (United States)

    Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian

    2018-02-01

    As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.

  3. Spin models for the single molecular magnet Mn12-AC

    Science.gov (United States)

    Al-Saqer, Mohamad A.

    2005-11-01

    The single molecular magnet (SMM) Mn12-AC attracted the attention of scientists since the discovery of its magnetic hystereses which are accompanied by sudden jumps in magnetic moments at low temperature. Unlike conventional bulk magnets, hysteresis in SMMs is of molecular origin. This qualifies them as candidates for next generation of high density storage media where a molecule which is at most few nanometers in size can be used to store a bit of information. However, the jumps in these hystereses, due to spin tunneling, can lead to undesired loss of information. Mn12-AC molecule contains twelve magnetic ions antiferromagnetically coupled by exchanges leading to S = 10 ground state manifold. The magnetic ions are surrounded by ligands which isolate them magnetically from neighboring molecules. The lowest state of S = 9 manifold is believed to lie at about 40 K above the ground state. Therefore, at low temperatures, the molecule is considered as a single uncoupled moment of spin S = 10. Such model has been used widely to understand phenomena exhibited by the molecule at low temperatures including the tunneling of its spin, while a little attention has been paid for the multi-spin nature of the molecule. Using the 8-spin model, we demonstrate that in order to understand the phenomena of tunneling, a full spin description of the molecule is required. We utilized a calculation scheme where a fraction of energy levels are used in the calculations and the influence of levels having higher energy is neglected. From the dependence of tunnel splittings on the number of states include, we conclude that models based on restricting the number of energy levels (single-spin and 8-spin models) lead to unreliable results of tunnel splitting calculations. To attack the full 12-spin model, we employed the Davidson algorithm to calculated lowest energy levels produced by exchange interactions and single ion anisotropies. The model reproduces the anisotropy properties at low

  4. Geometric-Phase Interference in a Mn12 Single-Molecule Magnet with Truly Fourfold Symmetry

    Science.gov (United States)

    Friedman, Jonathan

    2014-03-01

    A single-molecule magnet (SMM) is a large-spin system with an anisotropy barrier separating preferred ``up'' and ``down'' orientations. The spin can tunnel between these directions when an external longitudinal magnetic field brings levels in opposite wells into resonance. When there exist more than one energetically equivalent paths for tunneling, those paths can interfere, a geometric-phase effect that modulates the rate at which spins flip direction. The interference can be controlled by a magnetic field applied perpendicular to the spin's easy magnetization axis. In a ground-breaking experiment, Wernsdorfer and Sessoli found oscillations in the probability of spin tunneling as a function of the field applied along the hard axis of the Fe8 SMM. This observation confirmed a theoretical prediction by Garg. Similar geometric-phase interference has been observed in other SMMs that have effective two-fold symmetry, where tunneling involves the interference between two equal-amplitude paths. Such interference effects have not previously been seen in systems with four-fold rotational symmetry. In recent work, my group has seen evidence of the observation of a geometric-phase interference effect in the Mn12-tBuAc SMM, a variant of the bellwether Mn12-Ac SMM that has true four-fold rotational symmetry (being free of the solvent disorder that breaks the four-fold symmetry in the latter). The spin relaxation rate as a function of the applied transverse magnetic field shows a modulated behavior, with retarded relaxation near where one expects destructive interference between tunneling paths associated with excited states. Tuning the direction of the transverse field away from the hard axis washes out the observed interference effect by favoring one tunneling path over others. Detailed master-equation calculations are used to fit the observed behavior and yield anisotropy parameters consistent with values determined by other groups. Unlike previous observations of geometric

  5. Isolated single-molecule magnets on native gold.

    Science.gov (United States)

    Zobbi, Laura; Mannini, Matteo; Pacchioni, Mirko; Chastanet, Guillaume; Bonacchi, Daniele; Zanardi, Chiara; Biagi, Roberto; Del Pennino, Umberto; Gatteschi, Dante; Cornia, Andrea; Sessoli, Roberta

    2005-03-28

    The incorporation of thioether groups in the structure of a Mn12 single-molecule magnet, [Mn12(O12)(L)16(H2O)4] with L = 4-(methylthio)benzoate, is a successful route to the deposition of well-separated clusters on native gold surfaces and to the addressing of individual molecules by scanning tunnelling microscopy.

  6. Systematic Investigation of Controlled Nanostructuring of Mn 12 Single-Molecule Magnets Templated by Metal–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Aulakh, Darpandeep [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Xie, Haomiao [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Shen, Zhe [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Harley, Alexander [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States; Zhang, Xuan [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States; Yakovenko, Andrey A. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States; Dunbar, Kim R. [Department of Chemistry, Texas A& amp,M University, College Station, Texas 77845, United States; Wriedt, Mario [Department of Chemistry; amp, Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States

    2017-05-25

    This is the first systematic study exploring metal–organic frameworks (MOFs) as platforms for the controlled nanostructuring of molecular magnets. We report the incorporation of seven single-molecule magnets (SMMs) of general composition [Mn12O12(O2CR)16(OH2)4], with R = CF3 (1), (CH3)CCH2 (2), CH2Cl (3), CH2Br (4), CHCl2 (5), CH2But (6), and C6H5 (7), into the hexagonal channel pores of a mesoporous MOF host. The resulting nanostructured composites combine the key SMM properties with the functional properties of the MOF. Synchrotron-based powder diffraction with difference envelope density analysis, physisorption analysis (surface area and pore size distribution), and thermal analyses reveal that the well-ordered hexagonal structure of the host framework is preserved, and magnetic measurements indicate that slow relaxation of the magnetization, characteristic of the corresponding Mn12 derivative guests, occurs inside the MOF pores. Structural host–guest correlations including the bulkiness and polarity of peripheral SMM ligands are discussed as fundamental parameters influencing the global SMM@MOF loading capacities. These results demonstrate that employing MOFs as platforms for the nanostructuration of SMMs is not limited to a particular host–guest system but potentially applicable to a multitude of other molecular magnets. Such fundamental findings will assist in paving the way for the development of novel advanced spintronic devices.

  7. Many-spin calculation of tunneling splittings in Mn12 magnetic molecules

    NARCIS (Netherlands)

    Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.

    2002-01-01

    We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant

  8. Many-spin effects and tunneling splittings in Mn12 magnetic molecules

    NARCIS (Netherlands)

    Raedt, H.A. De; Hams, A.H.; Dobrovitski, V.V.; Al-Saqer, M.; Katsnelson, M.I.; Harmon, B.N.

    2002-01-01

    We calculate the tunneling splittings in a Mn12 magnetic molecule taking into account its internal many-spin structure. We discuss the precision and reliability of these calculations and show that restricting the basis (limiting the number of excitations taken into account) may lead to significant

  9. Two-body tunnel transitions in a Mn 4 single-molecule magnet

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2004-05-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross-relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn 4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps.

  10. Magnetization reversal in single molecule magnets

    Science.gov (United States)

    Bokacheva, Louisa

    2002-09-01

    I have studied the magnetization reversal in single molecule magnets (SMMs). SMMs are Van der Waals crystals, consisting of identical molecules containing transition metal ions, with high spin and large uniaxial magnetic anisotropy. They can be considered as ensembles of identical, iso-oriented nanomagnets. At high temperature, these materials behave as superparamagnets and their magnetization reversal occurs by thermal activation. At low temperature they become blocked, and their magnetic relaxation occurs via thermally assisted tunneling or pure quantum tunneling through the anisotropy barrier. We have conducted detailed experimental studies of the magnetization reversal in SMM material Mn12-acetate (Mn12) with S = 10. Low temperature measurements were conducted using micro-Hall effect magnetometry. We performed hysteresis and relaxation studies as a function of temperature, transverse field, and magnetization state of the sample. We identified magnetic sublevels that dominate the tunneling at a given field, temperature and magnetization. We observed a crossover between thermally assisted and pure quantum tunneling. The form of this crossover depends on the magnitude and direction of the applied field. This crossover is abrupt (first-order) and occurs in a narrow temperature interval (tunneling mechanisms in Mn12.

  11. Inelastic neutron scattering studies on the 3d-4f heterometallic single-molecule magnet Mn{sub 2}Nd{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nehrkorn, Joscha; Milazzo, Ruggero; Stuiber, Stefan; Waldmann, Oliver [Physikalisches Institut, Universitaet Freiburg (Germany); Akhtar, Muhammad Nadeem; Lan, Yanhua; Powell, Annie K. [Institut fuer Anorganische Chemie, Universitaet Karlsruhe, KIT (Germany); Mutka, Hannu [Institut Laue-Langevin, Grenoble (France)

    2011-07-01

    The discovery of slow relaxation and quantum tunneling of the magnetization in Mn{sub 1}2ac more than 15 years ago has inspired both physicists and chemists alike. This class of molecules, now called single-molecule magnets (SMMs), has very recently been expanded to heterometallic clusters incorporating transition metal and rare earth ions. The 4f ions were chosen because of their large angular momentum and magnetic anisotropy. Inelastic neutron scattering experiments were performed on the time-of-flight disk-chopper spectrometer IN5 at ILL on the SMM Mn{sub 2}Nd{sub 2}. A magnetic model was developed which perfectly describes all data, including the magnetic data. It was found that neither the large anisotropy nor the large angular momentum of the Nd{sup I}II ions is the main reason for the SMM behavior in this molecule. Our analysis of the data indicates that it is the weak coupling of the Nd{sup I}II ions to the Mn{sup I}II ions, usually considered as a drawback of rare earth ions, which enhances the relaxation time and therefore leads to SMM behavior.

  12. XAS and XMCD investigation of Mn12 monolayers on gold.

    Science.gov (United States)

    Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante

    2008-01-01

    The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.

  13. Macroscopic quantum tunneling in Mn12-acetat

    International Nuclear Information System (INIS)

    Beiter, J.; Reissner, M.; Hilscher, G.; Steiner, W.; Pajic, D.; Zadro, K.; Bartel, M.; Linert, W.

    2004-01-01

    Molecules provide the exciting opportunity to study magnetism on the passage from atomic to macroscopic level. One of the most interesting effects in such mesoscopic systems is the appearance of quantum tunnelling of magnetization (MQT) at low temperatures. In the last decade molecular chemistry has had a large impact in this field by providing new single molecule magnets. They consist of small clusters exhibiting superparamagnetic behavior, similar to that of conventional nanomagnetic particles. The advantage of these new materials is that they form macroscopic samples consisting of regularly arranged small identical high-spin clusters which are widely separated by organic molecules. The lack of distributions in size and shape of the magnetic clusters and the very weak intercluster interaction lead in principle to only one barrier for the spin reversal. We present detailed magnetic investigations on a Mn 12 -ac single crystal. In this compound the tetragonal ordered clusters consist of a central tetrahedron of four Mn 4+ (S = 3/2) atoms surrounded by eight Mn 3+ (S = 2) atoms with antiparallel oriented spins, leading to an overall spin moment of S = 10. In the hysteresis loops nine different jumps at regularly spaced fields are identified in the investigated temperature range (1.5 < T < 3 K). At these fields the relaxation of moment due to thermal activation is superimposed by strong quantum tunnelling. In lowering the temperature the time dependence changes from thermally activated to thermally assisted tunnelling. (author)

  14. Spin-resolved photoelectron spectroscopy of Mn{sub 6}Cr single-molecule-magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Gryzia, Aaron; Dohmeier, Niklas; Mueller, Norbert; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University (Germany); Hoeke, Veronika; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University (Germany); Fonin, Mikhail; Ruediger, Ulrich [Department of Physics, University of Konstanz (Germany); Neumann, Manfred [Department of Physics, Osnabrueck University (Germany)

    2011-07-01

    The properties of the manganese-based single-molecule-magnet (SMM) Mn{sub 6}Cr are studied. This molecule exhibits a large spin ground state of S{sub T}=21/2. It contains six manganese centres arranged in two bowl-shaped Mn{sub 3}-triplesalen building blocks linked by a hexacyanochromate. The Mn{sub 6}Cr complex can be isolated with different counterions which compensate for its triply positive charge. The spin polarization of photoelectrons emitted from the manganese centres in Mn{sub 6}Cr SMM after resonant excitation with circularly polarized synchrotron radiation has been measured at selected energies corresponding to the prominent Mn L{sub 3}VV and L{sub 3}M{sub 2,3}V Auger peaks. Spin-resolved photoelectron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn(II)acetate recorded after resonant excitation at the Mn-L{sub 3}-edge around 640eV are presented as well. The spin polarization value obtained from MnO at room temperature in the paramagnetic state is compared to XMCD measurements of Mn(II)-compounds at 5K and a magnetic field of 5T.

  15. Thermally Assisted Macroscopic Quantum Resonance on a Single-Crystal of Mn12-ac

    Science.gov (United States)

    Lionti, F.; Thomas, L.; Ballou, R.; Wernsdorfer, W.; Barbara, B.; Sulpice, A.; Sessoli, R.; Gatteschi, D.

    1997-03-01

    Magnetization measurements have been performed on a single mono-crystal of the molecule Mn12-acetate (L. Thomas, F. Lionti, R. Ballou, R. Sessoli, D. Gatteschi and B. Barbara, Nature, 383, 145 (1996).). Steps were observed in the hysteresis loop for values of the applied field at which level crossings of the collective spin states of each manganese clusters take place. The influence of quartic terms is taken into account. At these fields, the magnetization relaxes at short time scales, being otherwise essentially blocked. This novel behavior is interpreted in terms of resonant quantum tunneling of the magnetization from thermally activated energy levels. Hysteresis loop measurements performed for different field orientations and ac-susceptibility experiments, confirm general trends of this picture.

  16. A wheel-shaped single-molecule magnet of [MnII 3MnIII 4]: quantum tunneling of magnetization under static and pulse magnetic fields.

    Science.gov (United States)

    Koizumi, Satoshi; Nihei, Masayuki; Shiga, Takuya; Nakano, Motohiro; Nojiri, Hiroyuki; Bircher, Roland; Waldmann, Oliver; Ochsenbein, Stefan T; Güdel, Hans U; Fernandez-Alonso, Felix; Oshio, Hiroki

    2007-01-01

    The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.

  17. Single-Molecule Nanomagnets

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, Myriam P.

    2010-04-01

    Single-molecule magnets straddle the classical and quantum mechanical worlds, displaying many fascinating phenomena. They may have important technological applications in information storage and quantum computation. We review the physical properties of two prototypical molecular nanomagnets, Mn12-acetate and Fe8: Each behaves as a rigid, spin-10 object and exhibits tunneling between up and down directions. As temperature is lowered, the spin-reversal process evolves from thermal activation to pure quantum tunneling. At low temperatures, magnetic avalanches occur in which the magnetization of an entire sample rapidly reverses. We discuss the important role that symmetry-breaking fields play in driving tunneling and in producing Berry-phase interference. Recent experimental advances indicate that quantum coherence can be maintained on timescales sufficient to allow a meaningful number of quantum computing operations to be performed. Efforts are under way to create monolayers and to address and manipulate individual molecules.

  18. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    Science.gov (United States)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  19. Avalanches in Mn12-Acetate: ``Magnetic Burning"

    Science.gov (United States)

    McHugh, Sean; Suzuki, Y.; Graybill, D.; Sarachik, M. P.; Avraham, N.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.

    2006-03-01

    From local time-resolved measurements of fast reversal of the magnetization in single crystals of the molecular magnet Mn12-acetate, we have shown[1] that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance. The propagation speed of the avalanche depends on the energy stored in each molecule, which can be controlled and tuned using an external magnetic field. We report studies of propagation speed with different external fields in Mn12-acetate. [1] Yoko Suzuki, M.P. Sarachik, E.M. Chudnovsky, S. McHugh, R. Gonzalez-Rubio, N. Avraham, Y. Myasoedov, H. Shtrikman, E. Zeldov, N.E. Chakov and G. Christou, Phys. Rev. Lett. 95, 147201 (2005).

  20. Dipolar-Biased Tunneling of Magnetization in Crystals of Single Molecule Magnets

    Science.gov (United States)

    Awaga, Kunio

    2007-03-01

    The molecular cluster Mn12 has attracted much interest as a single-molecule magnet (SMM) and as a multi-redox system. It has a high-spin ground state of S=10 and a strong uniaxial magnetic anisotropy, and the combination of the two natures makes an effective potential barrier between the up and down spin states. At low temperatures, the magnetization curve exhibited a hysteresis loop and the quantum tunneling of magnetization (QTM). In the present work, we studied the structure and magnetic properties of the mixed-metal SMM, Mn11Cr, through the analysis of Mn11Cr/Mn12 mixed crystal. High-frequency EPR spectra were well explained by assuming that Mn11Cr was in a ground spin-state of S=19/2 with nearly the same EPR parameter set as for Mn12. QTM in Mn11Cr was observed with the same field interval as for Mn12. The magnetization of Mn11Cr and Mn12 in the mixed crystal can be independently manipulated by utilizing the difference between their coercive fields. The resonance fields of QTM in Mn11Cr are significantly affected by the magnetization direction of Mn12, suggesting the effect of dipolar-biased tunneling. Besides SMM, we would also like to report the unusual magnetic properties of spherical hollow nanomagnets, the electrical properties of heterocyclic thiazyl radicals, and their possible applications in spintronics and organic electronics.

  1. Manganese-55 NMR and relaxation in single crystals of manganese(12)-Ac and analogs

    Science.gov (United States)

    Harter, Andrew

    This dissertation presents the first single crystal 55Mn NMR characterization of three compounds related to Mn12-acetate [Mn12O12(O2CCH3)16(H 2O)4]·2CH3COOH·4H2O (henceforth Mn12-Ac) that have come to be known as Single-Molecule Magnets (SMMs). This study was undertaken because they exhibit novel phenomena such as quantum mechanical tunneling of their magnetization (QTM), the origin of which is still not fully understood, and also because they have the potential to form elements of magnetic memory storage at the molecular dimensions. The investigations herein involve studies related to both the bonding as well as spin-dynamics in these compounds to much higher precision than in earlier work. These experiments were made possible by the design of a high frequency goniometer probe and a 3He temperature facility. The first single crystal NMR of any Mn12-based molecule was conducted on [Mn12O12(O2CCH2Br) 16(H2O)4]·4CH2Cl2 (Mn12-BrAc). Its 55Mn NMR spectrum, field dependence, angular dependence, and spin-lattice relaxation time (T 1) measurements were conducted. Most importantly, data are presented that (a) confirm the alteration of the magnetic core of these molecules when the samples are crushed into powder (a practice used in earlier studies), (b) show the presence of transverse hyperfine fields at the nuclear site, and (c) do not yield any evidence of temperature independent relaxation below 1 K, suggesting that QTM is not the dominant relaxation mechanism at these temperatures, in contrast to earlier studies. Data from single crystals of Mn12-Ac, the most studied SMM, concur with previous x-ray findings in that isomers are present. Such detailed information was not obtainable with powder samples. T 1-1 measurements over 400 mK--1 K indicate the existence of an energy barrier, in this case ˜1.65 K, which does not fit the current understanding of the electronic energy diagram. This value supports an earlier, yet unexplained observation of such a level by inelastic

  2. Magnetic Quantum Tunneling and Symmetry in Single Molecule Magnets

    Science.gov (United States)

    Kent, Andrew D.

    2003-03-01

    We have studied the symmetry of magnetic quantum tunneling (MQT) in single molecule magnets (SMMs) using a micro-Hall effect magnetometer and high field vector superconducting magnet system. In the most widely studied SMM, Mn12-acetate, an average crystal 4-fold symmetry in the magnetic response is shown to be due to local molecular environments of 2-fold symmetry that are rotated by 90 degrees with respect to one another. We attribute this to ligand disorder that leads to local rhombic distortions, a model first proposed by Cornia et al. based on x-ray diffraction data [1]. We have magnetically distilled a Mn12-acetate crystal to study a subset of these lower (2-fold) site symmetry molecules and present evidence for a spin-parity effect consistent with a local 2-fold symmetry [2]. These results highlight the importance of subtle changes in molecule environment in modulating magnetic anisotropy and MQT. [1] Cornia et al. Phys. Rev. Lett. 89, 257201 (2002) [2] E. del Barco, A. D. Kent, E. Rumberger, D. H. Hendrickson, G. Christou, submitted for publication (2002) and Europhys. Lett. 60, 768 (2002)

  3. Disorder effects in Mn(12)-acetate at 83 K.

    Science.gov (United States)

    Cornia, Andrea; Fabretti, Antonio Costantino; Sessoli, Roberta; Sorace, Lorenzo; Gatteschi, Dante; Barra, Anne-Laure; Daiguebonne, Carole; Roisnel, Thierry

    2002-07-01

    The structure of hexadeca-mu-acetato-tetraaquadodeca-mu(3)-oxo-dodecamanganese bis(acetic acid) tetrahydrate, [Mn(12)O(12)(CH(3)COO)(16)(H(2)O)(4)] x 2CH(3)COOH x 4H(2)O, known as Mn(12)-acetate, has been determined at 83 (2) K by X-ray diffraction methods. The fourfold (S(4)) molecular symmetry is disrupted by a strong hydrogen-bonding interaction with the disordered acetic acid molecule of solvation, which displaces one of the acetate ligands in the cluster. Up to six Mn(12) isomers are potentially present in the crystal lattice, which differ in the number and arrangement of hydrogen-bonded acetic acid molecules. These results considerably improve the structural information available on this molecular nanomagnet, which was first synthesized and characterized by Lis [Acta Cryst. (1980), B36, 2042-2046].

  4. Quantum tunneling of magnetization in a new [Mn18]2+ single-molecule magnet with s = 13.

    Science.gov (United States)

    Brechin, Euan K; Boskovic, Colette; Wernsdorfer, Wolfgang; Yoo, Jae; Yamaguchi, Akira; Sañudo, E Carolina; Concolino, Thomas R; Rheingold, Arnold L; Ishimoto, Hidehiko; Hendrickson, David N; Christou, George

    2002-08-21

    The reaction between 2-(hydroxyethyl)pyridine (hepH) and a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3](ClO4) and [Mn3O(O2CMe)6(py)3](py) in MeCN leads to isolation of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 10% yield. The complex is 2MnII,16MnIII and consists of a Mn4O6 central unit to either side of which is attached a Mn7O9 unit. Magnetization data collected in the 2.0-4.0 K and 20-50 kG ranges were fit to yield S = 13, g = 1.86, and D = -0.13 cm-1 = -0.19 K, where D is the axial zero-field splitting parameter. AC susceptibility studies in the 0.04-4.0 K range at frequencies up to 996 Hz display out-of-phase (chiM' ') signals, indicative of a single-molecule magnet (SMM). Magnetization vs applied DC field scans exhibit hysteresis at SMM. DC magnetization decay data were collected on both a microcrystalline sample and a single crystal, and the combined data were used to construct an Arrhenius plot. Between 3.50 and 0.50 K, the relaxation rate is temperature-dependent with an effective barrier to relaxation (Ueff) of 14.8 cm-1 = 21.3 K. Below ca. 0.25 K, the relaxation rate is temperature-independent at 1.3 x 10-8 s-1, indicative of quantum tunneling of magnetization (QTM) between the lowest energy Ms = +/-13 levels of the S = 13 state. Complex 1 is both the largest spin and highest nuclearity SMM to exhibit QTM.

  5. High-field torque magnetometry for investigating magnetic anisotropy in Mn12-acetate nanomagnets

    International Nuclear Information System (INIS)

    Cornia, Andrea; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-01-01

    The single-molecule superparamagnet [Mn 12 O 12 (OAc) 16 (H 2 O) 4 ]·2AcOH·4H 2 O (Mn 12 -acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S 4 symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters α, β and γ appearing in the fourth-order spin-Hamiltonian H=αS z 2 +βS z 4 +γ(S + 4 +S - 4 )+μ B B·g·S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn 12 -acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [α=-0.389(5) cm -1 and β=-8.4(5)x10 -4 cm -1 ] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering

  6. High-field torque magnetometry for investigating magnetic anisotropy in Mn{sub 12}-acetate nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cornia, Andrea E-mail: acornia@unimo.it; Affronte, Marco; Gatteschi, Dante; Jansen, Aloysius G.M.; Caneschi, Andrea; Sessoli, Roberta

    2001-05-01

    The single-molecule superparamagnet [Mn{sub 12}O{sub 12}(OAc){sub 16}(H{sub 2}O){sub 4}]{center_dot}2AcOH{center_dot}4H{sub 2}O (Mn{sub 12}-acetate) has attracted considerable attention because it shows exceedingly slow paramagnetic relaxation at low temperature. The cluster has S{sub 4} symmetry in the solid state and comprises four Mn(IV) ions (S=((3)/(2))) and eight Mn(III) ions (S=2) which are magnetically coupled to give an S=10 ground state. The ground manifold is largely split in zero magnetic field and many efforts have been spent to determine the zero-field splitting (zfs) parameters {alpha}, {beta} and {gamma} appearing in the fourth-order spin-Hamiltonian H={alpha}S{sub z}{sup 2}+{beta}S{sub z}{sup 4}+{gamma}(S{sub +}{sup 4}+S{sub -}{sup 4})+{mu}{sub B}B{center_dot}g{center_dot}S. These are of paramount importance for defining the magnetic anisotropy of the cluster, which in turn determines the slow relaxation of the magnetization and quantum tunneling effects at low temperatures. We want to show that cantilever torque magnetometry in high fields is a suitable technique for determining second- and fourth-order anisotropic contributions in high-spin molecules, such as Mn{sub 12}-acetate. The main advantage of the method lies in its high sensitivity which allows to use very small single crystals. Torque curves have been recorded at 4.2 K by applying the magnetic field (0-28 T) very close to the ab-plane of the tetragonal unit cell. The zfs parameters obtained by this procedure [{alpha}=-0.389(5) cm{sup -1} and {beta}=-8.4(5)x10{sup -4} cm{sup -1}] are in excellent agreement with those determined by spectroscopic techniques, such as high-frequency EPR and inelastic neutron scattering.

  7. A family of Mn16 single-molecule magnets from a reductive aggregation route.

    Science.gov (United States)

    King, Philippa; Wernsdorfer, Wolfgang; Abboud, Khalil A; Christou, George

    2004-11-15

    The synthesis and magnetic properties of three isostructural hexadecametallic manganese clusters [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Ph)(16)(MeOH)(6)] (1), [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Cl)(16)(MeOH)(6)] (2), and [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Br)(16)(MeOH)(6)] (3) are reported. The complexes were prepared by a reductive aggregation reaction involving phenylacetic acid, chloroacetic acid or bromoacetic acid, and NBu(n)()(4)MnO(4) in MeOH. Complex 1 crystallizes in the monoclinic space group C2/c and consists of 6 Mn(IV) and 10 Mn(III) ions held together by 14 mu(3)-O(2)(-), 2 mu-O(2)(-), 4 mu-MeO(-), and 2 mu-O(2)CCH(2)Ph(-) groups. The remaining 14 mu-O(2)CCH(2)Ph(-) ligands, 2 mu-MeO(-) groups, and 6 terminal MeOH molecules constitute the peripheral ligation in the complex. Variable-temperature, solid-state dc magnetic susceptibility measurements on 1-3 in the temperature range 5.0-300 K reveal that all three complexes are dominated by intramolecular antiferromagnetic exchange interactions. Low-lying excited states preclude an exact determination of the spin ground state for 1-3 by magnetization measurements. Alternating current susceptibility measurements at zero dc field in the temperature range 1.8-10 K and a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display, at temperatures below 3 K, a nonzero, frequency-dependent chi(M)"signal for complexes 1-3, with the peak maxima lying at temperatures less than 1.8 K. Single-crystal magnetization versus dc field scans down to 0.04 K for complex 1 show hysteresis behavior at SMM family. No clear steps characteristic of quantum tunneling of magnetization (QTM) were observed in the hysteresis loops.

  8. Preparation of monolayers of Mn{sub 6}Cr single-molecule-magnets on different substrates and characterization by means of nc-AFM

    Energy Technology Data Exchange (ETDEWEB)

    Gryzia, Aaron; Brechling, Armin; Predatsch, Hans; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, D-33615 Bielefeld (Germany); Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2011-07-01

    The preparation of a highly ordered monolayer of Single-Molecule-Magnets (SMM) is one of the main preconditions for a technical application of these molecules. The adsorption of these SMMs on surfaces is associated with difficulties due to the often low chemical stability of these molecules in the vicinity of a surface. The used Mn{sub 6}Cr-complex has a C{sub 3}-symmetry and a spin ground state of S{sub t}=21/2. This complex is a trication and needs therefore counter ions for electrical charge compensation. Tetraphenylborate, lactate and perchlorate came into consideration for this function. Mn{sub 6}Cr-SMMs were prepared on different substrates by a droplet technique in air at room temperature. The samples were characterized by means of an AFM operating in non-contact mode, using tips with cone radii of approx. 2 nm. An island-like growth was observed on SiO{sub 2}- and Si{sub 3}N{sub 4}-substrates, whereas on HOPG and mica the Mn{sub 6}Cr-SMM adsorbates preferred a layer growth. Also an influence of the used counter ions was observed on different substrates. The measured thicknesses of the layers are consistent with the Van der Waals radii of the Mn{sub 6}Cr-SMMs.

  9. Transition probabilities and dissociation energies of MnH and MnD molecules

    International Nuclear Information System (INIS)

    Nagarajan, K.; Rajamanickam, N.

    1997-01-01

    The Frank-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by the more reliable numerical integration procedure for the bands of A-X system of MnH and MnD molecules, using a suitable potential. By fitting the Hulburt- Hirschfelder function to the experimental potential curve using correlation coefficient, the dissociation energy for the electronic ground states of MnH and MnD molecules, respectively have been estimated as D 0 0 =251±5 KJ.mol -1 and D 0 0 =312±6 KJ.mol -1 . (authors)

  10. Measurement of the relaxation rate of the magnetization in Mn12O12-acetate using proton NMR echo

    Science.gov (United States)

    Jang; Lascialfari; Borsa; Gatteschi

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

  11. Measurement of the Relaxation Rate of the Magnetization in Mn12O12 -Acetate Using Proton NMR Echo

    International Nuclear Information System (INIS)

    Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    We present a novel method to measure the relaxation rate W of the magnetization of Mn 12 O 12 -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society

  12. Exposure of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets to soft X-rays: The effect of the counterions on radiation stability

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: andreas.helmstedt@uni-bielefeld.de [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Sacher, Marc D.; Gryzia, Aaron; Harder, Alexander; Brechling, Armin; Mueller, Norbert; Heinzmann, Ulrich [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Fakultaet fuer Chemie, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Bouvron, Samuel; Fonin, Mikhail [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, D-78457 Konstanz (Germany)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets adsorbed on gold are investigated. Black-Right-Pointing-Pointer The oxidation state of the Mn{sup III} constituents changes under X-ray exposure. Black-Right-Pointing-Pointer The change is monitored by Mn-L{sub 3}-edge XAS. Black-Right-Pointing-Pointer Choice of anions strongly influences radiation stability of the SMM. Black-Right-Pointing-Pointer No influence of the sample morphology on radiation stability could be observed. - Abstract: X-ray absorption spectroscopy studies of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnet deposited as a microcrystalline layer on gold substrates are presented. The oxidation state of the manganese centers changes from Mn{sup III} to Mn{sup II} due to irradiation with soft X-rays. The influence of the charge-neutralizing anions on the stability of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} against soft X-ray exposure is investigated for the different anions tetraphenylborate (BPh{sub 4}{sup -}), lactate (C{sub 3}H{sub 5}O{sub 3}{sup -}) and perchlorate (ClO{sub 4}{sup -}). The exposure dependence of the radiation-induced reduction process is compared for [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} with the three different anions.

  13. Probing the magnetic moments of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets—A cross comparison of XMCD and spin-resolved electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: helmstedt.andreas@gmail.com [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Dohmeier, Niklas; Müller, Norbert; Gryzia, Aaron; Brechling, Armin; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Leicht, Philipp; Fonin, Mikhail [Fachbereich Physik, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz (Germany); Tietze, Thomas [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Joly, Loïc [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2 (France); Kuepper, Karsten [Institut für Festkörperphysik, Universität Ulm, 89069 Ulm (Germany)

    2015-01-15

    Highlights: • [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets are investigated. • XMCD and spin-resolved electron spectroscopy (SPES) results are compared. • A simple sum rule evaluation is performed for comparison. • Differences between SPES and XMCD results are discussed. • Influences of the magnetic field on the Mn L edge absorption are observed. - Abstract: Single-molecule magnets (SMM) of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} structural type prepared on Si and gold-coated glass substrates have been investigated by spin-resolved electron spectroscopy (SPES) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edge and in addition by XMCD at the Cr L{sub 3,2} edge using synchrotron radiation. Differences between the two methods are discussed. Despite its severe limitations for 3d transition metals, a spin sum rule evaluation is nevertheless performed for the Mn{sup III} centres in the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} SMM to provide a simple means of comparing XMCD and spin-resolved electron spectroscopy results.

  14. Crystal lattice desolvation effects on the magnetic quantum tunneling of single-molecule magnets

    Science.gov (United States)

    Redler, G.; Lampropoulos, C.; Datta, S.; Koo, C.; Stamatatos, T. C.; Chakov, N. E.; Christou, G.; Hill, S.

    2009-09-01

    High-frequency electron paramagnetic resonance (HFEPR) and alternating current (ac) susceptibility measurements are reported for a new high-symmetry Mn12 complex, [Mn12O12(O2CCH3)16(CH3OH)4]ṡCH3OH . The results are compared to those of other high-symmetry spin S=10Mn12 single-molecule magnets (SMMs), including the original acetate, [Mn12(O2CCH3)16(H2O)4]ṡ2CH3CO2Hṡ4H2O , and the [Mn12O12(O2CCH2Br)16(H2O)4]ṡ4CH2Cl2 and [Mn12O12(O2CCH2But)16(CH3OH)4]ṡCH3OH complexes. These comparisons reveal important insights into the factors that influence the values of the effective barrier to magnetization reversal, Ueff , deduced on the basis of ac susceptibility measurements. In particular, we find that variations in Ueff can be correlated with the degree of disorder in a crystal which can be controlled by desolvating (drying) samples. This highlights the importance of careful sample handling when making measurements on SMM crystals containing volatile lattice solvents. The HFEPR data additionally provide spectroscopic evidence suggesting that the relatively weak disorder induced by desolvation influences the quantum tunneling interactions and that it is under-barrier tunneling that is responsible for a consistent reduction in Ueff that is found upon drying samples. Meanwhile, the axial anisotropy deduced from HFEPR is found to be virtually identical for all four Mn12 complexes, with no measurable reduction upon desolvation.

  15. Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets

    Science.gov (United States)

    Lawrence, Jonathan D.

    This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.

  16. A stochastic model for magnetic dynamics in single-molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    López-Ruiz, R., E-mail: rlruiz@ifi.unicamp.br [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Almeida, P.T. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil); Vaz, M.G.F. [Instituto de Química, Universidade Federal Fluminense, 24020-150 Niterói (RJ) (Brazil); Novak, M.A. [Instituto de Física - Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (RJ) (Brazil); Béron, F.; Pirota, K.R. [Instituto de Física Gleb Wataghin - Universidade Estadual de Campinas, 13083-859 Campinas (SP) (Brazil)

    2016-04-01

    Hysteresis and magnetic relaxation curves were performed on double well potential systems with quantum tunneling possibility via stochastic simulations. Simulation results are compared with experimental ones using the Mn{sub 12} single-molecule magnet, allowing us to introduce time dependence in the model. Despite being a simple simulation model, it adequately reproduces the phenomenology of a thermally activated quantum tunneling and can be extended to other systems with different parameters. Assuming competition between the reversal modes, thermal (over) and tunneling (across) the anisotropy barrier, a separation of classical and quantum contributions to relaxation time can be obtained. - Highlights: • Single-molecule magnets are modeled using a simple stochastic approach. • Simulation reproduces thermally-activated tunnelling magnetization reversal features. • The time is introduced in hysteresis and relaxation simulations. • We can separate the quantum and classical contributions to decay time.

  17. Measurement of the Relaxation Rate of the Magnetization in Mn{sub 12}O{sub 12} -Acetate Using Proton NMR Echo

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Z. H. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Lascialfari, A. [Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Borsa, F. [Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States); Dipartimento di Fisica ' ' A. Volta' ' e Unita' , INFM di Pavia, Via Bassi 6, 27100 Pavia, (Italy); Gatteschi, D. [Department of Chemistry, University of Florence, Via Maragliano 77, 50144 Firenze, (Italy)

    2000-03-27

    We present a novel method to measure the relaxation rate W of the magnetization of Mn{sub 12}O {sub 12} -acetate (Mn12) magnetic molecular cluster in its S=10 ground state at low T . It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions. (c) 2000 The American Physical Society.

  18. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    Science.gov (United States)

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  19. Solvent effects on the adsorption and self-organization of Mn12 on Au(111).

    Science.gov (United States)

    Pineider, Francesco; Mannini, Matteo; Sessoli, Roberta; Caneschi, Andrea; Barreca, Davide; Armelao, Lidia; Cornia, Andrea; Tondello, Eugenio; Gatteschi, Dante

    2007-11-06

    A sulfur-containing single molecule magnet, [Mn12O12(O2CC6H4SCH3)16(H2O)4], was assembled from solution on a Au(111) surface affording both submonolayer and monolayer coverages. The adsorbate morphology and the degree of coverage were inspected by scanning tunneling microscopy (STM), while X-ray photoelectron spectroscopy (XPS) allowed the determination of the chemical nature of the adsorbate on a qualitative and quantitative basis. The properties of the adsorbates were found to be strongly dependent on the solvent used to dissolve the magnetic complex. In particular, systems prepared from tetrahydrofuran solutions gave arrays of isolated and partially ordered clusters on the gold substrate, while samples prepared from dichloromethane exhibited a homogeneous monolayer coverage of the whole Au(111) surface. These findings are relevant to the optimization of magnetic addressing of single molecule magnets on surfaces.

  20. Neutron scattering studies of Mn12-acetate

    International Nuclear Information System (INIS)

    Robinson, R.A.

    2000-01-01

    Full text: The S=10 magnetic molecule Mn 12 -acetate, which crystallises into a tetragonal crystal structure, has attracted substantial recent attention by virtue of its low temperature bulk magnetic properties, which give evidence for resonant quantum tunnelling of the magnetisation. We report a full neutron crystal structure including positions of all protons/deuterons, including the solvated water and acetic acid, a polarised-neutron study of the real space magnetisation, which confirms a simple magnetic-structure model for the molecule, albeit with reduced Mn moments, and inelastic neutron scattering data containing both the excitations within the 21-fold degenerate S=10 manifold, and those from S=10 to the S=9 manifolds. Both manifolds are split by uniaxial magnetic anisotropy, and we report coefficients for 2nd and 4th-order terms in the magnetic Hamiltonian

  1. Synthesis, Structure and Properties of Various Molecules Based on the 4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System With an Evaluation of the Effect Differing Molecular Substitution Patterns Has on the Space Group Symmetry

    DEFF Research Database (Denmark)

    Faldt, André; Krebs, Frederik C; Thorup, Niels

    1997-01-01

    of opposite chirality are present within the unit cell, Finally compound 13 crystallises in a centrosymmetric space group. The room temperature pyroelectric coefficient of 3 has been determined, The spatial extent of the trioxatriangulene ground system has been perturbed by chemical substitution......4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo [cd,mn]pyrene (3),2,6,10-tri-tert-butyl-4,8,12 -trioxa-4,8,12,12c-tetrahydrodibenzo [cd,mn]pyrene (11) and 2,6,10-tri-tert-butyl-4,8,12-trioxa-12c -methyl-4,8,12,12c -tetrahydrodibenzo[cd,mn]pyrene (12)have been synthesised and their crystal structures...... and the effect: of the substitutions upon the space group symmetry of the chemical derivative has been uncovered by X-ray structural resolution, The non-centrosymmetric point group symmetry of the molecules is reflected in a non-centrosymmetric space group symmetry whenever the spatial perturbations do...

  2. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    Science.gov (United States)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-06-01

    Recently, Zhong et al (2015 Nano Lett. 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H2. Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background.

  3. An important rule for realizing metal → half-metal → semiconductor transition in single-molecule junctions

    International Nuclear Information System (INIS)

    Zeng, Jing; Chen, Ke-Qiu; Long, Mengqiu

    2017-01-01

    Recently, Zhong et al (2015 Nano Lett . 15 8091) found that two additional hydrogen atoms can be adsorbed to the opposite aza-bridging nitrogen atoms of the manganese phthalocyanine (MnPc) macrocycle when exposed to H 2 . Thus the symmetry of the MnPc molecule is changed from 4-fold to 2-fold. Motivated by this recent experiment, we theoretically investigate a MnPc-based single-molecule junction in this work and propose a simple and reliable way to realize the transition of its electronic properties. On the basis of spin-polarized density-functional theory calculations combined with the Keldysh nonequilibrium Green’s technique, we find that the gradual hydrogenation in MnPc molecules gives rise to the changes of the hardness of the electron density and spin-selective orbital decoupling, which eventually leads to the realization of the first ever metal  →  half-metal  →  semiconductor transition behavior in single-molecule junctions. Analysis of molecular projected self-consistent Hamiltonian, Mulliken population, and local density of states also reveals an important rule for realizing this transition behavior. Our research confirms that the hydrogenation of MnPc molecules can realize various molecular functionalities in unitary material background. (paper)

  4. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2001-01-01

    55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  5. Ligand-based transport resonances of single-molecule-magnet spin filters: Suppression of Coulomb blockade and determination of easy-axis orientation

    Science.gov (United States)

    Rostamzadeh Renani, Fatemeh; Kirczenow, George

    2011-11-01

    We investigate single-molecule-magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate-controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport regimes, and that if such switching is observed, then the magnetic easy axis of the SMM is parallel to the direction of the current through the SMM.

  6. Ligand-based transport resonances of single-molecule magnet spin filters: Suppression of the Coulomb blockade and determination of the orientation of the magnetic easy axis

    OpenAIRE

    Renani, Fatemeh Rostamzadeh; Kirczenow, George

    2011-01-01

    We investigate single molecule magnet transistors (SMMTs) with ligands that support transport resonances. We find the lowest unoccupied molecular orbitals of Mn12-benzoate SMMs (with and without thiol or methyl-sulfide termination) to be on ligands, the highest occupied molecular orbitals being on the Mn12 magnetic core. We predict gate controlled switching between Coulomb blockade and coherent resonant tunneling in SMMTs based on such SMMs, strong spin filtering by the SMM in both transport ...

  7. Spin-Spin Cross Relaxation in Single-Molecule Magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Tiron, R.; Hendrickson, D. N.; Christou, G.

    2002-10-01

    The one-body tunnel picture of single-molecule magnets (SMMs) is not always sufficient to explain the measured tunnel transitions. An improvement to the picture is proposed by including also two-body tunnel transitions such as spin-spin cross relaxation (SSCR) which are mediated by dipolar and weak superexchange interactions between molecules. A Mn4 SMM is used as a model system. At certain external fields, SSCRs lead to additional quantum resonances which show up in hysteresis loop measurements as well-defined steps. A simple model is used to explain quantitatively all observed transitions.

  8. Data mining for materials design: A computational study of single molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Dam, Hieu Chi [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Pham, Tien Lam; Ho, Tu Bao [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Nguyen, Anh Tuan [Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi (Viet Nam); Nguyen, Viet Cuong [HPC Systems, Inc., 3-9-15 Kaigan, Minato-ku, Tokyo 108-0022 (Japan)

    2014-01-28

    We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn{sup 4+} Mn {sub 3}{sup 3+} single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn{sup 4+} and Mn{sup 3+} ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic properties of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.

  9. Large Mn25 single-molecule magnet with spin S = 51/2: magnetic and high-frequency electron paramagnetic resonance spectroscopic characterization of a giant spin state.

    Science.gov (United States)

    Murugesu, Muralee; Takahashi, Susumu; Wilson, Anthony; Abboud, Khalil A; Wernsdorfer, Wolfgang; Hill, Stephen; Christou, George

    2008-10-20

    The synthesis and structural, spectroscopic, and magnetic characterization of a Mn25 coordination cluster with a large ground-state spin of S = 51/2 are reported. Reaction of MnCl2 with pyridine-2,6-dimethanol (pdmH2) and NaN3 in MeCN/MeOH gives the mixed valence cluster [Mn25O18(OH)2(N3)12(pdm)6(pdmH)6]Cl2 (1; 6Mn(II), 18Mn(III), Mn(IV)), which has a barrel-like cage structure. Variable temperature direct current (dc) magnetic susceptibility data were collected in the 1.8-300 K temperature range in a 0.1 T field. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-7 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 51/2, D = -0.020(2) cm(-1), and g = 1.87(3), where D is the axial zero-field splitting parameter. Alternating current (ac) susceptibility measurements in the 1.8-8.0 K range and a 3.5 G ac field oscillating at frequencies in the 50-1500 Hz range revealed a frequency-dependent out-of-phase (chi(M)'') signal below 3 K, suggesting 1 to be a single-molecule magnet (SMM). This was confirmed by magnetization vs dc field sweeps, which exhibited hysteresis loops but with no clear steps characteristic of resonant quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot, and the fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 12 K, where U(eff) is the effective relaxation barrier. The g value and the magnitude and sign of the D value were independently confirmed by detailed high-frequency electron paramagnetic resonance (HFEPR) spectroscopy on polycrystalline samples. The combined studies confirm both the high ground-state spin S = 51/2 of complex 1 and that it is a SMM that, in addition, exhibits QTM.

  10. Rational design of single-molecule magnets: a supramolecular approach.

    Science.gov (United States)

    Glaser, Thorsten

    2011-01-07

    Since the discovery that Mn(12)OAc acts as a single-molecule magnet (SMM), an increasing number of transition metal complexes have been demonstrated to behave as SMMs. The signature of a SMM is a slow relaxation of the magnetization at low temperatures accompanied by a magnetic hysteresis. The origin of SMM behaviour is the existence of an appreciable thermal barrier U for spin-reversal called magnetic anisotropy barrier which is related to the combination of a large total spin ground state (S(t)) and an easy-axis magnetic anisotropy. The extensive research on Mn(12)OAc and other SMMs has established more prerequisites for a rational development of new SMMs besides the high-spin ground state and the magnetic anisotropy: the symmetry should be at least C(3) to minimize the quantum tunneling of the magnetization through the anisotropy barrier but lower than cubic to avoid the cancellation of the local anisotropies upon projection onto the spin ground state. Based on these prerequisites, we have designed the ligand triplesalen which combines the phloroglucinol bridging unit for high spin ground states by the spin-polarization mechanism with a salen-like ligand environment for single-site magnetic anisotropies by a strong tetragonal ligand field. The C(3) symmetric, trinuclear complexes of the triplesalen ligand (talen(t-Bu(2)))(6-) exhibit a strong ligand folding resulting in an overall bowl-shaped molecular structure. This ligand folding preorganizes the axial coordination sites of the metal salen subunits for the complementary binding of three facial nitrogen atoms of a hexacyanometallate unit. This leads to a high driving force for the formation of heptanuclear complexes [M(t)(6)M(c)](n+) by the assembly of three molecular building blocks. Attractive van der Waals interactions of the tert-butyl phenyl units of two triplesalen trinuclear building blocks increase the driving force. In this respect, we have been able to synthesize the isostructural series [Mn(III)(6

  11. Evolution of electrical properties and domain configuration of Mn modified Pb(In1/2Nb1/2)O3-PbTiO3 single crystals

    Science.gov (United States)

    Qiao, Huimin; He, Chao; Yuan, Feifei; Wang, Zujian; Li, Xiuzhi; Liu, Ying; Guo, Haiyan; Long, Xifa

    2018-04-01

    The acceptor doped relaxor-based ferroelectric materials are useful for high power applications such as probes in ultrasound-guided high intensity focused ultrasound therapy. In addition, a high Curie temperature is desired because of wider temperature usage and improved temperature stability. Previous investigations have focused on Pb(Mg1/3Nb2/3)O3-PbTiO3 and Pb(Zn1/3Nb2/3)O3-PbTiO3 systems, which have a ultrahigh piezoelectric coefficient and dielectric constant, but a relatively low Curie temperature. It is desirable to study the binary relaxor-based system with a high Curie temperature. Therefore, Pb(In1/2Nb1/2)O3-PbTiO3 (PINT) single crystals were chosen to study the Mn-doped influence on their electrical properties and domain configuration. The evolution of ferroelectric hysteresis loops for doped and virgin samples exhibit the pinning effect in Mn-doped PINT crystals. The relaxation behaviors of doped and virgin samples are studied by fit of the modified Curie-Weiss law and Volgel-Fucher relation. In addition, a short-range correlation length was fitted to study the behavior of polar nanoregions based on the domain configuration obtained by piezoresponse force microscopy. Complex domain structures and smaller short-range correlation lengths (100-150 nm for Mn-doped PINT and >400 nm for pure PINT) were obtained in the Mn-doped PINT single crystals.

  12. AC susceptometry on the single-molecule magnet Ni{sub 2}Dy

    Energy Technology Data Exchange (ETDEWEB)

    Wendler, Pascal; Sundt, Alexander; Waldmann, Oliver [Physikalisches Institut, Universitaet Freiburg (Germany); Khan, Amin; Lan, Yanhua; Powell, Annie K. [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (Germany)

    2013-07-01

    Molecular nanomagnets are molecules which show novel and fascinating magnetic properties. The best known phenomenon is the observation of magnetic hysteresis on the molecular scale in the single-molecule magnets (SMMs), such as Mn{sub 12}ac. In addition, quantum mechanical effects, such as the tunneling of the magnetization, can be observed in bulk samples of SMMs. A key goal for understanding the underlying physics is the measurement of the magnetization dynamics, which can be accomplished using ac susceptometry. However, the magnetic moments of samples of SMMs are weak since the volume density of the magnetic ions is very small as compared to e.g. inorganic compounds. In this talk we will describe the construction of an ac susceptometer suitable for investigating molecular nanomagnets. A particular goal was to reach frequencies of the ac field of 100 kHz, extending the frequency range of commercial devices typically used in this research area by two decades. The device can be operated in the temperature range of 1.5 to 300 K and was characterized by comparing data recorded on Mn{sub 19} with available literature results. Lastly, we will present our experimental results on the novel SMM Ni{sub 2}Dy and discuss the different magnetic relaxation regimes observed in it.

  13. Enhancing the blocking temperature in single-molecule magnets by incorporating 3d-5d exchange interactions

    DEFF Research Database (Denmark)

    Pedersen, Kasper Søndergaard; Schau-Magnussen, Magnus; Bendix, Jesper

    2010-01-01

    We report the first single-molecule magnet (SMM) to incorporate the [Os(CN)(6)](3-) moiety. The compound (1) has a trimeric, cyanide-bridged Mn(III)-Os(III)-Mn(III) skeleton in which Mn(III) designates a [Mn(5-Brsalen)(MeOH)](+) unit (5-Brsalen=N,N'-ethylenebis(5-bromosalicylideneiminato)). X......-ray crystallographic experiments reveal that 1 is isostructural with the Mn(III)-Fe(III)-Mn(III) analogue (2). Both compounds exhibit a frequency-dependent out-of-phase ¿''(T) alternating current (ac) susceptibility signal that is suggestive of SMM behaviour. From the Arrhenius expression, the effective barrier for 1...... for the design of a new generation of SMMs with enhanced SMM properties....

  14. 12-Channel Peltier array temperature control unit for single molecule enzymology studies using capillary electrophoresis.

    Science.gov (United States)

    Craig, Douglas B; Reinfelds, Gundars; Henderson, Anna

    2014-08-01

    Capillary electrophoresis has been used to demonstrate that individual molecules of a given enzyme support different catalytic rates. In order to determine how rate varies with temperature, and determine activation energies for individual β-galactosidase molecules, a 12-channel Peltier array temperature control device was constructed where the temperature of each cell was separately controlled. This array was used to control the temperature of the central 30 cm of a 50 cm long capillary, producing a temperature gradient along its length. Continuous flow single β-galactosidase molecule assays were performed allowing measurement of the catalytic rates at different temperatures. Arrhenius plots were produced and the distribution of activation energies for individual β-galactosidase molecules was found to be 56 ± 10 kJ/mol with a range of 34-72 kJ/mol. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modulation of intermolecular interactions in single-molecule magnets

    Science.gov (United States)

    Heroux, Katie Jeanne

    Polynuclear manganese clusters exhibiting interesting magnetic and quantum properties have been an area of intense research since the discovery of the first single-molecule magnet (SMM) in 1993. These molecules, below their blocking temperature, function as single-domain magnetic particles which exhibit classical macroscale magnetic properties as well as quantum mechanical phenomena such as quantum tunnelling of magnetization (QTM) and quantum phase interference. The union of classical and quantum behavior in these nanomaterials makes SMMs ideal candidates for high-density information storage and quantum computing. However, environmental coupling factors (nuclear spins, phonons, neighboring molecules) must be minimized if such applications are ever to be fully realized. The focus of this work is making small structural changes in well-known manganese SMMs in order to drastically enhance the overall magnetic and quantum properties of the system. Well-isolated molecules of high crystalline quality should lead to well-defined energetic and spectral properties as well. An advantage of SMMs over bulk magnetic materials is that they can be chemically altered from a "bottom-up" approach providing a synthetic tool for tuning magnetic properties. This systematic approach is utilized in the work presented herein by incorporating bulky ligands and/or counterions to "isolate" the magnetic core of [Mn4] dicubane SMMs. Reducing intermolecular interactions in the crystal lattice (neighboring molecules, solvate molecules, dipolar interactions) is an important step toward developing viable quantum computing devices. Detailed bulk magnetic studies as well as single crystal magnetization hysteresis and high-frequency EPR studies on these sterically-isolated complexes show enhanced, and sometimes even unexpected, quantum dynamics. The importance of intra- and intermolecular interactions remains a common theme throughout this work, extending to other SMMs of various topology including

  16. Ground-state magnetization of the molecular cluster Mn12O12-acetate as seen by proton NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Jang, Z. H.; Lascialfari, A.; Borsa, F.; Gatteschi, D.

    2000-01-01

    1 H nuclear magnetic resonance (NMR) measurements have been carried out in Mn 12 O 12 -acetate clusters at low temperature in order to investigate microscopically the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. Below liquid helium temperature it is found that the local hyperfine fields at the proton sites are static as expected for the very slow superparamagnetic relaxation of Mn 12 O 12 at low temperature. The magnitude and distribution of the hyperfine fields can be reproduced to a good approximation by considering only the dipolar interaction of protons with the local Mn magnetic moments and by assigning the magnitude and orientation of the local moments of the different Mn 3+ and Mn 4+ ions according to an accepted coupling scheme for the total S=10 ground state. The relaxation time of the macroscopic magnetization of the cluster was measured by monitoring the change of the intensity of the 1 H-NMR shifted lines following inversion of the applied magnetic field. This is possible because the sudden change of the field orientation changes the sign of the shift of the NMR lines in the proton spectrum. Although important differences are noticed, the relaxation time of the magnetization as measured indirectly by the 1 H-NMR method is comparable to the one obtained directly with a superconducting quantum interference device magnetometer. In particular we could reproduce the minima in the relaxation time as a function of magnetic field at the fields for level crossing, minima which are considered to be a signature of the quantum tunneling of the magnetization

  17. Determination of {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vansola, Vibha; Mukherjee, Surjit [M.S. University of Baroda, Vadodara (India). Dept. of Physics; Naik, Haladhara [Bhabha Atomic Research Center, Mumbai (India). Radiochemistry Div.; Suryanarayana, Saraswatula Venkata [Bhabha Atomic Research Center, Mumbai (India). Nuclear Physics Div.; Ghosh, Reetuparna; Badwar, Sylvia; Lawriniang, Bioletty Mary [North Eastern Hill Univ., Meghalaya (India). Dept. of Physics; Sheela, Yerraguntla Santhi [Manipal Univ. (India). Dept. of Statistics

    2016-07-01

    The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-sections at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV were determined by using activation and off-line γ-ray spectrometric technique. The neutron energies of 1.12 and 2.12 MeV were generated from the {sup 7}Li(p,n) reaction by using the proton energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at BARC. For the neutron energies of 3.12 and 4.12 MeV, the proton energies used were 5 and 6 MeV from the Pelletron facility at TIFR, Mumbai. The {sup 115}In(n,γ){sup 116m}In reaction cross-section was used as the neutron flux monitor. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section at the neutron energies of 4.12 MeV are reported for the first time, whereas at 1.12, 2.12 and 3.12 MeV, they are in between the literature data. The {sup 55}Mn(n,γ){sup 56}Mn reaction cross-section was also calculated theoretically by using the computer code TALYS 1.6 and EMPIRE 3.2.2. The experimental data of present work are found to be in between the theoretical values of TALYS and EMPIRE.

  18. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  19. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  20. Structural, Chemical and Physical Properties of Mn12

    Science.gov (United States)

    Sessoli, Roberta

    1997-03-01

    Recent investigations on the physical properties of the first molecular nanomagnet, Mn12ac, will be reported. Among them very high field EPR spectra (up to 25 T) (A. L. Barra, D. Gatteschi, R. Sessoli Phys. Rev. B. submitted) have provided precise information on the spin hamiltonian up to the fourth order terms. These new findings justify the irregularities in the step separations in the quantum hysteresis that we have observed performing the measurements on a single crystal (L. Thomas et al, Nature.383, 145 (1996)), and confirm that we are observing resonant quantum tunneling of the magnetization. The magnetic hysteresis has been also optically detected in collaboration with Prof. A. Thomson of the University of East Anglia, UK. Possible modifications to the Mn12 cluster as well as an iron cluster showing MQT of the magnetization (C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, D. Gatteschi, submitted) will be briefly presented.

  1. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  2. Single-molecule magnets on a polymeric thin film as magnetic quantum bits

    Science.gov (United States)

    Ruiz-Molina, Daniel; Gomez, Jordi; Mas-Torrent, Marta; Balana, Ana Isabel; Domingo, Nues; Tejada, Javier; Martinez, Maria Teresa; Rovira, Concepcio; Veciana, Jaume

    2003-04-01

    Single-molecule magnets (SMM) have a large-spin ground state with appreciable magnetic anisotropy, resulting in a barrier for the spin reversal As a consequence, interesting magnetic properties such as out-of-phase ac magnetic susceptibility signals and stepwise magnetization hysteresis loops are observed. In addition to resonant magnetization tunnelling, during the last few years several other interesting phenomena have also been reported. The origin of the slow magnetization relaxation rates as well as of other phenomena are due to individual molecules rather than to long-range ordering; as confirmed by magnetization relaxation and heat capacity studies. Therefore, SMM represent nanoscale magnetic particles of a sharply defined size that offer the potential access to the ultimate high-density information storage devices as well as for quantum computing applications. However, if a truly molecular computational device based on SMM is to be achieved, new systematic studies that allow us to find a proper way to address properly oriented individual molecules or molecular aggregates onto the surface of a thin film, where each molecule or molecular aggregate can be used as a bit of information, are highly required. Here we report a new soft, reliable and simple methodology to address individual Mn12 molecules onto a film surface, as revealed by Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) images. Moreover, the advantageous properties of polymeric matrices, such as flexibility, transparency and low density, make this type of materials very interesting for potential applications.

  3. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  4. Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn4 single-molecule magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G.

    2005-12-01

    A Mn4 single-molecule magnet (SMM), with a well-isolated spin ground state of S=9/2 , is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions, (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, and (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest-neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.

  5. Magnetic quantum tunneling: insights from simple molecule-based magnets.

    Science.gov (United States)

    Hill, Stephen; Datta, Saiti; Liu, Junjie; Inglis, Ross; Milios, Constantinos J; Feng, Patrick L; Henderson, John J; del Barco, Enrique; Brechin, Euan K; Hendrickson, David N

    2010-05-28

    This perspectives article takes a broad view of the current understanding of magnetic bistability and magnetic quantum tunneling in single-molecule magnets (SMMs), focusing on three families of relatively simple, low-nuclearity transition metal clusters: spin S = 4 Ni(II)(4), Mn(III)(3) (S = 2 and 6) and Mn(III)(6) (S = 4 and 12). The Mn(III) complexes are related by the fact that they contain triangular Mn(III)(3) units in which the exchange may be switched from antiferromagnetic to ferromagnetic without significantly altering the coordination around the Mn(III) centers, thereby leaving the single-ion physics more-or-less unaltered. This allows for a detailed and systematic study of the way in which the individual-ion anisotropies project onto the molecular spin ground state in otherwise identical low- and high-spin molecules, thus providing unique insights into the key factors that control the quantum dynamics of SMMs, namely: (i) the height of the kinetic barrier to magnetization relaxation; and (ii) the transverse interactions that cause tunneling through this barrier. Numerical calculations are supported by an unprecedented experimental data set (17 different compounds), including very detailed spectroscopic information obtained from high-frequency electron paramagnetic resonance and low-temperature hysteresis measurements. Comparisons are made between the giant spin and multi-spin phenomenologies. The giant spin approach assumes the ground state spin, S, to be exact, enabling implementation of simple anisotropy projection techniques. This methodology provides a basic understanding of the concept of anisotropy dilution whereby the cluster anisotropy decreases as the total spin increases, resulting in a barrier that depends weakly on S. This partly explains why the record barrier for a SMM (86 K for Mn(6)) has barely increased in the 15 years since the first studies of Mn(12)-acetate, and why the tiny Mn(3) molecule can have a barrier approaching 60% of this

  6. Efficient spin-filtering, magnetoresistance and negative differential resistance effects of a one-dimensional single-molecule magnet Mn(dmit2-based device with graphene nanoribbon electrodes

    Directory of Open Access Journals (Sweden)

    N. Liu

    2017-12-01

    Full Text Available We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC and the antiparallel configuration (APC. At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.

  7. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    Science.gov (United States)

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  8. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  9. Propagation of avalanches in Mn12-acetate: magnetic deflagration.

    Science.gov (United States)

    Suzuki, Yoko; Sarachik, M P; Chudnovsky, E M; McHugh, S; Gonzalez-Rubio, R; Avraham, Nurit; Myasoedov, Y; Zeldov, E; Shtrikman, H; Chakov, N E; Christou, G

    2005-09-30

    Local time-resolved measurements of fast reversal of the magnetization of single crystals of Mn12-acetate indicate that the magnetization avalanche spreads as a narrow interface that propagates through the crystal at a constant velocity that is roughly 2 orders of magnitude smaller than the speed of sound. We argue that this phenomenon is closely analogous to the propagation of a flame front (deflagration) through a flammable chemical substance.

  10. Manifestation of Spin Selection Rules on the Quantum Tunneling of Magnetization in a Single Molecule Magnet

    OpenAIRE

    Henderson, J. J.; Koo, C.; Feng, P. L.; del Barco, E.; Hill, S.; Tupitsyn, I. S.; Stamp, P. C. E.; Hendrickson, D. N.

    2009-01-01

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet (SMM) in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at elevated temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three: this is dictated by the C3 symmetry of the molecule, which forbids pure tunneling from the lowest metastable state. Resonances...

  11. Calix[4]arene Based Single-Molecule Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Karotsis, Georgios; Teat, Simon J.; Wernsdorfer, Wolfgang; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2009-06-04

    Single-molecule magnets (SMMs) have been the subject of much interest in recent years because their molecular nature and inherent physical properties allow the crossover between classical and quantum physics to be observed. The macroscopic observation of quantum phenomena - tunneling between different spin states, quantum interference between tunnel paths - not only allows scientists to study quantum mechanical laws in great detail, but also provides model systems with which to investigate the possible implementation of spin-based solid state qubits and molecular spintronics. The isolation of small, simple SMMs is therefore an exciting prospect. To date almost all SMMs have been made via the self-assembly of 3d metal ions in the presence of bridging/chelating organic ligands. However, very recently an exciting new class of SMMs, based on 3d metal clusters (or single lanthanide ions) housed within polyoxometalates, has appeared. These types of molecule, in which the SMM is completely encapsulated within (or shrouded by) a 'protective' organic or inorganic sheath have much potential for design and manipulation: for example, for the removal of unwanted dipolar interactions, the introduction of redox activity, or to simply aid functionalization for surface grafting. Calix[4]arenes are cyclic (typically bowl-shaped) polyphenols that have been used extensively in the formation of versatile self-assembled supramolecular structures. Although many have been reported, p-{sup t}But-calix[4]arene and calix[4]arene (TBC4 and C4 respectively, Figure 1A) are frequently encountered due to (a) synthetic accessibility, and (b) vast potential for alteration at either the upper or lower rim of the macrocyclic framework. Within the field of supramolecular chemistry, TBC4 is well known for interesting polymorphic behavior and phase transformations within anti-parallel bi-layer arrays, while C4 often forms self-included trimers. The polyphenolic nature of calix[n]arenes (where

  12. Single Molecule Analysis Research Tool (SMART: an integrated approach for analyzing single molecule data.

    Directory of Open Access Journals (Sweden)

    Max Greenfeld

    Full Text Available Single molecule studies have expanded rapidly over the past decade and have the ability to provide an unprecedented level of understanding of biological systems. A common challenge upon introduction of novel, data-rich approaches is the management, processing, and analysis of the complex data sets that are generated. We provide a standardized approach for analyzing these data in the freely available software package SMART: Single Molecule Analysis Research Tool. SMART provides a format for organizing and easily accessing single molecule data, a general hidden Markov modeling algorithm for fitting an array of possible models specified by the user, a standardized data structure and graphical user interfaces to streamline the analysis and visualization of data. This approach guides experimental design, facilitating acquisition of the maximal information from single molecule experiments. SMART also provides a standardized format to allow dissemination of single molecule data and transparency in the analysis of reported data.

  13. Single-molecule dynamics in nanofabricated traps

    Science.gov (United States)

    Cohen, Adam

    2009-03-01

    The Anti-Brownian Electrokinetic trap (ABEL trap) provides a means to immobilize a single fluorescent molecule in solution, without surface attachment chemistry. The ABEL trap works by tracking the Brownian motion of a single molecule, and applying feedback electric fields to induce an electrokinetic motion that approximately cancels the Brownian motion. We present a new design for the ABEL trap that allows smaller molecules to be trapped and more information to be extracted from the dynamics of a single molecule than was previously possible. In particular, we present strategies for extracting dynamically fluctuating mobilities and diffusion coefficients, as a means to probe dynamic changes in molecular charge and shape. If one trapped molecule is good, many trapped molecules are better. An array of single molecules in solution, each immobilized without surface attachment chemistry, provides an ideal test-bed for single-molecule analyses of intramolecular dynamics and intermolecular interactions. We present a technology for creating such an array, using a fused silica plate with nanofabricated dimples and a removable cover for sealing single molecules within the dimples. With this device one can watch the shape fluctuations of single molecules of DNA or study cooperative interactions in weakly associating protein complexes.

  14. Single-photon sources based on single molecules in solids

    International Nuclear Information System (INIS)

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  15. High field high frequency EPR techniques and their application to single molecule magnets

    International Nuclear Information System (INIS)

    Edwards, R.S.; Hill, S.; Goy, P.; Wylde, R.; Takahashi, S.

    2004-01-01

    We present details of a new high-field/high-frequency EPR technique, and its application to measurements of single-molecule magnets (SMMs). By using a quasi-optical set-up and microwave sources covering a continuous frequency range from 170 to 600 GHz, in conjunction with a millimetre-wave vector network analyser, we are able to measure EPR to high magnetic fields. For example, a g=2 system will exhibit EPR at about 14 T at a frequency of 400 GHz. We illustrate the technique by presenting details of recent high-frequency experiments on several SMMs which are variations of the well-known SMM Mn 12 -Ac. This material has a spin ground state of S=10 and large uniaxial anisotropy, hence frequencies above 300 GHz are required in order to observe EPR from the ground state

  16. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    International Nuclear Information System (INIS)

    Chatelain, Lucile; Pecaut, Jacques; Walsh, James P.S.; Tuna, Floriana; Mazzanti, Marinella

    2014-01-01

    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M II complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  17. Self-assembly of a 3d-5f trinuclear single-molecule magnet from a pentavalent uranyl complex

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, Lucile; Pecaut, Jacques [CEA-Grenoble (France). Lab. de Reconnaissance Ionique et Chimie de Coordination SCIB; Walsh, James P.S.; Tuna, Floriana [Manchester Univ. (United Kingdom). School of Chemistry and Photon Science Inst.; Mazzanti, Marinella [Ecole Polytechnique Federale de Lausanne (EPFL) (Switzerland). Inst. de Sciences et Ingenierie Chimiques

    2014-12-01

    Mixed-metal uranium compounds are very attractive candidates in the design of single-molecule magnets (SMMs), but only one 3d-5f hetero-polymetallic SMM containing a uranium center is known. Herein, we report two trimeric heterodimetallic 3d-5f complexes self-assembled by cation-cation interactions between a uranyl(V) complex and a TPA-capped M{sup II} complex (M=Mn (1), Cd (2); TPA=tris(2-pyridylmethyl)amine). The metal centers were strategically chosen to promote the formation of discrete molecules rather than extended chains. Compound 1, which contains an almost linear {Mn-O=U=O-Mn} core, exhibits SMM behavior with a relaxation barrier of 81±0.5 K - the highest reported for a mono-uranium system - arising from intramolecular Mn-U exchange interactions combined with the high Ising anisotropy of the uranyl(V) moiety. Compound 1 also exhibits an open magnetic hysteresis loop at temperatures less than 3 K, with a significant coercive field of 1.9 T at 1.8 K.

  18. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  20. Manifestation of spin selection rules on the quantum tunneling of magnetization in a single-molecule magnet.

    Science.gov (United States)

    Henderson, J J; Koo, C; Feng, P L; del Barco, E; Hill, S; Tupitsyn, I S; Stamp, P C E; Hendrickson, D N

    2009-07-03

    We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.

  1. Strong and anisotropic superexchange in the single-molecule magnet (SMM) [MnIII(6)OsIII]3+: promoting SMM behavior through 3d-5d transition metal substitution.

    Science.gov (United States)

    Hoeke, Veronika; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2014-01-06

    The reaction of the in situ generated trinuclear triplesalen complex [(talent-Bu2)MnIII3(solv)n]3+ with (Ph4P)3[OsIII(CN)6] and NaClO4·H2O affords [MnIII6OsIII](ClO4)3 (= [{(talent-Bu2)MnIII3}2{OsIII(CN)6}](ClO4)3) in the presence of the oxidizing agent [(tacn)2NiIII](ClO4)3 (tacn =1,4,7-triazacyclononane), while the reaction of [(talent-Bu2)MnIII3(solv)n]3+ with K4[OsII(CN)6] and NaClO4·H2O yields [MnIII6OsII](ClO4)2 under an argon atmosphere. The molecular structure of [MnIII6OsIII]3+ as determined by single-crystal X-ray diffraction is closely related to the already published [MnIII6Mc]3+ complexes (Mc = CrIII, FeIII, CoIII, MnIII). The half-wave potential of the OsIII/OsII couple is E1/2 = 0.07 V vs Fc+/Fc. The FT-IR and electronic absorption spectra of [MnIII6OsII]2+ and [MnIII6OsIII]3+ exhibit distinct features of dicationic and tricationic [MnIII6Mc]n+ complexes, respectively. The dc magnetic data (μeff vs T, M vs B, and VTVH) of [MnIII6OsII]2+ are successfully simulated by a full-matrix diagonalization of a spin-Hamiltonian including isotropic exchange, zero-field splitting with full consideration of the relative orientation of the D-tensors, and Zeeman interaction, indicating antiferromagnetic MnIII–MnIII interactions within the trinuclear triplesalen subunits (JMn–Mn(1) = −(0.53 ± 0.01) cm–1, Ĥex = −2∑iSMM [MnIII6OsIII]3+ compared to the 3d analogue [MnIII6FeIII]3+ due to the stronger and anisotropic Mc–MnIII exchange interaction.

  2. Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces

    International Nuclear Information System (INIS)

    Lussier, A.; Dvorak, J.; Stadler, S.; Holroyd, J.; Liberati, M.; Arenholz, E.; Ogale, S.B.; Wu, T.; Venkatesan, T.; Idzerda, Y.U.

    2008-01-01

    Interfacial stress is thought to have significant effects on electrical and oxygen transport properties in thin films of importance in solid oxide fuel cell applications. We investigate how in-plane biaxial stress modifies the electronic structure of La 2/3 Ca 1/3 MnO 3 and La 1/2 Sr 1/2 MnO 3 thin films prepared by pulsed laser deposition on three different substrates to vary the in-plane stress from tensile to compressive. The electronic structure was probed by X-ray absorption spectroscopy of the Mn L 2,3 -edge to characterize the interfacial disruption in this region in an element-specific, site-specific manner. The compressive or tensile interfacial strain modifies the relative concentrations of La and Sr in the interfacial region in order to achieve a better lattice match to the contact material. This atomic migration generates an interfacial region dominated by a compound with a single valency for the transition metal ion, resulting in a severe barrier to oxygen and electron transport through this region

  3. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single-molecule

  4. Control of magnetism in dilute magnetic semiconductor (Ga,Mn)As films by surface decoration of molecules

    Science.gov (United States)

    Wang, Hailong; Wang, Xiaolei; Xiong, Peng; Zhao, Jianhua

    2016-03-01

    The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,Mn)As thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,Mn)As thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,Mn)As and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  5. Control of magnetism in dilute magnetic semiconductor (Ga,MnAs films by surface decoration of molecules

    Directory of Open Access Journals (Sweden)

    Hailong eWang

    2016-03-01

    Full Text Available The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,MnAs thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,MnAs thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,MnAs and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  6. Suppression of Magnetic Quantum Tunneling in a Chiral Single-Molecule Magnet by Ferromagnetic Interactions.

    Science.gov (United States)

    Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten

    2017-12-18

    Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.

  7. Single-molecule dataset (SMD): a generalized storage format for raw and processed single-molecule data.

    Science.gov (United States)

    Greenfeld, Max; van de Meent, Jan-Willem; Pavlichin, Dmitri S; Mabuchi, Hideo; Wiggins, Chris H; Gonzalez, Ruben L; Herschlag, Daniel

    2015-01-16

    Single-molecule techniques have emerged as incisive approaches for addressing a wide range of questions arising in contemporary biological research [Trends Biochem Sci 38:30-37, 2013; Nat Rev Genet 14:9-22, 2013; Curr Opin Struct Biol 2014, 28C:112-121; Annu Rev Biophys 43:19-39, 2014]. The analysis and interpretation of raw single-molecule data benefits greatly from the ongoing development of sophisticated statistical analysis tools that enable accurate inference at the low signal-to-noise ratios frequently associated with these measurements. While a number of groups have released analysis toolkits as open source software [J Phys Chem B 114:5386-5403, 2010; Biophys J 79:1915-1927, 2000; Biophys J 91:1941-1951, 2006; Biophys J 79:1928-1944, 2000; Biophys J 86:4015-4029, 2004; Biophys J 97:3196-3205, 2009; PLoS One 7:e30024, 2012; BMC Bioinformatics 288 11(8):S2, 2010; Biophys J 106:1327-1337, 2014; Proc Int Conf Mach Learn 28:361-369, 2013], it remains difficult to compare analysis for experiments performed in different labs due to a lack of standardization. Here we propose a standardized single-molecule dataset (SMD) file format. SMD is designed to accommodate a wide variety of computer programming languages, single-molecule techniques, and analysis strategies. To facilitate adoption of this format we have made two existing data analysis packages that are used for single-molecule analysis compatible with this format. Adoption of a common, standard data file format for sharing raw single-molecule data and analysis outcomes is a critical step for the emerging and powerful single-molecule field, which will benefit both sophisticated users and non-specialists by allowing standardized, transparent, and reproducible analysis practices.

  8. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    Science.gov (United States)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  9. "Switching on" the properties of single-molecule magnetism in triangular manganese(III) complexes.

    Science.gov (United States)

    Stamatatos, Theocharis C; Foguet-Albiol, Dolos; Lee, Sheng-Chiang; Stoumpos, Constantinos C; Raptopoulou, Catherine P; Terzis, Aris; Wernsdorfer, Wolfgang; Hill, Stephen O; Perlepes, Spyros P; Christou, George

    2007-08-01

    The reaction between oxide-centered, triangular [MnIII3O(O2CR)6(py)3](ClO4) (R = Me (1), Et (2), Ph (3)) compounds and methyl 2-pyridyl ketone oxime (mpkoH) affords a new family of Mn/carboxylato/oximato complexes, [MnIII3O(O2CR)3(mpko)3](ClO4) [R = Me (4), Et (5), and Ph (6)]. As in 1-3, the cations of 4-6 contain an [MnIII3(mu3-O)]7+ triangular core, but with each Mn2 edge now bridged by an eta1:eta1:mu-RCO2- and an eta1:eta1:eta1:mu-mpko- group. The tridentate binding mode of the latter causes a buckling of the formerly planar [MnIII3(mu3-O)]7+ core, resulting in a relative twisting of the three MnIII octahedra and the central O2- ion now lying approximately 0.3 A above the Mn3 plane. This structural distortion leads to ferromagnetic exchange interactions within the molecule and a resulting S = 6 ground state. Fits of dc magnetization data for 4-6 collected in the 1.8-10.0 K and 10-70 kG ranges confirmed S = 6 ground states, and gave the following D and g values: -0.34 cm(-1) and 1.92 for 4, -0.34 cm(-1) and 1.93 for 5, and -0.35 cm(-1) and 1.99 for 6, where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4-6 all exhibit frequency-dependent out-of-phase (chi" M) ac susceptibility signals suggesting them possibly to be single-molecule magnets (SMMs). Relaxation rate vs T data for complex 4 down to 1.8 K obtained from the chi" M vs T studies were supplemented with rate vs T data measured to 0.04 K via magnetization vs time decay studies, and these were used to construct Arrhenius plots from which was obtained the effective barrier to relaxation (Ueff) of 10.9 K. Magnetization vs dc field sweeps on single-crystals of 4.3CH2Cl2 displayed hysteresis loops exhibiting steps due to quantum tunneling of magnetization (QTM). The loops were essentially temperature-independent below approximately 0.3 K, indicating only ground-state QTM between the lowest-lying Ms = +/-6 levels. Complexes 4-6 are thus confirmed as the first triangular SMMs. High

  10. Dynamical Monte Carlo investigation of spin reversal and nonequilibrium magnetization of single-molecule magnets

    Science.gov (United States)

    Liu, Gui-Bin; Liu, Bang-Gui

    2010-10-01

    In this paper, we combine thermal effects with Landau-Zener (LZ) quantum tunneling effects in a dynamical Monte Carlo (DMC) framework to produce satisfactory magnetization curves of single-molecule magnet (SMM) systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs with magnetic dipolar interactions (MDIs). We calculate spin-reversal probabilities from thermal-activated barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates. Our simulations produce clear step structures in low-temperature magnetization curves, and our results show that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding experimental results on good Mn12 samples (with less disorders) in the presence of little misalignments between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory. Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be applicable to other SMM systems and could be used to study other properties of SMM systems.

  11. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    OpenAIRE

    Stoll, M.; Bakker, J.; Steimle, T.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106 cm−3 at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the 3He buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule-3He collision cross sections of 1.6×10−18 and 3.1×10−17 cm2 are extracted for CrH and MnH, respec...

  12. 13C NMR and relaxation studies of the nanomagnet Mn12-acetate

    Science.gov (United States)

    Achey, Randall M.; Kuhns, Philip L.; Reyes, Arneil P.; Moulton, William G.; Dalal, Naresh S.

    2001-08-01

    The nanomagnet [Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O, also known as Mn12, has been synthesized with 13C labeling at the CH3 groups, and investigated by 13C NMR at fields up to 23 T. Using oriented samples, it is possible to resolve four distinct 13C peaks at room temperature, located on both sides of the unshifted Larmor frequency. These peaks were assigned to the four hyperfine-shifted, magnetically inequivalent sets of 13CH3 groups in the Mn12 lattice, based on a comparison with the crystal structure and point-dipole and spin-density calculations. These results establish that the unpaired electron spin density of the S=10 system in this cluster extends over the entire molecular framework, not just the core. These results are discussed in relationship to inelastic neutron scattering measurements. The temperature and field dependence of the 13C nuclear-spin-lattice-relaxation time T1 on the least shifted peak was measured. A single weakly field-dependent minimum at about 60 K is observed in the temperature dependence of the measured T1. The relaxation mechanism responsible for the T1 minimum is ascribed mainly to hindered rotation of the methyl group of the acetate ligand at higher temperature, and to electronic spin fluctuations at lower temperature.

  13. Fluorescent Biosensors Based on Single-Molecule Counting.

    Science.gov (United States)

    Ma, Fei; Li, Ying; Tang, Bo; Zhang, Chun-Yang

    2016-09-20

    Biosensors for highly sensitive, selective, and rapid quantification of specific biomolecules make great contributions to biomedical research, especially molecular diagnostics. However, conventional methods for biomolecular assays often suffer from insufficient sensitivity and poor specificity. In some case (e.g., early disease diagnostics), the concentration of target biomolecules is too low to be detected by these routine approaches, and cumbersome procedures are needed to improve the detection sensitivity. Therefore, there is an urgent need for rapid and ultrasensitive analytical tools. In this respect, single-molecule fluorescence approaches may well satisfy the requirement and hold promising potential for the development of ultrasensitive biosensors. Encouragingly, owing to the advances in single-molecule microscopy and spectroscopy over past decades, the detection of single fluorescent molecule comes true, greatly boosting the development of highly sensitive biosensors. By in vitro/in vivo labeling of target biomolecules with proper fluorescent tags, the quantification of certain biomolecule at the single-molecule level is achieved. In comparison with conventional ensemble measurements, single-molecule detection-based analytical methods possess the advantages of ultrahigh sensitivity, good selectivity, rapid analysis time, and low sample consumption. Consequently, single-molecule detection may be potentially employed as an ideal analytical approach to quantify low-abundant biomolecules with rapidity and simplicity. In this Account, we will summarize our efforts for developing a series of ultrasensitive biosensors based on single-molecule counting. Single-molecule counting is a member of single-molecule detection technologies and may be used as a very simple and ultrasensitive method to quantify target molecules by simply counting the individual fluorescent bursts. In the fluorescent sensors, the signals of target biomolecules may be translated to the

  14. Extracting Models in Single Molecule Experiments

    Science.gov (United States)

    Presse, Steve

    2013-03-01

    Single molecule experiments can now monitor the journey of a protein from its assembly near a ribosome to its proteolytic demise. Ideally all single molecule data should be self-explanatory. However data originating from single molecule experiments is particularly challenging to interpret on account of fluctuations and noise at such small scales. Realistically, basic understanding comes from models carefully extracted from the noisy data. Statistical mechanics, and maximum entropy in particular, provide a powerful framework for accomplishing this task in a principled fashion. Here I will discuss our work in extracting conformational memory from single molecule force spectroscopy experiments on large biomolecules. One clear advantage of this method is that we let the data tend towards the correct model, we do not fit the data. I will show that the dynamical model of the single molecule dynamics which emerges from this analysis is often more textured and complex than could otherwise come from fitting the data to a pre-conceived model.

  15. Electrochemically-gated single-molecule electrical devices

    International Nuclear Information System (INIS)

    Guo, Shaoyin; Artés, Juan Manuel; Díez-Pérez, Ismael

    2013-01-01

    In the last decade, single-molecule electrical contacts have emerged as a new experimental platform that allows exploring charge transport phenomena in individual molecular blocks. This novel tool has evolved into an essential element within the Molecular Electronics field to understand charge transport processes in hybrid (bio)molecule/electrode interfaces at the nanoscale, and prospect the implementation of active molecular components into functional nanoscale optoelectronic devices. Within this area, three-terminal single-molecule devices have been sought, provided that they are highly desired to achieve full functionality in logic electronic circuits. Despite the latest experimental developments offer consistent methods to bridge a molecule between two electrodes (source and drain in a transistor notation), placing a third electrode (gate) close to the single-molecule electrical contact is still technically challenging. In this vein, electrochemically-gated single-molecule devices have emerged as an experimentally affordable alternative to overcome these technical limitations. In this review, the operating principle of an electrochemically-gated single-molecule device is presented together with the latest experimental methodologies to built them and characterize their charge transport characteristics. Then, an up-to-date comprehensive overview of the most prominent examples will be given, emphasizing on the relationship between the molecular structure and the final device electrical behaviour

  16. Structural and magnetic properties of Mn{sub 12}-Stearate nanomagnets

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shilpi [Quantum Phenomena and Applications Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), Chennai 600113 (India); Verma, Apoorva [Quantum Phenomena and Applications Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, Avanish K. [Electron and Ion Microscopy Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Gupta, Anurag, E-mail: anurag@mail.nplindia.org [Quantum Phenomena and Applications Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Singh, Surinder P. [Electron and Ion Microscopy Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), Chennai 600113 (India); Singh, Priti, E-mail: pritichem@gmail.com [Quantum Phenomena and Applications Division, National Physical Laboratory, Dr K. S. Krishnan Road, New Delhi 110012 (India); Academy of Scientific and Innovative Research (AcSIR), Chennai 600113 (India)

    2016-07-01

    We present the synthesis and characterization of a fatty acid ligated Mn{sub 12}, [Mn{sub 12}O{sub 12}(CH{sub 3}(CH{sub 2}){sub 16}CO{sub 2}){sub 11}(CH{sub 3}CO{sub 2}){sub 5}(H{sub 2}O){sub 4}], Mn{sub 12}-Stearate (2), a molecular nanomagnet of Mn{sub 12} family that exhibits the enhanced solubility (in organic solvents) and aqueous stability. The chemical composition and morphology of Mn{sub 12}-Stearate have been established using FT-IR, UV–Vis, Raman and {sup 1}H NMR spectroscopy, XRD, elemental analysis, TGA and electron microscopic techniques. The powder XRD and HR-TEM of compound 2 have revealed the formation of crystalline structure. The FC and ZFC magnetization (M) as a function of temperature (T) shows a blocking temperature T{sub B} ∼ 3.0 K. At T ≤ 3 K, the presence of hysteresis and periodic steps in the measured M-H loops indicate the presence of quantum tunnelling of magnetization (QTM). In the same T region, the observed decrease of magnetic relaxation rate with a decrease in T further implies the QTM to be thermally assisted. The estimated anisotropy energy barrier is found to be ∼35 K. - Highlights: • A fatty acid ligated mixed-carboxylate SMM, Mn{sub 12}-Stearate, has been synthesized. • Powder XRD and HRTEM images show crystalline ordering in the synthesized cluster. • The cluster exhibits higher blocking temperature and periodic steps in hysteresis.

  17. Magnetization relaxation of single molecule magnets after field cooling

    Science.gov (United States)

    Fernandez, Julio F.; Alonso, Juan J.

    2004-03-01

    Magnetic clusters, such as Fe8 and Mn_12, behave at low temperatures as large single spins S. In crystals, anisotropy energies U allow magnetic relaxation only through tunneling at k_BTstackrelspins with dipolar interactions. To mimic tunneling effects, a spin on a lattice site where h is within some tunnel window -h_w

  18. Nano-manipulation of single DNA molecules

    International Nuclear Information System (INIS)

    Hu Jun; Shanghai Jiaotong Univ., Shanghai; Lv Junhong; Wang Guohua; Wang Ying; Li Minqian; Zhang Yi; Li Bin; Li Haikuo; An Hongjie

    2004-01-01

    Nano-manipulation of single atoms and molecules is a critical technique in nanoscience and nanotechnology. This review paper will focus on the recent development of the manipulation of single DNA molecules based on atomic force microscopy (AFM). Precise manipulation has been realized including varied manipulating modes such as 'cutting', 'pushing', 'folding', 'kneading', 'picking up', 'dipping', etc. The cutting accuracy is dominated by the size of the AFM tip, which is usually 10 nm or less. Single DNA fragments can be cut and picked up and then amplified by single molecule PCR. Thus positioning isolation and sequencing can be performed. (authors)

  19. Scaling of magnetic relaxation in Mn-12: a distribution of tunnel splittings

    Science.gov (United States)

    Sarachik, Myriam P.

    2002-03-01

    In magnetic fields applied parallel to the anisotropy axis, the relaxation of the magnetization of Mn_12-acetate measured for different sweep rates collapses onto a single scaled curve.(K. M. Mertes, Y. Suzuki, M. P. Sarachik, Y. Paltiel, H. Shtrikman, E. Zeldov, E. M. Rumberger, and G. Christou, Phys. Rev. Lett. 87), 227205 (2001). The form of the scaling(E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 87, 187203 (2001).) implies that the dominant symmetry-breaking process responsible for tunneling is a locally varying second-order transverse anisotropy, forbidden by tetragonal symmetry in the perfect crystal, which gives rise to a broad distribution of tunnel splittings in a real crystal of Mn_12-acetate. Different forms applied to even and odd-numbered steps provide a clear distinction between even resonances (associated with crystal anisotropy) and odd resonances (which require a transverse magnetic field).

  20. A new family of 1D exchange biased heterometal single-molecule magnets: observation of pronounced quantum tunneling steps in the hysteresis loops of quasi-linear {Mn2Ni3} clusters.

    Science.gov (United States)

    Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc

    2011-03-16

    First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

  1. Evaluation of the Electronic Structure of Single-Molecule Junctions Based on Current-Voltage and Thermopower Measurements: Application to C60 Single-Molecule Junction.

    Science.gov (United States)

    Komoto, Yuki; Isshiki, Yuji; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2017-02-16

    The electronic structure of molecular junctions has a significant impact on their transport properties. Despite the decisive role of the electronic structure, a complete characterization of the electronic structure remains a challenge. This is because there is no straightforward way of measuring electron spectroscopy for an individual molecule trapped in a nanoscale gap between two metal electrodes. Herein, a comprehensive approach to obtain a detailed description of the electronic structure in single-molecule junctions based on the analysis of current-voltage (I-V) and thermoelectric characteristics is described. It is shown that the electronic structure of the prototypical C 60 single-molecule junction can be resolved by analyzing complementary results of the I-V and thermoelectric measurement. This combined approach confirmed that the C 60 single-molecule junction was highly conductive with molecular electronic conductances of 0.033 and 0.003 G 0 and a molecular Seebeck coefficient of -12 μV K -1 . In addition, we revealed that charge transport was mediated by a LUMO whose energy level was located 0.5≈0.6 eV above the Fermi level of the Au electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new manganese-based single-molecule magnet with a record-high antiferromagnetic phase transition temperature

    International Nuclear Information System (INIS)

    Cui Yan; Li Yan-Rong; Li Rui-Yuan; Wang Yun-Ping

    2014-01-01

    We perform both dc and ac magnetic measurements on the single crystal of Mn 3 O(Et-sao) 3 (ClO 4 )(MeOH) 3 single-molecule magnet (SMM) when the sample is preserved in air for different durations. We find that, during the oxidation process, the sample develops into another SMM with a smaller anisotropy energy barrier and a stronger antiferromagnetic intermolecular exchange interaction. The antiferromagnetic transition temperature observed at 6.65 K in the new SMM is record-high for the antiferromagnetic phase transition in all the known SMMs. Compared to the original SMM, the only apparent change for the new SMM is that each molecule has lost three methyl groups as revealed by four-circle x-ray diffraction (XRD), which is thought to be the origin of the stronger antiferromagnetic intermolecular exchange interaction

  3. Low-field EPR studies of levels near the top of the barrier in Mn 12-acetate reveal a new magnetization relaxation pathway

    Science.gov (United States)

    Rakvin, Boris; Žilić, Dijana; Dalal, Naresh S.; Harter, Andrew; Sanakis, Yiannis

    2006-07-01

    We show that X-band electron paramagnetic resonance (EPR) measurements using a dual-mode resonance cavity can directly probe the levels near the top of the magnetization reversal barrier in the single-molecule magnet (SMM) Mn 12-acetate. The observed transitions are much sharper than those reported in high-field EPR studies. The observed temperature dependence of the line positions points to the presence of a spin-diffusional mode. The correlation time for such fluctuations is of the order of 6×10 -8 s at 10 K, and follows an Arrhenius activation energy of 35-40 K. These results open a new avenue for understanding the mechanism of tunneling and spin-lattice relaxations in these SMMs.

  4. Single Molecule Spectroscopy of Electron Transfer

    International Nuclear Information System (INIS)

    Holman, Michael; Zang, Ling; Liu, Ruchuan; Adams, David M.

    2009-01-01

    The objectives of this research are threefold: (1) to develop methods for the study electron transfer processes at the single molecule level, (2) to develop a series of modifiable and structurally well defined molecular and nanoparticle systems suitable for detailed single molecule/particle and bulk spectroscopic investigation, (3) to relate experiment to theory in order to elucidate the dependence of electron transfer processes on molecular and electronic structure, coupling and reorganization energies. We have begun the systematic development of single molecule spectroscopy (SMS) of electron transfer and summaries of recent studies are shown. There is a tremendous need for experiments designed to probe the discrete electronic and molecular dynamic fluctuations of single molecules near electrodes and at nanoparticle surfaces. Single molecule spectroscopy (SMS) has emerged as a powerful method to measure properties of individual molecules which would normally be obscured in ensemble-averaged measurement. Fluctuations in the fluorescence time trajectories contain detailed molecular level statistical and dynamical information of the system. The full distribution of a molecular property is revealed in the stochastic fluctuations, giving information about the range of possible behaviors that lead to the ensemble average. In the case of electron transfer, this level of understanding is particularly important to the field of molecular and nanoscale electronics: from a device-design standpoint, understanding and controlling this picture of the overall range of possible behaviors will likely prove to be as important as designing ia the ideal behavior of any given molecule.

  5. Fast recognition of single molecules based on single-event photon statistics

    International Nuclear Information System (INIS)

    Dong Shuangli; Huang Tao; Liu Yuan; Wang Jun; Zhang Guofeng; Xiao Liantuan; Jia Suotang

    2007-01-01

    Mandel's Q parameter, which is determined from single-event photon statistics, provides an alternative way to recognize single molecules with fluorescence detection, other than the second-order correlation function. It is shown that the Q parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented. We have applied this method to ascertain single Cy5 dye molecules within hundreds of milliseconds

  6. How systems of single-molecule magnets magnetize at low temperatures

    Science.gov (United States)

    Fernández, Julio F.; Alonso, Juan J.

    2004-01-01

    We model magnetization processes that take place through tunneling in crystals of single-molecule magnets, such as Mn12 and Fe8. These processes take place when a field H is applied after quenching to very low temperatures. Magnetic dipolar interactions and spin-flipping rules are essential ingredients of the model. The results obtained follow from Monte Carlo simulations and from the stochastic model we propose for dipole field diffusion. Correlations established before quenching are shown to later drive the magnetization process. We also show that in simple cubic lattices, m∝√(t) at time t after H is applied, as observed in Fe8, but only for 1+2log10(hd/hw) time decades, where hd is some near-neighbor magnetic dipolar field, and a spin reversal can occur only if the magnetic field acting on it is within some field window (-hw,hw). However, the √(t) behavior is not universal. For bcc and fcc lattices, m∝tp, but p≃0.7. An expression for p in terms of lattice parameters is derived. At later times the magnetization levels off to a constant value. All these processes take place at approximately constant magnetic energy if the annealing energy ɛa is larger than the tunneling window’s energy width (i.e., if ɛa≳gμBhwS). Thermal processes come in only later on to drive further magnetization growth.

  7. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  8. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  9. Equilibrium Structure of Manganese Trifluoride (MnF3) Molecule

    International Nuclear Information System (INIS)

    Caliskan, M.

    2004-01-01

    The symmetry lowering in manganese trifluoride molecule due to Jahn-Teller distortion was demonstrated in both the experimental and computational results. The molecule does not have D 3 h (or C 3 v) symmetry, rather it has C 2 v symmetry it has been shown from electron-diffraction measurements, that even a molecule of D 3 h symmetry in its equilibrium geometry would appear as having C 3 v symmetry. The manganese trifluoride molecular structures is an example of concerted applications of electron diffraction experiment and computation. It was found two lower energy structures with C 2 v symmetry, one corresponding to the ground state and another corresponding to the transition state. In this work we have calculate the equilibrium structure of the MnF 3 in the C 2 v configuration using the Interionic Force Model. We have compared our results for equilibrium bond lengths and bond angles with measured values from electron diffraction and with the results of quantum chemical calculations. The agreement can be considered as very reasonable

  10. Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3. Comparison with Cr-doped Nd1/2Ca1/2MnO3

    International Nuclear Information System (INIS)

    Moritomo, Yutaka; Nonobe, Toshihiko; Machida, Akihiko; Ohoyama, Kenji

    2002-01-01

    Lattice and magnetic properties are investigated for 3% Ru- and Cr-doped Nd 1/2 Ca 1/2 MnO 3 . The parent Nd 1/2 Ca 1/2 MnO 3 is a charge-ordered insulator (T CO =250K). With decreasing temperature below ≅210K, these compounds are separated into two perovskite phases, that is, the long-c and short-c phases. The long-c region shows a ferromagnetic transition at T C ≅210K for the Ru-doped compound and ≅130K for the Cr-doped compound, while the short-c region shows antiferromagnetic transition at T N ≅150K for Ru and ≅110K for Cr. We discuss the origin of the enhanced T C for the Ru-doped compound in terms of the effective one-electron bandwidth W of the e g -band. (author)

  11. Single-Molecule Analysis of Pre-mRNA Splicing with Colocalization Single-Molecule Spectroscopy (CoSMoS).

    Science.gov (United States)

    Braun, Joerg E; Serebrov, Victor

    2017-01-01

    Recent development of single-molecule techniques to study pre-mRNA splicing has provided insights into the dynamic nature of the spliceosome. Colocalization single-molecule spectroscopy (CoSMoS) allows following spliceosome assembly in real time at single-molecule resolution in the full complexity of cellular extracts. A detailed protocol of CoSMoS has been published previously (Anderson and Hoskins, Methods Mol Biol 1126:217-241, 2014). Here, we provide an update on the technical advances since the first CoSMoS studies including slide surface treatment, data processing, and representation. We describe various labeling strategies to generate RNA reporters with multiple dyes (or other moieties) at specific locations.

  12. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  13. Exploration of the Berry phase interference in a single-molecule magnets of trigonal symmetry

    Science.gov (United States)

    Quddusi, H. M.; Liu, J.; Feng, P. L.; Del Barco, E.; Hill, S.; Hendrickson, D. N.

    2012-02-01

    The quantum behavior of single-molecule magnets (SMM) is mainly governed by their molecular composition and crystallographic symmetries, thus playing an essential role in the tunneling dynamics. We present low temperature magnetometry measurements on a trigonal symmetric, low nuclearity Mn3 SMM. The experiments are designed to explore the behavior of the tunnel splittings within the transverse field magnitude/direction phase space, by applying a transverse field (0-1 T) along different directions within the hard anisotropy plane of the molecules. The expected quantum interference pattern can be understood as an outcome of a competition between different intramolecular magnetic interactions. A multi-spin description using non-collinear zero-field splitting tensors and intra molecular dipolar interactions between the manganese ions is employed to explain the symmetry patterns.

  14. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    Science.gov (United States)

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  15. Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution

    Directory of Open Access Journals (Sweden)

    Bernd M. Briechle

    2012-11-01

    Full Text Available We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current–voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.

  16. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    Science.gov (United States)

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  17. Comparison of Magnetization Tunneling in the Giant-Spin and Multi-Spin Descriptions of Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2010-03-01

    We perform a mapping of the spectrum obtained for a triangular Mn3 single-molecule magnet (SMM) with idealized C3 symmetry via exact diagonalization of a multi-spin (MS) Hamiltonian onto that of a giant-spin (GS) model which assumes strong ferromagnetic coupling and a spin S = 6 ground state. Magnetic hysteresis measurements on this Mn3 SMM reveal clear evidence that the steps in magnetization due to magnetization tunneling obey the expected quantum mechanical selection rules [J. Henderson et al., Phys. Rev. Lett. 103, 017202 (2009)]. High-frequency EPR and magnetization data are first fit to the MS model. The tunnel splittings obtained via the two models are then compared in order to find a relationship between the sixth order transverse anisotropy term B6^6 in GS model and the exchange constant J coupling the Mn^III ions in the MS model. We also find that the fourth order transverse term B4^3 in the GS model is related to the orientation of JahnTeller axes of Mn^III ions, as well as J

  18. Magnetotransport of CaCu3Mn4O12 complex perovskite derivatives

    International Nuclear Information System (INIS)

    Sanchez-Benitez, J.; Andres, A. de; Garcia-Hernandez, M.; Alonso, J.A.; Martinez-Lope, M.J.

    2006-01-01

    Neutron powder diffraction, magnetic and magnetotransport studies were carried out on new derivatives of the CaCu 3 Mn 4 O 12 (A'A 3 B 4 O 12 ) complex perovskite. The samples were prepared in polycrystalline form under moderate pressure conditions. Substitutions at A and A' sites of CaCu 3 Mn 4 O 12 , with only Mn 4+ and insulating behavior, imply electron doping that affects the magnetic and transport properties. X-ray Absorption Spectroscopy showed that Mn 3+ /Mn 4+ valence mixing occurs only at B site, progressively filling the e g band and providing the metallic character in these compounds, as we observe in most of these samples. A semiconducting behavior is observed in samples with 50% Mn 3+ at B site. This can be understood by the opening of a gap in the conduction band corresponding to the half filling of the e g states. This is the case of the tetravalent rare earth doped samples (Ce and Th at A' site) and of the appropriate A site doped Ca(CuMn 2 )Mn 4 O 12 sample. At the strongly distorted A positions, Mn 3+ , with localized e g electrons, act as magnetic impurities at very low temperatures (<40 K) giving rise to the observed upturn in the resistivity. The magnetic origin of this scattering is evidenced by its drastic reduction under a magnetic field

  19. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  20. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  1. Direct single-molecule dynamic detection of chemical reactions.

    Science.gov (United States)

    Guan, Jianxin; Jia, Chuancheng; Li, Yanwei; Liu, Zitong; Wang, Jinying; Yang, Zhongyue; Gu, Chunhui; Su, Dingkai; Houk, Kendall N; Zhang, Deqing; Guo, Xuefeng

    2018-02-01

    Single-molecule detection can reveal time trajectories and reaction pathways of individual intermediates/transition states in chemical reactions and biological processes, which is of fundamental importance to elucidate their intrinsic mechanisms. We present a reliable, label-free single-molecule approach that allows us to directly explore the dynamic process of basic chemical reactions at the single-event level by using stable graphene-molecule single-molecule junctions. These junctions are constructed by covalently connecting a single molecule with a 9-fluorenone center to nanogapped graphene electrodes. For the first time, real-time single-molecule electrical measurements unambiguously show reproducible large-amplitude two-level fluctuations that are highly dependent on solvent environments in a nucleophilic addition reaction of hydroxylamine to a carbonyl group. Both theoretical simulations and ensemble experiments prove that this observation originates from the reversible transition between the reactant and a new intermediate state within a time scale of a few microseconds. These investigations open up a new route that is able to be immediately applied to probe fast single-molecule physics or biophysics with high time resolution, making an important contribution to broad fields beyond reaction chemistry.

  2. Single Molecule Nanoelectrochemistry in Electrical Junctions.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2016-11-15

    It is now possible to reliably measure single molecule conductance in a wide variety of environments including organic liquids, ultrahigh vacuum, water, ionic liquids, and electrolytes. The most commonly used methods deploy scanning probe microscopes, mechanically formed break junctions, or lithographically formed nanogap contacts. Molecules are generally captured between a pair of facing electrodes, and the junction current response is measured as a function of bias voltage. Gating electrodes can also be added so that the electrostatic potential at the molecular bridge can be independently controlled by this third noncontacting electrode. This can also be achieved in an electrolytic environment using a four-electrode bipotentiostatic configuration, which allows independent electrode potential control of the two contacting electrodes. This is commonly realized using an electrochemical STM and enables single molecule electrical characterization as a function of electrode potential and redox state of the molecular bridge. This has emerged as a powerful tool in modern interfacial electrochemistry and nanoelectrochemistry for studying charge transport across single molecules as a function of electrode potential and the electrolytic environments. Such measurements are possible in electrolytes ranging from aqueous buffers to nonaqueous ionic liquids. In this Account, we illustrate a number of examples of single molecule electrical measurements under electrode potential control use a scanning tunneling microscope (STM) and demonstrate how these can help in the understanding of charge transport in single molecule junctions. Examples showing charge transport following phase coherent tunneling to incoherent charge hopping across redox active molecular bridges are shown. In the case of bipyridinium (or viologen) molecular wires, it is shown how electrochemical reduction leads to an increase of the single molecule conductance, which is controlled by the liquid electrochemical

  3. Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?

    Science.gov (United States)

    Enoki, Toshiaki; Kiguchi, Manabu

    2018-03-01

    Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.

  4. Single-molecule magnets: structure and properties of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 with spin S = 13.

    Science.gov (United States)

    Brechin, E K; Sañudo, E C; Wernsdorfer, W; Boskovic, C; Yoo, J; Hendrickson, D N; Yamaguchi, A; Ishimoto, H; Concolino, T E; Rheingold, A L; Christou, G

    2005-02-07

    The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.

  5. Single-Molecule Electronics: Chemical and Analytical Perspectives.

    Science.gov (United States)

    Nichols, Richard J; Higgins, Simon J

    2015-01-01

    It is now possible to measure the electrical properties of single molecules using a variety of techniques including scanning probe microcopies and mechanically controlled break junctions. Such measurements can be made across a wide range of environments including ambient conditions, organic liquids, ionic liquids, aqueous solutions, electrolytes, and ultra high vacuum. This has given new insights into charge transport across molecule electrical junctions, and these experimental methods have been complemented with increasingly sophisticated theory. This article reviews progress in single-molecule electronics from a chemical perspective and discusses topics such as the molecule-surface coupling in electrical junctions, chemical control, and supramolecular interactions in junctions and gating charge transport. The article concludes with an outlook regarding chemical analysis based on single-molecule conductance.

  6. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling

    International Nuclear Information System (INIS)

    Jiang Dafeng; Liu Chunxia; Wang Lei; Jiang Wei

    2010-01-01

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0 x 10 -14 -3.0 x 10 -12 mol L -1 was obtained between the number of single molecules and sample concentration via a single-molecule counting approach.

  7. Far-infrared Fourier Transform Spectroscopy Measurements of Mn12-acetate.

    Science.gov (United States)

    Tu, Jiufeng; Suzuki, Yoko; Mertes, K. M.; Sarachik, M. P.; Agladze, N. I.; Sievers, A. J.; Rumberger, E. M.; Hendrickson, D. N.; Christou, G.

    2004-03-01

    The transmission spectra of both powder samples and assemblies of single crystals of Mn_12-acetate were measured in the far infrared region (2.0 - 20 cm-1) using a Fourier transform technique. The energies of the observed aborption lines agree with those obtained by Mukhin et al. [1] using the backwards wave oscillator technique. The temperature dependence of the aborption lines, as well as the presence of additional absorption lines, will be discussed. [1] A. A. Mukhin, V. D. Travkin, A. K. Zvesdin, A. Caneschi, D. Gatteschi and R. Sessoli, Physica B 284-288 (2000) 1221-1222

  8. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  9. Single molecule detection, thermal fluctuation and life

    Science.gov (United States)

    YANAGIDA, Toshio; ISHII, Yoshiharu

    2017-01-01

    Single molecule detection has contributed to our understanding of the unique mechanisms of life. Unlike artificial man-made machines, biological molecular machines integrate thermal noises rather than avoid them. For example, single molecule detection has demonstrated that myosin motors undergo biased Brownian motion for stepwise movement and that single protein molecules spontaneously change their conformation, for switching to interactions with other proteins, in response to thermal fluctuation. Thus, molecular machines have flexibility and efficiency not seen in artificial machines. PMID:28190869

  10. On theory of single-molecule transistor

    International Nuclear Information System (INIS)

    Tran Tien Phuc

    2009-01-01

    The results of the study on single-molecule transistor are mainly investigated in this paper. The structure of constructed single-molecule transistor is similar to a conventional MOSFET. The conductive channel of the transistors is a single-molecule of halogenated benzene derivatives. The chemical simulation software CAChe was used to design and implement for the essential parameter of the molecules utilized as the conductive channel. The GUI of Matlab has been built to design its graphical interface, calculate and plot the output I-V characteristic curves for the transistor. The influence of temperature, length and width of the conductive channel, and gate voltage is considered. As a result, the simulated curves are similar to the traditional MOSFET's. The operating temperature range of the transistors is wider compared with silicon semiconductors. The supply voltage for transistors is only about 1 V. The size of transistors in this research is several nanometers.

  11. Molecular electronics: the single molecule switch and transistor

    NARCIS (Netherlands)

    Sotthewes, Kai; Geskin, Victor; Heimbuch, Rene; Kumar, Avijit; Zandvliet, Henricus J.W.

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected

  12. Effects of Mn addition on microstructure and hardness of Al-12.6Si alloy

    Science.gov (United States)

    Biswas, Prosanta; Patra, Surajit; Mondal, Manas Kumar

    2018-03-01

    In this work, eutectic Al-12.6Si alloy with and without manganese (Mn) have been developed through gravity casting route. The effect of Mn concentration (0.0 wt.%, 1 wt%, 2 wt% and 3 wt%) on microstructural morphology and hardness property of the alloy has been investigated. The eutectic Al-12.6 Si alloy exhibits the presence of combine plate, needle and rod-like eutectic silicon phase with very sharp corners and coarser primary silicon particles within the α-Al phase. In addition of 1wt.% of Mn in the eutectic Al-12.6Si alloy, sharp corners of the primary Si and needle-like eutectic Si are became blunt and particles size is reduced. Further, increase in Mn concentration (2.0 wt.%) in the Al-12.6Si alloy, irregular plate shape Al6(Mn,Fe) intermetallics are formed inside the α-Al phase, but the primary and eutectic phase morphology is similar to the eutectic Al-12.6Si alloy. The volume fraction of Al6(Mn,Fe) increases and Al6(Mn,Fe) particles appear as like chain structure in the alloy with 3 wt.% Mn. An increase in Mn concentration in the Al-12.6Si alloys result in the increase in bulk hardness of the alloy as an effects of microstructure modification as well as the presence of harder Al6(Mn,Fe) phase in the developed alloy.

  13. Sodium storage capability of spinel Li4Mn5O12

    International Nuclear Information System (INIS)

    Zhang, Jiaolong; Wang, Wenhui; Li, Yingshun; Yu, Denis Y.W.

    2015-01-01

    Highlights: • Electrochemical behavior of spinel Li 4 Mn 5 O 12 is examined in Na-ion battery. • A capacity of 120.7 mAh g −1 is obtained during the first sodiation process. • Na storage performance is found to be strongly dependent on particle size. • Ion-exchange between Li ions and Na ions occurs in Li 4 Mn 5 O 12 structure upon cycling. • Loss of crystallinity with cycling, leading to capacity fading. - Abstract: Spinel Li 4 Mn 5 O 12 , a well-known 3 V Li-ion battery (LIB) material with excellent cycling stability and good rate capability, is examined as Na-ion battery (NIB) cathode for the first time. Electrochemical studies clearly show that Na ions can be reversibly inserted into and extracted from the three-dimensional spinel structure. However, unlike in LIB, the available capacity in NIB is strongly dependent on the particle size and current rate due to the sluggish Na-ion transport in solid phase. Cycle performance of Li 4 Mn 5 O 12 in NIB is also inferior to that in LIB. Ex-situ X-ray diffraction study indicates a gradual loss of crystallinity with cycling, and that the crystal lattice undergoes an irreversible expansion during the initial 20 cycles. Inductively coupled plasma spectroscopy shows a decrease of Li/Mn ratio in Li 4 Mn 5 O 12 with cycling. The results suggest that Li ions are removed from the material during the charging process. The charge-discharge mechanism is also discussed in the paper.

  14. Single-Molecule Plasmon Sensing: Current Status and Future Prospects.

    Science.gov (United States)

    Taylor, Adam B; Zijlstra, Peter

    2017-08-25

    Single-molecule detection has long relied on fluorescent labeling with high quantum-yield fluorophores. Plasmon-enhanced detection circumvents the need for labeling by allowing direct optical detection of weakly emitting and completely nonfluorescent species. This review focuses on recent advances in single molecule detection using plasmonic metal nanostructures as a sensing platform, particularly using a single particle-single molecule approach. In the past decade two mechanisms for plasmon-enhanced single-molecule detection have been demonstrated: (1) by plasmonically enhancing the emission of weakly fluorescent biomolecules, or (2) by monitoring shifts of the plasmon resonance induced by single-molecule interactions. We begin with a motivation regarding the importance of single molecule detection, and advantages plasmonic detection offers. We describe both detection mechanisms and discuss challenges and potential solutions. We finalize by highlighting the exciting possibilities in analytical chemistry and medical diagnostics.

  15. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study

    DEFF Research Database (Denmark)

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas

    2009-01-01

    expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical...... interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1...

  16. Observing single molecule chemical reactions on metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Emory, S. R. (Steven R.); Ambrose, W. Patrick; Goodwin, P. M. (Peter M); Keller, Richard A.

    2001-01-01

    We report the study of the photodecomposition of single Rhodamine 6G (R6G) dye molecules adsorbed on silver nanoparticles. The nanoparticles were immobilized and spatially isolated on polylysine-derivatized glass coverslips, and confocal laser microspectroscopy was used to obtain surface-enhanced Raman scattering (SERS) spectra from individual R6G molecules. The photodecomposition of these molecules was observed with 150-ms temporal resolution. The photoproduct was identified as graphitic carbon based on the appearance of broad SERS vibrational bands at 1592 cm{sup -1} and 1340 cm{sup -1} observed in both bulk and averaged single-molecule photoproduct spectra. In contrast, when observed at the single-molecule level, the photoproduct yielded sharp SERS spectra. The inhomogeneous broadening of the bulk SERS spectra is due to a variety of photoproducts in different surface orientations and is a characteristic of ensemble-averaged measurements of disordered systems. These single-molecule studies indicate a photodecomposition pathway by which the R6G molecule desorbs from the metal surface, an excited-state photoreaction occurs, and the R6G photoproduct(s) readsorbs to the surface. A SERS spectrum is obtained when either the intact R6G or the R6G photoproduct(s) are adsorbed on a SERS-active site. This work further illustrates the power of single-molecule spectroscopy (SMS) to reveal unique behaviors of single molecules that are not discernable with bulk measurements.

  17. Single-Molecule Transport at a Rectifying GaAs Contact.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Ferri, Nicolò; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-02-08

    In most single- or few-molecule devices, the contact electrodes are simple ohmic resistors. Here we describe a new type of single-molecule device in which metal and semiconductor contact electrodes impart a function, namely, current rectification, which is then modified by a molecule bridging the gap. We study junctions with the structure Au STM tip/X/n-GaAs substrate, where "X" is either a simple alkanedithiol or a conjugated unit bearing thiol/methylthiol contacts, and we detect current jumps corresponding to the attachment and detachment of single molecules. From the magnitudes of the current jumps we can deduce values for the conductance decay constant with molecule length that agree well with values determined from Au/molecule/Au junctions. The ability to impart functionality to a single-molecule device through the properties of the contacts as well as through the properties of the molecule represents a significant extension of the single-molecule electronics "tool-box".

  18. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  19. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  20. Single Fluorescent Molecules as Nano-Illuminators for Biological Structure and Function

    Science.gov (United States)

    Moerner, W. E.

    2011-03-01

    Since the first optical detection and spectroscopy of a single molecule in a solid (Phys. Rev. Lett. {62}, 2535 (1989)), much has been learned about the ability of single molecules to probe local nanoenvironments and individual behavior in biological and nonbiological materials in the absence of ensemble averaging that can obscure heterogeneity. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic imaging of individual fluorophores leads naturally to superlocalization, or determination of the position of the molecule with precision beyond the optical diffraction limit, simply by digitization of the point-spread function from the single emitter. For example, the shape of single filaments in a living cell can be extracted simply by allowing a single molecule to move through the filament (PNAS {103}, 10929 (2006)). The addition of photoinduced control of single-molecule emission allows imaging beyond the diffraction limit (super-resolution) and a new array of acronyms (PALM, STORM, F-PALM etc.) and advances have appeared. We have used the native blinking and switching of a common yellow-emitting variant of green fluorescent protein (EYFP) reported more than a decade ago (Nature {388}, 355 (1997)) to achieve sub-40 nm super-resolution imaging of several protein structures in the bacterium Caulobacter crescentus: the quasi-helix of the actin-like protein MreB (Nat. Meth. {5}, 947 (2008)), the cellular distribution of the DNA binding protein HU (submitted), and the recently discovered division spindle composed of ParA filaments (Nat. Cell Biol. {12}, 791 (2010)). Even with these advances, better emitters would provide more photons and improved resolution, and a new photoactivatable small-molecule emitter has recently been synthesized and targeted to specific structures in living cells to provide super-resolution images (JACS {132}, 15099 (2010)). Finally, a new optical method for extracting three-dimensional position information based on

  1. Computer systems for annotation of single molecule fragments

    Science.gov (United States)

    Schwartz, David Charles; Severin, Jessica

    2016-07-19

    There are provided computer systems for visualizing and annotating single molecule images. Annotation systems in accordance with this disclosure allow a user to mark and annotate single molecules of interest and their restriction enzyme cut sites thereby determining the restriction fragments of single nucleic acid molecules. The markings and annotations may be automatically generated by the system in certain embodiments and they may be overlaid translucently onto the single molecule images. An image caching system may be implemented in the computer annotation systems to reduce image processing time. The annotation systems include one or more connectors connecting to one or more databases capable of storing single molecule data as well as other biomedical data. Such diverse array of data can be retrieved and used to validate the markings and annotations. The annotation systems may be implemented and deployed over a computer network. They may be ergonomically optimized to facilitate user interactions.

  2. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force

    Science.gov (United States)

    Wong, Wesley; Halvorsen, Ken

    2011-03-01

    Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.

  3. Single molecule transcription profiling with AFM

    International Nuclear Information System (INIS)

    Reed, Jason; Mishra, Bud; Pittenger, Bede; Magonov, Sergei; Troke, Joshua; Teitell, Michael A; Gimzewski, James K

    2007-01-01

    Established techniques for global gene expression profiling, such as microarrays, face fundamental sensitivity constraints. Due to greatly increasing interest in examining minute samples from micro-dissected tissues, including single cells, unorthodox approaches, including molecular nanotechnologies, are being explored in this application. Here, we examine the use of single molecule, ordered restriction mapping, combined with AFM, to measure gene transcription levels from very low abundance samples. We frame the problem mathematically, using coding theory, and present an analysis of the critical error sources that may serve as a guide to designing future studies. We follow with experiments detailing the construction of high density, single molecule, ordered restriction maps from plasmids and from cDNA molecules, using two different enzymes, a result not previously reported. We discuss these results in the context of our calculations

  4. Optical probing of single fluorescent molecules and proteins

    NARCIS (Netherlands)

    Garcia Parajo, M.F.; Veerman, J.A.; Bouwhuis, R.; Bouwhuis, Rudo; van Hulst, N.F.; Vallée, R.A.L.

    2001-01-01

    Single-molecule detection and analysis of organic fluorescent molecules and proteins are presented, with emphasis o­n the underlying principles methodology and the application of single-molecule analysis at room temperature. This Minireview is mainly focused o­n the application of confocal and

  5. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  6. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  7. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  8. Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics

    Directory of Open Access Journals (Sweden)

    Yuji Isshiki

    2018-02-01

    Full Text Available The relationship between the current through an electronic device and the voltage across its terminals is a current–voltage characteristic (I–V that determine basic device performance. Currently, I–V measurement on a single-molecule scale can be performed using break junction technique, where a single molecule junction can be prepared by trapping a single molecule into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the device performance, but also reflect information on energy dispersion of the electronic state and the electron-molecular vibration coupling in the junction. This mini review focuses on recent representative studies on I–Vs of the single molecule junctions that cover investigation on the single-molecule diode property, the molecular vibration, and the electronic structure as a form of transmission probability, and electronic density of states, including the spin state of the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and identification of the charged carriers (i.e., electrons or holes are presented. The analysis in the single-molecule I–Vs provides fundamental and essential information for a better understanding of the single-molecule science, and puts the single molecule junction to more practical use in molecular devices.

  9. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  10. From a Dy(III) single molecule magnet (SMM) to a ferromagnetic [Mn(II)Dy(III)Mn(II)] trinuclear complex.

    Science.gov (United States)

    Bhunia, Asamanjoy; Gamer, Michael T; Ungur, Liviu; Chibotaru, Liviu F; Powell, Annie K; Lan, Yanhua; Roesky, Peter W; Menges, Fabian; Riehn, Christoph; Niedner-Schatteburg, Gereon

    2012-09-17

    The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.

  11. Investigation of Y6Mn23 and YMn12 intermetallic alloys under high hydrogen pressure

    Science.gov (United States)

    Filipek, S. M.; Sato, R.; Kuriyama, N.; Tanaka, H.; Takeichi, N.

    2010-03-01

    Among three intermetallic compounds existing in Y-Mn system the YMn2 and Y6Mn23 can easily form interstitial hydrides while for YMn12 existence of hydride has never been reported. At moderate hydrogen pressure YMn2 and Y6Mn23 transform into YMn2H4.5 and Y6Mn23H25 respectively. At high hydrogen pressure the YMn2 (C15 or C14 parent structure) forms a unique YMn2H6 (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn2H6 independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y6Mn23 and YMn12 could transform into YMn2H6 - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R6Mn23 and RMn12 to 1 GPa of hydrogen pressure at 1000C. Formation of (RxMn2-x)MnH6 (where x = 18/29 or 3/13 for R6Mn23 and RMn12 hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R6Mn23 and RMn12 based hydrides reached H/Me = 2 thus value two times higher than in R6Mn23H25.

  12. Orientation-dependent Kondo resonance of the Ni{sub 2}(hfaa){sub 4}(bpm) and Mn{sub 2}(hfaa){sub 4}(bpm) single molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Schackert, Michael; Miyamachi, Toshio; Yamada, Toyokazu; Wulfhekel, Wulf [Physikalisches Institut, Karlsruhe Institut of Technology (Germany); Schramm, Frank; Ruben, Mario [Institut of Nanotechnology, Karlsruhe Institut of Technology (Germany)

    2011-07-01

    Single molecular magnets (SMM) attract much interest due to their potential applications in spintronics. We investigated metal organic molecules based on (hfaa){sub 4}(bpm) containing two 3d ions (Ni or Mn) using low temperature scanning tunneling microscopy (STM) at 1 K in ultra-high vacuum. In the bulk, the two metallic ions couple antiferromagnetically leading to an S=0 ground state. The Ni{sub 2} and Mn{sub 2} molecules were sublimed onto atomically clean Cu(100) surfaces resulting in two different absorptions configurations. Scanning tunneling spectroscopy (STS) with a high energy resolution of 0.3 meV showed a strong Kondo resonance on the position of the metal ions inside the molecules indicating that the hybridization of the local spins with the substrate is more efficient than their antiferromagnetic coupling. The Fano resonance showed a pronounced dependence on the adsorption geometry indicating different Kondo temperatures and q-parameters. This is explained by a adsorption dependent hybridization between SMM and the substrate.

  13. Highly polarized single-c-domain single-crystal Pb(Mn,Nb)O(3)-PZT thin films.

    Science.gov (United States)

    Wasa, Kiyotaka; Adachi, Hideaki; Nishida, Ken; Yamamoto, Takashi; Matsushima, Tomoaki; Kanno, Isaku; Kotera, Hidetoshi

    2012-01-01

    In-plane unstrained single-c-domain/single-crystal thin films of PZT-based ternary ferroelectric perovskite, ξPb(Mn,Nb)O3-(1 - ξ)PZT, were grown on SrRuO(3)/Pt/MgO substrates using magnetron sputtering followed by quenching. The sputtered unstrained thin films exhibit unique ferroelectric properties: high coercive field, Ec > 180 kV/cm, large remanent polarization, P(r) = 100 μC/cm(2), small relative dielectric constants, ε* = 100 to 150, high Curie temperature, Tc = ~600 °C, and bulk-like large transverse piezoelectric constants, e31,f = -12.0 C/m(2) for PZT(48/52) at ξ = 0.06. The unstrained thin films are an ideal structure to extract the bulk ferroelectric properties. Their micro-structures and ferroelectric properties are discussed in relation to the potential applications for piezoelectric MEMS. © 2012 IEEE

  14. Spectroscopic characterization of Venus at the single molecule level.

    Science.gov (United States)

    David, Charlotte C; Dedecker, Peter; De Cremer, Gert; Verstraeten, Natalie; Kint, Cyrielle; Michiels, Jan; Hofkens, Johan

    2012-02-01

    Venus is a recently developed, fast maturating, yellow fluorescent protein that has been used as a probe for in vivo applications. In the present work the photophysical characteristics of Venus were analyzed spectroscopically at the bulk and single molecule level. Through time-resolved single molecule measurements we found that single molecules of Venus display pronounced fluctuations in fluorescence emission, with clear fluorescence on- and off-times. These fluorescence intermittencies were found to occupy a broad range of time scales, ranging from milliseconds to several seconds. Such long off-times can complicate the analysis of single molecule counting experiments or single-molecule FRET experiments. This journal is © The Royal Society of Chemistry and Owner Societies 2012

  15. Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation

    International Nuclear Information System (INIS)

    An Hongjie; Huang Jiehuan; Lue Ming; Li Xueling; Lue Junhong; Li Haikuo; Zhang Yi; Li Minqian; Hu Jun

    2007-01-01

    We show new approaches towards a novel single-molecule sequencing strategy which consists of high-resolution positioning isolation of overlapping DNA fragments with atomic force microscopy (AFM), subsequent single-molecule PCR amplification and conventional Sanger sequencing. In this study, a DNA labelling technique was used to guarantee the accuracy in positioning the target DNA. Single-molecule multiplex PCR was carried out to test the contamination. The results showed that the two overlapping DNA fragments isolated by AFM could be successfully sequenced with high quality and perfect contiguity, indicating that single-base resolution and long-coverage sequencing have been achieved simultaneously

  16. Kondo effect in single-molecule magnet transistors

    Science.gov (United States)

    Gonzalez, Gabriel; Leuenberger, Michael; Mucciolo, Eduardo

    2009-03-01

    We present a careful and thorough microscopic derivation of the anisotropic Kondo Hamiltonian for single-molecule magnet (SMM) transistors. When the molecule is strongly coupled to metallic leads, we show that by applying a transverse magnetic field it is possible to topologically induce or quench the Kondo effect in the conductance of a SMM with either an integer or a half-integer spin S>1/2. This topological Kondo effect is due to the Berry-phase interference between multiple quantum tunneling paths of the spin. We calculate the renormalized Berry-phase oscillations of the two Kondo peaks as a function of a transverse magnetic field by means of the poor man's scaling approach. We illustrate our findings with the SMM Ni4, which we propose as a possible candidate for the experimental observation of the conductance oscillations.

  17. Lattice diffusion of a single molecule in solution

    Science.gov (United States)

    Ruggeri, Francesca; Krishnan, Madhavi

    2017-12-01

    The ability to trap a single molecule in an electrostatic potential well in solution has opened up new possibilities for the use of molecular electrical charge to study macromolecular conformation and dynamics at the level of the single entity. Here we study the diffusion of a single macromolecule in a two-dimensional lattice of electrostatic traps in solution. We report the ability to measure both the size and effective electrical charge of a macromolecule by observing single-molecule transport trajectories, typically a few seconds in length, using fluorescence microscopy. While, as shown previously, the time spent by the molecule in a trap is a strong function of its effective charge, we demonstrate here that the average travel time between traps in the landscape yields its hydrodynamic radius. Tailoring the pitch of the lattice thus yields two different experimentally measurable time scales that together uniquely determine both the size and charge of the molecule. Since no information is required on the location of the molecule between consecutive departure and arrival events at lattice sites, the technique is ideally suited to measurements on weakly emitting entities such as single molecules.

  18. High-pressure growth of NaMn7O12 crystals

    International Nuclear Information System (INIS)

    Gilioli, Edi; Calestani, Gianluca; Licci, Francesca; Paorici, Carlo; Gauzzi, Andrea; Bolzoni, Fulvio; Prodi, Andrea

    2006-01-01

    With the aim of producing large crystals of metastable NaMn 7 O 12 manganite, suitable for physical measurements (i.e.: RXS, Raman, EPR, STS, single-crystal neutron diffraction), we carried out a systematic investigation of the parameters controlling the growth of crystals, including the thermodynamic variables (T, P, and reagent composition) and the kinetic factors, such as reaction time and heating/cooling rate. By varying each parameter while maintaining constant the other ones, we found the thermodynamic conditions under which an optimum equilibrium is reached between the competing nucleation and growth rates. They were found to range between 400 and 700 o C (T) and between 20 and 60 Kbars (P), respectively. Under these conditions, we further optimized the growth process, by establishing the most appropriate growth duration (several hours), reagent type (pre-reacted precursor) and composition (presence of 0.4 mole% water and of 5% Na excess with respect to the stoichiometric composition). Typical crystals having several hundreds μm in linear sizes were reproducibly obtained, while the largest sample was about 800 μm. A description of the crystal growth mechanism, based on the experimental results, is also presented and discussed. It assumes that two different mechanisms control the crystal growth, depending on whether the crystallization is taking place outside the stability field, i.e. in presence of native reagents, or inside it, i.e. in a polycrystalline NaMn 7 O 12 phase matrix. In the first case, large crystal growth occurs thanks to the low nucleation and high diffusion rates, while in the second one the crystallization is due to the solid-state mechanism based on the free energy reduction caused by grain boundary migration. - Graphical abstract: Optical (a) and SEM images (b) of NaMn 7 O 12 crystals. Note the markers: 300 μm, top-right corner (a) and 40 μm, bottom left (b)

  19. Investigation of Y6Mn23 and YMn12 intermetallic alloys under high hydrogen pressure

    International Nuclear Information System (INIS)

    Filipek, S M; Sato, R; Kuriyama, N; Tanaka, H; Takeichi, N

    2010-01-01

    Among three intermetallic compounds existing in Y-Mn system the YMn 2 and Y 6 Mn 23 can easily form interstitial hydrides while for YMn 12 existence of hydride has never been reported. At moderate hydrogen pressure YMn 2 and Y 6 Mn 23 transform into YMn 2 H 4.5 and Y 6 Mn 23 H 25 respectively. At high hydrogen pressure the YMn 2 (C15 or C14 parent structure) forms a unique YMn 2 H 6 (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn 2 H 6 independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y 6 Mn 23 and YMn 12 could transform into YMn 2 H 6 - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R 6 Mn 23 and RMn 12 to 1 GPa of hydrogen pressure at 100 0 C. Formation of (R x Mn 2-x )MnH 6 (where x = 18/29 or 3/13 for R 6 Mn 23 and RMn 12 hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R 6 Mn 23 and RMn 12 based hydrides reached H/Me = 2 thus value two times higher than in R 6 Mn 23 H 25 .

  20. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  1. Extending Single-Molecule Microscopy Using Optical Fourier Processing

    Science.gov (United States)

    2015-01-01

    This article surveys the recent application of optical Fourier processing to the long-established but still expanding field of single-molecule imaging and microscopy. A variety of single-molecule studies can benefit from the additional image information that can be obtained by modulating the Fourier, or pupil, plane of a widefield microscope. After briefly reviewing several current applications, we present a comprehensive and computationally efficient theoretical model for simulating single-molecule fluorescence as it propagates through an imaging system. Furthermore, we describe how phase/amplitude-modulating optics inserted in the imaging pathway may be modeled, especially at the Fourier plane. Finally, we discuss selected recent applications of Fourier processing methods to measure the orientation, depth, and rotational mobility of single fluorescent molecules. PMID:24745862

  2. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  3. Controlling single-molecule junction conductance by molecular interactions

    Science.gov (United States)

    Kitaguchi, Y.; Habuka, S.; Okuyama, H.; Hatta, S.; Aruga, T.; Frederiksen, T.; Paulsson, M.; Ueba, H.

    2015-01-01

    For the rational design of single-molecular electronic devices, it is essential to understand environmental effects on the electronic properties of a working molecule. Here we investigate the impact of molecular interactions on the single-molecule conductance by accurately positioning individual molecules on the electrode. To achieve reproducible and precise conductivity measurements, we utilize relatively weak π-bonding between a phenoxy molecule and a STM-tip to form and cleave one contact to the molecule. The anchoring to the other electrode is kept stable using a chalcogen atom with strong bonding to a Cu(110) substrate. These non-destructive measurements permit us to investigate the variation in single-molecule conductance under different but controlled environmental conditions. Combined with density functional theory calculations, we clarify the role of the electrostatic field in the environmental effect that influences the molecular level alignment. PMID:26135251

  4. A hierarchical nanostructure consisting of amorphous MnO{sub 2}, Mn{sub 3}O{sub 4} nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Hung, Ching-Yun [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Yang, Yi-Lin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2011-01-15

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO{sub 2} (a-MnO{sub 2}), Mn{sub 3}O{sub 4} nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn{sub 3}O{sub 4} nanocrystals and a-MnO{sub 2} nanorods into an amorphous manganese oxide, the cycle stability of a-MnO{sub 2} is obviously enhanced by adding Mn{sub 3}O{sub 4}. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g{sup -1} in CaCl{sub 2}), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  5. DNA-psoralen interaction: a single molecule experiment.

    Science.gov (United States)

    Rocha, M S; Viana, N B; Mesquita, O N

    2004-11-15

    By attaching one end of a single lambda-DNA molecule to a microscope coverslip and the other end to a polystyrene microsphere trapped by an optical tweezers, we can study the entropic elasticity of the lambda-DNA by measuring force versus extension as we stretch the molecule. This powerful method permits single molecule studies. We are particularly interested in the effects of the photosensitive drug psoralen on the elasticity of the DNA molecule. We have illuminated the sample with different light sources, studying how the different wavelengths affect the psoralen-DNA linkage. To do this, we measure the persistence length of individual DNA-psoralen complexes.

  6. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  7. Zero-mode waveguide nanophotonic structures for single molecule characterization

    Science.gov (United States)

    Crouch, Garrison M.; Han, Donghoon; Bohn, Paul W.

    2018-05-01

    Single-molecule characterization has become a crucial research tool in the chemical and life sciences, but limitations, such as limited concentration range, inability to control molecular distributions in space, and intrinsic phenomena, such as photobleaching, present significant challenges. Recent developments in non-classical optics and nanophotonics offer promising routes to mitigating these restrictions, such that even low affinity (K D ~ mM) biomolecular interactions can be studied. Here we introduce and review specific nanophotonic devices used to support single molecule studies. Optical nanostructures, such as zero-mode waveguides (ZMWs), are usually fabricated in thin gold or aluminum films and serve to confine the observation volume of optical microspectroscopy to attoliter to zeptoliter volumes. These simple nanostructures allow individual molecules to be isolated for optical and electrochemical analysis, even when the molecules of interest are present at high concentration (µM–mM) in bulk solution. Arrays of ZMWs may be combined with optical probes such as single molecule fluorescence, single molecule fluorescence resonance energy transfer, and fluorescence correlation spectroscopy for distributed analysis of large numbers of single-molecule reactions or binding events in parallel. Furthermore, ZMWs may be used as multifunctional devices, for example by combining optical and electrochemical functions in a single discrete architecture to achieve electrochemical ZMWs. In this review, we will describe the optical properties, fabrication, and applications of ZMWs for single-molecule studies, as well as the integration of ZMWs into systems for chemical and biochemical analysis.

  8. 1D and 3D Polymeric Manganese(II) Thiolato Complexes: Synthesis, Structure, and Properties of    ∞3[Mn4(SPh)8] and ∞1[Mn(SMes)2].

    Science.gov (United States)

    Eichhöfer, Andreas; Lebedkin, Sergei

    2018-01-16

    Reactions of [Mn{N(SiMe 3 ) 2 } 2 ] 2 with 2.1 equiv of RSH, R = Ph or Mes = C 6 H 2 -2,4,6-(CH 3 ) 3 , yield compounds of the formal composition "Mn(SR) 2 ". Single-crystal X-ray diffraction reveals that ∞ 1 [Mn(SMes) 2 ] forms one-dimensional chains in the crystal via μ 2 -SMes bridges, whereas ∞ 3 [Mn 4 (SPh) 8 ] comprises a three-dimensional network in which adamantanoid cages composed of four Mn atoms and six μ 2 -bridging SPh ligands are connected in three dimensions by doubly bridging SPh ligands. Thermogravimetric analysis and powder diffractometry indicate an reversible uptake of solvent molecules (tetrahydrofuran) into the channels of ∞ 1 [Mn(SMes) 2 ]. Magnetic measurements reveal antiferromagnetic coupling for both compounds with J = -8.2 cm -1 ( ∞ 1 [Mn(SMes) 2 ]) and -10.0 cm -1 ( ∞ 3 [Mn 4 (SPh) 8 ]), respectively. Their optical absorption and photoluminescence (PL) excitation spectra display characteristic d-d bands of Mn 2+ ions in the visible spectral region. Both compounds emit bright phosphorescence at ∼800 nm at low temperatures (SMes) 2 ] retains a moderately intense emission at ambient temperature (with a quantum yield of 1.2%). Similar PL properties are also found for the related selenolate complexes ∞ 1 [Mn(SeR) 2 ] (R = Ph, Mes).

  9. Thousand-fold enhancement of single-molecule fluorescence near a single gold nanorod

    NARCIS (Netherlands)

    Yuan, H.; Khatua, S.; Zijlstra, P.; Yorulmaz, M.; Orrit, M.

    2013-01-01

    Single molecules: Large enhancements of single-molecule fluorescence up to 1100 times by using synthesized gold nanorods are reported (see picture). This high enhancement is achieved by selecting a dye with its adsorption and emission close to the surface plasmon resonance of the gold nanorods

  10. Ellipsometric studies of ErMnO3 single crystals

    DEFF Research Database (Denmark)

    Babonas, G.-J.; Grivel, Jean-Claude; Reza, A.

    2007-01-01

    Ellipsometric studies of ErMnO3 single crystals have been carried out in the spectral range of 1-5 eV by means of photometric ellipsometers. Experimental ellipsometric data were analysed in the uniaxial crystal model. For the first time, the components of dielectric function of ErMnO3 were...

  11. Twinning microstructure and charge ordering in the colossal magnetoresistive manganite Nd1/2Sr1/2MnO3

    International Nuclear Information System (INIS)

    Luo, Z.P.; Miller, D.J.; Mitchell, J.F.

    2000-01-01

    Charge ordering (C.O.) in the colossal magnetoresistive (CMR) manganites gives rise to an insulating, high-resistance state. This charge ordered state can be melted into a low-resistance metallic-like state by the application of magnetic field. Thus, the potential to attain high values of magnetoresistance with the application of small magnetic fields may be aided by a better understanding of the charge-ordering phenomenon. This study focused on microstructural characterization in Nd 1/2 Sr 1/2 MnO 3 . In Nd 1/2 Sr 1/2 MnO 3 , the nominal valence of Mn is 3.5+. On cooling, charge can localize and lead to a charge ordering between Mn 3+ and Mn 4+. The ordering of charge results in a superlattice structure and a reduction in symmetry. Thin foil specimens were prepared from bulk samples by conventional thinning and ion milling (at LiqN 2 temperature) methods. The room temperature TEM observation of Nd 1/2 Sr 1/2 MnO 3 reveals that it contains a highly twinned microstructure, together with a small number of stacking faults (SFS). A figure shows the same area of the specimen at different zone axes obtained by tilting around two perpendicular directions as indicated. Three grains A, B and C are labeled for each of the zone axes. The room temperature EDPs from the matrix and twins shows an approximate 90degree rotation suggesting a 90degree twin orientation. These results are further confirmed by C.O. at low temperatures. The twinning planes can be determined by tilting with large angles

  12. Single Molecule Conductance of Oligothiophene Derivatives

    Science.gov (United States)

    Dell, Emma J.

    This thesis studies the electronic properties of small organic molecules based on the thiophene motif. If we are to build next-generation devices, advanced materials must be designed which possess requisite electronic functionality. Molecules present attractive candidates for these ad- vanced materials since nanoscale devices are particularly sought after. However, selecting a molecule that is suited to a certain electronic function remains a challenge, and characterization of electronic behavior is therefore critical. Single molecule conductance measurements are a powerful tool to determine properties on the nanoscale and, as such, can be used to investigate novel building blocks that may fulfill the design requirements of next-generation devices. Combining these conductance results with strategic chemical synthesis allows for the development of new families of molecules that show attractive properties for future electronic devices. Since thiophene rings are the fruitflies of organic semiconductors on the bulk scale, they present an intriguing starting point for building functional materials on the nanoscale, and therefore form the structural basis of all molecules studied herein. First, the single-molecule conductance of a family of bithiophene derivatives was measured. A broad distribution in the single-molecule conductance of bithiophene was found compared with that of a biphenyl. This increased breadth in the conductance distribution was shown to be explained by the difference in 5-fold symmetry of thiophene rings as compared to the 6-fold symmetry of benzene rings. The reduced symmetry of thiophene rings results in a restriction on the torsion angle space available to these molecules when bound between two metal electrodes in a junction, causing each molecular junction to sample a different set of conformers in the conductance measurements. By contrast, the rotations of biphenyl are essentially unimpeded by junction binding, allowing each molecular junction

  13. Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals

    Science.gov (United States)

    Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.

    2018-03-01

    We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.

  14. Improved Dye Stability in Single-Molecule Fluorescence Experiments

    Science.gov (United States)

    EcheverrÍa Aitken, Colin; Marshall, R. Andrew; Pugi, Joseph D.

    Complex biological systems challenge existing single-molecule methods. In particular, dye stability limits observation time in singlemolecule fluorescence applications. Current approaches to improving dye performance involve the addition of enzymatic oxygen scavenging systems and small molecule additives. We present an enzymatic oxygen scavenging system that improves dye stability in single-molecule experiments. Compared to the currently-employed glucose-oxidase/catalase system, the protocatechuate-3,4-dioxygenase system achieves lower dissolved oxygen concentration and stabilizes single Cy3, Cy5, and Alexa488 fluorophores. Moreover, this system possesses none of the limitations associated with the glucose oxidase/catalase system. We also tested the effects of small molecule additives in this system. Biological reducing agents significantly destabilize the Cy5 fluorophore as a function of reducing potential. In contrast, anti-oxidants stabilize the Cy3 and Alexa488 fluorophores. We recommend use of the protocatechuate-3,4,-dioxygenase system with antioxidant additives, and in the absence of biological reducing agents. This system should have wide application to single-molecule fluorescence experiments.

  15. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NARCIS (Netherlands)

    Stoll, M.; Bakker, J. M.; Steimle, T. C.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer- gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 10(6) cm(-3) at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20- fold lifetime enhancement with respect to the

  16. Cell biochemistry studied by single-molecule imaging.

    Science.gov (United States)

    Mashanov, G I; Nenasheva, T A; Peckham, M; Molloy, J E

    2006-11-01

    Over the last decade, there have been remarkable developments in live-cell imaging. We can now readily observe individual protein molecules within living cells and this should contribute to a systems level understanding of biological pathways. Direct observation of single fluorophores enables several types of molecular information to be gathered. Temporal and spatial trajectories enable diffusion constants and binding kinetics to be deduced, while analyses of fluorescence lifetime, intensity, polarization or spectra give chemical and conformational information about molecules in their cellular context. By recording the spatial trajectories of pairs of interacting molecules, formation of larger molecular complexes can be studied. In the future, multicolour and multiparameter imaging of single molecules in live cells will be a powerful analytical tool for systems biology. Here, we discuss measurements of single-molecule mobility and residency at the plasma membrane of live cells. Analysis of diffusional paths at the plasma membrane gives information about its physical properties and measurement of temporal trajectories enables rates of binding and dissociation to be derived. Meanwhile, close scrutiny of individual fluorophore trajectories enables ideas about molecular dimerization and oligomerization related to function to be tested directly.

  17. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-03-01

    A new method to tag the barium daughter in the double beta decay of $^{136}$Xe is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba$^{++}$) resolution at a transparent scanning surface has been demonstrated. A single-step photo-bleach confirms the single ion interpretation. Individual ions are localized with super-resolution ($\\sim$2~nm), and detected with a statistical significance of 12.9~$\\sigma$ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  18. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging

    Science.gov (United States)

    McDonald, A. D.; Jones, B. J. P.; Nygren, D. R.; Adams, C.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gómez-Cadenas, J. J.; González-Díaz, D.; Gutiérrez, R. M.; Guenette, R.; Hafidi, K.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Johnston, S.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; Monrabal, F.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Repond, J.; Renner, J.; Riordan, S.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.; NEXT Collaboration

    2018-03-01

    A new method to tag the barium daughter in the double-beta decay of Xe 136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++ ) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (˜2 nm ), and detected with a statistical significance of 12.9 σ over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers.

  19. Probing Intranuclear Environments at the Single-Molecule Level

    Science.gov (United States)

    Grünwald, David; Martin, Robert M.; Buschmann, Volker; Bazett-Jones, David P.; Leonhardt, Heinrich; Kubitscheck, Ulrich; Cardoso, M. Cristina

    2008-01-01

    Genome activity and nuclear metabolism clearly depend on accessibility, but it is not known whether and to what extent nuclear structures limit the mobility and access of individual molecules. We used fluorescently labeled streptavidin with a nuclear localization signal as an average-sized, inert protein to probe the nuclear environment. The protein was injected into the cytoplasm of mouse cells, and single molecules were tracked in the nucleus with high-speed fluorescence microscopy. We analyzed and compared the mobility of single streptavidin molecules in structurally and functionally distinct nuclear compartments of living cells. Our results indicated that all nuclear subcompartments were easily and similarly accessible for such an average-sized protein, and even condensed heterochromatin neither excluded single molecules nor impeded their passage. The only significant difference was a higher frequency of transient trappings in heterochromatin, which lasted only tens of milliseconds. The streptavidin molecules, however, did not accumulate in heterochromatin, suggesting comparatively less free volume. Interestingly, the nucleolus seemed to exclude streptavidin, as it did many other nuclear proteins, when visualized by conventional fluorescence microscopy. The tracking of single molecules, nonetheless, showed no evidence for repulsion at the border but relatively unimpeded passage through the nucleolus. These results clearly show that single-molecule tracking can provide novel insights into mobility of proteins in the nucleus that cannot be obtained by conventional fluorescence microscopy. Our results suggest that nuclear processes may not be regulated at the level of physical accessibility but rather by local concentration of reactants and availability of binding sites. PMID:18065482

  20. Exchange coupling and magnetic anisotropy of exchanged-biased quantum tunnelling single-molecule magnet Ni3Mn2 complexes using theoretical methods based on Density Functional Theory.

    Science.gov (United States)

    Gómez-Coca, Silvia; Ruiz, Eliseo

    2012-03-07

    The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.

  1. Single molecule image formation, reconstruction and processing: introduction.

    Science.gov (United States)

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  2. Single-Molecule Photocurrent at a Metal-Molecule-Semiconductor Junction.

    Science.gov (United States)

    Vezzoli, Andrea; Brooke, Richard J; Higgins, Simon J; Schwarzacher, Walther; Nichols, Richard J

    2017-11-08

    We demonstrate here a new concept for a metal-molecule-semiconductor nanodevice employing Au and GaAs contacts that acts as a photodiode. Current-voltage traces for such junctions are recorded using a STM, and the "blinking" or "I(t)" method is used to record electrical behavior at the single-molecule level in the dark and under illumination, with both low and highly doped GaAs samples and with two different types of molecular bridge: nonconjugated pentanedithiol and the more conjugated 1,4-phenylene(dimethanethiol). Junctions with highly doped GaAs show poor rectification in the dark and a low photocurrent, while junctions with low doped GaAs show particularly high rectification ratios in the dark (>10 3 for a 1.5 V bias potential) and a high photocurrent in reverse bias. In low doped GaAs, the greater thickness of the depletion layer not only reduces the reverse bias leakage current, but also increases the volume that contributes to the photocurrent, an effect amplified by the point contact geometry of the junction. Furthermore, since photogenerated holes tunnel to the metal electrode assisted by the HOMO of the molecular bridge, the choice of the latter has a strong influence on both the steady state and transient metal-molecule-semiconductor photodiode response. The control of junction current via photogenerated charge carriers adds new functionality to single-molecule nanodevices.

  3. A new microcavity design for single molecule detection

    International Nuclear Information System (INIS)

    Steiner, M.; Schleifenbaum, F.; Stupperich, C.; Failla, A.V.; Hartschuh, A.; Meixner, A.J.

    2006-01-01

    We present a new microcavity design which allows for efficient detection of single molecules by measuring the molecular fluorescence emission coupled into a resonant cavity mode. The Fabry-Perot-type microresonator consists of two silver mirrors separated by a thin polymer film doped with dye molecules in ultralow concenctration. By slightly tilting one of the mirrors different cavity lengths can be selected within the same sample. Locally, on a μm scale, the microcavity still acts as a planar Fabry-Perot resonator. Using scanning confocal fluorescence microscopy, single emitters on resonance with a single mode of the microresonator can be spatially addressed. Our microcavity is demonstrated to be well-suited for investigating the coupling mechanism between single quantum emitters and single modes of the electromagnetic field. The microcavity layout could be integrated in a lab-on-a-microchip design for ultrasensitive microfluidic analytics and can be considered as an important improvement for single photon sources based on single molecules operating at room temperature

  4. Sensing single electrons with single molecules

    International Nuclear Information System (INIS)

    Plakhotnik, Taras

    2007-01-01

    We propose a new methodology for probing transport of just one electron, a process of great importance both in nature and in artificial devices. Our idea for locating a single electron is analogues to the conventional GPS where signals from several satellites are used to locate a macro object. Using fluorescent molecules as tiny sensors, it is possible to determine 3D displacement vector of an electron

  5. Molecular electronics with single molecules in solid-state devices

    DEFF Research Database (Denmark)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-01-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule...

  6. Research Update: Molecular electronics: The single-molecule switch and transistor

    Directory of Open Access Journals (Sweden)

    Kai Sotthewes

    2014-01-01

    Full Text Available In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  7. Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6

    Science.gov (United States)

    Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya

    2018-05-01

    Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.

  8. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  9. Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles.

    Science.gov (United States)

    Jung, Seung-Ryoung; Han, Rui; Sun, Wei; Jiang, Yifei; Fujimoto, Bryant S; Yu, Jiangbo; Kuo, Chun-Ting; Rong, Yu; Zhou, Xing-Hua; Chiu, Daniel T

    2018-05-15

    We describe here a flow platform for quantifying the number of biomolecules on individual fluorescent nanoparticles. The platform combines line-confocal fluorescence detection with near nanoscale channels (1-2 μm in width and height) to achieve high single-molecule detection sensitivity and throughput. The number of biomolecules present on each nanoparticle was determined by deconvolving the fluorescence intensity distribution of single-nanoparticle-biomolecule complexes with the intensity distribution of single biomolecules. We demonstrate this approach by quantifying the number of streptavidins on individual semiconducting polymer dots (Pdots); streptavidin was rendered fluorescent using biotin-Alexa647. This flow platform has high-throughput (hundreds to thousands of nanoparticles detected per second) and requires minute amounts of sample (∼5 μL at a dilute concentration of 10 pM). This measurement method is an additional tool for characterizing synthetic or biological nanoparticles.

  10. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  11. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    Science.gov (United States)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to

  12. Semisynthetic protein nanoreactor for single-molecule chemistry

    OpenAIRE

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The modulation of ionic current flowing through an individual protein pore provides information at the single-molecule level about chemical reactions occurring within the pore. However, chemistry investigated in this way has been largely confined to the reactions of thiolates, presented by the side chains of cysteine residues. The introduction of unnatural amino acids would provide a large variety of reactive side chains with which additional single-molecule chemistry could be investigated. H...

  13. Growth of multiferroic Gd1-xYxMnO3 single crystals by optical floating zone technique

    International Nuclear Information System (INIS)

    Sarguna, R.M.; Ganesamoorthy, S.; Sridharan, V.; Subramanian, N.

    2014-01-01

    Rare earth manganites RMnO 3 with distorted perovskite structure are excellent multiferroic materials. The discovery of magnetic spin driven ferroelectricity in orthorhombic manganites (TbMnO 3 ) has sparked a surge in research into understanding the fundamental mechanism of multiferroic behavior. These systems fall under the category of type-2 multiferroics, the change of spatially modulated magnetic moment from sinusoidal to cycloidal gives rise to electric polarization. The magnetic structure depends upon the Mn-O-Mn bond angle. GdMnO 3 shows multiferroic properties only in the presence of applied magnetic field. When a magnetic field is applied along the b-axis, GdMnO 3 enters a ferroelectric state with an electric polarisation along the c-axis. By altering the Mn-O-Mn angle it is expected that GdMnO 3 will show multiferroic property even in the absence of magnetic field like TbMnO 3 . To alter the Mn-O-Mn bond angle GdMnO 3 was substituted with Y having lower ionic radius at Gd site. The effect of Y doping at the rare-earth site in GdMnO 3 investigated on polycrystalline samples of Gd 1-x Y x MnO 3 demonstrated a magneto-electric coupling in x=0.1-0.4. Single crystals are expected to give much amplified signal in respect of ferroelectric and magnetic properties. In this work we have grown Y substituted Gd 1-x Y x MnO 3 (x = 0.2, 0.3 and 0.4) by optical floating zone technique under different gas atmosphere. Growth rate of 1-2 mm/h yielded crack free crystals. Quality of the crystals was checked using Laue diffraction. Effect of growth rate and atmosphere pressure will be presented in this talk. (author)

  14. Modulation and Control of Charge Transport Through Single-Molecule Junctions.

    Science.gov (United States)

    Wang, Kun; Xu, Bingqian

    2017-02-01

    The ability to modulate and control charge transport though single-molecule junction devices is crucial to achieving the ultimate goal of molecular electronics: constructing real-world-applicable electronic components from single molecules. This review aims to highlight the progress made in single-molecule electronics, emphasizing the development of molecular junction electronics in recent years. Among many techniques that attempt to wire a molecule to metallic electrodes, the single-molecule break junction (SMBJ) technique is one of the most reliable and tunable experimental platforms for achieving metal-molecule-metal configurations. It also provides great freedom to tune charge transport through the junction. Soon after the SMBJ technique was introduced, it was extensively used to measure the conductances of individual molecules; however, different conductances were obtained for the same molecule, and it proved difficult to interpret this wide distribution of experimental data. This phenomenon was later found to be mainly due to a lack of precise experimental control and advanced data analysis methods. In recent years, researchers have directed considerable effort into advancing the SMBJ technique by gaining a deeper physical understanding of charge transport through single molecules and thus enhancing its potential applicability in functional molecular-scale electronic devices, such as molecular diodes and molecular transistors. In parallel with that research, novel data analysis methods and approaches that enable the discovery of hidden yet important features in the data are being developed. This review discusses various aspects of molecular junction electronics, from the initial goal of molecular electronics, the development of experimental techniques for creating single-molecule junctions and determining single-molecule conductance, to the characterization of functional current-voltage features and the investigation of physical properties other than charge

  15. Single Molecules as Optical Probes for Structure and Dynamics

    Science.gov (United States)

    Orrit, Michel

    Single molecules and single nanoparticles are convenient links between the nanoscale world and the laboratory. We discuss the limits for their optical detection by three different methods: fluorescence, direct absorption, and photothermal detection. We briefly review some recent illustrations of qualitatively new information gathered from single-molecule signals: intermittency of the fluorescence intensity, acoustic vibrations of nanoparticles (1-100 GHz) or of extended defects in molecular crystals (0.1-1 MHz), and dynamical heterogeneity in glass-forming molecular liquids. We conclude with an outlook of future uses of single-molecule methods in physical chemistry, soft matter, and material science.

  16. High-quality single crystal growth and magnetic property of Mn4Ta2O9

    Science.gov (United States)

    Cao, Yiming; Xu, Kun; Yang, Ya; Yang, Wangfan; Zhang, Yuanlei; Kang, Yanru; He, Xijia; Zheng, Anmin; Liu, Mian; Wei, Shengxian; Li, Zhe; Cao, Shixun

    2018-06-01

    A large-size single crystal of Mn4Ta2O9 with ∼3.5 mm in diameter and ∼65 mm in length was successfully grown for the first time by a newly designed one-step method based on the optical floating zone technique. Both the clear Laue spots and sharp XRD Bragg reflections suggest the high quality of the single crystal. In Mn4Ta2O9 single crystal, an antiferromagnetic phase transition was observed below Néel temperature 102 K along c axis, which is similar to the isostructural compound Mn4Nb2O9, but differs from the isostructural Co4Nb2O9. Relative dielectric constant at 30 kOe suggests that no magnetoelectric coupling exists in Mn4Ta2O9.

  17. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    International Nuclear Information System (INIS)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-01-01

    In this work we have studied the structural and magnetic properties of Ni 13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H 2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni 12 Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni 12 MnH 2 . Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H 2 absorption in the doped Ni 13−m Mn m alloy clusters. This has been reported earlier for smaller Ni n clusters [1

  18. Ferroelectric InMnO{sub 3}: Growth of single crystals, structure and high-temperature phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Bekheet, Maged F., E-mail: maged.bekheet@ceramics.tu-berlin.de [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany); Svoboda, Ingrid; Liu, Na [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Bayarjargal, Lkhamsuren [Institut für Geowissenschaften, Goethe-Universität, Altenhöferallee 1, d-60438 Frankfurt a.M. (Germany); Irran, Elisabeth [Institut für Chemie, Technische Universität Berlin, Straße des 17, Juni 135, 10623 Berlin (Germany); Dietz, Christian; Stark, Robert W.; Riedel, Ralf [Fachbereich Material‐ und Geowissenschaften, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Gurlo, Aleksander [Fachgebiet Keramische Werkstoffe / Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und -technologien, Technische Universität Berlin, Hardenbergstraße 40, 10623 Berlin (Germany)

    2016-09-15

    To understand the origin of the ferroelectricity in InMnO{sub 3}, single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. The results of single crystal X-ray diffraction, second harmonic generation and piezoresponse force microscopy studies of high-quality InMnO{sub 3} single crystals reveal that the room-temperature state in this material is ferroelectric with P6{sub 3}cm symmetry. The polar InMnO{sub 3} specimen undergoes a reversible phase transition from non-centrosymmetric P6{sub 3}cm structure to a centrosymmetric P6{sub 3}/mmc structure at 700 °C as confirmed by the in situ high-temperature Raman spectroscopic and synchrotron X-ray diffraction experiments. - Graphical abstract: Piezoresponse fore microscopy (PFM) studies of high quality InMnO{sub 3} single crystal revealed that the room-temperature state of this material is ferroelectric with a clear cloverleaf pattern corresponding to six antiphase ferroelectric domains with alternating polarization ±P{sub z}. Display Omitted - Highlights: • InMnO{sub 3} single crystals with average size of 1 mm were grown in PbF{sub 2} flux at 950 °C. • The room-temperature state of InMnO{sub 3} is ferroelectric with polar P6{sub 3}cm structure. • PolarInMnO{sub 3} reversibly transforms to a centrosymmetric P6{sub 3}/mmc structure above 700 °C.

  19. Quantum design rules for single molecule logic gates.

    Science.gov (United States)

    Renaud, N; Hliwa, M; Joachim, C

    2011-08-28

    Recent publications have demonstrated how to implement a NOR logic gate with a single molecule using its interaction with two surface atoms as logical inputs [W. Soe et al., ACS Nano, 2011, 5, 1436]. We demonstrate here how this NOR logic gate belongs to the general family of quantum logic gates where the Boolean truth table results from a full control of the quantum trajectory of the electron transfer process through the molecule by very local and classical inputs practiced on the molecule. A new molecule OR gate is proposed for the logical inputs to be also single metal atoms, one per logical input.

  20. Competition of the self-activated and Mn-related luminescence in ZnS single crystals

    Science.gov (United States)

    Bacherikov, Yu. Yu.; Vorona, I. P.; Markevich, I. V.; Korsunska, N. O.; Kurichka, R. V.

    2018-06-01

    The photoluminescence (PL) and photoluminescence excitation (PLE) spectra of ZnS single crystals thermally doped from ZnS/MnS mixture were studied at 300 and 77 K. PL spectra exhibit bands caused by Mn-related centers and centers of self-activated (SA) emission. Besides intrinsic maximum, a number of narrow peaks corresponded to Mn-related absorption are found in the PLE spectra of both SA and Mn-related emission. A redistribution of SA and Mn-related emission intensities is observed with temperature change. The mechanism of this phenomenon involving free hole trapping by MnZn and the possible position of a ground energy level of substitutional Mn are discussed.

  1. Ordered array of CoPc-vacancies filled with single-molecule rotors

    Science.gov (United States)

    Xie, Zheng-Bo; Wang, Ya-Li; Tao, Min-Long; Sun, Kai; Tu, Yu-Bing; Yuan, Hong-Kuan; Wang, Jun-Zhong

    2018-05-01

    We report the highly ordered array of CoPc-vacancies and the single-molecule rotors inside the vacancies. When CoPc molecules are deposited on Cd(0001) at low-temperature, three types of molecular vacancies appeared randomly in the CoPc monolayer. Annealing the sample to higher temperature leads to the spontaneous phase separation and self-organized arrangement of the vacancies. Highly ordered arrays of two-molecule vacancies and single-molecule vacancies have been obtained. In particular, there is a rotating CoPc molecule inside each single-molecule vacancy, which constitutes the array of single-molecule rotors. These results provide a new routine to fabricate the nano-machines on a large scale.

  2. Supramolecular Systems and Chemical Reactions in Single-Molecule Break Junctions.

    Science.gov (United States)

    Li, Xiaohui; Hu, Duan; Tan, Zhibing; Bai, Jie; Xiao, Zongyuan; Yang, Yang; Shi, Jia; Hong, Wenjing

    2017-04-01

    The major challenges of molecular electronics are the understanding and manipulation of the electron transport through the single-molecule junction. With the single-molecule break junction techniques, including scanning tunneling microscope break junction technique and mechanically controllable break junction technique, the charge transport through various single-molecule and supramolecular junctions has been studied during the dynamic fabrication and continuous characterization of molecular junctions. This review starts from the charge transport characterization of supramolecular junctions through a variety of noncovalent interactions, such as hydrogen bond, π-π interaction, and electrostatic force. We further review the recent progress in constructing highly conductive molecular junctions via chemical reactions, the response of molecular junctions to external stimuli, as well as the application of break junction techniques in controlling and monitoring chemical reactions in situ. We suggest that beyond the measurement of single molecular conductance, the single-molecule break junction techniques provide a promising access to study molecular assembly and chemical reactions at the single-molecule scale.

  3. Electrochemical proton relay at the single-molecule level

    DEFF Research Database (Denmark)

    Kuznetsov, A. M.; Medvedev, I. G.; Ulstrup, Jens

    2009-01-01

    A scheme for the experimental study of single-proton transfer events, based on proton-coupled two-electron transfer between a proton donor and a proton acceptor molecule confined in the tunneling gap between two metal leads in electrolyte solution is suggested. Expressions for the electric current...... are derived and compared with formalism for electron tunneling through redox molecules. The scheme allows studying the kinetics of proton and hydrogen atom transfer as well as kinetic isotope effects at the single-molecule level under electrochemical potential control....

  4. Coherent interaction of single molecules and plasmonic nanowires

    Science.gov (United States)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  5. Magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal revisited

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: Mohamed.balli@Usherbrooke.ca [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Roberge, B.; Vermette, J.; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (Canada); Gospodinov, M.M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2015-12-01

    Magnetic and magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal have been revisited. It was found that the magnetocaloric effect shown by HoMnO{sub 3} strongly depends on the crystal orientation in respect to the applied magnetic field. Consequently, a large thermal effect can be induced by spinning the single crystal HoMnO{sub 3} around the a (or b) axis in a constant magnetic field instead of the conventional magnetization–demagnetization process. Under 7 T, the maximum rotating entropy change was evaluated to be about 8 J/kg K. The associated adiabatic temperature change reaches a value of about 5 K. These values are comparable to those of the other oxides exhibiting a large rotating magnetocaloric effect. The presence of both conventional and rotating thermal effects makes the hexagonal HoMnO{sub 3} more interesting from a practical point of view.

  6. Formation of Al15Mn3Si2 Phase During Solidification of a Novel Al-12%Si-4%Cu-1.2%Mn Heat-Resistant Alloy and Its Thermal Stability

    Science.gov (United States)

    Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel

    2018-02-01

    The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.

  7. The spontaneous formation of single-molecule junctions via terminal alkynes

    International Nuclear Information System (INIS)

    Pla-Vilanova, Pepita; Aragonès, Albert C; Sanz, Fausto; Darwish, Nadim; Diez-Perez, Ismael; Ciampi, Simone

    2015-01-01

    Herein, we report the spontaneous formation of single-molecule junctions via terminal alkyne contact groups. Self-assembled monolayers that form spontaneously from diluted solutions of 1, 4-diethynylbenzene (DEB) were used to build single-molecule contacts and assessed using the scanning tunneling microscopy-break junction technique (STM-BJ). The STM-BJ technique in both its dynamic and static approaches was used to characterize the lifetime (stability) and the conductivity of a single-DEB wire. It is demonstrated that single-molecule junctions form spontaneously with terminal alkynes and require no electrochemical control or chemical deprotonation. The alkyne anchoring group was compared against typical contact groups exploited in single-molecule studies, i.e. amine (benzenediamine) and thiol (benzendithiol) contact groups. The alkyne contact showed a conductance magnitude comparable to that observed with amine and thiol groups. The lifetime of the junctions formed from alkynes were only slightly less than that of thiols and greater than that observed for amines. These findings are important as (a) they extend the repertoire of chemical contacts used in single-molecule measurements to 1-alkynes, which are synthetically accessible and stable and (b) alkynes have a remarkable affinity toward silicon surfaces, hence opening the door for the study of single-molecule transport on a semiconducting electronic platform. (fast track communication)

  8. Effects of cationic substitution on the electronic and magnetic properties of manganocuprate with a layered Eu3Ba2Mn2Cu2O12 structure

    International Nuclear Information System (INIS)

    Matsubara, Ichiro; Funahashi, Ryoji; Ueno, Kazuo; Ishikawa, Hiroshi; Kida, Noriaki; Ohno, Nobuhito

    1998-01-01

    Systematic studies on the effect of substitutions on the layered manganocuprate Eu 3 Ba 2 Mn 2 Cu 2 O 12 have been conducted. To introduce holes, the authors have made substitutions of Ca for Eu and/or Sc for Mn, (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 . Single-phase compounds are obtained over a fairly wide range of x and y values for x ≤ 0.7 (y = 0), x ≤ 0.5 (y = 0.5), and x ≤ 0.1 (y = 1.0). The doped holes are received predominantly at the Mn-O site and change the charge of Mn from 3+ to 4+, and no superconductivity has been obtained for any sample. The electronic ground state of (Eu 3-x Ca x )Ba 2 (Mn 2-y Sc y )Cu 2 O 12 is discussed by comparing with that of the three-dimensional perovskite La 1-x Ca x MnO 3 and K 2 NiF 4 -type La 1-x Sr 1+x MnO 4 compounds. The substitution of Sr for Ba gives rise to a different crystal structure, the Sr 3 Ti 2 O 7 structure

  9. Central dogma at the single-molecule level in living cells.

    Science.gov (United States)

    Li, Gene-Wei; Xie, X Sunney

    2011-07-20

    Gene expression originates from individual DNA molecules within living cells. Like many single-molecule processes, gene expression and regulation are stochastic, that is, sporadic in time. This leads to heterogeneity in the messenger-RNA and protein copy numbers in a population of cells with identical genomes. With advanced single-cell fluorescence microscopy, it is now possible to quantify transcriptomes and proteomes with single-molecule sensitivity. Dynamic processes such as transcription-factor binding, transcription and translation can be monitored in real time, providing quantitative descriptions of the central dogma of molecular biology and the demonstration that a stochastic single-molecule event can determine the phenotype of a cell.

  10. Magnetotransport in (Ga,Mn)As on the verge of the single domain model

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Christoph; Dreher, Lukas; Daeubler, Joachim; Donhauser, Daniela; Glunk, Michael; Schoch, Wladimir; Schwaiger, Stephan; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    We investigate the limits of the single-domain model in (Ga,Mn)As by performing detailed angle- and field-dependent magnetotransport measurements in samples with differing magnetic anisotropies. For this purpose, a series of (Ga,Mn)As layers with Mn concentrations of {proportional_to}5% was grown by low-temperature molecular-beam epitaxy on relaxed (In,Ga)As/GaAs templates with different In-concentrations, realizing different strain conditions from compressive to tensile. In past investigations we have elucidated the strain dependence of the magnetic anisotropy and of the anisotropic magnetoresistance employing a single-domain model. In order to analyze the break-down of the single-domain model, we now study in detail magnetization reversal processes by sweeping an external magnetic field along selected axes. The magnetic-field sweeps are compared with a series of angle-dependent magnetotransport measurements, carried out at weak external magnetic fields.

  11. Torque Measurement at the Single Molecule Level

    Science.gov (United States)

    Forth, Scott; Sheinin, Maxim Y.; Inman, James; Wang, Michelle D.

    2017-01-01

    Methods for exerting and measuring forces on single molecules have revolutionized the study of the physics of biology. However, it is often the case that biological processes involve rotation or torque generation, and these parameters have been more difficult to access experimentally. Recent advances in the single molecule field have led to the development of techniques which add the capability of torque measurement. By combining force, displacement, torque, and rotational data, a more comprehensive description of the mechanics of a biomolecule can be achieved. In this review, we highlight a number of biological processes for which torque plays a key mechanical role. We describe the various techniques that have been developed to directly probe the torque experienced by a single molecule, and detail a variety of measurements made to date using these new technologies. We conclude by discussing a number of open questions and propose systems of study which would be well suited for analysis with torsional measurement techniques. PMID:23541162

  12. Rotation of a single molecule within a supramolecular bearing

    DEFF Research Database (Denmark)

    Gimzewski, J.K.; Joachim, C.; Schlittler, R.R.

    1998-01-01

    Experimental visualization and verification of a single-molecule rotor operating within a supramolecular bearing is reported. Using a scanning tunneling microscope, single molecules were observed to exist in one of two spatially defined states Laterally separated by 0.26 nanometers. One...

  13. Molecular electronics with single molecules in solid-state devices.

    Science.gov (United States)

    Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-09-01

    The ultimate aim of molecular electronics is to understand and master single-molecule devices. Based on the latest results on electron transport in single molecules in solid-state devices, we focus here on new insights into the influence of metal electrodes on the energy spectrum of the molecule, and on how the electron transport properties of the molecule depend on the strength of the electronic coupling between it and the electrodes. A variety of phenomena are observed depending on whether this coupling is weak, intermediate or strong.

  14. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals

    Science.gov (United States)

    Jin, Jin-Ling; Zhang, Xiang-Qun; Li, Guo-Ke; Cheng, Zhao-Hua; Zheng, Lin; Lu, Yi

    2011-05-01

    The magnetocaloric effect (MCE) in TbMnO3 single crystals was investigated by isothermal magnetization curves for the ab plane at low temperatures. Large magnetic entropy change, ΔSM = -18.0 J/kg K, and the refrigerant capacity, RC = 390.7 J/kg, are achieved near the ordering temperature of Tb3+ moment (TNTb) under 70 kOe along the a axis. Furthermore, the TbMnO3 single crystal exhibits a giant MCE anisotropy. The difference of ΔSMand RC between the a and b axes is field and temperature dependent, which reaches maximum values of 11.4 J/kg K and 304.1 J/kg, respectively. By taking magnetocrystalline anisotropy into account, the rotating ΔSMwithin the ab plane can be well simulated, indicating that the anisotropy of ΔSMis directly contributed from the magnetocrystalline anisotropy. Our finding for giant MCE anisotropy in TbMnO3 single crystals explores the possibility of using this material for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  15. Single-molecule imaging and manipulation of biomolecular machines and systems.

    Science.gov (United States)

    Iino, Ryota; Iida, Tatsuya; Nakamura, Akihiko; Saita, Ei-Ichiro; You, Huijuan; Sako, Yasushi

    2018-02-01

    Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration. We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems. Single-molecule analysis is a powerful approach to unveil the operational mechanisms both of individual molecular machines and of systems consisting of many molecular machines. Quantitative, high-resolution single-molecule analyses of biomolecular systems at the various hierarchies of life will help to answer our fundamental question: "What is life?" This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A plasmonic biosensor with single-molecule sensitivity

    NARCIS (Netherlands)

    Zijlstra, P.; Paulo, P.M.R.; Yuan, H.; Khatua, S.; Yorulmaz, M.; Orrit, M.

    2013-01-01

    The plasmon resonance of a single metal nanoparticle induces an enhancement of the local electromagnetic field. We exploit this field enhancement to detect single molecules that are (1) poorly fluorescent or (2) completely non-fluorescent.

  17. Molecular electronics--resonant transport through single molecules.

    Science.gov (United States)

    Lörtscher, Emanuel; Riel, Heike

    2010-01-01

    The mechanically controllable break-junction technique (MCBJ) enables us to investigate charge transport through an individually contacted and addressed molecule in ultra-high vacuum (UHV) environment at variable temperature ranging from room temperature down to 4 K. Using a statistical measurement and analysis approach, we acquire current-voltage (I-V) characteristics during the repeated formation, manipulation, and breaking of a molecular junction. At low temperatures, voltages accessing the first molecular orbitals in resonance can be applied, providing spectroscopic information about the junction's energy landscape, in particular about the molecular level alignment in respect to the Fermi energy of the electrodes. Thereby, we can investigate the non-linear transport properties of various types of functional molecules and explore their potential use as functional building blocks for future nano-electronics. An example will be given by the reversible and controllable switching between two distinct conductive states of a single molecule. As a proof-of-principle for functional molecular devices, a single-molecule memory element will be demonstrated.

  18. Thermal Fluctuations in the Magnetic Ground State of the Molecular Cluster Mn12O12 Acetate from μSR and Proton NMR Relaxation

    International Nuclear Information System (INIS)

    Lascialfari, A.; Borsa, F.; Carretta, P.; Jang, Z.H.; Borsa, F.; Gatteschi, D.

    1998-01-01

    Measurements of the spin-lattice relaxation rate are reported for muons and protons as a function of temperature for different values of the applied magnetic field in the Mn 12 O 12 molecular cluster. Strongly field dependent maxima in the relaxation rate versus temperature are observed below 50thinspthinspK. The results are explained in terms of thermal fluctuations of the total magnetization of the cluster among the different orientations with respect to the anisotropy axis. The lifetimes of the different m components of the total spin, S T =10 , of the molecule are obtained from the experiment and shown to be consistent with the ones expected from a spin-phonon coupling mechanism. No clear evidence for macroscopic quantum tunneling was observed in the field dependence of the proton relaxation rate at low T . copyright 1998 The American Physical Society

  19. Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions.

    Science.gov (United States)

    Xin, Na; Wang, Jinying; Jia, Chuancheng; Liu, Zitong; Zhang, Xisha; Yu, Chenmin; Li, Mingliang; Wang, Shuopei; Gong, Yao; Sun, Hantao; Zhang, Guanxin; Liu, Zhirong; Zhang, Guangyu; Liao, Jianhui; Zhang, Deqing; Guo, Xuefeng

    2017-02-08

    Biphenyl, as the elementary unit of organic functional materials, has been widely used in electronic and optoelectronic devices. However, over decades little has been fundamentally understood regarding how the intramolecular conformation of biphenyl dynamically affects its transport properties at the single-molecule level. Here, we establish the stereoelectronic effect of biphenyl on its electrical conductance based on the platform of graphene-molecule single-molecule junctions, where a specifically designed hexaphenyl aromatic chain molecule is covalently sandwiched between nanogapped graphene point contacts to create stable single-molecule junctions. Both theoretical and temperature-dependent experimental results consistently demonstrate that phenyl twisting in the aromatic chain molecule produces different microstates with different degrees of conjugation, thus leading to stochastic switching between high- and low-conductance states. These investigations offer new molecular design insights into building functional single-molecule electrical devices.

  20. A single molecule DNA flow stretching microscope for undergraduates

    NARCIS (Netherlands)

    Williams, Kelly; Grafe, Brendan; Burke, Kathryn M.; Tanner, Nathan; van Oijen, Antoine M.; Loparo, Joseph; Price, Allen C.

    2011-01-01

    The design of a simple, safe, and inexpensive single molecule flow stretching instrument is presented. The instrument uses a low cost upright microscope coupled to a webcam for imaging single DNA molecules that are tethered in an easy to construct microfluidic flow cell. The system requires no

  1. Magnetic properties of single crystalline Mn{sub 4}Si{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, U.; Sulpice, A.; Lambert-Andron, B.; Laborde, O

    2003-10-27

    A single crystal of MnSi{sub 2-x} was obtained by a modified Czochralski pulling technique in a cold copper crucible. The quality and the nature of the sample were checked by an accurate crystal structure determination, which revealed the sample to be Mn{sub 4}Si{sub 7}. Resistivity and magnetic measurements were performed on this sample in the temperature range between 2 K and room temperature and in magnetic fields up to 7.5 T. Mn{sub 4}Si{sub 7} shows a metallic behaviour and the good crystal quality was revealed by the high residual resistance ratio of 360. For the magnetic susceptibility we observed a Curie-Weiss law above about 40 K with a low effective moment of p{sub eff}=0.365 {mu}{sub B}/Mn. Below this temperature, moments order in an anisotropic helical state, and in fields above 1 T, they align with a saturation moment of p{sub sat}=0.012 {mu}{sub B}/Mn. Mn{sub 4}Si{sub 7} is a weak itinerant magnetic system that could be a good candidate for the observation of the critical quantum fluctuations expected for marginal Fermi liquids.

  2. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  3. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  4. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  5. Single Crystal Growth of Multiferroic Double Perovskites: Yb2CoMnO6 and Lu2CoMnO6

    Directory of Open Access Journals (Sweden)

    Hwan Young Choi

    2017-02-01

    Full Text Available We report on the growth of multiferroic Yb2CoMnO6 and Lu2CoMnO6 single crystals which were synthesized by the flux method with Bi2O3. Yb2CoMnO6 and Lu2CoMnO6 crystallize in a double-perovskite structure with a monoclinic P21/n space group. Bulk magnetization measurements of both specimens revealed strong magnetic anisotropy and metamagnetic transitions. We observed a dielectric anomaly perpendicular to the c axis. The strongly coupled magnetic and dielectric states resulted in the variation of both the dielectric constant and the magnetization by applying magnetic fields, offering an efficient approach to accomplish intrinsically coupled functionality in multiferroics.

  6. Synthesis of single-molecule nanocars.

    Science.gov (United States)

    Vives, Guillaume; Tour, James M

    2009-03-17

    The drive to miniaturize devices has led to a variety of molecular machines inspired by macroscopic counterparts such as molecular motors, switches, shuttles, turnstiles, barrows, elevators, and nanovehicles. Such nanomachines are designed for controlled mechanical motion and the transport of nanocargo. As researchers miniaturize devices, they can consider two complementary approaches: (1) the "top-down" approach, which reduces the size of macroscopic objects to reach an equivalent microscopic entity using photolithography and related techniques and (2) the "bottom-up" approach, which builds functional microscopic or nanoscopic entities from molecular building blocks. The top-down approach, extensively used by the semiconductor industry, is nearing its scaling limits. On the other hand, the bottom-up approach takes advantage of the self-assembly of smaller molecules into larger networks by exploiting typically weak molecular interactions. But self-assembly alone will not permit complex assembly. Using nanomachines, we hope to eventually consider complex, enzyme-like directed assembly. With that ultimate goal, we are currently exploring the control of nanomachines that would provide a basis for the future bottom-up construction of complex systems. This Account describes the synthesis of a class of molecular machines that resemble macroscopic vehicles. We designed these so-called nanocars for study at the single-molecule level by scanning probe microscopy (SPM). The vehicles have a chassis connected to wheel-terminated axles and convert energy inputs such as heat, electric fields, or light into controlled motion on a surface, ultimately leading to transport of nanocargo. At first, we used C(60) fullerenes as wheels, which allowed the demonstration of a directional rolling mechanism of a nanocar on a gold surface by STM. However, because of the low solubility of the fullerene nanocars and the incompatibility of fullerenes with photochemical processes, we developed new

  7. Studies of G-quadruplex DNA structures at the single molecule level

    DEFF Research Database (Denmark)

    Kragh, Sofie Louise

    2015-01-01

    Folding of G-quaduplex structures adopted by the human telomeric repeat is here studied by single molecule FRET microscopy. This method allows for the investigation of G-quadruplex structures and their conformational dynamic. Telomeres are located at the ends of our chromosomes and end in a single...... with human telomeric repeat adopt several different G-quadruplex conformations in the presence of K+ ions. G-quadruplexes inhibit telomerase activity and are therefore potential targets for anti-cancer drugs, which can be small molecule ligands capable of stabilizing G-quadruplex structures. Understanding...... range. FRET spectroscopy can be performed on an ensemble of molecules, or on the single molecule level. In single molecule FRET experiments it is possible to follow the behaviour in time for each molecule independently, allowing insight into both dynamically and statistically heterogeneous molecular...

  8. Automated imaging system for single molecules

    Science.gov (United States)

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  9. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    DEFF Research Database (Denmark)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.

    2017-01-01

    to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton...... is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit....

  10. Single Nanorod Devices for Battery Diagnostics: A Case Study on LiMn 2 O 4

    KAUST Repository

    Yang, Yuan

    2009-12-09

    This paper presents single nanostructure devices as a powerful new diagnostic tool for batteries with LiMn2O4 nanorod materials as an example. LiMn2O4 and Al-doped LiMn2O4 nanorods were synthesized by a two-step method that combines hydrothermal synthesis of β-MnO2 nanorods and a solid state reaction to convert them to LiMn2O4 nanorods. λ-MnO2 nanorods were also prepared by acid treatment of LiMn2O4 nanorods. The effect of electrolyte etching on these LiMn2O 4-related nanorods is investigated by both SEM and single-nanorod transport measurement, and this is the first time that the transport properties of this material have been studied at the level of an individual singlecrystalline particle. Experiments show that Al dopants reduce the dissolution of Mn3+ ions significantly and make the LiAl 0.1Mn1.9O4 nanorods much more stable than LiMn2O4 against electrolyte etching, which is reflected by the magnification of both size shrinkage and conductance decrease. These results correlate well with the better cycling performance of Al-doped LiMn 2O4 in our Li-ion battery tests: LiAl0.1Mn 1.9O4 nanorods achieve 96% capacity retention after 100 cycles at 1C rate at room temperature, and 80% at 60 °C, whereas LiMn 2O4 shows worse retention of 91% at room temperature, and 69% at 60 °C. Moreover, temperature-dependent I - V measurements indicate that the sharp electronic resistance increase due to charge ordering transition at 290 K does not appear in our LiMn2O4 nanorod samples, suggesting good battery performance at low temperature. © 2009 American Chemical Society.

  11. Fast temporal fluctuations in single-molecule junctions.

    Science.gov (United States)

    Ochs, Roif; Secker, Daniel; Elbing, Mark; Mayor, Marcel; Weber, Heiko B

    2006-01-01

    The noise within the electrical current through single-molecule junctions is studied cryogenic temperature. The organic sample molecules were contacted with the mechanically controlled break-junction technique. The noise spectra refer to a where only few Lorentzian fluctuators occur in the conductance. The frequency dependence shows qualitative variations from sample to sample.

  12. Anomalous thermal expansion in YMn2, Y6Mn23 and YMn12

    International Nuclear Information System (INIS)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A.

    1997-01-01

    The thermal expansion coefficient α(T) of YMn 2 , Y 6 Mn 23 and YMn 12 is presented in the temperature range 4.2-1000 K together with α(T) of YCo 2 and YNi 2 . The strong variation of α(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.)

  13. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    International Nuclear Information System (INIS)

    Zhang Jingdong; Chi Qijin; Albrecht, Tim; Kuznetsov, Alexander M.; Grubb, Mikala; Hansen, Allan G.; Wackerbarth, Hainer; Welinder, Anne C.; Ulstrup, Jens

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class of metallic and semiconductor-based nanoparticles, nano-arrays, nanotubes, and nanopits. Others are based on self-assembled molecular monolayers. The latter extend to bioelectrochemical systems with redox metalloproteins and DNA-based molecules as targets. We overview here some recent achievements in areas of interfacial electrochemical ET systems, mapped to the nanoscale and single-molecule levels. Focus is on both experimental and theoretical studies in our group. Systems addressed are organized monolayers of redox active transition metal complexes, and metalloproteins and metalloenzymes on single-crystal Au(1 1 1)-electrode surfaces. These systems have been investigated by voltammetry, spectroscopy, microcantilever technology, and scanning probe microscopy. A class of Os-complexes has shown suitable as targets for electrochemical in situ scanning tunnelling microscopy (STM), with close to single-molecule scanning tunnelling spectroscopic (STS) features. Mapping of redox metalloproteins from the three major classes, i.e. blue copper proteins, heme proteins, and iron-sulfur proteins, at the monolayer and single-molecule levels have also been achieved. In situ STM and spectroscopy of redox molecules and biomolecules have been supported by new theoretical frames, which extend established theory of interfacial electrochemical ET. The electrochemical nanoscale and single-molecule systems discussed are compared with other recent nanoscale and single-molecule systems with conspicuous device-like properties, particularly unimolecular rectifiers and single-molecule transistors. Both of these show analogies to electrochemical in situ STM features of redox molecules and

  14. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  15. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  16. Multiplexed single-molecule force spectroscopy using a centrifuge.

    Science.gov (United States)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  17. Structure, reactivity and electronic properties of Mn doped Ni{sub 13} clusters

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit, E-mail: abhijit.mookerjee61@gmail.com

    2013-06-15

    In this work we have studied the structural and magnetic properties of Ni{sub 13} cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H{sub 2} molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni{sub 12}Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni{sub 12}MnH{sub 2}. Our analysis of the stability and HOMO–LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H{sub 2} absorption in the doped Ni{sub 13−m}Mn{sub m} alloy clusters. This has been reported earlier for smaller Ni{sub n} clusters [1].

  18. Experimental evidence of the dependence of spin tunnelling on the concentration of dislocations in Mn12 crystals

    OpenAIRE

    Torres, F.; Hernandez, J. M.; Molins, E.; Garcia-Santiago, A.; Tejada, J.

    2001-01-01

    We present experimental results on resonant spin tunnelling in a single crystal of Mn$_{12}$-2Cl benzoate with different concentration of dislocations. The time evolution of the magnetisation follows the stretched exponential over a few time decades. The values of parameters of stretched exponential deduced from experiment have been used to determine the concentration of dislocations before and after the cooling-annealing process, using the algorithm recently suggested by Garanin and Chudnovsky.

  19. Atomic-Scale Control of Electron Transport through Single Molecules

    DEFF Research Database (Denmark)

    Wang, Y. F.; Kroger, J.; Berndt, R.

    2010-01-01

    Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure...

  20. Investigation of Y{sub 6}Mn{sub 23} and YMn{sub 12} intermetallic alloys under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S M; Sato, R [Inst. of Phys. Chem. PAS, ul. Kasprzaka 44, 01-224 Warsaw (Poland); Kuriyama, N; Tanaka, H; Takeichi, N, E-mail: smf@ichf.edu.p [National Institute of Adv. Ind. Science and Techn. 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2010-03-01

    Among three intermetallic compounds existing in Y-Mn system the YMn{sub 2} and Y{sub 6}Mn{sub 23} can easily form interstitial hydrides while for YMn{sub 12} existence of hydride has never been reported. At moderate hydrogen pressure YMn{sub 2} and Y{sub 6}Mn{sub 23} transform into YMn{sub 2}H{sub 4.5} and Y{sub 6}Mn{sub 23}H{sub 25} respectively. At high hydrogen pressure the YMn{sub 2} (C15 or C14 parent structure) forms a unique YMn{sub 2}H{sub 6} (s.g. Fm3m) complex hydride of fluorite structure in which one Mn atom Mn(1) and Y randomly occupy the 8c sites while second manganese (Mn2) in position 4a forms complex anion with 6 hydrogen atoms located in positions 24e. Formation of YMn{sub 2}H{sub 6} independently of the structure of parent phase (C14 or C15) as well as occupation of the same site (8c) by Y and Mn(1) atoms suggested that also Y{sub 6}Mn{sub 23} and YMn{sub 12} could transform into YMn{sub 2}H{sub 6} - type hydride in which suitable number of Y atoms will be substituted by Mn(1) in the 8c positions. This assumption was confirmed by exposing R{sub 6}Mn{sub 23} and RMn{sub 12} to 1 GPa of hydrogen pressure at 100{sup 0}C. Formation of (R{sub x}Mn{sub 2-x})MnH{sub 6} (where x = 18/29 or 3/13 for R{sub 6}Mn{sub 23} and RMn{sub 12} hydrides respectively) was confirmed by XRD. Hydrogen concentration in both R{sub 6}Mn{sub 23} and RMn{sub 12} based hydrides reached H/Me = 2 thus value two times higher than in R{sub 6}Mn{sub 23}H{sub 25}.

  1. Silicon photon-counting avalanche diodes for single-molecule fluorescence spectroscopy

    Science.gov (United States)

    Michalet, Xavier; Ingargiola, Antonino; Colyer, Ryan A.; Scalia, Giuseppe; Weiss, Shimon; Maccagnani, Piera; Gulinatti, Angelo; Rech, Ivan; Ghioni, Massimo

    2014-01-01

    Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity. Bursts are very brief, requiring detectors with fast response time and capable of sustaining high count rates. Finally, many bursts need to be accumulated to achieve proper statistical accuracy, resulting in long measurement time unless parallelization strategies are implemented to speed up data acquisition. In this paper we will show that silicon single-photon avalanche diodes (SPADs) best meet the needs of single-molecule detection. We will review the key SPAD parameters and highlight the issues to be addressed in their design, fabrication and operation. After surveying the state-of-the-art SPAD technologies, we will describe our recent progress towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. The potential of this approach is illustrated with single-molecule Förster resonance energy transfer measurements. PMID:25309114

  2. Spin polarization of single-crystalline Co2MnSi films grown by PLD on GaAs(0 0 1)

    International Nuclear Information System (INIS)

    Wang, W.H.; Przybylski, M.; Kuch, W.; Chelaru, L.I.; Wang, J.; Lu, Y.F.; Barthel, J.; Kirschner, J.

    2005-01-01

    Single-crystalline Co 2 MnSi Heusler alloy films have been grown on GaAs(0 0 1) substrates by pulsed laser deposition. The best crystallographic quality has been achieved after deposition at 450 K. Spin-resolved photoemission measurements at BESSY reveal spin-resolved density of states that are in qualitative agreement with recent band structure calculations. The spin polarization of photoelectrons close to the Fermi level is found to be at most 12% at room temperature, in contrast to the predicted half-metallic behavior. We suggest that this discrepancy may be attributed to a non-magnetic surface region and/or partial chemical disorder in the Co 2 MnSi lattice

  3. Single-Molecule Analysis for RISC Assembly and Target Cleavage.

    Science.gov (United States)

    Sasaki, Hiroshi M; Tadakuma, Hisashi; Tomari, Yukihide

    2018-01-01

    RNA-induced silencing complex (RISC) is a small RNA-protein complex that mediates silencing of complementary target RNAs. Biochemistry has been successfully used to characterize the molecular mechanism of RISC assembly and function for nearly two decades. However, further dissection of intermediate states during the reactions has been warranted to fill in the gaps in our understanding of RNA silencing mechanisms. Single-molecule analysis with total internal reflection fluorescence (TIRF) microscopy is a powerful imaging-based approach to interrogate complex formation and dynamics at the individual molecule level with high sensitivity. Combining this technique with our recently established in vitro reconstitution system of fly Ago2-RISC, we have developed a single-molecule observation system for RISC assembly. In this chapter, we summarize the detailed protocol for single-molecule analysis of chaperone-assisted assembly of fly Ago2-RISC as well as its target cleavage reaction.

  4. Structure, reactivity and electronic properties of Mn doped Ni13 clusters

    Science.gov (United States)

    Banerjee, Radhashyam; Datta, Soumendu; Mookerjee, Abhijit

    2013-06-01

    In this work we have studied the structural and magnetic properties of Ni13 cluster mono- and bi-doped with Mn atoms. We have noted their tendency of being reactive toward the H2 molecule. We have found unusually enhanced stability in the mono-doped cluster (i.e. of the Ni12Mn) and the diminished stability of the corresponding chemisorbed cluster, Ni12MnH2. Our analysis of the stability and HOMO-LUMO gap explains this unusual behavior. Interestingly, we have also seen the quenching in the net magnetic moment upon H2 absorption in the doped NiMnm alloy clusters. This has been reported earlier for smaller Nin clusters [1].

  5. Evaluation of the Kinetic Property of Single-Molecule Junctions by Tunneling Current Measurements.

    Science.gov (United States)

    Harashima, Takanori; Hasegawa, Yusuke; Kiguchi, Manabu; Nishino, Tomoaki

    2018-01-01

    We investigated the formation and breaking of single-molecule junctions of two kinds of dithiol molecules by time-resolved tunneling current measurements in a metal nanogap. The resulting current trajectory was statistically analyzed to determine the single-molecule conductance and, more importantly, to reveal the kinetic property of the single-molecular junction. These results suggested that combining a measurement of the single-molecule conductance and statistical analysis is a promising method to uncover the kinetic properties of the single-molecule junction.

  6. Thermoelectric properties of a Mn substituted synthetic tetrahedrite.

    Science.gov (United States)

    Chetty, Raju; D S, Prem Kumar; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Michor, Herwig; Suwas, Satyam; Puchegger, Stephan; Giester, Gerald; Mallik, Ramesh Chandra

    2015-01-21

    Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 μB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

  7. A Starting Point for Fluorescence-Based Single-Molecule Measurements in Biomolecular Research

    Directory of Open Access Journals (Sweden)

    Alexander Gust

    2014-09-01

    Full Text Available Single-molecule fluorescence techniques are ideally suited to provide information about the structure-function-dynamics relationship of a biomolecule as static and dynamic heterogeneity can be easily detected. However, what type of single-molecule fluorescence technique is suited for which kind of biological question and what are the obstacles on the way to a successful single-molecule microscopy experiment? In this review, we provide practical insights into fluorescence-based single-molecule experiments aiming for scientists who wish to take their experiments to the single-molecule level. We especially focus on fluorescence resonance energy transfer (FRET experiments as these are a widely employed tool for the investigation of biomolecular mechanisms. We will guide the reader through the most critical steps that determine the success and quality of diffusion-based confocal and immobilization-based total internal reflection fluorescence microscopy. We discuss the specific chemical and photophysical requirements that make fluorescent dyes suitable for single-molecule fluorescence experiments. Most importantly, we review recently emerged photoprotection systems as well as passivation and immobilization strategies that enable the observation of fluorescently labeled molecules under biocompatible conditions. Moreover, we discuss how the optical single-molecule toolkit has been extended in recent years to capture the physiological complexity of a cell making it even more relevant for biological research.

  8. Single molecules and single nanoparticles as windows to the nanoscale

    Science.gov (United States)

    Caldarola, Martín; Orrit, Michel

    2018-05-01

    Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.

  9. Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions

    Directory of Open Access Journals (Sweden)

    Zoltán Balogh

    2015-06-01

    Full Text Available We investigate the formation and evolution of Au–CO single-molecule break junctions. The conductance histogram exhibits two distinct molecular configurations, which are further investigated by a combined statistical analysis. According to conditional histogram and correlation analysis these molecular configurations show strong anticorrelations with each other and with pure Au monoatomic junctions and atomic chains. We identify molecular precursor configurations with somewhat higher conductance, which are formed prior to single-molecule junctions. According to detailed length analysis two distinct types of molecule-affected chain-formation processes are observed, and we compare these results to former theoretical calculations considering bridge- and atop-type molecular configurations where the latter has reduced conductance due to destructive Fano interference.

  10. SISGR: Room Temperature Single-Molecule Detection and Imaging by Stimulated Emission Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoliang Sunney [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2017-03-13

    Single-molecule spectroscopy has made considerable impact on many disciplines including chemistry, physics, and biology. To date, most single-molecule spectroscopy work is accomplished by detecting fluorescence. On the other hand, many naturally occurring chromophores, such as retinal, hemoglobin and cytochromes, do not have detectable fluorescence. There is an emerging need for single-molecule spectroscopy techniques that do not require fluorescence. In the last proposal period, we have successfully demonstrated stimulated emission microscopy, single molecule absorption, and stimulated Raman microscopy based on a high-frequency modulation transfer technique. These first-of-a- kind new spectroscopy/microscopy methods tremendously improved our ability to observe molecules that fluorescence weakly, even to the limit of single molecule detection for absorption measurement. All of these methods employ two laser beams: one (pump beam) excites a single molecule to a real or virtual excited state, and the other (probe beam) monitors the absorption/emission property of the single. We extract the intensity change of the probe beam with high sensitivity by implementing a high-frequency phase-sensitive detection scheme, which offers orders of magnitude improvement in detection sensitivity over direct absorption/emission measurement. However, single molecule detection based on fluorescence or absorption is fundamentally limited due to their broad spectral response. It is important to explore other avenues in single molecule detection and imaging which provides higher molecular specificity for studying a wide variety of heterogeneous chemical and biological systems. This proposal aimed to achieve single-molecule detection sensitivity with near resonance stimulated Raman scattering (SRS) microscopy. SRS microscopy was developed in our lab as a powerful technique for imaging heterogeneous samples based on their intrinsic vibrational contrasts, which provides much higher molecular

  11. Spin dynamics of Mn12-acetate in the thermally activated tunneling regime: ac susceptibility and magnetization relaxation

    Science.gov (United States)

    Pohjola, Teemu; Schoeller, Herbert

    2000-12-01

    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(ω) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(ω). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.

  12. Ultranarrow and widely tunable Mn2+-Induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys.

    Science.gov (United States)

    Hazarika, Abhijit; Layek, Arunasish; De, Suman; Nag, Angshuman; Debnath, Saikat; Mahadevan, Priya; Chowdhury, Arindam; Sarma, D D

    2013-06-28

    Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width ≤150  meV in the orange-red region and a surprisingly large spectral width (≥180  meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (∼370  meV) covering the deep green--deep red region and (ii) exhibit widths substantially lower (∼60-75  meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

  13. Single-molecule analysis of DNA replication in Xenopus egg extracts

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; van Oijen, Antoine M.; Walter, Johannes C.; Mechali, Marcel

    The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the

  14. Single Molecule Spectroscopy on Photosynthetic Pigment-Protein Complexes

    CERN Document Server

    Jelezko, F; Schuler, S; Thews, E; Tietz, C; Wechsler, A; Wrachtrup, J

    2001-01-01

    Single molecule spectroscopy was applied to unravel the energy transfer pathway in photosynthetic pigment-protein complexes. Detailed analysis of excitation and fluorescence emission spectra has been made for peripheral plant antenna LHC II and Photosystem I from cyanobacterium Synechococcus elongatus. Optical transitions of individual pigments were resolved under nonselective excitation of antenna chlorophylls. High-resolution fluorescence spectroscopy of individual plant antenna LHC II indicates that at low temperatures, the excitation energy is localized on the red-most Chl a pool absorbing at 680 nm. More than one pigment molecule is responsible for the fluorescence emission of the LHC II trimer. The spectral lines of single Chl a molecules absorbing at 675 nm are broadened because of the Foerster energy transfer towards the red-most pigments. Low-temperature spectroscopy on single PS I trimers indicates that two subgroups of pigments, which are present in the red antenna pool, differ by the strength of t...

  15. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  16. An Overview of the Effects of Alloying Elements on the Properties of Lightweight Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C Steel

    Science.gov (United States)

    Xing, Jia; Wei, Yinghui; Hou, Lifeng

    2018-04-01

    In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.

  17. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  18. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  19. Compact quantum dots for single-molecule imaging.

    Science.gov (United States)

    Smith, Andrew M; Nie, Shuming

    2012-10-09

    Single-molecule imaging is an important tool for understanding the mechanisms of biomolecular function and for visualizing the spatial and temporal heterogeneity of molecular behaviors that underlie cellular biology (1-4). To image an individual molecule of interest, it is typically conjugated to a fluorescent tag (dye, protein, bead, or quantum dot) and observed with epifluorescence or total internal reflection fluorescence (TIRF) microscopy. While dyes and fluorescent proteins have been the mainstay of fluorescence imaging for decades, their fluorescence is unstable under high photon fluxes necessary to observe individual molecules, yielding only a few seconds of observation before complete loss of signal. Latex beads and dye-labeled beads provide improved signal stability but at the expense of drastically larger hydrodynamic size, which can deleteriously alter the diffusion and behavior of the molecule under study. Quantum dots (QDs) offer a balance between these two problematic regimes. These nanoparticles are composed of semiconductor materials and can be engineered with a hydrodynamically compact size with exceptional resistance to photodegradation (5). Thus in recent years QDs have been instrumental in enabling long-term observation of complex macromolecular behavior on the single molecule level. However these particles have still been found to exhibit impaired diffusion in crowded molecular environments such as the cellular cytoplasm and the neuronal synaptic cleft, where their sizes are still too large (4,6,7). Recently we have engineered the cores and surface coatings of QDs for minimized hydrodynamic size, while balancing offsets to colloidal stability, photostability, brightness, and nonspecific binding that have hindered the utility of compact QDs in the past (8,9). The goal of this article is to demonstrate the synthesis, modification, and characterization of these optimized nanocrystals, composed of an alloyed HgxCd1-xSe core coated with an

  20. A New Theoretical Approach to Single-Molecule Fluorescence Optical Studies of RNA Dynamics

    International Nuclear Information System (INIS)

    Zhao Xinghai; Shan Guangcun; Bao Shuying

    2011-01-01

    Single-molecule fluorescence spectroscopy in condensed phases has many important chemical and biological applications. The single-molecule fluorescence measurements contain information about conformational dynamics on a vast range of time scales. Based on the data analysis protocols methodology proposed by X. Sunney Xie, the theoretical study here mainly focuses on the single-molecule studies of single RNA with interconversions among different conformational states, to with a single FRET pair attached. We obtain analytical expressions for fluorescence lifetime correlation functions that relate changes in fluorescence lifetime to the distance-dependent FRET mechanism within the context of the Smoluchowski diffusion model. The present work establishes useful guideline for the single-molecule studies of biomolecules to reveal the complicated folding dynamics of single RNA molecules at nanometer scale.

  1. Three Cyanide-Bridged One-Dimensional Single Chain Co"I"I"I-Mn"I"I Complexes: Rational Design, Synthesis, Crystal Structures and Magnetic Properties

    International Nuclear Information System (INIS)

    Zhang, Daopeng; Zhao, Zengdian; Wang, Ping; Chen, Xia

    2012-01-01

    Two pyridinecarboxamide dicyanidecobalt(III) building blocks and two mononuclear seven-coordinated macrocycle manganese(II) compounds have been rationally selected to assemble cyanide-bridged heterobimetallic complexes, resulting in three cyanide-bridged Co"I"I"I-Mn"I"I complexes. Single X-ray diffraction analysis show that these complexes {[Mn(L"1)][Co(bpb)]}ClO_4·CH_3OH·0.5H_2O (1), {[Mn(L"2)][Co(bpb)]}ClO_4·0.5CH_3OH (2) and {[Mn(L"1)][Cobpmb]}ClO_4·H_2O (3) (L"1 = 3,6-diazaoctane-1,8-diamine, L"2 = 3,6-dioxaoctano-1,8- diamine: bpb"2"- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb"2"- = 1,2-bis(pyridine-2-carboxamido)-4- methyl-benzenate) all present predictable one-dimensional single chain structures. The molecular structures of these one-dimensional complexes consists of alternating units of [Mn(L)]"2"+ (L = L"1 or L"2) and [Co(L')(CN)_2]"- (L' = bpb"2"-, or bpmb"2"-), forming a cyanide-bridged cationic polymeric chain with free ClO_4"- as the balance anion. The coordination geometry of manganese(II) ion in the three one-dimensional complexes is a slightly distorted pentagonal-bipyrimidal with two cyanide nitrogen atoms at the trans positions and N_5 or N_3O_2 coordinating mode at the equatorial plane from ligand L"1 or L"2. Investigation over magnetic properties of these complexes reveals that the very weak magnetic coupling between neighboring Mn(II) ions connected by the diamagnetic dicyanidecobalt(III) building block. A best-fit to the magnetic susceptibility of complex 1 leads to the magnetic coupling constants J = .0.084(3) cm"-"1

  2. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  3. Estimating single molecule conductance from spontaneous evolution of a molecular contact

    Science.gov (United States)

    Gil, M.; Malinowski, T.; Iazykov, M.; Klein, H. R.

    2018-03-01

    We present an original method to estimate the conductivity of a single molecule anchored to nanometric-sized metallic electrodes, using a Mechanically Controlled Break Junction operated at room temperature in the liquid. We record the conductance through the metal/molecules/metal nanocontact while keeping the metallic electrodes at a fixed distance. Taking advantage of thermal diffusion and electromigration, we let the contact naturally explore the more stable configurations around a chosen conductance value. The conductance of a single molecule is estimated from a statistical analysis of raw conductance and conductance standard deviation data for molecular contacts containing up to 14 molecules. The single molecule conductance values are interpreted as time-averaged conductance of an ensemble of conformers at thermal equilibrium.

  4. Single-Molecule Light-Sheet Imaging of Suspended T Cells.

    Science.gov (United States)

    Ponjavic, Aleks; McColl, James; Carr, Alexander R; Santos, Ana Mafalda; Kulenkampff, Klara; Lippert, Anna; Davis, Simon J; Klenerman, David; Lee, Steven F

    2018-05-08

    Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose. Copyright © 2018. Published by Elsevier Inc.

  5. Graphical models for inferring single molecule dynamics

    Directory of Open Access Journals (Sweden)

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  6. Tuning magnetization avalanches in Mn12-acetate

    Science.gov (United States)

    Wen, Bo; McHugh, S.; Ma, Xiang; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Christou, G.

    2009-03-01

    We report the results of a systematic study of magnetic avalanches (abrupt magnetization reversals) in the molecular magnet Mn12-acetate using a micron-sized Hall sensor array. Measurements were taken for: (a) fixed magnetic field (constant barrier against spin reversal); and (b) fixed energy release obtained by adjusting the barrier and δM. A detailed comparison with the theory of magnetic deflagration of Garanin and Chudnovsky [1] will be presented and discussed. [1] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 76, 054410 (2007)

  7. Lanthanide Single-Molecule Magnets Framed by Alkali Metals & Magnetic and Spectroscopic Studies of 3d Transition Metal Complexes

    DEFF Research Database (Denmark)

    Konstantatos, Andreas

    -molecule magnets (SMMs). Starting from the archetype SMM Mn12 we present the details of the mechanisms governing the relaxation of the magnetization of these systems. In Chapter 2 we present our work on the coordination chemistry of lanthanides with a new Schiff-base ligand, H3L [(E)-3-((2-hydroxyphenyl...... complexes of M3+ or M2+ metal ions (M: 3d transition metal) with the preference to either approximate octahedral or trigonal prismatic coordination geometry. A detailed magnetic characterization for most of the complexes is presented where a trinuclear Co2+ cluster stands out for its pronounced SMM...

  8. Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange.

    Science.gov (United States)

    Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping

    2017-08-01

    Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deep learning for single-molecule science

    Science.gov (United States)

    Albrecht, Tim; Slabaugh, Gregory; Alonso, Eduardo; Al-Arif, SM Masudur R.

    2017-10-01

    Exploring and making predictions based on single-molecule data can be challenging, not only due to the sheer size of the datasets, but also because a priori knowledge about the signal characteristics is typically limited and poor signal-to-noise ratio. For example, hypothesis-driven data exploration, informed by an expectation of the signal characteristics, can lead to interpretation bias or loss of information. Equally, even when the different data categories are known, e.g., the four bases in DNA sequencing, it is often difficult to know how to make best use of the available information content. The latest developments in machine learning (ML), so-called deep learning (DL) offer interesting, new avenues to address such challenges. In some applications, such as speech and image recognition, DL has been able to outperform conventional ML strategies and even human performance. However, to date DL has not been applied much in single-molecule science, presumably in part because relatively little is known about the ‘internal workings’ of such DL tools within single-molecule science as a field. In this Tutorial, we make an attempt to illustrate in a step-by-step guide how one of those, a convolutional neural network (CNN), may be used for base calling in DNA sequencing applications. We compare it with a SVM as a more conventional ML method, and discuss some of the strengths and weaknesses of the approach. In particular, a ‘deep’ neural network has many features of a ‘black box’, which has important implications on how we look at and interpret data.

  10. Real-time monitoring and manipulation of single bio-molecules in free solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hung-Wing [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The observation and manipulation of single biomolecules allow their dynamic behaviors to be studied to provide insight into molecular genetics, biochip assembly, biosensor design, DNA biophysics. In a PDMS/glass microchannel, a nonuniform electroosmotic flow (EOF) was created. By using a scanning confocal fluorescence microscope and total internal-reflection fluorescence microscope (TIRFM), we demonstrated that negatively charged DNA molecules were focused by the nonuniform EOF into a thin layer at the glass surface. This phenomenon was applied to selectively detect target DNA molecules without requiring the separation of excessive probes and can be applied continuously to achieve high throughput. A variable-angle-TIRFM was constructed for imaging single DNA molecule dynamics at a solid/liquid interface. Implications we have are that the measured intensities cannot be used directly to determine the distances of molecules from the surface and the experimental counting results depict the distance-dependent dynamics of molecules near the surface; Molecules at low ionic strengths experience electrostatic repulsion at distances much further away from the surface than the calculated thickness of the electrical double layer. {delta}-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. The 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Patterns of self-assembled monolayers (SAMs) and patterns of metal oxides are generated. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, the various parameters governing the retention of an analyte during chromatographic separation can be studied. Even subtle differences among adsorptive forces can be revealed. Dynamic conformational changes of the prosthetic group, flavin adenine dinucleotide (FAD), in flavoprotein NADH peroxidase, in thioredoxin reductase, and in free solution were monitored

  11. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    Science.gov (United States)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  12. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  13. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  14. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  15. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  16. A Low Spin Manganese(IV) Nitride Single Molecule Magnet.

    Science.gov (United States)

    Ding, Mei; Cutsail, George E; Aravena, Daniel; Amoza, Martín; Rouzières, Mathieu; Dechambenoit, Pierre; Losovyj, Yaroslav; Pink, Maren; Ruiz, Eliseo; Clérac, Rodolphe; Smith, Jeremy M

    2016-09-01

    Structural, spectroscopic and magnetic methods have been used to characterize the tris(carbene)borate compound PhB(MesIm) 3 Mn≡N as a four-coordinate manganese(IV) complex with a low spin ( S = 1/2) configuration. The slow relaxation of the magnetization in this complex, i.e. its single-molecule magnet (SMM) properties, is revealed under an applied dc field. Multireference quantum mechanical calculations indicate that this SMM behavior originates from an anisotropic ground doublet stabilized by spin-orbit coupling. Consistent theoretical and experiment data show that the resulting magnetization dynamics in this system is dominated by ground state quantum tunneling, while its temperature dependence is influenced by Raman relaxation.

  17. Real-time single-molecule imaging of quantum interference.

    Science.gov (United States)

    Juffmann, Thomas; Milic, Adriana; Müllneritsch, Michael; Asenbaum, Peter; Tsukernik, Alexander; Tüxen, Jens; Mayor, Marcel; Cheshnovsky, Ori; Arndt, Markus

    2012-03-25

    The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.

  18. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  19. Development of new photon-counting detectors for single-molecule fluorescence microscopy

    Science.gov (United States)

    Michalet, X.; Colyer, R. A.; Scalia, G.; Ingargiola, A.; Lin, R.; Millaud, J. E.; Weiss, S.; Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; Cheng, A.; Levi, M.; Aharoni, D.; Arisaka, K.; Villa, F.; Guerrieri, F.; Panzeri, F.; Rech, I.; Gulinatti, A.; Zappa, F.; Ghioni, M.; Cova, S.

    2013-01-01

    Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences. Currently, two types of detectors best fulfil the needs of each approach: single-photon-counting avalanche diodes (SPADs) for point-like detection, and electron-multiplying charge-coupled devices (EMCCDs) for wide field detection. However, there is room for improvements in both cases. The first configuration suffers from low throughput owing to the analysis of data from a single location. The second, on the other hand, is limited to relatively low frame rates and loses the benefit of single-photon-counting approaches. During the past few years, new developments in point-like and wide field detectors have started addressing some of these issues. Here, we describe our recent progresses towards increasing the throughput of single-molecule fluorescence spectroscopy in solution using parallel arrays of SPADs. We also discuss our development of large area photon-counting cameras achieving subnanosecond resolution for fluorescence lifetime imaging applications at the single-molecule level. PMID:23267185

  20. Molecular spintronics using single-molecule magnets

    Science.gov (United States)

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  1. Towards single molecule biosensors using super-resolution fluorescence microscopy.

    Science.gov (United States)

    Lu, Xun; Nicovich, Philip R; Gaus, Katharina; Gooding, J Justin

    2017-07-15

    Conventional immunosensors require many binding events to give a single transducer output which represents the concentration of the analyte in the sample. Because of the requirements to selectively detect species in complex samples, immunosensing interfaces must allow immobilisation of antibodies while repelling nonspecific adsorption of other species. These requirements lead to quite sophisticated interfacial design, often with molecular level control, but we have no tools to characterise how well these interfaces work at the molecular level. The work reported herein is an initial feasibility study to show that antibody-antigen binding events can be monitored at the single molecule level using single molecule localisation microscopy (SMLM). The steps to achieve this first requires showing that indium tin oxide surfaces can be used for SMLM, then that these surfaces can be modified with self-assembled monolayers using organophosphonic acid derivatives, that the amount of antigens and antibodies on the surface can be controlled and monitored at the single molecule level and finally antibody binding to antigen modified surfaces can be monitored. The results show the amount of antibody that binds to an antigen modified surface is dependent on both the concentration of antigen on the surface and the concentration of antibody in solution. This study demonstrates the potential of SMLM for characterising biosensing interfaces and as the transducer in a massively parallel, wide field, single molecule detection scheme for quantitative analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  3. Single-molecule fluorescence microscopy review: shedding new light on old problems.

    Science.gov (United States)

    Shashkova, Sviatlana; Leake, Mark C

    2017-08-31

    Fluorescence microscopy is an invaluable tool in the biosciences, a genuine workhorse technique offering exceptional contrast in conjunction with high specificity of labelling with relatively minimal perturbation to biological samples compared with many competing biophysical techniques. Improvements in detector and dye technologies coupled to advances in image analysis methods have fuelled recent development towards single-molecule fluorescence microscopy, which can utilize light microscopy tools to enable the faithful detection and analysis of single fluorescent molecules used as reporter tags in biological samples. For example, the discovery of GFP, initiating the so-called 'green revolution', has pushed experimental tools in the biosciences to a completely new level of functional imaging of living samples, culminating in single fluorescent protein molecule detection. Today, fluorescence microscopy is an indispensable tool in single-molecule investigations, providing a high signal-to-noise ratio for visualization while still retaining the key features in the physiological context of native biological systems. In this review, we discuss some of the recent discoveries in the life sciences which have been enabled using single-molecule fluorescence microscopy, paying particular attention to the so-called 'super-resolution' fluorescence microscopy techniques in live cells, which are at the cutting-edge of these methods. In particular, how these tools can reveal new insights into long-standing puzzles in biology: old problems, which have been impossible to tackle using other more traditional tools until the emergence of new single-molecule fluorescence microscopy techniques. © 2017 The Author(s).

  4. Investigation of photobleaching and saturation of single molecules by fluorophore recrossing events

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Sean M.; Reif, Randall D. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Pappas, Dimitri [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)], E-mail: d.pappas@ttu.edu

    2007-08-15

    A method for investigation of photobleaching and saturation of single molecules by fluorophore recrossing events in a laser beam is described. The diffraction-limited probe volumes encountered in single-molecule detection (SMD) produce high excitation irradiance, which can decrease available signal. The single molecules of several dyes were detected and the data was used to extract interpeak times above a defined threshold value. The interpeak times revealed the number of fluorophore recrossing events. The number of molecules detected that were within 2 ms of each other represented a molecular recrossing for this work. Calcein, fluorescein and R-phycoerythrin were analyzed and the saturation irradiance and photobleaching effects were determined as a function of irradiance. This approach is simple and it serves as a method of optimizing experimental conditions for single-molecule detection.

  5. Rapid synthesis and catalytic performance of {alpha}-Mn{sub 2}O{sub 3} single-crystal nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xinsong; Hu, Xingming; Zhu, Jinmiao; Dong, Huaze; Wang, Yanping [Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061 (China); Yang, Baojun [Anhui Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, School of Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Hao, Jianwen [Department of Chemical Engineering, Anhui Vocational and Technical College, Hefei 230051 (China)

    2011-12-15

    Single-crystal {alpha}-Mn{sub 2}O{sub 3} nanowires were prepared via a ''self-sacrificing template'' route, simply by calcining the prepared {alpha}-MnO{sub 2} nanowire precursors at 550 C for 1.5 h. XRD, TEM, SEM and HRTEM characterizations show that the as-prepared {alpha}-Mn{sub 2}O{sub 3} samples are all phase pure and the nanowires have uniform diameters of approximately 15-30 nm and lengths up to several micrometers. The catalytic performances of the prepared {alpha}-Mn{sub 2}O{sub 3} nanowires were studied in the degradation of coking wastewater with H{sub 2}O{sub 2} as the oxidant, and the technological conditions were optimized by single-factor and orthogonal experiments. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  7. Synthesis and properties of a new quadruple perovskite: A-site ordered PbMn{sub 3}Mn{sub 4}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Locherer, T.; Dinnebier, R.; Kremer, R.K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Greenblatt, M., E-mail: martha@rutchem.rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854 (United States); Jansen, M. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2012-06-15

    PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared by high pressure and high temperature synthesis. Powder X-ray diffraction (PXD) and differential scanning calorimetry reveal a structural phase transition at {approx}380 K. Rietveld refinement of the synchrotron room temperature data indicate rhombohedral symmetry (R-3) with a=6.43675(4) A and {alpha}=109.556(2) Degree-Sign . Similar 423 K PXD data refined in a body centered cubic cell (Im-3) with a=7.4283(9) A. The temperature variation of magnetization, shows a magnetic field dependent antiferromagnetic-like transition at 68 K, and dynamic fluctuations indicative of magnetic frustration. The semiconducting electrical behavior indicates a large decrease in the conductivity near 68 K. The temperature dependence of the real part of the dielectric constant, {epsilon}{sub real} increases dramatically at {approx}68 K, and shows relaxor-type ferroelectric behavior as a function of frequency. The intimate coupling of magnetic, electrical and dielectric properties at 68 K in PbMn{sub 3}Mn{sub 4}O{sub 12} suggests possible multiferroic behavior. - Graphical abstract: Resistance vs. temperature plot showing drastically increasing resistances at temperatures below 68 K (a). Formation of a frequency dependency of the dielectric constant between 68 K and ambient temperature (b). Sharp cusp in the magnetic susceptibility observed at 68 K which is suppressed with increasing magnetic field (c) indicates coupling of magnetic, electric and dielectric effects. Highlights: Black-Right-Pointing-Pointer PbMn{sub 3}Mn{sub 4}O{sub 12} a quadruple perovskite was prepared at high pressure. Black-Right-Pointing-Pointer A structural transition is seen at 380 K from space group R-3-to-Im-3. Black-Right-Pointing-Pointer An antiferromagnetic transition is observed at 68 K. Black-Right-Pointing-Pointer It is semiconducting with a large decrease in the conductivity near 68 K. Black-Right-Pointing-Pointer The temperature dependence

  8. DNA analysis by single molecule stretching in nanofluidic biochips

    DEFF Research Database (Denmark)

    Abad, E.; Juarros, A.; Retolaza, A.

    2011-01-01

    Imprint Lithography (NIL) technology combined with a conventional anodic bonding of the silicon base and Pyrex cover. Using this chip, we have performed single molecule imaging on a bench-top fluorescent microscope system. Lambda phage DNA was used as a model sample to characterize the chip. Single molecules of λ-DNA......Stretching single DNA molecules by confinement in nanofluidic channels has attracted a great interest during the last few years as a DNA analysis tool. We have designed and fabricated a sealed micro/nanofluidic device for DNA stretching applications, based on the use of the high throughput Nano...... stained with the fluorescent dye YOYO-1 were stretched in the nanochannel array and the experimental results were analysed to determine the extension factor of the DNA in the chip and the geometrical average of the nanochannel inner diameter. The determination of the extension ratio of the chip provides...

  9. The [Fe(III)[Fe(III)(L1)2]3] star-type single-molecule magnet.

    Science.gov (United States)

    Saalfrank, Rolf W; Scheurer, Andreas; Bernt, Ingo; Heinemann, Frank W; Postnikov, Andrei V; Schünemann, Volker; Trautwein, Alfred X; Alam, Mohammad S; Rupp, Holger; Müller, Paul

    2006-06-21

    Star-shaped complex [Fe(III)[Fe(III)(L1)2]3] (3) was synthesized starting from N-methyldiethanolamine H2L1 (1) and ferric chloride in the presence of sodium hydride. For 3, two different high-spin iron(III) ion sites were confirmed by Mössbauer spectroscopy at 77 K. Single-crystal X-ray structure determination revealed that 3 crystallizes with four molecules of chloroform, but, with only three molecules of dichloromethane. The unit cell of 3.4CHCl3 contains the enantiomers (delta)-[(S,S)(R,R)(R,R)] and (lambda)-[(R,R)(S,S)(S,S)], whereas in case of 3.3CH2Cl2 four independent molecules, forming pairs of the enantiomers [lambda-(R,R)(R,R)(R,R)]-3 and [lambda-(S,S)(S,S)(S,S)]-3, were observed in the unit cell. According to SQUID measurements, the antiferromagnetic intramolecular coupling of the iron(III) ions in 3 results in a S = 10/2 ground state multiplet. The anisotropy is of the easy-axis type. EPR measurements enabled an accurate determination of the ligand-field splitting parameters. The ferric star 3 is a single-molecule magnet (SMM) and shows hysteretic magnetization characteristics below a blocking temperature of about 1.2 K. However, weak intermolecular couplings, mediated in a chainlike fashion via solvent molecules, have a strong influence on the magnetic properties. Scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) were used to determine the structural and electronic properties of star-type tetranuclear iron(III) complex 3. The molecules were deposited onto highly ordered pyrolytic graphite (HOPG). Small, regular molecule clusters, two-dimensional monolayers as well as separated single molecules were observed. In our STS measurements we found a rather large contrast at the expected locations of the metal centers of the molecules. This direct addressing of the metal centers was confirmed by DFT calculations.

  10. DNA-Based Single-Molecule Electronics: From Concept to Function

    Science.gov (United States)

    2018-01-01

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed. PMID:29342091

  11. DNA-Based Single-Molecule Electronics: From Concept to Function.

    Science.gov (United States)

    Wang, Kun

    2018-01-17

    Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I-V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.

  12. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  13. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  14. DNA origami as biocompatible surface to match single-molecule and ensemble experiments

    Science.gov (United States)

    Gietl, Andreas; Holzmeister, Phil; Grohmann, Dina; Tinnefeld, Philip

    2012-01-01

    Single-molecule experiments on immobilized molecules allow unique insights into the dynamics of molecular machines and enzymes as well as their interactions. The immobilization, however, can invoke perturbation to the activity of biomolecules causing incongruities between single molecule and ensemble measurements. Here we introduce the recently developed DNA origami as a platform to transfer ensemble assays to the immobilized single molecule level without changing the nano-environment of the biomolecules. The idea is a stepwise transfer of common functional assays first to the surface of a DNA origami, which can be checked at the ensemble level, and then to the microscope glass slide for single-molecule inquiry using the DNA origami as a transfer platform. We studied the structural flexibility of a DNA Holliday junction and the TATA-binding protein (TBP)-induced bending of DNA both on freely diffusing molecules and attached to the origami structure by fluorescence resonance energy transfer. This resulted in highly congruent data sets demonstrating that the DNA origami does not influence the functionality of the biomolecule. Single-molecule data collected from surface-immobilized biomolecule-loaded DNA origami are in very good agreement with data from solution measurements supporting the fact that the DNA origami can be used as biocompatible surface in many fluorescence-based measurements. PMID:22523083

  15. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route

    International Nuclear Information System (INIS)

    Zhang Jie; Shu Dong; Zhang Tianren; Chen Hongyu; Zhao Haimin; Wang Yongsheng; Sun Zhenjie; Tang Shaoqing; Fang Xueming; Cao Xiufang

    2012-01-01

    Highlights: ► PANI/MnO 2 composite was synthesized by the simultaneous-oxidation route. ► Good contact in inter-molecule level between PANI and MnO 2 improves the conductivity. ► The separation between PANI and MnO 2 prevents the aggregation of nano-composite. ► The maximum specific capacitance of the PANI/MnO 2 electrode is 320 F/g. ► The as-prepared PANI/MnO 2 exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO 2 ) composite (PANI/MnO 2 ) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO 2 simultaneously. In this way, PANI molecule and MnO 2 molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO 2 molecules separating each other, and prevents the aggregation of PANI and cluster of MnO 2 so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer–Emmett–Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge–discharge test and the electrochemical impedance measurements. The results show that MnO 2 is predominant in the PANI/MnO 2 composite and the composite exhibits larger specific surface area than pure MnO 2 . The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge–discharge test, 1.56 times higher than that of MnO 2 (125 F/g). The specific capacitance retains approximately 84% of the initial value after 10,000 cycles, indicating the good cycle stability.

  16. Single-molecule conductivity of non-redox and redox molecules at pure and gold-mined Au(111)-electrode surfaces

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Ulstrup, Jens

    The structure, two-dimensional organization, and function of molecules immobilized on solid surfaces can be addressed in a degree of detail that has reached the level of the single-molecule. In this context redox molecules are “smart” molecules adding sophisticated electronic function. Redox meta...

  17. Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas

    Directory of Open Access Journals (Sweden)

    Kaminska Izabela

    2018-02-01

    Full Text Available Photobleaching is an effect terminating the photon output of fluorophores, limiting the duration of fluorescence-based experiments. Plasmonic nanoparticles (NPs can increase the overall fluorophore photostability through an enhancement of the radiative rate. In this work, we use the DNA origami technique to arrange a single fluorophore in the 12-nm gap of a silver NP dimer and study the number of emitted photons at the single molecule level. Our findings yielded a 30× enhancement in the average number of photons emitted before photobleaching. Numerical simulations are employed to rationalize our results. They reveal the effect of silver oxidation on decreasing the radiative rate enhancement.

  18. Excitonic Behavior of Rhodamine Dimers: A Single-Molecule Study

    NARCIS (Netherlands)

    Hernando Campos, J.; van der Schaaf, Martijn; van Dijk, E.M.H.P.; Sauer, Markus; Garcia Parajo, M.F.; van Hulst, N.F.

    2003-01-01

    The optical behavior of a dimer of tetramethylrhodamine-5-isothiocyanate has been investigated by means of single-molecule measurements. Bulk absorption and fluorescence spectra show the existence of two populations of the dimer molecule that exhibit distinct excitonic interactions (strong and weak

  19. Morphological and optical properties of MnS/polyvinylcarbazole hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Moloto, Nosipho, E-mail: nmoloto@csir.co.z [National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Coville, Neil J. [School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa); Sinha Ray, Suprakas [National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001 (South Africa); Moloto, Makwena J. [School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050 (South Africa)

    2009-12-01

    This communication describes two methods for the synthesis of manganese sulfide/polyvinylcarbazole (MnS/PNVC) nanocomposites. The first method (method 1) involves initially the removal of the Hexadecylamine (HDA) molecules in the HDA-capped MnS nanoparticles, followed by the dispersion of the bare MnS (3 wt%) into PNVC. The FE-SEM and FT-IR established a strong interaction between the nanoparticles and the polymer while the absorption and photoluminescence spectra showed improved properties. The second method (method 2) is an in situ synthesis of MnS/PNVC composite. The method is similar to the single source precursor method but utilizes PNVC as the capping agent. The FE-SEM micrograph, EDX and FT-IR confirmed the formation of the composite. The optical properties confirm the role of PNVC to be that of a capping agent.

  20. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    Science.gov (United States)

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Voltage-Driven Conformational Switching with Distinct Raman Signature in a Single-Molecule Junction.

    Science.gov (United States)

    Bi, Hai; Palma, Carlos-Andres; Gong, Yuxiang; Hasch, Peter; Elbing, Mark; Mayor, Marcel; Reichert, Joachim; Barth, Johannes V

    2018-04-11

    Precisely controlling well-defined, stable single-molecule junctions represents a pillar of single-molecule electronics. Early attempts to establish computing with molecular switching arrays were partly challenged by limitations in the direct chemical characterization of metal-molecule-metal junctions. While cryogenic scanning probe studies have advanced the mechanistic understanding of current- and voltage-induced conformational switching, metal-molecule-metal conformations are still largely inferred from indirect evidence. Hence, the development of robust, chemically sensitive techniques is instrumental for advancement in the field. Here we probe the conformation of a two-state molecular switch with vibrational spectroscopy, while simultaneously operating it by means of the applied voltage. Our study emphasizes measurements of single-molecule Raman spectra in a room-temperature stable single-molecule switch presenting a signal modulation of nearly 2 orders of magnitude.

  2. Single molecule microscopy in 3D cell cultures and tissues.

    Science.gov (United States)

    Lauer, Florian M; Kaemmerer, Elke; Meckel, Tobias

    2014-12-15

    From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A single molecule switch based on two Pd nanocrystals linked

    Indian Academy of Sciences (India)

    Conducting molecule; nanocrystals; scanning tunneling microscopy; negative differential resistance. Abstract. Tunneling spectroscopy measurements have been carried out on a single molecule device formed by two Pd ... Current Issue : Vol.

  4. Electron transfer dynamics of bistable single-molecule junctions

    DEFF Research Database (Denmark)

    Danilov, A.V; Kubatkin, S.; Kafanov, S. G.

    2006-01-01

    We present transport measurements of single-molecule junctions bridged by a molecule with three benzene rings connected by two double bonds and with thiol end-groups that allow chemical binding to gold electrodes. The I-V curves show switching behavior between two distinct states. By statistical ...... analysis of the switching events, we show that a 300 meV mode mediates the transition between the two states. We propose that breaking and reformation of a S-H bond in the contact zone between molecule and electrode explains the observed bistability....

  5. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  6. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  7. New antifouling platform characterized by single-molecule imaging.

    Science.gov (United States)

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  8. Rietveld refinement of the orthorhombic Pbca structures of Rb2CdSi5O12, Cs2MnSiO5O12, Cs2CoSi5O12 and Cs2NiSi5O12 leucites by synchrotron X-ray powder diffraction

    International Nuclear Information System (INIS)

    Bell, A.M.T.; Henderson, C.M.B.

    1996-01-01

    Analysis of high-resolution synchrotron X-ray powder diffraction patterns for hydrothermally synthesized Rb 2 CdSi 5 O 12 and Cs 2 MnSi 5 O 12 leucite analogues, and dry-synthesized Cs 2 CoSi 5 O 12 and Cs 2 NiSi 5 O 12 leucite analogues showed that they have an orthorhombic Pbca structure. The structures have been refined by the Rietveld method, showing that the tetrahedrally coordinated atoms (Si, Cd, Mn, Co and Ni) are ordered on separate sites. The Cs 2 MnSi 5 O 12 , Cs 2 CoSi 5 O 12 and Cs 2 NiSi 5 O 12 leucite samples are unusual in containing SiO 4 tetrahedra which are more distorted, on average, than the larger MnO 4 , CoO 4 and NiO 4 tetrahedra. The JCPDS file numbers for Rb 2 CdSi 5 O 12 , Cs 2 MnSi 5 O 12 and Cs 2 CoSi 5 O 12 are 46-1491, 46-1492 and 46-1493, respectively. (orig.)

  9. Single crystal growth, magnetic and thermal properties of perovskite YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tao [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Hui, E-mail: hshen@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Zhao, Xiangyang; Man, Peiwen [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Su, Liangbi [Synthetio Single Crystal Research Center, Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Xu, Jiayue, E-mail: xujiayue@sit.edu.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2016-11-01

    High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique using a four-mirror-image-furnace under flowing air. Powder X-ray diffraction gives well evidence that the specimen has an orthorhombic structure, with space group Pbnm. Temperature dependence of the magnetizations of YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal were studied under ZFC and FC modes in the temperature range from 5 K to 400 K. A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}. Its Néel temperature is around 385 K. Moreover, the spin reorientation is verified by the change of magnetic hysteresis loops of the sample along [001] axis in the temperature range of 50–385 K. The thermal properties of the sample were measured by the differential scanning calorimeter (DSC) from 300 K to 500 K, which also clearly appear anomaly in the spin reorientation region. - Highlights: • High quality YFe{sub 0.6}Mn{sub 0.4}O{sub 3} single crystal was grown by floating zone technique. • The thermal properties appear anomaly in the spin reorientation region. • A clear spin reorientation transition behavior (Γ{sub 4}→Γ{sub 1}) is observed in the temperature range of 322–316 K, due to the substitution of Mn at the Fe site of YFeO{sub 3}.

  10. Single molecule experiments challenge the strict wave-particle dualism of light.

    Science.gov (United States)

    Greulich, Karl Otto

    2010-01-21

    Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the "single photon limit" of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. "Single photon detectors" do not meet their promise-only "photon number resolving single photon detectors" do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  11. Zero-phonon-line emission of single molecules for applications in quantum information processing

    Science.gov (United States)

    Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.

    2005-07-01

    A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.

  12. Detection of kinetic change points in piece-wise linear single molecule motion

    Science.gov (United States)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  13. Multiplex single-molecule interaction profiling of DNA-barcoded proteins.

    Science.gov (United States)

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E; Vidal, Marc; Church, George M

    2014-11-27

    In contrast with advances in massively parallel DNA sequencing, high-throughput protein analyses are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule protein detection using optical methods is limited by the number of spectrally non-overlapping chromophores. Here we introduce a single-molecular-interaction sequencing (SMI-seq) technology for parallel protein interaction profiling leveraging single-molecule advantages. DNA barcodes are attached to proteins collectively via ribosome display or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide thin film to construct a random single-molecule array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies) and analysed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimetre. Furthermore, protein interactions can be measured on the basis of the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor and antibody-binding profiling, are demonstrated. SMI-seq enables 'library versus library' screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity.

  14. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  15. DNA origami-based shape IDs for single-molecule nanomechanical genotyping

    Science.gov (United States)

    Zhang, Honglu; Chao, Jie; Pan, Dun; Liu, Huajie; Qiang, Yu; Liu, Ke; Cui, Chengjun; Chen, Jianhua; Huang, Qing; Hu, Jun; Wang, Lianhui; Huang, Wei; Shi, Yongyong; Fan, Chunhai

    2017-04-01

    Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ~10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.

  16. Surface single-molecule dynamics controlled by entropy at low temperatures

    Science.gov (United States)

    Gehrig, J. C.; Penedo, M.; Parschau, M.; Schwenk, J.; Marioni, M. A.; Hudson, E. W.; Hug, H. J.

    2017-02-01

    Configuration transitions of individual molecules and atoms on surfaces are traditionally described using an Arrhenius equation with energy barrier and pre-exponential factor (attempt rate) parameters. Characteristic parameters can vary even for identical systems, and pre-exponential factors sometimes differ by orders of magnitude. Using low-temperature scanning tunnelling microscopy (STM) to measure an individual dibutyl sulfide molecule on Au(111), we show that the differences arise when the relative position of tip apex and molecule changes by a fraction of the molecule size. Altering the tip position on that scale modifies the transition's barrier and attempt rate in a highly correlated fashion, which results in a single-molecular enthalpy-entropy compensation. Conversely, appropriately positioning the STM tip allows selecting the operating point on the compensation line and modifying the transition rates. The results highlight the need to consider entropy in transition rates of single molecules, even at low temperatures.

  17. Single-Molecule Electronics with Cross- Conjugated Molecules: Quantum Interference, IETS and Non-Equilibrium "Temperatures"

    DEFF Research Database (Denmark)

    Jørgensen, Jacob Lykkebo

    Abstract The idea of using single-molecules as components in electronic devices is fas- cinating. For this idea to come into fruition, a number of technical and theo- retical challenges must be overcome. In this PhD thesis, the electron-phonon interaction is studied for a special class of molecules......, which is characterised by destructive quantum interference. The molecules are cross-conjugated, which means that the two parts of the molecules are conjugated to a third part, but not to each other. This gives rise to an anti-resonance in the trans- mission. In the low bias and low temperature regime......-conjugated molecules. We nd that the vibrational modes that would be expected to dominate, following the propensity, rules are very weak. Instead, other modes are found to be the dominant ones. We study this phenomenon for a number of cross-conjugated molecules, and link these ndings to the anti...

  18. Comparative assessment of microstructure and texture in the Fe-30.5Mn-8.0Al-1.2C and Fe-30.5Mn-2.1Al-1.2C steels under cold rolling

    Directory of Open Access Journals (Sweden)

    Fabrício Mendes Souza

    Full Text Available Abstract Investigation of microstructure and texture has been done for cold rolled Fe-30.5Mn-8.0Al-1.2C (8Al and Fe-30.5Mn-2.1Al-1.2C (2Al (wt.% steels. They were rolled to a strain of ~0.70. Refinement of a crystallographic slip band substructure in low to medium rolling strain and nucleation of twins on the mature slip bands at a higher strain were suggested as deformation mechanisms in the 8Al steel. Mainly shear banding contributed to the formation of a Copper texture in such steel. Brass-texture development in the 2Al steel is mainly due to deformation twinning and shear banding formation. Detailed images of KAM maps showed that the stored deformation energy was mainly localized in the twinned areas and shear bands, which generated the inhomogeneous deformation microstructures in both steels at a higher strain. Goss and Brass texture intensity decreases and Cu-texture intensity increases as the Al wt.% increases in different cold rolled High-Mn (Mn ~30 wt.% steels.

  19. Evidence for a single hydrogen molecule connected by an atomic chain

    DEFF Research Database (Denmark)

    Kiguchi, M.; Stadler, Robert; Bækgaard, Iben Sig Buur

    2007-01-01

    Stable, single-molecule conducting-bridge configurations are typically identified from peak structures in a conductance histogram. In previous work on Pt with H-2 at cryogenic temperatures it has been shown that a peak near 1G(0) identifies a single-molecule Pt-H-2-Pt bridge. The histogram shows...

  20. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  1. Surface Passivation for Single-molecule Protein Studies

    Science.gov (United States)

    Chandradoss, Stanley D.; Haagsma, Anna C.; Lee, Young Kwang; Hwang, Jae-Ho; Nam, Jwa-Min; Joo, Chirlmin

    2014-01-01

    Single-molecule fluorescence spectroscopy has proven to be instrumental in understanding a wide range of biological phenomena at the nanoscale. Important examples of what this technique can yield to biological sciences are the mechanistic insights on protein-protein and protein-nucleic acid interactions. When interactions of proteins are probed at the single-molecule level, the proteins or their substrates are often immobilized on a glass surface, which allows for a long-term observation. This immobilization scheme may introduce unwanted surface artifacts. Therefore, it is essential to passivate the glass surface to make it inert. Surface coating using polyethylene glycol (PEG) stands out for its high performance in preventing proteins from non-specifically interacting with a glass surface. However, the polymer coating procedure is difficult, due to the complication arising from a series of surface treatments and the stringent requirement that a surface needs to be free of any fluorescent molecules at the end of the procedure. Here, we provide a robust protocol with step-by-step instructions. It covers surface cleaning including piranha etching, surface functionalization with amine groups, and finally PEG coating. To obtain a high density of a PEG layer, we introduce a new strategy of treating the surface with PEG molecules over two rounds, which remarkably improves the quality of passivation. We provide representative results as well as practical advice for each critical step so that anyone can achieve the high quality surface passivation. PMID:24797261

  2. Electrochemically active MnO{sub 2} coated Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2} cathode with highly improved initial coulombic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yanling; Xu, Youlong, E-mail: ylxu@mail.xjtu.edu.cn; Sun, Xiaofei; Xiong, Lilong; Mao, Shengchun

    2016-10-30

    Highlights: • MnO{sub 2} was used to coat lithium-rich layered oxide Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2}. • MnO{sub 2} is electrochemically active and became spinel phase after cycles. • MnO{sub 2}-coated material shows noticeably improved initial coulombic efficiency. • Specific capacities and rate performances could also be enhanced by MnO{sub 2} coating. - Abstract: Lithium-rich layered oxide is known to be one of the most promising positive electrode materials for lithium ion batteries due to its large capacity and high energy density. However, low initial coulombic efficiency is currently an urgent problem hindering its practical application. In this work, electrochemically active MnO{sub 2} coating was used to improve the coulombic efficiency of Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2}. Firstly, the pristine material was synthesized via co-precipitation following by solid-state calcination. Then MnO{sub 2}-coated Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2} was prepared by heat treatment of the mixture of pristine powder and manganese nitrate. During first discharging, lithium ions can intercalate into not only the delithiated Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2} but also the MnO{sub 2} coating, thus noticeably improves the coulombic efficiency and discharge capacity. The initial efficiency is enhanced from 61.2% (pristine) to 84.4%, 88.8% and 95.4%, respectively, for 10 wt.%, 15 wt.% and 20 wt.% MnO{sub 2} coated Li{sub 1.2}Ni{sub 0.18}Co{sub 0.04}Mn{sub 0.58}O{sub 2} at 20 mA g{sup −1}. Furthermore, the 15 wt.% MnO{sub 2} coated sample delivers an initial discharge capacity as high as 294.4 mAh g{sup −1}.

  3. A Single-Molecule Barcoding System using Nanoslits for DNA Analysis

    Science.gov (United States)

    Jo, Kyubong; Schramm, Timothy M.; Schwartz, David C.

    Single DNA molecule approaches are playing an increasingly central role in the analytical genomic sciences because single molecule techniques intrinsically provide individualized measurements of selected molecules, free from the constraints of bulk techniques, which blindly average noise and mask the presence of minor analyte components. Accordingly, a principal challenge that must be addressed by all single molecule approaches aimed at genome analysis is how to immobilize and manipulate DNA molecules for measurements that foster construction of large, biologically relevant data sets. For meeting this challenge, this chapter discusses an integrated approach for microfabricated and nanofabricated devices for the manipulation of elongated DNA molecules within nanoscale geometries. Ideally, large DNA coils stretch via nanoconfinement when channel dimensions are within tens of nanometers. Importantly, stretched, often immobilized, DNA molecules spanning hundreds of kilobase pairs are required by all analytical platforms working with large genomic substrates because imaging techniques acquire sequence information from molecules that normally exist in free solution as unrevealing random coils resembling floppy balls of yarn. However, nanoscale devices fabricated with sufficiently small dimensions fostering molecular stretching make these devices impractical because of the requirement of exotic fabrication technologies, costly materials, and poor operational efficiencies. In this chapter, such problems are addressed by discussion of a new approach to DNA presentation and analysis that establishes scaleable nanoconfinement conditions through reduction of ionic strength; stiffening DNA molecules thus enabling their arraying for analysis using easily fabricated devices that can also be mass produced. This new approach to DNA nanoconfinement is complemented by the development of a novel labeling scheme for reliable marking of individual molecules with fluorochrome labels

  4. Single Molecule Experiments Challenge the Strict Wave-Particle Dualism of Light

    Directory of Open Access Journals (Sweden)

    Karl Otto Greulich

    2010-01-01

    Full Text Available Single molecule techniques improve our understanding of the photon and light. If the single photon double slit experiment is performed at the “single photon limit” of a multi-atom light source, faint light pulses with more than one photon hamper the interpretation. Single molecules, quantum dots or defect centres in crystals should be used as light source. “Single photon detectors” do not meet their promise―only “photon number resolving single photon detectors” do so. Particularly, the accumulation time argument, the only safe basis for the postulate of a strictly particle like photon, has so far not yet been verified.

  5. Site-Selection in Single-Molecule Junction for Highly Reproducible Molecular Electronics.

    Science.gov (United States)

    Kaneko, Satoshi; Murai, Daigo; Marqués-González, Santiago; Nakamura, Hisao; Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Ikeda, Katsuyoshi; Tsukagoshi, Kazuhito; Kiguchi, Manabu

    2016-02-03

    Adsorption sites of molecules critically determine the electric/photonic properties and the stability of heterogeneous molecule-metal interfaces. Then, selectivity of adsorption site is essential for development of the fields including organic electronics, catalysis, and biology. However, due to current technical limitations, site-selectivity, i.e., precise determination of the molecular adsorption site, remains a major challenge because of difficulty in precise selection of meaningful one among the sites. We have succeeded the single site-selection at a single-molecule junction by performing newly developed hybrid technique: simultaneous characterization of surface enhanced Raman scattering (SERS) and current-voltage (I-V) measurements. The I-V response of 1,4-benzenedithiol junctions reveals the existence of three metastable states arising from different adsorption sites. Notably, correlated SERS measurements show selectivity toward one of the adsorption sites: "bridge sites". This site-selectivity represents an essential step toward the reliable integration of individual molecules on metallic surfaces. Furthermore, the hybrid spectro-electric technique reveals the dependence of the SERS intensity on the strength of the molecule-metal interaction, showing the interdependence between the optical and electronic properties in single-molecule junctions.

  6. Thermal conductivity of ferrimagnet GdBaMn2O5.0 single crystals

    Directory of Open Access Journals (Sweden)

    J. C. Wu

    2017-05-01

    Full Text Available GdBaMn2O5.0 is a double-perovskite ferrimagnet consisting of pyramidal manganese layers. In this work, we study the in-plane and the c-axis thermal conductivities of GdBaMn2O5.0 single crystals at low temperatures down to 0.3 K and in high magnetic fields up to 14 T. The κc(T curve shows a broad hump below the Néel temperature (TN = 144 K, which indicates the magnon heat transport along the c axis. Whereas, the κa(T shows a kink at TN, caused by a magnon-phonon scattering effect. This anisotropic behavior is caused by the anisotropy of spin interactions along different directions. At very low temperatures, magnetic-field-induced changes of κa and κc, which is likely due to phonon scattering by free Gd3+ spins, is rather weak. This indicates that the spin coupling between Gd3+ and Mn2+/Mn3+ is rather strong at low temperatures.

  7. Single molecule DNA detection with an atomic vapor notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Uhland, Denis; Rendler, Torsten; Widmann, Matthias; Lee, Sang-Yun [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Wrachtrup, Joerg; Gerhardt, Ilja [University of Stuttgart and Stuttgart Research Center of Photonic Engineering (SCoPE) and IQST, 3rd Physics Institute, Stuttgart (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2015-12-01

    The detection of single molecules has facilitated many advances in life- and material-science. Commonly the fluorescence of dye molecules is detected, which are attached to a non-fluorescent structure under study. For fluorescence microscopy one desires to maximize the detection efficiency together with an efficient suppression of undesired laser leakage. Here we present the use of the narrow-band filtering properties of hot atomic sodium vapor to selectively filter the excitation light from the red-shifted fluorescence of dye labeled single-stranded DNA molecules. A statistical analysis proves an enhancement in detection efficiency of more than 15% in a confocal and in a wide-field configuration. (orig.)

  8. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Serag, Maged F.

    2014-10-06

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  10. Single-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuations

    KAUST Repository

    Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi

    2014-01-01

    Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields.

  11. Quantum Tunneling of Magnetization in Trigonal Single-Molecule Magnets

    Science.gov (United States)

    Liu, Junjie; Del Barco, Enrique; Hill, Stephen

    2012-02-01

    We perform a numerical analysis of the quantum tunneling of magnetization (QTM) that occurs in a spin S = 6 single-molecule magnet (SMM) with idealized C3 symmetry. The deconstructive points in the QTM are located by following the Berry-phase interference (BPI) oscillations. We find that the O4^3 (=12[Sz,S+^3 +S-^3 ]) operator unfreezes odd-k QTM resonances and generates three-fold patterns of BPI minima in all resonances, including k = 0! This behavior cannot be reproduced with operators that possess even rotational symmetry about the quantization axis. We find also that the k = 0 BPI minima shift away from zero longitudinal field. The wider implications of these results will be discussed in terms of the QTM behavior observed in other SMMs.

  12. Machine learning approach for single molecule localisation microscopy.

    Science.gov (United States)

    Colabrese, Silvia; Castello, Marco; Vicidomini, Giuseppe; Del Bue, Alessio

    2018-04-01

    Single molecule localisation (SML) microscopy is a fundamental tool for biological discoveries; it provides sub-diffraction spatial resolution images by detecting and localizing "all" the fluorescent molecules labeling the structure of interest. For this reason, the effective resolution of SML microscopy strictly depends on the algorithm used to detect and localize the single molecules from the series of microscopy frames. To adapt to the different imaging conditions that can occur in a SML experiment, all current localisation algorithms request, from the microscopy users, the choice of different parameters. This choice is not always easy and their wrong selection can lead to poor performance. Here we overcome this weakness with the use of machine learning. We propose a parameter-free pipeline for SML learning based on support vector machine (SVM). This strategy requires a short supervised training that consists in selecting by the user few fluorescent molecules (∼ 10-20) from the frames under analysis. The algorithm has been extensively tested on both synthetic and real acquisitions. Results are qualitatively and quantitatively consistent with the state of the art in SML microscopy and demonstrate that the introduction of machine learning can lead to a new class of algorithms competitive and conceived from the user point of view.

  13. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten; Luka-Guth, Katharina; Wieser, Matthias; Lokamani; Wolf, Jannic Sebastian; Helm, Manfred; Gemming, Sibylle; Kerbusch, Jochen; Scheer, Elke; Huhn, Thomas; Erbe, Artur

    2015-01-01

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  14. Light-Induced Switching of Tunable Single-Molecule Junctions

    KAUST Repository

    Sendler, Torsten

    2015-04-16

    A major goal of molecular electronics is the development and implementation of devices such as single-molecular switches. Here, measurements are presented that show the controlled in situ switching of diarylethene molecules from their nonconductive to conductive state in contact to gold nanoelectrodes via controlled light irradiation. Both the conductance and the quantum yield for switching of these molecules are within a range making the molecules suitable for actual devices. The conductance of the molecular junctions in the opened and closed states is characterized and the molecular level E 0, which dominates the current transport in the closed state, and its level broadening Γ are identified. The obtained results show a clear light-induced ring forming isomerization of the single-molecule junctions. Electron withdrawing side-groups lead to a reduction of conductance, but do not influence the efficiency of the switching mechanism. Quantum chemical calculations of the light-induced switching processes correlate these observations with the fundamentally different low-lying electronic states of the opened and closed forms and their comparably small modification by electron-withdrawing substituents. This full characterization of a molecular switch operated in a molecular junction is an important step toward the development of real molecular electronics devices.

  15. Origin of second-order transverse magnetic anisotropy in Mn12-acetate

    International Nuclear Information System (INIS)

    Cornia, A.; Sessoli, R.; Sorace, L.; Gatteschi, D.; Barra, A. L.; Daiguebonne, C.

    2002-01-01

    The symmetry breaking effects for quantum tunneling of the magnetization in Mn 12 -acetate, a molecular nanomagnet, represent an open problem. We present structural evidence that the disorder of the acetic acid of crystallization induces sizable distortion of the Mn(III) sites, giving rise to six different isomers. Four isomers have symmetry lower than tetragonal and a nonzero second-order transverse magnetic anisotropy, which has been evaluated using a ligand field approach. The result of the calculation leads to an improved simulation of electron paramagnetic resonance spectra and justifies the tunnel splitting distribution derived from the field sweep rate dependence of the hysteresis loops

  16. Linker-dependent Junction Formation Probability in Single-Molecule Junctions

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Pil Sun; Kim, Taekyeong [HankukUniversity of Foreign Studies, Yongin (Korea, Republic of)

    2015-01-15

    We compare the junction formation probabilities of single-molecule junctions with different linker molecules by using a scanning tunneling microscope-based break-junction technique. We found that the junction formation probability varies as SH > SMe > NH2 for the benzene backbone molecule with different types of anchoring groups, through quantitative statistical analysis. These results are attributed to different bonding forces according to the linker groups formed with Au atoms in the electrodes, which is consistent with previous works. Our work allows a better understanding of the contact chemistry in the metal.molecule junction for future molecular electronic devices.

  17. Structural and electronic properties of single molecules and organic layers on surfaces

    NARCIS (Netherlands)

    Sotthewes, Kai

    2016-01-01

    Single molecules and organic layers on well-defined solid surfaces have attracted tremendous attention owing to their interesting physical and chemical properties. The ultimate utility of single molecules or self-assembled monolayers (SAMs) for potential applications is critically dependent on the

  18. Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Chi, Qijin; Albrecht, Tim

    2005-01-01

    Surface structures controlled at the nanometer and single-molecule levels, with functions crucially determined by interfacial electron transfer (ET) are broadly reported in recent years, with different kinds of electrochemically controlled nanoscale/single molecule systems. One is the broad class...

  19. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin

    2012-10-25

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  20. Excitonic Coupling in Linear and Trefoil Trimer Perylenediimide Molecules Probed by Single-Molecule Spectroscopy

    KAUST Repository

    Yoo, Hyejin; Furumaki, Shu; Yang, Jaesung; Lee, Ji-Eun; Chung, Heejae; Oba, Tatsuya; Kobayashi, Hiroyuki; Rybtchinski, Boris; Wilson, Thea M.; Wasielewski, Michael R.; Vacha, Martin; Kim, Dongho

    2012-01-01

    Perylenediimide (PDI) molecules are promising building blocks for photophysical studies of electronic interactions within multichromophore arrays. Such PDI arrays are important materials for fabrication of molecular nanodevices such as organic light-emitting diodes, organic semiconductors, and biosensors because of their high photostability, chemical and physical inertness, electron affinity, and high tinctorial strength over the entire visible spectrum. In this work, PDIs have been organized into linear (L3) and trefoil (T3) trimer molecules and investigated by single-molecule fluorescence microscopy to probe the relationship between molecular structures and interchromophoric electronic interactions. We found a broad distribution of coupling strengths in both L3 and T3 and hence strong/weak coupling between PDI units by monitoring spectral peak shifts in single-molecule fluorescence spectra upon sequential photobleaching of each constituent chromophore. In addition, we used a wide-field defocused imaging technique to resolve heterogeneities in molecular structures of L3 and T3 embedded in a PMMA polymer matrix. A systematic comparison between the two sets of experimental results allowed us to infer the correlation between intermolecular interactions and molecular structures. Our results show control of the PDI intermolecular interactions using suitable multichromophoric structures. © 2012 American Chemical Society.

  1. Chemical Principles and Interference in the Electrical Conductance of Single Molecules

    DEFF Research Database (Denmark)

    Borges, Anders Christian

    , the conductance of molecules can vary orders of magnitude and the concept of interference is believed to play a major role in this. This thesis investigates the links between single molecule conductance, chemistry and interference effects in short organic molecules. It is investigated to which extent...... the conductance can be understood in terms of separate contributions and when the effects of interference are important. Links between chemical principles and constructive- and destructive interference effects are demonstrated using a combination of simple models, atomistic calculations and Scanning......-Tunneling Microscope Break-Junction experiments (STM-BJ). It is demonstrated that these links can be used to design molecules exhibiting surprising interference effects and to interpret and predict the trends in the characteristic conductance of single molecules without resorting to numerical computational methods...

  2. Reorganization energy upon charging a single molecule on an insulator measured by atomic force microscopy

    Science.gov (United States)

    Fatayer, Shadi; Schuler, Bruno; Steurer, Wolfram; Scivetti, Ivan; Repp, Jascha; Gross, Leo; Persson, Mats; Meyer, Gerhard

    2018-05-01

    Intermolecular single-electron transfer on electrically insulating films is a key process in molecular electronics1-4 and an important example of a redox reaction5,6. Electron-transfer rates in molecular systems depend on a few fundamental parameters, such as interadsorbate distance, temperature and, in particular, the Marcus reorganization energy7. This crucial parameter is the energy gain that results from the distortion of the equilibrium nuclear geometry in the molecule and its environment on charging8,9. The substrate, especially ionic films10, can have an important influence on the reorganization energy11,12. Reorganization energies are measured in electrochemistry13 as well as with optical14,15 and photoemission spectroscopies16,17, but not at the single-molecule limit and nor on insulating surfaces. Atomic force microscopy (AFM), with single-charge sensitivity18-22, atomic-scale spatial resolution20 and operable on insulating films, overcomes these challenges. Here, we investigate redox reactions of single naphthalocyanine (NPc) molecules on multilayered NaCl films. Employing the atomic force microscope as an ultralow current meter allows us to measure the differential conductance related to transitions between two charge states in both directions. Thereby, the reorganization energy of NPc on NaCl is determined as (0.8 ± 0.2) eV, and density functional theory (DFT) calculations provide the atomistic picture of the nuclear relaxations on charging. Our approach presents a route to perform tunnelling spectroscopy of single adsorbates on insulating substrates and provides insight into single-electron intermolecular transport.

  3. Bacteriochlorophyll Aggregates Self-Assembled on Functionalized Gold Nanorod Cores as Mimics of Photosynthetic Chlorosomal Antennae: A Single Molecule Study

    Czech Academy of Sciences Publication Activity Database

    Furumaki, S.; Vácha, František; Hirata, S.; Vácha, M.

    2014-01-01

    Roč. 8, č. 3 (2014), s. 2176-2182 ISSN 1936-0851 Institutional support: RVO:60077344 Keywords : Single molecule spectroscopy * molecular aggregate * bacteriochlorophyll * chromosome Subject RIV: BO - Biophysics Impact factor: 12.881, year: 2014

  4. Spectrally resolved single-molecule electrometry

    Science.gov (United States)

    Ruggeri, F.; Krishnan, M.

    2018-03-01

    Escape-time electrometry is a recently developed experimental technique that offers the ability to measure the effective electrical charge of a single biomolecule in solution with sub-elementary charge precision. The approach relies on measuring the average escape-time of a single charged macromolecule or molecular species transiently confined in an electrostatic fluidic trap. Comparing the experiments with the predictions of a mean-field model of molecular electrostatics, we have found that the measured effective charge even reports on molecular conformation, e.g., folded or disordered state, and non-uniform charge distribution in disordered proteins or polyelectrolytes. Here we demonstrate the ability to use the spectral dimension to distinguish minute differences in electrical charge between individual molecules or molecular species in a single simultaneous measurement, under identical experimental conditions. Using one spectral channel for referenced measurement, this kind of photophysical distinguishability essentially eliminates the need for accurate knowledge of key experimental parameters, otherwise obtained through intensive characterization of the experimental setup. As examples, we demonstrate the ability to detect small differences (˜5%) in the length of double-stranded DNA fragments as well as single amino acid exchange in an intrinsically disordered protein, prothymosin α.

  5. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  6. Blinking effect and the use of quantum dots in single molecule spectroscopy

    International Nuclear Information System (INIS)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Gräber, P.; Galvez, E.M.

    2013-01-01

    Highlights: ► It is possible to eliminate the blinking effect of a water-soluble QD. ► We provide a direct method to study protein function and dynamics at the single level. ► QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the “on”/“off” states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein–protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  7. Blinking effect and the use of quantum dots in single molecule spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Domingo, M.P. [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Pardo, Julian [Grupo Apoptosis, Inmunidad y Cancer, Departamento Bioquimica y Biologia Molecular y Celular, Fac. Ciencias, Universidad de Zaragoza, Zaragoza (Spain); Fundacion Aragon I-D (ARAID), Gobierno de Aragon, Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain); Graeber, P. [Albert-Ludwigs-Universitaet Freiburg, Institut fuer Physikalische Chemie, Albertstrasse 23a, 79104 Freiburg (Germany); Galvez, E.M., E-mail: eva@icb.csic.es [Instituto de Carboquimica (CSIC), Miguel Luesma 4, 50018 Zaragoza (Spain); Immune Effector Cells Group, Aragon Health Research Institute (IIS Aragon), Biomedical Research Centre of Aragon (CIBA) Fundacion Aragon I-D - ARAID, Gobierno de Aragon, Zaragoza (Spain)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.

  8. Plasmonic tunnel junctions for single-molecule redox chemistry.

    Science.gov (United States)

    de Nijs, Bart; Benz, Felix; Barrow, Steven J; Sigle, Daniel O; Chikkaraddy, Rohit; Palma, Aniello; Carnegie, Cloudy; Kamp, Marlous; Sundararaman, Ravishankar; Narang, Prineha; Scherman, Oren A; Baumberg, Jeremy J

    2017-10-20

    Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.

  9. Capacitive properties of PANI/MnO{sub 2} synthesized via simultaneous-oxidation route

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jie [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Shu Dong, E-mail: dshu@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tianneng Group, Changxing 313100, Zhejiang Province (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhang Tianren [Tianneng Group, Changxing 313100, Zhejiang Province (China); Chen Hongyu [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Base of Production, Education and Research on Energy Storage and Power Battery of Guangdong Higher Education Institutes, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation of Guangdong Higher Education Institutes, South China Normal University, Guangzhou 510006 (China); Zhao Haimin; Wang Yongsheng [Tianneng Group, Changxing 313100, Zhejiang Province (China); Sun Zhenjie; Tang Shaoqing [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Fang Xueming [Tianneng Group, Changxing 313100, Zhejiang Province (China); Cao Xiufang [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer PANI/MnO{sub 2} composite was synthesized by the simultaneous-oxidation route. Black-Right-Pointing-Pointer Good contact in inter-molecule level between PANI and MnO{sub 2} improves the conductivity. Black-Right-Pointing-Pointer The separation between PANI and MnO{sub 2} prevents the aggregation of nano-composite. Black-Right-Pointing-Pointer The maximum specific capacitance of the PANI/MnO{sub 2} electrode is 320 F/g. Black-Right-Pointing-Pointer The as-prepared PANI/MnO{sub 2} exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO{sub 2}) composite (PANI/MnO{sub 2}) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO{sub 2} simultaneously. In this way, PANI molecule and MnO{sub 2} molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO{sub 2} molecules separating each other, and prevents the aggregation of PANI and cluster of MnO{sub 2} so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer-Emmett-Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge-discharge test and the electrochemical impedance measurements. The results show that MnO{sub 2} is predominant in the PANI/MnO{sub 2} composite and the composite exhibits larger specific surface area than pure MnO{sub 2}. The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge-discharge test, 1.56 times

  10. Selective deintercalation of apex over face-shared oxide ions in the topotactic reduction of Sr7Mn4O15 to Sr7Mn4O12.

    Science.gov (United States)

    Hayward, M A

    2004-01-21

    Sodium hydride selectively deintercalates the apex rather than face-shared oxide ions within the structure of Sr(7)Mn(4)O(15) leading to the formation of the structurally related reduced phase Sr(7)Mn(4)O(12).

  11. Viruses and Tetraspanins: Lessons from Single Molecule Approaches

    Science.gov (United States)

    Dahmane, Selma; Rubinstein, Eric; Milhiet, Pierre-Emmanuel

    2014-01-01

    Tetraspanins are four-span membrane proteins that are widely distributed in multi-cellular organisms and involved in several infectious diseases. They have the unique property to form a network of protein-protein interaction within the plasma membrane, due to the lateral associations with one another and with other membrane proteins. Tracking tetraspanins at the single molecule level using fluorescence microscopy has revealed the membrane behavior of the tetraspanins CD9 and CD81 in epithelial cell lines, providing a first dynamic view of this network. Single molecule tracking highlighted that these 2 proteins can freely diffuse within the plasma membrane but can also be trapped, permanently or transiently, in tetraspanin-enriched areas. More recently, a similar strategy has been used to investigate tetraspanin membrane behavior in the context of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infection. In this review we summarize the main results emphasizing the relationship in terms of membrane partitioning between tetraspanins, some of their partners such as Claudin-1 and EWI-2, and viral proteins during infection. These results will be analyzed in the context of other membrane microdomains, stressing the difference between raft and tetraspanin-enriched microdomains, but also in comparison with virus diffusion at the cell surface. New advanced single molecule techniques that could help to further explore tetraspanin assemblies will be also discussed. PMID:24800676

  12. Transport mirages in single-molecule devices

    Science.gov (United States)

    Gaudenzi, R.; Misiorny, M.; Burzurí, E.; Wegewijs, M. R.; van der Zant, H. S. J.

    2017-03-01

    Molecular systems can exhibit a complex, chemically tailorable inner structure which allows for targeting of specific mechanical, electronic, and optical properties. At the single-molecule level, two major complementary ways to explore these properties are molecular quantum-dot structures and scanning probes. This article outlines comprehensive principles of electron-transport spectroscopy relevant to both these approaches and presents a new, high-resolution experiment on a high-spin single-molecule junction exemplifying these principles. Such spectroscopy plays a key role in further advancing our understanding of molecular and atomic systems, in particular, the relaxation of their spin. In this joint experimental and theoretical analysis, particular focus is put on the crossover between the resonant regime [single-electron tunneling] and the off-resonant regime [inelastic electron (co)tunneling spectroscopy (IETS)]. We show that the interplay of these two processes leads to unexpected mirages of resonances not captured by either of the two pictures alone. Although this turns out to be important in a large fraction of the possible regimes of level positions and bias voltages, it has been given little attention in molecular transport studies. Combined with nonequilibrium IETS—four-electron pump-probe excitations—these mirages provide crucial information on the relaxation of spin excitations. Our encompassing physical picture is supported by a master-equation approach that goes beyond weak coupling. The present work encourages the development of a broader connection between the fields of molecular quantum-dot and scanning probe spectroscopy.

  13. Plasmonics and single-molecule detection in evaporated silver-island films

    Energy Technology Data Exchange (ETDEWEB)

    Moula, G.; Aroca, R.F. [Materials and Surface Science Group, University of Windsor, Ontario (Canada); Rodriguez-Oliveros, R.; Sanchez-Gil, J.A. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Albella, P. [Centro de Fisica de Materiales (CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, San Sebastian (Spain)

    2012-11-15

    The plasmonic origin of surface-enhanced Raman scattering (SERS) leads to the concept of hotspots and plasmon coupling that can be realized in the interstitial regions, or on specially engineered, silver and gold nanostructures. It is also possible to achieve spatial locations of high local field or hotspots on silver-island films (SIF) allowing single-molecule detection (SMD). When a single monomolecular layer coating the SIFs contains dye molecules dispersed in it, single-molecule impurities, (with an average of one hundred dye molecules in 1 {mu}m{sup 2}, which is the field of view of the micro-Raman system), SMD is observed as a rare statistical event. Here, the SMD results for silver-island films are presented, with the same nominal mass thickness, but differing in the localized surface plasmon resonance that is a function of the temperature of substrate during deposition. A blue-shifted plasmon can be seen as a decrease in plasmon coupling for deposition at higher temperature. A simple two-particle model for localized plasmon resonance coupling calculations, including the shape and substrate effects seems to explain the trend of observations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Experimental demonstration of a single-molecule electric motor.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Jewell, April D; Baber, Ashleigh E; Iski, Erin V; Khodaverdian, Harout Y; McGuire, Allister F; Klebanov, Nikolai; Sykes, E Charles H

    2011-09-04

    For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.

  15. Molecular dynamics simulations of spinels: LiMn2O4 and Li4Mn5O12 at high temperatures

    International Nuclear Information System (INIS)

    Ledwaba, R S; Matshaba, M G; Ngoepe, P E

    2015-01-01

    Energy storage technologies are critical in addressing the global challenge of clean sustainable energy. Spinel lithium manganates have attracted attention due to their electrochemical properties and also as promising cathode materials for lithium-ion batteries. The current study focused on the effects of high temperatures on the materials, in order to understand the sustainability in cases where the battery heats up to high temperature and analysis of lithium diffusion aids in terms of intercalation host compatibility. It is also essential to understand the high temperature behaviour and lithium ion host capability of these materials in order to perform the armorphization and recrystalization of spinel nano-architectures. Molecular dynamics simulations carried out to predict high temperature behaviour of the spinel systems. The NVE ensemble was employed, in the range 300 - 3000K. The melting temperature, lithium-ion diffusion and structural behaviour were monitored in both supercell systems. LiMn 2 O 4 indicated a diffusion rate that increased rapidly above 1500K, just before melting (∼1700K) and reached its maximum diffusion at 2.756 × 10 -7 cm 2 s -1 before it decreased. Li 4 Mn 5 O 12 indicated an exponential increase above 700K reaching 8.303 × 10 −7 cm 2 s −1 at 2000K and allowing lithium intercalation even above its melting point of around 1300K. This indicated better structural stability of Li 4 Mn 5 O 12 and capability to host lithium ions at very high temperatures (up to 3000 K) compared to LiMn 2 O 4 . (paper)

  16. Spin tunneling in magnetic molecules

    Science.gov (United States)

    Kececioglu, Ersin

    In this thesis, we will focus on spin tunneling in a family of systems called magnetic molecules such as Fe8 and Mn12. This is comparatively new, in relation to other tunneling problems. Many issues are not completely solved and/or understood yet. The magnetic molecule Fe 8 has been observed to have a rich pattern of degeneracies in its magnetic spectrum. We focus on these degeneracies from several points of view. We start with the simplest anisotropy Hamiltonian to describe the Fe 8 molecule and extend our discussion to include higher order anisotropy terms. We give analytical expressions as much as we can, for the degeneracies in the semi-classical limit in both cases. We reintroduce jump instantons to the instanton formalism. Finally, we discuss the effect of the environment on the molecule. Our results, for all different models and techniques, agree well with both experimental and numerical results.

  17. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  18. Click strategies for single-molecule protein fluorescence.

    Science.gov (United States)

    Milles, Sigrid; Tyagi, Swati; Banterle, Niccolò; Koehler, Christine; VanDelinder, Virginia; Plass, Tilman; Neal, Adrian P; Lemke, Edward A

    2012-03-21

    Single-molecule methods have matured into central tools for studies in biology. Foerster resonance energy transfer (FRET) techniques, in particular, have been widely applied to study biomolecular structure and dynamics. The major bottleneck for a facile and general application of these studies arises from the need to label biological samples site-specifically with suitable fluorescent dyes. In this work, we present an optimized strategy combining click chemistry and the genetic encoding of unnatural amino acids (UAAs) to overcome this limitation for proteins. We performed a systematic study with a variety of clickable UAAs and explored their potential for high-resolution single-molecule FRET (smFRET). We determined all parameters that are essential for successful single-molecule studies, such as accessibility of the probes, expression yield of proteins, and quantitative labeling. Our multiparameter fluorescence analysis allowed us to gain new insights into the effects and photophysical properties of fluorescent dyes linked to various UAAs for smFRET measurements. This led us to determine that, from the extended tool set that we now present, genetically encoding propargyllysine has major advantages for state-of-the-art measurements compared to other UAAs. Using this optimized system, we present a biocompatible one-step dual-labeling strategy of the regulatory protein RanBP3 with full labeling position freedom. Our technique allowed us then to determine that the region encompassing two FxFG repeat sequences adopts a disordered but collapsed state. RanBP3 serves here as a prototypical protein that, due to its multiple cysteines, size, and partially disordered structure, is not readily accessible to any of the typical structure determination techniques such as smFRET, NMR, and X-ray crystallography.

  19. Single atom and-molecules chemisorption on solid surfaces

    International Nuclear Information System (INIS)

    Anda, E.V.; Ure, J.E.; Majlis, N.

    1981-01-01

    A simplified model for the microscopic interpretation of single atom and- molecules chemisorption on metallic surfaces is presented. An appropriated hamiltonian for this problem is resolved, through the Green's function formalism. (L.C.) [pt

  20. Narrowing the Zero-Field Tunneling Resonance by Decreasing the Crystal Symmetry of Mn12 Acetate.

    Science.gov (United States)

    Espín, Jordi; Zarzuela, Ricardo; Statuto, Nahuel; Juanhuix, Jordi; Maspoch, Daniel; Imaz, Inhar; Chudnovsky, Eugene; Tejada, Javier

    2016-07-27

    We report the discovery of a less symmetric crystalline phase of Mn12 acetate, a triclinic phase, resulting from recrystallizing the original tetragonal phase reported by Lis in acetonitrile and toluene. This new phase exhibits the same structure of Mn12 acetate clusters and the same positions of tunneling resonances on the magnetic field as the conventional tetragonal phase. However, the width of the zero-field resonance is at least 1 order of magnitude smaller-can be as low as 50 Oe-indicating very small inhomogeneous broadening due to dipolar and nuclear fields.

  1. Transition paths in single-molecule force spectroscopy.

    Science.gov (United States)

    Cossio, Pilar; Hummer, Gerhard; Szabo, Attila

    2018-03-28

    In a typical single-molecule force spectroscopy experiment, the ends of the molecule of interest are connected by long polymer linkers to a pair of mesoscopic beads trapped in the focus of two laser beams. At constant force load, the total extension, i.e., the end-to-end distance of the molecule plus linkers, is measured as a function of time. In the simplest systems, the measured extension fluctuates about two values characteristic of folded and unfolded states, with occasional transitions between them. We have recently shown that molecular (un)folding rates can be recovered from such trajectories, with a small linker correction, as long as the characteristic time of the bead fluctuations is shorter than the residence time in the unfolded (folded) state. Here, we show that accurate measurements of the molecular transition path times require an even faster apparatus response. Transition paths, the trajectory segments in which the molecule (un)folds, are properly resolved only if the beads fluctuate more rapidly than the end-to-end distance of the molecule. Therefore, over a wide regime, the measured rates may be meaningful but not the transition path times. Analytic expressions for the measured mean transition path times are obtained for systems diffusing anisotropically on a two-dimensional free energy surface. The transition path times depend on the properties both of the molecule and of the pulling device.

  2. Simple test system for single molecule recognition force microscopy

    International Nuclear Information System (INIS)

    Riener, Christian K.; Stroh, Cordula M.; Ebner, Andreas; Klampfl, Christian; Gall, Alex A.; Romanin, Christoph; Lyubchenko, Yuri L.; Hinterdorfer, Peter; Gruber, Hermann J.

    2003-01-01

    We have established an easy-to-use test system for detecting receptor-ligand interactions on the single molecule level using atomic force microscopy (AFM). For this, avidin-biotin, probably the best characterized receptor-ligand pair, was chosen. AFM sensors were prepared containing tethered biotin molecules at sufficiently low surface concentrations appropriate for single molecule studies. A biotin tether, consisting of a 6 nm poly(ethylene glycol) (PEG) chain and a functional succinimide group at the other end, was newly synthesized and covalently coupled to amine-functionalized AFM tips. In particular, PEG 800 diamine was glutarylated, the mono-adduct NH 2 -PEG-COOH was isolated by ion exchange chromatography and reacted with biotin succinimidylester to give biotin-PEG-COOH which was then activated as N-hydroxysuccinimide (NHS) ester to give the biotin-PEG-NHS conjugate which was coupled to the aminofunctionalized AFM tip. The motional freedom provided by PEG allows for free rotation of the biotin molecule on the AFM sensor and for specific binding to avidin which had been adsorbed to mica surfaces via electrostatic interactions. Specific avidin-biotin recognition events were discriminated from nonspecific tip-mica adhesion by their typical unbinding force (∼40 pN at 1.4 nN/s loading rate), unbinding length (<13 nm), the characteristic nonlinear force-distance relation of the PEG linker, and by specific block with excess of free d-biotin. The convenience of the test system allowed to evaluate, and compare, different methods and conditions of tip aminofunctionalization with respect to specific binding and nonspecific adhesion. It is concluded that this system is well suited as calibration or start-up kit for single molecule recognition force microscopy

  3. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing.

    Directory of Open Access Journals (Sweden)

    Jayesh A Bafna

    Full Text Available We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform.

  4. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.

    Science.gov (United States)

    DeSantis, Michael C; DeCenzo, Shawn H; Li, Je-Luen; Wang, Y M

    2010-03-29

    Standard deviation measurements of intensity profiles of stationary single fluorescent molecules are useful for studying axial localization, molecular orientation, and a fluorescence imaging system's spatial resolution. Here we report on the analysis of the precision of standard deviation measurements of intensity profiles of single fluorescent molecules imaged using an EMCCD camera.We have developed an analytical expression for the standard deviation measurement error of a single image which is a function of the total number of detected photons, the background photon noise, and the camera pixel size. The theoretical results agree well with the experimental, simulation, and numerical integration results. Using this expression, we show that single-molecule standard deviation measurements offer nanometer precision for a large range of experimental parameters.

  5. Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques

    Science.gov (United States)

    2017-06-26

    SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to...enhance our understanding of the interaction of proteins and surfaces. Given this objective, the specific aims of this research were to: 1) exploit the...incorporation of unnatural amino acids in proteins to introduce single-molecule probes (i.e., fluorophores for fluorescence resonance energy transfer

  6. Quantum interference effects at room temperature in OPV-based single-molecule junctions

    DEFF Research Database (Denmark)

    Arroyo, Carlos R.; Frisenda, Riccardo; Moth-Poulsen, Kasper

    2013-01-01

    Interference effects on charge transport through an individual molecule can lead to a notable modulation and suppression on its conductance. In this letter, we report the observation of quantum interference effects occurring at room temperature in single-molecule junctions based on oligo(3......)-phenylenevinylene (OPV3) derivatives, in which the central benzene ring is coupled to either para- or meta-positions. Using the break-junction technique, we find that the conductance for a single meta-OPV3 molecule wired between gold electrodes is one order of magnitude smaller than that of a para-OPV3 molecule...

  7. Single-molecule pull-down (SiMPull) for new-age biochemistry: methodology and biochemical applications of single-molecule pull-down (SiMPull) for probing biomolecular interactions in crude cell extracts.

    Science.gov (United States)

    Aggarwal, Vasudha; Ha, Taekjip

    2014-11-01

    Macromolecular interactions play a central role in many biological processes. Protein-protein interactions have mostly been studied by co-immunoprecipitation, which cannot provide quantitative information on all possible molecular connections present in the complex. We will review a new approach that allows cellular proteins and biomolecular complexes to be studied in real-time at the single-molecule level. This technique is called single-molecule pull-down (SiMPull), because it integrates principles of conventional immunoprecipitation with the powerful single-molecule fluorescence microscopy. SiMPull is used to count how many of each protein is present in the physiological complexes found in cytosol and membranes. Concurrently, it serves as a single-molecule biochemical tool to perform functional studies on the pulled-down proteins. In this review, we will focus on the detailed methodology of SiMPull, its salient features and a wide range of biological applications in comparison with other biosensing tools. © 2014 WILEY Periodicals, Inc.

  8. Nano- and micro-fabrication for single-molecule biological studies

    NARCIS (Netherlands)

    Huang, Z.

    2012-01-01

    Heterogeneity is a general feature in biological system. In order to avoid possible misleading effects of ensemble averaging, and to ensure a correct understanding of the biological system, it is very important to look into individuals, such as a single bio-molecule or a single cell, for details.

  9. Fluorescence blinking in MEH-PPV single molecules at low temperature

    International Nuclear Information System (INIS)

    Mirzov, O.; Cichos, F.; Borczyskowski, C. von; Scheblykin, I.

    2005-01-01

    Fluorescence intensity transients of single molecules of the conjugated polymer poly[2-methoxy,5-(2'-ethylhexyloxy)-p-phenylene-vinylene] (MEH-PPV) were studied at 15 K. Fluorescence blinking behavior was observed despite the expected low-temperature suppression of energy migration in such disordered molecular systems. Presence of the fluorescence blinking effect at 15 K indicates that the single molecules possess a collapsed conformation with characteristic size of not more than several nanometers, which corresponds to only a few exciton hops over a polymer chain

  10. Incorporation of μ3-CO3 into an MnIII/MnIV Mn12 cluster: {[(cyclam)MnIV(μ-O)2MnIII(H2O)(μ-OH)]6(μ3-CO3)2}Cl8·24H2O

    Science.gov (United States)

    Levaton, Ben B.; Olmstead, Marilyn M.

    2010-01-01

    The centrosymmetric title cluster, hexa­aquadi-μ3-carbonato-hexa­cyclamhexa-μ2-hydroxido-dodeca-μ2-oxido-hexa­mang­an­ese(IV)hexa­manganese(III) octa­chloride tetra­cosa­hydrate, [Mn12(CO3)2O12(OH)6(C10H24N4)6(H2O)6]Cl8·24H2O, has two μ3-CO3 groups that not only bridge octahedrally coordinated MnIII ions but also act as acceptors to two different kinds of hydrogen bonds. The carbonate anion is planar within experimental error and has an average C—O distance of 1.294 (4) Å. The crystal packing is stabilized by O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonds. Two of the four independent chloride ions are disordered over five positions, and eight of the 12 independent water mol­ecules are disordered over 21 positions. PMID:21587382

  11. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  12. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers

    Czech Academy of Sciences Publication Activity Database

    Farka, Z.; Matthias, J. M.; Hlaváček, Antonín; Skládal, P.; Gorris, H H.

    2017-01-01

    Roč. 89, NOV (2017), s. 11825-11830 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : photon upconversion * immunoassay * single molecule detection Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  13. Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers

    Czech Academy of Sciences Publication Activity Database

    Farka, Z.; Matthias, J. M.; Hlaváček, Antonín; Skládal, P.; Gorris, H H.

    2017-01-01

    Roč. 89, NOV (2017), s. 11825-11830 ISSN 0003-2700 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : photon upconversion * immunoassay * single molecule detection Subject RIV: CB - Analytical Chemistry , Separation OBOR OECD: Analytical chemistry Impact factor: 6.320, year: 2016

  14. Single-phased white-light-emitting Sr3NaLa(PO4)3F: Eu2+,Mn2+ phosphor via energy transfer

    International Nuclear Information System (INIS)

    Shanshan, Hu; Wanjun, Tang

    2014-01-01

    Single-phased white-light-emitting Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphor is synthesized via the combustion-assisted synthesis technique. Upon excitation of 344 nm ultraviolet (UV) light, two intense broad bands have clearly been obtained due to the allowed 5d–4f transition of Eu 2+ and the forbidden 4 T 1 − 6 A 1 transition of Mn 2+ , respectively. As a result of fine-tuning of the emission composition of the Eu 2+ and Mn 2+ ions, white-light emission can be realized by combining the emission of Eu 2+ and Mn 2+ in a single host lattice under UV light excitation. The obtained phosphor exhibits a strong excitation band between 250 and 420 nm, matching well with the dominant emission band of a UV light-emitting-diode (LED) chip, which could be a promising candidate for UV-converting white-light-emitting diodes (LEDs). -- Highlights: • Single-phased Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ phosphors are synthesized. • Sr 3 NaLa(PO 4 ) 3 F:Eu 2+ ,Mn 2+ shows a blue emission band and a yellow emission band. • White-emitting can be obtained by tuning the compositions of the Eu 2+ and Mn 2+

  15. Current rectification in a single molecule diode: the role of electrode coupling.

    Science.gov (United States)

    Sherif, Siya; Rubio-Bollinger, Gabino; Pinilla-Cienfuegos, Elena; Coronado, Eugenio; Cuevas, Juan Carlos; Agraït, Nicolás

    2015-07-24

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10(5) A cm(-2). By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unambiguously that rectification is due to asymmetric coupling to the electrodes of a molecule with an asymmetric level structure. This mechanism can be implemented in other type of molecular junctions using both organic and inorganic molecules and provides a simple strategy for the rational design of molecular diodes.

  16. Theoretical conformational analysis of the bovine adrenal medulla 12 residue peptide molecule

    Science.gov (United States)

    Akhmedov, N. A.; Tagiyev, Z. H.; Hasanov, E. M.; Akverdieva, G. A.

    2003-02-01

    The spatial structure and conformational properties of the bovine adrenal medulla 12 residue peptide Tyr1-Gly2-Gly3-Phe4-Met5-Arg6-Arg7-Val8-Gly9-Arg10-Pro11-Glu12 (BAM-12P) molecule were studied by theoretical conformational analysis. It is revealed that this molecule can exist in several stable states. The energy and geometrical parameters for the low-energy conformations are obtained. The conformationally rigid and labile segments of this molecule were revealed.

  17. Thermophoretic forces on DNA measured with a single-molecule spring balance

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Lüscher, Christopher James; Marie, Rodolphe

    2014-01-01

    We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement ....... We find the Soret coefficient per unit length of DNA at various ionic strengths. It agrees, with novel precision, with results obtained in bulk for DNA too short to shield itself and with the thermodynamic model of thermophoresis.......We stretch a single DNA molecule with thermophoretic forces and measure these forces with a spring balance: the DNA molecule itself. It is an entropic spring which we calibrate, using as a benchmark its Brownian motion in the nanochannel that contains and prestretches it. This direct measurement...

  18. Molecular magnetism of M6 hexagon ring in D(3d) symmetric [(MCl)6(XW9O33)2](12-) (M = Cu(II) and Mn(II), X = Sb(III) and As(III)).

    Science.gov (United States)

    Yamase, Toshihiro; Ishikawa, Hirofumi; Abe, Hiroko; Fukaya, Keisuke; Nojiri, Hiroyuki; Takeuchi, Hideo

    2012-04-16

    Ferromagnetic [n-BuNH(3)](12)[(CuCl)(6)(SbW(9)O(33))(2)]·6H(2)O (1) and antiferromagnetic [n-BuNH(3)](12)[(MnCl)(6)(AsW(9)O(33))(2)]·6H(2)O (4) have been synthesized and structurally and magnetically characterized. Two complexes are structural analogues of [n-BuNH(3)](12)[(CuCl)(6)(AsW(9)O(33))(2)]·6H(2)O (2) and [n-BuNH(3)](12)[(MnCl)(6)(SbW(9)O(33))(2)]·6H(2)O (3) with their ferromagnetic interactions, first reported by us in 2006. (1) When variable temperature (T) direct current (dc) magnetic susceptibility (χ(M)) data are analyzed with the isotropic exchange Hamiltonian for the magnetic exchange interactions, χ(M)T vs T curves fitted by a full matrix diagonalization (for 1) and by the Kambe vector coupling method/Van Vleck's approximation (for 4) yield J = +29.5 and -0.09 cm(-1) and g = 2.3 and 1.9, respectively. These J values were significantly distinguished from +61.0 and +0.14 cm(-1) for 2 and 3, respectively. The magnetization under the pulsed field (up to 10(3) T/s) at 0.5 K exhibits hysteresis loops in the adiabatic process, and the differential magnetization (dM/dB) plots against the pulsed field display peaks characteristic of resonant quantum tunneling of magnetization (QTM) at Zeeman crossed fields, indicating single-molecule magnets for 1-3. High-frequency ESR (HFESR) spectroscopy on polycrystalline samples provides g(∥) = 2.30, g(⊥) = 2.19, and D = -0.147 cm(-1) for 1 (S = 3 ground state), g(∥) = 2.29, g(⊥) = 2.20, and D = -0.145 cm(-1) for 2 (S = 3), and g(∥) = 2.03 and D = -0.007 cm(-1) for 3 (S = 15). An attempt to rationalize the magnetostructural correlation among 1-4, the structurally and magnetically modified D(3d)-symmetric M (=Cu(II) and Mn(II))(6) hexagons sandwiched by two diamagnetic α-B-[XW(9)O(33)](9-) (X = Sb(III) and As(III)) ligands through M-(μ(3)-O)-W linkages, is made. The strongest ferromagnetic coupling for the Cu(6) hexagon of 2, the structure of which approximately provides the Cu(6)(μ(3)-O)(12

  19. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  20. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  1. Cyanide single-molecule magnets exhibiting solvent dependent reversible "on" and "off" exchange bias behavior

    DEFF Research Database (Denmark)

    Pinkowicz, Dawid; Southerland, Heather I.; Avendaño, Carolina

    2015-01-01

    The syntheses, structures, and magnetic properties of four new complex salts, (PPN){[Mn(III)(salphen)(MeOH)]2[M(III)(CN)6]}·7MeOH (Mn2M·7MeOH) (M = Fe, Ru, Os and Co; PPN(+) = bis(triphenylphosphoranylidene)ammonium cation; H2salphen = N,N'-bis(salicylidene)-1,2-diaminobenzene), and a mixed metal...

  2. Bis(μ-2-carboxymethyl-2-hydroxybutanedioatobis[diaquamanganese(II]–1,2-bis(pyridin-4-ylethene–water (1/1/2

    Directory of Open Access Journals (Sweden)

    In Hong Hwang

    2012-12-01

    Full Text Available The asymmetric unit of the title compound, [Mn2(C6H6O72(H2O4]·C12H10N2·2H2O, contains half of the centrosymmetric Mn complex dimer, half of a 1,2-bis(pyridin-4-ylethene molecule, which lies across an inversion center, and one water molecule. Two citrate ligands bridge two MnII ions, and each MnII atom is coordinated by four O atoms from the citrate ligands (one from hydroxy and three from carboxylate groups and two water O atoms, forming a distorted octahedral environment. In the crystal, O—H...O and O—H...N hydrogen bonds link the centrosymmetric dimers and lattice water molecules into a three-dimensional structure which is further stabilized by intermolecular π–π interactions [centroid–centroid distance = 3.959 (2 Å]. Weak C—H...O hydrogen bonding interactions are also observed.

  3. Fundamental optical absorption edge in MnGa2Te4 single crystals

    International Nuclear Information System (INIS)

    Medvedkin, G.A.; Rud, Yu.V.; Tairov, M.A.

    1988-01-01

    A study is made of the optical properties of oriented MnGa 2 Te 4 crystals in the region of the fundamental absorption edge. The energy gap width for the temperatures 77, 300, and 370 K is determined to be E G = 1.635, 1.52, and 1.50 eV. The spectral response α(ℎω/2π) is found to follow Urbach's rule thoughout the temperature range studied, the slope of the absorption edge remaining constant (α = 10 2 cm -1 ). Crystal annealing with subsequent rapid cooling results in a shift of the absorption edge longward by 25 meV with the exponential form of α(ℎω/2π) prevailing over the range T = 77 to 370 K. An analysis shows the optical absorption in the region of the fundamental edge to be a sum of the effects coming from the density-of-states tails, local scattering centers associated with a high vacancy concentration, and electron-phonon interaction. Optical linear dichroism of the absorption edge of MnGa 2 Te 4 single crystals with pseudotetragonal structure is revealed and studied. The single crystals are established to be optically uniaxial, their optical transmission dichroism being negative. It is shown that the minimal direct optical transitions in MnGa 2 Te 4 are allowed in the E parallel c polarization in the temperature range 77 to 370 K, the crystal-field splitting of the valence band increasing with temperature. (author)

  4. Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds

    International Nuclear Information System (INIS)

    Ou, Z Q; Wang, G F; Lin Song; Tegus, O; Brueck, E; Buschow, K H J

    2006-01-01

    We have studied the magnetic properties and magnetocaloric effects in the Mn 1.2 Fe 0.8 P 1-x Ge x compounds with x = 0.2, 0.22, 0.3, 0.4 and 0.5. X-ray diffraction patterns show that the Mn 1.2 Fe 0.8 P 1-x Ge x compounds crystallize in the hexagonal Fe 2 P-type crystal structure. The magnetic moments of the Mn 1.2 Fe 0.8 P 1-x Ge x compounds measured at 5 K and 5 T increase with increasing Ge content. The Curie temperature increases strongly and the magnetic entropy change has a maximum around 233 K for the compound with x = 0.22, which is about 19 and 31 J kg -1 K -1 for a field change of 2 and 5 T, respectively

  5. Towards Controlled Single-Molecule Manipulation Using “Real-Time” Molecular Dynamics Simulation: A GPU Implementation

    Directory of Open Access Journals (Sweden)

    Dyon van Vreumingen

    2018-05-01

    Full Text Available Molecular electronics saw its birth with the idea to build electronic circuitry with single molecules as individual components. Even though commercial applications are still modest, it has served an important part in the study of fundamental physics at the scale of single atoms and molecules. It is now a routine procedure in many research groups around the world to connect a single molecule between two metallic leads. What is unknown is the nature of this coupling between the molecule and the leads. We have demonstrated recently (Tewari, 2018, Ph.D. Thesis our new setup based on a scanning tunneling microscope, which can be used to controllably manipulate single molecules and atomic chains. In this article, we will present the extension of our molecular dynamic simulator attached to this system for the manipulation of single molecules in real time using a graphics processing unit (GPU. This will not only aid in controlled lift-off of single molecules, but will also provide details about changes in the molecular conformations during the manipulation. This information could serve as important input for theoretical models and for bridging the gap between the theory and experiments.

  6. Single-Molecule Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    K. Hayashi

    2012-08-01

    Full Text Available Stochastic resonance (SR is a well-known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic (random or probabilistic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively transitions from folded to unfolded configurations under the action of an oscillating mechanical force applied with optical tweezers. By varying the frequency of the force oscillation, we investigate the folding and unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measure several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that a good quantifier of the SR is the signal-to-noise ratio (SNR of the spectral density of measured fluctuations in molecular extension of the DNA hairpins. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance-matching condition. Finally, we carry out experiments on short hairpins that show how SR might be useful for enhancing the detection of conformational molecular transitions of low SNR.

  7. Single Molecule Screening of Disease DNA Without Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Young [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion distances after transmission grating, and used for the identification of each molecule. The probes were designed to have the least background when they are free, but have strong fluorescence after hybridization via fluorescence resonance energy transfer. The mRNA-cDNA hybrids were further imaged in whole blood, plasma, and saliva, to test how far a crude preparation can be tolerated. Imaging was possible with up to 50% of clear bio-matrix contents, suggesting a simple lysis and dilution would be sufficient for imaging for some cells. Real pathogen DNA of human papillomavirus (HPV) type-I6 in human genomic DNA

  8. Coupling single-molecule magnets to quantum circuits

    International Nuclear Information System (INIS)

    Jenkins, Mark; Martínez-Pérez, María José; Zueco, David; Luis, Fernando; Hümmer, Thomas; García-Ripoll, Juanjo

    2013-01-01

    In this work we study theoretically the coupling of single-molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main result of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (∼ μs), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets. (paper)

  9. Surfactant-thermal syntheses, structures, and magnetic properties of Mn-Ge-sulfides/selenides

    KAUST Repository

    Zhang, Guodong

    2014-10-06

    Although either surfactants or amines have been investigated to direct the crystal growth of metal chalcogenides, the synergic effect of organic amines and surfactants to control the crystal growth has not been explored. In this report, several organic bases (hydrazine monohydrate, ethylenediamine (en), 1,2-propanediamine (1,2-dap), and 1,3-propanediamine (1,3-dap)) have been employed as structure-directing agents (SDAs) to prepare four novel chalcogenides (Mn3Ge2S7(NH3)4 (1), [Mn(en)2(H2O)][Mn(en)2MnGe3Se9] (2), (1,2-dapH)2{[Mn(1,2-dap)2]Ge2Se7} (3), and (1,3-dapH)(puH)MnGeSe4(4) (pu = propyleneurea) under surfactant media (PEG-400). These as-prepared new crystalline materials provide diverse metal coordination geometries, including MnS3N tetrahedra, MnGe2Se7 trimer, and MnGe3Se10 T2 cluster. Compounds 1-3 have been fully characterized by single-crystal X-ray diffraction (XRD), powder XRD, UV-vis spectra, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Moreover, magnetic measurements for compound 1 showed an obvious antiferromagnetic transition at ∼9 K. Our research not only enriches the structural chemistry of the transitional-metal/14/16 chalcogenides but also allows us to better understand the synergic effect of organic amines and surfactants on the crystallization of metal chalcogenides.

  10. Magnetic Molecules from Chemist's Point of View

    Science.gov (United States)

    Hendrickson, David

    2002-03-01

    A single-molecule magnet (SMM) is a molecule that functions as a nanoscale, single-domain magnetic particle that, below its blocking temperature, exhibits magnetization hysteresis [1]. SMMs have attracted considerable interest because they : (1) can serve as the smallest nanomagnet, monodisperse in size, shape and anisotropy; (2) exhibit quantum tunneling of magnetization (QTM); and (3) may function as memory devices in a quantum computer. SMM’s are synthetically designed nanomagnets, built from a core containing metal ion unpaired spin carriers bridged by oxide or other simple ions which is surrounded by organic ligands. Many systematic changes can be made in the structure of these molecular nanomagnets. Manganese-containing SMM’s are known with from Mn4 to Mn_30 compositions. The magnetic bistability, which is desirable for data storage applications, is achievable at temperatures below 3K. The largest spin of the ground state of a SMM is presently S = 13. Appreciable largely uniaxial magnetoanisotropy in the ground state leads to magnetic bistability. Rather than a continuum of higher energy states separating the “spin-up” and “spin-down” ground states, the quantum nature of the molecular nanomagnets result in a well defined ladder of discrete quantum states. Recent studies have definitively shown that, under conditions that can be controlled via the application of external perturbations, quantum tunneling may occur through the energy separating the “spin-up” and “spin-down” states. The tunneling is due to weak symmetry breaking perturbations that give rise to long-lived quantum states consisting of coherent superpositions of the “spin-up” and “spin-down” states. It is the ability to manipulate these coherent states that makes SMMs particularly attractive for quantum computation. Reference: [1] G. Christou, D. Gatteschi, D. N. Hendrickson, R. Sessoli, “Single-molecule Magnets”, M.R.S. Bull. 25, 66 (2001).

  11. Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs.

    Science.gov (United States)

    Suzuki, Kenichi G N; Ando, Hiromune; Komura, Naoko; Konishi, Miku; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Fujiwara, Takahiro K; Kusumi, Akihiro

    2018-01-01

    Gangliosides have been implicated in a variety of physiological processes, particularly in the formation and function of raft domains in the plasma membrane. However, the scarcity of suitable fluorescent ganglioside analogs had long prevented us from determining exactly how gangliosides perform their functions in the live-cell plasma membrane. With the development of new fluorescent ganglioside analogs, as described by Komura et al. (2017), this barrier has been broken. We can now address the dynamic behaviors of gangliosides in the live-cell plasma membrane, using fluorescence microscopy, particularly by single-fluorescent molecule imaging and tracking. Single-molecule tracking of fluorescent GM1 and GM3 revealed that these molecules are transiently and dynamically recruited to monomers (monomer-associated rafts) and homodimer rafts of the raftophilic GPI-anchored protein CD59 in quiescent cells, with exponential residency times of 12 and 40ms, respectively, in a manner dependent on raft-lipid interactions. Upon CD59 stimulation, which induces CD59-cluster signaling rafts, the fluorescent GM1 and GM3 analogs were recruited to the signaling rafts, with a lifetime of 48ms. These results represent the first direct evidence that GPI-anchored receptors and gangliosides interact in a cholesterol-dependent manner. Furthermore, they show that gangliosides continually move in and out of rafts that contain CD59 in an extremely dynamic manner, with much higher frequency than expected previously. Such studies would not have been possible without fluorescent ganglioside probes, which exhibit native-like behavior and single-molecule tracking. In this chapter, we review the methods for single-molecule tracking of fluorescent ganglioside analogs and the results obtained by applying these methods. © 2018 Elsevier Inc. All rights reserved.

  12. Conducting single-molecule magnet materials.

    Science.gov (United States)

    Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro

    2018-05-11

    Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.

  13. Welding of heterogeneous 12Kh2MFSR steels with the Mn-Cr-Si-Ni system

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Belogolov, E.I.

    1978-01-01

    The process of welding pipes of the 12Kh2MFSR pearlitic steels and austenitic steels of the Mn-Cr-Si-Ni system was studied. The filler materials were selected, and the working capacity of welded joints was examined in ageing and cyclic heatings. The microhardness of steels was measured, and the ultimate strength of welded joints was determined. The following has been established: the composite joints of steels of the Mn-Cr-Si-Ni system and 12Kh2MFSR steel are advisable to be welded on a coating layer welded by the EhA395/9 electrodes on the surface of a pipe of the 12Kh2MFSR pearlitic steel; this guarantees the sufficient working capacity of welded joints

  14. Entangled photons from single atoms and molecules

    Science.gov (United States)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  15. Colloidal lenses allow high-temperature single-molecule imaging and improve fluorophore photostability

    Science.gov (United States)

    Schwartz, Jerrod J.; Stavrakis, Stavros; Quake, Stephen R.

    2010-02-01

    Although single-molecule fluorescence spectroscopy was first demonstrated at near-absolute zero temperatures (1.8 K), the field has since advanced to include room-temperature observations, largely owing to the use of objective lenses with high numerical aperture, brighter fluorophores and more sensitive detectors. This has opened the door for many chemical and biological systems to be studied at native temperatures at the single-molecule level both in vitro and in vivo. However, it is difficult to study systems and phenomena at temperatures above 37 °C, because the index-matching fluids used with high-numerical-aperture objective lenses can conduct heat from the sample to the lens, and sustained exposure to high temperatures can cause the lens to fail. Here, we report that TiO2 colloids with diameters of 2 µm and a high refractive index can act as lenses that are capable of single-molecule imaging at 70 °C when placed in immediate proximity to an emitting molecule. The optical system is completed by a low-numerical-aperture optic that can have a long working distance and an air interface, which allows the sample to be independently heated. Colloidal lenses were used for parallel imaging of surface-immobilized single fluorophores and for real-time single-molecule measurements of mesophilic and thermophilic enzymes at 70 °C. Fluorophores in close proximity to TiO2 also showed a 40% increase in photostability due to a reduction of the excited-state lifetime.

  16. Assembly and diploid architecture of an individual human genome via single-molecule technologies.

    Science.gov (United States)

    Pendleton, Matthew; Sebra, Robert; Pang, Andy Wing Chun; Ummat, Ajay; Franzen, Oscar; Rausch, Tobias; Stütz, Adrian M; Stedman, William; Anantharaman, Thomas; Hastie, Alex; Dai, Heng; Fritz, Markus Hsi-Yang; Cao, Han; Cohain, Ariella; Deikus, Gintaras; Durrett, Russell E; Blanchard, Scott C; Altman, Roger; Chin, Chen-Shan; Guo, Yan; Paxinos, Ellen E; Korbel, Jan O; Darnell, Robert B; McCombie, W Richard; Kwok, Pui-Yan; Mason, Christopher E; Schadt, Eric E; Bashir, Ali

    2015-08-01

    We present the first comprehensive analysis of a diploid human genome that combines single-molecule sequencing with single-molecule genome maps. Our hybrid assembly markedly improves upon the contiguity observed from traditional shotgun sequencing approaches, with scaffold N50 values approaching 30 Mb, and we identified complex structural variants (SVs) missed by other high-throughput approaches. Furthermore, by combining Illumina short-read data with long reads, we phased both single-nucleotide variants and SVs, generating haplotypes with over 99% consistency with previous trio-based studies. Our work shows that it is now possible to integrate single-molecule and high-throughput sequence data to generate de novo assembled genomes that approach reference quality.

  17. Synthesis, structure and phase separation of a new 12R-type perovskite-related oxide Ba3NdMn2O9

    International Nuclear Information System (INIS)

    Yang, H.; Tang, Y.K.; Yao, L.D.; Zhang, W.; Li, Q.A.; Li, F.Y.; Jin, C.Q.; Yu, R.C.

    2007-01-01

    A new 12R-type perovskite-related oxide, Ba 3 NdMn 2 O 9 , has been prepared by traditional solid-state reaction method and the presence of chemical phase separation phenomenon has been revealed by transmission electron microscopy. The perfect grains of the compound have an average chemical composition of Ba 4 NdMn 3 O 12 (mainly for cationic ratio) according to the characterization by TEM-EDX. In this perfect 12R-type structure with composition Ba 4 NdMn 3 O 12 , the Nd cations are located in the corner-sharing octahedra, whereas the Mn cations are located in the face-sharing octahedra, leading to a remarkable cation ordering. Superstructure modulation was found to be a common phenomenon in the 12R polytype and the modulated areas were revealed by both EDX and EELS to be Nd rich compared to the perfect areas. This result together with the previous work [A.F. Fuentes, K. Boulahya, U. Amador, J. Solid State Chem. 177 (2004) 714] has shown that, for the rare-earth-containing Ba-RE-Mn-O systems (RE being rare-earth elements), the composition Ba 4 REMn 3 O 12 (mainly for cationic ratio) is required for the formation of perfect 12R polytype

  18. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  19. Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor

    NARCIS (Netherlands)

    Koole, Max; Thijssen, Jos M.; Valkenier, Hennie; Hummelen, Jan C.; van der Zant, Herre S. J.

    It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the

  20. The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use

    Science.gov (United States)

    Hwang, S. K.; Morris, J. W., Jr.

    1977-01-01

    An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition.

  1. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering.

    Science.gov (United States)

    Tanwar, Swati; Haldar, Krishna Kanta; Sen, Tapasi

    2017-12-06

    We demonstrate the synthesis of Au nanostar dimers with tunable interparticle gap and controlled stoichiometry assembled on DNA origami. Au nanostars with uniform and sharp tips were immobilized on rectangular DNA origami dimerized structures to create nanoantennas containing monomeric and dimeric Au nanostars. Single Texas red (TR) dye was specifically attached in the junction of the dimerized origami to act as a Raman reporter molecule. The SERS enhancement factors of single TR dye molecules located in the conjunction region in dimer structures having interparticle gaps of 7 and 13 nm are 2 × 10 10 and 8 × 10 9 , respectively, which are strong enough for single analyte detection. The highly enhanced electromagnetic field generated by the plasmon coupling between sharp tips and cores of two Au nanostars in the wide conjunction region allows the accommodation and specific detection of large biomolecules. Such DNA-directed assembled nanoantennas with controlled interparticle separation distance and stoichiometry, and well-defined geometry, can be used as excellent substrates in single-molecule SERS spectroscopy and will have potential applications as a reproducible platform in single-molecule sensing.

  2. Anomalous thermal expansion in YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, E.; Gurjazkas, D.; Mueller, H.; Kottar, A. [Technische Univ., Vienna (Austria). Inst. fuer Experimentalphysik; Dubenko, I.S.; Granovsky, S.A.; Markosyan, A.S. [Faculty of Physics, M.V. Lomonosov Moscow State Univ., Moscow (Russian Federation)

    1997-07-01

    The thermal expansion coefficient {alpha}(T) of YMn{sub 2}, Y{sub 6}Mn{sub 23} and YMn{sub 12} is presented in the temperature range 4.2-1000 K together with {alpha}(T) of YCo{sub 2} and YNi{sub 2}. The strong variation of {alpha}(T) of the Y-Mn compounds in their paramagnetic state is discussed under the assumption that there exist Mn atoms with different electronic configurations and therefore with different atomic volumes. Changes of the concentration of these different Mn atoms with temperature reveal this anomalous thermal expansion. (orig.). 3 refs.

  3. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  4. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  5. Proposal for probing energy transfer pathway by single-molecule pump-dump experiment

    OpenAIRE

    Tao, Ming-Jie; Ai, Qing; Deng, Fu-Guo; Cheng, Yuan-Chung

    2016-01-01

    The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex has long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent m...

  6. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    International Nuclear Information System (INIS)

    Hernando, Jordi; Hoogenboom, Jacob; Dijk, Erik van; Garcia-Parajo, Maria; Hulst, Niek F. van

    2008-01-01

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed

  7. Ultrafast single-molecule photonics: Excited state dynamics in coherently coupled complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Jordi [Dept. de Quimica, Universitat Autonoma Barcelona, 08193 Cerdanyola del Valles (Spain); Hoogenboom, Jacob [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain); Dijk, Erik van [Applied Optics Group, MESA Institute for Nanotechnology, University of Twente, 7500AE Enschede (Netherlands); Garcia-Parajo, Maria [IBEC-Institute of BioEngineering of Catalunya, 08028 Barcelona (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain); Hulst, Niek F. van [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona (Spain) and ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08015 Barcelona (Spain)], E-mail: Niek.vanHulst@ICFO.es

    2008-05-15

    We present a single-molecule study on femtosecond dynamics in multichromophoric systems, combining fs pump-probe, emission-spectra and fluorescence-lifetime analysis. The ultrafast fs approach gives direct information on the initial exciton dynamics after excitation. The lifetime data show superradiance, a direct measure for the extent of the coherent coupling and static disorder. The spectra finally reveal the role of exciton-phonon coupling. At the single-molecule level a wide range of exciton delocalization lengths and energy redistribution times is revealed.

  8. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  9. Extracting physics of life at the molecular level: A review of single-molecule data analyses.

    Science.gov (United States)

    Colomb, Warren; Sarkar, Susanta K

    2015-06-01

    Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  11. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics

    KAUST Repository

    Sobhy, M. A.; Elshenawy, M. M.; Takahashi, Masateru; Whitman, B. H.; Walter, N. G.; Hamdan, S. M.

    2011-01-01

    Single-molecule fluorescence imaging is at the forefront of tools applied to study biomolecular dynamics both in vitro and in vivo. The ability of the single-molecule fluorescence microscope to conduct simultaneous multi-color excitation

  12. Comment on ’Single Pentacene Molecules Detected by Fluorescence Excitation in a P-Terphenyl Crystal’

    Science.gov (United States)

    1990-12-10

    8217 NO 11 TITLE (include Security Classification) Comment on "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal" 12...8217 {Continue on reverse it necessary and identify by block numboer) Using h--,Ihly efficient Fluorescence excitation spectroscov of individual pentacene ...molecular impurities in p-terphenvl crystals, we have observed that some pentacene defects exhibit spcntaneous spectral jumps in their resonance frequency at

  13. Single molecule conductance

    NARCIS (Netherlands)

    Willems, R.

    2008-01-01

    This thesis represents an excursion into the world of molecular electronics, i.e. the field of research trying to use individual (organic) molecules as electronic components; in this work various experimental methods have been explored to connect individual molecules to metallic contacts and

  14. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  15. Measurement of the conductance properties of single organic molecules using gold nanoparticles

    Science.gov (United States)

    Gordin, Yoav

    In this work we describe the development and application of a new method for the electrical conductance measurement of single molecules. The issue of reliable theoretical modeling of molecular electronic transport is still very much in debate. The experimental methods used in the field are difficult to realize and interpret; most have very low yield, preventing proper statistical analysis and many have problems in the researchers' ability to characterize the system properly. We address this issue by using self assembly of gold nanoparticle-molecule-gold nanoparticle objects called dimers. This method allows fabrication of molecular junctions with greater ease; moreover it allows individual characterization of the various elements of the junction, removing much of the uncertainties that exist in this kind of measurements. We make use of home grown gold nanoparticles with a few tens of nanometer diameter to form the hybrid dimers. The dimers are large enough to connect between electrodes fabricated using electron beam lithography and to measure the electric properties of the molecule. We have invested significant effort in the characterization of the system, ensuring that the dimers are indeed bridged by the molecules, and that the chances that more than a single molecule exists in a dimer are negligibly small. We have made measurements on single gold nanoparticles, to characterize their properties separately from those of the molecule. These measurements have allowed us to observe single electron transistor (SET) behavior, resulting from the requirement that electrons charge the nanoparticle during transport. We have shown that the energy associated with this charging scales with nanoparticle size as expected. We have performed measurements on single organic molecules, showing that there is a very strong influence of molecular conjugation (the way electronic orbitals are spread along the molecular backbone) on its conductance. The molecules with broken conjugation

  16. A general approach to break the concentration barrier in single-molecule imaging

    KAUST Repository

    Loveland, Anna B.; Habuchi, Satoshi; Walter, Johannes C.; van Oijen, Antoine M.

    2012-01-01

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule's signal. We solve this problem with a new imaging approach called PhADE (Photo

  17. A manganese photosensitive tricarbonyl molecule [Mn(CO)3(tpa-κ3N)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli.

    Science.gov (United States)

    Rana, Namrata; Jesse, Helen E; Tinajero-Trejo, Mariana; Butler, Jonathan A; Tarlit, John D; von Und Zur Muhlen, Milena L; Nagel, Christoph; Schatzschneider, Ulrich; Poole, Robert K

    2017-10-01

    Carbon monoxide-releasing molecules (CORMs) are a promising class of new antimicrobials, with multiple modes of action that are distinct from those of standard antibiotics. The relentless increase in antimicrobial resistance, exacerbated by a lack of new antibiotics, necessitates a better understanding of how such novel agents act and might be used synergistically with established antibiotics. This work aimed to understand the mechanism(s) underlying synergy between a manganese-based photoactivated carbon monoxide-releasing molecule (PhotoCORM), [Mn(CO)3(tpa-κ 3 N)]Br [tpa=tris(2-pyridylmethyl)amine], and various classes of antibiotics in their activities towards Escherichia coli EC958, a multi-drug-resistant uropathogen. The title compound acts synergistically with polymyxins [polymyxin B and colistin (polymyxin E)] by damaging the bacterial cytoplasmic membrane. [Mn(CO)3(tpa-κ 3 N)]Br also potentiates the action of doxycycline, resulting in reduced expression of tetA, which encodes a tetracycline efflux pump. We show that, like tetracyclines, the breakdown products of [Mn(CO)3(tpa-κ 3 N)]Br activation chelate iron and trigger an iron starvation response, which we propose to be a further basis for the synergies observed. Conversely, media supplemented with excess iron abrogated the inhibition of growth by doxycycline and the title compound. In conclusion, multiple factors contribute to the ability of this PhotoCORM to increase the efficacy of antibiotics in the polymyxin and tetracycline families. We propose that light-activated carbon monoxide release is not the sole basis of the antimicrobial activities of [Mn(CO)3(tpa-κ 3 N)]Br.

  18. Tuning magnetic avalanches in the molecular magnet Mn12 -acetate

    Science.gov (United States)

    McHugh, S.; Wen, Bo; Ma, Xiang; Sarachik, M. P.; Myasoedov, Y.; Zeldov, E.; Bagai, R.; Christou, G.

    2009-05-01

    Using micron-sized Hall sensor arrays to obtain time-resolved measurements of the local magnetization, we report a systematic study in the molecular magnet Mn12 acetate of magnetic avalanches controllably triggered in different fixed external magnetic fields and for different values of the initial magnetization. The speeds of propagation of the spin-reversal fronts are in good overall agreement with the theory of magnetic deflagration of Garanin and Chudnovsky [Phys. Rev. B 76, 054410 (2007)].

  19. Single molecule SERS: Perspectives of analytical applications

    Czech Academy of Sciences Publication Activity Database

    Vlčková, B.; Pavel, I.; Sládková, M.; Šišková, K.; Šlouf, Miroslav

    834-836, - (2007), s. 42-47 ISSN 0022-2860. [European Congress on Molecular Spectroscopy /28./. Istanbul, 03.09.2006-08.09.2006] R&D Projects: GA ČR GA203/04/0688 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface-enhanced Raman scattering (SERS) * surface-enhanced resonance Raman (SERRS) * single molecule SERS Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.486, year: 2007

  20. Statistical inference in single molecule measurements of protein adsorption

    Science.gov (United States)

    Armstrong, Megan J.; Tsitkov, Stanislav; Hess, Henry

    2018-02-01

    Significant effort has been invested into understanding the dynamics of protein adsorption on surfaces, in particular to predict protein behavior at the specialized surfaces of biomedical technologies like hydrogels, nanoparticles, and biosensors. Recently, the application of fluorescent single molecule imaging to this field has permitted the tracking of individual proteins and their stochastic contribution to the aggregate dynamics of adsorption. However, the interpretation of these results is complicated by (1) the finite time available to observe effectively infinite adsorption timescales and (2) the contribution of photobleaching kinetics to adsorption kinetics. Here, we perform a protein adsorption simulation to introduce specific survival analysis methods that overcome the first complication. Additionally, we collect single molecule residence time data from the adsorption of fibrinogen to glass and use survival analysis to distinguish photobleaching kinetics from protein adsorption kinetics.

  1. An all-electric single-molecule motor.

    Science.gov (United States)

    Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J

    2010-11-23

    Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.

  2. Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes

    International Nuclear Information System (INIS)

    Li, Dong-Fang; Mao, Jin-Chuan; Chen, De-Li; Chen, Fang; Ze-Wen, Hong; Zhou, Xiao-Yi; Wang, Ya-Hao; Zhou, Xiao-Shun; Niu, Zhen-Jiang; Maisonhaute, Emmanuel

    2015-01-01

    The single-molecule conductance of 1,4-dicyanobenzene (DCB), 1,4-benzenediamine (BDA) and 4,4'-biphenyldicarbonitrile (BPDC) with Ag and/or Cu electrodes is measured by electrochemical jump-to-contact STM-break junction. All single-molecule junctions present three sets of conductance values revealing different contact geometries. We observe that the single-molecule conductance of Ag-BDA-Ag junction is larger that of Ag-DCB-Ag junction, and DCB with Ag contacts are more conductive than that with Cu ones. This is related to a different electronic coupling between the molecules and the electrodes. Tunneling decay constants of 1.70 and 1.68 per phenyl group were found for Ag and Cu electrodes, respectively. The present study therefore shows that nitrile and amino groups can also be used as effective anchors for other metals than gold

  3. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  4. Optical properties of white organic light-emitting devices fabricated utilizing a mixed CaAl12O19:Mn4+ and Y3Al5O12:Ce3+ color conversion layer.

    Science.gov (United States)

    Jeong, H S; Kim, S H; Lee, K S; Jeong, J M; Yoo, T W; Kwon, M S; Yoo, K H; Kim, T W

    2013-06-01

    White organic light-emitting devices (OLEDs) were fabricated by combining a blue OLED with a color conversion layer made of mixed Y3Al5O12:Ce3+ green and Ca2AlO19:Mn4+ red phosphors. The X-ray diffraction patterns showed that Ce3+ ions in the Y3Al5O12:Ce3+ phosphors completely substituted for the Y3+ ions and the Mn4+ ions in the CaAl12O19:Mn4+ phosphors completely substituted for the Ca2+ ions. Electroluminescence spectra at 11 V for the OLEDs fabricated utilizing a color conversion layer showed that the Commission Internationale de l'Eclairage coordinates for the Y3Al5O12:Ce3+ and CaAl12O19:Mn4+ phosphors mixed at the ratio of 1:5 and 1:10 were (0.31, 0.34) and (0.32, 0.37), respectively, indicative of a good white color.

  5. Electric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor

    Science.gov (United States)

    Koole, Max; Thijssen, Jos M.; Valkenier, Hennie; Hummelen, Jan C.; Zant, Herre S. J. van der

    2015-08-01

    It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a ten-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.

  6. Memory effects in single-molecule spectroscopy

    International Nuclear Information System (INIS)

    Schmitt, Daniel T.; Schulz, Michael; Reineker, Peter

    2007-01-01

    From the time series of LH2 optical single-molecule fluorescence excitation spectra of Rhodospirillum molischianum the memory function of the Mori-Zwanzig equation for the optical intensity is derived numerically. We show that the time dependence of the excited states is determined by at least three different non-Markovian stochastic processes with decay constants for the Mori-Zwanzig kernel on the order of 1-5min -1 . We suggest that this decay stems from the conformational motion of the protein scaffold of LH2

  7. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung

    2008-11-12

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  8. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung; Muralidharan, P.; Lee, Hyun-Wook; Ruffo, Riccardo; Yang, Yuan; Chan, Candace K.; Peng, Hailin; Huggins, Robert A.; Cui, Yi

    2008-01-01

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  9. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level performance

    International Nuclear Information System (INIS)

    Yamamoto, Takatoki; Fujii, Teruo

    2010-01-01

    Separation and separation-based analysis of biomolecules are fundamentally important techniques in the field of biotechnology. These techniques, however, depend on stochastic processes that intrinsically involve uncertainty, and thus it is not possible to achieve 100% separation accuracy. Theoretically, the ultimate resolution and sensitivity should be realized in a single-molecule system because of the deterministic nature of single-molecule manipulation. Here, we have proposed and experimentally demonstrated the concept of a 'single-molecule sorter' that detects and correctly identifies individual single molecules, realizing the ultimate level of resolution and sensitivity for any separation-based technology. The single-molecule sorter was created using a nanofluidic network consisting of a single inlet channel that branches off into multiple outlet channels. It includes two major functional elements, namely a single-molecule detection and identification element and a flow path switching element to accurately separate single molecules. With this system we have successfully demonstrated the world's first single-molecule sorting using DNA as a sample molecule. In the future, we hope to expand the application of such devices to comprehensive sorting of single-proteins from a single cell. We also believe that in addition to the single-molecule sorting method reported here, other types of single-molecule based processes will emerge and find use in a wide variety of applications.

  10. Enzymatic production of single-molecule FISH and RNA capture probes.

    Science.gov (United States)

    Gaspar, Imre; Wippich, Frank; Ephrussi, Anne

    2017-10-01

    Arrays of singly labeled short oligonucleotides that hybridize to a specific target revolutionized RNA biology, enabling quantitative, single-molecule microscopy analysis and high-efficiency RNA/RNP capture. Here, we describe a simple and efficient method that allows flexible functionalization of inexpensive DNA oligonucleotides by different fluorescent dyes or biotin using terminal deoxynucleotidyl transferase and custom-made functional group conjugated dideoxy-UTP. We show that (i) all steps of the oligonucleotide labeling-including conjugation, enzymatic synthesis, and product purification-can be performed in a standard biology laboratory, (ii) the process yields >90%, often >95% labeled product with minimal carryover of impurities, and (iii) the oligonucleotides can be labeled with different dyes or biotin, allowing single-molecule FISH, RNA affinity purification, and Northern blot analysis to be performed. © 2017 Gaspar et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    Science.gov (United States)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  12. Shedding Light on Protein Folding, Structural and Functional Dynamics by Single Molecule Studies

    Directory of Open Access Journals (Sweden)

    Krutika Bavishi

    2014-11-01

    Full Text Available The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.

  13. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  14. A general approach to break the concentration barrier in single-molecule imaging

    KAUST Repository

    Loveland, Anna B.

    2012-09-09

    Single-molecule fluorescence imaging is often incompatible with physiological protein concentrations, as fluorescence background overwhelms an individual molecule\\'s signal. We solve this problem with a new imaging approach called PhADE (PhotoActivation, Diffusion and Excitation). A protein of interest is fused to a photoactivatable protein (mKikGR) and introduced to its surface-immobilized substrate. After photoactivation of mKikGR near the surface, rapid diffusion of the unbound mKikGR fusion out of the detection volume eliminates background fluorescence, whereupon the bound molecules are imaged. We labeled the eukaryotic DNA replication protein flap endonuclease 1 with mKikGR and added it to replication-competent Xenopus laevis egg extracts. PhADE imaging of high concentrations of the fusion construct revealed its dynamics and micrometer-scale movements on individual, replicating DNA molecules. Because PhADE imaging is in principle compatible with any photoactivatable fluorophore, it should have broad applicability in revealing single-molecule dynamics and stoichiometry of macromolecular protein complexes at previously inaccessible fluorophore concentrations. © 2012 Nature America, Inc. All rights reserved.

  15. Vesicle Encapsulation Studies Reveal that Single Molecule Ribozyme Heterogeneities Are Intrinsic

    Science.gov (United States)

    Okumus, Burak; Wilson, Timothy J.; Lilley, David M. J.; Ha, Taekjip

    2004-01-01

    Single-molecule measurements have revealed that what were assumed to be identical molecules can differ significantly in their static and dynamic properties. One of the most striking examples is the hairpin ribozyme, which was shown to exhibit two to three orders of magnitude variation in folding kinetics between molecules. Although averaged behavior of single molecules matched the bulk solution data, it was not possible to exclude rigorously the possibility that the variations around the mean values arose from different ways of interacting with the surface environment. To test this, we minimized the molecules' interaction with the surface by encapsulating DNA or RNA molecules inside 100- to 200-nm diameter unilamellar vesicles, following the procedures described by Haran and coworkers. Vesicles were immobilized on a supported lipid bilayer via biotin-streptavidin linkages. We observed no direct binding of DNA or RNA on the supported bilayer even at concentrations exceeding 100 nM, indicating that these molecules do not bind stably on the membrane. Since the vesicle diameter is smaller than the resolution of optical microscopy, the lateral mobility of the molecules is severely constrained, allowing long observation periods. We used fluorescence correlation spectroscopy, nuclease digestion, and external buffer exchange to show that the molecules were indeed encapsulated within the vesicles. When contained within vesicles, the natural form of the hairpin ribozyme exhibited 50-fold variation in both folding and unfolding rates in 0.5 mM Mg2+, which is identical to what was observed from the molecules tethered directly on the surface. This strongly indicates that the observed heterogeneity in dynamic properties does not arise as an artifact of surface attachment, but is intrinsic to the nature of the molecules. PMID:15454471

  16. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Science.gov (United States)

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  17. Dye molecules as single-photon sources and large optical nonlinearities on a chip

    International Nuclear Information System (INIS)

    Hwang, J; Hinds, E A

    2011-01-01

    We point out that individual organic dye molecules, deposited close to optical waveguides on a photonic chip, can act as single-photon sources. A thin silicon nitride strip waveguide is expected to collect 28% of the photons from a single dibenzoterrylene molecule. These molecules can also provide large, localized optical nonlinearities, which are enough to discriminate between one photon or two through a differential phase shift of 2 0 per photon. This new atom-photon interface may be used as a resource for processing quantum information.

  18. Inhomogeneous ferrimagnetic-like behavior in Gd2/3Ca1/3MnO3 single crystals

    International Nuclear Information System (INIS)

    Haberkorn, N.; Larregola, S.; Franco, D.; Nieva, G.

    2009-01-01

    We present a study of the magnetic properties of Gd 2/3 Ca 1/3 MnO 3 single crystals at low temperatures, showing that this material behaves as an inhomogeneous ferrimagnet. In addition to small saturation magnetization at 5 K, we have found history dependent effects in the magnetization and the presence of exchange bias. These features are compatible with microscopic phase separation in the clean Gd 2/3 Ca 1/3 MnO 3 system studied

  19. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  20. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    Science.gov (United States)

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a

  1. Flexible single molecule simulation of reaction-diffusion processes

    International Nuclear Information System (INIS)

    Hellander, Stefan; Loetstedt, Per

    2011-01-01

    An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

  2. Solid solution limits and selected mechanical properties of the quaternary L12 trialuminide Al-Ti-Mn-Mo

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1994-01-01

    Intermetallics based on the trialuminide Al 3 Ti, or on Al 11 Ti 5 , have been extensively researched in recent years. Alloying with approximately 10 at.% of first-row transition elements, such as Cr or Mn, converts the DO 22 structure of Al 3 Ti to L1 2 . Although this transition to the L1 2 structure increases the number of independent slip systems to five and causes substantial softening, room-temperature tensile ductilities and fracture toughnesses remain low. Typical values for the room-temperature ductilities of Al-25Ti-8Cr and Al-25Ti-9Mn are 0.2% and room-temperature fracture toughnesses of trialuminides range from 2 to 5 MPa m 1/2 . Reasons for the low fracture toughness of trialuminides have been discussed by Turner et al. and George et al. On a phenomenological basis, it appears that fracture toughnesses might improve, if either Poisson's ratio or the ratio of the bulk and shear moduli can be increased. In principle, this might be achieved by macroalloying ternary L1 2 trialuminides, while at the same time maintaining the L1 2 crystal structure. Focusing on first-row transition elements, Kumar and Brown investigated a range of such quaternary compounds. They did not observe any improvement in ductility, as compared to the ternary compounds. In the present work, it was decided to focus on a second-row transition element, namely, 2 molybdenum. As compared to Cr and Mn, which are only slightly soluble in Al 3 Ti, up to 20 at. % Mo dissolves in Al 3 Ti at 1,198 K. This raises the question whether substantial amounts of Mo also dissolve in the cubic ternary trialuminides such as Al-Ti-Mn. In order to verify this possibility, the extent of the single-phase region of cubic Al-Ti-Mn-Mo intermetallic was mapped out at 1,473 K. In addition, a limited characterization of room-temperature mechanical properties was carried out

  3. Experimental techniques for single cell and single molecule biomechanics

    International Nuclear Information System (INIS)

    Lim, C.T.; Zhou, E.H.; Li, A.; Vedula, S.R.K.; Fu, H.X.

    2006-01-01

    Stresses and strains that act on the human body can arise either from external physical forces or internal physiological environmental conditions. These biophysical interactions can occur not only at the musculoskeletal but also cellular and molecular levels and can determine the health and function of the human body. Here, we seek to investigate the structure-property-function relationship of cells and biomolecules so as to understand their important physiological functions as well as establish possible connections to human diseases. With the recent advancements in cell and molecular biology, biophysics and nanotechnology, several innovative and state-of-the-art experimental techniques and equipment have been developed to probe the structural and mechanical properties of biostructures from the micro- down to picoscale. Some of these experimental techniques include the optical or laser trap method, micropipette aspiration, step-pressure technique, atomic force microscopy and molecular force spectroscopy. In this article, we will review the basic principles and usage of these techniques to conduct single cell and single molecule biomechanics research

  4. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.

    Science.gov (United States)

    Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici; Camón, Agustín; Repollés, Ana; Luis, Fernando

    2014-02-03

    The insertion of the single-molecule magnet (SMM) [Mn(III)(salen)(H2O)]2(2+) (salen(2-) = N,N'-ethylenebis-(salicylideneiminate)) into a ferromagnetic bimetallic oxalate network affords the hybrid compound [Mn(III)(salen)(H2O)]2[Mn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (1). This cationic Mn2 cluster templates the growth of crystals formed by an unusual achiral 3D oxalate network. The magnetic properties of this hybrid magnet are compared with those of the analogous compounds [Mn(III)(salen)(H2O)]2[Zn(II)Cr(III)(ox)3]2⋅(CH3OH)⋅(CH3CN)2 (2) and [In(III)(sal2-trien)][Mn(II)Cr(III)(ox)3]⋅(H2O)0.25⋅(CH3OH)0.25⋅(CH3CN)0.25 (3), which are used as reference compounds. In 2 it has been shown that the magnetic isolation of the Mn2 clusters provided by their insertion into a paramagnetic oxalate network of Cr(III) affords a SMM behavior, albeit with blocking temperatures well below 500 mK even for frequencies as high as 160 kHz. In 3 the onset of ferromagnetism in the bimetallic Mn(II) Cr(III) network is observed at Tc = 5 K. Finally, in the hybrid compound 1 the interaction between the two magnetic networks leads to the antiparallel arrangement of their respective magnetizations, that is, to a ferrimagnetic phase. This coupling induces also important changes on the magnetic properties of 1 with respect to those of the reference compounds 2 and 3. In particular, compound 1 shows a large magnetization hysteresis below 1 K, which is in sharp contrast with the near-reversible magnetizations that the SMMs and the oxalate ferromagnetic lattice show under the same conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication and interfacing of nanochannel devices for single-molecule studies

    International Nuclear Information System (INIS)

    Hoang, H T; Berenschot, J W; De Boer, M J; Tas, N R; Haneveld, J; Elwenspoek, M C; Segers-Nolten, I M

    2009-01-01

    Nanochannel devices have been fabricated using standard micromachining techniques such as optical lithography, deposition and etching. 1D nanochannels with thin glass capping and through-wafer inlet/outlet ports were constructed. 2D nanochannels have been made transparent by oxidation of polysilicon channel wall for optical detection and these fragile channels were successfully connected to macro inlet ports. The interfacing from the macro world to the nanochannels was especially designed for optical observation of filling liquid inside nanochannels using an inverted microscope. Toward single-molecule studies, individual quantum dots were visualized in 150 nm height 1D nanochannels. The potential of 2D nanochannels for single-molecule studies was shown from a filling experiment with a fluorescent dye solution

  6. Fundamental properties of molecules on surfaces. Molecular switching and interaction of magnetic molecules with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hatter, Nino

    2016-12-14

    In this thesis, we investigate individual molecular switches and metal-organic complexes on surfaces with scanning tunneling microscopy (STM) and spectroscopy (STS) at low temperatures. One focus addresses the switching ability and mechanism of diarylethene on Ag(111). The other focus lies on resolving and tuning magnetic interactions of individual molecules with superconductors. 4,4'-(4,4'-(perfluorocyclopent-1-ene-1,2-diyl)bis (5-methylthiophene-4,2-diyl)dip yridine (PDTE) is a prototypical photochromic switch. We can induce a structural change of individual PDTE molecules on Ag(111) with the STM tip. This change is accompanied by a reduction of the energy gap between the occupied and unoccupied molecular orbitals. Density functional theory (DFT) calculations reveal that the induced switching corresponds to a ring-closing reaction from an open isomer in a flat adsorption configuration to a ring-closed isomer with its methyl groups in a cis configuration. The final product is thermodynamically stabilized by strong dispersion interactions with the surface. A linear dependence of the switching threshold with the tip-sample distance with a minimal threshold of 1.4 V is found, which we assign to a combination of an electric-field induced process and a tunneling-electron contribution. DFT calculations suggest a large activation barrier for a ring-closing reaction from the open flat configuration into the closed cis configuration. The interaction of magnetic molecules with superconductors is studied on manganese phthalocyanine (MnPc) adsorbed on Pb(111). We find triplets of Shiba states inside the superconducting gap. Different adsorption sites of MnPc provide a large variety of exchange coupling strengths, which lead to a collective energy shift of the Shiba triplets. We can assign the splitting of the Shiba states to be an effect of magnetic anisotropy in the system. A quantum phase transition from a ''Kondo screened'' to a &apos

  7. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  8. Thermoluminescence characteristics of Li2B4O7 single crystal dosimeters doped with Mn

    International Nuclear Information System (INIS)

    Ekdal, E.; Karalı, T.; Kelemen, A.; Ignatovych, M.; Holovey, V.; Harmansah, C.

    2014-01-01

    In this study, thermoluminescence (TL) characterization of newly developed Li 2 B 4 O 7 :Mn single crystal phosphor is reported. It is a very attractive material in personal dosimetry because of its near tissue equivalency (Z eff =7.25). The crystal was grown by the Czochralski method from high purity compounds. Glow curve, dose response, and fading and reproducibility properties of this material were investigated. Its TL glow curve showed two well separated peaks at about 105 and 220 °C with a heating rate of 2 °C s −1 . The main peak at 220 °C has a linear dose response of up to 60 Gy. The thermal fading ratio of the material is about 8% for the main peak in 10 days. The results showed that there is no significant variation of TL responses for 15 sequential measurements. Apart from the dosimetric properties above, the TL kinetic parameters of the main peak at 220 °C of Li 2 B 4 O 7 :Mn single crystal phosphor were also calculated using the various heating rates method. Activation energy and frequency factor were found as 1.21 eV and 3.75×10 11 s −1 , respectively. - Highlights: • Li 2 B 4 O 7 :Mn single crystal was investigated in terms of TL characteristics. • The material shows highly satisfactory dosimetric properties. • Various heating rates method was used for determining the kinetic parameter

  9. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.

    Science.gov (United States)

    Yabuuchi, Naoaki; Yoshii, Kazuhiro; Myung, Seung-Taek; Nakai, Izumi; Komaba, Shinichi

    2011-03-30

    Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.

  10. Spin properties of charged Mn-doped quantum dota)

    Science.gov (United States)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  11. A better ferrimagnetic half-metal LuCu{sub 3}Mn{sub 4}O{sub 12}: Predicted from first-principles investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Han Deming; Wu Zhijian [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Liu Xiaojuan, E-mail: lxjuan@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2011-03-15

    Electronic structure calculations based on density functional theory (DFT) within the generalized gradient approximation (GGA) and GGA+U for manganite cuprate compound LuCu{sub 3}Mn{sub 4}O{sub 12} have been performed, using the full-potential linearized augmented plane wave method. The calculated results indicate that LuCu{sub 3}Mn{sub 4}O{sub 12} is ferrimagnetic and half-metallic in both GGA and GGA+U calculations. The minority-spin band gap is 0.7 eV within GGA, which is larger than that of LaCu{sub 3}Mn{sub 4}O{sub 12} (0.3 eV), indicating its better half-metallicity. Further, the minority-spin gap enlarges from 0.7 to 2.8 eV with U taken into account, and simultaneously the Fermi level being shifted to the middle of the gap, making the half-metallic energy gap to be 1.21 eV. These results demonstrate that electronic correlation effect enhances the stability of half-metallic property. These facts make this system interesting candidates for applications in spintronic devices. - Research highlights: The electronic and magnetic properties of LuCu{sub 3}Mn{sub 4}O{sub 12} are analyzed. Both GGA and GGA+U methods are reported and compared. A better half-metal LuCu{sub 3}Mn{sub 4}O{sub 12} is obtained with large half-metallic gap. The results agree very well with the experimental data.

  12. Oxygen vacancies effect on ionic conductivity and relaxation phenomenon in undoped and Mn doped PZN-4.5PT single crystals

    International Nuclear Information System (INIS)

    Kobor, Diouma; Guiffard, Benoit; Lebrun, Laurent; Hajjaji, Abdelowahed; Guyomar, Daniel

    2007-01-01

    AC-impedance spectroscopic studies in the temperature range 550-700 deg. C are carried out on undoped and Mn doped PZN-PT single crystals grown by the flux method. The variation of dielectric permittivity with temperature at different frequencies shows normal ferroelectric and relaxor-like dependence for the doped and undoped crystals, respectively. Temperature-dependent spectroscopic modulus plots reveal a much broader peak for PZN-4.5PT + 1%Mn compared with that for PZN-4.5PT, which is different from the dielectric behaviour of the doped one. Complex modulus imaginary part (Z-prime) versus real part (Z') plots fit well with one semicircle thus indicating only bulk contribution. The relaxation observed in the spectroscopic plots was assigned to mobile relaxor species such as oxygen vacancies and ions. No such relaxation could be observed for PZN-4.5PT + 1%Mn in the dielectric measurements. For both undoped and Mn doped crystals, the conduction behaviour was modelled by the universal dynamic response equation and by the NTC (negative temperature coefficient) materials resistance-temperature behaviour. A large difference in behaviour was found between the two single crystals such as the thermistor coefficients and the activation energy values, which could explain the increase in the thermal stability observed in the Mn doped PZN-PT single crystals by many studies

  13. 3D single-molecule super-resolution microscopy with a tilted light sheet.

    Science.gov (United States)

    Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E

    2018-01-09

    Tilted light sheet microscopy with 3D point spread functions (TILT3D) combines a novel, tilted light sheet illumination strategy with long axial range point spread functions (PSFs) for low-background, 3D super-localization of single molecules as well as 3D super-resolution imaging in thick cells. Because the axial positions of the single emitters are encoded in the shape of each single-molecule image rather than in the position or thickness of the light sheet, the light sheet need not be extremely thin. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The result is simple and flexible 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validate TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed tetrapod PSFs for fiducial bead tracking and live axial drift correction.

  14. Control of Single Molecule Fluorescence Dynamics by Stimulated Emission Depletion

    OpenAIRE

    Marsh, R. J.; Osborne, M. A.; Bain, A. J.

    2003-01-01

    The feasibility of manipulating the single molecule absorption-emission cycle using picosecond stimulated emission depletion (STED) is investigated using a stochastic computer simulation. In the simulation the molecule is subjected to repeated excitation and depletion events using time delayed pairs of excitation (PUMP) and depletion (DUMP) pulses derived from a high repetition rate pulsed laser system. The model is used to demonstrate that a significant and even substantial reduction in the ...

  15. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips...... and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence...

  16. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  17. Spatial and temporal superresolution concepts to study plasma membrane organization by single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Ruprecht, V.

    2010-01-01

    Fluorescence microscopy techniques are currently among the most important experimental tools to study cellular processes. Ultra-sensitive detection devices nowadays allow for measuring even individual farnesylacetate labeled target molecules with nanometer spatial accuracy and millisecond time resolution. The emergence of single molecule fluorescence techniques especially contributed to the field of membrane biology and provided basic knowledge on structural and dynamic features of the cellular plasma membrane. However, we are still confronted with a rather fragmentary understanding of the complex architecture and functional interrelations of membrane constituents. In this thesis new concepts in one- and dual-color single molecule fluorescence techniques are presented that allow for addressing organization principles and interaction dynamics in the live cell plasma membrane. Two complementary experimental strategies are described which differ in their detection principle: single molecule fluorescence imaging and fluorescence correlation spectroscopy. The presented methods are discussed in terms of their implementation, accuracy, quantitative and statistical data analysis, as well as live cell applications. State-of-the-art dual color single molecule imaging is introduced as the most direct experimental approach to study interaction dynamics between differently labeled target molecules. New analytical estimates for robust data analysis are presented that facilitate quantitative recording and identification of co localizations in dual color single molecule images. A novel dual color illumination scheme is further described that profoundly extends the current range and sensitivity of conventional dual color single molecule experiments. The method enables working at high surface densities of fluorescent molecules - a feature typically incommensurable with single molecule imaging - and is especially suited for the detection of rare interactions by tracking co localized

  18. Mechanisms responsible for two possible electrochemical reactions in Li1.2Ni0.13Mn0.54Co0.13O2 used for lithium ion batteries

    Science.gov (United States)

    Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa

    2018-02-01

    Two electrochemical reactions are possible in regard to Li1.2Ni0.13Mn0.54Co0.13O2 (0.5Li2MnO3-0.5LiNi0.33Mn0.33Co0.33O2), viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like reactions. The open circuit potential (OCP) and changes in crystal structure during the charge-discharge process of Li1.2Ni0.13Mn0.54Co0.13O2 were investigated to clarify the mechanism responsible for the two reactions. Li2MnO3 and LiNi0.33Mn0.33Co0.33O2 were separately prepared for the investigation, and the OCPs and crystal structures in these cathodes were measured and then compared with those for Li1.2Ni0.13Mn0.54Co0.13O2. The results obtained using X-ray diffraction (XRD) indicated that two phases existed in Li1.2Ni0.13Mn0.54Co0.13O2. The changes in crystal structure of the two phases during the charge-discharge process were similar to those in Li2MnO3 and LiNi0.33Mn0.33Co0.33O2. This indicated that two phases, viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like, existed in Li1.2Ni0.13Mn0.54Co0.13O2. Li2MnO3-like, LiNi0.33Mn0.33Co0.33O2-like, and Li2MnO3-like phases were found to contribute mainly to electrochemical reactions in the low, middle, and high state of charge (SOC) ranges during the charge process from the results obtained using XRD and electrochemical measurements carried out on Li1.2Ni0.13Mn0.54Co0.13O2. In contrast, the Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like phases mainly contributed to electrochemical reactions in the low and high SOC ranges during the discharge process. Furthermore, the high polarization and potential decay during the charge-discharge cycling of Li1.2Ni0.13Mn0.54Co0.13O2 were mainly attributed to the Li2MnO3-like phase.

  19. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time

    Science.gov (United States)

    Hu, Xiaohu; Hong, Liang; Dean Smith, Micholas; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.

    2016-02-01

    Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to ~102 s (refs ,,,). Here, using molecular dynamics simulations, we show that, on timescales from 10-12 to 10-5 s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules.

  20. Electron-vibron coupling effects on electron transport via a single-molecule magnet

    NARCIS (Netherlands)

    McCaskey, A.; Yamamoto, Y.; Warnock, M.; Burzuri, E.; Van der Zant, H.S.J.; Park, K.

    2015-01-01

    We investigate how the electron-vibron coupling influences electron transport via an anisotropic magnetic molecule, such as a single-molecule magnet (SMM) Fe4, by using a model Hamiltonian with parameter values obtained from density-functional theory (DFT). The magnetic anisotropy parameters,

  1. Ni-Mn-Ga single crystals with very low twinning stress

    International Nuclear Information System (INIS)

    Straka, L; Haenninen, H; Soroka, A; Sozinov, A

    2011-01-01

    Twinning stress or mechanical hysteresis associated with the twin boundary motion is one of the most essential parameters which determine the actuating performance of magnetic shape memory alloys. Recent effort at AdaptaMat Ltd. to decrease the twinning stress resulted in a consistent production of Ni-Mn-Ga magnetic shape memory single crystals with the twinning stress of about 0.1 MPa, which is much lower than previously reported. In this work, the mechanical and magnetomechanical response of the developed crystals is discussed in detail and the importance of adjustment of the twin microstructure for obtaining an optimal actuating behavior is illustrated.

  2. Spin-flip transition of L10-type MnPt alloy single crystal studied by neutron scattering

    International Nuclear Information System (INIS)

    Hama, Hiroaki; Motomura, Ryo; Shinozaki, Tatsuya; Tsunoda, Yorihiko

    2007-01-01

    Magnetic structure, tetragonality, and the spin-flip transition for an L1 0 -type MnPt ordered alloy were studied by neutron scattering using a single-crystal specimen. Tetragonality of the lattice showed strong correlation with the spin-flip transition. Although the spin-flip transition looks like a gradual change of the easy axis in the temperature range between 580 and 770 K, two modes of magnon-gap peaks with different energies were observed in this transition temperature range. Thus, the crystal consists of two regions with different anisotropy energies and the volume fractions of these regions with different spin directions change gradually with temperature. The tetragonality and spin-flip transition are discussed using the hard-sphere model for atomic radii of Pt and Mn. The Invar effect of Mn atoms is proposed using high- and low-spin transitions of Mn moments in analogy with the two-γ model of Fe moments in FeNi Invar alloy

  3. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  4. Giant Magnetoresistance in Carbon Nanotubes with Single-Molecule Magnets TbPc2.

    Science.gov (United States)

    Krainov, Igor V; Klier, Janina; Dmitriev, Alexander P; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang; Gornyi, Igor V

    2017-07-25

    We present experimental results and a theoretical model for the gate-controlled spin-valve effect in carbon nanotubes with side-attached single-molecule magnets TbPc 2 (Terbium(III) bis-phthalocyanine). These structures show a giant magnetoresistance up to 1000% in experiments on single-wall nanotubes that are tunnel-coupled to the leads. The proposed theoretical model combines the spin-dependent Fano effect with Coulomb blockade and predicts a spin-spin interaction between the TbPc 2 molecules, mediated by conducting electrons via the charging effect. This gate-tuned interaction is responsible for the stable magnetic ordering of the inner spins of the molecules in the absence of magnetic field. In the case of antiferromagnetic arrangement, electrons with either spin experience the scattering by the molecules, which results in blocking the linear transport. In strong magnetic fields, the Zeeman energy exceeds the effective antiferromagnetic coupling and one species of electrons is not scattered by molecules, which leads to a much lower total resistance at the resonant values of gate voltage, and hence to a supramolecular spin-valve effect.

  5. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  6. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

    Science.gov (United States)

    Huang, Cancan; Jevric, Martyn; Borges, Anders; Olsen, Stine T.; Hamill, Joseph M.; Zheng, Jue-Ting; Yang, Yang; Rudnev, Alexander; Baghernejad, Masoud; Broekmann, Peter; Petersen, Anne Ugleholdt; Wandlowski, Thomas; Mikkelsen, Kurt V.; Solomon, Gemma C.; Brøndsted Nielsen, Mogens; Hong, Wenjing

    2017-05-01

    Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.

  7. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  8. Magnetic, electric and electron magnetic resonance properties of orthorhombic self-doped La1-xMnO3 single crystals

    International Nuclear Information System (INIS)

    Markovich, V; Fita, I; Shames, A I; Puzniak, R; Rozenberg, E; Yuzhelevski, Ya; Mogilyansky, D; Wisniewski, A; Mukovskii, Ya M; Gorodetsky, G

    2003-01-01

    The effect of lanthanum deficiency on structural, magnetic, transport, and electron magnetic resonance (EMR) properties has been studied in a series of La 1-x MnO 3 (x = 0.01, 0.05, 0.11, 0.13) single crystals. The x-ray diffraction study results for the crystals were found to be compatible with a single phase of orthorhombic symmetry. The magnetization curves exhibit weak ferromagnetism for all samples below 138 K. It was found that both the spontaneous magnetization and the coercive field increase linearly with x. The pressure coefficient dT N /dP decreases linearly with self-doping, from a value of 0.68 K kbar -1 for La 0.99 MnO 3 to 0.33 K kbar -1 for La 0.87 MnO 3 . The resistivity of low-doped La 0.99 MnO 3 crystal is of semiconducting character, while that of La 0.87 MnO 3 depends weakly on temperature between 180 and 210 K. It was found that the magnetic and transport properties of the self-doped compounds may be attributed to a phase separation involving an antiferromagnetic matrix and ferromagnetic clusters. The latter phases as well as their paramagnetic precursors have been directly observed by means of EMR

  9. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  10. Single molecule dynamics at a mechanically controllable break junction in solution at room temperature.

    Science.gov (United States)

    Konishi, Tatsuya; Kiguchi, Manabu; Takase, Mai; Nagasawa, Fumika; Nabika, Hideki; Ikeda, Katsuyoshi; Uosaki, Kohei; Ueno, Kosei; Misawa, Hiroaki; Murakoshi, Kei

    2013-01-23

    The in situ observation of geometrical and electronic structural dynamics of a single molecule junction is critically important in order to further progress in molecular electronics. Observations of single molecular junctions are difficult, however, because of sensitivity limits. Here, we report surface-enhanced Raman scattering (SERS) of a single 4,4'-bipyridine molecule under conditions of in situ current flow in a nanogap, by using nano-fabricated, mechanically controllable break junction (MCBJ) electrodes. When adsorbed at room temperature on metal nanoelectrodes in solution to form a single molecule junction, statistical analysis showed that nontotally symmetric b(1) and b(2) modes of 4,4'-bipyridine were strongly enhanced relative to observations of the same modes in solid or aqueous solutions. Significant changes in SERS intensity, energy (wavenumber), and selectivity of Raman vibrational bands that are coincident with current fluctuations provide information on distinct states of electronic and geometrical structure of the single molecule junction, even under large thermal fluctuations occurring at room temperature. We observed the dynamics of 4,4'-bipyridine motion between vertical and tilting configurations in the Au nanogap via b(1) and b(2) mode switching. A slight increase in the tilting angle of the molecule was also observed by noting the increase in the energies of Raman modes and the decrease in conductance of the molecular junction.

  11. Characterizing single-molecule FRET dynamics with probability distribution analysis.

    Science.gov (United States)

    Santoso, Yusdi; Torella, Joseph P; Kapanidis, Achillefs N

    2010-07-12

    Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.

  12. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  13. Effect of the environment on the electrical conductance of the single benzene-1,4-diamine molecule junction

    Directory of Open Access Journals (Sweden)

    Shigeto Nakashima

    2011-11-01

    Full Text Available We investigated the effect of the environment on the electrical conductance of a single benzene-1,4-diamine (BDA molecule bridging Au electrodes, using the scanning tunneling microscope (STM. The conductance of the single BDA molecule junction decreased upon a change in the environment from tetraglyme, to mesitylene, to water, and finally to N2 gas, while the spread in the conductance value increased. The order of the conductance values of the single BDA molecule junction was explained by the strength of the interaction between the solvent molecules and the Au electrodes. The order of the spread in the conductance values was explained by the diversity in the coverage of the BDA molecule at metal electrodes and atomic and molecular motion of the single-molecule junction.

  14. Bright photoactivatable fluorophores for single-molecule imaging.

    Science.gov (United States)

    Grimm, Jonathan B; English, Brian P; Choi, Heejun; Muthusamy, Anand K; Mehl, Brian P; Dong, Peng; Brown, Timothy A; Lippincott-Schwartz, Jennifer; Liu, Zhe; Lionnet, Timothée; Lavis, Luke D

    2016-12-01

    Small-molecule fluorophores are important tools for advanced imaging experiments. We previously reported a general method to improve small, cell-permeable fluorophores which resulted in the azetidine-containing 'Janelia Fluor' (JF) dyes. Here, we refine and extend the utility of these dyes by synthesizing photoactivatable derivatives that are compatible with live-cell labeling strategies. Once activated, these derived compounds retain the superior brightness and photostability of the JF dyes, enabling improved single-particle tracking and facile localization microscopy experiments.

  15. Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level

    Science.gov (United States)

    Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.

    2012-01-01

    Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804

  16. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-01

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  17. A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.

    Science.gov (United States)

    Li, Hao; Yang, Haw

    2018-03-28

    This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.

  18. Drift correction for single-molecule imaging by molecular constraint field, a distance minimum metric

    International Nuclear Information System (INIS)

    Han, Renmin; Wang, Liansan; Xu, Fan; Zhang, Yongdeng; Zhang, Mingshu; Liu, Zhiyong; Ren, Fei; Zhang, Fa

    2015-01-01

    The recent developments of far-field optical microscopy (single molecule imaging techniques) have overcome the diffraction barrier of light and improve image resolution by a factor of ten compared with conventional light microscopy. These techniques utilize the stochastic switching of probe molecules to overcome the diffraction limit and determine the precise localizations of molecules, which often requires a long image acquisition time. However, long acquisition times increase the risk of sample drift. In the case of high resolution microscopy, sample drift would decrease the image resolution. In this paper, we propose a novel metric based on the distance between molecules to solve the drift correction. The proposed metric directly uses the position information of molecules to estimate the frame drift. We also designed an algorithm to implement the metric for the general application of drift correction. There are two advantages of our method: First, because our method does not require space binning of positions of molecules but directly operates on the positions, it is more natural for single molecule imaging techniques. Second, our method can estimate drift with a small number of positions in each temporal bin, which may extend its potential application. The effectiveness of our method has been demonstrated by both simulated data and experiments on single molecular images

  19. Single-Molecule Fluorescence Studies of Membrane Transporters Using Total Internal Reflection Microscopy.

    Science.gov (United States)

    Goudsmits, Joris M H; van Oijen, Antoine M; Slotboom, Dirk J

    2017-01-01

    Cells are delineated by a lipid bilayer that physically separates the inside from the outer environment. Most polar, charged, or large molecules require proteins to reduce the energetic barrier for passage across the membrane and to achieve transport rates that are relevant for life. Here, we describe techniques to visualize the functioning of membrane transport proteins with fluorescent probes at the single-molecule level. First, we explain how to produce membrane-reconstituted transporters with fluorescent labels. Next, we detail the construction of a microfluidic flow cell to image immobilized proteoliposomes on a total internal reflection fluorescence microscope. We conclude by describing the methods that are needed to analyze fluorescence movies and obtain useful single-molecule data. © 2017 Elsevier Inc. All rights reserved.

  20. Purification and characterization of Mn-peroxidase from Musa paradisiaca (banana) stem juice.

    Science.gov (United States)

    Yadav, Pratibha; Singh, V K; Yadav, Meera; Singh, Sunil Kumar; Yadava, Sudha; Yadav, K D S

    2012-02-01

    Mn-peroxidase (MnP), a biotechnologically important enzyme was purified for the first time from a plant source Musa paradisiaca (banana) stem, which is an agro-waste easily available after harvest of banana fruits. MnP was earlier purified only from the fungal sources. The enzyme was purified from stem juice by ultrafiltration and anion-exchange column chromatography on diethylamino ethylcellulose with 8-fold purification and purification yield of 65%. The enzyme gave a single protein band in SDS-PAGE corresponding to molecular mass 43 kDa. The Native-PAGE of the enzyme also gave a single protein band, confirming the purity of the enzyme. The UV/VIS spectrum of the purified enzyme differed from the other heme peroxidases, as the Soret band was shifted towards lower wavelength and the enzyme had an intense absorption band around 250 nm. The K(m) values using MnSO4 and H2O2 as the substrates of the purified enzyme were 21.0 and 9.5 microM, respectively. The calculated k(cat) value of the purified enzyme using Mn(II) as the substrate in 50 mM lactate buffer (pH 4.5) at 25 degrees C was 6.7s(-1), giving a k(cat)/K(m) value of 0.32 microM(-1)s(-1). The k(cat) value for the MnP-catalyzed reaction was found to be dependent of the Mn(III) chelator molecules malonate, lactate and oxalate, indicating that the enzyme oxidized chelated Mn(II) to Mn(III). The pH and temperature optima of the enzyme were 4.5 and 25 degrees C, respectively. The enzyme in combination with H2O2 liberated bromine and iodine in presence of KBr and KI respectively. All these enzymatic characteristics were similar to those of fungal MnP. The enzyme has the potential as a green brominating and iodinating agent in combination with KBr/KI and H2O2.