WorldWideScience

Sample records for mn biooxide production

  1. Improvement in grade of minerals using simultaneous Bio-oxidation of invisible gold concentrate and deep-sea manganese crust

    Science.gov (United States)

    Myung, EunJi; Cho, Kang Hee; Kim, Hyun Soo; Park, Cheon Young

    2016-04-01

    Many sulfides of metal such as galena, sphalerite, chalcopyrite, and pyrite, are semiconductors. When two kinds of such minerals contact each other in an electrolyte, a galvanic couple, where the mineral of lower rest potential as anode, and that of higher rest potential as cathode forms. Manganese dioxide is also a semiconductor with much higher rest potential than all sulfides mentioned above, so that a galvanic couple in which both the minerals would dissolve simultaneously can form, when it contacts with any of the sulfides. The aim of this study was to investigate the improvement in grade of minerals using the simultaneous bio-oxidation of deep-sea manganese crust and invisible gold concentrate. The samples(deep-sea manganese crust and invisible gold concentrate) were characterized by chemical and XRD analysis. The primary components of the invisible gold concentrate was pyrite and quartz and the deep-sea manganese crust was amorphous material, as detected using XRD. The result of chemical analysis showed that Au, Ag, Te contents in the invisible gold concentrate 130.2, 954.1 and 1,043.6 mg/kg, respectively. and that Mn, Ni, Co contents in the deep-sea manganese crust 19,501.5, 151.9, 400.4 mg/kg, respectively. In order to increase the bacteria's tolerance of heavy metals, the bacteria using bio-oxidation experiments were repeatedly subcultured in an Cu adaptation-medium containing of 382.98 mg/l for 20 periods of 21 days. The improvement in grade of samples of in present adapted bacteria condition was greater than another conditions(control and in present non-adapted bacteria). The Au-Ag-Te contents in the invisible gold concentrate was enhanced in the order of physical oxidation, simultaneous/non-adaptive bio-oxidation, adaptive/bio-oxidation, simultaneous/adaptive bio-oxidation. If the bacteria is adapted to heavy metal ions and an optimization of conditions is found in future bio-oxidation-leaching processes. Acknowledgment : "This research was supported

  2. [Investigation of stages of chemical leaching and biooxidation during the extraction of gold from sulfide concentrates].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T V

    2015-01-01

    We examined the chemical leaching and biooxidation stages in a two-stage biooxidation process of an auriferous sulfide concentrate containing pyrrhotite, arsenopyrite and pyrite. Chemical leaching of the concentrate (slurry density at 200 g/L) by ferric sulfate biosolvent (initial concentration at 35.6 g/L), which was obtained by microbial oxidation of ferrous sulfate for 2 hours at 70°C at pH 1.4, was allowed to oxidize 20.4% ofarsenopyrite and 52.1% of sulfur. The most effective biooxidation of chemically leached concentrate was observed at 45°C in the presence of yeast extract. Oxidation of the sulfide concentrate in a two-step process proceeded more efficiently than in one-step. In a two-step mode, gold extraction from the precipitate was 10% higher and the content of elemental sulfur was two times lower than in a one-step process.

  3. Integrated bio-oxidation and adsorptive filtration reactor for removal of arsenic from wastewater.

    Science.gov (United States)

    Kamde, Kalyani; Dahake, Rashmi; Pandey, R A; Bansiwal, Amit

    2018-01-08

    Recently, removal of arsenic from different industrial effluent discharged using simple, efficient and low-cost technique has been widely considered. In this study, removal of arsenic (As) from real wastewater has been studied employing modified bio-oxidation followed by adsorptive filtration method in a novel continuous flow through the reactor. This method includes biological oxidation of ferrous to ferric ions by immobilized Acidothiobacillus ferrooxidans bacteria on granulated activated carbon (GAC) in fixed bed bio-column reactor with the adsorptive filtration unit. Removal efficiency was optimized regarding the initial flow rate of media and ferrous ions concentration. Synthetic wastewater sample having different heavy metal ions such as Arsenic (As), Cobalt (Co), Chromium (Cr), Copper (Cu), Iron (Fe), Lead (Pb) and Manganese (Mn) were also used in the study. The structural and surface changes occurring after the treatment process were scrutinized using FT-IR and Scanning Electron Microscopy (SEM) analysis. The finding showed that not only arsenic can be removed considerably in the bioreactor system, but also removing efficiency was much more (oxidation with adsorptive filtration method improves the removal efficiency of arsenic and other heavy metal ions in wastewater sample.

  4. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    Science.gov (United States)

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  5. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Immobilization of Acidithiobacillus ferrooxidans on sulfonated microporous poly(styrene-divinylbenzene) copolymer with granulated activated carbon and its use in bio-oxidation of ferrous iron.

    Science.gov (United States)

    Koseoglu-Imer, Derya Yuksel; Keskinler, Bulent

    2013-01-01

    The immobilization efficiencies of Acidithiobacillus ferrooxidans cells on different immobilization matrices were investigated for biooxidation of ferrous iron (Fe(2+)) to ferric iron (Fe(3+)). Six different matrices were used such as the polyurethane foam (PUF), granular activated carbon (GAC), raw poly(styrene-divinylbenzene) copolymer (rawSDVB), raw poly(styrene-divinylbenzene) copolymer with granular activated carbon (rawSDVB-GAC), sulfonated poly(styrene-divinylbenzene) copolymer (sulfSDVB) and sulfonated poly(styrene-divinylbenzene) copolymer with granular activated carbon (sulfSDVB-GAC). The sulfSDVB-GAC polymer showed the best performance for Fe(2+) biooxidation. It was used at packed-bed bioreactor and the kinetic parameters were obtained. The highest Fe(2+) biooxidation rate (R) was found to be 4.02 g/L h at the true dilution rate (Dt) of 2.47 1/h and hydraulic retention time (τ) of 0.4 h. The sulfSDVB-GAC polymer was used for the first time as immobilization material for A. ferrooxidans for Fe(2+) biooxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Mousavi; S. Yaghmaei; F. Salimi; A. Jafari [Sharif University of Technology, Tehran (Iran). Department of Chemical and Petroleum Engineering

    2006-12-15

    Biological oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans has proved to be a significant step in the bioleaching of sulfide minerals and the treatment of acid mine drainage. The same bioreaction also has beneficial applications in the desulphurization of coal and removal of hydrogen sulfide from gaseous effluents. In this research, the effects of some process variables such as pH, temperature, elemental sulfur, amount of initial ferrous and magnesium ions on oxidation of ferrous sulfate by a native A. ferrooxidans, which was isolated from a chalcopyrite concentrate, were investigated. All experiments carried out in shake flasks at 33{sup o}C that was obtained as optimum temperature for the specific bacterial growth rate. The optimum range of pH for the maximum growth of the cells and effective biooxidation of ferrous sulfate varied from 2 to 2.3. The maximum biooxidation rate was achieved 1.2 g/L h in a culture initially containing 20.2 g/L Fe{sup 2+}. Mg{sup 2+} from 20 mg/L to 120 mg/L did not have any effect on the efficiency of the process, while the presence of elemental sulfur had negative effect on the biooxidation. 16 refs., 8 figs.

  8. Biooxidation of fatty acid distillates to dibasic acids by a mutant of Candida tropicalis.

    Science.gov (United States)

    Gangopadhyay, Sarbani; Nandi, Sumit; Ghosh, Santinath

    2006-01-01

    Fatty acid distillates (FADs) produced during physical refining of vegetable oil contains large amount of free fatty acid. A mutant of Candida tropicalis (M20) obtained after several stages of UV mutation are utilized to produce dicarboxylic acids (DCAs) from the fatty acid distillates of rice bran, soybean, coconut, palm kernel and palm oil. Initially, fermentation study was carried out in shake flasks for 144 h. Products were isolated and identified by GLC analysis. Finally, fermentation was carried out in a 2 L jar fermenter, which yielded 62 g/L and 48 g/L of total dibasic acids from rice bran oil fatty acid distillate and coconut oil fatty acid distillate respectively. FADs can be effectively utilized to produce DCAs of various chain lengths by biooxidation process.

  9. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  10. The effect of initial pH on the kinetics of ferrous-iron biooxidation at ...

    African Journals Online (AJOL)

    The general understanding in bioleaching of sulphide minerals is to keep pH low. A number of published articles have reported the effect of pH on biooxidation rates of ferrous-iron and/or sulphur by bioleaching microbes, although most of these studies were conducted at optimum or near optimum temperature for microbial ...

  11. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  12. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.

    Science.gov (United States)

    Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol

    2017-07-01

    Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.

  13. Uranium Immobilization through Fe(II) bio-oxidation: A Column study

    Energy Technology Data Exchange (ETDEWEB)

    Coates, John D.

    2009-09-14

    Current research on the bioremediation of heavy metals and radionuclides is focused on the ability of reducing organisms to use these metals as alternative electron acceptors in the absence of oxygen and thus precipitate them out of solution. However, many aspects of this proposed scheme need to be resolved, not the least of which is the time frame of the treatment process. Once treatment is complete and the electron donor addition is halted, the system will ultimately revert back to an oxic state and potentially result in the abiotic reoxidation and remobilization of the immobilized metals. In addition, the possibility exists that the presence of more electropositive electron acceptors such as nitrate or oxygen will also stimulate the biological oxidation and remobilization of these contaminants. The selective nitrate-dependent biooxidation of added Fe(II) may offer an effective means of “capping off” and completing the attenuation of these contaminants in a reducing environment making the contaminants less accessible to abiotic and biotic reactions and allowing the system to naturally revert to an oxic state. Our previous DOE-NABIR funded studies demonstrated that radionuclides such as uranium and cobalt are rapidly removed from solution during the biogenic formation of Fe(III)-oxides. In the case of uranium, X-ray spectroscopy analysis indicated that the uranium was in the hexavalent form (normally soluble) and was bound to the precipitated Fe(III)-oxides thus demonstrating the bioremediative potential of this process. We also demonstrated that nitrate-dependent Fe(II)- oxidizing bacteria are prevalent in the sediment and groundwater samples collected from sites 1 and 2 and the background site of the NABIR FRC in Oakridge, TN. However, all of these studies were performed in batch experiments in the laboratory with pure cultures and although a significant amount was learned about the microbiology of nitrate-dependent bio-oxidation of Fe(II), the effects of

  14. Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.

    Science.gov (United States)

    Hansel, Colleen M; Zeiner, Carolyn A; Santelli, Cara M; Webb, Samuel M

    2012-07-31

    Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we use a combination of compound-specific chemical assays, microspectroscopy, and electron microscopy to show that a common Ascomycete filamentous fungus, Stilbella aciculosa, oxidizes Mn(II) to Mn oxides by producing extracellular superoxide during cell differentiation. The reactive Mn oxide phase birnessite and the reactive oxygen species superoxide and hydrogen peroxide are colocalized at the base of asexual reproductive structures. Mn oxide formation is not observed in the presence of superoxide scavengers (e.g., Cu) and inhibitors of NADPH oxidases (e.g., diphenylene iodonium chloride), enzymes responsible for superoxide production and cell differentiation in fungi. Considering the recent identification of Mn(II) oxidation by NADH oxidase-based superoxide production by a common marine bacterium (Roseobacter sp.), these results introduce a surprising homology between some prokaryotic and eukaryotic organisms in the mechanisms responsible for Mn(II) oxidation, where oxidation appears to be a side reaction of extracellular superoxide production. Given the versatility of superoxide as a redox reactant and the widespread ability of fungi to produce superoxide, this microbial extracellular superoxide production may play a central role in the cycling and bioavailability of metals (e.g., Hg, Fe, Mn) and carbon in natural systems.

  15. Application of Raman Spectroscopy to the Biooxidation Analysis of Sulfide Minerals

    Directory of Open Access Journals (Sweden)

    J. V. García-Meza

    2012-01-01

    Full Text Available We report the application of confocal laser scanning microscopy CLSM and Raman spectroscopy on the (biochemical oxidation of pyrite and chalcopyrite, in order to understand how surface sulfur species (S2−/S0 affects biofilm evolution during mineral colonization by Acidithiobacillus thiooxidans. We found that cells attachment occurs as cells clusters and monolayered biofilms within the first 12 h. Longer times resulted in the formation of micro- and macrocolonies with variable cell density and higher epifluorescence signal of the extracellular polymeric substances (EPS, indicating double dynamic activity of A. thiooxidans: sulfur biooxidation and biofilm formation. Raman spectra indicated S2−/S0 consumption modification during biofilm evolution. Hence, cell density increase was primarily associated with the presence of S0; the presence of refractory sulfur species on the mineral surfaces does not to affect biofilm evolution. The EPS of the biofilms was mainly composed of extracellular hydrophobic compounds (vr. gr. lipids and a minor content of hydrophilic exopolysaccharides, suggesting a hydrophobic interaction between attached cells and the altered pyrite and chalcopyrite.

  16. Evaluation of effects of phenol recovery on biooxidation and tertiary treatment of SRC-I wastewater. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.W.; Watt, J.C.; Cowan, W.F.; Schuyler, S.E.

    1983-09-01

    Addition of phenol recovery to the wastewater treatment scheme in the Baseline Design for the SRC-I Demonstration Plant was evaluated as a major post-Baseline effort. Phenol recovery affects many downstream processes, but this study was designed to assess primarily its effects on biooxidation and subsequent tertiary treatment. Two parallel treatment schemes were set up, one to treat dephenolated wastewaters and the other for processed nondephenolated wastewaters, a simulation of the Baseline Design. The study focused on comparisons of five areas: effluent quality; system stability; the need for continuous, high-dose powdered activated carbon (PAC) augmentation to the bioreactor; minimum bioreactor hydraulic residence time (HRT); and tertiary treatment requirements. The results show that phenol recovery improves the quality of the bioreactor effluent in terms of residual organics and color. With phenol recovery, PAC augmentation is not required; without phenol recovery, PAC is needed to produce a comparable effluent. Dephenolization also enhances the stability of biooxidation, and reduces the minimum HRT required. With tertiary treatment, both schemes can meet the effluent concentrations published in the SRC-I Final Envivornmental Impact Statement, as well as the anticipated effluent limits. However, phenol recovery does provide a wider safety margin and could eliminate the need for some of the tertiary treatment steps. Based solely on the technical merits observed in this study, phenol recovery is recommended. The final selection should, however, also consider economic tradeoffs and results of other studies such as toxicology testing of the effluents. 34 references, 30 figures and 26 tables.

  17. Production possibility of 51Mn via natV(3He,x)51Mn nuclear process for combined positron emission tomography and magnetic resonance imaging studies

    International Nuclear Information System (INIS)

    Szelecsenyi, F.; Kovacs, Z.; Suzuki, K.; Mukai, K.; Japan Steel Works, Yokohama

    2007-01-01

    Complete text of publication follows. It is very difficult to quantify the uptake kinetics and bio-distribution of magneto pharmaceuticals in humans using MRI (Magnetic Resonance Imaging). The well-know PET (Positron Emission Tomography) technique, however, could give a solution to this problem in the case of those MRI contrast agents that are based on manganese as paramagnetic contrast enhancer. Luckily manganese has a proper radioisotope, namely the 51 Mn (T 1/2 = 46.2 min, β + = 97%), which can be easily employed (in the form of 51 Mn-labelled contrast agents) for PET studies. Recently, for the production of this radioisotope proton and deuteron induced nuclear reactions were suggested using natural and enriched Cr targets, respectively. In this work we studied the nat V( 3 He,x) 51 Mn nuclear processes in detail from their respective threshold energies up to 40 MeV. For natural vanadium, the 51 V( 3 He,3n) 51 Mn reaction (natural isotopic composition of 51 V: 99.75%) forms the majority of the required radioisotope. The cross-sections were measured by the conventional stacked-foil method. Two stacks containing 10 and 8 pieces of thin natural V foils were irradiated in external collimated 3 He beams of the AVF-930 isochronous cyclotron of NIRS. Thin copper and titanium foils served as energy degraders. The activations lasted for 1 h with a beam current of 100 nA. The activity of the irradiated samples was measured without chemical separation by using the usual gamma-ray spectroscopy. Since the 51 Mn has a very weak gamma-line at 749 keV (Iγ=0.265%) its activity was measured via decay curve analysis of the annihilation peaks. We also measured the excitation functions of those reactions which form the major radio-contaminants i.e. 52m Mn (T 1/2 =21.1 min, Eγ=1434.068 keV(Iγ=98.3%)) and 52 Mn (T 1/2 = 5.591 d, Eγ=744.223 keV (Iγ=90%), Eγ=935.538 keV (Iγ=94.5%)). The excitation function curve of the nat V( 3 He,x) 51 Mn nuclear process shows one maximum of

  18. A green preparation of Mn-based product with high purity from low-grade rhodochrosite

    Science.gov (United States)

    Lian, F.; Ma, L.; Chenli, Z.; Mao, L.

    2018-01-01

    The low-grade rhodochrosite, the main resources for exploitation and applications in China, contains multiple elements such as iron, silicon, calcium and magnesium. So the conventional preparation of manganese sulphate and manganese oxide with high purity from electrolytic product is characterized by long production-cycle, high-resource input and high-pollution discharge. In our work, a sustainable preparation approach of high pure MnSO4 solution and Mn3O4 was studied by employing low-grade rhodochrosite (13.86%) as raw material. The repeated leaching of rhodochrosite with sulphuric acid was proposed in view of the same ion effect, in order to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. With the aid of theoretical calculation, BaF2 was chosen to remove Ca2+ and Mg2+ completely in the process of purifying. The results showed that the impurities such as Ca2+, Mg2+, Na+ were decreased to less than 20ppm, and the Ni- and Fe- impurities were decreased to less than 1ppm, which meets the standards of high pure reagent for energy and electronic materials. The extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. Moreover, the high pure Mn3O4 was one-step synthesized via the oxidation of MnSO4 solution with the ratios of OH-/Mn2+=2 and Mn2+/H2O2=1.03, and the recovery rate of manganese reaches 99%.

  19. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    Science.gov (United States)

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  20. Heavy Metals and Radioactive Characterization of the Main Materials Involved in the HC-FeMn Alloy Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Badran, H. [Taif University (Saudi Arabia); Bakr, H.; Elnimr, T. [Tanta University (Egypt); Sharshar, T. [Kafrelsheikh University (Egypt)

    2014-07-01

    Natural occurring radioactive materials (NORM) are always present in association with a variety of elements in the geological formations. The extraction of non-radioactive minerals from the mineral matrices may lead to the buildup of NORM in wastes and/or end product with different concentrations of uranium and thorium daughters, depending on extraction procedures, initial concentrations and chemical forms of the NORM in the mineral matrices. Gamma-ray spectrometry was used for the quantitative assessment of radionuclides and the associated radiation hazards at the high carbon Ferromanganese alloy (HC-FeMn) production plant in Abu Zenima (West Sinai, Egypt). The low grad Mn from Um Bogma is mixed with Norwegian Mn to improve its quality. While the Egyptian raw Mn is richer in {sup 238}U, Cu and Zn, the Norwegian raw Mn is richer in {sup 40}K and Mn. The mixing process leads to increasing concentrations of {sup 226}Ra and Zn. Enhanced concentrations of Mn, Cu and Zn were also found in the waste. The radioactivity concentrations of {sup 226}Ra, {sup 232}Th and {sup 40}K in different raw materials used in the alloy formation process, HC-FeMn alloy, waste and other mining products produced by the same company are also determined. The estimated range of the total activities of wastes produced annually by the extraction process are 8.7-17.3, 0.7-1.3 and 6.7-13.4 GBq for {sup 226}Ra, {sup 232}Th and {sup 40}K, respectively. The calculated absorbed dose rate and the annual effective dose equivalent in waste dumps with these increased fractions of NORM are 225 nGy/h and 276 mSv, respectively. This investigation does not recommend the use of the waste in housing construction or as filling materials in the area where houses may be built on or near the tailing piles. Document available in abstract form only. (authors)

  1. Novel detached system to MnCO3 nanowires: A self-sacrificing template for homomorphous Mn3O4 and α-Mn2O3 nanostructures

    International Nuclear Information System (INIS)

    Lei Shuijin; Peng Xiaomin; Li Xiuping; Liang Zhihong; Yang Yi; Cheng Baochang; Xiao Yanhe; Zhou Lang

    2011-01-01

    Research highlights: → A novel detached system along with solvothermal treatment was developed. → Radially aggregated MnCO 3 nanowires were successfully fabricated. → The detached system, solvent, surfactant and reaction time were important. → MnCO 3 nanowires could act as the self-sacrificing template for Mn 3 O 4 and α-Mn 2 O 3 . - Abstract: MnCO 3 , an important raw material, exhibits attractive properties and significant industrial applications. However, few concerns have been raised on the fabrication of its 1D nanostructures. In this paper, a novel detached system was successfully employed for the preparation of MnCO 3 nanowires by a surfactant-assisted solvothermal treatment using N,N-dimethylformamide as the solvent and cetyltrimethylammonium bromide as the surfactant. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy were employed to study the crystal structure and morphologies of the products. Experiments showed that the detached system, solvent, surfactant and reaction time were critical for the formation of the MnCO 3 nanowires. The thermal characterization was studied by differential scanning calorimetric analysis and thermogravimetric analysis measurements. The experimental results demonstrated that the as-prepared MnCO 3 nanocrystals can act as an efficient precursor for production of homomorphous Mn 3 O 4 and α-Mn 2 O 3 nanostructures by calcination at 400 deg. C under the atmosphere of argon and air, respectively. A possible growth mechanism for the MnCO 3 nanowires was also proposed.

  2. Regioselective biooxidation of (+-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

    Directory of Open Access Journals (Sweden)

    Schmid Rolf D

    2009-07-01

    Full Text Available Abstract Background (+-Nootkatone (4 is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+-valencene (1 provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+-nootkatone (4 from (+-valencene (1 involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+-valencene (1 at allylic C2-position to produce (+-nootkatone (4 via cis- (2 or trans-nootkatol (3. The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR and putidaredoxin (Pdx from Pseudomonas putida in Escherichia coli. Results Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+-valencene (1 yielding nootkatol (2 and 3 and (+-nootkatone (4. However, when the in vivo biooxidation of (+-valencene (1 with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents – isooctane, n-octane, dodecane or hexadecane – were set up, resulting in accumulation of nootkatol (2 and 3 and (+-nootkatone (4 of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. Conclusion This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+-nootkatone (4, as it is safe and can easily be

  3. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system.

    Science.gov (United States)

    Girhard, Marco; Machida, Kazuhiro; Itoh, Masashi; Schmid, Rolf D; Arisawa, Akira; Urlacher, Vlada B

    2009-07-10

    (+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli. Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+)-valencene (1) yielding nootkatol (2 and 3) and (+)-nootkatone (4). However, when the in vivo biooxidation of (+)-valencene (1) with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents - isooctane, n-octane, dodecane or hexadecane - were set up, resulting in accumulation of nootkatol (2 and 3) and (+)-nootkatone (4) of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+)-nootkatone (4), as it is safe and can easily be controlled and scaled up.

  4. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  5. Properties of Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4 as Nanocatalyst for Ammonia Production

    Directory of Open Access Journals (Sweden)

    Puspitasari Poppy

    2017-01-01

    Full Text Available Ammonia synthesis requires high pressure and high temperature process. Unfortunately, the capital intensive cost resulting low yield of ammonia by using recent catalyst which is iron oxide. Therefore, manganese zinc ferrite as a soft ferrite material will be introduced as a new nanocatalyst to enhance the ammonia yield. As a new nanocatalyst for ammonia production, study of comparasion two different concentration of MnZn Ferrite is very important. This paper will compare the yield of ammonia by using two different nanocatalyst which are Mn0.4Zn0.6Fe2O4 and Mn0.6Zn0.4Fe2O4. Both were synthesized by sol-gel method and has been characterize by using FESEM (morphology, XRD (phase identification, EDX (elemental analysis and TPR (oxide reduction. The ammonia was produce with and without magnetic field applied. The result shows that the ammonia yield is higher for Mn0.4Zn0.6Fe2O4 nanocatalyst than Mn0.6Zn0.4Fe2O4 by using magnetic field applied. 67.2% of yield has been achieved by using new nanocatalyst Mn0.6Zn0.4Fe2O4 and magnetic field applied at ambient environment.

  6. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  7. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    Science.gov (United States)

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  8. MnZn-ferrites: Targeted Material Design for New Emerging Application Products

    OpenAIRE

    Zaspalis V. T.; Tsakaloudi V.; Kogias G.

    2014-01-01

    In this article the main characteristics for emerging MnZn-ferrite applications are described on the basis of the new demands they possess on the ferrite material development. A number of recently developed MnZn-ferrite materials is presented together with the main scientific principles lying behind their development. These include: (i) high saturation flux density MnZn-ferrites (i.e. Bsat=550 mT at 10 kHz, 1200 A/m, 100°C), (ii) low power losses MnZn-ferrites (i.e. Pv~210 mW cm-3 at 100 kHz,...

  9. Thermochemical reactivity of 5–15 mol% Fe, Co, Ni, Mn-doped cerium oxides in two-step water-splitting cycle for solar hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gokon, Nobuyuki, E-mail: ngokon@eng.niigata-u.ac.jp [Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Suda, Toshinori [Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan); Kodama, Tatsuya [Department of Chemistry & Chemical Engineering, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-nocho, Niigata 950-2181 (Japan)

    2015-10-10

    Highlights: • 5–15 mol% M-doped ceria are examined for thermochemical two-step water-splitting. • 5 mol% Fe- and Co-doped ceria have stoichiometric production of oxygen and hydrogen. • 10–15 mol% Fe- and Mn-doped ceria showed near-stoichiometric production. - Abstract: The thermochemical two-step water-splitting cycle using transition element-doped cerium oxide (M–CeO{sub 2−δ}; M = Fe, Co, Ni, Mn) powders was studied for hydrogen production from water. The oxygen/hydrogen productivity and repeatability of M–CeO{sub 2−δ} materials with M doping contents in the 5–15 mol% range were examined using a thermal reduction (TR) temperature of 1500 °C and water decomposition (WD) temperatures in the 800–1150 °C range. The temperature, steam partial pressure, and steam flow rate in the WD step had an impact on the hydrogen productivity and production rate. 5 mol% Fe- and Co-doped CeO{sub 2−δ} enhances hydrogen productivity by up to 25% on average compared to undoped CeO{sub 2}, and shows stable repeatability of stoichiometric oxygen and hydrogen production for the cyclic thermochemical two-step water-splitting reaction. In addition, 5 mol% Mn-doped CeO{sub 2−δ}, 10 and 15 mol% Fe- and Mn-doped CeO{sub 2−δ} show near stoichiometric reactivities.

  10. α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism

    International Nuclear Information System (INIS)

    Zhang Qin; Xiao Zhidong; Feng Xionghan; Tan Wenfeng; Qiu Guohong; Liu Fan

    2011-01-01

    α-MnO 2 nanowires were obtained by reflux treatment of precursor δ-MnO 2 in acidic medium under ambient pressure. The great effects of pH on the transformation of δ-MnO 2 to α-MnO 2 and the concentration of coexistent cations (K + , Mn 2+ ) was investigated in systematically designed experiments by using powder X-ray diffraction and atomic absorption spectrometry analysis. The specific surface area of the products could be simply controlled by adjusting the initial pH value of the suspension. The micro-morphologies during the transition process from the precursors to final products were characterized by SEM and TEM. A dissolution-recrystallization mechanism was proposed to describe the growth process of the one-dimensional nanowire. MnO x units or MnO 6 octahedra was formed firstly from the dissolution of outmost surfaces of δ-MnO 2 , followed by a rearrangement/crystallization to form one-dimensional α-MnO 2 nanowire. In addition, the time-dependent process of dissolution would take place gradually from the external to internal of the precursor.

  11. Rechargable xLi{sub 2}MnO{sub 3}·(1 − x)Li{sub 4/3}Mn{sub 5/3}O{sub 4} electrode nanocomposite material as a modification product of chemical manganese dioxide by lithium additives

    Energy Technology Data Exchange (ETDEWEB)

    Sokolsky, Georgii V., E-mail: gvsokol@rambler.ru [National University of Food Technologies, Volodymyrska st., 70, 01033 Kyiv (Ukraine); National Aviation University, Cosmonaut Komarov Avenue 1, 04058 Kiev 58 (Ukraine); Ivanov, Sergiy V. [National University of Food Technologies, Volodymyrska st., 70, 01033 Kyiv (Ukraine); Boldyrev, Eudgene I.; Ivanova, Natalya D. [Institute of General and Inorganic Chemistry of Ukrainian National Academy of Science, Palladin Avenue 32-34, 252680 Kiev 142 (Ukraine); Kiporenko, Oksana Ya. [The Ukrainian Physics and Mathematics Lyceum, Akademika Glushkova Avenue 6, 03680, Kyiv (Ukraine)

    2015-12-15

    Highlights: • Li-ion battery cathode preparation procedure included MnO{sub 2} modification by Li-salts with subsequent heat treatment. • Li{sub 4}Mn{sub 5}O{sub 12}, Li{sub 2}MnO{sub 3,} and Li-rich phases form active nanocomposite cathode. • Heat treatment mode is of crucial importance for rechargeability. • Cathode material capacity is 150 mA h g{sup −1} within 2.5–4.5 V. - Abstract: Relatively simple preparation procedure of rechargeable Li-ion battery cathode material via manganese dioxide treatment with Li-containing additive and subsequent calcination has been demonstrated. X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and atomic force microscopy study were characterisation methods of modification products. Pyrolusite, Li{sub 0.3}MnO{sub 2}, layered Li{sub 2}MnO{sub 3}, and spinel Li{sub 4}Mn{sub 5}O{sub 12} phases were revealed as products of initial ramsdellite phase transformations at temperatures of heat treatment ranging from 360 °C to 600 °C. Optimal temperature of final heat treatment from the point of view of rechargeability and discharge characteristics was 450 °C. Samples heat-treated at 450 °C are characterized by the unique combination of Li{sub 4/3}Mn{sub 5/3}O{sub 4} and Li{sub 2}MnO{sub 3} phase components due to their structural integration, a significant degree of disordering, and sizes of nanocrystallites with Li diffusion path, which is the most favourable for reversibility. The prepared nanocomposite cathode material delivers a capacity of 150 mA h g{sup −1} within 2.5–4.5 V at 0.1 mA discharge.

  12. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II)

    International Nuclear Information System (INIS)

    Lack, J.G.; Chaudhuri, S.K.; Kelly, S.D.; Kemner, K.M.; O'Connor, S.M.; Coates, J.D.

    2002-01-01

    Adsorption of heavy metals and radionuclides (HMR) onto iron and manganese oxides has long been recognized as an important reaction for the immobilization of these compounds. However, in environments containing elevated concentrations of these HMR the adsorptive capacity of the iron and manganese oxides may well be exceeded, and the HMR can migrate as soluble compounds in aqueous systems. Here we demonstrate the potential of a bioremediative strategy for HMR stabilization in reducing environments based on the recently described anaerobic nitrate-dependent Fe(II) oxidation by Dechlorosoma species. Bio-oxidation of 10 mM Fe(II) and precipitation of Fe(III) oxides by these organisms resulted in rapid adsorption and removal of 55 μM uranium and 81 μM cobalt from solution. The adsorptive capacity of the biogenic Fe(III) oxides was lower than that of abiotically produced Fe(III) oxides (100 μM for both metals), which may have been a result of steric hindrance by the microbial cells on the iron oxide surfaces. The binding capacity of the biogenic oxides for different heavy metals was indirectly correlated to the atomic radius of the bound element. X-ray absorption spectroscopy indicated that the uranium was bound to the biogenically produced Fe(III) oxides as U(VI) and that the U(VI) formed bidentate and tridentate inner-sphere complexes with the Fe(III) oxide surfaces. Dechlorosoma suillum oxidation was specific for Fe(II), and the organism did not enzymatically oxidize U(IV) or Co(II). Small amounts (less than 2.5 μM) of Cr(III) were reoxidized by D. suillum; however, this appeared to be inversely dependent on the initial concentration of the Cr(III). The results of this study demonstrate the potential of this novel approach for stabilization and immobilization of HMR in the environment.

  13. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    International Nuclear Information System (INIS)

    Coates, John D.

    2005-01-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  14. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Mn bioavailability by polarized Caco-2 cells: comparison between Mn gluconate and Mn oxyprolinate

    Directory of Open Access Journals (Sweden)

    Fulgenzi Alessandro

    2011-07-01

    Full Text Available Abstract Background Micronutrient inadequate intake is responsible of pathological deficiencies and there is a need of assessing the effectiveness of metal supplementation, frequently proposed to rebalance poor diets. Manganese (Mn is present in many enzymatic intracellular systems crucial for the regulation of cell metabolism, and is contained in commercially available metal supplements. Methods We compared the effects of two different commercial Mn forms, gluconate (MnGluc and oxyprolinate (MnOxP. For this purpose we used the polarized Caco-2 cells cultured on transwell filters, an established in vitro model of intestinal epithelium. Since micronutrient deficiency may accelerate mitochondrial efficiency, the mitochondrial response of these cells, in the presence of MnGluc and MnOxP, by microscopy methods and by ATP luminescence assay was used. Results In the presence of both MnOxP and MnGluc a sustained mitochondrial activity was shown by mitoTraker labeling (indicative of mitochondrial respiration, but ATP intracellular content remained comparable to untreated cells only in the presence of MnOxP. In addition MnOxP transiently up-regulated the antioxidant enzyme Mn superoxide dismutase more efficiently than MnGluc. Both metal treatments preserved NADH and βNADPH diaphorase oxidative activity, avoided mitochondrial dysfunction, as assessed by the absence of a sustained phosphoERK activation, and were able to maintain cell viability. Conclusions Collectively, our data indicate that MnOxP and MnGluc, and primarily the former, produce a moderate and safe modification of Caco-2 cell metabolism, by activating positive enzymatic mechanisms, thus could contribute to long-term maintenance of cell homeostasis.

  16. A Comparison of Two Yeast MnSODs: Mitochondrial Saccharomyces cerevisiae versus Cytosolic Candida albicans

    International Nuclear Information System (INIS)

    Sheng, Y.; Cabelli, D.; Stich, T.A.; Barnese, K.; Gralla, E.B.; Cascio, D.; Britt, R.D.; Valentine, J.S.

    2011-01-01

    Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O 2 - ). This behavior limits the amount of H 2 O 2 produced at high [O 2 - ]; its desirability can be explained by the multiple roles of H 2 O 2 in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized. ScMnSOD and CaMnSODc are similar in catalytic kinetics, spectroscopy, and redox chemistry, and they both rest predominantly in the reduced state (unlike most other MnSODs). At high [O 2 - ], the dismutation efficiencies of the yeast MnSODs surpass those of human and bacterial MnSODs, due to very low level of product inhibition. Optical and parallel-mode electron paramagnetic resonance (EPR) spectra suggest the presence of two Mn 3+ species in yeast Mn 3+ SODs, including the well-characterized 5-coordinate Mn 3+ species and a 6-coordinate L-Mn 3+ species with hydroxide as the putative sixth ligand (L). The first and second coordination spheres of ScMnSOD are more similar to bacterial than to human MnSOD. Gln154, an H-bond donor to the Mn-coordinated solvent molecule, is slightly further away from Mn in yeast MnSODs, which may result in their unusual resting state. Mechanistically, the high efficiency of yeast MnSODs could be ascribed to putative translocation of an outer-sphere solvent molecule, which could destabilize the inhibited complex and enhance proton transfer from protein to peroxide. Our studies on yeast MnSODs indicate the unique nature of human MnSOD in that it predominantly undergoes the inhibited pathway at high [O 2 - ].

  17. High Manganese Tolerance and Biooxidation Ability of Serratia marcescens Isolated from Manganese Mine Water in Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Natália R. Barboza

    2017-10-01

    Full Text Available Manganese is an important metal for the maintenance of several biological functions, but it can be toxic in high concentrations. One of the main forms of human exposure to metals, such as manganese (Mn, is the consumption of solar salt contaminated. Mn-tolerant bacteria could be used to decrease the concentration of this metal from contaminated sites through safer environmental-friendly alternative technology in the future. Therefore, this study was undertaken to isolate and identify Mn resistant bacteria from water samples collected from a Mn mine in the Iron Quadrangle region (Minas Gerais, Brazil. Two bacterial isolates were identified as Serratia marcescens based on morphological, biochemical, 16S rDNA gene sequencing and phylogeny analysis. Maximum resistance of the selected isolates against increasing concentrations of Mn(II, up to 1200 mg L-1 was determined in solid media. A batch assay was developed to analyze and quantify the Mn removal capacities of the isolates. Biological Mn removal capacities of over 55% were detected for both isolates. Whereas that mechanism like biosorption, precipitation and oxidation could be explaining the Mn removal, we seek to give an insight into some of the molecular mechanisms adopted by S. marcescens isolates. For this purpose, the following approaches were adopted: leucoberbelin blue I assay, Mn(II oxidation by cell-free filtrate and electron microscopy and energy-dispersive X-ray spectroscopy analyses. Overall, these results indicate that S. marcescens promotes Mn removal in an indirect mechanism by the formation of Mn oxides precipitates around the cells, which should be further explored for potential biotechnological applications for water recycling both in hydrometallurgical and mineral processing operations.

  18. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery.

    Science.gov (United States)

    Yu, Qianqian; Sasaki, Keiko; Hirajima, Tsuyoshi

    2013-11-15

    Microbial transformations, a primary pathway for the Mn oxides formation in nature, provide potential for material-oriented researchers to fabricate new materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared through a solid-state transformation. Varying the calcination temperature from 300 to 700 °C was found to influence sample properties and consequently, the adsorption of Li(+). Lithium manganese oxide microtube (LMO-MTs) calcined at different temperatures as well as their delithiated products (HMO-MTs) were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Calcination temperatures affect not only the content but also the crystal structure of LMO spinel, which is important in Li(+) adsorption. The optimized sample was obtained after calcination at 500 °C for 4h, which shows higher Li(+) adsorption capacity than particulate materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effect of foliar applied (Zn, Fe, Cu and Mn) in citrus production

    International Nuclear Information System (INIS)

    Khurshid, F.; Sarwar, S.; Khattak, R.A.

    2008-01-01

    A study was conducted to evaluate the impact of micronutrients (Zn, Fe, Cu and Mn) on sweet orange (Citrus Sinensis L.), blood red var., on farmer's orchard at Khanpur, district Haripur, NWFP, during 2002-03. Micronutrients were applied in foliar sprays over the canopy of each tree. The main effects and interactions of Zinc sulphate (Zn), iron sulphate (Fe), Copper Sulphate (Cu) and Manganese Sulphate (Mn) were studied in factorial combinations. A basal dose of nitrogen, phosphorus and potassium was applied at the rate 1.5, 1 and 1 kg tree/sup -1/. Zn, Fe, Cu and Mn were applied alone and in various combinations at the rate 0.115, 0.057, 0.05 and 0.13 kg in 100 liters of water. Application of micronutrients significantly increased Zn, Fe, Cu and Mn concentrations in leaves, compared with control. Zn treatments significantly increased the yield, number of fruit and total sugar. Manganese treatments significantly increased the total soluble solids and reduced the acidity of fruit juice. Other quality parameters, including fruit size, percent peel, percent pulp, sugar as well as total soluble solids, were improved with the application of Zn, Fe, Cu and Mn. (author)

  20. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  1. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    International Nuclear Information System (INIS)

    Zhou, Hao; Pan, Haixia; Xu, Jianqiang; Xu, Weiping; Liu, Lifen

    2016-01-01

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na_3MnPO_4CO_3 and MnCO_3 were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N_2 adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g"−"1 adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na_3MnPO_4CO_3_. Results suggested the complexity of natural microbe-mediated Mn transformation.

  2. Effects of Inhibitors on the Transcriptional Profiling of Gluconobater oxydans NL71 Genes after Biooxidation of Xylose into Xylonate

    Directory of Open Access Journals (Sweden)

    Yong Xu

    2017-04-01

    Full Text Available D-Xylonic acid belongs to the top 30 biomass-based platform chemicals and represents a promising application of xylose. Until today, Gluconobacter oxydans NL71 is the most efficient microbe capable of fermenting xylose into xylonate. However, its growth is seriously inhibited when concentrated lignocellulosic hydrolysates are used as substrates due to the presence of various degraded compounds formed during biomass pretreatment. Three critical lignocellulosic inhibitors were thereby identified, i.e., formic acid, furfural, and 4-hydroxybenzaldehyde. As microbe fermentation is mostly regulated at the genome level, four groups of cell transcriptomes were obtained for a comparative investigation by RNA sequencing of a control sample with samples treated separately with the above-mentioned inhibitors. The digital gene expression profiles screened 572, 714 genes, and 408 DEGs was obtained by the comparisons among four transcriptomes. A number of genes related to the different functional groups showed characteristic expression patterns induced by three inhibitors, in which 19 genes were further tested and confirmed by qRT-PCR. We extrapolated many differentially expressed genes that could explain the cellular responses to the inhibitory effects. We provide results that enable the scientific community to better define the molecular processes involved in the microbes' responses to lignocellulosic inhibitors during the cellular biooxidation of xylose into xylonic acid.

  3. Acclimation of a marine microbial consortium for efficient Mn(II) oxidation and manganese containing particle production

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Pan, Haixia [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China); Xu, Jianqiang [School of Life Science and Medicine, Dalian University of Technology, Panjin 124221 (China); Xu, Weiping; Liu, Lifen [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin 124221 (China)

    2016-03-05

    Highlights: • An efficient Mn(II) oxidation marine sediments microbial community was obtained. • High-throughput sequencing indicated new Mn(II) oxidation associated genus. • Na{sub 3}MnPO{sub 4}CO{sub 3} and MnCO{sub 3} were synthesized by the consortium. • Consortium exhibited Mn(II) oxidation performance over a range of harsh conditions. - Abstract: Sediment contamination with metals is a widespread concern in the marine environment. Manganese oxidizing bacteria (MOB) are extensively distributed in various environments, but a marine microbial community containing MOB is rarely reported. In this study, a consortium of marine metal-contaminated sediments was acclimated using Mn(II). The shift in community structure was determined through high-throughput sequencing. In addition, the consortium resisted several harsh conditions, such as toxic metals (1 mM Cu(II) and Fe(III)), and exhibited high Mn(II) oxidation capacities even the Mn(II) concentration was up to 5 mM. Meanwhile, biogenic Mn containing particles were characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), and N{sub 2} adsorption/desorption. Dye removal performance of the Mn containing particles was assayed using methylene blue, and 20.8 mg g{sup −1} adsorption capacity was obtained. Overall, this study revealed several new genera associated with Mn(II) oxidation and rare biogenic Na{sub 3}MnPO{sub 4}CO{sub 3.} Results suggested the complexity of natural microbe-mediated Mn transformation.

  4. Biogenic production of cyanide and its application to gold recovery.

    Science.gov (United States)

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  5. Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+, Cu2+) on production of antifungal compounds by Paenibacillus polymyxa.

    Science.gov (United States)

    Raza, Waseem; Hongsheng, Wu; Qirong, Shen

    2010-03-01

    The effects of four metal ions (Ca(2+), Ni(2+), Mn(2+) and Cu(2+)) were evaluated on growth and production of antifungal compounds by Paenibacillus polymyxa SQR-21 and a quadratic predictive model was developed using response surface methodology (RSM). The results revealed, Mn(2+) and Ni(2+) showed most positive synergistic interactive affect on production of antifungal compounds followed by the positive interactive synergistic affect of Cu(2+) and Ni(2+) and then Mn(2+) and Cu(2+). While the interactive effect of Ca(2+) with all other three metals inhibited the production of antifungal compounds. The Mn(2+) (P=0.0384), Ni(2+) (P=0.0004) and Cu(2+) (P=0.0117) significantly affected the production of antifungal compounds while the effect of Ca(2+) (P=0.1851) was less significant. The maximum growth (OD(600)=1.55) was obtained at 500 (0), 125 (0), 100 (-2) and 37.5 (0) microM levels and the maximum size of inhibition zone (31 mm) was measured at 400 (-1), 150 (1), 400 (1) and 25 microM (-1) levels of Ca(2+), Mn(2+), Ni(2+) and Cu(2+), respectively. The RSM model provided an easy and effective way to determine the interactive effect of metal ions on production of antifungal compounds by P. polymyxa SQR-21 so that optimum media recipes can be developed to produce maximum amounts of antifungal compounds under laboratory and commercial fermentation conditions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  6. Mn2+ anchored CdS polymer nanocomposites: An efficient alternative for Mn2+ doped CdS nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Bhaskar Jyoti; Nath, Bikash Chandra; Borah, Chandramika; Dolui, Swapan Kumar

    2015-01-01

    A chelating bi-functional polymer brushes was prepared via atom transfer radical polymerization using grafting-from methodology. Mn 2+ -anchored CdS-polymer nanocomposites were synthesized using this graft copolymer by simple chelation method resulting in emission at about 620 nm which originates from the fluorescence of manganese ions embedded on the surface of CdS nanoparticles. This method provides an efficient straightforward substitute of Mn 2+ dopped CdS nanoparticles. Optical properties of the composites were investigated which indicates that simple Mn 2+ chelation and subsequent binding of CdS in a polymer matrix can have similar effect in the luminescence property as those synthesized via complex doping methods. Moreover this methodology can be applied for synthesis of any metal anchored nanocomposites proficiently and cost effectively in large-scale production. - Highlights: • A chelating bifunctional copolymer brush was synthesized via ATRP. • CdS nanoparticles and Mn 2+ were coupled with the bifunctional polymer. • Composites showed emission properties similar to Mn 2+ doped CdS nanoparticles. • Side chain length of the polymers also affect the emission properties of the composites.

  7. Synthesis of Li(x)Na(2-x)Mn2S3 and LiNaMnS2 through redox-induced ion exchange reactions

    International Nuclear Information System (INIS)

    Luthy, Joshua A.; Goodman, Phillip L.; Martin, Benjamin R.

    2009-01-01

    Na 2 Mn 2 S 3 was oxidatively deintercalated using iodine in acetonitrile to yield Na 1.3 Mn 2 S 3 , with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li 0.7 Na 1.3 Mn 2 S 3 . When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS 2 , along with MnS and residual Na 2 Mn 2 S 3 . Single crystal X-ray diffraction structural analysis of LiNaMnS 2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) A, c=6.7759(14) A, V=96.15(3) A 3 (Z=1, wR2=0.0367) in the NaLiCdS 2 structure-type. - Graphical abstract: Structure of LiNaMnS 2 . Li and Mn are statistically distributed in edge-shared tetrahedral environments linked into infinite planes. Sodium ions occupy interlayer sites

  8. Kinetic Investigations of SiMn Slags From Different Mn Sources

    Science.gov (United States)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-03-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  9. Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production

    Directory of Open Access Journals (Sweden)

    Jianhui Luo

    2018-03-01

    Full Text Available Adipic acid is an important raw chemical for the commercial production of polyamides and polyesters. The traditional industrial adipic acid production utilizes nitric acid to oxidize KA oil (mixtures of cyclohexanone and cyclohexanol, leading to the emission of N2O and thus causing ozone depletion, global warming, and acid rain. Herein, we reported an organically functionalized β-isomer of Anderson polyoxometalates (POMs nanocluster with single-atom Mn, β-{[H3NC(CH2O3]2MnMo6O18}− (1, as a highly active catalyst to selectively catalyze the oxidation of cyclohexanone, cyclohexanol, or KA oil with atom economy use of 30% H2O2 for the eco-friendly synthesis of adipic acid. The catalyst has been characterized by single crystal and powder XRD, XPS, ESI-MS, FT-IR, and NMR. A cyclohexanone (cyclohexanol conversion of >99.9% with an adipic acid selectivity of ~97.1% (~85.3% could be achieved over catalyst 1 with high turnover frequency of 2427.5 h−1 (2132.5 h−1. It has been demonstrated that the existence of Mn3+ atom active site in catalyst 1 and the special butterfly-shaped topology of POMs both play vital roles in the enhancement of catalytic activity.

  10. τ-MnAl with high coercivity and saturation magnetization

    Directory of Open Access Journals (Sweden)

    J. Z. Wei

    2014-12-01

    Full Text Available In this paper, high purity τ-Mn54Al46 and Mn54−xAl46Cxalloys were successfully prepared using conventional arc-melting, melt-spinning, and heat treatment process. The magnetic and the structural properties were examined using x-ray diffraction (XRD, powder neutron diffraction and magnetic measurements. A room temperature saturation magnetization of 650.5 kAm-1, coercivity of 0.5 T, and a maximum energy product of (BHmax = 24.7 kJm-3 were achieved for the pure Mn54Al46 powders without carbon doping. The carbon substituted Mn54−xAl46Cx, however, reveals a lower Curie temperature but similar saturation magnetization as compared to the carbon-free sample. The electronic structure of MnAl shows that the Mn atom possesses a magnetic moment of 2.454 μB which results from strong hybridization between Mn-Al and Mn-Mn. We also investigated the volume and c/a ratio dependence of the magnetic moments of Mn and Al. The results indicate that an increase in the intra-atomic exchange splitting due to the cell volume expansion, leads to a large magnetic moment for the Mn atom. The Mn magnetic moment can reach a value of 2.9 μB at a volume expansion rate of ΔV/V ≈ 20%.

  11. Synthesis and electrochemical properties of {alpha}-MnO{sub 2} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongen [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Zhengzhou Research Institute of CHALCO, Zhengzhou Research Institute of Light Metals, Zhengzhou 450041 (China); Qian Dong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: qiandong6@yahoo.com.cn

    2008-06-15

    We report the synthesis of {alpha}-MnO{sub 2} microspheres by a low-temperature hydrothermal method involving no templates or catalysts. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy-dispersive X-ray spectrum (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), and Brunauer-Emmett-Teller (BET). The results show that the as-synthesized products are mainly composed of large quantities of {alpha}-MnO{sub 2} microspheres having a sea-urchin shape and a few microspheres constructed of small nanorods. Electrochemical characterization indicates that the resulting {alpha}-MnO{sub 2} microspheres display promising discharge properties than the commercial electrolytic manganese dioxides (EMD) when used as cathodes in alkaline Zn-MnO{sub 2} batteries.

  12. Enhanced production of bacitracin by a mutant strain bacillus licheniformis UV-MN-HN-8 (enhanced bacitracin production by mutagenesis)

    International Nuclear Information System (INIS)

    Aftab, M.N.; Ikram-ul-Haq; Baig, S.

    2010-01-01

    The present study is focused on the improvement of Bacillus licheniformis through random mutagenesis to obtain mutant having enhanced production of bacitracin. Many isolates of Bacillus licheniformis were isolated and the isolate GP-40 produced maximum bacitracin production (16 +- 0.72 IU/mL). Treatment of Bacillus licheniformis GP-40 with ultraviolet (UV) radiations increased bacitracin production to 29 +- 0.69 IU/mL. Similarly, treatment of vegetative cells of GP-40 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG) and Nitrous acid (HNO/sub 2/) increased bacitracin production to 35 +- 1.35 IU/mL and 29 +- 0.89 IU/mL respectively. Studies regarding the combined effect of UV and chemical treatment on parental cells exhibited significantly higher titers of bacitracin with maximum bacitracin production reached to 47.6 +- 0.92 IU/mL. An increase of 2.97 fold production of bacitracin in comparison to wild type was observed. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably mu (h-/sup 1/)max, Yp/x, qp, Qp and Qx mutant strain B. licheniformis UV-MN-HN-8 was found to be a hyper producer of bacitracin. (author)

  13. The Mn site in Mn-doped GaAs nanowires: an EXAFS study

    International Nuclear Information System (INIS)

    D’Acapito, F; Rovezzi, M; Boscherini, F; Jabeen, F; Bais, G; Piccin, M; Rubini, S; Martelli, F

    2012-01-01

    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched MnAs coordination, we have found the presence of Mn in a MnAu intermetallic compound. (paper)

  14. CuO, MnO2 and Fe2O3 doped biomass ash as silica source for glass production in Thailand

    Directory of Open Access Journals (Sweden)

    N. Srisittipokakun

    Full Text Available In this research, glass productions from rice husk ash (RHA and the effect of BaO, CuO, MnO2 and Fe2O3 on physical and optical properties were investigated. All properties were compared with glass made from SiO2 using same preparations. The results show that a higher density and refractive index of BaO, CuO, MnO2 and Fe2O3 doped in RHA glasses were obtained, compared with SiO2 glasses. The optical spectra show no significant difference between both glasses. The color of CuO glasses show blue from the absorption band near 800 nm (2B1g → 2B2g due to Cu2+ ion in octahedral coordination with a strong tetragonal distortion. The color of MnO2 glasses shows brown from broad band absorption at around 500 nm. This absorption band is assigned to a single allowed 5Eg → 5T2g transition which arises from the Mn3+ ions (3d4 configuration in octahedral symmetry. The yellow color derives from F2O3 glass due to the homogeneous distribution of Fe3+ (460 nm and Fe2+ (1050 nm ions in the glass matrices. Glass production from RHA is possible and is a new option for recycling waste from biomass power plant systems and air pollution reduction. Keywords: Rice husk ash, Glass, Optical, Physical

  15. Antiferromagnetic MnN layer on the MnGa(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@cnyn.unam.mx; Takeuchi, Noboru

    2016-12-30

    Highlights: • A ferromagnetic Gallium terminated surface is stable before N incorporation. • After N incorporation, an antiferromagnetic MnN layer becomes stable in a wide range of chemical potential. • Spin density distribution shows an antiferromagnetic/ferromagnetic (MnN/MnGa) arrangement at the surface. - Abstract: Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.

  16. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  17. Fourier transform spectroscopy of MnH and MnD

    Science.gov (United States)

    Balfour, W. J.; Launila, O.; Klynning, L.

    Two infrared band systems, centred near 846 nm and 1060 nm in both MnH and MnD have been rotationally analysed and shown to have a common lower state. The electronic transitions lie within the quintet manifold and are here designated c 5Σ-a 5Σ and b 5Πi-a 5Σ for the 846 and 1060 nm systems, respectively. In the 846 nm system in MnH all 10 main branches have been found in the 0-0 and 1-1 bands, while in MnD the data are complete only for 0-0. Satellite branches have been identified in the 1060 nm system and all spin and Λ-type doublings have been established. The number of assigned 0-0 branches in the 1060 nm system is 35 for MnH and 37 for MnD. Molecular constants have been determined for all three states involved. Λ-doubling diagrams are presented for b 5Πi state with v = 1, 2 levels in MnH and with the v = 2 level in MnD. Local perturbations in c5Σ (v = 1) in MnH are suspected to originate from the v = 3 level of b 5Πi.

  18. Cobertura do solo, produção de biomassa e teores de Mn e Zn de alface no sistema orgânico = Soil covering, biomass production, and Mn and Zn content of lettuce in organic system

    Directory of Open Access Journals (Sweden)

    Átila Francisco Mógor

    2009-10-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da cobertura do solo com aveia preta e manutenção da palha sobre o terreno, bem como cobertura do solo com filme de polietileno preto, sobre a produção de biomassa e teores de Mn e Zn em alface cultivada no sistema orgânico, por dois anos consecutivos. Utilizaram-se cinco tratamentos: solo sem cobertura, coberto com filme de polietileno preto, coberto com aveia acamada, coberto com aveia ceifada e solo coberto com aveia na sua forma natural,para o cultivo de três cultivares de alface. O experimento seguiu delineamento experimental de blocos ao acaso, com quatro repetições e análise estatística com parcelas subdivididas. Concluiu-se que o cultivo de alface em sucessão à aveia preta,sobre a palha, promoveu produção satisfatória e apresentou adequados teores demanganês e zinco, equivalentes àqueles encontrados na literatura em diferentes sistemas de cultivo, e a cobertura do solo com plástico preto promoveu produção satisfatória com maior acúmulo de Zn no primeiro ano e menor de Mn no segundo.The goal of this research was to evaluate the effect of soil covering with black oat straw, as well as soil covered with black plastic, on the production of biomass and levels of Mn and Zn in lettuce produced in an organic system, over two consecutive years. Five treatments were used: soil without cover, covered with black plastic,covered with laying oats, covered with harvested oats, and covered with oat straw in natural form, for growing three cultivars of lettuce. A randomized blocks design was used in a splitplot system, with four replications. It was concluded that soil covered with oat straw promoted satisfactory lettuce production, as well as adequate Mn and Zn content in plants,equivalent to those found in studies conducted under different growing systems; the soil covered with black plastic promoted satisfactory production and higher Zn content after thefirst year, and lower Mn

  19. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  20. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  1. Optimisation of the FeMn and ZnO production from spent pyrolised primary batteries. Feasibility of a DC-submerged arc furnace process

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Alvarado, R.; Friedrich, B. [RWTH Aachen (Germany). IME Process Metallurgy and Metal Recycling

    2008-07-01

    In the present work the feasibility to produce a Fe-Mn-alloy and a ZnO-concentrate from spent pyrolised primary batteries has been investigated based on fundamental research, already reported in 'World of Metallurgy' - ERZ-METALL 1/2007. Through a carbothermic reduction in a Direct Current Submerged Arc Furnace process (DC-SAF) at IME Aachen, several laboratory-scale as well as semi-pilot scale tests were conducted with three different slag-compositions using solid- and hollow-electrode technique. The process was theoretically modelled with the thermochemical package FactSage 5.3.1. The effect of the process parameters temperature, slag composition and carbon addition were analysed. The results show that it is possible to recycle spent primary batteries through the submerged arc route to obtain a Fe-Mn alloy with a ratio Mn/Fe>1 and a ZnO concentrate as a separated product, reaching recycling quotes for Mn between 44 and 62%, for Fe between 56 and 96% and for zinc of more than 90%. (orig.)

  2. Ca Mn exchange between grossular and MnCl2 solutions at 2 kbar and 600°°C: reaction mechanism and evidence for non-ideal mixing in spessartine-grossular garnets

    Science.gov (United States)

    Gavrieli, I.; Matthews, Alan; Holland, J. B.

    1996-10-01

    The hydrothermal reaction between grossular and 1 molar manganese chloride solution was studied at 2 kbar and 600 °C at various bulk Ca/(Ca+Mn) compositions: Ca3Al2Si3O12+3Mn2+(aq) ⇔ Mn3Al2Si3O12+3Ca2+(aq) The reaction products are garnets of the spessartine-grossular solid-solution series which discontinuously armour the dissolving grossular grains. The first garnet to crystallize is spessartine rich ( X gt Mn≥0.95), reflecting the high Mn content of the solution, but as the reaction proceeds more calcium-rich garnets progressively overgrow the initial products. The armouring product layer is detached from the dissolving grossular, which allows the progressive overgrowth to occur on both its external and internal surfaces and results in the development of a two directional Ca/(Ca+Mn) zoning pattern in the product grains. The compositional changes in the run products are consistent with attainment of heterogeneous equilibrium between the external rims of the spessartine-grossular garnets and the bulk solutions in runs of duration ≥24 hours. Plots of ln KD versus X gt Ca maxima show linear variations that are not consistent with the ideal mixing that has been proposed for spessartine-grossular garnets at temperatures of 900 to 1200 °C. The data rather fit a regular solution model with the parameters Δ G° (600 °C, 2 kbar)=-8.0±0.8 kJ/mol and w gt CaMn=2.6±2.0 kJ/mol. Existing solubility measurements and thermodynamic data from other Ca and Mn silicates support the calculated data. Grossular activities calculated using the w gt CaMn parameter indicate that even in manganese-rich metapelites pressure estimates calculated using the garnet-plagioclase-Al2SiO5-quartz barometer will not be increased by more than 0.2 kbar.

  3. Tuning the bimetallic amide-imide precursor system to make paramagnetic GaMnN nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Drygas, Mariusz [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Janik, Jerzy F., E-mail: janikj@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Musial, Michal [AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Krakow (Poland); Gosk, Jacek [Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland); Twardowski, Andrzej, E-mail: andrzej.twardowski@fuw.edu.pl [University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warszawa (Poland)

    2016-09-01

    A bimetallic molecular system made of gallium (III) tris(dimethyl)amide Ga(NMe{sub 2}){sub 3} and manganese (II) bis(trimethylsilyl)amide Mn[N(SiMe{sub 3}){sub 2}]{sub 2} (Me = CH{sub 3}, fixed initial Mn-content 10 at.%) was subjected to ammonolysis in refluxing/liquid ammonia. Upon isolation at room temperature, the amide-imide mixed metal precursor was pyrolyzed at elevated temperatures under an ammonia flow by two different routes. Route 1 consisted of a direct nitridation at high temperatures of 500, 700 or 900 °C. In route 2, a low temperature pyrolysis at 150 °C was applied prior to nitridation at the same final temperatures as in route 1. All nanopowders were characterized by XRD diffraction, FT-IR spectroscopy, and SEM/EDX microscopy and analysis. Thorough magnetization measurements in function of magnetic field and temperature were carried out with a SQUID magnetometer. In all samples, the paramagnetic phase of GaMnN was accompanied by an antiferromagnetic by-product linked to a Mn-containing species from decomposition and oxidation of Mn-precursor excess. The Mn-contents in the crystalline GaMnN, i.e., Mn-incorporated in GaN crystal lattice, were of the order of 2–3 at.% mostly independent on the nitridation route whereas the latter had a pronounced effect on amounts of the antiferromagnetic by-product. - Highlights: • New bimetallic precursor system for conversion to GaN/Mn nanopowders was designed. • Two conversion routes were applied with precursor nitridation at 500, 700 or 900 °C. • Prepared nanopowders were thoroughly characterized including magnetic measurements. • The major product was the gallium nitride Mn-doped phase GaMnN with 2–3 at.% of Mn.

  4. Identification of the interstitial Mn site in ferromagnetic (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Wahl, Ulrich; Augustyns, Valerie; Silva, Daniel; Granadeiro Costa, Angelo Rafael; Houben, K; Edmonds, Kevin W; Gallagher, BL; Campion, RP; Van Bael, MJ; Castro Ribeiro Da Silva, Manuel; Martins Correia, Joao; Esteves De Araujo, Araujo Joao Pedro; Temst, Kristiaan; Vantomme, André; Da Costa Pereira, Lino Miguel

    2015-01-01

    We determined the lattice location of Mn in ferromagnetic (Ga,Mn)As using the electron emission channeling technique. We show that interstitial Mn occupies the tetrahedral site with As nearest neighbors (TAs) both before and after thermal annealing at 200 °C, whereas the occupancy of the tetrahedral site with Ga nearest neighbors (TGa) is negligible. TAs is therefore the energetically favorable site for interstitial Mn in isolated form as well as when forming complexes with substitutional Mn. These results shed new light on the long standing controversy regarding TAs versus TGa occupancy of interstitial Mn in (Ga,Mn)As.

  5. Kineococcus radiotolerans Dps forms a heteronuclear Mn-Fe ferroxidase center that may explain the Mn-dependent protection against oxidative stress.

    Science.gov (United States)

    Ardini, Matteo; Fiorillo, Annarita; Fittipaldi, Maria; Stefanini, Simonetta; Gatteschi, Dante; Ilari, Andrea; Chiancone, Emilia

    2013-06-01

    The ferroxidase center of DNA-binding protein from starved cells (Dps) is a major player in the iron oxidation/detoxification process that leads to a decreased reactive oxygen species production. The possible Mn(II) participation in this process has been studied in Dps from Kineococcus radiotolerans, a radiation-resistant bacterium with a high cytosolic Mn/Fe ratio and a high capacity to survive ionizing and stress conditions. The X-ray structure of recombinant K. radiotolerans Dps loaded with Mn(II) has been solved at 2.0Å resolution. Mn(II) binding to K. radiotolerans Dps and its effect on Fe(II) oxidation have been characterized in spectroscopic measurements. In K. radiotolerans Dps, the Fe-Fe ferroxidase center can have a Mn-Fe composition. Mn(II) binds only at the high affinity, so-called A site, whereas Fe(II) binds also at the low affinity, so-called B site. The Mn-Fe and Fe-Fe centers behave distinctly upon iron oxidation by O2. A site-bound Mn(II) or Fe(II) plays a catalytic role, while B site-bound Fe(II) behaves like a substrate and can be replaced by another Fe(II) after oxidation. When H2O2 is the Fe(II) oxidant, single electrons are transferred to aromatic residues near the ferroxidase center and give rise to intra-protein radicals thereby limiting OH release in solution. The presence of the Mn-Fe center results in significant differences in the development of such intra-protein radicals. Mn(II) bound at the Dps ferroxidase center A site undergoes redox cycling provided the B site contains Fe. The results provide a likely molecular mechanism for the protective role of Mn(II) under oxidative stress conditions as it participates in redox cycling in the hetero-binuclear ferroxidase center. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. CNS bioavailability and radiation protection of normal hippocampal neurogenesis by a lipophilic Mn porphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+

    Directory of Open Access Journals (Sweden)

    David Leu

    2017-08-01

    Full Text Available Although radiation therapy can be effective against cancer, potential damage to normal tissues limits the amount that can be safely administered. In central nervous system (CNS, radiation damage to normal tissues is presented, in part, as suppressed hippocampal neurogenesis and impaired cognitive functions. Mn porphyrin (MnP-based redox active drugs have demonstrated differential effects on cancer and normal tissues in experimental animals that lead to protection of normal tissues and radio- and chemo-sensitization of cancers. To test the efficacy of MnPs in CNS radioprotection, we first examined the tissue levels of three different MnPs – MnTE-2-PyP5+(MnE, MnTnHex-2-PyP5+(MnHex, and MnTnBuOE-2-PyP5+(MnBuOE. Nanomolar concentrations of MnHex and MnBuOE were detected in various brain regions after daily subcutaneous administration, and MnBuOE was well tolerated at a daily dose of 3 mg/kg. Administration of MnBuOE for one week before cranial irradiation and continued for one week afterwards supported production and long-term survival of newborn neurons in the hippocampal dentate gyrus. MnP-driven S-glutathionylation in cortex and hippocampus showed differential responses to MnP administration and radiation in these two brain regions. A better understanding of how preserved hippocampal neurogenesis correlates with cognitive functions following cranial irradiation will be helpful in designing better MnP-based radioprotection strategies. Keywords: Mn porphyrin, Bioavailability, BMX-001, Hippocampus, Neurogenesis, Radioprotection

  7. Multireversible redox processes in pentanuclear bis(triple-helical) manganese complexes featuring an oxo-centered triangular {Mn(II)2Mn(III)(μ3-O)}5+ or {Mn(II)Mn(III)2(μ3-O)}6+ core wrapped by two {Mn(II)2(bpp)3}-.

    Science.gov (United States)

    Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle

    2011-09-05

    A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S

  8. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  9. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  10. MnS spheres: Shape-controlled synthesis and its magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Kezhen [Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034 (China); Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 (China); Wang, Yan-Qin, E-mail: wangyanqin@tyut.edu.cn [Shanxi Key Lab. of Material Strength & Structural Impact, College of Mechanics, Taiyuan University of Technology, Taiyuan, 030024 (China); Rengaraj, Selvaraj, E-mail: srengaraj1971@yahoo.com [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Al Wahaibi, Bushra [Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, 123 (Oman); Mohamed Jahangir, A.R. [Biyaq Oil Field Services LLC, Mina Al Fahal, Muscat, 123 (Oman)

    2017-06-01

    Sphere-like MnS hierarchical microstructures were successfully synthesized by a simple hydrothermal approach, which are composed of the size tunable and self-assembled nanoparticles. These hierarchical microspheres are γ-MnS phase, which is confirmed by X-ray diffraction (XRD) results, and the stoichiometry of MnS microspheres is checked by XPS measurement. Morphological studies performed by scanning electron microscopy (SEM) method show that the as-prepared γ-MnS samples are hierarchical microspheres. The size and morphology of composed nanoparticles can be turned by the concentration of L-Cystein molecules. Here, L-Cystein not only plays a role of sulfur source but also capping agent. Furthermore, a rational mechanism about the formation and evolution of the products is proposed. The present work shows that the origin of the observed difference of magnetic properties is due to the morphology difference of MnS crystals. - Highlights: • Sphere-like MnS hierarchical microstructures were synthesized and characterized. • The size and morphology of MnS crystals can be turned by the concentration of L-Cystein molecules. • The morphology of MnS hierarchitectures exerts a remarkable effect on their magnetic property.

  11. Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. The water-oxidizing activities.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Mostafalu, Ramin; Hołyńska, Małgorzata; Ebrahimi, Foad; Kaboudin, Babak

    2015-11-01

    Nano-sized Mn oxides contain Mn3O4, β-MnOOH and Mn2O3 have been prepared by a previously reported method using thermal decomposition of β-cyclodextrin-Mn complexes. In the next step, the water-oxidizing activities of these Mn oxides using cerium(IV) ammonium nitrate as a chemical oxidant are studied. The turnover frequencies for β-MnO(OH) and Mn3O4 are 0.24 and 0.01-0.17 (mmol O2/mol Mns), respectively. Subsequently, water-oxidizing activities of these compounds are compared to the other previously reported Mn oxides. Important factors affecting water oxidation by these Mn oxides are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Porous Fe-Mn-O nanocomposites: Synthesis and supercapacitor electrode application

    Directory of Open Access Journals (Sweden)

    Guoxing Zhu

    2016-06-01

    Full Text Available Transition metal oxide micro-/nanostructures demonstrate high potential applications in energy storage devices. Here, we report a facile synthesis of highly homogeneous oxide composites with porous structure via a coordination polymer precursor, which was prepared with the assistance of tartaric acid. The typical product, Fe-Mn-O composite was demonstrated here. The obtained Fe-Mn-O product was systemically characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, elemental mapping analysis, and X-ray photoelectron spectroscopy. It was demonstrated that the Fe-Mn-O nanocomposite shows interconnected porous structure, in which iron, manganese, and oxygen are uniformly distributed. In addition, the Fe-Mn-O nanocomposite was then fabricated as capacitor electrodes. Operating in an aqueous neutral solution, the Fe-Mn-O composite electrodes showed an wide working potential window from −0.2 to 1.0 V (vs. SCE, and a specific capacitance of 86.7 Fg−1 or 0.4 Fcm−2 at a constant current density of 1 Ag−1 with good cycle life. This study offers a new precursor approach to prepare porous metal oxide composites, which would be applied in energy-storage/conversion devices, catalysts, sensors, and so on.

  13. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    Science.gov (United States)

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Synthesis of highly luminescent Mn:ZnSe/ZnS nanocrystals in aqueous media

    International Nuclear Information System (INIS)

    Fang Zheng; Wu Ping; Zhong Xinhua; Yang Yongji

    2010-01-01

    High-quality water-dispersible Mn 2+ -doped ZnSe core/ZnS shell (Mn:ZnSe/ZnS) nanocrystals have been synthesized directly in aqueous media. Overcoating a high bandgap ZnS shell around the Mn:ZnSe cores can bring forward an efficient energy transfer from the ZnSe host nanocrystals to the dopant Mn. The quantum yields of the dopant Mn photoluminescence in the as-prepared water-soluble Mn:ZnSe/ZnS core/shell nanocrystals can be up to 35 ± 5%. The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell nanocrystals have been characterized by UV-vis, PL spectroscopy, TEM, XRD and ICP elementary analysis. The influences of various experimental variables, including the Mn concentration, the Se/Zn molar ratio as well as the kind and amount of capping ligand used in the core production and shell deposition process, on the luminescent properties of the obtained Mn:ZnSe/ZnS nanocrystals have been systematically investigated.

  15. Mn-substituted perovskites RECoxMn1-xO3: a comparison between magnetic properties of LaCoxMn1-xO3 and GdCoxMn1-xO3

    Directory of Open Access Journals (Sweden)

    Barahona, P.

    2008-08-01

    Full Text Available Cooperative phenomena constitute important mechanisms to explain the magnetic properties of the perovskite manganites REMnO3, in which the rare-earth and/or Mn is partially replaced by divalent elements. In this way, the manganese ion changes its valence state (Mn3+ Mn4+, triggering strong magnetic interactions. In this work we describe the case of GdCoxMn1-xO3 (0.0 ≤ x ≤ 1.0 for which the antiferromagnetic interaction between the Gd sublattice and the Mn/Co network leads to a reversal of the magnetic moment at low temperature. No inversion is observed for the LaCoxMn1-xO3 series, in which the ordering temperature may attain a maximum of 235 K for LaCo0.50Mn0.50O3, while it is only 120 K for similar Co/Mn ratio in the case of GdCo0.50Mn0.50O3. Magnetic properties are described in terms of two regimes: one, for x 3 manganite and another one, for x > 0.5, when Mn substitutes Co in the GdCoO3 cobaltite, while the magnetic interactions are maximized at x(Co = 0.50. This hypothesis is discussed in terms of the respective oxidation states of both manganese (Mn3+ / Mn4+ and cobalt (Co2+ / Co3+.El fenómeno cooperativo constituye un importante mecanismo para explicar las propiedades magnéticas de las perovskitas manganitas TRMnO3, en las que el catión de tierra rara, TR, y/o el catión Mn3+ son parcialmente reemplazados por cationes divalentes. Por esta vía el ión de manganeso cambia de estado de valencia (Mn3+ Mn4+, generando fuertes interacciones magnéticas. En el presente trabajo se describe el caso de las soluciones sólidas GdCoxMn1-xO3 (0.0 ≤ x ≤ 1.0 para las que la interacción antiferromagnética entre la subred del Gd3+ y la red Mn/Co lleva a una inversión del momento magnético a baja temperatura. No se ha observado inversión para la serie LaCoxMn1-xO3, en que la temperatura de orden puede alcanzar un máximo de 235K para LaCo0.50Mn0.50O3, mientras que en el caso de GdCo0.50Mn0.50O3, en que sí se observa inversión, la

  16. Tempering of Mn and Mn-Si-V dual-phase steels

    Science.gov (United States)

    Speich, G. R.; Schwoeble, A. J.; Huffman, G. P.

    1983-06-01

    Changes in the yield behavior, strength, and ductility of a Mn and a Mn-Si-V d11Al-phase (ferrite-martensite) steel were investigated after tempering one hour at 200 to 600 °C. The change in yield behavior was complex in both steels with the yield strength first increasing and then decreasing as the tempering temperature was increased. This complex behavior is attributed to a combination of factors including carbon segregation to dislocations, a return of discontinuous yielding, and the relief of resid11Al stresses. In contrast, the tensile strength decreased continuously as the tempering temperature was increased in a manner that could be predicted from the change in hardness of the martensite phase using a simple composite strengthening model. The initial tensile ductility (total elongation) of the Mn-Si-V steel was much greater than that of the Mn steel. However, upon tempering up to 400 °C, the ductility of the Mn-Si-V decreased whereas that of the Mn steel increased. As a result, both steels had similar ductilities after tempering at 400 °C or higher temperatures. These results are attributed to the larger amounts of retained austenite in the Mn-Si-V steel (9 pct) compared to the Mn steel (3 pct) and its contribution to tensile ductility by transforming to martensite during plastic straining. Upon tempering at 400 °C, the retained austenite decomposes to bainite and its contribution to tensile ductility is eliminated.

  17. Valence state of Mn in Ca-doped LaMnO3 studied by high-resolution Mn K ß emission spectroscopy

    NARCIS (Netherlands)

    Tyson, T.A.; Qian, Q.; Kao, C.-C.; Rueff, J.-P.; Groot, F.M.F. de; Croft, M.; Cheong, S.-W.; Greenblatt, M.; Subramanian, M.A.

    1999-01-01

    Mn K ß x-ray emission spectra provide a direct method to probe the effective spin state and charge density on the Mn atom and is used in an experimental study of a class of Mn oxides. Specifically, the Mn K ß line positions and detailed spectral shapes depend on the oxidation and the spin state of

  18. Strong correlation and ferromagnetism in (Ga,Mn)As and (Ga,Mn)N

    International Nuclear Information System (INIS)

    Filippetti, A.; Spaldin, N.A.; Sanvito, S.

    2005-01-01

    The band energies of the ferromagnetic diluted magnetic semiconductors (Ga,Mn)As and (Ga,Mn)N are calculated using a self-interaction-free approach which describes covalent and strongly correlated electrons without adjustable parameters. Both materials are half-metallic, although the contribution of Mn-derived d states to the bands around the Fermi energy is very different in the two cases. In (Ga,Mn)As the bands are strongly p-d hybridized, with a dominance of As p states. In contrast in (Ga,Mn)N the Fermi energy lies within three flat bands of mainly d character that are occupied by two electrons. Thus the Mn ion in (Ga,Mn)N behaves as a deep trap acceptor, with the hole at 1.39 eV above the GaN valence band top, and is in excellent agreement with the experimental data

  19. CaO-matrix processing of MnBi alloys for permanent magnets

    Directory of Open Access Journals (Sweden)

    A. M. Gabay

    2017-05-01

    Full Text Available The possibility to suppress agglomeration of MnBi alloy particles during milling and their unwanted sintering during subsequent annealing was explored by embedding the particles in CaO through co-milling. A 15 h annealing of the micron-sized MnBi particles embedded in the CaO matrix at 300 °C is not accompanied by sintering or growth of the particles while it significantly increases their coercivity – presumably by healing the milling-induced crystal defects. After separation from the CaO matrix, the annealed MnBi powder combines a calculated energy product of 10 MGOe with a room-temperature coercivity of 14.4 kOe. At the same time, the partial loss and degradation of the MnBi low-temperature phase during warm compaction of the powders makes the effect of the CaO-matrix annealing less pronounced in the case of fully dense magnets; the residue from the solvents employed for the removal of the CaO might have contributed to the decline of the properties. Still, a relatively high room-temperature coercivity of 8.5 kOe was obtained for the fuslly-dense MnBi magnet exhibiting an energy product of 5.3 MGOe.

  20. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  1. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (Al–5Mg–Mn alloy with low Fe content (Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  2. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (Al-5Mg-Mn alloy with low Fe content (Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  3. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J., E-mail: jun.cui@pnnl.gov; Choi, J. P.; Li, G.; Polikarpov, E.; Darsell, J. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Kramer, M. J.; Zarkevich, N. A.; Wang, L. L.; Johnson, D. D. [Materials Sciences and Engineering Division, Ames Laboratory, Ames, Iowa 50011 (United States); Marinescu, M. [Electron Energy Corporation, Landisville, Pennsylvania 17538 (United States); Huang, Q. Z.; Wu, H. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102 (United States); Vuong, N. V.; Liu, J. P. [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 μ{sub B} at 50 K and 300 K, respectively.

  4. Development of MnBi permanent magnet: Neutron diffraction of MnBi powder

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J; Choi, JP; Li, G; Polikarpov, E; Darsell, J; Kramer, MJ; Zarkevich, NA; Wang, LL; Johnson, DD; Marinescu, M; Huang, QZ; Wu, H; Vuong, NV; Liu, JP

    2014-05-07

    MnBi attracts great attention in recent years for its great potential as permanent magnet materials. MnBi phase is difficult to obtain because of the rather drastic peritectic reaction between Mn and Bi. In this paper, we report our effort on synthesizing high purity MnBi compound using conventional powder metallurgical approaches. Neutron diffraction was carried out to investigate the crystal and nuclear structure of the obtained powder. The result shows that the purity of the obtained powder is about 91 wt. % at 300 K, and the magnetic moment of the Mn atom in MnBi lattice is 4.424 and 4.013 mu(B) at 50 K and 300 K, respectively. (C) 2014 AIP Publishing LLC.

  5. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  6. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  7. Magnetic structures of Er6Mn23 and Dy6Mn23

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Deportes, J.; Rodriguez-Carvajal, J.

    1995-01-01

    The R 6 Mn 23 (R=rare earth) compounds crystallize in the cubic Th 6 Mn 23 -type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy 6 Mn 23 and Er 6 Mn 23 . The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional Γ 5g irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.)

  8. Mixed oxides obtained from Co and Mn containing layered double hydroxides: Preparation, characterization, and catalytic properties

    International Nuclear Information System (INIS)

    Kovanda, Frantisek; Rojka, Tomas; Dobesova, Jana; Machovic, Vladimir; Bezdicka, Petr; Obalova, Lucie; Jiratova, Kveta; Grygar, Tomas

    2006-01-01

    Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 deg. C in Co-Al sample to 120 deg. C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 deg. C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N 2 O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N 2 O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1

  9. Synthesis and Electrochemistry of Li3MnO4: Mn in the +5 OxidationState

    Energy Technology Data Exchange (ETDEWEB)

    Saint, Juliette.A.; Doeff, Marca M.; Reed, John

    2007-06-19

    Computational and experimental work directed at exploringthe electrochemical properties of tetrahedrally coordinated Mn in the +5oxidation state is presented. Specific capacities of nearly 700 mAh/g arepredicted for the redox processes of LixMnO4 complexes based on twotwo-phase reactions. One is topotactic extractionof Li from Li3MnO4 toform LiMnO4 and the second is topotactic insertion of Li into Li3MnO4 toform Li5MnO4. In experiments, it is found that the redox behavior ofLi3MnO4 is complicated by disproportionation of Mn5+ in solution to formMn4+ and Mn7+ and byother irreversible processes; although an initialcapacity of about 275 mAh/g in lithiumcells was achieved. Strategiesbased on structural considerations to improve the electrochemicalproperties of MnO4n- complexes are given.

  10. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2.

    Science.gov (United States)

    Zhao, Junfeng; Wang, Qun; Fu, Yongsheng; Peng, Bo; Zhou, Gaofeng

    2018-06-01

    In this study, the effect of Fe 3+ , Fe 2+ , and Mn 2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ were investigated systematically. Traces of Fe 3+ , Fe 2+ , and Mn 2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (k obs ) of DCF increased with decreasing pH (9-6) and increasing temperature (10-30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu 2+ and Zn 2+ ions evidently improved the DCF removal, while CO 3 2- restrained it. Besides, SO 4 2- , Cl - , NO 3 - , Mg 2+ , and Ca 2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe 3+ , Fe(VI)/Fe 2+ , and Fe(VI)/Mn 2+ within the tested concentration. The addition of 5 or 20 mg L -1 NOM decreased the removal efficiency of DCF. Moreover, Fe 2 O 3 and Fe(OH) 3 , the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO 2 and MnO 4 - , the by-products of Mn 2+ , enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe 3+ and Fe 2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn 2+ and the effect of its by-products (i.e., MnO 2 and MnO 4 - ) contributed synchronously for DCF degradation. Graphical abstract ᅟ.

  11. Paramagnetic resonance of Mn4+ and Mn2+ centers in lanthanum gallate single crystals

    Science.gov (United States)

    Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.

    2010-03-01

    An increase in the manganese concentration in lanthanum gallate in the range 0.5-5.0% has been found to result in a complete replacement of individual Mn4+ ions by Mn2+ ions. The relative concentrations and binding energies of individual Mn4+, Mn3+, and Mn2+ ions have been determined. The spin Hamiltonians of the Mn2+ and Mn4+ centers in the rhombohedral and orthorhombic phases, respectively, have been constructed and the orientation of the principal axes of the fine-structure tensor of Mn4+ at room temperature has been found. The possibility of using electron paramagnetic resonance for determining the rotation angles of oxygen octahedra of lanthanum gallate with respect to the perovskite structure has been discussed.

  12. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  13. Fourier transform infrared emission spectra of MnH and MnD

    Science.gov (United States)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  14. Impact of environmental chemistry on mycogenic Mn oxide minerals

    Science.gov (United States)

    Santelli, C. M.; Farfan, G. A.; Post, A.; Post, J. E.

    2012-12-01

    concentration of Mn(II) in solution was held constant (0, 0.15, 0.5, 1.0 and 1.5 mM) only in the Mn-supplemented experiment. Mycogenic Mn oxides were analyzed using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). During the experiments, it was observed that each fungal species responded differently to the varying growth media. The addition of Na inhibited growth and oxidation of several species, and the highest concentrations of Mn in solution proved toxic to a few species. Fungi grown with Na produced a highly-disordered phyllomanganate phase similar to birnessite or vernadite. During growth in Ca-rich solutions, however, a more crystalline ranciéite-like phase was formed with 10Å interlayer spacing that collapsed to 7Å upon drying. Although a feitknechtite-like phase was expected in experiments with Mn concentrations greater than 0.5 mM, a birnessite-like phase was formed. This suggests that a more complex solution chemistry is required for transformation to the more crystalline phases, or the presence of the fungal biomass is inhibiting the ripening of the Mn oxides. This information sheds lights on how growth conditions impact the primary (biologically-induced) and secondary (abiotic reactions) mineral products of fungal Mn(II)-oxidation, which ultimately influences the overall impact of these minerals in the environment.

  15. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li{sup +} recovery

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qianqian, E-mail: qianqianyu09@gmail.com; Sasaki, Keiko; Hirajima, Tsuyoshi

    2013-11-15

    Highlights: • Biogenic birnessite was used to synthesize microtube-type Li{sup +} ion sieve. • The biomineral facilitates LMO formation at a lower temperature. • HMO-MT with high Li{sup +} uptake capacity was obtained. • Temperature effects on properties of HMO-MTs were studied. -- Abstract: Microbial transformations, a primary pathway for the Mn oxides formation in nature, provide potential for material-oriented researchers to fabricate new materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared through a solid-state transformation. Varying the calcination temperature from 300 to 700 °C was found to influence sample properties and consequently, the adsorption of Li{sup +}. Lithium manganese oxide microtube (LMO-MTs) calcined at different temperatures as well as their delithiated products (HMO-MTs) were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Calcination temperatures affect not only the content but also the crystal structure of LMO spinel, which is important in Li{sup +} adsorption. The optimized sample was obtained after calcination at 500 °C for 4 h, which shows higher Li{sup +} adsorption capacity than particulate materials.

  16. Bio-templated synthesis of lithium manganese oxide microtubes and their application in Li+ recovery

    International Nuclear Information System (INIS)

    Yu, Qianqian; Sasaki, Keiko; Hirajima, Tsuyoshi

    2013-01-01

    Highlights: • Biogenic birnessite was used to synthesize microtube-type Li + ion sieve. • The biomineral facilitates LMO formation at a lower temperature. • HMO-MT with high Li + uptake capacity was obtained. • Temperature effects on properties of HMO-MTs were studied. -- Abstract: Microbial transformations, a primary pathway for the Mn oxides formation in nature, provide potential for material-oriented researchers to fabricate new materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared through a solid-state transformation. Varying the calcination temperature from 300 to 700 °C was found to influence sample properties and consequently, the adsorption of Li + . Lithium manganese oxide microtube (LMO-MTs) calcined at different temperatures as well as their delithiated products (HMO-MTs) were characterized by X-ray diffraction (XRD), X-ray absorption fine structure (XAFS) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Calcination temperatures affect not only the content but also the crystal structure of LMO spinel, which is important in Li + adsorption. The optimized sample was obtained after calcination at 500 °C for 4 h, which shows higher Li + adsorption capacity than particulate materials

  17. Calix[4]arene supported clusters: a dimer of [Mn(III)Mn(II)] dimers

    DEFF Research Database (Denmark)

    Taylor, Stephanie M; McIntosh, Ruaraidh D; Beavers, Christine M

    2011-01-01

    Phosphinate ligands allow for the transformation of a calix[4]arene supported [Mn(III)(2)Mn(II)(2)] tetramer cluster motif into an unusual [Mn(III)Mn(II)](2) dimer of dimers; the clusters self-assemble in the crystal to form bi-layer arrays reminiscent of the typical packing of calixarene solvates....

  18. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    Science.gov (United States)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  19. Monodispersed MnO nanoparticles with epitaxial Mn{sub 3}O{sub 4} shells

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, A E; Rodriguez, G F [Department of Physics, University of California, San Diego La Jolla, CA 92093 (United States); Hong, J I; Fullerton, E E [Center for Magnetic Recording Research, University of California-San Diego La Jolla, CA 92093 (United States); An, K; Hyeon, T [National Creative Research Initiative Center for Oxide Nanocrystalline Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Agarwal, N; Smith, D J [School of Materials and Department of Physics, Arizona State University, Tempe, AZ 85287 (United States)

    2008-07-07

    We report the microstructural and magnetic properties of monodispersed nanoparticles (NPs) of antiferromagnetic MnO (T{sub N} = 118 K), with epitaxial ferrimagnetic Mn{sub 3}O{sub 4} (T{sub C} = 43 K) shells. Above T{sub C}, an unusually large magnetization is present, produced by the uncompensated spins (UCSs) on the surface of the MnO particles. These spins impart a net anisotropy to the MnO particles that is approximately three orders of magnitude larger than the bulk value. As a result, an anomalously high blocking temperature is exhibited by the MnO particles, and finite coercivity and exchange bias are present above T{sub C}. When field cooled below T{sub C}, a strong exchange bias was established in the Mn{sub 3}O{sub 4} shells as a result of high net anisotropy of the MnO particles. A large coercivity was also observed. Models of several aspects of the behaviour of this unusual system emphasized the essential role of the UCSs on the surfaces of the MnO NPs.

  20. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    Science.gov (United States)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  1. Magnetic properties of Heusler alloy Mn2RuGe and Mn2RuGa ribbons

    International Nuclear Information System (INIS)

    Yang, Ling; Liu, Bohua; Meng, Fanbin; Liu, Heyan; Luo, Hongzhi; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2015-01-01

    Heusler alloys Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning method successfully. Theoretical and experimental studies reveal a ferrimagnetic ground state in the two alloys. The Curie temperatures are 303 K for Mn 2 RuGe and 272 K for Mn 2 RuGa. The calculated total spin moments of Mn 2 RuGe and Mn 2 RuGa are integral values of 2.00 μ B and 1.03 μ B , respectively. And the theoretical spin polarization ratio is also quite high. However, due to the atomic disorder in the ribbons, the saturation moments of them measured at 5 K are smaller than the calculated values, especially that of Mn 2 RuGa. This coincides with the disappearance of the superlattice reflection (111) and (200) peaks in the XRD pattern of Mn 2 RuGa. Annealing Mn 2 RuGa ribbon at 773 K can enhance the atomic ordering. Both saturation magnetic moment and Curie temperature increase obviously after the heat treatment. - Highlights: • Mn 2 RuGe and Mn 2 RuGa have been prepared by melt-spinning successfully. • Ferrimagnetic ground state has been confirmed in Mn 2 RuGe and Mn 2 RuGa. • High spin polarization has been predicted in Mn 2 RuGe. • Melt-spinning can be a possible way to adjust the atomic order of Heusler alloys

  2. An analysis of the effects of Mn2+ on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays

    International Nuclear Information System (INIS)

    Gunter, Thomas E.; Gerstner, Brent; Lester, Tobias; Wojtovich, Andrew P.; Malecki, Jon; Swarts, Steven G.; Brookes, Paul S.; Gavin, Claire E.; Gunter, Karlene K.

    2010-01-01

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays-a measure of ATP production-under rapid phosphorylation conditions to explore sites of Mn 2+ inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn 2+ inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn 2+ inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F 1 F 0 ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn 2+ inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.

  3. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    Science.gov (United States)

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  4. Low-temperature molar heat capacities and entropies of MnO2 (pyrolusite), Mn3O4 (hausmanite), and Mn2O3 (bixbyite)

    Science.gov (United States)

    Robie, R.A.; Hemingway, B.S.

    1985-01-01

    Pyrolusite (MnO2), hausmanite (Mn3O4), and bixbyite (Mn2O3), are important ore minerals of manganese and accurate values for their thermodynamic properties are desirable to understand better the {p(O2), T} conditions of their formation. To provide accurate values for the entropies of these important manganese minerals, we have measured their heat capacities between approximately 5 and 380 K using a fully automatic adiabatically-shielded calorimeter. All three minerals are paramagnetic above 100 K and become antiferromagnetic or ferrimagnetic at lower temperatures. This transition is expressed by a sharp ??-type anomaly in Cpmo for each compound with Ne??el temperatures TN of (92.2??0.2), (43.1??0.2), and (79.45??0.05) K for MnO2, Mn3O4, and Mn2O3, respectively. In addition, at T ??? 308 K, Mn2O3 undergoes a crystallographic transition, from orthorhombic (at low temperatures) to cubic. A significant thermal effect is associated with this change. Hausmanite is ferrimagnetic below TN and in addition to the normal ??-shape of the heat-capacity maxima in MnO2 and Mn2O3, it has a second rounded maximum at 40.5 K. The origin of this subsidiary bump in the heat capacity is unknown but may be related to a similar "anomalous bump" in the curve of magnetization against temperature at about 39 K observed by Dwight and Menyuk.(1) At 298.15 K the standard molar entropies of MnO2, Mn3O4, and Mn2O3, are (52.75??0.07), (164.1??0.2), and (113.7??0.2) J??K-1??mol-1, respectively. Our value for Mn3O4 is greater than that adopted in the National Bureau of Standards tables(2) by 14 per cent. ?? 1985.

  5. XPS and EELS characterization of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Grosvenor, A.P., E-mail: andrew.grosvenor@usask.ca [Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9 (Canada); Bellhouse, E.M., E-mail: erika.bellhouse@arcelormittal.com [Global R & D—Hamilton, ArcelorMittal Dofasco, 1330 Burlington St. E, Hamilton, ON L8N 3J5 (Canada); Korinek, A., E-mail: korinek@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); Bugnet, M., E-mail: bugnetm@mcmaster.ca [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada); McDermid, J.R., E-mail: mcdermid@mcmaster.ca [Steel Research Centre, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1 (Canada)

    2016-08-30

    Graphical abstract: XPS and EELS spectra were acquired from Mn2Al2O4, MnSiO3 and Mn2SiO4 standards and unique features identified that will allow unambiguous identification of these compounds when studying the selective oxidation of advanced steels. - Highlights: • Mn2Al2O4, MnSiO3 and Mn2SiO4 standards were synthesized and characterized using both XPS and EELS. • Unique features in both the XPS high resolution and EELS spectra were identified for all compounds. • The spectra can be used to identify these compounds when studying the selective oxidation of steels. - Abstract: X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces when investigating the selective oxidation and reactive wetting of advanced high strength steels (AHSS) during the continuous galvanizing process. However, unambiguous identification of ternary oxides such as Mn{sub 2}SiO{sub 4}, MnSiO{sub 3}, and MnAl{sub 2}O{sub 4} by XPS or EELS, which can play a significant role in substrate reactive wetting, is difficult due to the lack of fully characterized standards in the literature. To resolve this issue, samples of Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} were synthesized and characterized by XPS and EELS. The unique features of the XPS and EELS spectra for the Mn{sub 2}SiO{sub 4}, MnSiO{sub 3} and MnAl{sub 2}O{sub 4} standards were successfully derived, thereby allowing investigators to fully differentiate and identify these oxides at the surface and subsurface of Mn, Si and Al alloyed AHSS using these techniques.

  6. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO₃.

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-03-21

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.

  7. MnV2O6.V2O5 cross-like nanobelt arrays: synthesis, characterization and photocatalytic properties

    International Nuclear Information System (INIS)

    Abbood, Hayder A.; Ahmed, Khalid Abdelazez Mohamed; Ren, Yong; Huang, Kaixun

    2013-01-01

    Single-crystalline MnV 2 O 6 .V 2 O 5 cross-like nanobelt arrays were successfully synthesized by hydrothermal reaction. The products were characterized by X-ray diffraction, transmission electron microscopy and high-resolution transmission electron microscopy. The effects of the reaction conditions such as pH, V 5+ /Mn 2+ ratio, carboxymethyl cellulose concentration and reaction time on the morphology of the products were studied. The band gap of the as-prepared products was calculated via diffuse reflectance spectral analysis and their activity of photocatalytic oxidation was evaluated by photodegradation of methylene blue under visible-light irradiation. The results showed that the degradation efficiency of methylene blue catalyzed by the calcinated products is remarkably enhanced due to Mn doping, suggesting that MnV 2 O 6 .V 2 O 5 cross-like nanobelt arrays are a good candidate for visible-light-driven photocatalysts. (orig.)

  8. Effects of reactive Mn(III)-oxalate complexes on structurally intact plant cell walls

    Science.gov (United States)

    Summering, J. A.; Keiluweit, M.; Goni, M. A.; Nico, P. S.; Kleber, M.

    2011-12-01

    Lignin components in the in plant litter are commonly assumed to have longer residence times in soil than many other compounds, which are supposedly, more easily degradable. The supposed resistance of lignin compounds to decomposition is generally attributed to the complex chain of biochemical steps required to create footholds in the non-porous structure of ligno-cellulose in cell walls. Interestingly, Mn(III) complexes have shown the ability to degrade ligno-cellulose. Mn(III) chelated by ligands such as oxalate are soluble oxidizers with a high affinity for lignin structures. Here we determined (i) the formation and decay kinetics of the Mn(III)-oxalate complexes in aqueous solution and (ii) the effects that these complexes have on intact ligno-cellulose. UV/vis spectroscopy and iodometric titrations confirmed the transient nature of Mn(III)-oxalate complexes with decay rates being in the order of hours. Zinnia elegans tracheary elements - a model ligno-cellulose substrate - were treated with Mn(III)-oxalate complexes in a newly developed flow-through reactor. Soluble decomposition products released during the treatment were analyzed by GC/MS and the degree of cell integrity was measured by cell counts, pre- and post-treatment counts indicate a decrease in intact Zinnia elegans as a result of Mn(III)-treatment. GC/MS results showed the release of a multitude of solubilized lignin breakdown products from plant cell walls. We conclude that Mn(III)-oxalate complexes have the ability to lyse intact plant cells and solubilize lignin. Lignin decomposition may thus be seen as resource dependent, with Mn(III) a powerful resource that should be abundant in terrestrial characterized by frequent redox fluctuations.

  9. Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface

    Science.gov (United States)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2018-05-01

    We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.

  10. Synthesis of Li-Mn-O mesocrystals with controlled crystal phases through topotactic transformation of MnCO3

    Science.gov (United States)

    Dang, Feng; Hoshino, Tatsuhiko; Oaki, Yuya; Hosono, Eiji; Zhou, Haoshen; Imai, Hiroaki

    2013-02-01

    Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries.Mesocrystals of Li-Mn-O compounds, such as LiMn2O4, Li2MnO3, and LiMnO2-Li2MnO3, consisting of oriented nanoscale units were selectively produced under hydrothermal conditions from biomimetically prepared MnCO3 mesocrystals. Topotactic transformation through the intermediate phase of Mn5O8 inheriting a hierarchical structure of the MnCO3 precursor was essential for the formation of the mesocrystal compounds. The crystal phases were successfully controlled by varying the conditions for the hydrothermal reactions. The Li-Mn-O mesocrystals have considerable potential as cathodes of Li-ion batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33767g

  11. Impurity model for mixed-valent Mn3+/Mn4+ ions

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1997-01-01

    Intermediate valent tri- and tetravalent manganese ions play an important role in LaMnO 3 -based systems. We consider a Mn impurity with five orbitals in cubic symmetry which hybridize with conduction electrons. The exchange interaction in the d shell maximizes the impurity spin. We study the valence of the Mn impurity as a function of the splitting of the e g to t 2g orbitals in zero magnetic field and for the totally spin-polarized state. The lifting of the degeneracy of the e g levels due to a small quadrupolar field, related to the Mn-O bond length or a Jahn-Teller effect, is also investigated. Possible implications on the magnetoresistance are discussed. copyright 1997 The American Physical Society

  12. The Submillimeter Spectrum of MnH and MnD (X7Σ+)

    Science.gov (United States)

    Halfen, D. T.; Ziurys, L. M.

    2008-01-01

    The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.

  13. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  14. Mn(ii) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo

    Science.gov (United States)

    Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang

    2015-07-01

    Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy.Artemisinin (ART) is a natural drug with potent anticancer activities related with Fe2+ mediated cleavage of the endoperoxide bridge in ART. Herein, we reported that Mn2+ could substitute for Fe2+ to react with ART and generate toxic products, inducing a much higher anticancer efficiency. On this basis, we prepared pH-responsive Fe3O4@MnSiO3-FA nanospheres which can efficiently deliver hydrophobic ART into tumors in mice models. Mn2+ was released in acidic tumor environments and intracellular lysosomes, interacting with ART to kill cancer cells. The ART-loaded nanocarriers could suppress tumor growth more efficiently than free ART, which could be further illustrated by magnetic resonance imaging (MRI). Histological analysis revealed that the drug delivery system had no obvious effect on the major organs of mice. ART has been reported to have lower toxicity than chemotherapeutics. The ART-loaded nanocarriers are promising to be used in

  15. Effects of Quebracho Tannin on Recovery of Colloidal Gold from ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... recovered from the CCD effluent per tonne of ore treated. An optimum QT dose of ... after washing the bio-oxidation product (Shaw,. 1992; Fridrikhsberg .... Dressing, McGraw-Hill Book Company, Inc.,. New York and London, ...

  16. Formation process and superparamagnetic properties of (Mn,Ga)As nanocrystals in GaAs fabricated by annealing of (Ga,Mn)As layers with low Mn content

    DEFF Research Database (Denmark)

    Sadowski, Janusz; Domagala, Jaroslaw Z.; Mathieu, Roland

    2011-01-01

    °C) annealing of (Ga,Mn)As layers with Mn concentrations between 0.1% and 2%, grown by molecular beam epitaxy at 270°C. Decomposition of (Ga,Mn)As is already observed at the lowest annealing temperature of 400°C for layers with initial Mn content of 1% and 2%. Both cubic and hexagonal (Mn......,Ga)As nanocrystals, with similar diameters of 7-10 nm, are observed to coexist in layers with an initial Mn content of 0.5% and 2% after higher-temperature annealing. Measurements of magnetization relaxation in the time span 0.1-10 000 s provide evidence for superparamagnetic properties of the (Mn,Ga)As nanocrystals......X-ray diffraction, transmission electron microscopy, and magnetization measurements are employed to study the structural and magnetic properties of Mn-rich (Mn,Ga)As nanocrystals embedded in GaAs. These nanocomposites are obtained by moderate-temperature (400°C) and high-temperature (560°C and 630...

  17. Transition probabilities and dissociation energies of MnH and MnD molecules

    International Nuclear Information System (INIS)

    Nagarajan, K.; Rajamanickam, N.

    1997-01-01

    The Frank-Condon factors (vibrational transition probabilities) and r-centroids have been evaluated by the more reliable numerical integration procedure for the bands of A-X system of MnH and MnD molecules, using a suitable potential. By fitting the Hulburt- Hirschfelder function to the experimental potential curve using correlation coefficient, the dissociation energy for the electronic ground states of MnH and MnD molecules, respectively have been estimated as D 0 0 =251±5 KJ.mol -1 and D 0 0 =312±6 KJ.mol -1 . (authors)

  18. Inner-shell vacancy production and multiple ionization effects in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ciortea, C. E-mail: ciortea@tandem.nipne.ro; Piticu, I.; Dumitriu, D.E.; Fluerasu, D.; Enulescu, A.; Szilagyi, S.Z.; Enescu, S.E.; Gugiu, M.M.; Dumitrescu, T.A

    2003-05-01

    Vacancy production in 0.1-1.75 MeV/u Mn, Fe, Co, Ni, Cu + Au, Bi collisions has been studied by measuring integral inner-shell ionization cross-sections and mean outer-shell ionization probabilities at the Tandem accelerator of NIPNE, Bucharest. X-ray spectra induced by ion beams of Mn, Fe, Co, Ni and Cu impinging on thin solid-foil targets of Au and Bi have been measured. Total ionization cross-sections for the K-shell of the projectile and L{sub 3}-subshell of the target, as well as vacancy sharing probabilities, corrected for the effect of multiple ionization, are reported. The experimental results are discussed in terms of two model calculations.

  19. Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2 mimetic scorpiand-like Mn (II complex.

    Directory of Open Access Journals (Sweden)

    Carolina Serena

    Full Text Available The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight.We have recently reported that two SOD mimetic compounds, the Mn(II complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin.In this report we show that the Mn(II complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules.The effective anti-inflammatory activity of the Mn(II complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.

  20. Spinel–rock salt transformation in LiCoMnO4−δ

    Science.gov (United States)

    Reeves-McLaren, Nik; Sharp, Joanne; Beltrán-Mir, Héctor; Rainforth, W. Mark; West, Anthony R.

    2016-01-01

    The transformation on heating LiCoMnO4, with a spinel structure, to LiCoMnO3, with a cation-disordered rock salt structure, accompanied by loss of 25% of the oxygen, has been followed using a combination of diffraction, microscopy and spectroscopy techniques. The transformation does not proceed by a topotactic mechanism, even though the spinel and rock salt phases have a similar, cubic close-packed oxygen sublattice. Instead, the transformation passes through two stages involving, first, precipitation of Li2MnO3, leaving behind a Li-deficient, Co-rich non-stoichiometric spinel and, second, rehomogenization of the two-phase assemblage, accompanied by additional oxygen loss, to give the homogeneous rock salt final product; a combination of electron energy loss spectroscopy and X-ray absorption near edge structure analyses showed oxidation states of Co2+ and Mn3+ in LiCoMnO3. Subsolidus phase diagram determination of the Li2O-CoOx-MnOy system has established the compositional extent of spinel solid solutions at approximately 500°C. PMID:26997883

  1. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  2. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  3. Effect of Fe-Mn addition on microstructure and magnetic properties of NdFeB magnetic powders

    Science.gov (United States)

    Kurniawan, C.; Purba, A. S.; Setiadi, E. A.; Simbolon, S.; Warman, A.; Sebayang, P.

    2018-03-01

    In this paper, the effect of Fe-Mn alloy addition on microstructures and magnetic properties of NdFeB magnetic powders was investigated. Varied Fe-Mn compositions of 1, 5, and 10 wt% were mixed with commercial NdFeB type MQA powders for 15 minutes using shaker mill. The characterizations were performed by powder density, PSA, XRD, SEM, and VSM. The Fe-Mn addition increased the powder density of NdFeB/Fe-Mn powders. On the other side, particle size distribution slightly decreased as the Fe-Mn composition increases. Magnetic properties of NdFeB/Fe-Mn powders changed with the increasing of Fe-Mn content. SEM analysis showed the particle size of NdFeB/Fe-Mn powder was smaller as the Fe-Mn composition increases. It showed that NdFeB/Fe-Mn particles have different size and shape for NdFeB and Fe-Mn particles separately. The optimum magnetic properties of NdFeB/Fe-Mn powder was achieved on the 5 wt% Fe-Mn composition with remanence M r = 49.45 emu/g, coercivity H c = 2.201 kOe, and energy product, BH max = 2.15 MGOe.

  4. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors

    Science.gov (United States)

    Jiangying, Qu; Feng, Gao; Quan, Zhou; Zhiyu, Wang; Han, Hu; Beibei, Li; Wubo, Wan; Xuzhen, Wang; Jieshan, Qiu

    2013-03-01

    A highly atom-economic procedure for the preparation of reduced graphene oxide/Mn3O4 (rGO/Mn3O4) composites is reported. Pristine graphene oxide/manganese sulfate (GO/MnSO4) suspension produced by modified Hummers method is utilized with high efficiency, which has been in situ converted into GO/Mn3O4 hybrid composite by air oxidation, then into rGO/Mn3O4 composite by means of dielectric barrier discharge (DBD) plasma-assisted deoxygenation. The Mn3O4 content of the rGO/Mn3O4 composites can be readily tailored. It is observed that Mn3O4 nanoparticles of 15-24 nm are well-dispersed on graphene sheets with Mn3O4 loading as high as 90%. The specific capacitance of the as-prepared rGO/Mn3O4 hybrids with 90% Mn3O4 reaches 193 F g-1 when employed as the electrode material in neutral Na2SO4 electrolyte solutions (76 F g-1 for pristine graphene and 95 F g-1 for pure Mn3O4), which indicates the positive synergetic effects from both graphene and attached Mn3O4. The method developed in this study should offer a new technique for the large scale and highly atom-economic production of graphene/MnOx composites for many applications.

  5. On the synthesis and microstructure analysis of high performance MnBi

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chen

    2016-12-01

    Full Text Available Highly anisotropic MnBi powder with over 90 wt% low-temperature phase can be prepared using conventional arc-melting and 2 hour-low energy ball milling (BM followed by magnetic separation. After proper alignment, the purified Mn55Bi45(Mn45Bi55 powder show remarkable magnetic properties: mass remanence of 71(65 Am2/kg and coercivity of 1.23(1.18 T at 300 K. The nominal maximum energy product of 120 kJ/m3 is achieved in the purified 2h-BM Mn55Bi45 powder, close to theoretical value of 140.8 kJ/m3. The Mn55Bi45(Mn45Bi55 bulk magnets show the highest volume remanence of 0.68(0.57 T at 300 K, while they were consolidated at 573(523 K by a pressure of 200 MPa for 5 minutes using hot-compaction method. In addition to the observed grain size, the coercivity of the hot-compacted samples at 300 K was found to be strongly related to the amount of metallic Mn and Bi residue at the grain-boundary. Our study proves that the magnetic properties of the Mn45Bi55 bulk magnets are stable up to 500 K, and the nominal (BHmax values are still above 40 kJ/m3 at 500 K showing the potential ability for high-temperature applications.

  6. Enhanced Cycleability of Amorphous MnO₂ by Covering on α-MnO₂ Needles in an Electrochemical Capacitor.

    Science.gov (United States)

    Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang

    2017-08-24

    An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.

  7. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    Science.gov (United States)

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some

  9. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  10. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  11. Magnetic structure and spin dynamics of the ground state of the molecular cluster Mn12O12 acetate studied by 55Mn NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2001-01-01

    55 Mn nuclear magnetic resonance (NMR) measurements have been carried out in an oriented powder sample of Mn12 acetate at low temperature (1.4--3 K) in order to investigate locally the static and dynamic magnetic properties of the molecule in its high-spin S=10 ground state. We report the observation of three 55 MnNMR lines under zero external magnetic field. From the resonance frequency and the width of the lines we derive the internal hyperfine field and the quadrupole coupling constant at each of the three nonequivalent Mn ion sites. From the field dependence of the spectrum we obtain a direct confirmation of the standard picture, in which spin moments of Mn 4+ ions (S=3/2) of the inner tetrahedron are polarized antiparallel to that of Mn 3+ ions (S=2) of the outer ring with no measurable canting from the easy axis up to an applied field of 6 T. It is found that the splitting of the 55 Mn-NMR lines when a magnetic field is applied at low temperature allows one to monitor the off-equilibrium population of the molecules in the different low lying magnetic states. The measured nuclear spin-lattice relaxation time T 1 strongly depends on temperature and magnetic field. The behavior could be fitted well by considering the local-field fluctuations at the nuclear 55 Mn site due to the thermal reorientation of the total S=10 spin of the molecule. From the fit of the data one can derive the product of the spin-phonon coupling constant times the mean-square value of the fluctuating hyperfine field. The two constants could be estimated separately by making some assumptions. The comparison of the mean-square fluctuation from relaxation with the static hyperfine field from the spectrum suggests that nonuniform terms (q≠0) are important in describing the spin dynamics of the local Mn moments in the ground state

  12. A hierarchical nanostructure consisting of amorphous MnO{sub 2}, Mn{sub 3}O{sub 4} nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chi-Chang; Hung, Ching-Yun [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013 (China); Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China); Yang, Yi-Lin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621 (China)

    2011-01-15

    In this communication, a porous hierarchical nanostructure consisting of amorphous MnO{sub 2} (a-MnO{sub 2}), Mn{sub 3}O{sub 4} nanocrystals, and single-crystalline MnOOH nanowires is designed for the supercapacitor application, which is prepared by a simple two-step electrochemical deposition process. Because of the gradual co-transformation of Mn{sub 3}O{sub 4} nanocrystals and a-MnO{sub 2} nanorods into an amorphous manganese oxide, the cycle stability of a-MnO{sub 2} is obviously enhanced by adding Mn{sub 3}O{sub 4}. This unique ternary oxide nanocomposite with 100-cycle CV activation exhibits excellent capacitive performances, i.e., excellent reversibility, high specific capacitances (470 F g{sup -1} in CaCl{sub 2}), high power property, and outstanding cycle stability. The highly porous microstructures of this composite before and after the 10,000-cycle CV test are examined by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  13. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  14. Late administration of Mn porphyrin-based SOD mimic enhances diabetic complications

    Directory of Open Access Journals (Sweden)

    Dana K. Ali

    2013-01-01

    Full Text Available Mn(III N-alkylpyridylporphyrins (MnPs have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS, is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81–8, 2005 that when the treatment started at the onset of diabetes, Mn(III meso-tetrakis(N-methylpyridinium-2-ylporphyrin, MnTM-2-PyP5+ suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP5+ can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP5+ did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP5+ contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i the relative concentrations of oxidants and reductants, i.e. the cellular redox

  15. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  16. Some studies about the NaCl:Ca2+ :Mn2+ and NaCl: Cd2+ :Mn2+ dosemeters

    International Nuclear Information System (INIS)

    Verdiguel G, H.; Flores J, C.; Camarillo G, E.; Espejel P, R.; Cabrera B, E.; Hernandez A, J.; Murrieta S, H.; Cruz Z, E.; Ramos B, S.; Negron, A.

    2002-01-01

    Nowadays, a great interest by counting with dosemeters of characteristics such as a high stability, of easy operation and easier production exists. Looking for a commitment with all these characteristics,a possibility to use the system NaCl: Ca 2+ :Mn 2+ and NaCl: Cd 2+ :Mn 2+ as dosemeters was studied. The studies were realized irradiating with gamma radiation from a 60 Co source. The crystals that were used as samples did not suffer any thermal treatment previous to irradiation. The supplied doses were 10, 30, 60, 100, 300, and 600 rads. 24 hours after irradiation the thermoluminescent response was obtained. In the case of the system NaCl: Ca 2+ :Mn 2+ several thermoluminescent bands were observed (BTL). Two concentrations of Mn 2+ with only one concentration of Ca 2+ (1%) were studied. For the case of the smaller concentration of Mn 2+ (0.1%) 4 BTL were observed, whereas for a greater concentration (0.3%) just 2 BTL were detected. The positions of the maximum of the BTL peaks differ for both concentrations, this possible due to what the nature of the traps for both cases differs by the type of precipitates present in the net. For the case of the system NaCl: Cd 2+ (1%) :Mn 2+ (0.1% and 0.5%) a similar situation to the previous was found, although in this case for both manganese concentrations just 2 BTL were observed; however all the peaks seem to be the superposition of several bands. Despite the apparent complexity of the thermoluminescent response, such response as function of the dose shows that both systems present a stable response to gamma radiation in the interval from 10 to 600 rads. In the case of calcium it is had a response of linear type of the Tl intensity depending on the dose, whereas for the cadmium system a supra linear response seems to exist. Nowadays, studies for determining the BTL origin being carried out. (Author)

  17. Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets

    Science.gov (United States)

    Nguyen, Vuong Van; Nguyen, Truong Xuan

    2018-03-01

    Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.

  18. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud' ko, Sergey L.; Canfield, Paul C. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States); Masters, Morgan W. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Parker, David S. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Thimmaiah, Srinivasa [The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011 (United States)

    2016-08-29

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ{sub B}/f.u. and 2.1 μ{sub B}/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m{sup −3} K{sup −1} around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  19. Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP

    International Nuclear Information System (INIS)

    Lamichhane, Tej N.; Taufour, Valentin; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Masters, Morgan W.; Parker, David S.; Thimmaiah, Srinivasa

    2016-01-01

    ZrMnP and HfMnP single crystals are grown by a self-flux growth technique, and structural as well as temperature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K, respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 μ_B/f.u. and 2.1 μ_B/f.u., respectively, at 50 K. The magnetocaloric effect of ZrMnP in terms of entropy change (ΔS) is estimated to be −6.7 kJ m"−"3 K"−"1 around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼4.6 T for ZrMnP and ∼10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25%. More importantly, our calculations suggest that the large magnetic anisotropy comes primarily from the Mn atoms, suggesting that similarly large anisotropies may be found in other 3d transition metal compounds.

  20. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface

    Science.gov (United States)

    Lu, Zhongpei; Lu, Xiaojun; Ding, Jingjing; Zhou, Ting; Ge, Tao; Yang, Gang; Yin, Fan; Wu, Mingfang

    2017-12-01

    Spinel LiMn2O4 has drawn continuous attentions due to its low cost, good electrochemical performance, environmental friendliness and natural abundant resources. In view of its severe capacity fading, some types of manganese-based compounds with different Mn oxidation states are selected to protect bare LiMn2O4 by constructing a stable coating layer. In this work, LiMn2O4@LiMnPO4 composite, spherical LiMn2O4 (LMO) as core and Mn2+-rich phase of LiMnPO4 (LMP) as shell, is designed and synthesized. Two composites of LiMn2O4 particles coated with 3 wt% and 10 wt% LiMnPO4 have been compared studied. After 100 cycles at 0.5C rate, the two samples deliver capacity retentions of 96.63% and 93.23% of their initial capacities. Moreover, LMO coated by 3 wt% LiMnPO4 delivers 100.3 mAh g-1 after 200 cycles at 10C rate and 76.3 mAh g-1 after 1000 cycles at 20C rate, much higher than bare LiMn2O4 with 90 mAh g-1 and 45.8 mAh g-1, respectively. This core-shell structure with Mn2+-rich phase as a coating layer effectively enhance the material's cycling performance and rate capacity by reducing the contact of LiMn2O4 with electrolyte.

  1. Formation of Mn3O4(001) on MnO(001): Surface and interface structural stability

    International Nuclear Information System (INIS)

    Bayer, Veronika; Podloucky, Raimund; Franchini, Cesare; Allegretti, Francesco; Xu, Bo; Parteder, Georg; Ramsey, Michael G.; Surnev, Svetlozar; Netzer, Falko P.

    2007-01-01

    X-ray absorption and photoemission spectroscopies, high-resolution electron energy loss spectroscopy, spot profile analysis low energy electron diffraction, and density functional theory calculations are employed to study the growth of (001) oriented Mn 3 O 4 surfaces on a Pd(100)-supported MnO(001) substrate, with the Hausmannite planar lattice constants aligned along the [110] direction of the underlying MnO(001) support. We show that despite the rather large lattice mismatch, abrupt interfaces may exist between rocksalt MnO and Hausmannite. We argue that this process is facilitated by the relatively low computed strain energy and we propose realistic models for the interface. An atop site registry between the Mn(O) atoms of the oxygen rich Mn 3 O 4 termination and the MnO(001) O(Mn) atoms underneath is found to be the energetically most favorable configuration. The significant planar expansion is accompanied by a large compression of the Mn 3 O 4 vertical lattice constant, yielding structural distortion of the O-Mn-O octahedral axis. Spot profile analysis low energy electron diffraction experiments show that the conversion reaction proceeds easily in both directions, thus indicating the reversible redox character of the transition

  2. Mn fraction substitutional site and defects induced magnetism in Mn-implanted 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, K., E-mail: Khalid.bouziane@uir.ac.ma [Pôle Energies Renouvelables et Etudes Pétrolières, Université Internationale de Rabat, 11000 – Salé el Jadida, Technopolis (Morocco); Al Azri, M.; Elzain, M. [Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khodh 123 (Oman); Chérif, S.M. [LSPM (CNRS-UPR 3407), Université Paris, 13-Nord, 99, Avenue Jean Baptiste Clément, 93430 Villetaneuse (France); Mamor, M. [Equipe MSISM, Faculté Poly-Disciplinaire, B.P. 4162 Safi, Université Cadi Ayyad, Marrakech (Morocco); Declémy, A. [Institut P’, CNRS – Université de Poitiers – ENSMA, UPR 3346, SP2MI – Téléport 2, 11 boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil Cedex (France); Thomé, L. [CSNSM-Orsay, Bât. 108, Université d’Orsay, F-91405 Orsay (France)

    2015-05-25

    Highlights: • Shallow Mn-implanted 6H-SiC crystal. • Correlation between Mn-substitutional site concentration and magnetism. • Correlation between defects nature surrounding Mn site and magnetism. • Correlation of magnetism in Mn-doped SiC to Mn at Si sites and vacancy-related defect. - Abstract: n-type 6H-SiC (0 0 0 1) single crystal substrates were implanted with three fluences of manganese (Mn{sup +}) ions: 5 × 10{sup 15}, 1 × 10{sup 16} and 5 × 10{sup 16} cm{sup −2} with implantation energy of 80 keV at 365 °C to stimulate dynamic annealing. The samples were characterized using Rutherford backscattering channeling spectroscopy (RBS/C), high-resolution X-ray diffraction technique (HRXRD), and Superconducting Quantum Interference Device (SQUID) techniques. Two main defect regions have been identified using RBS/C spectra fitted with the McChasy code combined to SRIM simulations. Intermediate defects depth region is associated with vacancies (D{sub V}) and deeper defect (D{sub N}) essentially related to the Si and C interstitial defects. The defect concentration and the maximum perpendicular strain exhibit similar increasing trend with the Mn{sup +} fluence. Furthermore, the amount of Mn atoms at Si substitutional sites and the corresponding magnetic moment per Mn atom were found to increase with increasing Mn fluence from 0.7 μ{sub B} to 1.7 μ{sub B} and then collapsing to 0.2 μ{sub B}. Moreover, a strong correlation has been found between the magnetic moment and the combination of both large D{sub V}/D{sub N} ratio and high Mn at Si sites. These results are corroborated by our ab initio calculations considering the most stable configurations showing that besides the amount of Mn substituting Si sites, local vacancy-rich environment is playing a crucial role in enhancing the magnetism.

  3. Catalytic Oxidation of NO over MnOx–CeO2 and MnOx–TiO2 Catalysts

    Directory of Open Access Journals (Sweden)

    Xiaolan Zeng

    2016-11-01

    Full Text Available A series of MnOx–CeO2 and MnOx–TiO2 catalysts were prepared by a homogeneous precipitation method and their catalytic activities for the NO oxidation in the absence or presence of SO2 were evaluated. Results show that the optimal molar ratio of Mn/Ce and Mn/Ti are 0.7 and 0.5, respectively. The MnOx–CeO2 catalyst exhibits higher catalytic activity and better resistance to SO2 poisoning than the MnOx–TiO2 catalyst. On the basis of Brunauer–Emmett–Teller (BET, X-ray diffraction (XRD, and scanning transmission electron microscope with mapping (STEM-mapping analyses, it is seen that the MnOx–CeO2 catalyst possesses higher BET surface area and better dispersion of MnOx over the catalyst than MnOx–TiO2 catalyst. X-ray photoelectron spectroscopy (XPS measurements reveal that MnOx–CeO2 catalyst provides the abundance of Mn3+ and more surface adsorbed oxygen, and SO2 might be preferentially adsorbed to the surface of CeO2 to form sulfate species, which provides a protection of MnOx active sites from being poisoned. In contrast, MnOx active sites over the MnOx–TiO2 catalyst are easily and quickly sulfated, leading to rapid deactivation of the catalyst for NO oxidation. Furthermore, temperature programmed desorption with NO and O2 (NO + O2-TPD and in situ diffuse reflectance infrared transform spectroscopy (in situ DRIFTS characterizations results show that the MnOx–CeO2 catalyst displays much stronger ability to adsorb NOx than the MnOx–TiO2 catalyst, especially after SO2 poisoning.

  4. Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single-molecule magnets

    Science.gov (United States)

    Liu, RuiYuan; Zuo, JunWei; Li, YanRong; Zhou, YuRong; Wang, YunPing

    2012-07-01

    Frequency-domain terahertz transmission spectra of Mn3 and Mn12 single molecule magnets (SMMs) have been measured at different temperatures, and hence the anisotropic parameters D 2 and D 4 of the spin Hamiltonian hat H = D_2 hat S_z^2 + D_4 hat S_z^4 have been calculated. For Mn12 SMM, D 2=-10.9 GHz and D 4=-2.59×10-2 GHz, while for Mn3 SMM, D 2=-22.0 GHz and D 4 can be considered negligible. This suggests Mn3 SMM can be considered as a simpler and more suitable candidate for magnetic quantum tunneling research.

  5. Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

    Science.gov (United States)

    Meng, Fanhui; Yan, Xiuling; Zhu, Ye; Si, Pengchao

    2013-04-01

    Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays a key role in the formation of sample structures. The MnO2/PANI composites exhibit good cycling stability as well as a high capacitance close to 207 F g-1. Samples fabricated with the facile one-step method are also expected to be adopted in other field such as catalysis, lithium ion battery, and biosensor.

  6. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Science.gov (United States)

    Pomar, Alberto; Konstantinović, Zorica; Bagués, Nuria; Roqueta, Jaume; López-Mir, Laura; Balcells, Lluis; Frontera, Carlos; Mestres, Narcis; Gutiérrez-Llorente, Araceli; Šćepanović, Maja; Lazarević, Nenad; Popović, Zoran; Sandiumenge, Felip; Martínez, Benjamín; Santiso, José

    2016-09-01

    We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4) in a pristine perovskite matrix (LaMnO3) by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight ( 9º) c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  7. Synthesis, surface group modification of 3D MnV2O6 nanostructures and adsorption effect on Rhodamine B

    International Nuclear Information System (INIS)

    Zhang, Wanqun; Shi, Lei; Tang, Kaibin; Liu, Zhongping

    2012-01-01

    Highlights: ► Fabrication of urchin-like MnV 2 O 6 with oxygen-containing surface groups. ► Mn 0.5 V 2 O 5 ·nH 2 O as an intermediate product holds the key to the final products. ► 3D architectures of MnV 2 O 6 with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV 2 O 6 nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV 2 O 6 nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV 2 O 6 by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn 0.5 V 2 O 5 ·nH 2 O, growth of aligned MnV 2 O 6 nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV 2 O 6 with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV 2 O 6 nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L −1 benzoyl peroxide showed good adsorption capability of Rhodamine B.

  8. The influence of Mn species on the SO2 removal of Mn-based activated carbon catalysts

    International Nuclear Information System (INIS)

    Qu, Yi-Fan; Guo, Jia-Xiu; Chu, Ying-Hao; Sun, Ming-Chao; Yin, Hua-Qiang

    2013-01-01

    Using Mn(NO 3 ) 2 as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO 2 were investigated. MnO and Mn 3 O 4 coexist in catalysts calcined at 650 and 800 °C and exhibit best SO 2 removal ability, whereas Mn 2 O 3 formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO 2 . And this change directly results in a decrease of activity. But the SO 2 removal rate has been maintained in the range of 30–40%, indicating that MnO 2 still has a certain SO 2 removal ability.

  9. NMR relaxation studies with MnDPDP

    International Nuclear Information System (INIS)

    Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.

    1997-01-01

    Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)

  10. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear Mn(IV)-oxo and Mn(IV)-hydroxo Complexes and Quantum Chemical Investigation of Mn(IV) Zero-Field Splitting.

    Science.gov (United States)

    Leto, Domenick F; Massie, Allyssa A; Colmer, Hannah E; Jackson, Timothy A

    2016-04-04

    X-band electron paramagnetic resonance (EPR) spectroscopy was used to probe the ground-state electronic structures of mononuclear Mn(IV) complexes [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+). These compounds are known to effect C-H bond oxidation reactions by a hydrogen-atom transfer mechanism. They provide an ideal system for comparing Mn(IV)-hydroxo versus Mn(IV)-oxo motifs, as they differ by only a proton. Simulations of 5 K EPR data, along with analysis of variable-temperature EPR signal intensities, allowed for the estimation of ground-state zero-field splitting (ZFS) and (55)Mn hyperfine parameters for both complexes. From this analysis, it was concluded that the Mn(IV)-oxo complex [Mn(IV)(O)(OH)(Me2EBC)](+) has an axial ZFS parameter D (D = +1.2(0.4) cm(-1)) and rhombicity (E/D = 0.22(1)) perturbed relative to the Mn(IV)-hydroxo analogue [Mn(IV)(OH)2(Me2EBC)](2+) (|D| = 0.75(0.25) cm(-1); E/D = 0.15(2)), although the complexes have similar (55)Mn values (a = 7.7 and 7.5 mT, respectively). The ZFS parameters for [Mn(IV)(OH)2(Me2EBC)](2+) were compared with values obtained previously through variable-temperature, variable-field magnetic circular dichroism (VTVH MCD) experiments. While the VTVH MCD analysis can provide a reasonable estimate of the magnitude of D, the E/D values were poorly defined. Using the ZFS parameters reported for these complexes and five other mononuclear Mn(IV) complexes, we employed coupled-perturbed density functional theory (CP-DFT) and complete active space self-consistent field (CASSCF) calculations with second-order n-electron valence-state perturbation theory (NEVPT2) correction, to compare the ability of these two quantum chemical methods for reproducing experimental ZFS parameters for Mn(IV) centers. The CP-DFT approach was found to provide reasonably acceptable values for D, whereas the CASSCF/NEVPT2 method fared worse, considerably overestimating the magnitude of D in several cases. Both methods were poor in

  11. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Boddum, J.K.; Tjell, Jens Christian

    2002-01-01

    Natural groundwaters are often reported to be highly supersaturated with the carbonate minerals siderite (FeCO3) and rhodochrosite (MnCO3). The kinetics of precipitation and dissolution were determined in the light of new determinations of the solubility products of siderite and rhodochrosite...... steady state for rhodochrosite was reached after 140 days. Suspensions of siderite and rhodochrosite crystals reached steady state after 10 and 80 days, respectively. The solubility product of siderite (log KS0(FeCO3)) was 11.03 0.10 for dried crystals and 10.43 0.15 for wet crystals. For rhodochrosite...... the solubility product (log KS0(MnCO3)) was 11.39 0.14 for dried crystals and 12.51 0.07 for wet crystals. The solubility product determined from supersaturated solutions was log KS0(MnCO3)=11.65 0.14. The observed slow precipitation kinetics of siderite and rhodochrosite might explain the apparent...

  12. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Aldaba, Hugo [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); Valles, O. Paola [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo (Mexico); Vazquez-Arenas, Jorge [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, México DF 09340 (Mexico); Rojas-Contreras, J. Antonio [Instituto Tecnológico de Durando, UPIDET, Av. Felipe Pescador 1830 Ote. Col. Nueva Vizcaya, 34080 Durango, Dgo (Mexico); Valdez-Pérez, Donato [Instituto Politécnico Nacional, UPALM, Edif. Z-4 3er Piso, CP 07738 México D.F (Mexico); Ruiz-Baca, Estela [Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, Dgo (Mexico); and others

    2016-10-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240 h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS{sub 2})-like, orpiment (As{sub 2}S{sub 3})-like and elementary sulfur and polysulfide (S{sub n}{sup 2−}/S{sup 0}) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including S{sub n}{sup 2−}/S{sup 0}, pyrite-like and orpiment-like phases. - Highlights: • Biofilm structures occur as compact micro-colonies. • Surface transformation reactions control arsenopyrite and cell

  13. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic

    International Nuclear Information System (INIS)

    Ramírez-Aldaba, Hugo; Valles, O. Paola; Vazquez-Arenas, Jorge; Rojas-Contreras, J. Antonio; Valdez-Pérez, Donato; Ruiz-Baca, Estela

    2016-01-01

    Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240 h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS_2)-like, orpiment (As_2S_3)-like and elementary sulfur and polysulfide (S_n"2"−/S"0) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including S_n"2"−/S"0, pyrite-like and orpiment-like phases. - Highlights: • Biofilm structures occur as compact micro-colonies. • Surface transformation reactions control arsenopyrite and cell interactions. • Toxic arsenic does not

  14. Formation of self-organized Mn3O4 nanoinclusions in LaMnO3 films

    Directory of Open Access Journals (Sweden)

    Alberto Pomar

    2016-09-01

    Full Text Available We present a single-step route to generate ordered nanocomposite thin films of secondary phase inclusions (Mn3O4 in a pristine perovskite matrix (LaMnO3 by taking advantage of the complex phase diagram of manganese oxides. We observed that in samples grown under vacuum growth conditions from a single LaMnO3 stoichiometric target by Pulsed Laser Deposition, the most favourable mechanism to accommodate Mn2+ cations is the spontaneous segregation of self-assembled wedge-like Mn3O4 ferrimagnetic inclusions inside a LaMnO3 matrix that still preserves its orthorhombic structure and its antiferromagnetic bulk-like behaviour. A detailed analysis on the formation of the self-assembled nanocomposite films evidences that Mn3O4 inclusions exhibit an epitaxial relationship with the surrounding matrix that it may be explained in terms of a distorted cubic spinel with slight (~9º c-axis tilting. Furthermore, a Ruddlesden-Popper La2MnO4 phase, helping to the stoichiometry balance, has been identified close to the interface with the substrate. We show that ferrimagnetic Mn3O4 columns influence the magnetic and transport properties of the nanocomposite by increasing its coercive field and by creating local areas with enhanced conductivity in the vicinity of the inclusions.

  15. Degradable and porous Fe-Mn-C alloy for biomaterials candidate

    Science.gov (United States)

    Pratesa, Yudha; Harjanto, Sri; Larasati, Almira; Suharno, Bambang; Ariati, Myrna

    2018-02-01

    Nowadays, degradable implants attract attention to be developed because it can improve the quality of life of patients. The degradable implant is expected to degrade easily in the body until the bone healing process already achieved. However, there is limited material that could be used as a degradable implant, polymer, magnesium, and iron. In the previous study, Fe-Mn-C alloys had succesfully produced austenitic phase. However, the weakness of the alloy is degradation rate of materials was considered below the expectation. This study aimed to produce porous Fe-Mn-C materials to improve degradation rate and reduce the density of alloy without losing it non-magnetic properties. Potassium carbonate (K2CO3) were chosen as filler material to produce foam structure by sintering and dissolution process. Multisteps sintering process under argon gas environment was performed to generate austenite phase. The product showed an increment of the degradation rate of the foamed Fe-Mn-C alloy compared with the solid Fe-Mn-C alloy without losing the Austenitic Structure

  16. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  17. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery

    International Nuclear Information System (INIS)

    Xue Fangqin; Wang Yongliang; Wang Wenhong; Wang Xindong

    2008-01-01

    The Mn(II)/Mn(III) couple has been recognized as a potential anode for redox flow batteries to take the place of the V(IV)/V(V) in all-vanadium redox battery (VRB) and the Br 2 /Br - in sodium polysulfide/bromine (PSB) because it has higher standard electrode potential. In this study, the electrochemical behavior of the Mn(II)/Mn(III) couple on carbon felt and spectral pure graphite were investigated by cyclic voltammetry, steady polarization curve, electrochemical impedance spectroscopy, transient potential-step experiment, X-ray diffraction and charge-discharge experiments. Results show that the Mn(III) disproportionation reaction phenomena is obvious on the carbon felt electrode while it is weak on the graphite electrode owing to its fewer active sites. The reaction mechanism on carbon felt was discussed in detail. The reversibility of Mn(II)/Mn(III) is best when the sulfuric acid concentration is 5 M on the graphite electrode. Performance of a RFB employing Mn(II)/Mn(III) couple as anolyte active species and V(III)/V(II) as catholyte ones was evaluated with constant-current charge-discharge tests. The average columbic efficiency is 69.4% and the voltage efficiency is 90.4% at a current density of 20 mA cm -2 . The whole energy efficiency is 62.7% close to that of the all-vanadium battery and the average discharge voltage is about 14% higher than that of an all-vanadium battery. The preliminary exploration shows that the Mn(II)/Mn(III) couple is electrochemically promising for redox flow battery

  18. The determination of irradiation and so-called terrestrial ageing of rock meteorites based on the cosmogenic resulting radionuclides 53Mn and 26Al

    International Nuclear Information System (INIS)

    Englert, P.

    1979-01-01

    The contents of cosmogenic occuring 53 Mn was determined by neutron activation in over 90 samples of 75 individual rock meteorites. The distinct depth effect of the 53 Mn production rate in rock meteorites could be measured by a depth profile at LL6 chondrite St. Severin (falling weight 271 kg). The experimental results confirm the present model concepts. By comparing with the spallogenic 22 Ne/ 21 Ne and 3 He/ 21 Ne ratios applicable as depth indicators, one could derive linear relationships suitable for correcting 53 Mn. They enable the determination of the average 53 Mn production rate from the saturation activities of long-term irradiated meteorites. Using this method it was possible to calculate the irradiation age of 40 rock meteorites. As 26 Al is formed with a similar effective cross-section to 53 Mn, the production rate ratio 53 Mn: 26 Al was also taken to derive the depth-independent irradiation ages. A method to determine the depth-independent terrestrial ageing of meteriorites has been developed based on the same isotope ratio, the effective field of application is between 0.10 to 2x10 6 a. Furthermore, an attempt was made to draw up the dependence of noble gas contents of 53 Mn resp. 53 Mn/ 26 Al irradiation age for the new determination of the 3 He, 21 Ne and 38 Ar production rates by means of a linear regression analysis. (orig./RB) [de

  19. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    Science.gov (United States)

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  20. Microstructural analysis nanoferritas Mn_0_,_5Zn_0_,_5Fe_2O_4 e Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M.

    2014-01-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn_0_,_5Zn_0_,_5Fe_2O_4 Mn_0_,_6_5Zn_0_,_3_5Fe_2O_4 synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  1. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  2. Search for CP Violation and Measurement of the Branching Fraction in the Decay D<mn>0mn>KS<mn>0mn>KS>0mn>

    Energy Technology Data Exchange (ETDEWEB)

    Dash, N.; Bahinipati, S.; Bhardwaj, V.; Trabelsi, K.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bondar, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Breibeck, F.; Browder, T. E.; Červenkov, D.; Chang, M. -C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Cho, K.; Choi, Y.; Cinabro, D.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Epifanov, D.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Hedges, M. T.; Hou, W. -S.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jeon, H. B.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Kahn, J.; Kaliyar, A. B.; Karyan, G.; Katrenko, P.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Korpar, S.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kuhr, T.; Kulasiri, R.; Kumar, R.; Kumita, T.; Kuzmin, A.; Kwon, Y. -J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Lubej, M.; Luo, T.; Masuda, M.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Mohanty, G. B.; Mohanty, S.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Okuno, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, C. -S.; Park, H.; Paul, S.; Pedlar, T. K.; Pesántez, L.; Pestotnik, R.; Piilonen, L. E.; Prasanth, K.; Ritter, M.; Rostomyan, A.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Schwartz, A. J.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Strube, J. F.; Stypula, J.; Sumisawa, K.; Sumiyoshi, T.; Takizawa, M.; Tamponi, U.; Tanida, K.; Tenchini, F.; Uchida, M.; Uglov, T.; Unno, Y.; Uno, S.; Urquijo, P.; Usov, Y.; Van Hulse, C.; Varner, G.; Vorobyev, V.; Vossen, A.; Waheed, E.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yelton, J.; Yook, Y.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhukova, V.; Zhulanov, V.; Zupanc, A.

    2017-10-01

    We report a study of the decay D<mn>0mn>KS<mn>0mn>KS>0mn> using 921 fb-1 of data collected at or near the Υ(4S) and Υ(5S) resonances with the Belle detector at the KEKB asymmetric energy e+e- collider. The measured time-integrated CP asymmetry is ACP(D<mn>0mn>KS<mn>0mn>KS>0mn>) = (-0.02 ± 1.53 ± 0.02 ± 0.17)%, and the branching fraction is B(D<mn>0mn>KS<mn>0mn>KS>0mn>) = (1.321 ± 0.023 ± 0.036 ± 0.044) × 10-4, where the first uncertainty is statistical, the second is systematic, and the third is due to the normalization mode (D<mn>0mn>KS<mn>0mn>π0). These results are significantly more precise than previous measurements available for this mode. The ACP measurement is consistent with the standard model expectation.

  3. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Wang Bei; Park, Jinsoo; Wang Chengyin; Ahn, Hyojun; Wang, Guoxiu

    2010-01-01

    Mn 3 O 4 /graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO 2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn 3 O 4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn 3 O 4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn 3 O 4 /graphene nanocomposites exhibited a high specific capacitance of 175 F g -1 in 1 M Na 2 SO 4 electrolyte and 256 F g -1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn 3 O 4 /graphene nanocomposites could be ascribed to both electrochemical contributions of Mn 3 O 4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  4. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  5. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K-edge XANES data

    International Nuclear Information System (INIS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D.D.

    2005-01-01

    Hole-doped perovskites such as La 1-x Ca x MnO 3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K-edge XANES of LaMnO 3 and CaMnO 3 compounds; they are the end compounds of the doped manganite series La x Ca 1-x MnO 3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K-edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds

  6. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    International Nuclear Information System (INIS)

    Sima, M.; Mihut, L.; Vasile, E.; Sima, Ma.; Logofatu, C.

    2015-01-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn 2+ ions into the Zn 2+ site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn 2+ ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A 1 (LO) vibrational modes, from 482 and 567 cm −1 to 532 and 580 cm −1 , respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm −1 spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm −1 confirms the insertion of Mn 2+ ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn 2+ ions into Zn 2+ site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm −1 at high Mn concentration • Compensation of the oxygen vacancy at higher Mn concentration in ZnO lattice

  7. Interface characteristics in Co2MnSi/Ag/Co2MnSi trilayer

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Hong; Wang, Guangzhao; Yuan, Hongkuan

    2016-01-01

    Highlights: • Inferface DO 3 disorder is most favorable in Co 2 MnSi/Ag/Co 2 MnSi trilayer. • Interface itself and inferface DO 3 disorder destroy the half-metallicity of interface layers. • Magnetoresistance is reduced by the interface itself and interface disorder. • Magnetotransport coefficient is largely reduced by the interface itself and interface disorder. - Abstract: Interface characteristics of Co 2 MnSi/Ag/Co 2 MnSi trilayer have been investigated by means of first-principles. The most likely interface is formed by connecting MnSi-termination to the bridge site between two Ag atoms. As annealed at high temperature, the formation of interface DO 3 disorder is most energetically favorable. The spin polarization is reduced by both the interface itself and interface disorder due to the interface state occurs in the minority-spin gap. As a result, the magneto-resistance ratio has a sharp drop based on the estimation of a simplified modeling.

  8. Infrared spectroscopic investigation of M(H2PO4)2x2H2O (M=Mg, Mn, Cd) dehydration products

    International Nuclear Information System (INIS)

    Pechkovskij, V.V.; Dzyuba, E.D.; Mel'nikova, R.Ya.; Salonets, G.I.; Kovalishina, V.I.; Malashonok, I.E.

    1982-01-01

    Using the method of IR spectroscopy the composition of products separated at different stages of M(H 2 PO 4 ) 2 x2H 2 O dehydration, where M=Mg, Mn, Cd, has been investigated. It is shown that cation influence is expressed in strengthening of bond of proton-containing groups in the structure of initial compounds from magnesium to cadmium. A supposition is made that the difference in bond character of the groups more evidently expressed for partially dehydrated products of the composition M(H 2 PO 4 ) 2 , conditions a possibility of dehydration in two directions- with the formation of intermediate phase MH 2 P 2 O 7 or with separation of three phosphoric acid

  9. Investigation of the promoting effect of Mn on a Pt/C catalyst for the steam and aqueous phase reforming of glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Bossola, Filippo; Pereira-Hernández, Xavier Isidro; Evangelisti, Claudio; Wang, Yong; Dal Santo, Vladimiro

    2017-05-01

    The catalytic performances in steam reforming (SR) and aqueous phase reforming (APR) of glycerol of a bimetallic Pt-Mn catalyst supported on activated carbon are investigated and correlated with the surface properties of the catalyst. Under SR conditions, Mn showed a significant promoting effect over Pt/C, both in terms of hydrogen production rate and conversion, with a higher selectivity toward the glycerol dehydration products. Upon addition of Mn the amount of strong Lewis acid sites increased, promoting the dehydration of glycerol and favoring the CAO over CAC cleavage at expenses of hydrogen selectivity. Conversely, under APR conditions, a slightly higher hydrogen selectivity and only minimal enhancement in hydrogen production were found, while the products selectivity was comparable to Pt/C. Most of Mn leached into the aqueous media, but the remaining (<5% of the fresh parent sample) might be alloyed with Pt and promote the CO desorption from neighbor Pt sites.

  10. MN 716: nova cultivar de cevada com estabilidade de produção e qualidade cervejeira Production stability and brewing quality of Barley MN 716

    Directory of Open Access Journals (Sweden)

    Eduardo Caierão

    2006-06-01

    Full Text Available A cevada MN 716, lançada em 2004, é uma das cultivares recomendadas para cultivo com maior estabilidade de produção. Nos anos em que participou do ensaio para determinação de seu valor de cultivo e uso, apresentou excelente produtividade de grãos, com média superior a 3.000 kg ha-1, e desempenho equilibrado quanto à qualidade, com destaque para seu teor de beta-glucanas e índice enzimático. A cultivar constitui um avanço do melhoramento desse cereal no Brasil, aliando características de interesse do produtor e da indústria.Barley cultivar MN 716, released in 2004, is one of the most recomended cultivars, for its high stability. In the years that it was included in the agronomic and use value trial, the cultivar MN 716 showed high yield average, exceeding 3,000 kg ha-1, as well as excellent qualitative performance, mainly in relation to beta-glucans and enzyme index. The cultivar is a breeding achievement for this cereal in Brazil, and serves the interests of both producers and industrial sector.

  11. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  12. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins

    Directory of Open Access Journals (Sweden)

    Majid Abdouss

    2018-01-01

    How to Cite: Abdouss, M., Arsalanfar, M., Mirzaei, N., Zamani, Y. (2018. Effect of Drying Conditions on the Catalytic Performance, Structure, and Reaction Rates over the Fe-Co-Mn/MgO Catalyst for Production of Light Olefins. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 97-112 (doi:10.9767/bcrec.13.1.1222.97-112

  13. Magnetic anisotropy in GaMnAs; Magnetische Anisotropie in GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim

    2009-07-02

    The goal of the present work was the detailed investigation of the impact of parameters like vertical strain, hole concentration, substrate orientation and patterning on the MA in GaMnAs. At first a method is introduced enabling us to determine the MA from angle-dependent magnetotransport measurements. This method was used to analyze the impact of vertical strain {epsilon}{sub zz} on the MA in a series of GaMnAs layers with a Mn content of 5% grown on relaxed InGaAs-templates. While hole concentration and Curie temperature were found to be unaffected by vertical strain, a significant dependence of the MA on {epsilon}{sub zz} was found. The most pronounced dependence was observed for the anisotropy parameter B{sub 2} {sub perpendicular} {sub to}, representing the intrinsic contribution to the MA perpendicular to the layer plane. For this parameter a linear dependence on {epsilon}{sub zz} was found, resulting in a strain-induced transition of the magnetic easy axis with increasing strain from in-plane to out-of-plane at {epsilon}{sub zz} {approx} -0.13%. Post-growth annealing of the samples leads to an outdiffusion and/or regrouping of the highly mobile Mn interstitial donor defects, resulting in an increase in both p and T{sub C}. For the annealed samples, the transition from in-plane to out-of-plane easy axis takes place at {epsilon}{sub zz} {approx} -0.07%. From a comparison of as-grown and annealed samples, B{sub 2} {sub perpendicular} {sub to} was found to be proportional to both p and {epsilon}{sub zz}, B{sub 2} {sub perpendicular} {sub to} {proportional_to} p .{epsilon}{sub zz}. To study the influence of substrate orientation on the magnetic properties of GaMnAs, a series of GaMnAs layers with Mn contents up to 5% was grown on (001)- and (113)A-oriented GaAs substrates. The hole densities and Curie temperatures, determined from magnetotransport measurements, are drastically reduced in the (113)A layers. The differences in the magnetic properties of (113)A- and

  14. Highly efficient alkane oxidation catalyzed by [Mn(V)(N)(CN)4](2-). Evidence for [Mn(VII)(N)(O)(CN)4](2-) as an active intermediate.

    Science.gov (United States)

    Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu

    2014-05-28

    The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.

  15. Resonant optical alignment and orientation of Mn2+ spins in CdMnTe crystals

    Science.gov (United States)

    Baryshnikov, K. A.; Langer, L.; Akimov, I. A.; Korenev, V. L.; Kusrayev, Yu. G.; Averkiev, N. S.; Yakovlev, D. R.; Bayer, M.

    2015-11-01

    We report on spin orientation and alignment of Mn2 + ions in (Cd,Mn)Te diluted magnetic semiconductor crystals using resonant intracenter excitation with circular- and linear-polarized light. The resulting polarized emission of the magnetic ions is observed at low temperatures when the spin relaxation time of the Mn2 + ions is in the order of 1 ms , which considerably exceeds the photoluminescence decay time of 23 μ s . We demonstrate that the experimental data on optical orientation and alignment of Mn2 + ions can be explained using a phenomenological model that is based on the approximation of isolated centers.

  16. Phase equilibria and stability of the B2 phase in the Ni-Mn-Al and Co-Mn-Al systems

    International Nuclear Information System (INIS)

    Kainuma, R.; Ise, M.; Ishikawa, K.; Ohnuma, I.; Ishida, K.

    1998-01-01

    The phase equilibria and ordering reactions in the composition region up to 50 at.% Al have been investigated in the Ni-Mn-Al and Co-Mn-Al systems at temperatures in the interval 850-1200 C mainly by the diffusion couple method. The compositions of the γ (A1: fcc-Ni, -Co, γ-Mn), γ' (L1 2 : Ni 3 Al), β (B2: NiAl, CoAl, NiMn), β-Mn (A13: β-Mn type), δ-Mn (A2: bcc-Mn) and ε (A3: hcp-(Mn, Al)) phases in equilibrium and the critical boundaries of the A2/B2 continuous ordering transition in the bcc phase region have been determined. It is shown that in the Mn-rich portion of the ternary systems both continuous and discontinuous A2 to B2 ordering transitions exist. The A2+B2 two-phase region in the isothermal sections has a lenticular shape and exists over a wide temperature range. The phase equilibria between the γ, γ', β, β-Mn, δ-Mn and ε phases are presented and the stability of the ordered bcc aluminides is discussed. (orig.)

  17. The influence of Mn species on the SO{sub 2} removal of Mn-based activated carbon catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Yi-Fan [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Guo, Jia-Xiu, E-mail: guojiaxiu@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Chu, Ying-Hao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China); Sun, Ming-Chao [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Yin, Hua-Qiang, E-mail: hqyin@scu.edu.cn [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); National Engineering Technology Research Center for Flue Gas Desulfurization, Chengdu 610065 (China)

    2013-10-01

    Using Mn(NO{sub 3}){sub 2} as precursor, a series of Mn-based activated carbon catalysts were prepared by ultrasound-assisted excessive impregnation method and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The influences of Mn species and nitric acid pretreatment on the removal role of SO{sub 2} were investigated. MnO and Mn{sub 3}O{sub 4} coexist in catalysts calcined at 650 and 800 °C and exhibit best SO{sub 2} removal ability, whereas Mn{sub 2}O{sub 3} formed in the catalyst calcined at 500 °C and shows poor activity. After treatment by nitric acid, the C=O of activated carbon support increases and the crystal size of MnO decreases, resulting in the enhancement of the catalytic activity. During reaction process, manganese oxides are gradually transferred into MnO{sub 2}. And this change directly results in a decrease of activity. But the SO{sub 2} removal rate has been maintained in the range of 30–40%, indicating that MnO{sub 2} still has a certain SO{sub 2} removal ability.

  18. Kinetics of reaction between O 2 and Mn(II) species in aqueous solutions

    Science.gov (United States)

    Morgan, James J.

    2005-01-01

    The objective of this research is to assess critically the experimental rate data for O 2 oxidation of dissolved Mn(II) species at 25°C and to interpret the rates in terms of the solution species of Mn(II) in natural waters. A species kinetic rate expression for parallel paths expresses the total rate of Mn(II) oxidation as Σk i a ij, where k i is the rate constant of species i and a ij is the species concentration fraction in solution j. Among the species considered in the rate expression are Mn(II) hydrolysis products, carbonate complexes, ammonia complexes, and halide and sulfate complexes, in addition to the free aqueous ion. Experiments in three different laboratory buffers and in seawater yield an apparent rate constant for Mn(II) disappearance, k app,j ranging from 8.6 × 10 -5 to 2.5 × 10 -2 (M -1s -1), between pH 8.03 and 9.30, respectively. Observed values of k app exceed predictions based on Marcus outer-sphere electron transfer theory by more than four orders of magnitude, lending strong support to the proposal that Mn(II) + O 2 electron transfer follows an inner-sphere path. A multiple linear regression analysis fit of the observed rates to the species kinetic rate expression yields the following oxidation rate constants (M -1s -1) for the most reactive species: MnOH +, 1.66 × 10 -2; Mn(OH) 2, 2.09 × 10 1; and Mn(CO 3) 22-, 8.13 × 10 -2. The species kinetic rate expression accounts for the influence of pH and carbonate on oxidation rates of Mn(II), through complex formation and acid-base equilibria of both reactive and unreactive species. At pH ˜8, the greater fraction of the total rate is carried by MnOH +. At pH greater than ˜8.4, the species Mn(OH) 2 and Mn(CO 3) 22- make the greater contributions to the total rate.

  19. Magnetic structures of Er{sub 6}Mn{sub 23} and Dy{sub 6}Mn{sub 23}

    Energy Technology Data Exchange (ETDEWEB)

    Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France); Deportes, J. [Laboratoire de Magnetisme L. Neel, C.N.R.S., BP 166, 38042 Grenoble Cedex 9 (France); Rodriguez-Carvajal, J. [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)]|[Laboratoire Leon Brillouin (CEA-CNRS), Centre d`Etudes de Saclay, Gif sur Yvette (France)

    1995-08-01

    The R{sub 6}Mn{sub 23} (R=rare earth) compounds crystallize in the cubic Th{sub 6}Mn{sub 23}-type structure with space group Fm3m. Powder neutron-diffraction experiments were performed on Dy{sub 6}Mn{sub 23} and Er{sub 6}Mn{sub 23}. The magnetic unit cell coincides with the chemical one. The R moments have a ferromagnetic non-collinear arrangement, whereas the Mn moments are parallel to the [1 1 1] direction. The magnetic structures belong to the three-dimensional {Gamma}{sub 5g} irreducible representation of Fm3m associated with the wave vector K=[0 0 0]. The spin configurations in both compounds result from the competition between the R-R, R-Mn magnetic interactions and the crystal electric field on the R ions. (orig.).

  20. Preliminary Experiment on Neutron-Induced Mn Activity in Mn-Cd Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Broda, E.

    1942-07-01

    This report was written by E. Broda, J. Gueron and L. Kowarski at the Cavendish Laboratory (Cambridge) in June 1942 and is about a preliminary experiment on neutron-induced Mn activity in Mn-Cd solutions. The description of the experiment and the results can be found also in this report. (nowak)

  1. Optical properties of Mn doped ZnO films and wires synthesized by thermal oxidation of ZnMn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sima, M., E-mail: msima@infim.ro [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Mihut, L. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania); Vasile, E. [University “Politehnica”of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Oxide Materials and Nanomaterials, No. 1-7 Gh. Polizu Street, 011061 Bucharest (Romania); Sima, Ma.; Logofatu, C. [National Institute of Materials Physics, 105bis Atomistilor Street, 077125 Magurele (Romania)

    2015-09-01

    Mn doped ZnO films and wires, having different manganese concentrations were synthesized by thermal oxidation of the corresponding ZnMn alloy films and wires electrodeposited on a gold substrate. Structural and optical properties were addressed with scanning electron microscopy, X-ray diffraction (XRD), Raman scattering and photoluminescence (PL). To estimate the manganese concentration in Mn doped ZnO films, X-ray photoelectron spectroscopy was used. XRD patterns indicate that the incorporation of Mn{sup 2+} ions into the Zn{sup 2+} site of ZnO lattice takes place. Quenching of the ZnO PL appears due to Mn{sup 2+} ions in the ZnO lattice. Moreover, a significant decrease in the green emission of ZnO is reported in the case of the Mn doped ZnO wire array with a Mn concentration of 1.45%. The wurtzite ZnO has a total of 12 phonon modes, namely, one longitudinal acoustic (LA), two transverse acoustic (TA), three longitudinal optical (LO), and six transverse optical branches. Compared to the undoped ZnO, a gradual up-shift of the Raman lines assigned to the 2LA and A{sub 1} (LO) vibrational modes, from 482 and 567 cm{sup −1} to 532 and 580 cm{sup −1}, respectively, takes place for the Mn doped ZnO films having a Mn concentration between 2 and 15%. Additionally, in the case of the Mn doped ZnO films with 7 and 15% Mn concentration, Raman spectra show the appearance and increase in the relative intensity of the ZnO Raman line assigned to the TA + LO vibrational mode in the 600–750 cm{sup −1} spectral range. For the Mn-doped ZnO wires, the presence of the Raman line peaking at 527 cm{sup −1} confirms the insertion of Mn{sup 2+} ions in ZnO lattice. - Highlights: • Mn doped ZnO films and wires grown by thermal oxidation of ZnMn alloy • Incorporation of Mn{sup 2+} ions into Zn{sup 2+} site of ZnO lattice • Appearance of a strong Raman line in the spectral range 600–800 cm{sup −1} at high Mn concentration • Compensation of the oxygen vacancy at higher

  2. Switchable Polarization in Mn Embedded Graphene.

    Science.gov (United States)

    Noor-A-Alam, Mohammad; Ullah, Hamid; Shin, Young-Han

    2018-03-14

    Graphene, despite its many unique properties, is neither intrinsically polar due to inversion symmetry nor magnetic. However, based on density functional theory, we find that Mn, one of transition metals, embedded in single or double vacancy (Mn@SV and Mn@DV) in a graphene monolayer induces a dipole moment perpendicular to the sheet, which can be switched from up to down by Mn penetration through the graphene. Such switching could be realized by an external stimuli introduced through the tip of a scanning probe microscope, as already utilized in the studies of molecular switches. We estimate the energy barriers for dipole switching, which are found to be 2.60 eV and 0.28 eV for Mn@SV and Mn@DV, respectively. However, by applying biaxial tensile strain, we propose a mechanism for tuning the barrier. We find that 10% biaxial tensile strain, which is already experimentally achievable in graphene-like two-dimensional materials, can significantly reduce the barrier to 0.16 eV in Mn@SV. Moreover, in agreement with previous studies, we find a high magnetic moment of 3 μ B for both Mn@SV and Mn@DV, promising the potential of these structures in spintronics as well as in nanoscale electro-mechanical or memory devices.

  3. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    Science.gov (United States)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  4. Energy levels of 56Mn

    DEFF Research Database (Denmark)

    Van Assche, P. H. M.; Baader, H. A.; Koch, H. R.

    1971-01-01

    The low-energy spectrum of the 55Mn(n,γ)56 Mn reaction has been studied with a γ-diffraction spectrometer. These data allowed the construction of a level scheme for 56Mn with two previously unobserved doublets. High-energy γ-transitions to the low-energy states have been measured for different...

  5. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy.

    Science.gov (United States)

    Fernando, Denise R; Guymer, Gordon; Reeves, Roger D; Woodrow, Ian E; Baker, Alan J; Batianoff, George N

    2009-04-01

    The analysis of herbarium specimens has previously been used to prospect for 'new' hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). The resulting data demonstrated (a) up to seven 'new' Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these 'new' Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as 'new' Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible 'new' Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible 'new' subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies.

  6. Kinetics of the exchange between fibrous manganese dioxide and Mn2+ ions in solution

    International Nuclear Information System (INIS)

    Rophael, M.W.

    1983-01-01

    The rate of exchange between fibrous manganese dioxide epsilon-MnO 2 and a 0.1 M MnSO 4 solution at 25 0 C and pH 2.0 was higher than the corresponding rate at pH 5.4. When the solid was washed with dilute acid (pH 2.0) before the exchange at pH 2.0, the results of the exchange at the two pH values were similar. When epsilon-MnO 2 was partially reduced with N 2 H 4 .H 2 O solution before the exchange, the rate of exchange was appreciably higher than that obtained for the unreduced solid. The exchange, at nearly pH 2.0, between epsilon-MnO 2 and various concentrations of Mn(NO 3 ) 2 solutions was increased to a small extent as the concentration increased tenfold. The exchange was followed by using 56 Mn-labelled MnO 2 and by measuring the β activity acquired by the Mn 2+ ion solution. The activity induced in the solid MnO 2 was produced by irradiation with thermal neutrons from a 241 Am- 9 Be laboratory neutron source. The neutron activation of manganese oxides has the following advantages: (i) a relatively high level of activity can be induced in the 55 Mn of the irradiated oxide because of its 100% abundance and its high neutron activation cross section, whereas the oxygen is unaffected; (ii) the half-life of the product 56 Mn is 9274 s which is convenient for kinetic studies; (iii) the activity produced almost decays in 24 h. (Auth.)

  7. X-ray spectroscopy at the Mn K edge in LaMnO3 : An ab initio study

    NARCIS (Netherlands)

    Hozoi, L.; Vries, A.H. de; Broer, R.

    2001-01-01

    We present ab initio quantum chemical embedded cluster calculations of Mn core-valence and d-d transitions in LaMnO3. The results are also important for the analysis of recent x-ray absorption and x-ray scattering experiments at the Mn K edge in LaMnO3. We find that the first two peaks of the

  8. A new bottom-up synthesis of MnBi particles with high magnetic performance

    Science.gov (United States)

    Liu, Shoufa; Wang, Jinpeng; Dong, Feng

    2018-01-01

    Mn and Bi nanoparticles were synthesized by a wet chemistry reduction process. The as-synthesized Mn and Bi nanoparticles were mixed in hexane with the molar ratio of 1 to 1, and annealed at 250 °C in an inert gas environment. In four parallel experiments, the annealing time was controlled to be 2, 4, 6, and 8 h. The impacts of annealing time on product morphology, crystallization, and magnetic properties were investigated. The results showed that within 6 h annealing, an increased annealing time resulted in more sintering among the particles in the products, enhanced crystallization, and improved magnetic properties. When the annealing time exceeded 6 h, further annealing did not bring much difference in morphology, crystallization, and magnetic properties, indicating a thermally stable state of the product.

  9. Corrosion Behavior of Low-C Medium-Mn Steel in Simulated Marine Immersion and Splash Zone Environment

    Science.gov (United States)

    Zhang, Dazheng; Gao, Xiuhua; Su, Guanqiao; Du, Linxiu; Liu, Zhenguang; Hu, Jun

    2017-05-01

    The corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment was studied by static immersion corrosion experiment and wet-dry cyclic corrosion experiment, respectively. Corrosion rate, corrosion products, surface morphology, cross-sectional morphology, elemental distribution, potentiodynamic polarization curves and electrochemical impedance spectra were used to elucidate the corrosion behavior of low-C medium-Mn steel. The results show that corrosion rate in immersion zone is much less than that in splash zone owing to its relatively mild environment. Manganese compounds are detected in the corrosion products and only appeared in splash zone environment, which can deteriorate the protective effect of rust layer. With the extension of exposure time, corrosion products are gradually transformed into dense and thick corrosion rust from the loose and porous one in these two environments. But in splash zone environment, alloying elements of Mn appear significant enrichment in the rust layer, which decrease the corrosion resistance of the steel.

  10. Toxicological aspects of photocatalytic degradation of selected xenobiotics with nano-sized Mn-doped TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Murat, E-mail: murat.ozmen@inonu.edu.tr [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Güngördü, Abbas [Inonu University, Faculty of Science, Department of Biology, Malatya (Turkey); Erdemoglu, Sema [Inonu University, Faculty of Science, Department of Chemistry, Malatya (Turkey); Ozmen, Nesrin [Inonu University, Faculty of Education, Department of Science Teaching Program, Malatya (Turkey); Asilturk, Meltem [Akdeniz University, Department of Materials Science and Engineering, Antalya (Turkey)

    2015-08-15

    Highlights: • Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized and characterized. • The photocatalytic efficiency of the photocatalysts was evaluated for BPA and ATZ. • Toxicity of photocatalysts and photocatalytic by-products were determined. • Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality on X. laevis. • Degradation of BPA caused a significant reduction of lethal effects. - Abstract: The toxic effects of two selected xenobiotics, bisphenol A (BPA) and atrazine (ATZ), were evaluated after photocatalytic degradation using nano-sized, Mn-doped TiO{sub 2}. Undoped and Mn-doped TiO{sub 2} nanoparticles were synthesized. The samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), UV–vis-diffuse reflectance spectra (DRS), X-ray fluorescence spectroscopy (XRF), and BET surface area. The photocatalytic efficiency of the undoped and Mn-doped TiO{sub 2} was evaluated for BPA and ATZ. The toxicity of the synthesized photocatalysts and photocatalytic by-products of BPA and ATZ was determined using frog embryos and tadpoles, zebrafish embryos, and bioluminescent bacteria. Possible toxic effects were also evaluated using selected enzyme biomarkers. The results showed that Mn-doped TiO{sub 2} nanoparticles did not cause significant lethality in Xenopus laevis embryos and tadpoles, but nonfiltered samples caused lethality in zebrafish. Furthermore, Mn-doping of TiO{sub 2} increased the photocatalytic degradation capability of nanoparticles, and it successfully degraded BPA and AZT, but degradation of AZT caused an increase of the lethal effects on both tadpoles and fish embryos. Degradation of BPA caused a significant reduction of lethal effects, especially after 2–4 h of degradation. However, biochemical assays showed that both Mn-doped TiO{sub 2} and the degradation by-products caused a significant change of selected biomarkers on X. laevis tadpoles; thus, the ecological risks of Mn

  11. Phenomenological approach to the spin glass state of (Cu-Mn, Ag-Mn, Au-Mn and Au-Fe) alloys at low temperatures

    International Nuclear Information System (INIS)

    Al-Jalali, Muhammad A.; Kayali, Fawaz A.

    2000-01-01

    Full text.The spin glass of: (Cu-Mn, Ag-Mn, Au-Mn, Au-Fe) alloys has been extensively studied. The availability of published and assured experimental data on the susceptibility x(T) of this alloys has enabled the design and application of phenomenological approach to the spin glass state of these interesting alloys. The use of and advanced (S.P.S.S) computer software has resulted revealing some important features of the spin glass in these alloys, the most important of which is that the spin glass state do not represent as phase change

  12. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  13. Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors

    Science.gov (United States)

    Yao, Wei; Zhou, Hui; Lu, Yun

    2013-11-01

    Novel MnO2@polypyrrole (PPy) coaxial nanotubes have been prepared via a simple and green approach without any surfactant and additional oxidant. Under the acidic condition, MnO2 nanotubes act as both template and oxidant to initiate the polymerization of pyrrole monomers on its fresh-activated surface. Fourier transform infrared spectra (FT-IR), X-ray diffraction patterns (XRD), thermo-gravimetric analysis data (TG) and X-ray photoelectron spectra (XPS) suggest the formation of composite structure of MnO2@PPy. Also, FESEM and TEM images intuitively confirm that the PPy shell is coated uniformly on the surface of MnO2 nanotubes. Adjusting the concentrations of sulfuric acid or adding oxidant can modulate the morphology of the products accordingly. Due to the synergic effect between MnO2 core and PPy shell, the MnO2@PPy coaxial nanotubes possess better rate capability, larger specific capacitance of 380 F g-1, doubling the specific capacitance of MnO2 nanotubes, and good capacitance retention of 90% for its initial capacitance after 1000 cycles.

  14. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    Science.gov (United States)

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep

  15. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater.

    Science.gov (United States)

    Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi

    2018-03-01

    Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3  d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microstructure and corrosion resistance of Sm-containing Al-Mn-Si-Fe-Cu alloy

    Directory of Open Access Journals (Sweden)

    Han Yuyin

    2017-12-01

    Full Text Available Optimizing alloy composition is an effective way to improve physical and chemical properties of automobile heat exchanger materials.A Sm-containing Al-Mn-Si-Fe-Cu alloy was investigated through transmission electron microscopy,scanning electron microscopy,and electrochemical measurement.Experimental results indicated that main phases distributed in the alloy wereα-Al(Mn,FeSi,Al2Sm and Al10Cu7Sm2.Alloying with Sm element could refine the precipitated α-Al(Mn,FeSi phase.Polarization testing results indicated that the corrosion surfacewas mainly composed of pitting pits and corrosion products.Sea water acetic acid test(SWAAT showed that corrosion loss increased first and then slowed downwith increase of the corrosion time.

  17. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  18. Use of MnO2 and MnO2 SiO2 for sorbing of Sr-90 from liquid rad waste

    International Nuclear Information System (INIS)

    Subiarto; Las, Thamzil; Aan BH, Martin; Utomo, Cahyo Hari

    1998-01-01

    The synthesis of MnO 2 adsorbent and MnO 2 -SiO 2 composite has been done. MnO 2 synthesis is done by the reaction of KMnO 4 , Mn(NO 3 ) 2 .4H 2 O and Na 2 S 2 O 4 ( MnO 2 -A, MnO 2 -B, and MnO 2 -T ). MnO 2 . SiO 2 is made from KMnO 4 , Na 2 SiO 3 , and H 2 O 2 . The result obtained show the best Sr-90 sorption by MnO 2 -A with Kd = 2085.63 ml/g, by MnO 2 -L with Kd = 755.09 ml/g, and by MnO 2 - SiO 2 composite with Kd = 1466.51 ml/g. From this result, we can conclude that MnO 2 -SiO 2 can be expanded for Sr-90 sorption from liquid radioactive waste. (author)

  19. Self-propagating high-temperature synthesis of Sr-doped LaMnO3 perovskite as oxidation catalyst

    International Nuclear Information System (INIS)

    Hirano, T.; Purwanto, H.; Watanabe, T.; Akiyama, T.

    2007-01-01

    Sr-doped LaMnO 3 perovskite oxide has been focused on as one of the alternative catalysts to precious metals such as platinum that are used for cleaning automotive emission gas. The conventional Solid-state reaction method is a popular productive process for perovskite oxide, however, it is time and energy consuming process because it requires repeated prolonged heat treatment at high temperatures. Therefore, the purposes of this work are to produce Sr-doped LaMnO 3 perovskite by using Self-propagating high-temperature synthesis (SHS) and experimentally examine the oxidation catalytic activity of the product for cleaning automotive emission gas. In the SHS, powders of La 2 O 3 , SrCO 3 , Mn and NaClO 4 were well mixed at the desired ratio and poured in a graphite crucible, where at one end it was ignited by using an electrically heated carbon foil. The wave of exothermic reaction due to oxidation of manganese propagated to the other end in a short time. The obtained products were characterized by means of XRD, FE-SEM, BET and particle size distribution analysis and then evaluated via catalytic oxidation tests by using propane in a fixed bed reactor at several temperatures. From the XRD analysis, the products had the desired composition of La 1-x Sr x MnO 3 (x = 0, 0.1, 0.2 and 0.4) perovskite, in which the replacing ratio x of La and Sr in the products was easily controlled by changing the mixing ratio of raw materials. The catalytic activity test showed that the samples exhibited good catalytic activity for propane oxidation over 200 deg. C , although the products had a relatively small surface area. SHS showed the potential for the production of a relatively inexpensive catalytic converter

  20. TH-EF-207A-02: Imaging Pancreatic Î{sup 2}-Cell Function with 51/52Mn-PET

    Energy Technology Data Exchange (ETDEWEB)

    Graves, S; Hernandez, R; England, C; Valdovinos, H; Jeffery, J; Barnhart, T; Cai, W; Nickles, R [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To image β-cells noninvasively using radio-manganese PET and to develop efficient small cyclotron production of {sup 51}Mn (t1/2=46m, β{sup +}=97%) and {sup 52}Mn (t1/2=5.6d, β{sup +}=29%). Methods: {sup 51}Mn and {sup 52}Mn were produced by 16 MeV proton irradiation (GE PETtrace) of electrodeposited {sup 54}Fe on silver and Cr metal pressed into a silver disc, respectively. {sup 51}Mn was radiochemically isolated from target material by anion exchange chromatography and {sup 52}Mn was isolated by ethanolic anion exchange trap-and-release. A final injectable product of {sup 51}Mn{sup 2+} or {sup 52}Mn{sup 2+} was obtained in 0.01M pH 6.0 NaOAc. To assess pancreatic uptake, fasted ICR mice were administered and intravenous bolus or infusion of {sup 52}Mn{sup 2+}. Additionally, to demonstrate the correlation between β-cell function and {sup 52}Mn{sup 2+} pancreatic uptake, prior to tracer administration groups of ICR mice were administered glibenclamide (5mg/kg) and diazoxide (20 mg/kg) as an insulin release stimulator and blocker, respectively. To validate PET ROI quantification, ex vivo biodistribtution studies were conducted on each subject after the final imaging time-point. Results: Dynamic PET data using a left atrium ROI revealed that {sup 52}Mn{sup 2+} cleared from the blood with a 10 second half-life. Significant uptake was seen in the pancreas (approximately 20% ID/g, SUVmean= 5.5), liver, kidneys, intestine, heart, and thyroid. Pancreatic uptake was found to be highly sensitive to volatile anesthesia administration (p=0.0002), insulin release stimulation by glibenclamide (p=0.017), and by insulin release inhibition by diazoxide (p=0.046). Excellent agreement was found between in vivo PET ROI quantification and ex vivo biodistribution measurements. Conclusion: This work demonstrates the feasibility of using radiomanganese-PET for measuring functional β-cell mass in vivo. The decay characteristics and dosimetric properties of {sup 51}Mn are

  1. Mn porphyrin-based SOD mimic, MnTnHex-2-PyP(5+), and non-SOD mimic, MnTBAP(3-), suppressed rat spinal cord ischemia/reperfusion injury via NF-κB pathways.

    Science.gov (United States)

    Celic, T; Španjol, J; Bobinac, M; Tovmasyan, A; Vukelic, I; Reboucas, J S; Batinic-Haberle, I; Bobinac, D

    2014-12-01

    Herein we have demonstrated that both superoxide dismutase (SOD) mimic, cationic Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (MnTnHex-2-PyP(5+)), and non-SOD mimic, anionic Mn(III) meso-tetrakis(4-carboxylatophenyl)porphyrin (MnTBAP(3-)), protect against oxidative stress caused by spinal cord ischemia/reperfusion via suppression of nuclear factor kappa B (NF-κB) pro-inflammatory pathways. Earlier reports showed that Mn(III) N-alkylpyridylporphyrins were able to prevent the DNA binding of NF-κB in an aqueous system, whereas MnTBAP(3-) was not. Here, for the first time, in a complex in vivo system-animal model of spinal cord injury-a similar impact of MnTBAP(3-), at a dose identical to that of MnTnHex-2-PyP(5+), was demonstrated in NF-κB downregulation. Rats were treated subcutaneously at 1.5 mg/kg starting at 30 min before ischemia/reperfusion, and then every 12 h afterward for either 48 h or 7 days. The anti-inflammatory effects of both Mn porphyrins (MnPs) were demonstrated in the spinal cord tissue at both 48 h and 7 days. The downregulation of NF-κB, a major pro-inflammatory signaling protein regulating astrocyte activation, was detected and found to correlate well with the suppression of astrogliosis (as glial fibrillary acidic protein) by both MnPs. The markers of oxidative stress, lipid peroxidation and protein carbonyl formation, were significantly reduced by MnPs. The favorable impact of both MnPs on motor neurons (Tarlov score and inclined plane test) was assessed. No major changes in glutathione peroxidase- and SOD-like activities were demonstrated, which implies that none of the MnPs acted as SOD mimic. Increasing amount of data on the reactivity of MnTBAP(3-) with reactive nitrogen species (RNS) (.NO/HNO/ONOO(-)) suggests that RNS/MnTBAP(3-)-driven modification of NF-κB protein cysteines may be involved in its therapeutic effects. This differs from the therapeutic efficacy of MnTnHex-2-PyP(5+) which presumably occurs via reactive

  2. Commensurate and incommensurate '5M' modulated crystal structures in Ni-Mn-Ga martensitic phases

    International Nuclear Information System (INIS)

    Righi, L.; Albertini, F.; Pareti, L.; Paoluzi, A.; Calestani, G.

    2007-01-01

    It is well known that the composition of ferromagnetic shape memory Ni-Mn-Ga Heusler alloys determines both temperature of martensitic transformations and the structure type of the product phase. In the present work we focused our attention on the structural study of the so-called '5M' modulated structure. In particular, the structure of Ni 1.95 Mn 1.19 Ga 0.86 martensitic phase is analysed by powder X-ray diffraction (PXRD) and compared with that of the stoichiometric Ni 2 MnGa martensite. The study of the diffraction data reveals the occurrence of commensurate (C) structural modulation in Ni 1.95 Mn 1.19 Ga 0.86 ; this contrasts with Ni 2 MnGa, where an incommensurate (IC) structural modulation was evident. The two phases also differ in the symmetry of the fundamental martensitic lattice. In fact, the incommensurate modulation is related to an orthorhombic basic structure, while the commensurate variant presents a monoclinic symmetry. The commensurate modulated structure has been investigated by using the superspace approach already adopted to solve the structure of Ni 2 MnGa martensite. The structure has been determined by Rietveld refinement of PXRD data

  3. Structural Series in the Ternary A-Mn-As System (A = Alkali Metal): Double-Layer-Type CsMn4As3 and RbMn4As3 and Tunnel-Type KMn4As3.

    Science.gov (United States)

    Ishida, Junichi; Iimura, Soshi; Hosono, Hideo

    2018-04-16

    New manganese arsenides CsMn 4 As 3 , RbMn 4 As 3 , and KMn 4 As 3 were synthesized by solid-state reaction. They consist of edge-sharing MnAs 4 tetrahedra, which are a building block similar to those of Fe-based superconductors. CsMn 4 As 3 and RbMn 4 As 3 adopt the KCu 4 S 3 -type structure (tetragonal P4/ mmm space group, No. 123) with a Mn 4 As 3 double layer, while KMn 4 As 3 has the CaFe 4 As 3 -type structure (orthorhombic Pnma space group, No. 62) with a Mn 4 As 3 tunnel framework. The structural change from CsMn 4 As 3 and RbMn 4 As 3 to KMn 4 As 3 as well as the structural trend of the other ternary A-Mn-As (A = alkali metal) and AE-Mn-As (AE = alkaline-earth metal) compounds is understood as a consequence of reduction of the coordination number around the A and AE sites owing to the decrease of the ionic radius from Cs + to Mg 2+ . Electrical resistivity measurements confirm that the three new phases are Mott insulators with band gaps of 0.52 (CsMn 4 As 3 ), 0.43 (RbMn 4 As 3 ), and 0.31 eV (KMn 4 As 3 ). Magnetic and heat capacity measurements revealed that CsMn 4 As 3 and RbMn 4 As 3 are antiferromagnets without apparent phase transitions below 400 K, which is similar to the magnetism of LaMnAsO and BaMn 2 As 2 , while the existence of the ferromagnetic component was indicated in KMn 4 As 3 with a magnetic transition at 179 K.

  4. Study of Mn dissolution from LiMn{sub 2}O{sub 4} spinel electrodes using rotating ring-disk collection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.; Chen, Jenn-Shing

    2003-07-01

    The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions. The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.

  5. Systematic mutagenesis method for enhanced production of bacitracin by Bacillus licheniformis mutant strain UV-MN-HN-6

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Aftab

    2012-03-01

    Full Text Available The purpose of the current study was intended to obtain the enhanced production of bacitracin by Bacillus licheniformis through random mutagenesis and optimization of various parameters. Several isolates of Bacillus licheniformis were isolated from local habitat and isolate designated as GP-35 produced maximum bacitracin production (14±0.72 IU ml-1. Bacitracin production of Bacillus licheniformis GP-35 was increased to 23±0.69 IU ml-1 after treatment with ultraviolet (UV radiations. Similarly, treatment of vegetative cells of GP-35 with chemicals like N-methyl N'-nitro N-nitroso guanidine (MNNG and Nitrous acid (HNO2 increased the bacitracin production to a level of 31±1.35 IU ml-1 and 27±0.89 IU ml-1 respectively. Treatment of isolate GP-35 with combined effect of UV and chemical treatment yield significantly higher titers of bacitracin with maximum bacitracin production of 41.6±0.92 IU ml-1. Production of bacitracin was further enhanced (59.1±1.35 IU ml-1 by optimization of different parameters like phosphate sources, organic acids as well as temperature and pH. An increase of 4.22 fold in the production of bacitracin after mutagenesis and optimization of various parameters was achieved in comparison to wild type. Mutant strain was highly stable and produced consistent yield of bacitracin even after 15 generations. On the basis of kinetic variables, notably Yp/s (IU/g substrate, Yp/x (IU/g cells, Yx/s (g/g, Yp/s, mutant strain B. licheniformis UV-MN-HN-6 was found to be a hyperproducer of bacitracin.

  6. Mn induced ferromagnetism spin fluctuation enhancement in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long; Cai, Jinzhu; Xie, Qiyun; Lv, Bin [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Mao, Z.Q. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Wu, X.S., E-mail: xswu@nju.edu.cn [Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2013-09-15

    We establish that Sr{sub 2}RuO{sub 4} is extremely close to incommensurate spin density wave instability. With increasing Mn content, the RuO{sub 6} octahedron in the unit cell varies. The octahedron of RuO{sub 6} contracts along c-axis for x<0.20, Mn element mainly showing the +3 chemical valence (Mn{sup 3+}), and it expands along c-axis with further increasing Mn content (x>0.20), and Mn element shows the +4 chemical valence (Mn{sup 4+}). Spin-glass-related ferromagnetism enhancement is observed for x>0.20, which indicates the critical ferromagnetic spin fluctuation due to Mn doping in Sr{sub 2}Ru{sub 1−x}Mn{sub x}O{sub 4}. - Highlights: • The chemical valence of Mn ions changed from Mn{sup 3+} to Mn{sup 4+} with the increase of Mn content. • Spin-glass-related ferromagnetism enhancement behavior is observed. • The electrical resistivity can be fitted using Mott's variable-range hopping model. • The evolution of octahedron with increase of Mn content is given. • The spin fluctuation effect plays an important role in the magnetic property.

  7. Dynamical control of Mn spin-system cooling by photogenerated carriers in a (Zn,Mn)Se/BeTe heterostructure

    Science.gov (United States)

    Debus, J.; Maksimov, A. A.; Dunker, D.; Yakovlev, D. R.; Tartakovskii, I. I.; Waag, A.; Bayer, M.

    2010-08-01

    The magnetization dynamics of the Mn spin system in an undoped (Zn,Mn)Se/BeTe type-II quantum well was studied by a time-resolved pump-probe photoluminescence technique. The Mn spin temperature was evaluated from the giant Zeeman shift of the exciton line in an external magnetic field of 3 T. The relaxation dynamics of the Mn spin temperature to the equilibrium temperature of the phonon bath after the pump-laser-pulse heating can be accelerated by the presence of free electrons. These electrons, generated by a control laser pulse, mediate the spin and energy transfer from the Mn spin system to the lattice and bypass the relatively slow direct spin-lattice relaxation of the Mn ions.

  8. Magnetic and electrical properties of epitaxial GeMn

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Stefan

    2009-01-15

    In this work, GeMn magnetic semiconductors will be investigated. The fabrication of GeMn thin films with Mn contents up to 11.7% was realised with molecular beam epitaxy. At a fabrication temperature of 60 C, the suppression of Mn{sub x}Ge{sub y} phases could reproducibly be obtained. Dislocation free epitaxy of diamond-lattice type GeMn thin films was observed. In all fabrication conditions where Mn{sub x}Ge{sub y} suppression was feasible, an inhomogeneous dispersion of Mn was observed in form of a self-assembly of nanometre sized, Mn rich regions in a Ge rich matrix. Each Mn rich region exhibits ferromagnetic coupling with high Curie temperatures exceeding, in part, room temperature. The local ferromagnetic ordering leads to the formation of large, spatially separated magnetic moments, which induce a superparamagnetic behaviour of the GeMn thin films. At low temperatures {<=} 20 K, remanent behaviour was found to emerge. X-ray absorption experiments revealed a similarity of the Mn incorporation in diamond-lattice type GeMn thin films and in the hexagonal lattice of the intermetallic Mn{sub 5}Ge{sub 3} phase, respectively. These tetrahedra represent building blocks of the Mn{sub 5}Ge{sub 3} unit cell. The incorporation of Mn{sub 5}Ge{sub 3} building blocks was found to be accompanied by local structural disorder. The electrical properties of GeMn thin films were addressed by transport measurements. It was shown that by using a n-type Ge substrate, a pn energy barrier between epilayers and substrate to suppress parallel substrate conduction paths can be introduced. With the pn barrier concept, first results on the magnetotransport behaviour of GeMn thin films were obtained. GeMn was found to be p-type, but of high resistivity. a series of GeMn thin films was fabricated, where intermetallic Mn{sub x}Ge{sub y} phase separation was supported in a controlled manner. Phase separation was found to result in the formation of partially coherent, nanometre sized Mn{sub 5

  9. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    Science.gov (United States)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  10. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-01-01

    The redox reaction of Mn in Li 2 MnO 3 was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L 2,3 X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L 2,3 XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn 4+ to Mn 5+ but can be explained well by the changes of local atomic structures around Mn 4+ due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li 2 MnO 3

  11. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  12. Microstructural analysis nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction; Analise microestrutural de nanoferritas Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} e Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} sintetizadas por reacao de combustao

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, V.C.S.; Figueiredo, A.R.; Costa Junior, A.D.S.; Diniz, H.M.; Vieira, D.A.; Costa, A.C.F.M., E-mail: veronicacristhina@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    The MnZn ferrites are ferrimagnetic materials that have been studied and used in various technological fields. In this work investigated the microstructural characteristics of ferrites and Mn{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4} Mn{sub 0,65}Zn{sub 0,35}Fe{sub 2}O{sub 4} synthesized by combustion reaction in 200g scale production. The samples were characterized by XRD, crystallinity, crystallite size, X-ray fluorescence and scanning electron microscopy. Given the results it was observed that for both samples the synthesis combustion reaction was efficient for the production of single-phase ferrites with high crystallinity. With respect to the analysis of X-ray fluorescence was noted that the experimental values composition were consistent with the theoretical values calculated for both samples. Regarding morphology for both samples, the formation of the porous powders with feature consisting of dense clumps in the form of irregular foam was observed. (author)

  13. Removal of 54Mn from the mouse body by dilution with stable manganese and by chelation with DTPA

    International Nuclear Information System (INIS)

    Sato, Itaru; Matsusaka, Naonori; Tsuda, Shuji

    1999-01-01

    54 Mn is one of the activation products generated in nuclear reactors. This study was carried out to find a method appropriate for the removal of 54 Mn. Intraperitoneal administration of stable manganese effectively promoted the excretion of 54 Mn from the mouse body. The efficacy for removing 54 Mn was estimated to be 56, 67, 77 and 82% for manganese doses of 0.3, 1, 3 and 10 mg/kg, respectively. Oral administration of stable manganese was also effective for the removal of 54 Mn, but the efficacy was inferior to that obtained by intraperitoneal administration because of low gastrointestinal absorption of manganese. Ca-DTPA and Zn-DTPA promoted the excretion of 54 Mn when administered 1 h after administration of 54 Mn, but these chelating agents had little effect when administered after 3 h or more. Zn-DTPA was less effective than Ca-DTPA. These results demonstrate that dilution with stable manganese is more effective than chelation with DTPA for the removal of 54 Mn from the body. (author)

  14. Properties of SiMn slag as apozzolanic material in portland cement manufacture

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2005-12-01

    Full Text Available The primary purpose of this study was to evaluate the behaviour of SiMn slag as a pozzolanic material in commercial Portland cement manufacture. This necessitated exploring different scientific and technical aspects to ensure a correct valuation. The results obtained revealed that silica and calcium are the main components of SiMn slag, whose pozzolanic activity occupies an intermediate position between silica fume and fly ash; it reduces heat of hydration and mortars made with cement containing SiMn slag exhibit compressive strength values similar to the figures for standard mortar. Consequently, the use of SiMn slag as an active addition to cement is feasible, inasmuch as the resulting product meets the requirements laid down in the present legislation.

    El objetivo principal de este trabajo es evaluar el comportamiento de la escoria de SiMn como material puzolánico en la fabricación de cementos Portland comerciales. Para ello, resulta necesario investigar diferentes aspectos científicos y técnicos que conlleven a una correcta valorización de las mismas. Los resultados obtenidos en el presente trabajo han puesto de manifiesto que la escoria de SiMn presenta una naturaleza sílico-cálcica, actividad puzolúnica intermedia entre el humo de sílice y ceniza volante, reduce el calor de hidratación y los morteros con escoria de SiMn muestra alcanzan resistencias a compresión similares a las del mortero patrón. Por lo tanto, la utilización de la escoria de SiMn como adición activa al cemento es viable, cumpliendo con las exigencias recogidas en la norma vigente.

  15. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  16. Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy

    Science.gov (United States)

    Fernando, Denise R.; Guymer, Gordon; Reeves, Roger D.; Woodrow, Ian E.; Baker, Alan J.; Batianoff, George N.

    2009-01-01

    Background and Aims The analysis of herbarium specimens has previously been used to prospect for ‘new’ hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. Methods ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). Key Results The resulting data demonstrated (a) up to seven ‘new’ Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these ‘new’ Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Conclusions Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as ‘new’ Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible ‘new’ Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible ‘new’ subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be

  17. Effects of dopant ion and Mn valence state in the La1-xAxMnO3 (A=Sr,Ba) colossal magnetoresistance films

    International Nuclear Information System (INIS)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho

    2010-01-01

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La 0.7 Sr 0.3 MnO 3 , La 0.7 Ba 0.3 MnO 3 , and La 0.82 Ba 0.18 MnO 3 thin films with different contents of divalent cations and Mn 3+ /Mn 4+ ratios were deposited on amorphous SiO 2 /Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn 3+ /Mn 4+ ratio controlling the Mn 3+ -O 2- -Mn 4+ conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn 3+ /Mn 4+ ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn 3+ /Mn 4+ ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  18. Synthesis, surface group modification of 3D MnV{sub 2}O{sub 6} nanostructures and adsorption effect on Rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wanqun, E-mail: wqz@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chemical Experimental Teaching Center, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Lei, E-mail: shil@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Tang, Kaibin; Liu, Zhongping [Hefei National Laboratory for Physical Sciences at Micro-scale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-07-15

    Highlights: ► Fabrication of urchin-like MnV{sub 2}O{sub 6} with oxygen-containing surface groups. ► Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O as an intermediate product holds the key to the final products. ► 3D architectures of MnV{sub 2}O{sub 6} with oxygen-containing surface groups as sorbent. ► The sorbent shows a good adsorption ability. -- Abstract: Highly uniform 3D MnV{sub 2}O{sub 6} nanostructures modified by oxygen functional groups (-COO-) were successfully prepared in large quantities by an approach involving preparation of vanadyl ethylene glycolate as the precursor. The growth and self-assembly of MnV{sub 2}O{sub 6} nanobelts and nanorods could be readily tuned by additive species and quantities, which brought different morphologies and sizes to the final products. With a focus on the regulation of structure, the formation process of 3D architectures of MnV{sub 2}O{sub 6} by self-assembly of nanobelts was followed by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). The consecutive processes of vanadyl ethylene glycolate and benzoyl peroxide assisted formation of layered structure Mn{sub 0.5}V{sub 2}O{sub 5}·nH{sub 2}O, growth of aligned MnV{sub 2}O{sub 6} nanobelts, and oriented assembly were proposed for the growth mechanism. The band gap vs. different morphology was also studied. Optical characterization of these MnV{sub 2}O{sub 6} with different morphologies showed direct bandgap energies at 1.8–1.95 eV. The adsorption properties of 3D MnV{sub 2}O{sub 6} nanostructures synthesized under different conditions were investigated through the removal test of Rhodamine B in aqueous water, and the 3D nanostructures synthesized with 30 g L{sup −1} benzoyl peroxide showed good adsorption capability of Rhodamine B.

  19. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  20. Effects of surfactants on morphology in synthesis of α-Mn2O3 nanostructures

    International Nuclear Information System (INIS)

    Ramarajan, D.; Sivagurunathan, P.

    2011-01-01

    Cubic and chain-like structure of α-Mn 2 O 3 with a high surface area was prepared by air oxidation of manganese chloride through sol process by adding hexamine and mercaptosuccinic acid as wetting agent, respectively. The as-synthesized products were characterized with X-ray powder diffraction (XRD), Energy Dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), and selected area electron diffraction (SAED). The possible formation mechanism of α-Mn 2 O 3 cubic and chain-like nanostructures has been proposed and discussed. -- Graphical abstract: Cubic and chain-like nanostructure of α-Mn 2 O 3 has been synthesized by air oxidation of manganese chloride as precursor, hexamine, and mercaptosuccinic acid as wetting agent, respectively. Display Omitted Research highlights: → Cubic nanostructure of α-Mn 2 O 3 is obtained using hexamine as surfactant. → Chain-like structure of α-Mn 2 O 3 is obtained using mercaptosuccinic acid as surfactant. → The linking nature of mercaptosuccinic acid is proved. → Mercaptosuccinic acid accelerates the growth of material.

  1. Fate of half-metallicity near interfaces: The case of NiMnSb/MgO and NiMnSi/MgO

    KAUST Repository

    Zhang, Ruijing

    2014-08-27

    The electronic and magnetic properties of the interfaces between the half-metallic Heusler alloys NiMnSb, NiMnSi, and MgO have been investigated using first-principles density-functional calculations with projector augmented wave potentials generated in the generalized gradient approximation. In the case of the NiMnSb/MgO (100) interface, the half-metallicity is lost, whereas the MnSb/MgO contact in the NiMnSb/MgO (100) interface maintains a substantial degree of spin polarization at the Fermi level (∼60%). Remarkably, the NiMnSi/MgO (111) interface shows 100% spin polarization at the Fermi level, despite considerable distortions at the interface, as well as rather short Si/O bonds after full structural optimization. This behavior markedly distinguishes NiMnSi/MgO (111) from the corresponding NiMnSb/CdS and NiMnSb/InP interfaces. © 2014 American Chemical Society.

  2. Epitaxy of (Ga,Mn)As; Epitaxie von (Ga,Mn)As

    Energy Technology Data Exchange (ETDEWEB)

    Utz, Martin

    2012-09-14

    The focus of this work lies on the enhancement of the magnetic properties of the ferromagnetic semiconductor Gallium manganese arsenide (GaMnAs), which is a basic material for the research in spintronics: It is told, how a high sample reproducibility and a strong control over the growth process can be gained by applying band edge spectroscopy and a special procedure for the material flux calibration. Also the most important methods for the electrical characterization of GaMnAs are discussed in a critical manner by showing that the anomalous Hall Effect contributes significantly to the Hall resistance even at room temperature and that Novak's method for the termination of the Curie-temperature provides correct values for layers with low defect concentration. Furthermore it is reported on the considerable enlargement of the useable parameter space of GaMnAs which was enabled by the enhanced control over the growth process: It was possible to grow layers with a very high Manganese content of 22% and Curie temperatures of 172 K and even once were produced which showed a strong magnetic moment despite an insulating behaviour at low temperatures. A last key aspect is the growth and characterization of ultra-thin GaMnAs layers, giving prospects for gating experiments or experiments on the proximity effect as these layers combine high Curie temperatures with insulating behaviour.

  3. Effects of Mn and Al on the Intragranular Acicular Ferrite Formation in Rare Earth Treated C-Mn Steel

    Science.gov (United States)

    Song, Mingming; Song, Bo; Yang, Zhanbing; Zhang, Shenghua; Hu, Chunlin

    2017-07-01

    The influence of Al, Mn and rare earth (RE) on microstructure of C-Mn steel was investigated. The capacities of different RE inclusions to induce intragranular acicular ferrite (AF) formation were compared. Result shows that RE treatment could make C-Mn steel from large amounts of intragranular AF. Al killed is detrimental to the formation of intragranular AF in RE-treated C-Mn steel. An upper bainite structure would replace the AF when Al content increased to 0.027 mass %. The optimal Mn content to form AF is about 0.75-1.31 mass %. The effective RE inclusion which could induce AF nucleation is La2O2S. When patches of MnS are attached on the surface of La2O2S inclusion, AF nucleation capacity of RE-containing inclusion could enlarge obviously. The existence of manganese-depleted zone and low lattice misfit would be the main reason of La-containing inclusion inducing AF nucleation in C-Mn steel.

  4. In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties

    International Nuclear Information System (INIS)

    Teng, Fei; Santhanagopalan, Sunand; Wang, Ying; Meng, Dennis Desheng

    2010-01-01

    Three-dimensional (3-D) MnO 2 -carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO 2 microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO 2 microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO 2 nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO 2 -CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO 2 and the high electrical conductivity of CNTs. The 3-D MnO 2 -CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  5. X-ray absorption near edge spectroscopy at the Mn K-edge in highly homogeneous GaMnN diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sancho-Juan, O.; Cantarero, A.; Garro, N.; Cros, A. [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Martinez-Criado, G.; Salome, M.; Susini, J. [ESRF, Polygone Scientifique Louis Neel, 6 rue Jules Horowitz, 38000 Grenoble (France); Olguin, D. [Dept. de Fisica, CINVESTAV-IPN, 07300 Mexico D.F. (Mexico); Dhar, S.; Ploog, K. [Paul Drude Institute, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2006-06-15

    We have studied by X-ray absorption spectroscopy the local environment of Mn in highly homogeneous Ga{sub 1-x}Mn{sub x}N (0.06Mn K-edges. In this report, we focus our attention to the X-ray absorption near edge spectroscopy (XANES) results. The comparison of the XANES spectra corresponding to the Ga and Mn edges indicates that Mn is substitutional to Ga in all samples studied. The XANES spectra measured at the Mn absorption edge shows in the near-edge region a double peak and a shoulder below the absorption edge and the main absorption peak after the edge, separated around 15 eV above the pre-edge structure. We have compared the position of the edge with that of MnO (Mn{sup 2+}) and Mn{sub 2}O{sub 3} (Mn{sup 3+}). All samples studied present the same Mn oxidation state, 2{sup +}. In order to interprete the near-edge structure, we have performed ab initio calculations with a 2 x 2 x 1supercell ({proportional_to}6% Mn) using the full potential linear augmented plane wave method as implemented in the Wien2k code. The calculations show the appearance of Mn anti-bonding t{sub 2g} bands, which are responsible for the pre-edge absorption. The shoulder and main absorption peaks are due to transitions from the valence band 1s-states of Mn to the p-contributions of the conduction bands. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. 54Mn release from LMFBR cores

    International Nuclear Information System (INIS)

    Polley, M.V.

    1976-10-01

    The inventory of 54 Mn per unit exposed area of stainless steel in LMFBR cores may be calculated using a formula originally derived at HEDL. This treats the simultaneous production by activation and release by corrosion and diffusion of 54 Mn and assumes that the concentration at the steel surface is zero. The inventory per unit exposed area is calculated as a function of temperature and is compared with that calculated simply by assuming stoichiometric corrosion. An effective diffusion coefficient is used in the calculations which include contributions from both lattice and grain boundary diffusion. A general relationship is derived for the effective diffusion coefficient and it is shown how values may be obtained using the Levine-MacCallum and the Fisher theories of grain boundary diffusion. Values of the lattice diffusion coefficient were obtained by analysing data obtained from sodium loop experiments. The effect on the inventory due to the possible formation of a ferrite layers on the exposed surface is discussed and it is also shown how the inventory over several fuel cycles may be calculated. (U.K.)

  7. Resonantly enhanced spin-lattice relaxation of Mn2 + ions in diluted magnetic (Zn,Mn)Se/(Zn,Be)Se quantum wells

    Science.gov (United States)

    Debus, J.; Ivanov, V. Yu.; Ryabchenko, S. M.; Yakovlev, D. R.; Maksimov, A. A.; Semenov, Yu. G.; Braukmann, D.; Rautert, J.; Löw, U.; Godlewski, M.; Waag, A.; Bayer, M.

    2016-05-01

    The dynamics of spin-lattice relaxation in the magnetic Mn2 + ion system of (Zn,Mn)Se/(Zn,Be)Se quantum-well structures are studied using optical methods. Pronounced cusps are found in the giant Zeeman shift of the quantum-well exciton photoluminescence at specific magnetic fields below 10 T, when the Mn spin system is heated by photogenerated carriers. The spin-lattice relaxation time of the Mn ions is resonantly accelerated at the cusp magnetic fields. Our theoretical analysis demonstrates that a cusp occurs at a spin-level mixing of single Mn2 + ions and a quick-relaxing cluster of nearest-neighbor Mn ions, which can be described as intrinsic cross-relaxation resonance within the Mn spin system.

  8. Aluminium alleviates manganese toxicity to rice by decreasing root symplastic Mn uptake and reducing availability to shoots of Mn stored in roots.

    Science.gov (United States)

    Wang, Wei; Zhao, Xue Qiang; Hu, Zhen Min; Shao, Ji Feng; Che, Jing; Chen, Rong Fu; Dong, Xiao Ying; Shen, Ren Fang

    2015-08-01

    Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure. Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn(2+) and Al(3+) in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth. In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn(2+) activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma. The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Concentrations of Se, Ba, Zn and Mn in Brazil nuts

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria José A.; Maihara, Vera A.; Cardoso, Paulo S.; Saiki, Mitiko [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Cozollino, Silvia M.F., E-mail: marmelin@ipen.br, E-mail: vmaihara@ipen.br, E-mail: msaiki@ipen.br, E-mail: pscsilva@ipen.br, E-mail: smfcozzo@usp.br [Universidade de São Paulo (USP), SP (Brazil). Faculdade de Ciências Farmacêuticas

    2017-07-01

    The concentrations of Se, Ba, Zn and Mn were determined in samples of Brazil nuts collected in two ways: a) in a production farm predominantly for export and, b) in various points of sale from different regions of Brazil. Instrumental neutron activation analysis was the analytical technique used in this study. Results indicate that the concentrations of Se and Ba varied greatly among the Brazil nut samples analyzed. This large variability may be related to the soil characteristics from which the nuts were produced. An inverse correlation was observed between the concentrations of Se and Ba. On the other hand, the concentrations of Zn and Mn did not show significant differences among these samples. (author)

  10. Concentrations of Se, Ba, Zn and Mn in Brazil nuts

    International Nuclear Information System (INIS)

    Armelin, Maria José A.; Maihara, Vera A.; Cardoso, Paulo S.; Saiki, Mitiko; Cozollino, Silvia M.F.

    2017-01-01

    The concentrations of Se, Ba, Zn and Mn were determined in samples of Brazil nuts collected in two ways: a) in a production farm predominantly for export and, b) in various points of sale from different regions of Brazil. Instrumental neutron activation analysis was the analytical technique used in this study. Results indicate that the concentrations of Se and Ba varied greatly among the Brazil nut samples analyzed. This large variability may be related to the soil characteristics from which the nuts were produced. An inverse correlation was observed between the concentrations of Se and Ba. On the other hand, the concentrations of Zn and Mn did not show significant differences among these samples. (author)

  11. Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel

    Science.gov (United States)

    Lan, Peng; Zhang, Jiaquan

    2018-01-01

    consideration, Fe-22Mn-0.4C TWIP steel shows excellent mechanical performance with a high product of tensile strength and total elongation and a slightly serrated stress-strain response. To suppress the negative effect of DSA in Fe-Mn-C TWIP steels on the stability of tensile behavior, a TOI lower than 0.1 is strongly suggested.

  12. Direct evidence of the existence of Mn3+ ions in MnTiO3

    Science.gov (United States)

    Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.

    2017-08-01

    We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.

  13. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy

    International Nuclear Information System (INIS)

    Chen Zhongwei; Chen Pei; Li Shishun

    2012-01-01

    Highlights: ► Rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 twin phase in an Al–Cu–Mn casting alloy. ► Patterns of the particles of the Al 20 Cu 2 Mn 3 phase in Al–Cu–Mn free Ce alloy are more diverse. ► The symmetry of neighboring components of twins is characterized by glide reflection and reflection. ► The twins of Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn casting alloys. - Abstract: Effects of Ce addition on microstructure of Al 20 Cu 2 Mn 3 twin phase and mechanical properties of an Al–Cu–Mn casting alloy were investigated by transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy and tensile test. The results show that rare earth element Ce can retard the formation of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn alloy. Compared with the Ce containing alloy, patterns of particles of the Al 20 Cu 2 Mn 3 phase in the Al–Cu–Mn free Ce alloy are more diverse. The symmetry of neighboring components of twins is characterized by glide reflection and reflection. In addition, twins of the Al 20 Cu 2 Mn 3 phase can enhance the mechanical properties of the Al–Cu–Mn alloy.

  14. Template synthesis of MnO2/CNT nanocomposite and its application in rechargeable lithium batteries%模板法制备纳米MnO2/CNT复合材料及其在锂电池中的应用

    Institute of Scientific and Technical Information of China (English)

    邹敏敏; 艾邓均; 刘开宇

    2011-01-01

    以P123为表面活性剂,采用软模板法合成MnO2/CNT纳米复合材料.采用x射线衍射、热重和差热分析、傅立叶变换红外光谱分析和高分辨率透射电子显微镜对样品进行表征.结果表明,样品为弱结晶的α-MnO2,直径约10nm,长30-50 nm,它们附着在碳纳米管壁上.样品的电化学性能通过组成Li-MnO2进行电池充放电和电化学阻抗测试(EIS),与纯二氧化锰相比,MnO2/CNT纳米复合材料具有更大的初始容量275.3 mA.h/g和更好的倍率和循环性能.%Nanostructured MnO2/CNT composite was synthesized by a soft template approach in the presence of Pluronic P123 surfactant.The product was characterized by X-ray diffraction,thermogravimetric and differential thermal analyses,Fourier transformed infrared spectroscopy and high-resolution transmission electron microscopy.The results show that the sample consists of poor crystalline α-MnO2 nanorods with a diameter of about 10 nm and a length of 30-50 nm,which absorb on the carbon nanotubes.The electrochemical properties of the product as cathode material for Li-MnO2 cell are evaluated by galvanostatic charge-discharge and electrochemical impedance spectroscopy(EIS).Compared with pure MnO2 electrode,the MnO2/CNT composite delivers a much larger initial capacity of 275.3 mA.h/g and better rate and cycling performance.

  15. L1{sub 0} stacked binaries as candidates for hard-magnets. FePt, MnAl and MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Yu-ichiro [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Applied Physics, The University of Tokyo (Japan); Madjarova, Galia [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University (Bulgaria); Flores-Livas, Jose A. [Department of Physics, Universitaet Basel (Switzerland); Dewhurst, J.K.; Gross, E.K.U. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Felser, C. [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sharma, S. [Max-Planck Institut fuer Microstrukture Physics, Halle (Germany); Department of Physics, Indian Institute of Technology, Roorkee, Uttarkhand (India)

    2017-08-15

    We present a novel approach for designing new hard magnets by forming stacks of existing binary magnets to enhance the magneto crystalline anisotropy. This is followed by an attempt at reducing the amount of expensive metal in these stacks by replacing it with cheaper metal with similar ionic radius. This strategy is explored using examples of FePt, MnAl and MnGa. In this study a few promising materials are suggested as good candidates for hard magnets: stacked binary FePt{sub 2}MnGa{sub 2} in structure where each magnetic layer is separated by two non-magnetic layers, FePtMnGa and FePtMnAl in hexagonally distorted Heusler structures and FePt{sub 0.5}Ti{sub 0.5}MnAl. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. NMR studies of 55Mn in amorphous CexMn100-x alloys

    International Nuclear Information System (INIS)

    Niki, H.; Okamura, K.; Yogi, M.; Amakai, Y.; Takano, H.; Murayama, S.; Obi, Y.

    2008-01-01

    In order to investigate the heavy-fermion like behavior of amorphous alloy Ce x Mn 100-x , the NMR measurements of 55 Mn (I=5/2 ) in Ce 65 Mn 35 have been carried out from 4.2 to 270 K using powdered sample. A broadened NMR spectrum containing five NQR lines split due to NQR interaction is observed. Quadrupole coupling constant 3e 2 Qq/2I(2I-1)h is gradually changed from about 1.8 MHz at 4.2 K to about 1.6 MHz at 270 K. Temperature dependence of the line width is expressed in the Curie-Weiss law with θ p =-10.5K. The value of Knight shift would be almost constant from 4.2 to 270 K

  17. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jiangkun [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Bao, Jianguo, E-mail: bjianguo@cug.edu.cn [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Liu, Ying; Ling, Haibo; Zheng, Han [School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Kim, Sang Hoon, E-mail: kim_sh@kist.re.kr [Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul, 136-791 (Korea, Republic of); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-12-15

    Highlights: Manganese catalyst was immobilized on Fe{sub 3}O{sub 4}/graphene hybrids to facilitate magnetic separation. Magnetic manganese catalyst exhibited high efficacy and long-term stability for catalytic PMS activation. The minerlization efficiency and the biotoxicity of BPA byproducts were evaluated. The degradation pathways of BPA and the possible activation mechanism of PMS were proposed. - Abstract: A heterogeneous manganese/magnetite/graphene oxide (Mn-MGO) hybrid catalyst was fabricated through the reduction of KMnO{sub 4} by ethylene glycol in the presence of magnetite/GO (MGO) particles. The Mn-MGO catalyst exhibited high efficacy and long-term stability in activating peroxymonosulfate (PMS) to generate sulfate radicals for the removal of bisphenol A (BPA) from water. The results of the batch experiments indicated that an increase in the catalyst dose and solution pH could enhance BPA degradation in the coupled Mn-MGO/PMS system. Regardless of the initial pH, the solution pH significantly dropped after the reaction, which was caused by catalytic PMS activation. The production of sulfate radicals and hydroxyl radicals was validated through radical quenching and electron paramagnetic resonances (EPR) tests. BPA degradation pathways were proposed on the basis of LC-MS and GC-MS analyses. Finally, a possible mechanism of catalytic PMS activation was proposed that involved electron transfer from MnO or Mn{sub 2}O{sub 3} to PMS with the generation of sulfate radicals, protons and MnO{sub 2}, as well as the simultaneous reduction of MnO{sub 2} by PMS.

  19. Mn{sub 3}O{sub 4} nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bei [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Park, Jinsoo [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang Chengyin [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyojun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang, Guoxiu, E-mail: Guoxiu.Wang@uts.edu.a [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2010-09-01

    Mn{sub 3}O{sub 4}/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO{sub 2} organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn{sub 3}O{sub 4} particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn{sub 3}O{sub 4} nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn{sub 3}O{sub 4}/graphene nanocomposites exhibited a high specific capacitance of 175 F g{sup -1} in 1 M Na{sub 2}SO{sub 4} electrolyte and 256 F g{sup -1} in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn{sub 3}O{sub 4}/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn{sub 3}O{sub 4} nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  20. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    Science.gov (United States)

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  1. Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn phosphor

    International Nuclear Information System (INIS)

    Liang Wei; Wang Yuhua

    2011-01-01

    Research highlights: → Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor is a novel type of practical visible quantum cutting phosphor in promising application. → The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%. → The Mn 2+6 A 1g → 4 E g - 4 A 1g transition was found to coincide well with the 1 S 0 → 1 I 6 transition of Pr 3+ . → The energy transfer from Pr 3+ to Mn 2+ was also observed, converting the first photon from the PCE of Pr 3+ into the red emission of Mn 2+ , and the QC process occurred in this Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 phosphor. - Abstract: Pr 3+ , Mn 2+ co-doped K 2 YZr(PO 4 ) 3 samples were prepared by solid-state reaction method and their photoluminescence (PL) properties were investigated in ultra-violet (UV) and vacuum ultra-violet (VUV) region. The results indicated that in Pr 3+ singly doped K 2 YZr(PO 4 ) 3 sample, the first-step transition ( 1 S 0 → 1 I 6 , 3 P J around 405 nm) of Pr 3+ is near the ultraviolet (UV) range, not useful for practical application. When Mn 2+ was doped as a co-activator ion, the energy of 1 S 0 → 1 I 6 , 3 P J transition can be transferred synchronously from Pr 3+ to Mn 2+ and then emit a visible photon. The optimal quantum efficiency (QE) of this co-doped system K 2 YZr(PO 4 ) 3 : Pr 3+ , Mn 2+ reached to 126.3%, suggesting a novel type of practical visible quantum cutting phosphor in promising application.

  2. In-situ hydrothermal synthesis of three-dimensional MnO{sub 2}-CNT nanocomposites and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Fei; Santhanagopalan, Sunand [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States); Wang, Ying [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Meng, Dennis Desheng, E-mail: dmeng@mtu.ed [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-06-11

    Three-dimensional (3-D) MnO{sub 2}-carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO{sub 2} microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO{sub 2} microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO{sub 2} nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO{sub 2}-CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO{sub 2} and the high electrical conductivity of CNTs. The 3-D MnO{sub 2}-CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  3. Constructing MnO{sub 2}/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Weiwei [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Liu, Tiangui, E-mail: tianguiliu@gmail.com [College of Physics and Microelectronics Science, Hunan University, Changsha 410082 (China); Cao, Shiyi; Wang, Chen [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Chen, Chuansheng, E-mail: 1666423158@qq.com [College of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China)

    2016-07-15

    In order to improve the photocatalytic and antibacterial activity of ZnO nanorods, ZnO nanorods decorated with MnO{sub 2} nanoparticles (MnO{sub 2}/ZnO nanorod hybrids) were prepared by using microwave assisted coprecipitation method under the influence of hydrogen peroxide, and the structure, photocatalytic activity and antibacterial property of the products were studied. Experimental results indicated that MnO{sub 2} nanoparticles are decorated on the surface of single crystalline ZnO nanorods. Moreover, the resultant MnO{sub 2}/ZnO nanorod hybrids have been proven to possess good photocatalytic and antibacterial activity, which their degradated efficiency for Rhodamin B (RhB) is twice as the pure ZnO nanorods. Enhancement for photocatalytic and antibacterial activity is mainly attributed to the low band gap energy and excellent electrochemical properties of MnO{sub 2} nanoparticles. - Graphical abstract: The MnO{sub 2}/single crystalline ZnO nanorods hybrids, which MnO{sub 2} nanoparticles are loaded on the surface of ZnO nanorods, were prepared by the step-by-step precipitation method under the assistance of ammonia and hydrogen peroxide. Display Omitted - Highlights: • MnO{sub 2}/ZnO nanorod hybrids were prepared by the step-by-step assembly method. • Single crystalline ZnO nanorods can be decorated by MnO{sub 2} nanoparticles. • MnO{sub 2}/ZnO nanorod hybrids possess good photocatalytic and antibacterial activity. • MnO{sub 2} can improve the photocatalytic activity of ZnO nanorods under visible light.

  4. Cation Effects on the Layer Structure of Biogenic Mn-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, M.; Ginder-Vogel, M; Parikh, S; Feng, X; Sparks, D

    2010-01-01

    Biologically catalyzed Mn(II) oxidation produces biogenic Mn-oxides (BioMnO{sub x}) and may serve as one of the major formation pathways for layered Mn-oxides in soils and sediments. The structure of Mn octahedral layers in layered Mn-oxides controls its metal sequestration properties, photochemistry, oxidizing ability, and topotactic transformation to tunneled structures. This study investigates the impacts of cations (H{sup +}, Ni(II), Na{sup +}, and Ca{sup 2+}) during biotic Mn(II) oxidation on the structure of Mn octahedral layers of BioMnO{sub x} using solution chemistry and synchrotron X-ray techniques. Results demonstrate that Mn octahedral layer symmetry and composition are sensitive to previous cations during BioMnO{sub x} formation. Specifically, H{sup +} and Ni(II) enhance vacant site formation, whereas Na{sup +} and Ca{sup 2+} favor formation of Mn(III) and its ordered distribution in Mn octahedral layers. This study emphasizes the importance of the abiotic reaction between Mn(II) and BioMnO{sub x} and dependence of the crystal structure of BioMnO{sub x} on solution chemistry.

  5. XANES Studies of Mn K and L3,2 Edges in the (Ga,Mn)As Layers Modified by High Temperature Annealing

    International Nuclear Information System (INIS)

    Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.T.; Jakiela, R.; Demchenko, I.N.; Sadowski, J.; Holub-Krappe, E.; Persson, A.; Arvanitis, D.

    2008-01-01

    Ga 1-x Mn x As is commonly considered as a promising material for microelectronic applications utilizing the electron spin. One of the ways that allow increasing the Curie temperature above room temperature is to produce second phase inclusions. In this paper Ga 1-x Mn x As samples containing precipitations of ferromagnetic MnAs are under consideration. We focus on the atomic and electronic structure around the Mn atoms relating to the cluster formation. The changes in the electronic structure of the Mn, Ga and As atoms in the (Ga,Mn)As layers after high temperature annealing were determined by X-ray absorption near edge spectroscopy. The experimental spectra were compared with the predictions of ab initio full multiple scattering theory using the FEFF 8.4 code. The nominal concentration of the Mn atoms in the investigated samples was 6% and 8%. We do not ob- serve changes in the electronic structure of Ga and As introduced by the presence of the Mn atoms. We find, in contrast, considerable changes in the electronic structure around the Mn atoms. Moreover, for the first time it was possible to indicate the preferred interstitial positions of the Mn atoms. (authors)

  6. Solid state synthesis of Mn{sub 5}Ge{sub 3} in Ge/Ag/Mn trilayers: Structural and magnetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, V.G.; Bykova, L.E.; Matsynin, A.A.; Volochaev, M.N.; Zhigalov, V.S.; Tambasov, I.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Mikhlin, Yu L. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation); Velikanov, D.A. [Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036 (Russian Federation); Bondarenko, G.N. [Institute of Chemistry and Chemical Technology, SB RAS, Krasnoyarsk 660049 (Russian Federation)

    2017-02-15

    The thin-film solid-state reaction between elemental Ge and Mn across chemically inert Ag layers with thicknesses of (0, 0.3, 1 and 2.2 µm) in Ge/Ag/Mn trilayers was studied for the first time. The initial samples were annealed at temperatures between 50 and 500 °C at 50 °C intervals for 1 h. The initiation temperature of the reaction for Ge/Mn (without a Ag barrier layer) was ~ 120 °C and increased slightly up to ~ 250 °C when the Ag barrier layer thickness increased up to 2.2 µm. In spite of the Ag layer, only the ferromagnetic Mn{sub 5}Ge{sub 3} compound and the Nowotny phase were observed in the initial stage of the reaction after annealing at 500 °C. The cross-sectional studies show that during Mn{sub 5}Ge{sub 3} formation the Ge is the sole diffusing species. The magnetic and cross-sectional transmission electron microscopy (TEM) studies show an almost complete transfer of Ge atoms from the Ge film, via a 2.2 µm Ag barrier layer, into the Mn layer. We attribute the driving force of the long-range transfer to the long-range chemical interactions between reacting Mn and Ge atoms. - Graphical abstract: The direct visualization of the solid state reaction between Mn and Ge across a Ag buffer layer at 500 °C. - Highlights: • The migration of Ge, via an inert 2.2 µm Ag barrier, into a Mn layer. • The first Mn{sub 5}Ge{sub 3} phase was observed in reactions with different Ag layers. • The Ge is the sole diffusing species during Mn{sub 5}Ge{sub 3} formation • The long-range chemical interactions control the Ge atomic transfer.

  7. Decay data evaluation project: Evaluation of 52Mn and 52mMn nuclear decay data

    Science.gov (United States)

    Luca, Aurelian

    2017-09-01

    All nuclear decay data within the 52Fe-52m,52Mn-52Cr decay chain have been evaluated at IFIN-HH, Romania, as part of an IAEA coordinated research project (F41029) and incorporated into the Decay Data Evaluation Project (DDEP). Both 52Fe and daughter 52Mn are two potentially promising radionuclides to be incorporated into suitable radiopharmaceuticals for PET and SPECT imaging. The decay data evaluation of 52Fe has previously been published and reported to the IAEA Nuclear Data Section. Equivalent DDEP evaluations for 52Mn and 52mMn have also been completed recently, and are presented in summary form below. These improved decay data sets have also been reported to the IAEA in detail, and are highly suitable in dose rate calculations for their application in nuclear medicine.

  8. Atomistic spin dynamics simulations on Mn-doped GaAs and CuMn

    Energy Technology Data Exchange (ETDEWEB)

    Hellsvik, Johan, E-mail: johan.hellsvik@fysik.uu.s [Department of Physics and Materials Science, Uppsala University, Box 530, SE-751 21 Uppsala (Sweden)

    2010-01-01

    The magnetic dynamical behavior of two random alloys have been investigated in atomistic spin dynamics (ASD) simulations. For both materials, magnetic exchange parameters calculated with first principles electronic structure methods were used. From experiments it is well known that CuMn is a highly frustrated magnetic system and a good manifestation of a Heisenberg spin glass. In our ASD simulations the behavior of the autocorrelation function indicate spin glass behavior. The diluted magnetic semiconductor (DMS) Mn-doped GaAs is engineered with hopes of high enough Curie temperatures to operate in spintronic devices. Impurities such as As antisites and Mn interstitials change the exhange couplings from being mainly ferromagnetic to also have antiferromagnetic components. We explore how the resulting frustration affects the magnetization dynamics for a varying rate of As antisites.

  9. Theoretical Mn K-edge XANES for Li2MnO3: DFT + U study

    International Nuclear Information System (INIS)

    Tamura, Tomoyuki; Ohwaki, Tsukuru; Ito, Atsushi; Ohsawa, Yasuhiko; Kobayashi, Ryo; Ogata, Shuji

    2012-01-01

    Spectral features of Mn K-edge x-ray absorption near-edge structure (XANES) for Li 2 MnO 3 were calculated using the first-principles full projector augmented wave method with the general gradient approximation plus U method. We demonstrated that the U parameter affects the spectral features in the pre-edge region while it does not affect those in the major absorption region. From the comparison with the experimental spectra and those of reference compounds, we showed that the spectral features of Mn K-edge XANES and the differences in the valence state can be reproduced well. (paper)

  10. Benthic foraminiferal Mn / Ca ratios reflect microhabitat preferences

    Science.gov (United States)

    Koho, Karoliina A.; de Nooijer, Lennart J.; Fontanier, Christophe; Toyofuku, Takashi; Oguri, Kazumasa; Kitazato, Hiroshi; Reichart, Gert-Jan

    2017-06-01

    The Mn / Ca of calcium carbonate tests of living (rose-Bengal-stained) benthic foraminifera (Elphidium batialis, Uvigerina spp., Bolivina spissa, Nonionellina labradorica and Chilostomellina fimbriata) were determined in relation to pore water manganese (Mn) concentrations for the first time along a bottom water oxygen gradient across the continental slope along the NE Japan margin (western Pacific). The local bottom water oxygen (BWO) gradient differs from previous field study sites focusing on foraminiferal Mn / Ca and redox chemistry, therefore allowing further resolution of previously observed trends. The Mn / Ca ratios were analysed using laser ablation inductively coupled plasma-mass spectrometer (ICP-MS), allowing single-chamber determination of Mn / Ca. The incorporation of Mn into the carbonate tests reflects environmental conditions and is not influenced by ontogeny. The inter-species variability in Mn / Ca reflected foraminiferal in-sediment habitat preferences and associated pore water chemistry but also showed large interspecific differences in Mn partitioning. At each station, Mn / Ca ratios were always lower in the shallow infaunal E. batialis, occupying relatively oxygenated sediments, compared to intermediate infaunal species, Uvigerina spp. and B. spissa, which were typically found at greater depth, under more reducing conditions. The highest Mn / Ca was always recorded by the deep infaunal species N. labradorica and C. fimbriata. Our results suggest that although partitioning differs, Mn / Ca ratios in the intermediate infaunal taxa are promising tools for palaeoceanographic reconstructions as their microhabitat exposes them to higher variability in pore water Mn, thereby making them relatively sensitive recorders of redox conditions and/or bottom water oxygenation.

  11. Synthesis, characterization and physicochemical properties of nanosized Zn/Mn oxides system

    International Nuclear Information System (INIS)

    Selim, M.M.; Deraz, N.M.; Elshafey, O.I.; El-Asmy, A.A.

    2010-01-01

    A series of pure and doped Li 2 O-zinc/manganese mixed oxides was prepared by ceramic route at 400-1000 o C. The obtained solids have been characterized by the thermo-gravimetric analyzer (TGA), differential scanning calorimetry (DSC), X-ray powder diffractogram (XRD), infrared (IR), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) techniques. The catalytic behavior of pure and doped mixed solids was investigated using the decomposition reaction of H 2 O 2 at 30-50 o C. The obtained results revealed that the solid state reaction between ZnO and Mn 2 O 3 started at 500 o C yielding zinc manganite (ZnMn 2 O 4 ) nanoparticles. The augmentation in the calcination temperature of the investigated solids up to 1000 o C for 4 h brought about complete conversion of unreacted oxides yielding ZnMn 2 O 4 crystallites. By doping the system with Li 2 O at different calcination temperatures, an enhancement of the formation of zinc manganite was observed. The products obtained by doping with Li 2 O at different temperatures had less catalytic activity than the pure solids. The catalytic activity of pure and Li 2 O-doped Zn/Mn mixed oxides system decreased by increasing the calcination temperature.

  12. Synthesis of highly efficient Mn2O3 catalysts for CO oxidation derived from Mn-MIL-100

    Science.gov (United States)

    Zhang, Xiaodong; Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning; Wang, Yuxin; Cui, Lifeng

    2017-07-01

    In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn2O3 cubes through calcination with air at different temperature. The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H2-temperature program reduction (H2-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn2O3 catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn2O3 catalyst. Mn2O3 catalyst obtained by calcined at 700 °C (Mn2O3-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T98) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn2O3-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  13. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  14. Magnetic and electrical properties of several Mn-based amorphous alloys

    Science.gov (United States)

    Obi, Y.; Morita, H.; Fujimori, H.

    1987-03-01

    Magnetic and electrical properties of amorphous Mn-Y, Mn-Zr, and Mn-Nb alloys have been investigated. All these alloys have a temperature-dependent susceptibility which is well fitted by a Curie-Weiss law. This implies the existence of localized magnetic moments associated with the Mn atoms. In addition, amorphous Mn-Y alloys exhibit spin-glass characteristics at low temperature. The experimental results of the electrical resistivity show that the temperature coefficient of resistivity (TCR) of both Mn-Y and Mn-Zr are negative, while Mn-Nb has a positive TCR. On the other hand, the resistivity-temperature curves of Mn-Zr and Mn-Nb have nearly the same tendency but are different from that of Mn-Y.

  15. Anisotropic magnetic structures of the Mn R MnSbO6 high-pressure doubly ordered perovskites (R =La , Pr, and Nd)

    Science.gov (United States)

    Solana-Madruga, Elena; Arévalo-López, Ángel M.; Dos santos-García, Antonio J.; Ritter, Clemens; Cascales, Concepción; Sáez-Puche, Regino; Attfield, J. Paul

    2018-04-01

    A new type of doubly ordered perovskite (also reported as double double perovskite, DDPv) structure combining columnar and rock-salt orders of the cations at the A and B sites, respectively, was recently found at high pressure for Mn R MnSb O6 (R =La -Sm ). Here we report further magnetic structures of these compounds. M n2 + spins align into antiparallel ferromagnetic sublattices along the x axis for MnLaMnSb O6 , while the magnetic anisotropy of P r3 + magnetic moments induces their preferential order along the z direction for MnPrMnSb O6 . The magnetic structure of MnNdMnSb O6 was reported to show a spin-reorientation transition of M n2 + spins from the z axis towards the x axis driven by the ordering of N d3 + magnetic moments. The crystal-field parameters for P r3 + and N d3 + at the 4 e C2 site of their DDPv structure have been semiempirically estimated and used to derive their energy levels and associated wave functions. The results demonstrate that the spin-reorientation transition in MnNdMnSb O6 arises as a consequence of the crystal-field-induced magnetic anisotropy of N d3 + .

  16. Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, Bay K 8644, Co2+, Mn2+, and low external Ca2+.

    Science.gov (United States)

    Zatz, M; Mullen, D A

    1988-11-01

    We have recently described a system, using dispersed chick pineal cells in static culture, which displays a persistent, photosensitive, circadian rhythm of melatonin production and release. Here, we describe the effects of nitrendipine (NTR) (a dihydropyridine 'antagonist' of L-type calcium channels), Bay K 8644 (BK) (a dihydropyridine calcium channel 'agonist'), cobalt and manganese ions (both inorganic calcium channel blockers), and low external calcium concentrations, on the melatonin rhythm. NTR inhibited and BK stimulated melatonin output; they were potent and effective. Co2+, Mn2+, and low external Ca2+ markedly inhibited melatonin output. These results support a role for calcium influx through voltage-dependent calcium channels (L-type) in the regulation of melatonin production. Four or 8 h pulses of white light or darkness, in otherwise constant red light, cause, in addition to acute effects, phase-dependent phase shifts of the melatonin rhythm in subsequent cycles. Such phase shifts indicate an effect on (proximal to) the pacemaker generating the rhythm. Four or 8 h pulses of NTR, BK, Co2+, or low Ca2+, however, did not appreciably alter the phase of subsequent melatonin cycles. Neither did BK interfere with phase shifts induced by light pulses. Mn2+ pulses did induce phase-dependent phase shifts, but, unlike those evoked by light or dark pulses, these were all delays. Such effects of Mn2+ in other systems have been attributed to, and are characteristic of, 'metabolic inhibitors'. On balance, the results fail to support a prominent role for calcium influx in regulating the pacemaker underlying the circadian rhythm in chick pineal cells. Rather, calcium influx appears to regulate melatonin production primarily by acting on the melatonin-synthesizing apparatus, distal to the pacemaker.

  17. Ferromagnetic dinuclear mixed-valence Mn(II)/Mn(III) complexes: building blocks for the higher nuclearity complexes. structure, magnetic properties, and density functional theory calculations.

    Science.gov (United States)

    Hänninen, Mikko M; Välivaara, Juha; Mota, Antonio J; Colacio, Enrique; Lloret, Francesc; Sillanpää, Reijo

    2013-02-18

    A series of six mixed-valence Mn(II)/Mn(III) dinuclear complexes were synthesized and characterized by X-ray diffraction. The reactivity of the complexes was surveyed, and structures of three additional trinuclear mixed-valence Mn(III)/Mn(II)/Mn(III) species were resolved. The magnetic properties of the complexes were studied in detail both experimentally and theoretically. All dinuclear complexes show ferromagnetic intramolecular interactions, which were justified on the basis of the electronic structures of the Mn(II) and Mn(III) ions. The large Mn(II)-O-Mn(III) bond angle and small distortion of the Mn(II) cation from the ideal square pyramidal geometry were shown to enhance the ferromagnetic interactions since these geometrical conditions seem to favor the orthogonal arrangement of the magnetic orbitals.

  18. Catalytic Performance of Fe-Mn/SiO2 Nanocatalysts for CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mostafa Feyzi

    2013-01-01

    Full Text Available A series of x(Fe, Mn/SiO2 nanocatalysts (x=5, 10, 15, 20, 25, and 30 wt.% were prepared by sol-gel method and studied for the light olefins production from synthesis gas. It was found that the catalyst containing 20 wt.% (Fe, Mn/SiO2 is an optimal nano catalyst for production of C2–C4 olefins. Effects of sulfur treatment on the catalyst performance of optimal catalyst have been studied by espousing different volume fractions of H2S in a fixed bed stainless steel reactor. The results show that the catalyst treated with 6 v% of H2S had high catalytic performance for C2–C4 light olefins production. The best operational conditions were H2/CO = 3/2 molar feed ratio at 260°C and GHSV = 1100 h−1 under 1 bar total pressure. Characterization of catalysts was carried out using X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and surface area measurements.

  19. Structural and magnetic properties of Mn-implanted Si

    International Nuclear Information System (INIS)

    Zhou Shengqiang; Potzger, K.; Zhang Gufei; Muecklich, A.; Eichhorn, F.; Schell, N.; Groetzschel, R.; Schmidt, B.; Skorupa, W.; Helm, M.; Fassbender, J.; Geiger, D.

    2007-01-01

    Structural and magnetic properties in Mn-implanted, p-type Si were investigated. High resolution structural analysis techniques such as synchrotron x-ray diffraction revealed the formation of MnSi 1.7 nanoparticles already in the as-implanted samples. Depending on the Mn fluence, the size increases from 5 nm to 20 nm upon rapid thermal annealing. No significant evidence is found for Mn substituting Si sites either in the as-implanted or annealed samples. The observed ferromagnetism yields a saturation moment of 0.21μ B per implanted Mn at 10 K, which could be assigned to MnSi 1.7 nanoparticles as revealed by a temperature-dependent magnetization measurement

  20. Manganese-calcium intermixing facilitates heteroepitaxial growth at the <mn>10mn><mn>1mn>¯>4mn> calcite-water interface

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Man; Riechers, Shawn L.; Ilton, Eugene S.; Du, Yingge; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Qafoku, Odeta; Kerisit, Sebastien

    2017-10-01

    In situ atomic force microscopy (AFM) measurements were performed to probe surface precipitates that formed on the (10-14) surface of calcite (CaCO3) single crystals following reaction with Mn2+-bearing aqueous solutions with a range of initial concentrations. Three-dimensional epitaxial islands were observed to precipitate and grow on the surfaces and in situ time-sequenced measurements demonstrated that their growth rates were commensurate with those obtained for epitaxial islands formed on calcite crystals reacted with Cd2+-bearing aqueous solutions of the same range in supersaturation with respect to the pure metal carbonate phase. This finding was unexpected as rhodochrosite (MnCO3) and calcite display a 10% lattice mismatch, based on the area of their (10-14) surface unit cells, whereas the lattice mismatch is only 4% for otavite (CdCO3) and calcite. Coatings of varying thicknesses were therefore synthesized by reacting calcite single crystals with calcite-equilibrated aqueous solutions with concentrations of up to 250 µM MnCl2 and analyzed to determine the composition of the surface precipitates. Ex situ X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectivity (XRR), and AFM measurements of the reacted crystals demonstrated the formation of an epitaxial (Mn,Ca)CO3 solid solution with a spatially complex composition atop the calcite surface, whereby the first few nanometers were rich in Ca and the Mn content increased with distance from the original calcite surface, culminating in a topmost region of almost pure MnCO3 for the thickest coatings. These findings explain the measured growth rates (the effective lattice mismatch was much smaller than nominal mismatch) and highlight the strong influence played by the substrate on the composition of surface precipitates in aqueous conditions.

  1. Coupling between magnetic, dielectric properties and crystal structure in MnT2O4 (T = V, Cr, Mn)

    International Nuclear Information System (INIS)

    Suzuki, T; Adachi, K; Katsufuji, T

    2006-01-01

    We measured the temperature dependence of dielectric constant and striction for spinel MnT 2 O 4 (T = V, Cr, Mn) under magnetic field. We found critical changes of the dielectric constant and striction with ferrimagnetic ordering as well as applied magnetic field in MnV 2 O 4 and Mn 3 O 4 , which have orbital degree of freedom in the T 3+ ion. This result indicates the importance of the orbital degree of freedom for the coupling between dielectric, magnetic properties and crystal structure in these spinel compounds

  2. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  3. Li(Zn,Co,MnAs: A bulk form diluted magnetic semiconductor with Co and Mn co-doping at Zn sites

    Directory of Open Access Journals (Sweden)

    Bijuan Chen

    2016-11-01

    Full Text Available We report the synthesis and characterization of a series of bulk forms of diluted magnetic semiconductors Li(Zn1-x-yCoxMnyAs with a crystal structure close to that of III-V diluted magnetic semiconductor (Ga,MnAs. No ferromagnetic order occurs with single (Zn,Co or (Zn, Mn substitution in the parent compound LiZnAs. Only with co-doped Co and Mn ferromagnetic ordering can occur at the Curie temperature ∼40 K. The maximum saturation moment of the this system reached to 2.17μB/Mn, which is comparable to that of Li (Zn,MnAs. It is the first time that a diluted magnetic semiconductor with co-doping Co and Mn into Zn sites is achieved in “111” LiZnAs system, which could be utilized to investigate the basic science of ferromagnetism in diluted magnetic semiconductors. In addition, ferromagnetic Li(Zn,Co,MnAs, antiferromagnetic LiMnAs, and superconducting LiFeAs share square lattice at As layers, which may enable the development of novel heterojunction devices in the future.

  4. Synthesis of highly efficient Mn{sub 2}O{sub 3} catalysts for CO oxidation derived from Mn-MIL-100

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Li, Hongxin; Hou, Fulin; Yang, Yang; Dong, Han; Liu, Ning [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Wang, Yuxin [Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou, Zhejiang 318000 (China); Cui, Lifeng, E-mail: lifeng.cui@gmail.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2017-07-31

    Highlights: • The morphology of porous Mn{sub 2}O{sub 3} cubes was inherited from Mn-MIL-100 template. • Mn{sub 2}O{sub 3} obtained at calcined temperature of 700 °C displayed high activity. • Enhanced activity is attributed to surface active oxygen, and reduction behavior. - Abstract: In this work, metal-organic frameworks (MOFs) Mn-MIL-100 were first prepared, which were next used as templates to obtain the irregular porous Mn{sub 2}O{sub 3} cubes through calcination with air at different temperature. The catalysts were characterized by N{sub 2} adsorption-desorption, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), H{sub 2}-temperature program reduction (H{sub 2}-TPR) and X-ray photoelectron spectroscopic (XPS). The catalytic activity for CO oxidation over Mn{sub 2}O{sub 3} catalysts was investigated. It was found that calcination temperature had a strong effect on the structure and catalytic activity of Mn{sub 2}O{sub 3} catalyst. Mn{sub 2}O{sub 3} catalyst obtained by calcined at 700 °C (Mn{sub 2}O{sub 3}-700) showed a smaller specific surface area, but displayed a high catalytic activity and excellent stability with a complete CO conversion temperature (T{sub 98}) of 240 °C, which was attributed to the unique structure, a high quantity of surface active oxygen species, smaller particle size, oxygen vacancies and good low temperature reduction behavior. The effect of water vapor on catalytic activity was also examined. The introduction of water vapor to the feedstock induced a positive effect on CO oxidation over Mn{sub 2}O{sub 3}-700 catalyst. Furthermore, no obvious drop is observed in activity over catalysts even in the presence of water vapor during 48 h.

  5. Self-assembled decanuclear Na(I)2Mn(II)4Mn(III)4 complexes: from discrete clusters to 1-D and 2-D structures, with the Mn(II)4Mn(III)4 unit displaying a large spin ground state and probable SMM behaviour.

    Science.gov (United States)

    Langley, Stuart K; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S

    2011-12-07

    The synthesis, magnetic characterization and X-ray crystal structures are reported for five new manganese compounds, [Mn(III)(teaH(2))(sal)]·(1/2)H(2)O (1), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(4)]·6MeOH (2), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·7MeOH (3), [Na(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(MeOH)(2)](n)·2MeOH·Et(2)O (4) and [K(I)(2)Mn(II)(4)Mn(III)(4)(teaH)(6)(sal)(4)(N(3))(2)(H(2)O)(2)](n)·5MeOH (5). Complex 1 is a mononuclear compound, formed via the reaction of Mn(NO(3))(2)·4H(2)O, triethanolamine (teaH(3)) and salicylic acid (salH(2)) in a basic methanolic solution. Compound 2 is a mixed-valent hetero-metallic cluster made up of a Mn(8)Na(2) decanuclear core and is formed via the reaction of sodium azide (NaN(3)) with 1. Compounds 3-5 are isolated as 1- or 2-D coordination polymers, each containing the decanuclear Mn(8)M(2) (M = Na(+) or K(+)) core building block as the repeating unit. Compound 3 is isolated when 1 is reacted with NaN(3) over a very short reaction time and forms a 1-D coordination polymer. Each unit displays inter-cluster bridges via the O-atoms of teaH(2-) ligands bonding to the sodium ions of an adjacent cluster. Increasing the reaction time appears to drive the formation of 4 which forms 2-D polymeric sheets and is a packing polymorph of 3. The addition of KMnO(4) and NaN(3) to 1 resulted in compound 5, which also forms a 1-D coordination polymer of the decanuclear core unit. The 1-D chains are now linked via inter-cluster potassium and salicylate bridges. Solid state DC susceptibility measurements were performed on compounds 1-5. The data for 1 are as expected for an S = 2 Mn(III) ion, with the isothermal M vs. H data being fitted by matrix diagonalization methods to give values of g and the axial (D) and rhombic (E) zero field splitting parameters of 2.02, -2.70 cm(-1) and 0.36 cm(-1) respectively. The data for 2-5, each with an identical Mn(II)(4)Mn(III)(4

  6. Cardiovascular effects of MnDPDP and MnCl2 in dogs with acute ischaemic heart failure

    International Nuclear Information System (INIS)

    Karlsson, J.O.G.; Pedersen, H.K.; Sager, G.; Refsum, H.; Nycomed Imaging AS, Oslo

    1997-01-01

    Purpose: To examine the cardiovascular effects of MnDPDP in a model of acute heart failure in the dog, and to compare these effects with those of MnCl 2 . Material and Methods: The study involved slow i.v. infusion of either 10, 60 and 300 μmol/kg of MnDPDP, or 1, 6 and 30 μmol/kg MnCl 2 , in increasing doses to groups of 5 dogs. Acute ischaemic heart failure was first induced by injection of polystyrene microspheres (50±10 μm) into the left coronary artery until a stable left ventricular end-diastolic pressure of approximately 20 mm Hg was achieved. The following test parameters were measured: Left ventricular end-diastolic pressure; the first derivatives of maximum rate of left ventricular contraction and relaxation; mean aortic pressure; pulmonary artery pressure; right atrial pressure; cardiac ouput; heart rate; QT-time; PQ-time; QRS-width; and plasma catecholamines. Results: Slow infusion of MnDPDP at doses up to and including 12 times the clinical dose was well tolerated in dogs without further depression of cardiovascular function during acute ischaemic heart failure. At 300 μmol/kg, i.e. 60 times the human dose, only minor haemodynamic and electrophysiological effects were seen, and these were similar to those seen after administration of 30 μmol/kg MnCl 2 . (orig./AJ)

  7. NMRON on a mixed halide antiferromagnet, (54Mn)Mn(Cl0.6Br0.4)2.4H2O

    International Nuclear Information System (INIS)

    Chaplin, D.H.; Harker, S.J.; Hutchison, W.D.; Bowden, G.J.

    2000-01-01

    Full text: Recently we reported on the significant gains that can be made in Low Temperature Nuclear Orientation (LTNO) of the magnetically dominant species in an antiferromagnetic single crystal by heterogeneous mixing of the halide ligands. This new approach relies on enhanced nuclear spin lattice relaxation (NSLR) at the magnetic ion, in this case Mn, through broadbanded electronic magnons, in the cooled, single crystal host. Whereas the isomorphous terminal compounds ( 54 Mn)MnCI 2 .4H 2 O and ( 54 Mn)MnBr 2 .4H 2 O, have yielded zero field directional anisotropies of only 5% and 14%, respectively, from the daughter gamma from the long-lived parent 54 Mn, the mixed halides have yielded up to 40% zero field gamma anisotropy at the same base temperature of about 7-8 millikelvin. This improved zero field LTNO provides sufficient sensitivity to enable meaningful NMRON studies of the details of the hyperfine parameters at the Mn site in these mixed halide systems. In this paper we provide the NMRON results for single crystal ( 54 Mn)Mn(CI 0.6 Br 0.4 ) 2 .4H 2 O and compare them with the two terminal compounds which possess surprisingly different NMR responses due to different ratios of magnetic exchange to magnetic anisotropy fields. It is shown that whereas the static magnetic hyperfine field at the Mn nucleus is largely unchanged, and the spin flop field nicely interpolates when compared with the terminal compounds, there are significant differences in the pseudoquadrupolar splittings and sub-resonance linewidths

  8. Luminescence of nanocrystalline ZnSe:Mn2+

    NARCIS (Netherlands)

    Suyver, J.F.; Wuister, S.F.; Kelly, J.J.; Meijerink, A.

    2000-01-01

    The luminescence properties of nanocrystalline ZnSe:Mn^(2+) prepared via an inorganic chemical synthesis are described. Photoluminescence spectra show distinct ZnSe and Mn^(2+) related emissions, both of which are excited via the ZnSe host lattice. The Mn^(2+) emission wavelength and the

  9. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  10. Preparation and characterization of the non-stoichiometric La–Mn perovskites

    International Nuclear Information System (INIS)

    Gao, Zhiming; Wang, Huishu; Ma, Hongwei; Li, Zhanping

    2015-01-01

    Six La–Mn oxide samples with La/Mn atomic ratio x = 1.03–0.56 (denoted as sample LaxMn) were prepared by the citrate method with calcination at 700 °C for 5 h, and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the four samples with La/Mn atomic ratio at 1.03–0.72 are all single phase perovskites by XRD patterns. Lattice parameters of the perovskites are varying with the La/Mn atomic ratio. As the La/Mn atomic ratio further lowers to 0.63 and 0.56, Mn 3 O 4 phase is formed besides the main phase of perovskite. Lattice vacancy at the A-sites of the perovskites is present for all the six samples, and there are an appreciable number of Mn 4+ ions in the perovskite crystal according to the refinement results of the Rietveld method. XPS analyses indicate that Mn ions are enriched on the surfaces of all the samples. In addition, catalytic activity for methane oxidation is in an order of sample La 0.89 Mn > La 1.03 Mn > La 0.81 Mn > La 0.72 Mn > La 0.63 Mn > La 0.56 Mn. - Highlights: • The samples with La/Mn atomic ratio at 1.03–0.72 are single phase perovskites. • Cationic lattice vacancies are present in the perovskite crystal of the samples. • Surface of the samples is enriched by Mn ions. • The sample La 0.89 Mn is most catalytically active for methane oxidation

  11. Synthesis and characterization of CdxMn1-xS nanoparticles stabilized with poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Schatkoski, Vanessa M.; Mansur, Alexandra A.P.; Mansur, Herman S.; Gonzalez, Juan C.

    2011-01-01

    Colloidal luminescent semiconductor nanocrystals, also known as quantum dots, have attracted considerable attention due to their significant potential application. The doping of nanocrystalline semiconductors with divalent manganese ions results in new optical properties of these semimagnetic semiconductor quantum dots. In this work we report the synthesis and characterization Cd x Mn 1-x S nanoparticles using poly(vinyl alcohol) as stabilizing agent. Different fractions of Cd 2+ /Mn 2+ ions were investigated aiming the production of stable nanoparticles with different photoluminescence properties. (author)

  12. Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications

    Science.gov (United States)

    Saravanakumar, B.; Ramachandran, S. P.; Ravi, G.; Ganesh, V.; Guduru, Ramesh K.; Yuvakkumar, R.

    2018-01-01

    In this study, uniform iron manganese trioxide (FeMnO3) microspheres were characterized as electrode for supercapacitor applications. The microspheres were synthesized by hydrothermal method in the presence of different molar ratios of sucrose. X-ray diffraction pattern confirmed that the obtained microsphere has body-centered lattice structure of space group 1213(199). The Raman peak observed at 640 cm-1 might be attributed to the stretching mode of vibration of Mn-O bonds perpendicular to the direction of MnO6 octahedral double chains. The photoluminescence peak at the 536 nm corresponded to Fe2+ ions in FeMnO3 lattice point of body-centered cubic structure. The characteristic strong infrared (IR) bands observed at 669 cm-1 corresponded to Fe-O stretching. The electrochemical characterization of the obtained FeMnO3 products could be understood by carrying out cyclic voltammeter, electroimpedance spectra, and galvanostatic charging and discharge studies in a three-cell setup that demonstrates the exceptional specific capacitance of 773.5 F g-1 at a scan rate of 10 mV s-1 and 763.4 F g-1 at a current density of 1 A g-1.

  13. Co-Mn-Al Mixed Oxides as Catalysts for Ammonia Oxidation to N2O.

    Czech Academy of Sciences Publication Activity Database

    Ludvíková, Jana; Jablońska, M.; Jirátová, Květa; Chmielarz, L.; Balabánová, Jana; Kovanda, F.; Obalová, L.

    2016-01-01

    Roč. 42, č. 3 (2016), s. 2669-2690 ISSN 0922-6168 R&D Projects: GA ČR GA14-13750S Institutional support: RVO:67985858 Keywords : Co-Mn-Al mixed oxide s * catalytic ammonia oxidation * N2O production * mechanochemical production Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.369, year: 2016

  14. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  15. Ferromagnetic properties of Mn-doped AlN

    International Nuclear Information System (INIS)

    Li, H.; Bao, H.Q.; Song, B.; Wang, W.J.; Chen, X.L.; He, L.J.; Yuan, W.X.

    2008-01-01

    Mn-doped AlN polycrystalline powders with a wurtzite structure were synthesized by solid-state reactions. A red-orange band at 600 nm, due to Mn 3+ incorporated into the AlN lattice, is observed in the photoluminescence (PL) spectrum at room temperature (RT). Magnetic measurements show the samples possess hysteresis loops up to 300 K, indicating that the obtained powders are ferromagnetic at around RT. The Mn concentration-induced RT ferromagnetism is less than 1 at%. Our results confirm that the RT ferromagnetism can be realized in Mn-doped AlN

  16. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4

    International Nuclear Information System (INIS)

    Yuan, Y.F.; Wu, H.M.; Guo, S.Y.; Wu, J.B.; Yang, J.L.; Wang, X.L.; Tu, J.P.

    2008-01-01

    The surface-modified spinel LiMn 2 O 4 by doped LiNi 0.05 Mn 1.95 O 4 was prepared by a tartaric acid gel method. Transmission electron microscope (TEM) images indicated that some small particles with 100-200 nm in diameter modified the surface of large particle LiMn 2 O 4 . Energy dispersive spectrometry (EDS) showed that the particles were LiNi 0.05 Mn 1.95 O 4 . Electrochemical properties of LiNi 0.05 Mn 1.95 O 4 -modified spinel LiMn 2 O 4 were intensively investigated by the galvanostatic charge-discharge tests, cyclic voltammetry (CV) and AC impedance measurements. The doped LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 cathode delivered the same initial discharge capacity as the unmodified LiMn 2 O 4 , but its cyclic stability was evidently improved, the capacity retention ratio reached 96% after 20 cycles, being higher than 89% of the unmodified LiMn 2 O 4 . Cyclic voltammograms of the LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 did not markedly change while the semicircle diameter of AC impedance spectra evidently decreased after 20 cycles, which showed that the surface modification with LiNi 0.05 Mn 1.95 O 4 improved the electrochemical activity and cycling stability of LiMn 2 O 4 .

  17. Highly stabilized and photoluminescence enhancement of ZnS:Mn2+ nanoparticles in biotin matrix

    International Nuclear Information System (INIS)

    Keshari, Ashish K.; Pandey, Avinash C.

    2009-01-01

    We synthesized the ZnS:Mn 2+ nanoparticles passivated by biocompatible layer, namely, biotin by chemical precipitation route and studied their temporal evolution for size, structure, optical, and photoluminescence stability. To monitor the structural and optoelectronic properties of the nanoparticles with time, we have characterized the grown product by x-ray diffraction, small angle x-ray scattering, UV visible, and photoluminescence spectroscopic techniques at a regular interval for a period of three months. Results showed that the properties of nanophosphors capped with biotin are remaining the same even after 3 months. Energy dispersive x-ray analysis of 3 month aged sample shows long time compatibility between ZnS:Mn 2+ nanoparticles and the biotin. This is also confirmed by electron microscopy that the growth of the nanoparticles is strongly arrested by the biotin. X-ray photoelectron spectra were also recorded to show the chemical state of the elements. Enhanced ratio of Zn 2p to Mn 2p peaks in the x-ray photoelectron spectra of ZnS:Mn 2+ nanoparticles shows that the Mn 2+ ions are incorporated within ZnS host matrix. We found that biotin capping will enhance the luminescence from ZnS:Mn 2+ nanoparticles as compared to without capped particles. Absence of biotin will gradually degrade the luminescence upon aging while drastic degradation in luminescence intensity was observed after annealing. Properties show that biotin also protected the nanoparticles from any environmental attack

  18. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  19. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    Science.gov (United States)

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  20. Synthesis and Characterization of nanostructured Mn oxide in (Ca-OL-2) layers from ores of the Serra do Navio (Amapa) mine; Sintese e caracterizacao de oxido de Mn nanoestruturado em camada (Ca-Ol-2) a partir de minerios da antiga mina de Serra do Navio (Amapa)

    Energy Technology Data Exchange (ETDEWEB)

    Mar, I.C. do; Figueira, B.A.M., E-mail: brunoufopa@hotmail.com [Universidade Federal do Oeste do Para (UFOPA), Santarem, PA (Brazil). Instituto de Engenharia e Geociencias; Silva, L.N. da [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Instituto de Geociencias; Mercury, J.M.R. [Instituto Federal do Maranhao (IFMA), Sao Luiz, MA (Brazil). Departamento de Quimica

    2016-07-01

    In this study, layered nanostructured Mn oxide, Ca-OL (octahedral layer), was obtained from Mn ores of Serra do Navio (Amapa, Brazil). The developed synthetic route used dissolution chemical processes, precipitation, ion exchange and hydrothermal treatment, respectively. The results showed the presence of DRX peaks in the position 12,5 and 25º (2 theta), confirming Mn oxide Na-birnessite-type structure (Na-OL-1) obtainment which transformed into Ca-buserite (Ca-OL-2) after Ca{sup 2+} ion exchange. Infrared spectroscopy (FTIR) bands of the MnO6 octahedrons Mn-O vibrational bond were identified in the range of 800 to 400 cm{sup -1} which confirmed the DRX data obtained. The Ca-OL-2 thermal behavior obtained by TG-DTA showed thermal stability above 850 deg C, thus exhibiting that products as ores can be transformed into Mn oxides nano layers with high thermal stability. (author)

  1. Dissimilatory Fe(III) and Mn(IV) reduction.

    Science.gov (United States)

    Lovley, D R

    1991-06-01

    The oxidation of organic matter coupled to the reduction of Fe(III) or Mn(IV) is one of the most important biogeochemical reactions in aquatic sediments, soils, and groundwater. This process, which may have been the first globally significant mechanism for the oxidation of organic matter to carbon dioxide, plays an important role in the oxidation of natural and contaminant organic compounds in a variety of environments and contributes to other phenomena of widespread significance such as the release of metals and nutrients into water supplies, the magnetization of sediments, and the corrosion of metal. Until recently, much of the Fe(III) and Mn(IV) reduction in sedimentary environments was considered to be the result of nonenzymatic processes. However, microorganisms which can effectively couple the oxidation of organic compounds to the reduction of Fe(III) or Mn(IV) have recently been discovered. With Fe(III) or Mn(IV) as the sole electron acceptor, these organisms can completely oxidize fatty acids, hydrogen, or a variety of monoaromatic compounds. This metabolism provides energy to support growth. Sugars and amino acids can be completely oxidized by the cooperative activity of fermentative microorganisms and hydrogen- and fatty-acid-oxidizing Fe(III) and Mn(IV) reducers. This provides a microbial mechanism for the oxidation of the complex assemblage of sedimentary organic matter in Fe(III)- or Mn(IV)-reducing environments. The available evidence indicates that this enzymatic reduction of Fe(III) or Mn(IV) accounts for most of the oxidation of organic matter coupled to reduction of Fe(III) and Mn(IV) in sedimentary environments. Little is known about the diversity and ecology of the microorganisms responsible for Fe(III) and Mn(IV) reduction, and only preliminary studies have been conducted on the physiology and biochemistry of this process.

  2. Synthesis of Mn-doped CeO 2 nanorods and their application as ...

    Indian Academy of Sciences (India)

    Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile compositehydroxide-mediated (CHM) approach. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analysis from the X-ray photoelectron ...

  3. Polycrystalline Mn-alloyed indium tin oxide films

    International Nuclear Information System (INIS)

    Scarlat, Camelia; Schmidt, Heidemarie; Xu, Qingyu; Vinnichenko, Mykola; Kolitsch, Andreas; Helm, Manfred; Iacomi, Felicia

    2008-01-01

    Magnetic ITO films are interesting for integrating ITO into magneto-optoelectronic devices. We investigated n-conducting indium tin oxide (ITO) films with different Mn doping concentration which have been grown by chemical vapour deposition using targets with the atomic ratio In:Sn:Mn=122:12:0,114:12:7, and 109:12:13. The average film roughness ranges between 30 and 50 nm and XRD patterns revealed a polycrystalline structure. Magnetotransport measurements revealed negative magnetoresistance for all the samples, but high field positive MR can be clearly observed at 5 K with increasing Mn doping concentration. Spectroscopic ellipsometry (SE) has been used to prove the existence of midgap states in the Mn-alloyed ITO films revealing a transmittance less than 80%. A reasonable model for the ca. 250 nm thick Mn-alloyed ITO films has been developed to extract optical constants from SE data below 3 eV. Depending on the Mn content, a Lorentz oscillator placed between 1 and 2 eV was used to model optical absorption below the band gap

  4. Effect of Fe substitution at the Ni and Mn sites on the magnetic properties of Ni50Mn35In15 Heusler alloys

    International Nuclear Information System (INIS)

    Halder, Madhumita; Suresh, K.G.

    2015-01-01

    The structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. At room temperature, Ni 48 Fe 2 Mn 35 In 15 has L2 1 cubic structure, whereas Ni 50 Mn 34 FeIn 15 shows a two-phase structure due to the martensitic transition. In the case of Ni 48 Fe 2 Mn 35 In 15 , there is only one magnetic transition at 316 K with no martensitic transition. However, in Ni 50 Mn 34 FeIn 15 , we observe the martensitic transition at about 280 K. The Curie temperatures for austenite and martensite phases are 314 and 200 K, respectively. The maximum magnetic entropy changes are found to be 5.5 and 4.5 J kg −1 K −1 for Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 , respectively, for 50 kOe. Ni 50 Mn 34 FeIn 15 exhibits exchange bias behavior, with a bias field of 130 Oe at 5 K. Both the alloys satisfy the empirical relation between the martensitic transition and the valence electron concentration (e/a) ratio. - Highlights: • Structural and magnetic properties of Ni 48 Fe 2 Mn 35 In 15 and Ni 50 Mn 34 FeIn 15 Heusler alloys have been investigated. • Ni 48 Fe 2 Mn 35 In 15 does not undergo a martensitic transition, whereas Ni 50 Mn 34 FeIn 15 shows martensitic transition. • Ni 50 Mn 34 FeIn 15 alloy exhibits exchange bias behavior. • Both alloys satisfy the empirical relation between martensitic transition and valence electron concentration (e/a)

  5. Atomic and magnetic structure of MnF3

    International Nuclear Information System (INIS)

    Hunter, B.A.; Kennedy, B.J.; Vogt, T.

    2003-01-01

    Full text: The magnetic and atomic structure of MnF 3 has been determined from 4K to 300K using neutron powder diffraction. The MnF 3 compound is the archetypical Mn-based colossal magnetoresistive compound. A Neel temperature of approximately 40K was observed from the temperature variation of the magnetic moment. Below the Neel temperature a large negative thermal expansion was observed, in striking similarity to other Mn-based colossal magnetoresistive compounds. The variation in structure is discussed in relation to other Mn-based compounds, particularly as this compound cannot support charge ordering

  6. Mn L{sub 2,3}-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubobuchi, Kei, E-mail: kubobuchi@nissan-arc.co.jp [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan); Mogi, Masato; Imai, Hideto [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Ikeno, Hidekazu [Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan)

    2014-02-03

    The redox reaction of Mn in Li{sub 2}MnO{sub 3} was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L{sub 2,3} X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L{sub 2,3} XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn{sup 4+} to Mn{sup 5+} but can be explained well by the changes of local atomic structures around Mn{sup 4+} due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li{sub 2}MnO{sub 3}.

  7. Synthesis and electrochemical properties of ZnMn_2O_4 anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Chuanqi; Wang, Wei; Chen, Xiao; Wang, Shiquan; Guo, Zaiping

    2015-01-01

    Graphical abstract: ZnMn_2O_4 nanoparticles were prepared through the rheological phase reaction method (R-ZMO) or the mixed solvothermal method(M-ZMO). The particles of M-ZMO were clustered together to form uniform microspheres morphology. The M-ZMO behaved higher reversible capacity and better cycle performance than that of R-ZMO. - Highlights: • ZnMn_2O_4 nanoparticles were prepared through the rheological phase reaction method (R-ZMO) or the mixed solvothermal method (M-ZMO). • The M-ZMO behaved higher reversible capacity and better cycle performance than that of R-ZMO. • The morphology and cell parameters of ZnMn_2O_4 are important effects on its electrochemical properties. • The diffusion coefficient of Li"+ in M-ZMO is beneficial for M-ZMO to be used an anode. - Abstract: The precursors of ZnMn_2O_4 were synthesized by different methods (the rheological phase reaction method or the mixed solvothermal method). The precursors were heat-treated at a suitable temperature to obtain the expected product (ZnMn_2O_4). The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the samples were also investigated. The results show that ZnMn_2O_4 was synthesized successfully. The particles of ZnMn_2O_4 were irregular quasi-spheres with sizes of about 50 nm. The ZnMn_2O_4 nanoparticles synthesized through the mixed solvothermal method were clustered together to form microspheres about 1 μm in diameter. The electrochemical testing results showed that the ZnMn_2O_4 synthesized through the mixed solvothermal method featured higher reversible capacity and better cycling performance than the sample synthesized by the rheological phase reaction method. The ZnMn_2O_4 synthesized through the mixed solvothermal method could be a promising anode material for lithium ion battery application.

  8. Cardiovascular effects of MnDPDP and MnCl{sub 2} in dogs with acute ischaemic heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, J.O.G. [Trondheim Univ. (Norway). Dept. of Physiology and Biomedical Engineering]|[Nycomed Imaging AS, Oslo (Norway). Research and Development; Mortensen, E. [Dept. of Physiology, Inst. of Medical Biology, Univ. of Tromsoe (Norway); Pedersen, H.K. [Dept. of Radiology, The National Hospital, Oslo (Norway); Sager, G. [Dept. of Pharmacology, Inst. of Medical Biology, Univ. of Tromsoe (Norway); Refsum, H. [Inst. for Experimental Medical Research, Ullevaal Hospital, Oslo Univ. (Norway)]|[Nycomed Imaging AS, Oslo (Norway). Research and Development

    1997-07-01

    Purpose: To examine the cardiovascular effects of MnDPDP in a model of acute heart failure in the dog, and to compare these effects with those of MnCl{sub 2}. Material and Methods: The study involved slow i.v. infusion of either 10, 60 and 300 {mu}mol/kg of MnDPDP, or 1, 6 and 30 {mu}mol/kg MnCl{sub 2}, in increasing doses to groups of 5 dogs. Acute ischaemic heart failure was first induced by injection of polystyrene microspheres (50{+-}10 {mu}m) into the left coronary artery until a stable left ventricular end-diastolic pressure of approximately 20 mm Hg was achieved. The following test parameters were measured: Left ventricular end-diastolic pressure; the first derivatives of maximum rate of left ventricular contraction and relaxation; mean aortic pressure; pulmonary artery pressure; right atrial pressure; cardiac ouput; heart rate; QT-time; PQ-time; QRS-width; and plasma catecholamines. Results: Slow infusion of MnDPDP at doses up to and including 12 times the clinical dose was well tolerated in dogs without further depression of cardiovascular function during acute ischaemic heart failure. At 300 {mu}mol/kg, i.e. 60 times the human dose, only minor haemodynamic and electrophysiological effects were seen, and these were similar to those seen after administration of 30 {mu}mol/kg MnCl{sub 2}. (orig./AJ).

  9. Diffusion of $^{52}$Mn in GaAs

    CERN Multimedia

    2002-01-01

    Following our previous diffusion studies performed with the modified radiotracer technique, we propose to determine the diffusion of Mn in GaAs under intrinsic conditions in a previously un-investigated temperature region. The aim of the presently proposed experiments is twofold. \\begin{itemize} \\item A quantitative study of Mn diffusion in GaAs at low Mn concentrations would be decisive in providing new information on the diffusion mechanism involved. \\item As Ga vacancies are expected to be involved in the Mn diffusion process it can be predicted that also the GaAs material growth technique most likely plays a role. To clarify this assumption diffusion experiments will be conducted for GaAs material grown by two different techniques. \\end{itemize} For such experiments we ask for two runs of 3 shifts (total of 6 shifts) with $^{52}$Mn$^{+}$ ion beam.

  10. Influence of S/Mn molar ratio on the morphology and optical property of γ-MnS thin films prepared by microwave hydrothermal

    International Nuclear Information System (INIS)

    Yu, Xin; Li-yun, Cao; Jian-feng, Huang; Jia, Liu; Jie, Fei; Chun-yan, Yao

    2013-01-01

    Highlights: ► The influence of the precursor solution molar ratio of S/Mn. ► The degree of orientation of the γ-MnS film decrease slightly with increasing the S/Mn from 2.0 to 4.0. ► Film quality is strongly affected by the initial nucleation. ► The absorption edge obviously shifts to a higher wavelength with the increase of the S/Mn molar ratio from 2.0 to 4.0. - Abstract: Well crystallized γ-MnS thin films were successfully synthesized at low temperature and short processing time via a novel microwave hydrothermal (M-H) process without any complexing agent by using manganese chloride and thioacetamide as source materials. The influence of different S/Mn molar ratio in the precursor solution on the phase compositions, morphologies and optical properties of the as-deposited films was investigated. The as-deposited γ-MnS thin films were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and ultraviolet–visible (UV–vis). Results show that the wurtzite phase γ-MnS thin films with good crystallization can be achieved when S/Mn molar ratio is controlled at 2.0–4.0. The deposited γ-MnS thin films exhibit (1 0 0) orientation growth with the thickness of 300–500 nm. With the increase of S/Mn molar ratio from 2.0 to 4.0, the orientation growth is weakened while the dense and uniform of the as-deposited γ-MnS thin films are obviously improved and the corresponding band gap of the thin films increase from 3.88 to 3.97 eV.

  11. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  12. Enhancement of electrochemical performance of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 by surface modification with MnO_2

    International Nuclear Information System (INIS)

    Guo, Xin; Cong, Li-Na; Zhao, Qin; Tai, Ling-Hua; Wu, Xing-Long; Zhang, Jing-Ping; Wang, Rong-Shun; Xie, Hai-Ming; Sun, Li-Qun

    2015-01-01

    LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is successfully coated with MnO_2 by a chemical deposition method. The X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) results demonstrate that MnO_2 forms a thin layer on the surface of LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 without destroying the crystal structure of the core material. Compared with pristine LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2, the MnO_2-coated sample shows enhanced electrochemical performance especially the rate capability. Even at a current density of 750 mA g"−"1, the discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 is 155.15 mAh g"−"1, while that of the pristine electrode is only 132.84 mAh g"−"1 in the range of 2.5–4.5 V. The cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) curves show that the MnO_2 coating layer reacts with Li"+ during cycling, which is responsible for the higher discharge capacity of MnO_2-coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2. Electrochemical impedance spectroscopy (EIS) results confirmed that the MnO_2 coating layer plays an important role in reducing the charge transfer resistance on the electrolyte–electrode interfaces. - Highlights: • MnO_2 coated LiNi_1_/_3Co_1_/_3Mn_1_/_3O_2 cathode material is synthesized for the first time. • MnO_2 offers available sites for insertion of extracted lithium. • The preserved surface and crystal structures results in the improved kinetics.

  13. Nanocrystalline LiMn2O4 derived by HMTA-assisted solution combustion synthesis as a lithium-intercalating cathode material

    International Nuclear Information System (INIS)

    Fey, G.T.-K.; Cho, Y.-D.; Kumar, T. Prem

    2006-01-01

    Nanocrystalline LiMn 2 O 4 was synthesized by a self-sustaining solution combustion method with hexamethylenetetramine as a fuel. Ammonium nitrate was used as an additional oxidant-and-porogen. Thermal analytical studies showed the formation of LiMn 2 O 4 by a single-step decomposition process between 300 and 380 deg. C. The products were highly crystalline with an average crystallite size of ∼30 nm. Charge-discharge studies showed that the optimal heat treatment protocol was a 10 h calcination at 700 deg. C. A product obtained under these conditions from a precursor containing a 1:1 molar ratio of [LiNO 3 + Mn(NO 3 ) 2 ] and NH 4 NO 3 sustained 202 cycles between 3.0 and 4.3 V at a charge-discharge rate of 0.1 C before reaching an 80% charge retention cut-off value. Nanocrystalline particles provide small diffusion pathways that lead to an improvement in the lithium-ion intercalation kinetics and minimize surface distortions during cycling. These factors are believed to confer excellent electrochemical properties to the product

  14. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  15. Preparation and properties of a monomeric Mn(IV)-oxo complex.

    Science.gov (United States)

    Parsell, Trenton H; Behan, Rachel K; Green, Michael T; Hendrich, Michael P; Borovik, A S

    2006-07-12

    Manganese-oxo complexes have long been investigated because of their proposed roles in biological and chemical catalysis. However, there are few examples of monomeric complexes with terminal oxo ligands, especially those with oxomanganese(IV) units. A oxomanganese(IV) complex has been prepared from [MnIIIH3buea(O)]2- ([H3buea]3-, tris[(N'-tert-butylureaylato)-N-ethylene]aminato), a monomeric MnIII-O complex in which the oxo ligand arises from cleavage of dioxygen. Treating [MnIIIH3buea(O)]2- with [Cp2Fe]BF4 in either DMF at -45 degrees C or DMSO at room temperature produces [MnIVH3buea(O)]-: lambdamax = 635 nm; nu(Mn-16O) = 737 cm-1; nu(Mn-18O) = 709 cm-1; g = 5.15, 2.44, 1.63, D = 3.0 cm-1, E/D = 0.26, aMn = 66 G (A = 190 MHz). These spectroscopic properties support the assignment of a mononuclear MnIV-oxo complex with an S = 3/2 ground state. Density functional theory supports this assignment and the Jahn-Teller distortion around the high-spin MnIV center that would alter the molecular structure of [MnIVH3buea(O)]- from trigonal symmetry (as indicated by the highly rhombic EPR signal). [MnIVH3buea(O)]- is relatively unstable in DMSO, converting to [MnIIIH3buea(OH)]- via a proposed X-H bond cleavage. [MnIVH3buea(O)]- reacts with 1,2-diphenylhydrazine to from azobenzene (95% yield) and [MnIIIH3buea(OH)]-. The MnIV-oxo does not react with triphenyl- or tricyclohexylphosphine. However, O-atom transfer is observed with methyldiphenylphosphine and dimethylphenylphosphine, producing the corresponding phosphine oxides. These results illustrate the diverse reactivity of the MnIV-oxo unit.

  16. IMPROVED log(gf ) VALUES OF SELECTED LINES IN Mn I AND Mn II FOR ABUNDANCE DETERMINATIONS IN FGK DWARFS AND GIANTS

    International Nuclear Information System (INIS)

    Den Hartog, E. A.; Lawler, J. E.; Sobeck, J. S.; Sneden, C.; Cowan, J. J.

    2011-01-01

    The goal of the present work is to produce transition probabilities with very low uncertainties for a selected set of multiplets of Mn I and Mn II. Multiplets are chosen based upon their suitability for stellar abundance analysis. We report on new radiative lifetime measurements for 22 levels of Mn I from the e 8 D, z 6 P, z 6 D, z 4 F, e 8 S, and e 6 S terms and six levels of Mn II from the z 5 P and z 7 P terms using time-resolved laser-induced fluorescence on a slow atom/ion beam. New branching fractions for transitions from these levels, measured using a Fourier-transform spectrometer, are reported. When combined, these measurements yield transition probabilities for 47 transitions of Mn I and 15 transitions of Mn II. Comparisons are made to data from the literature and to Russell-Saunders (LS) theory. In keeping with the goal of producing a set of transition probabilities with the highest possible accuracy and precision, we recommend a weighted mean result incorporating our measurements on Mn I and II as well as independent measurements or calculations that we view as reliable and of a quality similar to ours. In a forthcoming paper, these Mn I/II transition probability data will be utilized to derive the Mn abundance in stars with spectra from both space-based and ground-based facilities over a 4000 A wavelength range. With the employment of a local thermodynamic equilibrium line transfer code, the Mn I/II ionization balance will be determined for stars of different evolutionary states.

  17. Effects of dopant ion and Mn valence state in the La{sub 1-x}A{sub x}MnO{sub 3} (A=Sr,Ba) colossal magnetoresistance films

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Gyu; Wang, Seok-Joo; Park, Hyung-Ho; Hong, MunPyo; Kwon, Kwang-Ho [Department of Materials Science and Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-ku, Seoul 120-749 (Korea, Republic of); Department of Display and Semiconductor Physics, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of); Department of Control and Instrumentation Engineering, Korea University, Jochiwon, Chungnam 339-700 (Korea, Republic of)

    2010-01-15

    The structural and electrical properties of Mn-based colossal magnetoresistance (CMR) thin films with controlled tolerance factor and Mn ion valance ratio were studied using crystal structure and chemical bonding character analyses. La{sub 0.7}Sr{sub 0.3}MnO{sub 3}, La{sub 0.7}Ba{sub 0.3}MnO{sub 3}, and La{sub 0.82}Ba{sub 0.18}MnO{sub 3} thin films with different contents of divalent cations and Mn{sup 3+}/Mn{sup 4+} ratios were deposited on amorphous SiO{sub 2}/Si substrate by rf magnetron sputtering at a substrate temperature of 350 deg. C. The films showed the same crystalline structure as the pseudocubic structure. The change in the sheet resistance of films was analyzed according to strain state of the unit cell, chemical bonding character of Mn-O, and Mn{sup 3+}/Mn{sup 4+} ratio controlling the Mn{sup 3+}-O{sup 2-}-Mn{sup 4+} conducting path. Mn L-edge x-ray absorption spectra revealed that the Mn{sup 3+}/Mn{sup 4+} ratio changed according to different compositions of Sr or Ba and the Mn 2p core level x-ray photoelectron spectra showed that the Mn 2p binding energy was affected by the covalence of the Mn-O bond and Mn{sup 3+}/Mn{sup 4+} ratio. In addition, O K-edge x-ray absorption spectra showed covalently mixed Mn 3d and O 2p states and matched well with the resistivity changes of CMR films. Temperature coefficient of resistance values were obtained at approximately -2.16%/K to -2.46%/K of the CMR films and were correct for infrared sensor applications.

  18. Ferri-magnetic order in Mn induced spinel Co_3_−_xMn_xO_4 (0.1≤x≤1.0) ceramic compositions

    International Nuclear Information System (INIS)

    Meena, P.L.; Sreenivas, K.; Singh, M.R.; Kumar, Ashok; Singh, S.P.; Kumar, Ravi

    2016-01-01

    We report structural and magnetic properties of spinel Co_3_−_xMn_xO_4 (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co_3_−_xMn_xO_4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1 0.5. - Highlights: • Synthesis of single phase polycrystalline Co_3_−_xMn_xO_4 ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  19. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  20. Moessbauer study of Mn-Zn and Mn ferrites prepared by wet method

    International Nuclear Information System (INIS)

    Michalk, C.

    1985-01-01

    Moessbauer spectroscopy was employed to study Mn-Zn ferrites before and after low-temperature annealing. The unannealed Mn-Zn ferrite prepared by a wet method and also the sintered material after annealing at 400 deg C in air show the presence of paramagnetic clusters. These findings are explained as being due to nonrandom ordering of Fe 3+ and Zn 2+ ions caused by local charge compensation in the neighbourhood of cation vacancies. A change of cation distribution after annealing at relatively low temperatures was observed. 10 refs., 3 figs. (author)

  1. Exchange interaction in MnPt/FeCo sputtered multilayers

    International Nuclear Information System (INIS)

    Honda, S.; Nawate, M.; Norikane, T.

    2000-01-01

    MnPt single-layer films have been prepared on glass substrates by RF magnetron sputtering for studying the composition dependencies of resistivity and crystalline structure. In the as-deposited state, the resistivity increases with Mn content and reaches the maximum at 69 at%. By annealing, the resistivity of the films having the Mn content around 51 at% increases, closely relating to the growth of the ordered CuAu FCT-type MnPt crystals. For the both film structures of the glass/Cu/FeCo/MnPt/Cu and the glass/MnPt/FeCo/Cu, which have been sputter-deposited on glass substrates, the exchange interaction between MnPt and FeCo layers, and the coercivity of the FeCo layer have been examined as functions of the Mn content, the layer thickness and the annealing temperature. In the as-deposited state, the exchange field (H ex ) is nearly zero up to 75 at% of Mn content, above which the value of H ex increases and shows the maximum at 85 at%, in which the blocking temperature is about 100 deg. C. By annealing, the value of H ex increases for the films of Mn content around 40-60 at%, exhibiting the higher blocking temperature than 360 deg. C. The temperature stability has also been examined using the Rutherford backscattering spectrometry

  2. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    International Nuclear Information System (INIS)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo

    2015-01-01

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H 2 O 2 ) oxidation and its eventual reduction (−0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L–0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H 2 O 2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.Graphical Abstract

  3. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    Science.gov (United States)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo

    2015-12-01

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H2O2) oxidation and its eventual reduction (-0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L-0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H2O2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.

  4. Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2016-10-01

    Full Text Available The work addresses the phase equilibrium analysis and austenite decomposition of two Nb-microalloyed medium-Mn steels containing 3% and 5% Mn. The pseudobinary Fe-C diagrams of the steels were calculated using Thermo-Calc. Thermodynamic calculations of the volume fraction evolution of microstructural constituents vs. temperature were carried out. The study comprised the determination of the time-temperature-transformation (TTT diagrams and continuous cooling transformation (CCT diagrams of the investigated steels. The diagrams were used to determine continuous and isothermal cooling paths suitable for production of bainite-based steels. It was found that the various Mn content strongly influences the hardenability of the steels and hence the austenite decomposition during cooling. The knowledge of CCT diagrams and the analysis of experimental dilatometric curves enabled to produce bainite-austenite mixtures in the thermomechanical simulator. Light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to assess the effect of heat treatment on morphological details of produced multiphase microstructures.

  5. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance

    Science.gov (United States)

    Li, Wenyao; Xu, Jiani; Pan, Yishuang; An, Lei; Xu, Kaibing; Wang, Guangjin; Yu, Zhishui; Yu, Li; Hu, Junqing

    2015-12-01

    Three types of α-MnO2 nanomaterials are synthesized in different Mn-based precursor solutions by using a facile electrochemical deposition at the same depositional condition. The relationships between the precursor solutions and corresponding MnO2 nanomaterials' morphology as well as the electrochemical performance have been studied. As an electrode, electrochemical measurements show that the MnO2 deposited in MnCl2 precursor solution (MnO2-P3) exhibits an enhanced specific capacitance (318.9 F g-1 at 2 mV s-1). Moreover, this electrode demonstrates a good rate capability with 44% retention, which is higher than the MnO2-P1 deposited with Mn(CH3COOH)2 solution and the MnO2-P2 deposited with Mn(NO3)2 precursor solution. Besides, the specific capacitance of the MnO2-P3 electrode nearly has 98.2% retention after 2000 cycles, showing good long-term cycle stability. These findings show that the MnO2-P3 is a promising electrode material for supercapacitors.

  6. Metal-semiconductor transition at a comparable resistivity level and positive magnetoresistance in Mn3Mn1-x Pd x N thin films

    Science.gov (United States)

    Xu, T.; Ji, G. P.; Cao, Z. X.; Ji, A. L.

    2018-02-01

    Thin films of antiperovskite Mn3Mn1-x Pd x N with x up to 0.36 were grown by reactive magnetron co-sputtering method. All the deposits exhibit a [1 0 0] preferential orientation, with the lattice constant slightly enlarged in samples with ever more Pd atoms partially substituting the MnI atoms in Mn3MnN matrix. The replacement of MnI atoms in antiperovskite structure by Pd atoms, besides reducing the saturation magnetization, also invokes a metal-semiconductor transition which occurs remarkably at a comparable resistivity level. Moreover, a positive magnetoresistance was observed in samples of a high Pd content. These tunable electrical and magnetic properties of ternary antiperovskite compounds might promise some ingenious applications in electronic industry.

  7. Producing a particle-reinforced AlCuMgMn alloy by means of mechanical alloying; Herstellung einer partikelverstaerkten AlCuMgMn-Legierung durch mechanisches Legieren

    Energy Technology Data Exchange (ETDEWEB)

    Nestler, D.; Wielage, B. [TU Chemnitz, Institut fuer Werkstoffwissenschaft und Werkstofftechnik (Germany); Siebeck, S.

    2012-07-15

    High-energy ball milling (HEM) with subsequent consolidation is a suitable method to produce particle-reinforced aluminium materials. The task of HEM is to distribute the reinforcement particles as homogeneously as possible. A further application of HEM is mechanical alloying (MA). This paper deals with the combination of both applications. Pure metallic powders (Al, Cu, Mg, Mn) were milled together with SiC particles up to 10 h. The composition of the metallic powder corresponds to that of the alloy AA2017 (3.9% Cu, 0.7% Mg, 0.6% Mn). In previous experiments [1], this alloy was used in the form of atomized powder. The changes in microstructure during the formation of the composite powder have been studied by light microscopy, SEM, EDXS and XRD. The results show that the production of composite powders in a single step is possible. This not only allows the economical production of such powders, but also facilitates the use of alloy compositions that are not producible via the melting route, or only producible with difficulty via the melting route. It's possible to produce tailor-made-alloys. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The Fe/Mn constraint on precursors of basaltic achondrites

    Science.gov (United States)

    Delaney, Jeremy S.; Boesenberg, Joseph S.

    1993-01-01

    Most achondritic meteorites have Fe/Mn ratios that are lower than those of carbonaceous chondrites and of course are lower than the solar system abundance ratio of these elements. Models of the origin of achondritic assemblages must, therefore, account for these ratios. Fe/Mn ratios are suggested to be distinctive for samples from each achondrite parent body and for the Earth and Moon, but the correspondence between the Fe/Mn systematics of achondrites and chondritic precursors is unclear. Most models of achondrite genesis involve magmatic differentiation of chondritic precursors. The Fe/Mn difference between achondrites and chondrites is particularly significant since Fe and Mn are geochemically similar elements with similar partitioning behavior in familiar magmatic systems and are generally coupled during crystal-liquid fractionation. In contrast, however, Mn is more volatile than Fe in a nebular setting. Variation of Fe/Mn ratios based on the relative volatility of these elements in the early nebula provides a constraint for models by which the basaltic achondrites (with Fe/Mn ratios approximately = 25-50) are derived from mixtures of nebular components that were enriched in volatile components such as Mn. However, such volatile enriched components have not been identified in chondrites. When the abundance in achondrites of elements of similar volatility is examined, anomalies appear. For example, Na is massively depleted in basaltic achondrites when compared to Mn. These anomalies might be explained using current models but the alternative hypothesis, that Fe/Mn ratio is controlled not by nebular volatility constraints, but by planetary differentiation should be explored.

  9. Spin properties of charged Mn-doped quantum dota)

    Science.gov (United States)

    Besombes, L.; Léger, Y.; Maingault, L.; Mariette, H.

    2007-04-01

    The optical properties of individual quantum dots doped with a single Mn atom and charged with a single carrier are analyzed. The emission of the neutral, negatively and positively charged excitons coupled with a single magnetic atom (Mn) are observed in the same individual quantum dot. The spectrum of the charged excitons in interaction with the Mn atom shows a rich pattern attributed to a strong anisotropy of the hole-Mn exchange interaction slightly perturbed by a small valence-band mixing. The anisotropy in the exchange interaction between a single magnetic atom and a single hole is revealed by comparing the emission of a charged Mn-doped quantum dot in longitudinal and transverse magnetic field.

  10. Neutron diffraction study of the magnetic structures of CeMn2Ge2 and CeMn2Si2

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Chakoumakos, B.C.; Hill, P.; Ali, N.

    1995-01-01

    The magnetic properties of the layered compounds of the form RMn 2 X 2 (R = Rare Earth, X = Si, Ge) have been thought to be sensitive to the intralayer Mn-Mn distance. Thus it has been reported that the Mn moments in CeMn 2 Si 2 are aligned antiferromagnetically (AF) below T N = 380K, while the Mn moments in CeMn 2 Ge 2 are ferromagnetic (FM) below T C = 316K. Recently, however, there has been some debate about the actual magnetic structures of this family of compounds, and for this reason the authors have performed high-resolution neutron powder diffraction measurements on these compounds for temperatures between 12K and 550K. The measurements indicate that at high temperatures both compounds are paramagnetic. Below T N = 380K CeMn 2 Si 2 becomes a collinear AF, with a structure similar to that reported by Siek et al. in which the magnetic propagation vector is τ = (0 0 1). CeMn 2 Ge 2 on the other hand, exhibits two different magnetic transitions. At T N ∼ 415K there is a transition to a collinear AF phase characterized by the commensurate propagation wavevector τ = (1 0 1). At T C = 318K there is a transition to a conical structure with a ferromagnetic component along the c-axis and a helical component in the ab plane. The helical component is characterized by the incommensurate propagation vector τ = (1 0 1-q z ), where q z is temperature dependent. These findings are consistent with the recent results of Welter et al

  11. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  12. Production of hydrogen with methane decomposition using Ni-Mn/Ce-ZrO{sub 2} catalysts; Produccion de hidrogeno via descomposicion de metano mediante catalizadores de Ni-Mn/Ce-ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, C; Hernandez-Pichardo, M L; Valenzuela, M A [Instituto Politecnico Nacional-ESIQIE, Mexico, D.F. (Mexico); Del Angel, P; Montoya de la Fuente, J.A. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2009-09-15

    The catalytic decomposition of methane makes it possible to obtain CO and CO{sub 2} free hydrogen, which is a desirable characteristic for fuel cell applications. In addition, this method simultaneously obtains diverse carbon nanostructures with a large variety of applications. This work prepared catalysts with different Ni contents supported by Ce-Zr mixed oxides and doped with manganese to promote activity. The supports were synthesized with surfactant-assisted coprecipitation. The Ni and Mn deposits were performed using conventional impregnation for evaluation in the methane decomposition catalyst at 500 degrees Celsius. It was observed that with the incorporation of 1% of Mn into the Ni0 active phase, the conversion of methane into hydrogen and carbon nanostructures increased. The results of reduction at the programmed temperature indicate that the addition of Mn enables the formation of different NiO{sub x} species, increasing dispersion and the degree of reduction to Ni0. Analyses with electron and transmission microscopy show the formation of distinct species of carbon, including nanotubes, nanofibers and concentric onion-like structures, as well as a significant formation of encapsulated Ni0 particles. [Spanish] La descomposicion catalitica de metano permite la obtencion de hidrogeno libre de CO y CO{sub 2}, lo cual es una caracteristica deseable para su aplicacion en celdas de combustible. Ademas, por esta ruta, simultaneamente se obtienen diversas nanoestructuras de carbono con una gran variedad de aplicaciones. En este trabajo se prepararon catalizadores con diferentes contenidos de Ni soportados en oxidos mixtos Ce-Zr y se doparon con manganeso como promotor de actividad. Los soportes se sintetizaron por coprecipitacion asistida por surfactante y el deposito del Ni y del Mn se efectuo por impregnacion convencional para su evaluacion en la descomposicion catalitica de metano a 500 grados centigrados. Se observo que mediante la incorporacion de 1% de Mn a

  13. The Metalloporphyrin Antioxidant, MnTE-2-PyP, Inhibits Th2 Cell Immune Responses in an Asthma Model

    Directory of Open Access Journals (Sweden)

    Paiboon Jungsuwadee

    2012-08-01

    Full Text Available MnTE-2-PyP, a superoxide dismutase mimetic, inhibited OVA-induced airway inflammation in mice suggesting an effect on Th2 responsiveness. Thus, we hypothesized that MnTE-2-PyP may alter dendritic cell-Th2 interactions. Bone marrow derived dendritic cells (DC and OVA323-339-specific Th2 cells were cultured separately in the presence or absence of MnTE-2-PyP for 3 days prior to the co-culturing of the two cell types in the presence of an OVA323-339 peptide and in some cases stimulated with CD3/CD28. MnTE-2-PyP-pretreated DC inhibited IL-4, IL-5 and IFNγ production and inhibited Th2 cell proliferation in the DC-Th2 co-culturing system in the presence of the OVA323-339 peptide. Similar results were obtained using the CD3/CD28 cell-activation system; the addition of MnTE-2-PyP inhibited Th2 cell proliferation. MnTE-2-PyP suppressed CD25 expression on OVA-specific Th2 cells, which implied that MnTE-2-PyP can inhibit the activation of Th2 cells. MnTE-2-PyP also down-regulated co-stimulatory molecules: CD40, CD80 and CD86 on immature DC. Our studies suggest that the major mechanism by which MnTE-2-PyP inhibits airway inflammation is by acting on the DC and suppressing Th2 cell proliferation and activation.

  14. Effects of thermo-mechanical treatment and microalloying with Cr, Nb and Ti on phase transformation in C-Mn steel strips produced by compact strip production process

    International Nuclear Information System (INIS)

    Zhu, Y.Z.; Liang, D.M.; Li, J.C.; Xu, J.P.; Xue, Z.L.

    2011-01-01

    Highlights: → The order of solid solution of carbides influences phase transformation of C-Mn steel in cooling. → Evidences of early stage of solid solution of carbides were provides in the paper. → Transitional state evidences such as carbon enriched regions were observed in this study. - Abstract: The C-Mn steel strips microalloyed with Cr, Nb, Ti was produced by compact strip production process and then heat-treated under different conditions. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy were used to investigate phase transformations in the steel after different treatments. It was revealed that the phase transformations upon quenching were greatly affected by the austenization temperature and time. When the steel was annealed at 950 deg. C, carbides of Cr, Mn and Fe were dissolved dramatically, while carbides of Nb and Ti are relatively stable at this temperature. When the temperature increases to 1100 deg. C, the carbides of Nb were dissolved rapidly, while the carbides of Ti still show somewhat stable (partial dissolution). Annealing time influences both the amount and the shapes of carbides in the steel, which leads to different phase transformations in the following air cooling processes. Grain growth in the steel in annealing process strongly depends on the dissolution of carbides on grain boundaries. Additionally, a subsequent rolling after annealing treatment at 950 deg. C lead to obvious precipitation of carbides of Ti and Nb in the steel.

  15. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  16. Versatility of MnO2 for lithium battery applications

    CSIR Research Space (South Africa)

    Thackeray, MM

    1993-03-15

    Full Text Available , layered-MnO2, spinel-related Li2O.yMnO2 (y > = 2.5) and ramsdellite-MnO2 materials. An attempt has been made to clarify issues relating to the structural features of 'CDMO'-type materials that are prepared by the reaction of gamma-MnO2 with LiNO3 (or Li...

  17. Thermal synthesis of oxide molecular sieve and Mn (K-OMS-2) from K-birnessite obtained from Sol-gel method

    International Nuclear Information System (INIS)

    Rezende, D.S.; Figueira, B.A.M.; Moraes, M.C. de; Silva, L.N. da; Mercury, J.M.R.; Figueiredo, G.P. de

    2016-01-01

    This study presents the thermal synthesis of molecular sieve with K-OMS2 structure from K-birnessite tunneling process, one Mn oxide with structure in layer. According X-Ray diffraction data it was possible to monitoring the conversion of the layered structure around 550 deg C for (K-OMS-2) tunnel with tetragonal system and I2/m space group. The FTIR main spectrum bands of K-OMS-2 was observed in 700, 525 e 470 cm-1 region and are related to elongation Mn 3+ -O e Mn 4+ -O in the tunnel structure. The product morphology identified by Scanning Electron Microscopy it was verified as pseudo tetragonal, reflecting externally the crystallographic system of cryptomelane structure. The results reveal one simple route for the Mn oxide molecular sieve with K-OMS-2 structure

  18. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  19. CaSO4:DY,Mn: A new and highly sensitive thermoluminescence phosphor for versatile dosimetry

    Science.gov (United States)

    Bahl, Shaila; Lochab, S. P.; Kumar, Pratik

    2016-02-01

    With the advent of newer techniques for dose reduction coupled with the development of more sensitive detectors, the radiation doses in radiological medical investigation are decreasing. Nevertheless, keeping the tenet in mind that all radiation doses could entail risk, there is a need to develop more sensitive dosimeters capable of measuring low doses. This paper gives the account of the development of a new and sensitive phosphor CaSO4:Dy,Mn and its characterization. The standard production procedure based on the recrystallization method was used to prepare CaSO4:Dy,Mn. The Thermoluminescence (TL) studies were carried out by exposing it with gamma radiation (Cs-137) from 10 μGy to 100 Gy. The theoretical studies to determine the number of peaks and kinetic parameters related to the TL glow peaks in CaSO4:Dy,Mn was performed using the Computerized Glow Curve Deconvolution (CGCD) method. Experiments were performed to determine optimum concentration of the dopants Dysprosium (Dy) and Mangnese (Mn) in the host CaSO4 so that maximum sensitivity of the phosphor may be achieved. The optimum dopant concentration turned out to be 0.1 mol%. As there were two dopants Dy and Mn their relative ratio were varied in steps of 0.025 keeping the concentration of total dopant (Dy and Mn) 0.1 mol% always. The maximum TL intensity was seen in the CaSO4:Dy(0.025),Mn(0.075) combination. The TL sensitivity of this phosphor was found to be about 2 and 1.8 times higher than that of popular phosphor CaSO4:Dy and LiF:Mg,Cu,P (TLD-700H) respectively. This new phosphor CaSO4:Dy,Mn showed fading of 11% which is similar to that of the standard phosphor CaSO4:Dy. The paper concludes that the new, highly sensitive TL phosphor CaSO4:Dy,Mn has shown higher sensitivity and hence the potential to replace commonly used CaSO4:Dy.

  20. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    OpenAIRE

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-01-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): Ga1-xMnxAs and In1-xMnxAs. In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strengt...

  1. Synthesis of lithium mangan dioxide (LiMn2O4) for lithium-ion battery cathode from various lithium sources

    Science.gov (United States)

    Priyono, S.; Ginting, N. R.; Humaidi, S.; Subhan, A.; Prihandoko, B.

    2018-03-01

    LiMn2O4 as a cathode material has been synthesized via solid state reaction. The synthesis has been done by varying lithium sources such as LiOH.H2O and Li2CO3 while MnO2 was used as Mn sources. All raw materials were mixed stoichiometrically to be the precursors of LiMn2O4. The precursors were sintered using high temperature furnace at 800 °C for 4 hours in atmospheric condition to form final product. The final products were sieved to separate the finer and smoother particles from the coarse ones. The products were characterized by X-Ray Diffractometer (XRD) to identify phases and crystal structure. The peak wave number was also determined using Fourier Transform Infra Red (FTIR) to find functional group. LiMn2O4 sheets were prepared by mixing active material with polyvinylidene fluoride (PVdF) and acetylene black (AB) in mass ratio of 85:10:5 wt.% in N,N-Dimethylacetamide (DMAc) solvents to form slurry. The slurry was then coated onto Al foil with thickness of about 0.15 mm and dried in an oven. LiMn2O4 sheet was cut into circular discs and arranged with separator, metallic lithium, and electrolyte in a coin cell. Automatic battery cycler was used to measure electrochemical performance and specific capacity of the cell. XRD analysis showed that sample synthesized with Li2CO3 has higher crystallinity and more pristine than sample synthesized with LiOH.H2O. FTIR analysis revealed that both of samples have identical functional group but sample with Li2CO3 source tend to degrade. Cyclic voltammetry data gave information that sample with LiOH.H2O source has better electrochemical performance. It showed double oxidation/reduction peaks more clearly but sample with Li2CO3 source has higher specific capacity (64.78 mAh/g) than sample with LiOH.H2O (50 mAh/g).

  2. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    Science.gov (United States)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  3. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Hernández, L.; Estévez-Hernández, O. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico); Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Hernández, M.P. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Díaz, J.A.; Farías, M.F. [Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Reguera, E., E-mail: edilso.reguera@gmail.com [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico)

    2017-03-15

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}O nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.

  4. Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO3 Epitaxial Thin Film System

    DEFF Research Database (Denmark)

    Niu, Wei; Liu, Wenqing; Gu, Min

    2018-01-01

    that play a decisive role in the emergence of ferromagnetism in the otherwise antiferromagnetic LaMnO3 thin films are found. Combining spatially resolved electron energy‐loss spectroscopy, X‐ray absorption spectroscopy, and X‐ray magnetic circular dichroism techniques, it is determined unambiguously...... provide a hitherto‐unexplored multivalence state of Mn on the emergent magnetism in undoped manganite epitaxial thin films, such as LaMnO3 and BiMnO3, and shed new light on all‐oxide spintronic devices....

  5. Room Temperature Ferromagnetic Mn:Ge(001

    Directory of Open Access Journals (Sweden)

    George Adrian Lungu

    2013-12-01

    Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.

  6. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function.

    Science.gov (United States)

    Bihani, Subhash C; Chakravarty, Dhiman; Ballal, Anand

    2016-04-01

    Manganese catalases (Mn-catalases), a class of H2O2 detoxifying proteins, are structurally and mechanistically distinct from the commonly occurring catalases, which contain heme. Active site of Mn-catalases can serve as template for the synthesis of catalase mimetics for therapeutic intervention in oxidative stress related disorders. However, unlike the heme catalases, structural aspects of Mn-catalases remain inadequately explored. The genome of the ancient cyanobacterium Anabaena PCC7120, shows the presence of two Mn-catalases, KatA and KatB. Here, we report the biochemical and structural characterization of KatB. The KatB protein (with a C-terminal his-tag) was over-expressed in Escherichia coli and purified by affinity chromatography. On the addition of Mn(2+) to the E. coli growth medium, a substantial increase in production of the soluble KatB protein was observed. The purified KatB protein was an efficient catalase, which was relatively insensitive to inhibition by azide. Crystal structure of KatB showed a hexameric assembly with four-helix bundle fold, characteristic of the Ferritin-like superfamily. With canonical Glu4His2 coordination geometry and two terminal water ligands, the KatB active site was distinctly different from that of other Mn-catalases. Interestingly, the KatB active site closely resembled the active sites of ruberythrin/bacterioferritin, bi-iron members of the Ferritin-like superfamily. The KatB crystal structure provided fundamental insights into the evolutionary relationship within the Ferritin-like superfamily and further showed that Mn-catalases can be sub-divided into two groups, each with a distinct active site configuration. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Local Structure of Mn in (La1-xHox)2/3Ca1/3MnO3 Studied by X-ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Pietnoczka, A.; Bacewicz, R.; Antonowicz, J.; Zalewski, W.; Pekala, M.; Drozd, V.; Fagnard, J.F.; Vanderbemden, P.

    2010-01-01

    Results of X-ray absorption fine structure measurements in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 with 0.15 3 is doped with a divalent element such as Ca 2+ , substituting for La 3+ , holes are induced in the filled Mn d orbitals. This leads to a strong ferromagnetic coupling between Mn sites. Ca ions in La 1-x Ca x MnO 3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn 3+ and Mn 4+ ). On the other hand, in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials. (authors)

  8. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3.

    Science.gov (United States)

    Parthipan, Punniyakotti; Elumalai, Punniyakotti; Sathishkumar, Kuppusamy; Sabarinathan, Devaraj; Murugan, Kadarkarai; Benelli, Giovanni; Rajasekar, Aruliah

    2017-10-01

    The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

  9. Electrodeposition synthesis of MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites and their visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xuyao [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Zhou, Xiaosong, E-mail: zxs801213@163.com [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China); Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn [Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130012 (China); Yang, Fei [The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101 (China); Jin, Bei; Xu, Tan; Li, Guosheng; Li, Manyi [School of Chemistry Science and Technology, and Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048 (China)

    2014-11-15

    Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis light absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.

  10. Binding of higher alcohols onto Mn(12) single-molecule magnets (SMMs): access to the highest barrier Mn(12) SMM.

    Science.gov (United States)

    Lampropoulos, Christos; Redler, Gage; Data, Saiti; Abboud, Khalil A; Hill, Stephen; Christou, George

    2010-02-15

    Two new members of the Mn(12) family of single-molecule magnets (SMMs), [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(Bu(t)OH)(H(2)O)(3)].2Bu(t)OH (3.2Bu(t)OH) and [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(C(5)H(11)OH)(4)] (4) (C(5)H(11)OH is 1-pentanol), are reported. They were synthesized from [Mn(12)O(12)(O(2)CMe)(16)(H(2)O)(4)].2MeCO(2)H.4H(2)O (1) by carboxylate substitution and crystallization from the appropriate alcohol-containing solvent. Complexes 3 and 4 are new members of the recently established [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(solv)(4)] (solv = H(2)O, alcohols) family of SMMs. Only one bulky Bu(t)OH can be accommodated into 3, and even this causes significant distortion of the [Mn(12)O(12)] core. Variable-temperature, solid-state alternating current (AC) magnetization studies were carried out on complexes 3 and 4, and they established that both possess an S = 10 ground state spin and are SMMs. However, the magnetic behavior of the two compounds was found to be significantly different, with 4 showing out-of-phase AC peaks at higher temperatures than 3. High-frequency electron paramagnetic resonance (HFEPR) studies were carried out on single crystals of 3.2Bu(t)OH and 4, and these revealed that the axial zero-field splitting constant, D, is very different for the two compounds. Furthermore, it was established that 4 is the Mn(12) SMM with the highest kinetic barrier (U(eff)) to date. The results reveal alcohol substitution as an additional and convenient means to affect the magnetization relaxation barrier of the Mn(12) SMMs without major change to the ligation or oxidation state.

  11. Synthesis, crystal structure and electrical properties of A-site cation ordered BaErMn2O5 and BaErMn2O6

    International Nuclear Information System (INIS)

    Świerczek, Konrad; Klimkowicz, Alicja; Zheng, Kun; Dabrowski, Bogdan

    2013-01-01

    In this paper, we report on a synthesis procedure, structural and electrical properties of BaErMn 2 O 5 and BaErMn 2 O 6 , A-site double perovskites having layered arrangement of Ba and Er cations. These materials belong to a family of BaLnMn 2 O 5+δ oxides, which up to now were successfully synthesized for Ln=Y and La–Ho lanthanides. Up to our knowledge, this is the first report on the successful synthesis of BaErMn 2 O 5 and BaErMn 2 O 6 , yielding>95 wt% of the considered compounds. Structural characterization of the materials is given at room temperature, together with in situ XRD studies, performed during oxidation of BaErMn 2 O 5 in air, at elevated temperatures up to 500 °C. A complex structural behavior was observed, with oxidation process of BaErMn 2 O 5 occurring at around 300 °C. The oxidized BaErMn 2 O 6 shows a structural phase transition at about 225 °C. Results of structural studies are supported by thermogravimetric measurements of the oxidation process, performed in air, as well as reduction process, preformed in 5 vol% of H 2 in Ar. Additionally, isothermal oxidation/reduction cycles were measured at 500 °C, showing interesting properties of BaErMn 2 O 5+δ , from a point of view of oxygen storage technology. Electrical conductivity of BaErMn 2 O 5 is of the order of 10 −4 S cm −1 at room temperature and shows activated character on temperature with activation energy E a =0.30(1) eV. Positive sign of Seebeck coefficient for this material indicates holes as dominant charge carriers. Oxidized BaErMn 2 O 6 possesses much higher electrical conductivity, almost 0.2 S cm −1 at room temperature. Additional, about 10-fold increase of electrical conductivity, occurring in the vicinity of 225 °C for this material, can be associated with phase transition from charge/orbital-ordered insulator COI(CE) to paramagnetic metal PM phase. The highest conductivity for BaErMn 2 O 6 was measured near 500 °C and is almost equal to 40 S cm −1 , while

  12. MnTE-2-PyP modulates thiol oxidation in a hydrogen peroxide-mediated manner in a human prostate cancer cell.

    Science.gov (United States)

    Tong, Qiang; Zhu, Yuxiang; Galaske, Joseph W; Kosmacek, Elizabeth A; Chatterjee, Arpita; Dickinson, Bryan C; Oberley-Deegan, Rebecca E

    2016-12-01

    To improve the treatment of advanced prostate cancer, the development of effective and innovative antitumor agents is needed. Our previous work demonstrated that the ROS (reactive oxygen species) scavenger, MnTE-2-PyP, inhibited human prostate cancer growth and also inhibited prostate cancer migration and invasion. We showed that MnTE-2-PyP treatment altered the affinity of the histone acetyltransferase enzyme, p300, to bind to DNA. We speculate that this may be one mechanism by which MnTE-2-PyP inhibits prostate cancer progression. Specifically, MnTE-2-PyP decreased p300/HIF-1/CREB complex (p300/hypoxia-inducible factor-1/cAMP response element-binding protein) binding to a specific hypoxia-response element (HRE) motif within the plasminogen activator inhibitor-1 (PAI-1) gene promoter region, and consequently, repressed PAI-1 expression. However, it remains unclear how MnTE-2-PyP reduces p300 complex binding affinity to the promoter region of specific genes. In this study, we found that overexpression of Cu/ZnSOD (superoxide dismutase 1, SOD1) significantly suppressed PAI-1 gene expression and p300 complex binding to the promoter region of PAI-1 gene, just as was observed in cells treated with MnTE-2-PyP. Furthermore, catalase (CAT) overexpression rescued the inhibition of PAI-1 expression and p300 binding by MnTE-2-PyP. Taken together, the above findings suggest that hydrogen peroxide (H 2 O 2 ) is likely the mediator through which MnTE-2-PyP inhibits the PAI-1 expression and p300 complex binding in PC3 cells. To confirm this, we measured the production of H 2 O 2 following overexpression of SOD1 or catalase with MnTE-2-PyP treatment in the presence or absence of radiation. We found that MnTE-2-PyP increased the intracellular steady-state levels of H 2 O 2 and increased nuclear H 2 O 2 levels. As expected, catalase overexpression significantly decreased the levels of intracellular H 2 O 2 induced by MnTE-2-PyP. We then determined if this increased H 2 O 2

  13. Magnetic ordering of GdMn2

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Ritter, C.; Ballou, R.; Deportes, J.

    1999-01-01

    Complete text of publication follows. GdMn 2 crystallizes in the C15 cubic Laves phase structure. Within this structure Mn atoms lie at the vertices of regular tetrahedra stacked in the diamond arrangement connected by sharing vertices, leading to a strong geometric frustration. An antiferromagnetic magnetic order sets in below T N ∼ 105 K. It gives rise to a large magnetovolume effect (ΔV/V ∼ 1%). Thermal expansion data show two anomalies at 105 K and 35 K. The second anomaly was often interpreted as the ferromagnetic ordering of Gd sublattice. Moessbauer data indicate however, that Gd sublattice orders at T N ∼ 105 K as the Mn moments. Elastic neutron scattering measurements were performed using short wavelength neutron beam (λ = 0.5 A) on D9 at ILL. No magnetic contribution to the nuclear peaks was found excluding thereby any K = [0 0 0] component. However antiferromagnetic peaks indexed by a propagation vector [2/3 2/3 0] were observed leading to a non collinear magnetic arrangement of both Mn and Gd sublattices. The results are discussed by invoking the geometric frustration associated with the Mn atomic packing and the singlet state of the Gd ions. (author)

  14. Large Magnetic Anisotropy in HfMnP

    Science.gov (United States)

    Parker, David; Lamichhane, Tej; Taufour, Valentin; Masters, Morgan; Thimmaiah, Srinivasa; Bud'Ko, Ser'gey; Canfield, Paul

    We present a theoretical and experimental study of two little-studied manganese phosphide ferromagnets, HfMnP and ZrMnP, with Curie temperatures above room temperature. We find an anisotropy field in HfMnP approaching 10 T - larger than that of the permanent magnet workhorse NdFeB magnets. From theory we determine the source of this anisotropy. Our results show the potential of 3d-element-based magnetic materials for magnetic applications.

  15. Use of ZnO:Mn particles for degradation of methylene blue by photocatalysis process; Utilizacao de particulas de ZnO:Mn para a degradacao do azul de metileno por processo de fotocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, T. R.; Swerts, J. P.; Vicente, M. A., E-mail: tania.giraldi@unifal-mg.edu.br, E-mail: jefersonps21@hotmail.com, E-mail: maquelyaspr@oi.com.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia; Mendonca, V.R. de, E-mail: vrm@ifsp.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Sao Paulo (IFSP), Itapetininga, SP (Brazil); Paris, E.C.; Ribeiro, C., E-mail: elaine.paris@embrapa.br, E-mail: caue.ribeiro@embrapa.br [Embrapa Instrumentacao, Sao Carlos, SP (Brazil)

    2016-10-15

    The management of water use in the agricultural environment is a key factor to build new environmentally sustainable productive methods. Photocatalysis is a promising method for water decontamination. This research paper aimed to evaluate the photocatalytic potential of pure and Mn-doped ZnO particles. The materials were obtained by the polymeric precursor method, and characterized by X-ray diffraction, N{sub 2} adsorption in low temperature, infrared and ultraviolet spectroscopy, and photoluminescence. In order to evaluate ZnO:Mn particles photo efficiency, experiments were carried out by applying the methylene blue dye solution to photodegradation under UVC exposure. The particles had ZnO single-phase, but low specific surface area. The sample ZnO:0.25% Mn presented higher efficiency in the methylene blue photocatalytic degradation test. This efficiency was related to a higher band gap energy value and a lower rate of electron recombination, which allows greater formation of hydroxyl radicals, which are responsible for dye degradation. (author)

  16. Electronic transport properties of nanostructured MnSi-films

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.

    2018-05-01

    MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.

  17. Morphology and Precipitation Kinetics of MnS in Low-Carbon Steel During Thin Slab Continuous Casting Process

    Institute of Scientific and Technical Information of China (English)

    YU Hao; KANG Yong-lin; ZHAO Zheng-zhi; SUN Hao

    2006-01-01

    The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.

  18. Formation of Nano-crystalline Todorokite from Biogenic Mn Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Feng, X.; Zhu, M; Ginder-Vogel, M; Ni, C; Parikh, S; Sparks, D

    2010-01-01

    Todorokite, as one of three main Mn oxide phases present in oceanic Mn nodules and an active MnO{sub 6} octahedral molecular sieve (OMS), has garnered much interest; however, its formation pathway in natural systems is not fully understood. Todorokite is widely considered to form from layer structured Mn oxides with hexagonal symmetry, such as vernadite ({delta}-MnO{sub 2}), which are generally of biogenic origin. However, this geochemical process has not been documented in the environment or demonstrated in the laboratory, except for precursor phases with triclinic symmetry. Here we report on the formation of a nanoscale, todorokite-like phase from biogenic Mn oxides produced by the freshwater bacterium Pseudomonas putida strain GB-1. At long- and short-range structural scales biogenic Mn oxides were transformed to a todorokite-like phase at atmospheric pressure through refluxing. Topotactic transformation was observed during the transformation. Furthermore, the todorokite-like phases formed via refluxing had thin layers along the c* axis and a lack of c* periodicity, making the basal plane undetectable with X-ray diffraction reflection. The proposed pathway of the todorokite-like phase formation is proposed as: hexagonal biogenic Mn oxide {yields} 10-{angstrom} triclinic phyllomanganate {yields} todorokite. These observations provide evidence supporting the possible bio-related origin of natural todorokites and provide important clues for understanding the transformation of biogenic Mn oxides to other Mn oxides in the environment. Additionally this method may be a viable biosynthesis route for porous, nano-crystalline OMS materials for use in practical applications.

  19. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Layek, Samar, E-mail: samarlayek@gmail.com; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni{sub 1−x}Mn{sub x}O (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  20. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    International Nuclear Information System (INIS)

    Layek, Samar; Verma, H.C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni_1_−_xMn_xO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum. - Highlights: • Mn-doped NiO nanoparticles are prepared by a simple hydrothermal method. • Unit cell volume decreases with increasing doping concentration. • Mn-doping leads to room temperature ferromagnetism in NiO nanoparticles. • Magnetization is highest for 2% Mn-doping. • Above 2%, magnetization decreases with increasing doping.

  1. Thermoelectric properties of a Mn substituted synthetic tetrahedrite.

    Science.gov (United States)

    Chetty, Raju; D S, Prem Kumar; Rogl, Gerda; Rogl, Peter; Bauer, Ernst; Michor, Herwig; Suwas, Satyam; Puchegger, Stephan; Giester, Gerald; Mallik, Ramesh Chandra

    2015-01-21

    Tetrahedrite compounds Cu(12-x)Mn(x)Sb4S13 (0 ≤x≤ 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I4[combining macron]3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn(2+) at the Cu(1+) site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 ± 0.1 × 10(-6) K(-1) is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Θ(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 μB/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

  2. Magnetic structure of the YbMn2SbBi compound

    International Nuclear Information System (INIS)

    Morozkin, A.V.; Manfrinetti, P.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A neutron diffraction investigation in zero applied field of La 2 O 2 S-type YbMn 2 SbBi shows antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. → Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). → Below 112(3) K, the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. → The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions. - Abstract: A neutron diffraction investigation has been carried out on the trigonal La 2 O 2 S-type (hP5, space group P3-bar ml, No. 164; also CaAl 2 Si 2 -type) YbMn 2 SbBi intermetallic compound. The YbMn 2 SbBi presents antiferromagnetic ordering below 138(3) K and ferrimagnetic ordering below 112(3) K. Between 138 and 112 K, the magnetic structure of YbMn 2 SbBi consists of antiferromagnetically coupled ab-plane magnetic moments of the manganese atoms (D 1d magnetic point group). Below 112(3) K, the ferromagnetic components of Yb and Mn begin to develop, and the magnetic structure of YbMn 2 SbBi becames the sum antiferromagnetic component with D 1d magnetic point group and ferromagnetic one with C 2 magnetic point group. The magnitude of Yb and Mn magnetic moments in YbMn 2 SbBi at 2 K (M Yb = 3.6(2) μ B , M Mn = 3.5(2) μ B ) correspond to the trivalent state of the Yb ions and tetravalent state of the Mn ions.

  3. Structural and magnetic properties of Mn nanoparticles prepared by arc-discharge

    International Nuclear Information System (INIS)

    Si, P.Z.; Brueck, E.; Zhang, Z.D.; Tegus, O.; Zhang, W.S.; Buschow, K.H.J.; KlAsse, J.C.P.

    2005-01-01

    Mn nanoparticles are prepared by arc discharge technique. MnO, α-Mn, β-Mn, and γ-Mn are detected by X-ray diffraction, while the presence of Mn 3 O 4 and MnO 2 is revealed by X-ray photoelectron spectroscopy. Transmission electron microscopy observations show that most of the Mn nanoparticles have irregular shapes, rough surfaces and a shell/core structure, with sizes ranging from several nanometers to 80 nm. The magnetic properties of the Mn nanoparticles are investigated between 2 and 350 K at magnetic fields up to 5 T. A magnetic transition occurring near 43 K is attributed to the formation of the ferrimagnetic Mn 3 O 4 . The coercivity of the Mn nanoparticles, arising mainly from Mn 3 O 4 , decreases linearly with increasing temperature below 40 K. Below the blocking temperature T B ∼ 34 K, the hysteresis loops exhibit large coercivity (up to 500 kA/m), owing to finite size effects, and irreversibility in the loops is found up to 4 T, and magnetization is not saturated up to 5 T. The relationship between structure and the magnetic properties are discussed

  4. Changes in microbial communities in green waste and sewage sludge composts following maturity

    International Nuclear Information System (INIS)

    Albrecht, R.; Ruaudel, F.; Petit, J. Le; Terrom, G.; Perissol, C.

    2009-01-01

    Composting is an interesting way to valorize various bio wastes and is becoming an increasingly used soil amendment. compost is a product obtained after a humification process. However, compost utilization as amendment needs to know precisely its stability and maturity. since composting is mainly a microbial process, knowledge of the various microbial groups and their role in the process of bio-oxidation is essential. (Author)

  5. The influence of bismuth oxide doping on the rechargeability of aqueous cells using MnO2 cathode and LiOH electrolyte

    International Nuclear Information System (INIS)

    Minakshi, Manickam; Mitchell, David R.G.

    2008-01-01

    Bi-doped manganese dioxide (MnO 2 ) has been prepared from γ-MnO 2 by physical admixture of bismuth oxide (Bi 2 O 3 ). The doping improved the cycling ability of the aqueous cell. These results are discussed and compared with the electrochemical behavior of bismuth-free MnO 2 . Batteries using the traditional potassium hydroxide (KOH) electrolyte are non-rechargeable. However, with lithium hydroxide (LiOH) as an electrolyte, the cell becomes rechargeable. Furthermore, the incorporation of bismuth into MnO 2 in the LiOH cell was found to result in significantly longer cycle life, compared with cells using undoped MnO 2 . The Bi-doped cell exhibited a greater capacity after 100 discharge cycles, than the undoped cell after just 40 cycles. X-ray diffraction and the microscopic analysis suggest that the presence of Bi 3+ ions reduces the magnitude of structural changes occurring in MnO 2 during cycling. Comparison with additives assessed in our previous studies (titanium disulfide (TiS 2 ); titanium boride (TiB 2 )) shows that the best rechargeability behavior is obtained for the current Bi-doped MnO 2 . As the size of Bi 3+ ions (0.96 A) is much larger than Mn 3+ (0.73 A) or Mn 2+ (0.67 A) they have effectively prevented the formation of non-rechargeable products

  6. Low-temperature abatement of toluene over Mn-Ce oxides catalysts synthesized by a modified hydrothermal approach

    Science.gov (United States)

    Du, Jinpeng; Qu, Zhenping; Dong, Cui; Song, Lixin; Qin, Yuan; Huang, Na

    2018-03-01

    Mn-Ce oxides catalysts were synthesized by a novel method combining redox-precipitation and hydrothermal approach. The results indicate that the ratio between manganese and cerium plays a crucial role in the formation of catalysts, and the textual properties as well as catalytic activity are remarked affected. Mn0.6Ce0.4O2 possesses a predominant catalytic activity in the oxidation of toluene, over 70% of toluene is converted at 200 °C, and the complete conversion temperature is 210 °C. The formation of Mn-Ce solid solution markedly improves the surface area as well as pore volume of Mn-Ce oxide catalyst, and Mn0.6Ce0.4O2 possesses the largest surface area of 298.5 m2/g. The abundant Ce3+ and Mn3+ on Mn0.6Ce0.4O2 catalyst facilitate the formation of oxygen vacancies, and improve the transfer of oxygen in the catalysts. Meanwhile, it is found that cerium in Mn-Ce oxide plays a key role in the adsorption of toluene, while manganese is proved to be crucial in the oxidation of toluene, the cooperation between manganese and cerium improves the catalytic reaction process. In addition, the reaction process is investigated by in situ DRIFT measurement, and it is found that the adsorbed toluene could be oxidized to benzyl alcohol as temperature rises around 80-120 °C that can be further be oxidized to benzoic acid. Then benzoic acid could be decomposed to formate and/or carbonate species as temperature rises to form CO2 and H2O. In addition, the formed by-product phenol could be further oxidized into CO2 and H2O when the temperature is high enough.

  7. Structure and properties of Mn4Cl9: An antiferromagnetic binary hyperhalogen

    Science.gov (United States)

    Li, Yawei; Zhang, Shunhong; Wang, Qian; Jena, Puru

    2013-02-01

    Calculations based on density functional theory show that the structure of Mn4Cl9 anion is that of a Mn atom at the core surrounded by three MnCl3 moieties. Since Mn is predominantly divalent and MnCl3 is known to be a superhalogen with a vertical detachment energy (VDE) of 5.27 eV, Mn4Cl9 can be viewed as a hyperhalogen with the formula unit Mn(MnCl3)3. Indeed, the calculated VDE of Mn4Cl9 anion, namely 6.76 eV, is larger than that of MnCl3 anion. More importantly, unlike previously discovered hyperhalogens, Mn4Cl9 is the first such hyperhalogen species composed of only two constituent atoms. We further show that Mn4Cl9 can be used as a ligand to design molecules with even higher VDEs. For example, Li[Mn(MnCl3)3]2 anion has a VDE of 7.26 eV. These negatively charged clusters are antiferromagnetic with most of the magnetic moments localized at the Mn sites. Our studies show new pathways for creating binary hyperhalogens.

  8. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  9. Magnetic behavior of Co–Mn co-doped ZnO nanoparticles

    International Nuclear Information System (INIS)

    Li, Hengda; Liu, Xinzhong; Zheng, Zhigong

    2014-01-01

    Here, we report on systematic studies of the magnetic properties of Co and Mn co-doped ZnO nanoparticles prepared by a sol–gel technique. The effect of the concentration of the doping ions on the magnetic properties of Co and Mn co-doped ZnO nanoparticles is presented. X-ray diffraction characterizations (XRD) of co-doped ZnO nanoparticles are all wurtzite structure. The Zn 0.96 Co 0.02 Mn 0.02 O nanoparticles and Zn 0.94 Co 0.02 Mn 0.04 O nanoparticles display ferromagnetic behavior at room temperature. Superconducting quantum interference device (SQUID) magnetometer figures show that with the concentration of the Mn ions increased, the saturation magnetic moment (M s ) increased, and the magnetic is probably due to the co-doping of the Mn ions. Our results demonstrate that the Mn ions doping concentration play an important role in the ferromagnetic properties of Co–Mn co-doped ZnO nanoparticles at room temperature. - Highlights: • The effect of the doping ions on the magnetic properties is presented. • The magnetic is probably due to the co-doping of the Mn ions. • The Mn ions concentration play an important role in the ferromagnetic properties

  10. Correlation between magnetoresistance and magnetization in Ag Mn and Au Mn spin glasses

    International Nuclear Information System (INIS)

    Majumdar, A.K.

    1982-08-01

    Magnetization has been measured between 2 and 77 K and mostly up to fields of 20 K Oe in Ag Mn (1.1 and 5.4 at %) and Au Mn (1.8 and 4.6 at %) spin glass samples where the transverse magnetoresistance was measured earlier. It is found for the first time over a wide range of temperature and magnetic field that the negative magnetoresistance varies as the square of the bulk magnetization resulting in an universal curve in the spin glass regime. A theoretical justification is provided in terms of exciting theories. (author)

  11. Microwave-assisted synthesis of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    She, Xiao; Zhang, Xinmin; Liu, Jingya [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Xianghua; Huang, Zhiliang [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shang, Songmin, E-mail: shang.songmin@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-10-15

    Highlights: • Mn{sub 3}O{sub 4}@rGO nanocomposites were prepared by one-step microwave-assisted method. • The growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide occurred simultaneously. • Specific capacitance of the nanocomposite is higher than those of rGO and Mn{sub 3}O{sub 4}. • The nanocomposites have good rate capability and cycling stability. - ABSTRACT: One-step microwave-assisted synthetic route for the fabrication of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide (Mn{sub 3}O{sub 4}@rGO) nanocomposites has been demonstrated. The morphological structures of the nanocomposites are characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM), respectively. All of the results indicate that the microwave-assisted synthesis results in the growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide simultaneously in ethylene glycol-water system. The specific capacitance of the as-prepared Mn{sub 3}O{sub 4}@rGO nanocomposite is higher than those of rGO and pure Mn{sub 3}O{sub 4}, which indicates the synergetic interaction between rGO and Mn{sub 3}O{sub 4}. The nanocomposites also have good rate capability and cycling stability in electrochemical experiments. This facile technique may be extended to the large scale and cost effective production of other composites based on graphene and metal oxide for many applications.

  12. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Science.gov (United States)

    Akdogan, O.

    2018-05-01

    The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…). However recent worldwide reserve and export limitation problem of rare earths, shifted researchers' focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …), Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  13. Synthesis of hard magnetic Mn3Ga micro-islands by e-beam evaporation

    Directory of Open Access Journals (Sweden)

    O. Akdogan

    2018-05-01

    Full Text Available The permanent magnet industry heavily depends on Nd-Fe-B and Sm-Co alloys because of their high-energy product and high room temperature coercivity. Main ingredient for having such superior magnetic properties compared to other known ferromagnetic materials is rare earth elements (Nd, Sm, Dy…. However recent worldwide reserve and export limitation problem of rare earths, shifted researchers’ focus to rare earth free permanent magnets. Among many alternatives (FePt, Zr2Co11, FeNi …, Mn-based alloys are the most suitable due to abundance of the forming elements and trivial formation of the necessary hard phases. In this study, Mn3Ga micro islands have been prepared. Mn3Ga owes its hard magnetic properties to tetragonal D022 phase with magnetic anisotropy energy of 2 MJ/m3. Thin films and islands of Cr/MnGa/Cr layers have been deposited on Si/SiO2 wafers using combination of e-beam and thermal evaporation techniques. Cr has been used as buffer and cover layer to protect the sample from the substrate and prevent oxidation during annealing. Annealing under Ar/H2 forming gas has been performed at 350oC for 10 min. Nano thick islands of 25, 50 and 100 μm lateral size have been produced by photolithography technique. Room temperature coercivity of 7.5 kOe has been achieved on 100 μm micro islands of Mn3Ga. Produced micro islands could be a rare earth free alternative for magnetic memory and MEMS applications.

  14. Preparation of Mn-Zn nanoferrite by mechanical alloying

    International Nuclear Information System (INIS)

    Nasresfahani, M.

    2007-01-01

    Full text: In this research Mn-Zn nanoferrite (Mn x Zn 1-x Fe 2 O 4 ;X=0.3,0.5,0.7)were prepared by mechanical alloying of a mixture of 2 single phase ferrites, MnFe 2 O 4 and ZnFe 2 O 4 . First, ZnFe 2 O 4 and MnFe 2 O 4 were obtained by conventional ceramic technique. In this technique a mixture of related raw materials(ZnO and MnO 2 from merck company and Fe 2 O 3 domestic source) was first mixed and calcined at 1100 C for 3h in air. The starting materials used to prepare Mn-Zn nanoferrite were MnFe 2 O 4 and ZnFe 2 O 4 mixed in the ratio appropriate for the reaction: xMnFe 2 O 4+(1-x) ZnFe 2 O 4 MnxZn 1-x Fe 2 O 4 and milled at different times in SPEX8000M mixer/mill. XRD investigations was used to study the phase formation of the as-milled mixed ferrite. Using XRD patterns and Scherrer's formula, mean crystallite size of the single phase samples were calculated and were in the 10-20 nm. Saturation magnetization(Ms) of the powders was measured at room temperature by a very sensitive home made permeameter. The measured Ms values show that they are smaller than the Ms values associated with the same compound prepared by conventional ceramic technique. The decrease is due to the surface effect in nanoparticles, which can be explained on core-sell model. (authors)

  15. Materials for spintronic: Room temperature ferromagnetism in Zn-Mn-O interfaces

    International Nuclear Information System (INIS)

    Quesada, A.; Garcia, M.A.; Crespo, P.; Hernando, A.

    2006-01-01

    In this paper we study the room temperature ferromagnetism reported on Mn-doped ZnO and ascribed to spin polarization of conduction electrons. We experimentally show that the ferromagnetic behaviour is associated to the coexistence of Mn 3+ and Mn +4 in MnO 2 grains where diffusion of Zn promotes the Mn 4+→ Mn 3+ reduction. Potential uses of this material in spintronic devices are analysed

  16. Use of ZnO:Mn particles for degradation of methylene blue by photocatalysis process

    International Nuclear Information System (INIS)

    Giraldi, T. R.; Swerts, J. P.; Vicente, M. A.; Paris, E.C.; Ribeiro, C.

    2016-01-01

    The management of water use in the agricultural environment is a key factor to build new environmentally sustainable productive methods. Photocatalysis is a promising method for water decontamination. This research paper aimed to evaluate the photocatalytic potential of pure and Mn-doped ZnO particles. The materials were obtained by the polymeric precursor method, and characterized by X-ray diffraction, N_2 adsorption in low temperature, infrared and ultraviolet spectroscopy, and photoluminescence. In order to evaluate ZnO:Mn particles photo efficiency, experiments were carried out by applying the methylene blue dye solution to photodegradation under UVC exposure. The particles had ZnO single-phase, but low specific surface area. The sample ZnO:0.25% Mn presented higher efficiency in the methylene blue photocatalytic degradation test. This efficiency was related to a higher band gap energy value and a lower rate of electron recombination, which allows greater formation of hydroxyl radicals, which are responsible for dye degradation. (author)

  17. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xinjuan, E-mail: wangxj@hnu.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zhang Qinglin [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Zou Bingsuo, E-mail: zoubs@bit.edu.cn [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China); Micro-nano Technology Center and School of MSE, BIT, Beijing 100081 (China); Lei Aihua; Ren Pinyun [State Key lab of CBSC, Micronano Research Center, Hunan University, Changsha 410082 (China)

    2011-10-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 {mu}m were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn{sup 2+} ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  18. Synthesis of Mn-doped ZnS architectures in ternary solution and their optical properties

    International Nuclear Information System (INIS)

    Wang Xinjuan; Zhang Qinglin; Zou Bingsuo; Lei Aihua; Ren Pinyun

    2011-01-01

    Mn-doped ZnS sea urchin-like architectures were fabricated by a one-pot solvothermal route in a ternary solution made of ethylenediamine, ethanolamine and distilled water. The as-prepared products were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and photoluminescence spectra (PL). It was demonstrated that the as-prepared sea urchin-like architectures with diameter of 0.5-1.5 μm were composed of nanorods, possessing a wurtzite structures. The preferred growth orientation of nanorods was found to be the [0 0 2] direction. The PL spectra of the Mn-doped ZnS sea urchin-like architectures show a strong orange emission at 587 nm, indicating the successful doping of Mn 2+ ions into ZnS host. Ethanolamine played the role of oriented-assembly agent in the formation of sea urchin-like architectures. A possible growth mechanism was proposed to explain the formation of sea urchin-like architectures.

  19. Non radiative decay of Mn2+ emission in LnMB5O10:Bi,Mn (M = Mg,Cd,Zn)

    International Nuclear Information System (INIS)

    Jagannathan, R.; Rao, R.P.; Kutty, T.R.N.

    1990-01-01

    The family of lanthanide magnesium pentaborates with Tb(3+) and Eu(3+) as activators are efficient phosphor materials, Mn(2+) emission in these hosts in a subject of intensive investigation owing to its inexpensiveness. The energy transfer process from various sensitizers such as Bi(3+), Ce(3+), and Sb(3+) to Mn(2+) in these hosts have been studied in detail. The non radiative decay of Mn 2+ emission in these hosts is detailed in this paper

  20. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  1. Synthesis of MnFe2O4@Mn-Co oxide core-shell nanoparticles and their excellent performance for heavy metal removal.

    Science.gov (United States)

    Ma, Zichuan; Zhao, Dongyuan; Chang, Yongfang; Xing, Shengtao; Wu, Yinsu; Gao, Yuanzhe

    2013-10-21

    Magnetic nanomaterials that can be easily separated and recycled due to their magnetic properties have received considerable attention in the field of water treatment. However, these nanomaterials usually tend to aggregate and alter their properties. Herein, we report an economical and environmentally friendly method for the synthesis of magnetic nanoparticles with core-shell structure. MnFe2O4 nanoparticles have been successfully coated with amorphous Mn-Co oxide shells. The synthesized MnFe2O4@Mn-Co oxide nanoparticles have highly negatively charged surface in aqueous solution over a wide pH range, thus preventing their aggregation and enhancing their performance for heavy metal cation removal. The adsorption isotherms are well fitted to a Langmuir adsorption model, and the maximal adsorption capacities of Pb(II), Cu(II) and Cd(II) on MnFe2O4@Mn-Co oxide are 481.2, 386.2 and 345.5 mg g(-1), respectively. All the metal ions can be completely removed from the mixed metal ion solutions in a short time. Desorption studies confirm that the adsorbent can be effectively regenerated and reused.

  2. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    Science.gov (United States)

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  3. Hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures for supercapacitors.

    Science.gov (United States)

    Wang, Hsin-Yi; Xiao, Fang-Xing; Yu, Le; Liu, Bin; Lou, Xiong Wen David

    2014-08-13

    A facile two-step solution-phase method has been developed for the preparation of hierarchical α-MnO2 nanowires@Ni1-x Mnx Oy nanoflakes core-shell nanostructures. Ultralong α-MnO2 nanowires were synthesized by a hydrothermal method in the first step. Subsequently, Ni1-x Mnx Oy nanoflakes were grown on α-MnO2 nanowires to form core-shell nanostructures using chemical bath deposition followed by thermal annealing. Both solution-phase methods can be easily scaled up for mass production. We have evaluated their application in supercapacitors. The ultralong one-dimensional (1D) α-MnO2 nanowires in hierarchical core-shell nanostructures offer a stable and efficient backbone for charge transport; while the two-dimensional (2D) Ni1-x Mnx Oy nanoflakes on α-MnO2 nanowires provide high accessible surface to ions in the electrolyte. These beneficial features enable the electrode with high capacitance and reliable stability. The capacitance of the core-shell α-MnO2 @Ni1-x Mnx Oy nanostructures (x = 0.75) is as high as 657 F g(-1) at a current density of 250 mA g(-1) , and stable charging-discharging cycling over 1000 times at a current density of 2000 mA g(-1) has been realized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    International Nuclear Information System (INIS)

    Cao, Huawei; Lu, Pengfei; Cong, Zixiang; Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong; Gao, Tao; Wang, Shumin

    2013-01-01

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material

  5. Magnetic properties in (Mn,Fe)-codoped ZnO nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huawei [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Lu, Pengfei, E-mail: photon.bupt@gmail.com [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Cong, Zixiang [School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100976 (China); Yu, Zhongyuan; Cai, Ningning; Zhang, Xianlong [Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876 (China); Gao, Tao [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Wang, Shumin [Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden); State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-12-02

    Using the first-principles density functional theory, we have studied the electronic structures and magnetic properties of Mn/Fe codoped ZnO nanowires systematically. The calculated results of formation energy indicate that the configuration of the lowest energy where Mn and Fe atoms form nearest neighbors on the outer cylindrical surface layer along the [0001] direction, will be determined. The magnetic coupling of 8 types of Mn/Fe codoped ZnO nanowires was investigated and ferromagnetic state was found in certain configurations. The mechanism is from the fierce hybridization between 3d of Mn and Fe with O 2p near the Fermi level. The relative energy difference for configuration VIII is 0.221 eV, which indicates that room temperature ferromagnetism could be obtained in such a system and Mn/Fe codoped ZnO nanowires are a promising nanoscale spintronic material. - Highlights: • The stable structure prefers that Mn/Fe form nearest neighbors on the outer surface. • The fierce p–d hybridization is responsible for ferromagnetic (FM) coupling. • Mn/Fe codoped ZnO nanowire is a promising FM semiconductor material.

  6. As(III) oxidation by MnO2 during groundwater treatment.

    Science.gov (United States)

    Gude, J C J; Rietveld, L C; van Halem, D

    2017-03-15

    The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermal behaviour of Cu-Mg-Mn and Ni-Mg-Mn layered double hydroxides and characterization of formed oxides

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Grygar, Tomáš; Dorničák, V.; Rojka, T.; Bezdička, Petr; Jirátová, Květa

    2005-01-01

    Roč. 28, 1-4 (2005), s. 121-136 ISSN 0169-1317 Institutional research plan: CEZ:AV0Z40320502 Keywords : Cu-Mg-Mn basic carbonates * Ni-Mg-Mn hydrotalcite Subject RIV: CA - Inorganic Chemistry Impact factor: 1.324, year: 2005

  8. XAS and XMCD investigation of Mn12 monolayers on gold.

    Science.gov (United States)

    Mannini, Matteo; Sainctavit, Philippe; Sessoli, Roberta; Cartier dit Moulin, Christophe; Pineider, Francesco; Arrio, Marie-Anne; Cornia, Andrea; Gatteschi, Dante

    2008-01-01

    The deposition of Mn(12) single molecule magnets on gold surfaces was studied for the first time using combined X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) methods at low temperature. The ability of the proposed approach to probe the electronic structure and magnetism of Mn(12) complexes without significant sample damage was successfully checked on bulk samples. Detailed information on the oxidation state and magnetic polarization of manganese ions in the adsorbates was obtained from XAS and XMCD spectra, respectively. Partial reduction of metal ions to Mn(II) was clearly observed upon deposition on Au(111) of two different Mn(12) derivatives bearing 16-acetylthio-hexadecanoate and 4-(methylthio)benzoate ligands. The average oxidation state, as well as the relative proportions of Mn(II), Mn(III) and Mn(IV) species, are strongly influenced by the deposition protocol. Furthermore, the local magnetic polarizations are significantly decreased as compared with bulk Mn(12) samples. The results highlight an utmost redox instability of Mn(12) complexes at gold surfaces, presumably accompanied by structural rearrangements, which cannot be easily revealed by standard surface analysis based on X-ray photoelectron spectroscopy and scanning tunnelling microscopy.

  9. Effect of different MnO{sub 2} precursors on the electrochemical properties of spinel LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} cathode active materials for high-voltage lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ye, E-mail: mayetju@tju.edu.cn [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Tang, Haoqing [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin (China); Mao, Wenfeng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Xinhe [McNair Technology Company Limited, Dongguan, Guangdong 523700 (China)

    2016-11-15

    Highlights: • Synthesis of spinel LNMO via a facile template method. • The specific morphology of LNMO is closely related to that of MnO{sub 2} precursor. • LNMO using NH{sub 4}HCO{sub 3} as precipitant exhibits superior electrochemical performance. - Abstract: LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} (LNMO) cathode materials with different morphologies are prepared via a facile template method using various MnO{sub 2} precursors. The structures, morphologies and electrochemical properties of the as-prepared LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} samples are tested by various physical and electrochemical methods. The results of characterization show that the spinel LNMO cathode materials have good crystal structure and the MnO{sub 2} precursors have no effect on the final products. Moreover, the specific morphology of LNMO is closely related to that of MnO{sub 2} precursor, and further influence the electrochemical performance. In addition, the LNMO sample using NH{sub 4}HCO{sub 3} as precipitant exhibits excellent rate capability and cyclic stability in all as-prepared samples. Cycled at 0.5 and 1 C, the discharge capacities of LNMO cathode active particles using NH{sub 4}HCO{sub 3} as precipitant are 110.6 and 102.2 after 200 charge–discharge cycles, respectively, which are the largest compared with the LNMO using (NH{sub 4}){sub 2}S{sub 2}O{sub 8} and KMnO{sub 4} as oxidants.

  10. Creation of a 3Mn/1Fe cluster in the oxygen-evolving complex of photosystem II and investigation of its functional activity.

    Science.gov (United States)

    Semin, B К; Davletshina, L N; Seibert, M; Rubin, A B

    2018-01-01

    Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2 Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH5.7) than at neutral pH (3Mn/RC are extracted at pH6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extract only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster. Also we found that the presence of Fe cations in a heteronuclear cluster (2Mn/2Fe) increases the resistance of the remaining Mn cations to H 2 Q action, since H 2 Q can extract Mn cations from homonuclear Mn clusters of PSII(-Ca,4Mn) and PSII(-Ca,2Mn) membranes but not from the heteronuclear cluster in PSII(-Ca,2Mn,2Fe) membranes. H 2 Q also cannot extract Mn from PSII membranes obtained by incubation of PSII(-Ca,4Mn) membranes with Fe(II) cations at pH5.7, which suggests the formation of a heteronuclear 3Mn/1Fe cluster in the OEC. Functional activity of PSII with a 3Mn/1Fe cluster was investigated. PSII preparations with a 3Mn/1Fe cluster in the OEC are able to photoreduce the exogenous electron acceptor 2,6-dichlorophenolindophenol, possibly due to incomplete oxidation of water molecules as is the case with PSII(-Ca,2Mn,2Fe) samples. However, in the contrast to PSII(-Ca,2Mn,2Fe) samples PSII(-Ca,3Mn,1Fe) membranes can evolve O 2 at a low rate in the presence of exogenous Ca 2+ (at about 27% of the rate of O 2 evolution in native PSII membranes). The explanation for this phenomenon (either water splitting and production of molecular O 2 by the 3Mn/1Fe cluster or apparent O 2 evolution due to minor contamination of PSII(3Mn,1Fe) samples with PSII(-Ca,4Mn) membranes

  11. Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sushmita; Singh, Satnam; Roy, R.K.; Ghosh, M.; Mitra, A.; Panda, A.K., E-mail: akpanda@nmlindia.org

    2016-01-01

    The present investigation addresses the magnetocaloric behaviour in a series of Ni{sub 77−x}Mn{sub x}Ga{sub 23} (x=23, 24, 25, 27 and 29) rapidly solidified alloys prepared in the form of ribbons by melt spinning technique. The approach of the study is to identify the off-stoichiometric composition wherein room temperature magneto-structural transformation is achieved. The alloy chemistry was tailored through Mn incorporation for Ni such that the magnetic and structural transitions were at close proximity to achieve highest entropy value of ΔS equal to 8.51 J Kg{sup −1} K{sup −1} for #Mn{sub 24} ribbon measured at an applied field of 3 T. When such transitions are more staggered as in #Mn{sub 29} the entropy value of ribbon reduced to as low as 1.61 J Kg{sup −1} K{sup −1}. Near room temperature transformations in #Mn{sub 24} ribbon have been observed through calorimetric and thermomagnetic evaluation. Reverse martensitic transformation (martensite→autstenite) temperature indicates not only distinct change in the saturation flux density but also an inter-martensitic phase. Microstructural analysis of #Mn{sub 24} alloy ribbon revealed structural ordering with the existence of plate morphology evidenced for martensitic phase. - Highlights: • Magnetocaloric effect in a series of melt spun NiMnGa ribbon is addressed. • The alloy series revealed austenitic state as well as its presence with martensite. • The morphology of the ribbons has been shown and discussed through phase analysis. • Influence of magnetising field on entropy and relative cooling power is discussed. • Influence of intermartensitic state on magnetization plots have also been shown.

  12. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors.

    Science.gov (United States)

    Li, Gao-Ren; Feng, Zhan-Ping; Ou, Yan-Nan; Wu, Dingcai; Fu, Ruowen; Tong, Ye-Xiang

    2010-02-16

    MnO(2) as one of the most promising candidates for electrochemical supercapacitors has attracted much attention because of its superior electrochemical performance, low cost, and environmentally benign nature. In this Letter, we explored a novel route to prepare mesoporous MnO(2)/carbon aerogel composites by electrochemical deposition assisted by gas bubbles. The products were characterized by energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The MnO(2) deposits are found to have high purity and have a mesoporous structure that will optimize the electronic and ionic conductivity to minimize the total resistance of the system and thereby maximize the performance characteristics of this material for use in supercapacitor electrodes. The results of nitrogen adsorption-desorption experiments and electrochemical measurements showed that these obtained mesoporous MnO(2)/carbon aerogel composites had a large specific surface area (120 m(2)/g), uniform pore-size distribution (around 5 nm), high specific capacitance (515.5 F/g), and good stability over 1000 cycles, which give these composites potential application as high-performance supercapacitor electrode materials.

  13. What is the Valence of Mn in Ga(1-x)Mn(x)N?

    Science.gov (United States)

    Nelson, Ryky; Berlijn, Tom; Moreno, Juana; Jarrell, Mark; Ku, Wei

    2015-11-06

    We investigate the current debate on the Mn valence in Ga(1-x)Mn(x)N, a diluted magnetic semiconductor (DMS) with a potentially high Curie temperature. From a first-principles Wannier-function analysis, we unambiguously find the Mn valence to be close to 2+ (d(5)), but in a mixed spin configuration with average magnetic moments of 4μ(B). By integrating out high-energy degrees of freedom differently, we further derive for the first time from first-principles two low-energy pictures that reflect the intrinsic dual nature of the doped holes in the DMS: (1) an effective d(4) picture ideal for local physics, and (2) an effective d(5) picture suitable for extended properties. In the latter, our results further reveal a few novel physical effects, and pave the way for future realistic studies of magnetism. Our study not only resolves one of the outstanding key controversies of the field, but also exemplifies the general need for multiple effective descriptions to account for the rich low-energy physics in many-body systems in general.

  14. Mitochondrial dysfunction is responsible for fatty acid synthase inhibition-induced apoptosis in breast cancer cells by PdpaMn.

    Science.gov (United States)

    Wang, Qiang; Du, Xia; Zhou, Bingjie; Li, Jing; Lu, Wenlong; Chen, Qiuyun; Gao, Jing

    2017-12-01

    Targeting cellular metabolism is becoming a hallmark to overcome drug resistance in breast cancer treatment. Activation of fatty acid synthase (FASN) has been shown to promote breast cancer cell growth. However, there is no concrete report underlying the mechanism associated with mitochondrial dysfunction in relation to fatty acid synthase inhibition-induced apoptosis in breast cancer cells. The current study is aimed at exploring the effect of the novel manganese (Mn) complex, labeled as PdpaMn, on lipid metabolism and mitochondrial function in breast cancer cells. Herein, we observed that PdpaMn displayed strong cytotoxicity on breast cancer cell lines and selectively targeted the tumor without affecting the normal organs or cells in vivo. We also observed that PdpaMn could bind to TE domain of FASN and decrease the activity and the level of expression of FASN, which is an indication that FASN could serve as a target of PdpaMn. In addition, we demonstrated that PdpaMn increased intrinsic apoptosis in breast cancer cells relayed by a suppressed the level of expression of FASN, followed by the release of mitochondrial cytochrome c and the activation of caspases-9. Instigated by the above observations, we hypothesized that PdpaMn-induced apoptosis events are dependent on mitochondrial dysfunction. Indeed, we found that mitochondrial membrane potential (MMP) collapse, mitochondrial oxygen consumption reduction and adenosine triphosphate (ATP) release were deeply repressed. Furthermore, our results showed that PdpaMn significantly increased the reactive oxygen species (ROS) production, and the protection conferred by the free radical scavenger N-acetyl-cysteine (NAC) indicates that PdpaMn-induced apoptosis through an oxidative stress-associated mechanism. More so, the above results have demonstrated that mitochondrial dysfunction participated in FASN inhibition-induce apoptosis in breast cancer cells by PdpaMn. Therefore, PdpaMn may be considered as a good candidate

  15. Effects of organic complexed or inorganic Co, Cu, Mn and Zn supplementation during a 45-day preconditioning period on productive and health responses of feeder cattle.

    Science.gov (United States)

    Lippolis, K D; Cooke, R F; Silva, L G T; Schubach, K M; Brandao, A P; Marques, R S; Larson, C K; Russell, J R; Arispe, S A; DelCurto, T; Bohnert, D W

    2017-11-01

    This experiment evaluated production and health parameters among cattle offered concentrates containing inorganic or organic complexed sources of supplemental Cu, Co, Mn and Zn during a 45-day preconditioning period. In total, 90 Angus×Hereford calves were weaned at 7 months (day -1), sorted by sex, weaning BW and age (261±2 kg; 224±2 days), and allocated to 18 drylot pens (one heifer and four steers per pen) on day 0; thus, all pens had equivalent initial BW and age. Pens were randomly assigned to receive a corn-based preconditioning concentrate containing: (1) Cu, Co, Mn and Zn sulfate sources (INR), (2) Cu, Mn, Co and Zn complexed organic source (AAC) or (3) no Cu, Co, Mn and Zn supplementation (CON). From day 0 to 45, cattle received concentrate treatments (2.7 kg/animal daily, as-fed basis) and had free-choice access to orchardgrass (Dactylis glomerata L.), long-stem hay and water. The INR and AAC treatments were formulated to provide the same daily amount of Co, Cu, Mn and Zn at a 50-, 16-, 8- and ninefold increase, respectively, compared with the CON treatment. On day 46, cattle were transported to a commercial feedlot, maintained as a single pen, and offered a free-choice receiving diet until day 103. Calf full BW was recorded on days -1 and 0, 45 and 46, and 102 and 103 for average daily gain (ADG) calculation. Liver biopsy was performed on days 0 (used as covariate), 22 and 45. Cattle were vaccinated against respiratory pathogens on days 15, 29 and 46. Blood samples were collected on days 15, 29, 45, 47, 49, 53 and 60. During preconditioning, mean liver concentrations of Co, Zn and Cu were greater (P⩽0.03) in AAC and INR compared with CON. No treatment effects were detected (P⩾0.17) for preconditioning feed intake, ADG or feed efficiency. No treatment effects were detected (P⩾0.48) for plasma concentrations of antibodies against Mannheimia haemolytica, bovine viral diarrhea types 1 and 2 viruses. Plasma haptoglobin concentrations were similar

  16. Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Diestra, Daysi; Beltran-Huarac, Juan, E-mail: juan.beltran1@upr.edu; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo [University of Puerto Rico, Molecular Sciences Research Center (United States)

    2015-12-15

    We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H{sub 2}O{sub 2}) oxidation and its eventual reduction (−0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L–0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H{sub 2}O{sub 2} to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.Graphical Abstract.

  17. First-principles spin-transfer torque in CuMnAs |GaP |CuMnAs junctions

    Science.gov (United States)

    Stamenova, Maria; Mohebbi, Razie; Seyed-Yazdi, Jamileh; Rungger, Ivan; Sanvito, Stefano

    2017-02-01

    We demonstrate that an all-antiferromagnetic tunnel junction with current perpendicular to the plane geometry can be used as an efficient spintronic device with potential high-frequency operation. By using state-of-the-art density functional theory combined with quantum transport, we show that the Néel vector of the electrodes can be manipulated by spin-transfer torque. This is staggered over the two different magnetic sublattices and can generate dynamics and switching. At the same time the different magnetization states of the junction can be read by standard tunneling magnetoresistance. Calculations are performed for CuMnAs |GaP |CuMnAs junctions with different surface terminations between the antiferromagnetic CuMnAs electrodes and the insulating GaP spacer. We find that the torque remains staggered regardless of the termination, while the magnetoresistance depends on the microscopic details of the interface.

  18. Facile solvothermal synthesis of graphene-MnOOH nanocomposites

    International Nuclear Information System (INIS)

    Chen Sheng; Zhu Junwu; Huang Huajie; Zeng Guiyu; Nie Fude; Wang Xin

    2010-01-01

    In this paper, we report a facile solvothermal route capable of aligning MnOOH nanocrystals on graphene. X-ray diffraction (XRD) and transmission electron microscopy (TEM) observations indicate that the exfoliated graphene sheets are decorated randomly by MnOOH nanocrystals, forming well-dispersed graphene-MnOOH nanocomposites. Dissolution-crystallization and oriented attachment are speculated to be the vital mechanisms in the synthetic process. The attachment of additives, such as MnOOH nanoparticles, are found to be beneficial for the exfoliation of GO as well as preventing the restack of graphene sheets. Moreover, cyclic voltammetry (CV) analyses suggest that the electrochemical reversibility is improved by anchoring MnOOH on graphene. Notably, the as-fabricated nanocomposites reveal unusual catalytic performance for the thermal decomposition of ammonium perchlorate (AP) due to the concerted effects of graphene and MnOOH. This template-free method is easy to reproduce, and the process proceeds at a low temperature and can be readily extended to prepare other graphene-based nanocomposites. - Graphical abstract: Manganese oxyhydroxide nanocrystals have been successfully attached onto the graphene sheets via an oriented attachment and dissolution-crystallization process, forming a nanocomposite with unusual catalytic capabilities. Display Omitted

  19. Electronic and magnetic properties of MnAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, Safi 46000 (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2014-03-15

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles.

  20. Electronic and magnetic properties of MnAu nanoparticles

    International Nuclear Information System (INIS)

    Masrour, R.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Mounkachi, O; El moussaoui, H.

    2014-01-01

    Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the MnAu nanoparticles. Polarized spin is included in calculations within the framework of the antiferromagnetic. The Mn magnetic moments where considered to be along c axes. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The zero-field high temperature static susceptibility series of the magnetic moment (m) and nearest-neighbour Heisenberg and XY models on a MnAu nanoparticles is thoroughly analyzed by means of a power series coherent anomaly method (CAM) for different nanoparticles. The exchanges interactions between the magnetic atoms are obtained for MnAu nanoparticles. - Highlights: • The electronic properties of the MnAu nanoparticles are studied using the DFT and FLAPW. • Magnetic moment is computed. • The ab initio calculations are used as input for HTSEs to compute other magnetic parameters. • The exchanges interactions and blocking temperature are obtained for MnAu nanoparticles

  1. Electronic and magnetic structures of ferrimagnetic Mn{sub 2}Sb compound

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Mounkachi, O.; El moussaoui, H. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2015-01-15

    The Self-consistent ab initio calculations, based on DFT (Density Functional Theory) approach and using FLAPW (Full potential Linear Augmented Plane Wave) method, are performed to investigate both electronic and magnetic properties of the Mn{sub 2}Sb compound. Polarized spin and spin–orbit coupling are included in calculations within the framework of the antiferromagnetic state between two adjacent Mn{sub 1} and Mn{sub 2} atoms. Magnetic moment considered to lie along (0 0 1) axes are computed. The antiferromagnetic energy of Mn{sub 2}Sb systems is obtained. Obtained data from ab initio calculations are used as input for the high temperature series expansions (HTSEs) calculations to compute other magnetic parameters. The exchange interactions between the magnetic atoms Mn{sub 1}−Mn{sub 2} in Mn{sub 2}Sb are given by using the mean field theory. The HTSEs of the magnetic susceptibility of with the magnetic moments in Mn{sub 2}Sb (m{sub Mn{sub 1}}and m{sub Mn{sub 2}}) through Ising model is given up to tenth order series in (x=J(Mn{sub 1}−Mn{sub 2})/k{sub B}T). The Néel temperature T{sub N}(K) is obtained by HTSEs applied to the magnetic susceptibility series combined with the Padé approximant method. The critical exponent γ associated with the magnetic susceptibility is deduced as well. - Highlights: • Ab initio calculations is using to investigate both electronic and magnetic properties of the Mn{sub 2}Sb compound. • Obtained data from ab initio calculations are used as input for the HTSEs. • The Néel temperature is obtained for Mn{sub 2}Sb compound.

  2. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  3. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  4. Stability and electronic properties of Cd0.75Mn0.25S and Cd0.75Mn0.25Se in B3 phase

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Anita [Guru Nanak College for Girls, Sri Muktsar Sahib, Punjab (India); Kumar, Ranjan [Panjab University, Department of Physics, Chandigarh (India)

    2015-08-15

    We studied the structural, elastic, spin-polarized electronic band structures and magnetic properties of the diluted magnetic semiconductor Cd{sub 1-x}Mn{sub x}S and Cd{sub 1-x} Mn{sub x}Se in zinc blende phase (B3) for x = 0.25 using ab initio method. The calculations were performed by using density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation. Calculated electronic band structures and magnetic properties of Cd{sub 1-x}Mn{sub x}S are discussed in terms of contribution of Mn 3d{sup 5} 4s{sup 2}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbitals. The total magnetic moment is found to be 5.00 μ{sub b} for Cd{sub 1-x}Mn{sub x}S and Cd{sub 1-x}Mn{sub x}Se at x = 0.25. This value indicates that Mn atom adds no hole carrier to the perfect CdS crystal. We determine the spin-exchange splitting energies produced by Mn 3d states, s-d exchange constant N{sub 0}α, and p-d exchange constant N{sub 0}β. We found that Mn-doped systems are ferromagnetic. Calculated results are in good agreement with previous studies. (orig.)

  5. Study of the structural and magnetic properties and gallium exchange phenomenon in a Mn-Ga alloy doped by Cr during the milling and annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Fariba, Nazari; Mohsen, Hakimi, E-mail: hakimi.m@yazd.ac.ir; Hossein, Mokhtari; Mohsen, Khajeh Aminian

    2015-05-15

    The effect of milling and annealing process on Cr doped Mn{sub 3}Ga nanocrystallite has been investigated. Phase determination analysis shows that Ga turning to get out of Mn-Ga structure and tend to make bonding to Cr and form Cr{sub 3}Ga{sub 4} product during milling process. Annealing of the new phases lead to decomposition of Cr{sub 3}Ga{sub 4} and formation of a new Mn-Ga phase in reverse direction, in the other words diffusion of Ga atoms occurs from Cr{sub 3}Ga{sub 4} to Mn phase and α-Mn and Cr{sub 3}Ga{sub 4} change to Mn{sub 3}Ga{sub 2} and Cr phases. The variation of coersivity, magnetization and magnetic state of different samples was explained according to the crystallite size of the present phases and grain boundary effects. It was also confirmed that formation of Mn-Cr clusters plays an important role in increase of saturation magnetization.

  6. The thermal stability of magnetically exchange coupled MnBi/FeCo composites at electric motor working temperature

    Science.gov (United States)

    Cheng, Ye; Wang, Hongying; Li, Zhigang; Liu, Wanhui; Bao, Ilian

    2018-04-01

    The magnetically exchange coupled MnBi/FeCo composites were synthesized through a magnetic self-assembly process. The MnBi/FeCo composites were then hot pressed in a magnetic field to form magnets. The thermal stability of the magnets were tested by annealing at electric motor working temperature of 200 °C for 20, 40 and 60 h, respectively. It was found that after heating for 20 h, there was negligible change in its hysteresis loop. However, when the heating time was increased 40 and 60 h, the magnetic hysteresis loops presented two-phase magnetic behaviors, and the maximum energy products of the magnet were decreased. This research showed that the magnetically exchange coupled MnBi/FeCo composites had low thermal stability at electric motor working temperature.

  7. Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: A noticeable Mn(III) oxidation process.

    Science.gov (United States)

    Zhang, Jiaming; Ma, Jun; Song, Haoran; Sun, Shaofang; Zhang, Zhongxiang; Yang, Tao

    2018-04-15

    Remarkable atrazine degradation in the S(IV) autoxidation process catalyzed by Fe 2+ -Mn 2+ (Fe 2+ /Mn 2+ /sulfite) was demonstrated in this study. Competitive kinetic experiments, alcohol inhibiting methods and electron spin resonance (ESR) experiments proved that sulfur radicals were not the major oxidation species. Mn(III) was demonstrated to be the primary active species in the Fe 2+ /Mn 2+ /sulfite process based on the comparison of oxidation selectivity. Moreover, the inhibiting effect of the Mn(III) hydrolysis and the S(IV) autoxidation in the presence of organic contaminants indicated the existence of three Mn(III) consumption routes in the Fe 2+ /Mn 2+ /sulfite process. The absence of hydroxyl radical and sulfate radical was interpreted by the competitive dynamics method. The oxidation capacity of the Fe 2+ /Mn 2+ /sulfite was independent of the initial pH (4.0-6.0) because the fast decay of S(IV) decreased initial pH below 4.0 rapidly. The rate of ATZ degradation was independent of the dissolved oxygen (DO) because that the major DO consumption process was not the rate determining step during the production of SO 5 •- . Phosphate and bicarbonate were confirmed to have greater inhibitory effects than other environmental factors because of their strong pH buffering capacity and complexing capacity for Fe 3+ . The proposed acetylation degradation pathway of ATZ showed the application of the Fe 2+ /Mn 2+ /sulfite process in the research of contaminants degradation pathways. This work investigated the characteristics of the Fe 2+ /Mn 2+ /sulfite process in the presence of organic contaminants, which might promote the development of Mn(III) oxidation technology. Copyright © 2018. Published by Elsevier Ltd.

  8. Electrochemical Properties of Hydrogen-Storage Alloys ZrMn{sub 2}Ni{sub x} and ZrMnNi{sub 1+x} for Ni-MH Secondary Battery

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Ryoung [Faculty of Applied Chemistry, Chonnam National University, Kwangju (Korea); Kwon, Ik Hyun [Automobile High-Technology Research Institute, Division of Advanced Materials Engineering, Chonbuk National University, Chonju (Korea)

    2001-04-01

    In order to improve the performance of AB{sub 2}-type hydrogen-storage alloys for Ni-MH secondary battery, AB{sub 2}-type alloys, ZrMn{sub 2}Ni{sub x}(x=0.0, 0.3, 0.6, 0.9 and 1.2) and ZrMnNi{sub 1+x}(x=0.0, 0.1, 0.2, 0.3 and 0.4) were prepared as the Zr-Mn-Ni three component alloys. The hydrogen-storage and the electrochemical properties were investigated. The C14 Laves phase formed in all alloys of ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2). The equilibrium plateau pressure of the alloy, ZrMn{sub 2}Ni{sub 0.6}-H{sub 2} system, was about 0.5 atm at 30 degree C. Among these alloys, ZrMn{sub 2}Ni{sub 0.6} was the easiest to activate, and it had the largest discharge capacity as well as the best cycling performance. The C14 Laves phase also formed in all alloys of ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4). The equilibrium plateau pressure of the alloy, ZrMnNi{sub 1.0}-H{sub 2} system, was about 0.45 atm at 30 degree C. Among these alloys, ZrMnNi{sub 1.0} was the easiest to activate, taking only 3 charge-discharge cycles, and it had the largest discharge capacity of 42 mAh/g. Among these alloys, ZrMn{sub 2}Ni{sub x}(x=0.0 {approx} 1.2) and ZrMnNi{sub 1+x}(x=0.0 {approx} 0.4), ZrMnNi{sub 1.0} had the largest discharge capacity (maximum value of 42 mAh/g), and it showed the fastest activation and good cycling performance. 23 refs., 4 figs., 2 tabs.

  9. Properties of Mn-doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, E.; Bakin, A.; Wehmann, H.H.; Al-Suleiman, M.; Waag, A. [Technical University Braunschweig, Institute of Semiconductor Technology, Braunschweig (Germany); Schmid, H.; Mader, W. [Universitaet Bonn, Institut fuer Anorganische Chemie, Bonn (Germany); Bremers, H.; Hangleiter, A. [Technical University Braunschweig, Institute of Applied Physics, Braunschweig (Germany); Luedke, J.; Albrecht, M. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany)

    2008-06-15

    The structural and magnetic properties of Mn-doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Mn incorporation leads to an increase in the lattice constants as revealed by X-ray diffraction measurements. An inhomogeneous distribution of the Mn atoms within the nanopowder was detected by energy-dispersive X-ray and electron-energy-loss spectroscopy measurements. Magnetic features are investigated by means of SQUID magnetometry on ensembles of powder particles as well as by magnetic force microscopy to study the behavior of single grains. (orig.)

  10. Improvement of the photocatalytic activity of magnetite by Mn-incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Hudson W.P., E-mail: hudsonwpc@yahoo.com.br; Hammer, Peter, E-mail: peter@iq.unesp.br; Pulcinelli, Sandra H., E-mail: sandrap@iq.unesp.br; Santilli, Celso V., E-mail: santilli@iq.unesp.br; Molina, Eduardo F., E-mail: efmolina@iq.unesp.br

    2014-02-15

    Highlights: • Efficiently methylene blue dye discoloration using an Mn doped magnetite catalyst. • Evidence for isomorphic substitution of Fe{sup 2+} by Mn{sup 2+} in the octahedral structure. • Mechanism of the enhanced photocatalysis induced by active Mn sites. • Importance of the Mn reaction rate constant and effective surface area. -- Abstract: Mn-incorporated Fe{sub 3}O{sub 4} photocatalysts were prepared by a simple co-precipitation method. Photocatalytic discoloration of Methylene Blue (MB) was used to evaluate the performance of these catalysts. The DSC results have shown that the insertion of Mn into Fe{sub 3}O{sub 4} lattice has increased converting Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. This is accompanied by a decrease of surface area and of crystallinity, as detected by XRD. The analysis of the chemical environment by XPS has shown that Mn{sup 2+} replaces Fe{sup 2+} preferentially in the octahedral sites while Mn{sup 3+} replaces Fe{sup 3+} of inverse spinel sites. The Mn-incorporated samples were significantly more efficient in MB discoloration assisted by UVA irradiation and H{sub 2}O{sub 2}. It was also found that ascorbic acid prevents H{sub 2}O{sub 2} decomposition, by scavenging preferentially ·OOH radicals produced at Mn sites. Finally, the results reported here can contribute for a better comprehension of the activity of composite catalysts and the design of efficient systems for discoloration of organic pollutants.

  11. MnO{sub 2} nanorods/3D-rGO composite as high performance anode materials for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongdong; Hu, Zhongli; Su, Yongyao; Ruan, Haibo; Hu, Rong [Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160 (China); Zhang, Lei, E-mail: leizhang0215@126.com [College of Life Science, Chongqing Normal University, Chongqing 401331 (China)

    2017-01-15

    Highlights: • MnO{sub 2} nanorods/3D-rGO composite has been synthesized by a simple in situ hydrothermal methord. • MnO{sub 2} nanorods/3D-rGO composite exhibits high reversible capacity, outstanding rate capacity and excellent cyclic stability. • Building metal oxides/3D-rGO composite is an effective way for improving the electrochemical performance of Li-ion batteries. - Abstract: MnO{sub 2} nanorods/three-dimensional reduced graphene oxide (3D-rGO) composite has been synthesized by a simple in situ hydrothermal methord. The X-ray diffraction (XRD) pattern of the as-prepared composite reveals tetragonal structure of α-MnO{sub 2.} Raman spectroscopic and X-ray photoelectron spectroscopy (XPS) of the samples confirm the coexistence of MnO{sub 2} and graphene. The Brunauer-Emmett-Teller (BET) analysis shows the large surface area of the composite. The electron microscopy images of the as-synthesized products reveals the MnO{sub 2} nanorods are homogeneously grown on 3D-rGO matrix. Electrochemical characterization exhibits the MnO{sub 2} nanorods/3D-rGO composite with large reversible capacity (595 mA h g{sup −1} over 60 cycles at 100 mA g{sup −1}), high coulombic efficiency (above 99%), excellent rate capability and good cyclic stability. The superior electrochemical performance can be attributed to the turf-like nanostructure of composite, high capacity of MnO{sub 2} and superior electrical conductivity of 3D-rGO. It suggests that MnO{sub 2} nanorods/3D-rGO composite will be a promising anode material for Li-ion batteries.

  12. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  13. Oxidative and antibacterial activity of Mn3O4

    International Nuclear Information System (INIS)

    Chowdhury, Al-Nakib; Azam, Md. Shafiul; Aktaruzzaman, Md.; Rahim, Abdur

    2009-01-01

    Mn 3 O 4 nanoparticles with diameter ca. 10 nm were synthesized by the forced hydrolysis of Mn(II) acetate at 80 deg. C. The X-ray diffraction (XRD), Fourier transform infra red (FT-IR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques were employed to study structural features and chemical composition of the nanoparticles. The unique oxidative activity of the Mn 3 O 4 nanoparticles was demonstrated in the polymerization and dye degradation reactions. On adding Mn 3 O 4 suspension to an acidic solution of aniline, yielded immediately green sediment of polyaniline (PANI). The organic dyes, viz., methylene blue (MB) and procion red (PR) were found to be completely decolorized from their aqueous solution on treating the dyes with Mn 3 O 4 suspension in acidic media. The Mn 3 O 4 nanoparticles also showed a clear antibacterial activity against the Vibrio cholerae, Shigella sp., Salmonella sp., and Escherichi coli bacteria that cause cholera, dysentery, typhoid, and diarrhea diseases, respectively.

  14. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution

    International Nuclear Information System (INIS)

    He Weiwei; Zhang Erlin; Yang Ke

    2010-01-01

    The bio-corrosion properties of Mg-Zn-Mn alloys with and without Y in Hank's solution at 37 deg. C were investigated by using electrochemical test and electrochemical impedance spectra (EIS). The results of open circuit potential (OCP) and polarization tests indicated that Y could reduce the cathodic current density. A passivative stage appeared in the Tafel curve of the Y containing magnesium alloy, indicating that a passivative film was formed on the surface of the Y containing magnesium alloy. EIS results showed that the Y containing alloy had higher charge transfer resistance and film resistance, but lower double layer capacity than the alloy without the Y element. The surface reaction product identification by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that the surface corrosion products were hydroxide and phosphate (Mg 3 Ca 3 (PO 4 ) 4 ) for Mg-Zn-Mn alloy and phosphate (MgNaPO 4 ) for the Y containing Mg-Zn-Mn alloys. The XPS results also showed that a Y 2 O 3 protective film was formed on the surface of the Y containing magnesium alloy which contributed mainly to the low cathodic current density and the high resistance.

  15. Single Crystal Growth of Multiferroic Double Perovskites: Yb2CoMnO6 and Lu2CoMnO6

    Directory of Open Access Journals (Sweden)

    Hwan Young Choi

    2017-02-01

    Full Text Available We report on the growth of multiferroic Yb2CoMnO6 and Lu2CoMnO6 single crystals which were synthesized by the flux method with Bi2O3. Yb2CoMnO6 and Lu2CoMnO6 crystallize in a double-perovskite structure with a monoclinic P21/n space group. Bulk magnetization measurements of both specimens revealed strong magnetic anisotropy and metamagnetic transitions. We observed a dielectric anomaly perpendicular to the c axis. The strongly coupled magnetic and dielectric states resulted in the variation of both the dielectric constant and the magnetization by applying magnetic fields, offering an efficient approach to accomplish intrinsically coupled functionality in multiferroics.

  16. Local Structure and Magnetism of (Ga,Mn)As

    CERN Document Server

    AUTHOR|(CDS)2093111; Temst, Kristiaan

    Throughout the years, dilute magnetic semiconductors (DMS) have emerged as promising materials for semiconductor-based spintronics. In particular, (Ga,Mn)As has become the model system in which to explore the physics of carrier-mediated ferromagnetism in semiconductors and the associated spintronic phenomena, with a number of interesting functionalities and demonstrated proof-of-concept devices. It constitutes the perfect example of how the magnetic behavior of DMS materials is strongly influenced by local structure. In this thesis, we address key aspects of the interplay between local structure and ferromagnetism of (Ga,Mn)As. We unambiguously identify the lattice site occupied by interstitial Mn as the tetrahedral interstitial site with As nearest neighbors T(As). We show, furthermore, that the T(As) is the most energetically favorable site regardless of the interstitial atom forming or not complexes with substitutional Mn. We also evaluate the thermal stability of both interstitial and substitutional Mn si...

  17. Lithium intercalation into layered LiMnO2

    DEFF Research Database (Denmark)

    Vitins, G.; West, Keld

    1997-01-01

    Recently Armstrong and Bruce(1) reported a layered modification of lithium manganese oxide, LiMnO2, isostructural with LiCoO2. LiMnO2 obtained by ion exchange from alpha-NaMnO2 synthesized in air is characterized by x-ray diffraction and by electrochemical insertion and extraction of lithium...... in a series of voltage ranges between 1.5 and 4.5 V relative to a lithium electrode. During cycling voltage plateaus at 3.0 and 4.0 V vs. Li develop, indicating that the material is converted from its original layered structure to a spinel structure. This finding is confirmed by x-ray diffraction. Contrary...... to expectations based on thermodynamics, insertion of larger amounts of lithium leads to a more complete conversion. We suggest that a relatively high mobility of manganese leaves Li and Mn randomly distributed in the close-packed oxygen lattice after a deep discharge. This isotropic Mn distribution can...

  18. Magnetism of DyMn2 and HoMn2 - 57Fe and 119Sn Moessbauer studies

    International Nuclear Information System (INIS)

    Krop, K.; Haeufler, T.; Hilscher, G.; Steiner, W.

    1995-01-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn 2 and HoMn 2 in which manganese was substituted to 0.5% with 57 Fe and to 0.2% with 119 Sn. At 4.2 K the 57 Fe and 119 Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at 119 Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.))

  19. Deinococcus Mn2+ -Peptide Complex: A Novel Approach to Alphavirus Vaccine Development

    Science.gov (United States)

    2016-08-05

    vaccines, ionizing radiation (IR)-induced destruction of a virus’ genome is desired, while radiation - induced damage to epitopes is...development of irradiation-based approaches to vaccine production [1-3]. During ionizing radiation (IR) exposure, the energy of the photons induces direct...specifically protect proteins from the far more damaging indirect effects of gamma (γ)-rays in aqueous preparations. Mn2+-peptide antioxidants that

  20. Recycling Spent Primary Cells for the Synthesis of Spinel ZnMn 2 O ...

    African Journals Online (AJOL)

    The mixture was then placed in a fireclay crucible and irradiated in a domestic microwave oven (Pioneer, Model PM-25 L, 2450 MHz, 1000 W) for 20 minutes and reaction products were separated and characterised. Spherical particles of spinel zinc manganese oxide (ZnMn2O4) were isolated after crushing the reduced ...

  1. Microwave-assisted rapid synthesis of birnessite-type MnO{sub 2} nanoparticles for high performance supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiong; Miao, Wang; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-11-15

    Highlights: • Birnessite-type MnO{sub 2} nanoparticles were prepared by the microwave-assisted reflux. • The microwave reaction duration was only 5 min. • A specific capacitance of 329 F g{sup −1} was obtained for birnessite-type MnO{sub 2}. - Abstract: Birnessite-type MnO{sub 2} nanoparticles have been successfully synthesized by the microwave-assisted reflux as short as 5 min. The microstructure and morphology of the products were characterized by X-ray diffraction, N{sub 2} adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy. The electrochemical properties of the as-prepared MnO{sub 2} as an electrode material for supercapacitor were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements in 1 M Na{sub 2}SO{sub 4} electrolyte, and a high specific capacitance of 329 F g{sup −1} was achieved at a current density of 0.2 A g{sup −1}. The specific capacitance retention was 92% after 1000 cycles at 2 A g{sup −1}, suggesting that it is a promising electrode material for supercapacitors.

  2. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    International Nuclear Information System (INIS)

    Ly, V.; Wu, X.; Smillie, L.; Shoji, T.; Kato, A.; Manabe, A.; Suzuki, K.

    2014-01-01

    Highlights: • The spin reorientation temperature of MnBi is suppressed by nanoscale grain refinement. • Hardness parameter of MnBi reaches as large as 2.8 at 580 K. • MnBi has a great potential as a hard phase in rare-earth free nanocomposite magnets. • Improving the surface passivity is a remaining task for MnBi-based permanent magnets. - Abstract: The low-temperature phase (LTP) MnBi is one of the few rare-earth free compounds that exhibit a large magnetocrystalline anisotropy energy in the order of 10 6 J/m 3 . A large coercive field (μ 0 H cj ) above 1 T can be obtained readily by reducing the crystallite size (D) through mechanical grinding (MG). The room-temperature H cj values follow a phenomenological expression μ 0 H cj = μ 0 H a (δ/D) n where the anisotropy field (μ 0 H a ) is ∼4 T, the Bloch wall width (δ) is 7 nm and the exponent (n) is about 0.7 in our study. The grain refinement upon MG is accompanied by suppression of the spin reorientation transition temperature (T SR ) from 110 K to below 50 K. The coercive field starts to exhibit positive temperature dependence approximately 50 K above T SR and the room-temperature magnetic hardening induced by MG could partially be brought about by the lowered onset of this positive temperature dependence. The suppression of T SR by MG is likely to be induced by the surface anisotropy with which the 2nd order crystal field term is enhanced. One of the shortcomings of LTP-MnBi is its poor phase stability under the ambient atmosphere. The spontaneous magnetization decreases considerably after room-temperature aging for 1 week. This is due to oxidation of Mn which leads to decomposition of the MnBi phase. Hence, the surface passivity needs to be established before this material is considered for a permanent magnet in practical uses. Another shortcoming is the limited spontaneous magnetization. The theoretical upper limit of the maximum energy product in LTP-MnBi remains only a quarter of that in Nd 2

  3. Low-temperature phase MnBi compound: A potential candidate for rare-earth free permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ly, V.; Wu, X.; Smillie, L. [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Shoji, T.; Kato, A.; Manabe, A. [Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193 (Japan); Suzuki, K., E-mail: kiyonori.suzuki@monash.edu [Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-12-05

    energy product in LTP-MnBi remains only a quarter of that in Nd{sub 2}Fe{sub 14}B. Nevertheless, owing to the unique positive temperature dependence of the first-order anisotropy constant (K{sub 1}), the hardness parameter (κ) of LTP-MnBi is enhanced above room temperature; κ reaches as large as 2.8 at 580 K. This makes LTP-MnBi a possible candidate for the hard phase in rare-earth free nanocomposite magnets.

  4. MnDOT Library strategic plan : final report.

    Science.gov (United States)

    2017-06-01

    MnDOTs Senior Leadership asked MnDOT Library to develop a Strategic Plan that identifies and reviews the challenges facing the Library over the next five years to better address the evolving needs of the department and users. The strategic plan is...

  5. Neutron scattering study of MnX2 (X = Br, I)

    International Nuclear Information System (INIS)

    Sato, Taku; Kadowaki, Hiroaki.

    1993-01-01

    Successive magnetic phase transitions in MnX 2 (X = Br, I), found by bulk measurements, are studied by neutron scattering experiments. There occur two (T N1 = 2.32K, T N2 = 2.17K) and three (T N1 = 3.95K, T N2 = 3.8K, T N3 = 3.45K) phase transitions in MnBr 2 and MnI 2 , respectively. We have found that magnetic structures of the both compounds in the intermediate temperature phases (MnBr 2 : T N1 > T > T N2 ; MnI 2 : T N1 > T > T N3 ) are transverse sinusoidally-modulated structures with incommensurate wave-vectors which vary as a function of temperature. As the temperature is lowered into the lowest temperature phases, the magnetic structures change via first order transition into ↑↑↓↓ and a helical structure for MnBr 2 and MnI 2 , respectively, which were determined by previous experiments. The successive phase transitions in MnBr 2 are accounted for quantitatively using a mean field approximation of a Hamiltonian consisting of exchange interactions up to third inter- and third intra-layer neighbor sites and the dipolar interaction. (author)

  6. Magnetic properties of Mn-doped ZnO diluted magnetic semiconductors

    International Nuclear Information System (INIS)

    Liu Xuechao; Zhang Huawei; Zhang Tao; Chen Boyuan; Chen Zhizhan; Song Lixin; Shi Erwei

    2008-01-01

    A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn 2+ for Zn 2+ without additional acceptor doping. The substitution of N for O (N O −) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn 2+ and Mn 3+ via N O − . The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration

  7. Determination of hydrogen solubility in Fe-Mn-C melts

    Energy Technology Data Exchange (ETDEWEB)

    Lob, Alexander; Senk, Dieter [Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University (Germany); Hallstedt, Bengt [Materials Chemistry (MCh), RWTH Aachen University (Germany)

    2011-02-15

    High manganese steels are supposed to be sensitive to hydrogen embrittlement. This can be explained by increased hydrogen solubility in comparison to unalloyed steels. To minimise hydrogen pick up during melting operations, it is necessary to know accurately the hydrogen solubility as function of hydrogen partial pressure, temperature and Mn content. In this work in situ measurements of hydrogen content at 12, 18 and 23 wt.% Mn (and 0.6 wt.% C) using the Hydris {sup registered} system are compared to pin-tube measurements. Below about 7 ppm [H] both methods gave the same results and above 7 ppm [H] the in situ measurement showed slightly higher hydrogen contents because some hydrogen is lost during quenching with the pin-tube method. The measured solubilities were compared with thermodynamic calculations. Using dilute solution theory with data developed for alloyed Fe-based melts with up to 10 wt.% Mn gives reasonable results except that the hydrogen solubility is slightly underestimated for the presently investigated Mn contents. This could be compensated by using an interaction parameter of e{sup Mn}{sub H}=-0.004 instead of e{sup Mn}{sub H}=-0.0012. A Calphad type extrapolation from the binary Fe-H, Mn-H and Fe-Mn systems gave results very close to the experimental ones. This work is a contribution from the collaborative research centre SFB 761 ''Steel - ab initio''. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Moessbauer spectroscopy of Fe-Mn-Cu alloys

    International Nuclear Information System (INIS)

    Paduani, Clederson; Krause, Joao Carlos; Yoschida, M.I. Soares

    2004-01-01

    Full text: Although a continuous series of solid solutions exists between Cu and Mn, Fe and Cu are miscible only a few percent at higher temperatures. In moderately concentrated Cu-Mn alloys the Mn moments are bound to the long ranged antiferromagnetic order and the perpendicular components form an X-Y spin glass. Copper alloys are largely employed in various industrial applications. In this work we study the magnetic properties of iron-rich disordered Fe-Mn-Cu alloys with the bcc structure with the experimental techniques of X-ray diffraction (XRD), Moessbauer spectroscopy (MS) and thermogravimetry (TGA). We investigate the formation of a solid solution with the bcc structure as well as the effect of the composition on the structural and magnetic properties of these alloys. A Rietveld analysis of the XRD diffractograms indicate that all prepared samples are single phase and are well crystallized with a bcc structure. (author)

  9. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2016-05-01

    Full Text Available The effects of transition metals on the hydrophobicity of nano–structured layered double hydroxides (LDHs and the compatibility of LDHs/ethylene vinyl acetate (EVA composites have seldom been reported. NiMgAl–LDHs slightly surface–modified with stearate and doped with transition metal cations (Mn2+, Co2+, Cu2+, Zn2+ are investigated. Compared to the pure EVA, not only were the maximal degradation–rate temperatures (Tmax of the ethylene–based chains enhanced, but also the smoke production rate (SPR and the production rate of CO (COP were sharply decreased for all the composites. Most importantly, a new flame retardant mechanism was found, namely the peak heat release rate (pk-HRR time, which directly depends on the peak production rate of CO2 (pk-CO2 time for EVA and all composites by cone calorimeter test. Moreover, the Mn–doped LDH S–NiMgAl–Mn shows more uniform dispersion and better interfacial compatibility in the EVA matrix. The cone calorimetric residue of S–NiMgAl–Mn/EVA has the intumescent char layer and the compact metal oxide layer. Therefore, S–NiMgAl–Mn/EVA shows the lowest pk-HRR and the longest pk-HRR time among all the composites.

  10. Synthesis and characterization of single-phase Mn-doped ZnO

    Science.gov (United States)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-05-01

    Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.

  11. Synthesis and characterization of single-phase Mn-doped ZnO

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.

    2009-01-01

    Different samples of Zn 1-x Mn x O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2 O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (τ 1 ) at defect site (τ 2 ) and average (τ av ) increases with milling time.

  12. Phase relations and gibbs energies in the system Mn-Rh-O

    Science.gov (United States)

    Jacob, K. T.; Sriram, M. V.

    1994-07-01

    Phase relations in the system Mn-Rh-O are established at 1273 K by equilibrating different compositions either in evacuated quartz ampules or in pure oxygen at a pressure of 1.01 × 105 Pa. The quenched samples are examined by optical microscopy, X-ray diffraction, and energy-dispersive X-ray analysis (EDAX). The alloys and intermetallics in the binary Mn-Rh system are found to be in equilibrium with MnO. There is only one ternary compound, MnRh2O4, with normal spinel structure in the system. The compound Mn3O4 has a tetragonal structure at 1273 K. A solid solution is formed between MnRh2O4 and Mn3O4. The solid solution has the cubic structure over a large range of composition and coexists with metallic rhodium. The partial pressure of oxygen corresponding to this two-phase equilibrium is measured as a function of the composition of the spinel solid solution and temperature. A new solid-state cell, with three separate electrode compartments, is designed to measure accurately the chemical potential of oxygen in the two-phase mixture, Rh + Mn3-2xRh2xO4, which has 1 degree of freedom at constant temperature. From the electromotive force (emf), thermodynamic mixing properties of the Mn3O4-MnRh2O4 solid solution and Gibbs energy of formation of MnRh2O4 are deduced. The activities exhibit negative deviations from Raoult’s law for most of the composition range, except near Mn3O4, where a two-phase region exists. In the cubic phase, the entropy of mixing of the two Rh3+ and Mn3+ ions on the octahedral site of the spinel is ideal, and the enthalpy of mixing is positive and symmetric with respect to composition. For the formation of the spinel (sp) from component oxides with rock salt (rs) and orthorhombic (orth) structures according to the reaction, MnO (rs) + Rh2O3 (orth) → MnRh2O4 (sp), ΔG° = -49,680 + 1.56T (±500) J mol-1 The oxygen potentials corresponding to MnO + Mn3O4 and Rh + Rh2O3 equilibria are also obtained from potentiometric measurements on galvanic

  13. 3-D MnNb{sub 2}O{sub 6} nanogears from 1-D Nb{sub 2}O{sub 5} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weibing, E-mail: w.hu@tom.com [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Cui Zhicai [School of Chemical and Environmental Engineering, Hubei Institute for Nationalities, Enshi 445000 (China); Mi Yuanzhu [School of Chemistry and Environmental Engineering, Yangtze University, Nanhuan Road 1, Jingzhou 434023 (China)

    2012-04-16

    Graphical abstract: The geometry morphology of Nb-based nanomaterial evolved from long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, and eventually to fully developed pure 3-D nanogears. Highlights: Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} nanogears have been generated by a simple solvothermal process when the Mn: Nb ratio was 1:1. Black-Right-Pointing-Pointer MnNb{sub 2}O{sub 6} 6-teeth nanogears accompanied with MnNb{sub 2}O{sub 6} 5-teeth nanogears are got when the Mn:Nb ratio reached 1:2. Black-Right-Pointing-Pointer The nanomaterial consists of nanorods and 6-teeth nanogears at low Mn:Nb molar ratio(1:4). Black-Right-Pointing-Pointer Pure long Nb{sub 2}O{sub 5} nanorods are achieved by only using NbCl{sub 5} - Abstract: MnNb{sub 2}O{sub 6} nanogears have been generated by using mixed NbCl{sub 5} and MnCl{sub 2} at an optimized ratio of 1:1 in a cyclohexanol solvent in a simple solvothermal process. It has shown that the Mn:Nb ratio determines the shape of the products. Detailed characterization by electron microscopy has shown that increasing the Mn{sup +2} concentration during the solvo-thermal synthesis promotes a morphological evolution from relatively long Nb{sub 2}O{sub 5} nanorods to a mixture of short Nb{sub 2}O{sub 5} nanorods and MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to a mixture of short Nb{sub 2}O{sub 5} nanorods and more MnNb{sub 2}O{sub 6} 6-teeth nanogears, then to more and more MnNb{sub 2}O{sub 6} 6-teeth nanogears that are occasionally accompanied with under-developed MnNb{sub 2}O{sub 6} 5-teeth nanogears, and eventually to fully developed pure 3-D nanogears. The driving force for such interesting geometry transformations is attributed to the inclusion of Mn{sup 2+} into the Nb{sub 2}O{sub 5} template at low Mn{sup 2+} concentrations, which introduces internal stresses to the Nb{sub 2}O{sub 5} nanorods. At high Mn{sup 2+} concentrations, close to the

  14. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    Science.gov (United States)

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  15. Interplay between localization and magnetism in (Ga,Mn)As and (In,Mn)As

    Science.gov (United States)

    Yuan, Ye; Xu, Chi; Hübner, René; Jakiela, Rafal; Böttger, Roman; Helm, Manfred; Sawicki, Maciej; Dietl, Tomasz; Zhou, Shengqiang

    2017-10-01

    Ion implantation of Mn combined with pulsed laser melting is employed to obtain two representative compounds of dilute ferromagnetic semiconductors (DFSs): G a1 -xM nxAs and I n1 -xM nxAs . In contrast to films deposited by the widely used molecular beam epitaxy, neither Mn interstitials nor As antisites are present in samples prepared by the method employed here. Under these conditions the influence of localization on the hole-mediated ferromagnetism is examined in two DFSs with a differing strength of p-d coupling. On the insulating side of the transition, ferromagnetic signatures persist to higher temperatures in I n1 -xM nxAs compared to G a1 -xM nxAs with the same Mn concentration x . This substantiates theoretical suggestions that stronger p-d coupling results in an enhanced contribution to localization, which reduces hole-mediated ferromagnetism. Furthermore, the findings support strongly the heterogeneous model of electronic states at the localization boundary and point to the crucial role of weakly localized holes in mediating efficient spin-spin interactions even on the insulator side of the metal-insulator transition.

  16. Synthesis and characterization of Mn-doped ZnO column arrays

    International Nuclear Information System (INIS)

    Yang Mei; Guo Zhixing; Qiu Kehui; Long Jianping; Yin Guangfu; Guan Denggao; Liu Sutian; Zhou Shijie

    2010-01-01

    Mn-doped ZnO column arrays were successfully synthesized by conventional sol-gel process. Effect of Mn/Zn atomic ratio and reaction time were investigated, and the morphology, tropism and optical properties of Mn-doped ZnO column arrays were characterized by SEM, XRD and photoluminescence (PL) spectroscopy. The result shows that a Mn/Zn atomic ratio of 0.1 and growth time of 12 h are the optimal condition for the preparation of densely distributed ZnO column arrays. XRD analysis shows that Mn-doped ZnO column arrays are highly c-axis oriented. As for Mn-doped ZnO column arrays, obvious increase of photoluminescence intensity is observed at the wavelength of ∼395 nm and ∼413 nm, compared to pure ZnO column arrays.

  17. Detection of stacking faults breaking the [110]/[110] symmetry in ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P)

    International Nuclear Information System (INIS)

    Kopecky, M.; Kub, J.; Maca, F.; Masek, J.; Pacherova, O.; Rushforth, A. W.; Gallagher, B. L.; Campion, R. P.; Novak, V.; Jungwirth, T.

    2011-01-01

    We report on high-resolution x-ray diffraction measurements of (Ga,Mn)As and (Ga,Mn)(As,P) epilayers. We observe a structural anisotropy in the form of stacking faults that are present in the (111) and (111) planes and absent in the (111) and (111) planes. They occupy 10 -2 %-10 -1 % of the ferromagnetic epilayer volume while no stacking faults are detected in the controlled, undoped GaAs epilayer. Full-potential density functional calculations provide additional evidence that the formation of the stacking faults is promoted by Mn attracted to these structural defects. The enhanced Mn density along the common [110] direction of the stacking fault planes produces a symmetry-breaking mechanism of a strength and sense that can account for the uniaxial [110]/[110] magnetocrystalline anisotropy of these ferromagnetic semiconductors.

  18. The Nature of the intermediates in the reactions of Fe(III)- and Mn(III)-microperoxidase-8 with H2O2 : a rapid kinetic study

    NARCIS (Netherlands)

    Primus, J.L.; Grunenwald, S.; Hagedoorn, P.L.; Albrecht-Gary, A.M.; Mandon, D.; Veeger, C.

    2002-01-01

    Kinetic studies were performed with microperoxidase-8 (Fe(III)MP-8), the proteolytic breakdown product of horse heart cytochrome c containing an octapeptide linked to an iron protoporphyrin IX. Mn(III) was substituted for Fe(III) in Mn(III)MP-8.The mechanism of formation of the reactive metal-oxo

  19. Beryllium abundances in Hg-Mn stars

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Heacox, W.D.; Wolff, S.C.; Borsenberger, J.; Praderie, F.

    1982-01-01

    The Hg-Mn stars show anomalous line strengths of many chemical elements including Be. We have observed the Be ii resonance doublet at lambdalambda 3130, 3131 at 6.7 A mm -1 in 43 Hg-Mn stars and 10 normal stars in the same temperature range with the coude spectrograph of the 2.24 m University of Hawaii telescope at Mauna Kea. Measured equivalent widths of the two lines and/or the blend of the doublet have been compared with predictions from (1) LTE model atmospheres and (2) non-LTE line formation on non-LTE model atmospheres. (For strong Be ii lines, the LTE calculations result in more Be by factors of 2 to 4 than do the non-LTE calculations.) Overabundances of factors of 20--2 x 10 4 relative to solar have been found for 75% of the Hg-Mn stars. The 25% with little or no Be are typically among the cooler Hg-Mn stars, but for the stars with Be excesses, there is only marginal evidence for a correlationi of the size of the overabundance and temperature. It is suggested that diffusion driven by radiation pressure is responsible for the observed Be abundance anomalies

  20. In situ spectroscopic and solution analyses of the reductive dissolution of Mn02 by Fe(II)

    Science.gov (United States)

    Villinski, John E.; O'Day, Peggy A.; Corley, Timothy L.; Conklin, Martha H.

    2001-01-01

    The reductive dissolution of MnO2 by Fe(II) under conditions simulating acid mine drainage (pH 3, 100 mM SO42-) was investigated by utilizing a flow-through reaction cell and synchrotron X-ray absorption spectroscopy. This configuration allows collection of in situ, real-time X-ray absorption near-edge structure (XANES) spectra and bulk solution samples. Analysis of the solution chemistry suggests that the reaction mechanism changed (decreased reaction rate) as MnO2 was reduced and Fe(III) precipitated, primarily as ferrihydrite. Simultaneously, we observed an additional phase, with the local structure of jacobsite (MnFe2O4), in the Mn XANES spectra of reactants and products. The X-ray absorbance of this intermediate phase increased during the experiment, implying an increase in concentration. The presence of this phase, which probably formed as a surface coating, helps to explain the reduced rate of dissolution of manganese(IV) oxide. In natural environments affected by acid mine drainage, the formation of complex intermediate solid phases on mineral surfaces undergoing reductive dissolution may likewise influence the rate of release of metals to solution.

  1. Preparation of catalysts based on Ce-Mn mixed oxide by coprecipitation for combustion of n-hexane

    International Nuclear Information System (INIS)

    Picasso, Gino; Zavala, Cesar; Cruz, Romulo; Sun Kou, Rosario; Lopez, Alcides

    2013-01-01

    Catalysts based on Ce-Mn mixed with different Ce/Mn molar ratios ranging from 0,5 to 2 have been prepared by coprecipitation at pH constant with ageing times of 4, 18 and 24 h for combustion of n-hexane. XRD patterns of the mixed oxides showed the majority presence of fluorite phase. Specific BET surface areas of mixed oxides were always higher than their single counterparts and their adsorption isotherm depicted a mesoporous surface of Type IV. TPR thermograms confirmed the presence of mixed oxide phase, whose profile shifted to smaller temperatures with increasing content of ceria. Catalytic tests were performed with 2000 ppm of n-hexane and WHSV of 80 h -1 in a fixed-bed reactor. For all samples, only CO 2 and water were observed at total conversion and no partial combustion products were obtained. Ce-Mn mixed oxides were more active than simple oxide samples no matter the aging time. Mixed samples presented thermal stability in contrast with simple ones. Mixed sample with Ce/Mn molar ratio of 2 depicted the highest activity probably due to higher surface area and better reducibility ability of mixed phase. (author)

  2. Mn valence state and electrode performance of perovskite-type ...

    Indian Academy of Sciences (India)

    increase in the oxidation state of Mn ions was due to the formation of Mn4+ ions and oxygen vacancies. The addition of Cu ions to LSM systems could lead to enhanced electrode performance for oxygen reduction reactions originating from the change in valence of Mn ions. Keywords. Cu-doped LSM; electrical conductivity; ...

  3. Ferri-magnetic order in Mn induced spinel Co{sub 3−x}Mn{sub x}O{sub 4} (0.1≤x≤1.0) ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Meena, P.L., E-mail: plmeena@gmail.com [Department of Physics, Deen Dayal Upadhyaya College (University of Delhi), Shivaji Marg, Karampura, New Delhi 110015 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, North Campus, Delhi 110007 (India); Singh, M.R. [Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085 (India); Kumar, Ashok; Singh, S.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Kumar, Ravi [Beant College of Engineering and Technology, Gurdaspur, Punjab 143521 (India)

    2016-04-01

    We report structural and magnetic properties of spinel Co{sub 3−x}Mn{sub x}O{sub 4} (x=0.1–1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co{sub 3−x}Mn{sub x}O{sub 4} without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.10.5. - Highlights: • Synthesis of single phase polycrystalline Co{sub 3−x}Mn{sub x}O{sub 4} ceramic. • Change in magnetic ordering with varying Mn concentration. • The complex spin distribution is contributing to FM ordering with higher Mn.

  4. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  5. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  6. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  7. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  8. Magnetic and electronic properties of SrMnO3 thin films

    Science.gov (United States)

    Mandal, Arup Kumar; Panchal, Gyanendra; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Single phase hexagonal bulk SrMnO3 (SMO) was prepared by solid state route and it was used for depositing thin films by pulsed laser deposition (PLD) technique on single crystalline (100) oriented SrTiO3 (STO) substrate. X-ray diffraction shows that the thin film is deposited in cubic SrMnO3 phase. From X-ray absorption at the Mn L edge we observed the mixed valency of Mn (Mn3+& Mn4+) due to strain induced by the lattice mismatching between SMO and STO. Due to this mixed valency of Mn ion in SMO film, the ferromagnetic nature is observed at lower temperature because of double exchange. After post annealing with very low oxygen partial pressure, magnetic and electronic property of SMO films are effectively modified.

  9. Spatial structure of single and interacting Mn acceptors in GaAs

    Science.gov (United States)

    Koenraad, Paul

    2005-03-01

    Ferromagnetic semiconductors such as Ga1-xMnxAs are receiving a lot of attention at the moment because of their application in spintronic devices. However, despite intense study of deep acceptors in III-V semiconductors such as MnGa, little information has been obtained on their electronic properties at the atomic scale. Yet the spatial shape of the Mn acceptor state will influence the hole-mediated Mn-Mn coupling and thus all of the magnetic properties of ferromagnetic semiconductors such as Ga1-xMnxAs. This study presents an experimental and theoretical description of the spatial symmetry of the Mn acceptor wave-function in GaAs. We present measurements of the spatial mapping of the anisotropic wavefunction of a hole localized at a Mn acceptor. To achieve this, we have used the STM tip not only to image the Mn acceptor but also to manipulate its charge state A^0/A^- at room temperature. Within an envelope function effective mass model (EFM) the anisotropy in the acceptor wave-function can be traced to the influence of the cubic symmetry of the GaAs crystal which selects specific d-states that mix into the ground state due to the spin-orbit interaction in the valence band. Comparison with calculations based on a tight-binding model (TBM) for the Mn acceptor structure supports this conclusion. Using the same experimental and theoretical approach we furthermore explored the interaction between Mn acceptors directly by analyzing close Mn-Mn pairs, which were separated by less than 2 nm. We will discuss some implications of these results for Mn delta-doped layers grown on differently oriented growth surfaces.

  10. Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria

    Science.gov (United States)

    Lovley, D.R.; Phillips, E.J.P.

    1994-01-01

    Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.

  11. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  12. Mapping Structure-Composition-Property Relationships in V- and Fe-Doped LiMnPO4 Cathodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Johnson, Ian D; Loveridge, Melanie; Bhagat, Rohit; Darr, Jawwad A

    2016-11-14

    A series of LiMn 1-x-y Fe x V y PO 4 (LMFVP) nanomaterials have been synthesized using a pilot-scale continuous hydrothermal synthesis process (CHFS) and evaluated as high voltage cathodes in Li-ion batteries at a production rate of 0.25 kg h -1 . The rapid synthesis and screening approach has allowed the specific capacity of the high Mn content olivines to be optimized, particularly at high discharge rates. Consistent and gradual changes in the structure and performance are observed across the compositional region under investigation; the doping of Fe at 20 at% (with respect to Mn) into lithium manganese phosphate, rather than V or indeed codoping of Fe and V, gives the best balance of high capacity and high rate performance.

  13. Convenient and high-yielding strategy for preparing nano-ZnMn_2O_4 as anode material in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tong; Gao, Yu; Yue, Huijuan; Qiu, Hailong; Guo, Zhendong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2016-01-01

    Graphical abstract: A convenient combustion assist coprecipitation approach to synthesis nano-ZnMn2O4 anode material with excellent electrochemical performance. - Highlights: • ZnMn_2O_4 material has been gained from a novel combustion approach. • The ZnMn_2O_4 generated at 800 °C exhibits the best electrochemical performance. • This convenient method enables scale-up production of transition metal oxides. - Abstract: Time and energy saving synthesis method is crucial to the scale up applications of energy conversion and storage materials. In this report, we demonstrate a convenient and novel approach to fabricate the highly crystalline ZnMn_2O_4 nanoparticles as anode materials for Li rechargeable batteries. Pure phase ZnMn_2O_4 samples can be feasibly obtained under different calcination temperature from the precursor via combustion assisted coprecipitation method. Various techniques are used to characterize the structure and morphology of the products. Sample gained at 800 °C exhibits the best electrochemical property for lithium ion batteries. A reversible specific capacity of 716 mAh g"−"1 can be retained under a current density of 100 mA g"−"1 after 90 circles. Even the current density elevated up to 1000 mA g"−"1, the reversible capacity of the material still can be kept as high as 500 mAh g"−"1 after 1200 cycles. The outstanding performance compared to the other samples benefits from its good crystallinity and uniform dispersion with appropriate particle size.

  14. Microstructure of (Ga,Mn)As/GaAs digital ferromagnetic heterostructures

    International Nuclear Information System (INIS)

    Kong, X.; Trampert, A.; Guo, X.X.; Kolovos-Vellianitis, D.; Daeweritz, L.; Ploog, K.H.

    2005-01-01

    We report on the microstructure of (Ga,Mn)As digital ferromagnetic heterostructures grown on GaAs (001) substrates by low-temperature molecular-beam epitaxy. The Mn concentration and the As 4 /Ga beam equivalent pressure (BEP) ratio are varied in the samples containing periods of Mn sheets separated by thin GaAs spacer layers. Transmission electron microscopy studies reveal that decreasing the Mn doping concentration and reducing the BEP ratio lead to smaller composition fluctuations of Mn and more homogeneous (Ga,Mn)As layers with abrupt interfaces. Planar defects are found as the dominant defect in these heterostructures and their density is related to the magnitude of the composition fluctuation. These defects show a noticeable anisotropy in the morphologic distribution parallel to the orthogonal [110] and [110] direction. Along the [110] direction, they are stacking faults, which are preferentially formed in V-shaped pairs and nucleate at the interfaces between (Ga,Mn)As and GaAs layers. Along the [110] direction, the planar defects are isolated thin twin lamellae. The character of the planar defects and their configuration are analyzed in detail

  15. Spin coherence in a Mn{sub 3} single-molecule magnet

    Energy Technology Data Exchange (ETDEWEB)

    Abeywardana, Chathuranga [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Mowson, Andrew M.; Christou, George [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Takahashi, Susumu, E-mail: susumu.takahashi@usc.edu [Department of Chemistry, University of Southern California, Los Angeles, California 90089 (United States); Department of Physics, University of Southern California, Los Angeles, California 90089 (United States)

    2016-01-25

    Spin coherence in single crystals of the spin S = 6 single-molecule magnet (SMM) [Mn{sub 3}O(O{sub 2}CEt){sub 3}(mpko){sub 3}]{sup +} (abbreviated Mn{sub 3}) has been investigated using 230 GHz electron paramagnetic resonance spectroscopy. Coherence in Mn{sub 3} was uncovered by significantly suppressing dipolar contribution to the decoherence with complete spin polarization of Mn{sub 3} SMMs. The temperature dependence of spin decoherence time (T{sub 2}) revealed that the dipolar decoherence is the dominant source of decoherence in Mn{sub 3} and T{sub 2} can be extended up to 267 ns by quenching the dipolar decoherence.

  16. Synthesis, characterization and electrochemical performance of Al-substituted Li_2MnO_3

    International Nuclear Information System (INIS)

    Torres-Castro, Loraine; Shojan, Jifi; Julien, Christian M.; Huq, Ashfia; Dhital, Chetan; Paranthaman, Mariappan Parans; Katiyar, Ram S.; Manivannan, Ayyakkannu

    2015-01-01

    Graphical abstract: Comparison of the cycling performances for pure Li_2MnO_3 and Al-substituted Li_2MnO_3 compounds at a current density of 10 mAh g"−"1 for 100 cycles. Al-substitution increases the spinel phase and hence improves the cycling behavior. - Highlights: • Pure and Al-doped Li_2MnO_3 compounds were synthesized by a Pechini method. • Presence of monoclinic and spinel phases confirmed by Raman and Neutron diffraction. • Al substitution occurs at both Mn and Li sites in Li_2MnO_3 structure. • Al substitution reduces Mn valence state and promotes spinel phase formation. • Stable cycling capacity of 70 mAh g"−"1 was observed for nominal Li_0_._5Al_0_._5MnO_3. - Abstract: Li_2MnO_3 is known to be electrochemically inactive due to Mn in tetravalent oxidation state. Several compositions such as Li_2MnO_3, Li_1_._5Al_0_._1_7MnO_3, Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 were synthesized by a sol–gel Pechini method. All the samples were characterized with XRD, Raman, XPS, SEM, Tap density and BET analyzer. XRD patterns indicated the presence of monoclinic phase for pristine Li_2MnO_3 and mixed monoclinic/spinel phases (Li_2_−_xMn_1_−_yAl_x_+_yO_3_+_z) for Al-substituted Li_2MnO_3 compounds. The Al substitution seems to occur both at Li and Mn sites, which could explain the presence of spinel phase. XPS analysis for Mn 2p orbital reveals a significant decrease in binding energy for Li_1_._0Al_0_._3_3MnO_3 and Li_0_._5Al_0_._5MnO_3 compounds. Cyclic voltammetry, charge/discharge cycles and electrochemical impedance spectroscopy were also performed. A discharge capacity of 24 mAh g"−"1 for Li_2MnO_3, 68 mAh g"−"1 for Li_1_._5Al_0_._1_7MnO_3, 58 mAh g"−"1 for Li_1_._0Al_0_._3_3MnO_3 and 74 mAh g"−"1 for Li_0_._5Al_0_._5MnO_3 were obtained. Aluminum substitutions increased the formation of spinel phase which is responsible for cycling.

  17. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  18. Synthesis and characterization of Mn-doped ZnO diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Galil, A. [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Balboul, M.R., E-mail: m_balboul@yahoo.com [Solid State Physics and Accelerators Department, NCRRT, Atomic Energy Authority, Cairo (Egypt); Sharaf, A. [Radiation Engineering Department, NCRRT, Atomic Energy Authority, Cairo (Egypt)

    2015-11-15

    In the present work undoped and Mn doped ZnO nanoparticles (ZnO:Mn), diluted magnetic semiconductors, were successfully synthesized by the sol–gel method at room temperature. The morphology of ZnO nanoparticles constituted by flower-like structures with hexagonal morphologies that changed significantly after the incorporation of Mn. Rietveld refinements results showed that Mn ions are successfully doped into ZnO matrix without altering its wurtzite phase. Meanwhile, Raman spectroscopy analyses confirm the wurtzite structure of undoped ZnO and ZnO:Mn nanoparticles. The lattice parameters increase with increasing Mn content due to the large ionic radius of Mn{sup 2+} compared to that of Zn{sup 2+}. Electron spin resonance measurements were performed to gain information about oxidation state and site occupancy of the magnetic Mn ions in the ZnO lattice. Moreover, UV–vis absorption spectra have been utilized to calculate the optical band gap of the undoped ZnO and ZnO:Mn nanoparticles before and after different γ-irradiation doses. The band gap of ZnO:Mn (2%) is 2.62 eV which is noticeably smaller than the 3.26 eV of undoped ZnO. The thermal decomposition properties of the prepared nanoparticle samples were also studied using simultaneous Thermogravimetric analysis in temperature range from 30 to 500 °C.

  19. Tailoring luminescence properties of TiO2 nanoparticles by Mn doping

    International Nuclear Information System (INIS)

    Choudhury, B.; Choudhury, A.

    2013-01-01

    TiO 2 nanoparticles are doped with three different concentrations of Mn, 2%, 4% and 6% respectively. Absorption edge of TiO 2 is shifted from UV to visible region on amplification of Mn content. Room temperature photoluminescence spectra, excited at 320 nm, exhibit band edge and visible emission peaks associated with self trapped excitons, oxygen defects, etc. Doping of Mn increases the width and decreases the intensity of the UV emission peak. Potential fluctuations of impurities increase the width and auger type non-radiative recombination decreases the intensity of the UV emission peak. The intensity ratio of the UV to defect emission band decreases on doping, indicating degradation of structural quality. Excitation of pure and doped nanoparticles at 390 nm results in Mn 2+ emission peaks at 525 nm and 585 nm respectively. Photoluminescence excitation spectra also indicate the presence of Mn 2+ in the crystalline environment of TiO 2 . The oxygen defects and Mn related impurities act as efficient trap centers and increases the lifetime of the charge carriers. -- Highlights: ► Doping of Mn increases the d-spacing of TiO 2 nanoparticles. ► Characteristic d–d electronic transition of Mn 2+ is observed in the absorption spectra. ► Doping of Mn quenches the UV and visible emission peaks of TiO 2 . ► Photoexcitation at 390 nm generates emission peaks of Mn 2+

  20. Solution-Processed Graphene/MnO 2 Nanostructured Textiles for High-Performance Electrochemical Capacitors

    KAUST Repository

    Yu, Guihua

    2011-07-13

    Large scale energy storage system with low cost, high power, and long cycle life is crucial for addressing the energy problem when connected with renewable energy production. To realize grid-scale applications of the energy storage devices, there remain several key issues including the development of low-cost, high-performance materials that are environmentally friendly and compatible with low-temperature and large-scale processing. In this report, we demonstrate that solution-exfoliated graphene nanosheets (∼5 nm thickness) can be conformably coated from solution on three-dimensional, porous textiles support structures for high loading of active electrode materials and to facilitate the access of electrolytes to those materials. With further controlled electrodeposition of pseudocapacitive MnO2 nanomaterials, the hybrid graphene/MnO2-based textile yields high-capacitance performance with specific capacitance up to 315 F/g achieved. Moreover, we have successfully fabricated asymmetric electrochemical capacitors with graphene/MnO 2-textile as the positive electrode and single-walled carbon nanotubes (SWNTs)-textile as the negative electrode in an aqueous Na 2SO4 electrolyte solution. These devices exhibit promising characteristics with a maximum power density of 110 kW/kg, an energy density of 12.5 Wh/kg, and excellent cycling performance of ∼95% capacitance retention over 5000 cycles. Such low-cost, high-performance energy textiles based on solution-processed graphene/MnO2 hierarchical nanostructures offer great promise in large-scale energy storage device applications. © 2011 American Chemical Society.

  1. Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.

    Science.gov (United States)

    Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui

    2017-11-02

    Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Mid - infrared transmission of polycrystalline (LaSr) (MnNi)O3

    International Nuclear Information System (INIS)

    Laksanawati, W. D.; Kurniawan, B.; Saptari, S. A.

    2016-01-01

    Polycrystalline (LaSr)(MnNi)O 3 was shintesized using sol gel methods with nitrat precursors La(NO 3 ) 3 , Sr(NO 3 ) 2 , Mn(NO 3 ) 2 .4H 2 O, and Ni(NO3)2.6H2O and the different heating process. Sample (LaSr)(MnNi)O 3 with chemical formulation La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with × = 0,05 and 0,10. We report the crystallite structure of La 0,67 Sr 0,33 Mn 1-x Ni x O 3 with x= 0,00 and 0,10 are single phase with characterization by X-ray diffraction. Refinement has result that crystallite size of La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 is 24,67 and La 0,67 Sr 0,33 Mn 0,9 Ni 0,1 O 3 is 21,84 with crystallite system rombohedral, it show us that increasing at Ni composition influence of decreased crystallite size. Sampel (LaSr)(MnNi)O3 has been characterization with Fourier Transform Infrared with range of wave number from 450 to 4000 cm -1 were chategories at mid infrared wave. The FTIR pattern show to us that the Mn-O-Mn bounded has absorp infrared at wave number 605 cm -1 and the dominant peak at wave number 3750 cm -1 caused the hidroxy compound in sampel La 0,67 Sr 0,33 Mn 0,95 Ni 0,05 O 3 . (paper)

  3. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    Science.gov (United States)

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  4. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties

    Science.gov (United States)

    Li, Jingfa; Xiong, Shenglin; Li, Xiaowei; Qian, Yitai

    2013-02-01

    A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co. Subsequently, the growth of multiporous MnCo2O4 and CoMn2O4 quasi-hollow microspheres by topotactic chemical transformation from the corresponding precursors are realized through a non-equilibrium heat treatment process. Topotactic conversion further demonstrated that the much larger CoMn2O4 pores than those of MnCo2O4 are possibly due to the longer transfer distance of ions. When evaluated as anode materials for LIBs (lithium ion batteries), after 25 cycles at a current density of 200 mA g-1, the resultant MnCo2O4 and CoMn2O4 quasi-hollow microspheres possessed reversible capacities of 755 and 706 mA h g-1, respectively. In particular, the MnCo2O4 samples could deliver a reversible capacity as high as 610 mA h g-1 even at a higher current density of 400 mA g-1 with excellent electrochemical stability after 100 cycles of testing, indicating its potential application in LIBs. We believe that such good performance results from the appropriate pore size and quasi-hollow nature of MnCo2O4 microspheres, which can effectively buffer the large volume variation of anodes based on the conversion reaction during Li+ insertion/extraction. The present strategy is simple but very effective, and due to its versatility, it can be extended to other binary, even ternary complex metal oxides with high-performance in LIBs.A facile and general way for the synthesis of porous and hollow complex oxides is highly desirable owing to their significant applications for energy storage and other fields. In this contribution, uniform Mn0.33Co0.67CO3 and Co0.33Mn0.67CO3 microspheres are firstly fabricated solvothermally just by tuning the molar ratio of Mn and Co

  5. MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets.

    Science.gov (United States)

    Bradley, Justin M; Thomson, Andrew J; Inglis, Ross; Milios, Constantinos J; Brechin, Euan K; Piligkos, Stergios

    2010-11-07

    The hexanuclear cages [Mn(6)O(2)(R-sao)(6)L(2)(EtOH)(x)(H(2)O)(y)] "Mn(6)" behave as single-molecule magnets (SMMs) below a characteristic blocking temperature. As with [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] "Mn(12)" the electronic absorption spectra are rather featureless, yielding little information on the electronic structure of the magnetic ions. Low temperature Magnetic Circular Dichroism (MCD) spectra afford greater resolution of the optical transitions and also probe the magnetic properties of the system. Both the ground state spin and blocking temperature of the Mn(6) cages are determined by subtle structural perturbations of a generic Mn(6)O(2) core. Absorbance and MCD spectra are reported for [Mn(6)O(2)(Et-sao)(6){O(2)CPh(Me)(2)}(2)(EtOH)(6)] (1), [Mn(6)O(2)(Et-sao)(6){O(2)CPh}(2)(EtOH)(4)(H(2)O)(2)] (2), [Mn(6)O(2)(sao)(6){O(2)CPh}(2)(EtOH)(4)]·EtOH (3) and the trinuclear precursor [Mn(3)O(Et-sao)(3)(MeOH)(3)](ClO(4)) (4) cast into polymer film. SMM behaviour has previously been observed using magnetic susceptibility measurements on powder and single-crystal samples. The ligand field environment of the magnetic ions is assumed to be similar in (1) and (2) and their different blocking temperatures are attributed to the magnitude of the effective exchange constant. The MCD spectra of (1) and (2), in which the ground state spin S = 12, show that the ligand field environments of the Mn ions are almost identical and that magnetic hysteresis persists for isolated molecules when crystal packing forces are removed. The subtle structural differences between (1) and (2) are manifested in the field dependence of the MCD response at different wavelengths that reflect changes in band polarisation. The MCD spectrum of (3) contains features not apparent in those of (1) and (2). These are attributed to 5-coordinate Mn(iii), which is unique to (3) among the compounds studied. (3) has ground state spin S = 4, a lower blocking temperature and consequently no observable

  6. Synthesis and characterization of single-phase Mn-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D. [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Bandyopadhyay, S., E-mail: sbaphy@caluniv.ac.i [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal (India); Chattopadhyay, S. [Department of Physics, Taki Government College, Taki 743 429, West Bengal (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700 009, West Bengal (India)

    2009-05-01

    Different samples of Zn{sub 1-x}Mn{sub x}O series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn{sub 2}O{sub 4} apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation (tau{sub 1}) at defect site (tau{sub 2}) and average (tau{sub av}) increases with milling time.

  7. Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modeling

    International Nuclear Information System (INIS)

    Gurgel, M.F.C.; Espinosa, J.W.M.; Campos, A.B.; Rosa, I.L.V.; Joya, M.R.; Souza, A.G.; Zaghete, M.A.; Pizani, P.S.; Leite, E.R.; Varela, J.A.; Longo, E.

    2007-01-01

    Disordered and crystalline Mn-doped BaTiO 3 (BTO:Mn) powders were synthesized by the polymeric precursor method. After heat treatment, the nature of visible photoluminescence (PL) at room temperature in amorphous BTO:Mn was discussed, considering results of experimental and theoretical studies. X-ray diffraction (XRD), PL, and UV-vis were used to characterize this material. Rietveld refinement of the BTO:Mn from XRD data was used to built two models, which represent the crystalline BTO:Mn (BTO:Mn c ) and disordered BTO:Mn (BTO:Mn d ) structures. Theses models were analyzed by the periodic ab initio quantum mechanical calculations using the CRYSTAL98 package within the framework of density functional theory at the B3LYP level. The experimental and theoretical results indicated that PL is related with the degree of disorder in the BTO:Mn powders and also suggests the presence of localized states in the disordered structure

  8. Synthesis and Piezoelectric Properties of Li, Ca and Mn-codoped BaTiO3 by a Solvothermal Approach

    International Nuclear Information System (INIS)

    Kimura, T; Dong, Q; Yin, S; Sato, T; Hashimoto, T; Sasaki, A; Aisawa, S

    2013-01-01

    3 at.% Li-doped (Ba 1-x Ca x )(Ti 1-y Mn y )O 3 particles with the Ca 2+ mole fraction, x, of 0–0.09 and Mn mole fraction, y, of 0 and 0.0005 were synthesized by a solvothermal approach at 200°C. The products consisted of nanoparticles of 50–100 nm in diameter, and did not change very much depending on the amount of Li, Ca and Mn-codoping. The change in relative dielectric constant, Δε r , in around room temperature decreased by doping Ca 2+ , and the lowest Δε r (4.51%) could be realized at x value of 0.03. The mechanical quality factor, Q m , of 3 at.% Li-doped (Ba 0.97 Ca 0.03 )(Ti 0.9995 Mn 0.0005 )O 3 increased to 521, and Δε r decreased to 1.72%, while the piezoelectric constant, d 33 (234pC/N), and electromechanical coupling factor, k p (40.0%), did not change very much compared with 3 at.% Li-doped BaTiO 3

  9. Microstructure and Phase Analysis in Mn-Al and Zr-Co Permanent Magnets

    Science.gov (United States)

    Lucis, Michael J.

    In America's search for energy independence, the development of rare-earth free permanent magnets is one hurdle that still stands in the way. Permanent magnet motors provide a higher efficiency than induction motors in applications such as hybrid vehicles and wind turbines. This thesis investigates the ability of two materials, Mn-Al and Zr-Co, to fill this need for a permanent magnet material whose components are readily available within the U.S. and whose supply chain is more stable than that of the rare-earth materials. This thesis focuses on the creation and optimization of these two materials to later be used as the hard phase in nanocomposites with high energy products (greater than 10 MGOe). Mn-Al is capable of forming the pure L10 structure at a composition of Mn54Al43C3. When Mn is replaced by Fe or Cu using the formula Mn48Al43C3T6 the anisotropy constant is lowered from 1.3·107 ergs/cm3 to 1.0·107 ergs/cm3 and 0.8·10 7 ergs/cm3 respectively. Previous studies have reported a loss in magnetization in Mn-Al alloys during mechanical milling. The reason for this loss in magnetization was investigated and found to be due to the formation of the equilibrium beta-Mn phase of the composition Mn3Al2 and not due to oxidation or site disorder. It was also shown that fully dense Mn-Al permanent magnets can be created at hot pressing temperatures at or above 700°C and that the epsilon-phase to tau-phase transition and consolidation can be combined into a single processing step. The addition of small amounts of Cu to the alloy, 3% atomic, can increase the compaction density allowing high densities to be achieved at lower pressing temperatures. While the structure is still under debate, alloys at the composition Zr2Co11 in the Zr-Co system have been shown to have hard magnetic properties. This thesis shows that multiple structures exist at this Zr2Co11 composition and that altering the cooling rate during solidification of the alloy affects the ratio of the phase

  10. Increasing Mn substitution in magnetic semiconductors through controlled ambient annealing processes

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, J. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States); Bandaru, P.R. [Materials Science Program, Department of Mechanical and Aerospace Engineering, UC San Diego, La Jolla, CA 92093-0411 (United States)], E-mail: pbandaru@ucsd.edu

    2008-06-25

    We report on a controlled ambient annealing technique aimed at increasing the amount of Mn incorporation in III-V semiconductors. The aim is to reduce the number of hole carrier and magnetic element compensating entities, such as Mn interstitials and anti-site defects, to increase the magnetic Curie temperature. The idea is (a) to increase the number of Group III vacancies through annealing in Group V vapor rich conditions and (b) judicious use of crystal field theory to reduce/stabilize Mn interstitials. Our experimental results constitute the highest reportedT{sub c} ({approx}130 K) in Mn doped InSb and Mn doped InP. The possibility of ferrimagnetism in Mn and Cr incorporated GaAs, was noted.

  11. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    Science.gov (United States)

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of different factors on phase transformations in Fe-Mn alloys

    International Nuclear Information System (INIS)

    Balychev, Yu.M.; Tkachenko, F.K.

    1983-01-01

    Phase transformations proceeding under Fe-Mn alloy heating are studied and the effect of previous working conditions, particularly, cooling rate on these transformations is investigated. Investigations have been conducted on pure Fe-Mn alloys with 2-15% Mn. Phase transformations are shown to proceed according to α → #betta# and epsilon → #betta# reaction in Fe-Mn alloys containing 2-15% Mn under heating. Cooling rate in the range of approximately 5-1000 deg/min in preliminary working essentially affects phase transformations under subsequent heating

  13. FTIR and Raman Study of the LixTiyMn1-yO2 (y = 0, 0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, L.J.; Lucas, I.T.; Doeff, M.M.; Kostecki, R.; Saint, J.A.

    2009-02-02

    This work demonstrates the protective effect of partial titanium substitution in Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} against surface decomposition in room-temperature ionic liquid (RTILs) cells. Raman microscopy and reflectance Fourier transform IR (FTIR) spectroscopy were used to analyze electrodes recovered from cycled Li/Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y=0, 0.11) cells containing the 0.5 mol/kg LiTFSI in P{sub 13}FSI RTIL electrolyte. [TFSI=bis(trifluoromethanesulfonyl)imide.] Raman and FTIR spectra of cycled Li{sub x}MnO{sub 2} cathodes showed many distinct bands that can be attributed to both the electrolyte and electrode decomposition products. The thickness of the amorphous porous layer on the Li{sub x}MnO{sub 2} cathode increased during cycling. The surface degradation of Li{sub x}MnO{sub 2} and precipitation of electrolyte decomposition products contributed to the film growth. Improved cycling behavior was observed in cells containing Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2}, yet Raman spectroscopy also showed possible surface degradation. The FTIR spectra of cycled Li{sub x}MnO{sub 2} and Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} cathodes displayed bands characteristic for LiSO{sub 3}CF{sub 3} and Li{sub 2}NSO{sub 2}CF{sub 3}, which originate from the reaction of the TFSI anion with traces of water present in the cell.

  14. Photoluminescence of ZnS: Mn quantum dot by hydrothermal method

    Directory of Open Access Journals (Sweden)

    Yun Hu

    2018-01-01

    Full Text Available ZnS: Mn quantum dots (QDs with the average grain size from 4.2 to 7.2 nm were synthesized by a hydrothermal method. All samples were cubic zinc blende structure (β-ZnS measured using X-ray diffraction (XRD. And the main diffraction peaks of ZnS: Mn shifted slightly towards higher angle in comparison with the intrinsic ZnS because of the substitution of Mn2+ for Zn2+. Due to the small grain size (4-7 nm effect, the poor dispersion and serious reunion phenomenon for the samples were observed from transmission electron microscopy (TEM. ZnS: Mn QDs had four peaks centered at 466, 495, 522, and 554 nm, respectively, in the photoluminescence (PL spectra, in which the band at 554 nm absent in the intrinsic ZnS: Mn is attributed to the doping of Mn2+ in the lattice sites. As the concentration of Mn2+ increasing from 0% to 0.6 at%, the intensity of the PL emission also increased. But the concentration reached 0.9 at%, quenching of PL emission occurred. The peak in ZnS: Mn QDs observed at 490 cm-1 was originated from the stretching vibration of the Mn–O bonds in the Fourier transform infrared (FTIR spectra. And the small changes about this peak compared with the previous reports at 500 cm-1 can be attributed to the formation of quantum dots. This method we utilized to synthesize ZnS: Mn QDs is very simple, low cost, and applicable for other semiconductor QD materials.

  15. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yonglin, E-mail: leiyonglin@163.com [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Lin, Xiaoyan, E-mail: linxy@swust.edu.cn [Engineering Research Center of Biomass Materials, Ministry of Education, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Liao, Huiwei, E-mail: liaohw@swust.edu.cn [School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China)

    2017-06-15

    The effect of Ni, Fe and Mn in different proportions on microstructure and pollutant-catalyzed properties of Ni-Fe-Mn-O negative temperature coefficient ceramic nanocompositions was studied. Structural and physical characterization of all the samples was carried out by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) method, Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG). The results revealed that the interplanar spacing decreased with increasing Fe content, the grain size decreased with increasing Ni content, the substitution of Ni{sup 2+} in the tetrahedral sites by Fe{sup 2+} increased with increasing Fe content. And increase of iron could improve Ni-Fe-Mn-O high temperature stability. The low-temperature thermal removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 83.8%, 75.2%, 78.5% and 60.3% at 2400 min, respectively. And the microwave combining with H{sub 2}O{sub 2} removal efficiencies of 30 mg/L methyl orange solution for NiFeMnO{sub 4}, Ni{sub 0.6}Fe{sub 0.9}Mn{sub 1.5}O{sub 4,} Ni{sub 0.6}Fe{sub 1.8}Mn{sub 0.6}O{sub 4} and Ni{sub 0.3}Fe{sub 2.1}Mn{sub 0.6}O{sub 4} systems were 96.5%,93.8%, 98.7% and 98% at 6.0 min, respectively. These results indicated that the Ni-Fe-Mn-O ceramics with appropriate increase of iron were useful for industrial applications on degrading organic pollute. - Highlights: • The relationship of composition and catalytic properties of Ni-Fe-Mn-O was proposed. • The interplanar spacing decreased with increasing Fe content. • The grain size decreased with increasing Ni content. • The substitution of Ni{sup 2+} in the tetrahedral site by Fe{sup 2+} with increasing Fe content.

  17. An Investigation into the Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer - Tropsch Synthesis: Evidence for Enhanced CO Adsorption and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gregory R.; Werner, Sebastian; Bell, Alexis T. (LBNL); (UCB)

    2016-03-04

    Mn is an effective promoter for improving the activity and selectivity of Co-based Fischer-Tropsch synthesis (FTS) catalysts, but the mechanism by which this promoter functions is poorly understood. The work reported here was aimed at defining the manner in which Mn interacts with Co and determining how these interactions affect the activity and selectivity of Co. Detailed measurements are reported for the kinetics of FTS as a function of Mn/Co ratio, temperature, and reactant partial pressure. These data are described by a single, two-parameter rate expression. Mn promotion was found to increase both the apparent rate constant for CO consumption and the CO adsorption constant. Further evidence for enhanced CO adsorption and dissociation was obtained from measurements of temperature-programmed desorption of CO and CO disproportionation rates, respectively. Our quantitative analysis of elemental maps obtained by STEM-EDS revealed that the promoter accumulates preferentially on the surface of Co nanoparticles at low Mn loadings, resulting in a rapid onset of improvements in the product selectivity as the Mn loading increases. For catalysts prepared with loadings higher than Mn/Co = 0.1, the additional Mn accumulates in the form of nanometer-scale particles of MnO on the support. In situ IR spectra of adsorbed CO show that Mn promotion increases the abundance of adsorbed CO with weakened C-O bonds. Furthermore, it is proposed that the cleavage of the C-O bond is promoted through Lewis acid-base interactions between the Mn2+ cations located at the edges of MnO islands covering the Co nanoparticles and the O atom of CO adsorbates adjacent to the MnO islands. The observed decrease in selectivity to CH4 and the increased selectivity to C5+ products with increasing Mn/Co ratio are attributed to a decrease in the ratio of adsorbed H to CO on the surface of the supported Co nanoparticles.

  18. Effects of axial coordination on immobilized Mn(salen) catalysts.

    Science.gov (United States)

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-11-13

    The consequences of anchoring Mn(salen) catalysts onto a supporting material using one of the vacant positions of the metal center are tackled by studying several Mn(salen) complexes with different axial ligands attached. This is accomplished using Density Functional Theory at the X3LYP/Triple-ζ level of theory and the Atom In Molecules formalism. The results suggest that both Mn(salen) complexes and their oxo derivatives should lie in a triplet ground state. Also, the choice of the axial ligand bears a moderate effect on the energy involved in the oxidation of the former to oxo-Mn(salen) complexes, as well as in the stability of such complexes toward ligand removal by HCl. AIM analysis further suggests that the salen ligand acts as a "charge reservoir" for the metal center, with strong correlations being obtained between the charge of salen and the electron population donated by the axial ligand to the metal center. Moreover, the results suggest that the Mn atom in Mn(salen) complexes holds different hybridization of its valence orbitals depending on the type of axial ligand present in the system.

  19. Room temperature ferromagnetism in Mn-doped NiO nanoparticles

    Science.gov (United States)

    Layek, Samar; Verma, H. C.

    2016-01-01

    Mn-doped NiO nanoparticles of the series Ni1-xMnxO (x=0.00, 0.02, 0.04 and 0.06) are successfully synthesized using a low temperature hydrothermal method. Samples up to 6% Mn-doping are single phase in nature as observed from powder x-ray diffraction (XRD) studies. Rietveld refinement of the XRD data shows that all the single phase samples crystallize in the NaCl like fcc structure with space group Fm-3m. Unit cell volume decreases with increasing Mn-doping. Pure NiO nanoparticles show weak ferromagnetism, may be due to nanosize nature. Introduction of Mn within NiO lattice improves the magnetic properties significantly. Room temperature ferromagnetism is found in all the doped samples whereas the magnetization is highest for 2% Mn-doping and then decreases with further doping. The ZFC and FC branches in the temperature dependent magnetization separate well above 350 K indicating transition temperature well above room temperature for 2% Mn-doped NiO Nanoparticle. The ferromagnetic Curie temperature is found to be 653 K for the same sample as measured by temperature dependent magnetization study using vibrating sample magnetometer (VSM) in high vacuum.

  20. Boron-doped MnTe semiconductor-sensitized ZnO solar cells

    Indian Academy of Sciences (India)

    Administrator

    The B-doped MnTe semiconductor was grown on ZnO using two stages of the ... nanoparticles (NPs), i.e. MnTe and MnTe2 were observed with a diameter range of approximately ..... Kongkanand A, Tvrdy K, Takechi K, Kuno M and Kamat P.

  1. Magnetic properties of (Mn1-xRux)3Ga alloys

    International Nuclear Information System (INIS)

    Hori, T.; Akimitsu, M.; Miki, H.; Ohoyoama, K.; Yamaguchi, Y.

    2002-01-01

    We found that the pseudo binary alloys Mn 1-x Ru x 3 Ga, with 0.33≤x≤0.67, have an ordered b.c.c. structure. The lattice constant a is almost constant with respect to x: a=6.000 A for x=0.33 and a=5.992 A for x=0.67. For the alloy with x=0.33, i.e. Mn 2 RuGa, the magnetization is almost saturated in a field of 20 kOe. The saturation magnetization at 4.2 K is 23 emu/g, and the Curie temperature, T C , is 460 K. The T C of (Mn 1-x Ru x ) 3 Ga decreases almost linearly with increasing x, and it vanishes around x=0.67 (MnRu 2 Ga). We also determined atomic and magnetic structures from neutron diffraction experiments. The alloy Mn 2 RuGa (x=0.33) has an ordered structure of CuHg 2 Ti type; the magnetic Mn atoms mainly occupy the 4a (0,0,0) and 4d (3/4,3/4,3/4) sites. We also observed that the magnetic moments of Mn atoms on the 4a and 4d sites are antiparallel to each other; values of the magnetic moment are μ a =4.6 and μ d =3.3 μ B per Mn atom. (orig.)

  2. MnBi particles with high energy density made by spark erosion

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phi-Khanh, E-mail: phi@ucsd.edu; Jin, Sungho [Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States); Berkowitz, Ami E. [Physics Department, University of California, San Diego, La Jolla, California 92093 (United States); Center for Magnetic Recording Research, University of California, San Diego, La Jolla, California 92093 (United States)

    2014-05-07

    We report on the properties of low-temperature phase (LTP)-MnBi particles produced by the rapid-quenching technique of spark-erosion. The as-prepared powder consists of amorphous, crystalline, and superparamagnetic particles, mostly as porous aggregates. The major fraction of the powder consists of 20–30 nm particles. A short anneal crystallizes the amorphous particles producing a high moment, >90% of theoretical M{sub S}, albeit with H{sub C} of a few kOe. If lightly milled, the agglomerates are broken up to yield H{sub C} of 1 T. These findings are supported by the x-ray diffraction pattern showing broadened peaks of the predominant LTP-MnBi phase. The combination of spark erosion, milling, and annealing has produced randomly oriented particles with (BH){sub MAX} ∼ 3.0 MGOe. The particles are expected to show record energy product when aligned along their crystallographic easy axes.

  3. Moessbauer and magnetic investigation of Fe-Mn alloy

    International Nuclear Information System (INIS)

    Yousif, A.A.

    1994-01-01

    Moessbauer, X-ray, magnetization and susceptibility measurements were performed to study Fe 100-x Mn x , x = 5, 15, 39, 50. The different phases of Fe-Mn were identified, and hyperfine interaction parameters and average magnetic moments of some samples were determined. The average hyperfine field and average magnetic moment decrease as x increases. The influence of the Mn neighbourhood on the derived parameters is discussed in the light of calculations using the first principle discrete variational method in the local density approximation. (orig.)

  4. Assesment of (Mn,Co)3O4 powders for possible coating material for SOFC/SOEC interconnects

    DEFF Research Database (Denmark)

    Szymczewska, D.; Molin, Sebastian; Venkatachalam, Vinothini

    2015-01-01

    In this work (Mn,Co)3O4 spinel powders with different Mn:Co ratio (1:1 and 1:2) and from different commercial suppliers are evaluated for possible powder for production of interconnect coatings. Sinterability of the powders is evaluated on pressed pellets sintered in oxidizing and in reducing/oxidizing...... that with appropriate powder it is possible to produce adherent protective coating with a well-controlled thickness....... atmospheres. For selected powder, coatings are then prepared by the electrophoretic deposition method on Crofer 22 APU stainless steel coupons. Effects of dispersant/iodine content and deposition voltage and times are evaluated. Thickness as a function of deposition parameters is described. Results show...

  5. Assesment of (Mn,Co)33O4 powders for possible coating material for SOFC/SOEC interconnects

    International Nuclear Information System (INIS)

    Szymczewska, D.; Jasinski, P.; Molin, S.; Venkatachalam, V.; Chen, M.; Hendriksen, P.V.

    2016-01-01

    In this work (Mn,Co) 3 O 4 spinel powders with different Mn:Co ratio (1:1 and 1:2) and from different commercial suppliers are evaluated for possible powder for production of interconnect coatings. Sinterability of the powders is evaluated on pressed pellets sintered in oxidizing and in reducing/oxidizing atmospheres. For selected powder, coatings are then prepared by the electrophoretic deposition method on Crofer 22 APU stainless steel coupons. Effects of dispersant/iodine content and deposition voltage and times are evaluated. Thickness as a function of deposition parameters is described. Results show that with appropriate powder it is possible to produce adherent protective coating with a well-controlled thickness

  6. Magnetocaloric effect in In doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Department of Electronics and Physics, Institute of Science, GITAM University, Visakhapatnam 530045 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Vinod, K.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Magnetic and magnetocaloric (MCE) properties of Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3} polycrystalline samples are presented in this paper. Isothermal magnetization measurements reveal a field induced magnetic transition. Magnetic entropy change of 2.34±0.35 J/mole-K for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and 2.64±0.38 J/mole-K for Yb{sub 0.8}In{sub 0.2}MnO{sub 3} field change ΔH =10 KOe is observed around the ferromagnetic ordering temperature of Yb{sup 3+}. Values of relative cooling power for the same field change are found to be 38.03±9 J /mol, and 40.90±10 J/mol for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3}, respectively. These values suggest In doped YbMnO{sub 3} may be a potential candidate for magnetic refrigerant at low temperatures.

  7. The Al-rich region of the Al–Fe–Mn alloy system

    International Nuclear Information System (INIS)

    Balanetskyy, S.; Pavlyuchkov, D.; Velikanova, T.; Grushko, B.

    2015-01-01

    Highlights: • Constitution of Al–Fe–Mn was studied above 50 at.% Al at 650–1070 °C. • AlMn (A2) and AlFe (B2) phases form a continuous compositional region. • Al 8 Mn 5 and Al 8 Fe 5 γ-brass type phases form a continuous compositional region. • Al 13 Fe 4 , Al 5 Fe 2 , Al 2 Fe, Al 6 Mn, Al 11 Mn 4 , γ 2 exhibit wide ternary extensions. • Four ternary intermetallics were revealed. - Abstract: Phase equilibria in the Al-rich region of the Al–Fe–Mn alloy system were studied at 1070, 1020, 950, 875, 800, 740, 695 and 650 °C. The continuous region of the bcc solid solution was estimated between the Al–Mn and Al–Fe terminals. Also the isostructural high-temperature Al–Mn and Al–Fe γ 1 -phases (γ-brass type structure) form continuous regions. The Al 6 Mn, high-temperature T-Al 11 Mn 4 and low-temperature γ 2 phases dissolve up to 9.0, 14.5 and 31.0 at.% Fe, respectively, while the M-Al 13 Fe 4 , Al 5 Fe 2 and Al 2 Fe phases dissolve up to 15.5, 11.5 and 10.0 at.% Mn, respectively. The thermodynamically stable decagonal D 3 -phase with periodicity of 1.25 nm in the specific direction and two periodic intermetallics designated φ (P6 3 /mmc; a = 0.7554, c = 0.7872 nm) and κ (P6 3 /m; a = 1.7630, c = 1.2506 nm) were identified. An additional ternary phase of unknown structure was also revealed

  8. Study of bioavailability of Mn in soil manured with bio solids using neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Mateus, Natalina de Fatima; Madi Filho, Tufic

    2010-01-01

    Full text: This work evaluated, using neutron activation analysis (NAA), the behavior of Mn absorption by Eucalyptus manured with bio solids. Manganese is an important micro nutrient because it is an activator of enzymes, controller of oxy reduction reactions, essential to the photosynthesis and synthesis of chlorophyll and protein. Its lack causes a decrease in photosynthesis, which reduces growth and productivity. In alkaline soils there is manganese deficiency. The critical level of Mn is 675 μg:g -1 , above this value manganese is toxic to the plant, but the bio solids applied had a concentration of 300 μg:g -1 , below the critical level. 16 samples were analyzed, and various elements were detected. But the interest in this work was to evaluate the behavior of Mn with increasing the amount of bio solids used as manure. Three different concentrations of bio solids: 10 kg:ha -1 ; 20 kg:ha -1 and 40 kg:ha -1 were applied. Alkaline bio solids provides an increase of the soil pH, which cause the reduction of the manganese availability. The bio solid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown into sanitary lands. The level of pH above 5.5 causes the Mn reduction. The values obtained showed this reduction of Mn phytoavailability with the bio solids increase. (author)

  9. Study of bioavailability of Mn in soil manured with bio solids using neutron activation analysis (NAA)

    Energy Technology Data Exchange (ETDEWEB)

    Mateus, Natalina de Fatima [Secretaria da Educacao do Estado de Sao Paulo, SP (Brazil); Madi Filho, Tufic [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Full text: This work evaluated, using neutron activation analysis (NAA), the behavior of Mn absorption by Eucalyptus manured with bio solids. Manganese is an important micro nutrient because it is an activator of enzymes, controller of oxy reduction reactions, essential to the photosynthesis and synthesis of chlorophyll and protein. Its lack causes a decrease in photosynthesis, which reduces growth and productivity. In alkaline soils there is manganese deficiency. The critical level of Mn is 675 {mu}g:g{sup -1}, above this value manganese is toxic to the plant, but the bio solids applied had a concentration of 300 {mu}g:g{sup -1}, below the critical level. 16 samples were analyzed, and various elements were detected. But the interest in this work was to evaluate the behavior of Mn with increasing the amount of bio solids used as manure. Three different concentrations of bio solids: 10 kg:ha{sup -1}; 20 kg:ha{sup -1} and 40 kg:ha{sup -1} were applied. Alkaline bio solids provides an increase of the soil pH, which cause the reduction of the manganese availability. The bio solid is a mud resulting from the biological treatment of wasted liquids. It is considered as a profitable alternative and important to minimize the environmental impact generated by the sewage thrown into sanitary lands. The level of pH above 5.5 causes the Mn reduction. The values obtained showed this reduction of Mn phytoavailability with the bio solids increase. (author)

  10. Study of intergranular embrittlement in Fe-12Mn alloys

    International Nuclear Information System (INIS)

    Lee, H.J.

    1982-06-01

    A high resolution scanning Auger microscopic study has been performed on the intergranular fracture surfaces of Fe-12Mn steels in the as-austenitized condition. Fracture mode below the ductile-brittle transition temperature was intergranular whenever the alloy was quenched from the austenite field. The intergranular fracture surface failed to reveal any consistent segregation of P, S, As, O, or N. The occasional appearance of S or O on the fracture surface was found to be due to a low density precipitation of MnS and MnO 2 along the prior austenite boundaries. An AES study with Ar + ion-sputtering showed no evidence of manganese enrichment along the prior austenite boundaries, but a slight segregation of carbon which does not appear to be implicated in the tendency toward intergranular fracture. Addition of 0.002% B with a 1000 0 C/1h/WQ treatment yielded a high Charpy impact energy at liquid nitrogen temperature, preventing the intergranular fracture. High resolution AES studies showed that 3 at. % B on the prior austenite grain boundaries is most effective in increasing the grain boundary cohesive strength in an Fe-12Mn alloy. Trace additions of Mg, Zr, or V had negligible effects on the intergranular embrittlement. A 450 0 C temper of the boron-modified alloys was found to cause tempered martensite embrittlement, leading to intergranular fracture. The embrittling treatment of the Fe-12Mn alloys with and without boron additions raised the ductile-brittle transition by 150 0 C. This tempered martensite embrittlement was found to be due to the Mn enrichment of the fracture surface to 32 at. % Mn in the boron-modified alloy and 38 at. % Mn in the unmodified alloy. The Mn-enriched region along the prior austenite grain boundaries upon further tempering is believed to cause nucleation of austenite and to change the chemistry of the intergranular fracture surfaces. 61 figures

  11. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family.

    Directory of Open Access Journals (Sweden)

    Joaquim Rui Rodrigues

    Full Text Available The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn(2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg(2+ and active with low micromolar Mn(2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn(2+, significant (≈25% Mg(2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart. The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.

  12. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    International Nuclear Information System (INIS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-01-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn 2 O 4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn 2 O 4 particles in air and water vapor atmospheres as model reactions; LiMn 2 O 4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO 3 precursor impregnated with LiOH, LiMn 2 O 4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn 2 O 4 particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn 2 O 4 particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  13. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route

    International Nuclear Information System (INIS)

    Zhang Jie; Shu Dong; Zhang Tianren; Chen Hongyu; Zhao Haimin; Wang Yongsheng; Sun Zhenjie; Tang Shaoqing; Fang Xueming; Cao Xiufang

    2012-01-01

    Highlights: ► PANI/MnO 2 composite was synthesized by the simultaneous-oxidation route. ► Good contact in inter-molecule level between PANI and MnO 2 improves the conductivity. ► The separation between PANI and MnO 2 prevents the aggregation of nano-composite. ► The maximum specific capacitance of the PANI/MnO 2 electrode is 320 F/g. ► The as-prepared PANI/MnO 2 exhibits excellent cycle stability of 84% capacitance retention after 10,000 cycles. - Abstract: Polyaniline (PANI) and manganese dioxide (MnO 2 ) composite (PANI/MnO 2 ) was synthesized via a simultaneous-oxidation route. In this route, all reactants were dispersed homogenously in precursor solution and existed as ions and molecules, and involved reactions of ions and molecules generating PANI and MnO 2 simultaneously. In this way, PANI molecule and MnO 2 molecule contact each other and arrange alternately in the composite. The inter-molecule contact improves the conductivity of the composite. The alternative arrangement of PANI molecules and MnO 2 molecules separating each other, and prevents the aggregation of PANI and cluster of MnO 2 so as to decrease the particle size of the composite. The morphology, structure, porous and capacitive properties are characterized by scanning electron microscopy, X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, Branauer–Emmett–Teller test, thermogravimetric analysis, Fourier transform infrared spectroscopy, cyclic voltammetry, charge–discharge test and the electrochemical impedance measurements. The results show that MnO 2 is predominant in the PANI/MnO 2 composite and the composite exhibits larger specific surface area than pure MnO 2 . The maximum specific capacitance of the composite electrode reaches up to 320 F/g by charge–discharge test, 1.56 times higher than that of MnO 2 (125 F/g). The specific capacitance retains approximately 84% of the initial value after 10,000 cycles, indicating the good cycle stability.

  14. Low temperature magnetic structure of MnSe

    Indian Academy of Sciences (India)

    Abstract. In this paper we report low temperature neutron diffraction studies on MnSe in order to understand the anomalous behaviour of their magnetic and transport prop- erties. Our study indicates that at low temperatures MnSe has two coexisting crystal structures, high temperature NaCl and hexagonal NiAs. NiAs phase ...

  15. Performance and Aging of Mn/MnO2 as an Environmentally Friendly Energetic Time Delay Composition

    Science.gov (United States)

    2014-04-16

    16,20−22 Thermochemical predictions of this reaction were made using Cheetah v6.023 at a constant pressure of 1 atm. Figure 2 shows that the...three experiments at 40, 50, and 60 wt % Mn. Similar to Figure 2. Predicted adiabatic combustion temperature vs Mn content using Cheetah v6.0. Figure 3...Bastea, S.; Fried, L. E.; Glaesemann, K. R.; Howard, W. M.; Kuo, I.-F.; Souers, P. C. Cheetah 6.0 User Manual; Technical Report for Lawrence

  16. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    Science.gov (United States)

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  17. Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

    International Nuclear Information System (INIS)

    Ali, Gomaa A.M.; Tan, Ling Ling; Jose, Rajan; Yusoff, Mashitah M.; Chong, Kwok Feng

    2014-01-01

    Highlights: • MnO 2 is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO 2 nanoflowers show high specific capacitance. • Recovered MnO 2 nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO 2 nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO 2 nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO 2 nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO 2 nanoflowers as energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO 2 in birnessite phase, while electron microscopy analysis shows the MnO 2 is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO 2 nanoflowers exhibit high specific capacitance (294 F g −1 at 10 mV s −1 ; 208.5 F g −1 at 0.1 A g −1 ) in 1 M Na 2 SO 4 electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO 2 nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system

  18. Characterization of Mn doped ZnO nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Eva; Bakin, Andrey; Al-Suleiman, Mohamed; Wehmann, Hergo-Heinrich; Waag, Andreas [Institute of Semiconductor Technology, TU Braunschweig (Germany); Schmid, Herbert; Mader, Werner [Institute for Inorganic Chemistry, University Bonn (Germany); Bremers, Heiko; Hangleiter, Andreas [Institute of Applied Physics, TU Braunschweig (Germany)

    2008-07-01

    In the quest of materials for spintronic applications, diluted magnetic semiconductors recently attracted much attention. The main challenge is finding a ferromagnetic material with Curie temperature T{sub c}>300 K whose magnetic properties can be controlled electrically. The interest was particularly focused on Zn(TM)O since theoretical calculations predict that ZnO containing Mn could exhibit ferromagnetism with T{sub c} above room temperature. In the present study, the structural and magnetic properties of Mn doped ZnO nanopowder are investigated and compared to undoped ZnO crystals. Doping of ZnO with Mn results in increased lattice constants as revealed by XRD. However, an inhomogeneous distribution of the Mn dopants within the nanopowder was revealed by energy-dispersive X-ray and electron energy-loss spectroscopy. Magnetic properties are investigated by means of SQUID measurements on aggregates of powder particles as well as by MFM to study the behavior of single grains. The MFM image differs significantly from the topography as imaged by AFM and suggests the existence of long-ranging magnetic signals emerging from the sample.

  19. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  20. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  1. Unsaturated Mn complex decorated hybrid thioarsenates: Syntheses, crystal structures and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Cheng-Yang [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Lei, Xiao-Wu, E-mail: xwlei_jnu@163.com [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Tian, Ya-Wei; Xu, Jing; Bai, Yi-Qun; Wang, Fei; Zhou, Peng-Fei; Liu, Xiao-Fan [Key Laboratory of Inorganic Chemistry in Universities of Shandong, Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155 (China); Yi, Fei-Yan, E-mail: yifeiyan@nbu.edu.cn [Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2016-03-15

    The incorporation of unsaturated [Mn(1,2-dap)]{sup 2+}, [Mn(1,2-dap){sub 2}]{sup 2+}, [Mn(2,2-bipy)]{sup 2+} (1,2-dap=1,2-diaminopropane) complex cations with thioarsenate anions of [As{sup III}S{sub 3}]{sup 3−} and [As{sup V}S{sub 4}]{sup 3−} led to three new hybrid manganese thioarsenates, namely, [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} (1), [Mn(1,2-dap){sub 2}]{[Mn(1,2-dap)]_2As_2S_8} (2) and (NH{sub 4})[Mn(2,2-bipy){sub 2}]AsS{sub 4} (3). In compound 1, the unsaturated [Mn(1,2-dap)]{sup 2+} complexes, [MnS{sub 4}]{sup 6−} tetrahedra and [As{sup III}S{sub 3}]{sup 3−} trigonal-pyramids are condensed to form the 1D [Mn(1,2-dap)]{sub 2}MnAs{sub 2}S{sub 6} chain, whereas compound 2 features 2D layer composed of [Mn(1,2-dap)]{sup 2+} and [Mn(1,2-dap){sub 2}]{sup 2+} complexes as well as [As{sup V}S{sub 4}]{sup 3−} tetrahedral units. For compound 3, two [As{sup V}S{sub 4}]{sup 3−} anions bridge two [Mn(2,2-bipy)]{sup 2+} complex cations into a butterfly like {[Mn(2,2-bipy)]_2As_2S_8}{sup 2−} anionic unit. Magnetic measurements indicate the ferrimagnetic behavior for compound 1 and antiferromagnetic (AF) behaviors for compounds 2–3. The UV–vis diffuse-reflectance measurements and electronic structural calculations based on density functional theory (DFT) revealed the title compounds belong to semiconductors with band gaps of 2.63, 2.21, and 1.97 eV, respectively. The narrow band-gap of compound 3 led to the efficient and stable photocatalytic degradation activity over organic pollutant than N-doped P25 under visible light irradiation. - Highlights: Three new hybrid manganese thioarsenates have been prepared and structurally characterized. These hybrid phases feature interesting magnetic and visible light responding photocatalytic properties.

  2. MWCNT-MnFe2O4 nanocomposite for efficient hyperthermia applications

    Science.gov (United States)

    Seal, Papori; Hazarika, Monalisa; Paul, Nibedita; Borah, J. P.

    2018-04-01

    In this work we present synthesis of multi-walled carbon nanotube (MWCNT)-Manganese ferrite (MnFe2O4) nanocomposite and its probable application in hyperthermia. MnFe2O4 nanoparticles were synthesized by co-precipitation method. X ray diffractogram (XRD) confirms the formation of cubic phase of MnFe2O4 with preferred crystallographic orientation along (311) plane. High resolution electron microscope (HRTEM) image of the composites confirms the presence of MnFe2O4 spherical nanoparticles on the surface of CNT which are bound strongly to the surface. MWCNT-MnFe2O4 nanocomposite were prepared after acid functionalization of MWCNT. Vibrational features of the synthesized samples were confirmed through Fourier transformed infra-red spectroscopy (FTIR). FTIR spectra of acid functionalized MWCNT shows a peak positioned at ˜1620cm-1 which corresponds to C=O functional group of carboxylic acid. Prepared MnFe2O4 nanoparticles and MWCNT-MnFe2O4 nanocomposites were subjected to hyperthermia studies.

  3. The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting

    Directory of Open Access Journals (Sweden)

    Youwen Yang

    2016-03-01

    Full Text Available Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt % alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt % and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance.

  4. Mn doped GaN nanoparticles synthesized by rapid thermal treatment in ammonia

    International Nuclear Information System (INIS)

    Šimek, P.; Sedmidubský, D.; Huber, Š.; Klímová, K.; Maryško, M.; Mikulics, M.; Sofer, Z.

    2015-01-01

    We present a novel route for the synthesis of manganese doped GaN nanoparticles. Nanoparticles in the form of hexagonal discs were synthesized by rapid thermal treatment of manganese doped ammonium hexafluorogallate in ammonium atmosphere. The morphology of GaN:Mn nanoparticles was investigated using scanning electron microscopy. A concentration over 0.7 wt.% of Mn was observed by X-ray fluorescence and electron microprobe. Structural and electronic properties were investigated using X-ray diffraction, Raman spectroscopy and micro-photoluminescence with excitation wavelength of 325 nm and 532 nm. The magnetic properties between 4.5 K and 300 K were investigated by a superconducting quantum interference device (SQUID) magnetometer. GaN:Mn nanoparticles show a purely paramagnetic behavior which can be interpreted in terms of Mn 2+ ions exhibiting an antiferromagnetic interaction. - Highlights: • A new method for the synthesis of Mn doped GaN nanoparticles. • GaN:Mn nanoparticles form hexagonal discs. • None ferromagnetic ordering observed in GaN:Mn nanoparticles. • The concentration of Mn in GaN:Mn nanoparticles reach up to 0.8 wt.%

  5. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    Science.gov (United States)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  6. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  7. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay; Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  8. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    Science.gov (United States)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis

  9. A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO₂ Batteries.

    Science.gov (United States)

    Guo, Xiaotong; Li, Jianming; Jin, Xu; Han, Yehu; Lin, Yue; Lei, Zhanwu; Wang, Shiyang; Qin, Lianjie; Jiao, Shuhong; Cao, Ruiguo

    2018-05-05

    Aqueous rechargeable zinc-manganese dioxide (Zn-MnO₂) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO₂ batteries. Here, we report a new material consisting of hollow MnO₂ nanospheres, which can be used for aqueous Zn-MnO₂ batteries. The hollow MnO₂ nanospheres can achieve high specific capacity up to ~405 mAh g −1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO₂ enables long-term cycling stability for the aqueous Zn-MnO₂ batteries. The excellent performance of the hollow MnO₂ nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.

  10. Sonocatalytic Degradation of Antibiotics Tetracycline by Mn-Modified Diatomite

    OpenAIRE

    Guo, Yiping; Mi, Xiao; Li, Guoting; Chen, Xi

    2017-01-01

    Mn-modified diatomite was prepared by wet impregnation and subsequent calcinations processes. It was used as catalyst for sonocatalytic degradation of antibiotics tetracycline. Characterizations by scanning electron microscopy and X-ray diffraction pattern showed that the morphology and crystal structure of the modified diatomite were similar to these of raw diatomite. Despite containing very limited amount of Mn oxides, the Mn-modified diatomite showed much higher sonocatalytic activity than...

  11. The Impact of Environmental Mn Exposure on Insect Biology

    Directory of Open Access Journals (Sweden)

    Yehuda Ben-Shahar

    2018-03-01

    Full Text Available Manganese (Mn is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.

  12. Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-08-01

    Full Text Available on the Mn3+ concentration and electrochemistry of the LiMn1.5Ni0.5O4 spinel. It is shown that microwave is capable of tuning the Mn3+ content of the spinel for enhanced electrochemical performance (high capacity, high capacity retention, excellent rate...

  13. Mn-AlInN: a new diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Majid, Abdul; Ali, Akbar; Sharif, Rehana; Zhu, J.J.

    2009-01-01

    Mn ions have been incorporated into MOCVD grown Al 1-x In x N/GaN thin films by ion implantation to achieve the room temperature ferromagnetism in the samples. Magnetic characterizations revealed the presence of two ferromagnetic transitions: one has Curie points at ∝260 K and the other above room temperature. In-diffusion of indium caused by the Mn implantation leads to the partition of AlInN epilayer into two diluted magnetic semiconductor sub-layers depending on the Mn concentration. The Curie temperature of 260 K is assigned to the layer having lower concentration, whereas T c above room temperature is assumed to be associated to the layer having higher Mn concentration. (orig.)

  14. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  15. Synthesis of flower-like LiMnPO4/C with precipitated NH4MnPO4·H2O as precursor

    International Nuclear Information System (INIS)

    Liu Jiali; Hu Dongge; Huang Tao; Yu Aishui

    2012-01-01

    Highlights: ► Flower-like NH 4 MnPO 4 ·H 2 O is obtained by novel precipitating method. ► It is used as the precursor to synthesize LiMnPO 4 /C. ► Subsequent heat treatment would not destroy the precursor morphology. ► As-prepared LiMnPO 4 /C showed discharge capacity of 85 mAh/g at 0.05 C. - Abstract: Ammonium magnesium phosphate monohydrate (NH 4 MnPO 4 ·H 2 O) precursor was prepared by a novel precipitating process with manganese citrate complexes as intermediate. The morphology of the precursor observed by Scanning Electron Microscope (SEM) was flower-like which was self-assembled by plate-like particles. Further analysis by X-ray diffraction (XRD) revealed that the lattice of the plate crystal was orientated along (0 1 0) plane. By solid-state reaction of the precursor, with lithium acetate and glucose as carbon source, pure olivine structured LiMnPO 4 /C composite was obtained and meanwhile, the original flower-like morphology could be retained.

  16. Study of Te Inclusion and Related Point Defects in THM-Growth CdMnTe Crystal

    Science.gov (United States)

    Mao, Yifei; Zhang, Jijun; Min, Jiahua; Liang, Xiaoyan; Huang, Jian; Tang, Ke; Ling, Liwen; Li, Ming; Zhang, Ying; Wang, Linjun

    2018-02-01

    This study establishes a model for describing the interaction between Te inclusions, dislocations and point defects in CdMnTe crystals. The role of the complex environment surrounding the formation of Te inclusions was analyzed. Images of Te inclusions captured by scanning electron microscope and infrared microscope were used to observe the morphology of Te inclusions. The morphology of Te inclusions is discussed in light of crystallography, from the crystal growth temperature at 900°C to the melting temperature of Te inclusions using the traveling heater method. The dislocation nets around Te inclusions were calculated by counting lattice mismatches between the Te inclusions and the bulk CdMnTe at 470°C. The point defects of Te antisites were found to be gathered around Te inclusions, with dislocation climb during the cooling phase of crystal growth from 470°C to room temperature. The Te inclusions, dislocation nets and surrounding point defects are considered to be an entirety for evaluating the effect of Te inclusions on CdMnTe detector performance, and an effective mobility-lifetime product (μτ) was obtained.

  17. One-pot synthesis of a Ni–Mn3O4 nanocomposite for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Guo-rong; Shi, Jin-jin; Dong, Wen-hao; Wen, Ya; Min, Xiang-ping; Tang, An-ping

    2015-01-01

    Highlights: • Ni–Mn 3 O 4 nanocomposites have been synthesized simply. • Mn 3 O 4 particles were deposited on surface of Ni particles with OH functional groups. • Ni–Mn 3 O 4 composites could be quickly conditioned to birnessite-type MnO 2 . • A specific capacitance of 230 F g −1 was obtained for Ni (17.3%)–Mn 3 O 4 nanocomposite. - Abstract: Ni–Mn 3 O 4 nanocomposite has been prepared successfully by chemical oxidation in an alkaline solution of Mn 2+ on the surface of Ni nanoparticles with OH functional groups using one-pot method. The obtained Ni–Mn 3 O 4 nanocomposite was characterized using a scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD) analysis and various electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge/discharge (GC/D) and electrochemical impedance spectroscopy (EIS). The average crystal sizes of Mn 3 O 4 were found to decrease linearly with increasing Ni content in the Ni–Mn 3 O 4 composite. The Ni–Mn 3 O 4 nanocomposite could be easily conditioned and inverted to birnessite-type MnO 2 . A specific capacitance of 230 F g −1 (based on pure Mn 3 O 4 ) was obtained for the Ni (17.3%)–Mn 3 O 4 nanocomposite at a current rate of 0.25 A g −1 , and 94% of the initial capacitance was retained after 1000 GC/D cycles at a current rate of 1 A g −1 . It is concluded that the Ni–Mn 3 O 4 nanocomposite is a promising electrode materials for supercapacitors

  18. Hydrogen absorption properties of U6Mn and U6Ni

    International Nuclear Information System (INIS)

    Ito, H.; Yamawaki, M.; Yamamoto, T.

    1998-01-01

    The hydrogen absorption properties of U, U 6 Mn and U 6 Ni were investigated at hydrogen pressures below 10 5 Pa. The pressure-composition (P-C) isotherms of U, U 6 Mn and U 6 Ni were obtained and the amounts of absorbed hydrogen for U, U 6 Mn and U 6 Ni were determined to be 3, 16.6 and 16.0 for x in MH x , where M is U, U 6 Mn and U 6 Ni, respectively. The desorption plateau pressures at 573 K decreased in the order: U 6 Mn-H>U 6 Ni-H>U-H. In addition, the results for the amounts of absorbed hydrogen suggests the formation of ternary hydrides U 6 MnH 18 and U 6 NiH 14 . (orig.)

  19. Preparation of submicrocrystal LiMn2O4 used Mn3O4 as precursor and its electrochemical performance for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Bao-Sheng; Wang, Zhen-Bo; Zhang, Yin; Yu, Fu-Da; Xue, Yuan; Ke, Ke; Li, Fang-Fei

    2015-01-01

    Graphical abstract: Spinal LiMn 2 O 4 particles synthesized at 800 °C for 12 h has the best crystallinity with a submicron size and smallest cation disorder, resulting in a superior capacity retention ratio of 90.4% after 200 cycles at 1 °C at room temperature, which possesses an initial capacity of 106.8 mA h/g. - Highlights: • High purity spinel LiMn 2 O 4 was synthesized from industrial grade raw materials. • LiMn 2 O 4 prepared by optimal conditions has the smallest cation mixing. • Optimized LiMn 2 O 4 has the highest initial capacity with 112.9 mA h/g. • Capacity retention of optimized LiMn 2 O 4 is 90.4% after 200 cycles at 1 °C. - Abstract: Spinel LiMn 2 O 4 has been synthesized by solid state reaction with industrial grade Mn 3 O 4 and Li 2 CO 3 as precursors without purification, and its electrochemical performance for lithium ion battery has been investigated by CR2025 coin cell. The results of X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images show that the size of LiMn 2 O 4 particles grow up with increasing temperature of calcination, and the sample synthesized at 800 °C for 12 h has the best crystallinity with a submicron size. It can deliver initial capacity of 112.9 mA h/g with capacity retention ratio of 89.1% after 200 cycles at charge/discharge rate of 1 C. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) also show that it has the highest electrochemical activity and lowest charge transfer impedance

  20. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity.

    Science.gov (United States)

    Chen, Hainan; Li, Xiaoyan; Epstein, Paul N

    2005-05-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are proposed mediators of cytokine-induced beta-cell destruction in type 1 diabetes. We produced transgenic mice with increased beta-cell expression of manganese superoxide dismutase (MnSOD) and catalase. Expression of these antioxidants increased beta-cell ROS scavenging and improved beta-cell survival after treatment with different sources of ROS. MnSOD or catalase conferred protection against streptozotocin (STZ)-induced beta-cell injury. Coexpression of MnSOD and catalase provided synergistic protection against peroxynitrite and STZ. To determine the potential effect of these antioxidants on cytokine-induced toxicity, we exposed isolated islets to a cytokine mixture, including interleukin-1beta and interferon-gamma. Cytokine toxicity was measured as reduced metabolic activity after 6 days and reduced insulin secretion after 1 day. Cytokines increased ROS production, and both antioxidants were effective in reducing cytokine-induced ROS. However, MnSOD and/or catalase provided no protection against cytokine-induced injury. To understand this, the nuclear factor-kappaB (NF-kappaB) signaling cascade was investigated. Antioxidants reduced NF-kappaB activation by ROS, but none of the antioxidants altered activation by cytokines, as measured by inhibitor of kappaB phosphorylation, NF-kappaB translocation, inducible NO synthase activation, and NO production. Our data agree with previous reports that antioxidants benefit beta-cell survival against ROS damage, but they are not consistent with reports that antioxidants reduce cytokine toxicity. ROS appear to have no role in cytokine toxicity in primary beta-cells.