Lattice QCD with mixed action - Borici-Creutz valence quark on staggered sea
Basak, Subhasish; Goswami, Jishnu; Chakrabarti, Dipankar
2018-03-01
Mixed action lattice QCD with Borici-Creutz valence quarks on staggered sea is investigated. The counter terms in Borici-Creutz action are fixed nonperturbatively to restore the broken symmetries. On symmetry restoration, the usual signatures of partial quenching / unitarity violation like negative scalar correlator are observed. The size of unitarity violation due to different discretization of valence and sea quark is determined by measuring Δmix.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
International Nuclear Information System (INIS)
Cichy, Krzysztof; Herdoiza, Gregorio; UAM/CSIC Univ. Autonoma de Madrid
2012-11-01
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration
2012-11-15
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Will Detmold, William Detmold, Konstantinos Orginos, Aaron Torok, Silas R Beane, Thomas C Luu, Assumpta Parreno, Martin Savage, Andre Walker-Loud
2010-04-01
The $\\pi^+\\Sigma^+$, $\\pi^+\\Xi^0$ , $K^+p$, $K^+n$, and $K^0 \\Xi^0$ scattering lengths are calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to perform the chiral extrapolations. We find no convergence for the kaon-baryon processes in the three-flavor chiral expansion. Using the two-flavor chiral expansion, we find $a_{\\pi^+\\Sigma^+} = ?0.197 ± 0.017$ fm, and $a_{\\pi^+\\Xi^0} = ?0.098 0.017$ fm, where the comprehensive error includes statistical and systematic uncertainties.
Meson-Baryon Scattering Lengths from Mixed-Action Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S; Detmold, W; Luu, T; Orginos, K; Parreno, A; Torok, A; Walker-Loud, A
2009-06-30
The {pi}{sup +}{Sigma}{sup +}, {pi}{sup +}{Xi}{sup 0}, K{sup +}p, K{sup +}n, {bar K}{sup 0}{Sigma}{sup +}, and {bar K}{sup 0}{Xi}{sup 0} scattering lengths are calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to perform the chiral extrapolations. We find no convergence for the kaon-baryon processes in the three-flavor chiral expansion. Using the two-flavor chiral expansion, we find a{sub {pi}{sup +}{Sigma}{sup +}} = -0.197 {+-} 0.017 fm, and a{sub {pi}{sup +}{Xi}{sup 0}} = -0.098 {+-} 0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.
Improved lattice fermion action for heavy quarks
International Nuclear Information System (INIS)
Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias
2015-01-01
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.
Effective action calculation in lattice QCD
International Nuclear Information System (INIS)
Hoek, J.
1983-01-01
A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)
Introduction to Louis Michel's lattice geometry through group action
Zhilinskii, Boris
2015-01-01
Group action analysis developed and applied mainly by Louis Michel to the study of N-dimensional periodic lattices is the central subject of the book. Different basic mathematical tools currently used for the description of lattice geometry are introduced and illustrated through applications to crystal structures in two- and three-dimensional space, to abstract multi-dimensional lattices and to lattices associated with integrable dynamical systems. Starting from general Delone sets the authors turn to different symmetry and topological classifications including explicit construction of orbifolds for two- and three-dimensional point and space groups. Voronoï and Delone cells together with positive quadratic forms and lattice description by root systems are introduced to demonstrate alternative approaches to lattice geometry study. Zonotopes and zonohedral families of 2-, 3-, 4-, 5-dimensional lattices are explicitly visualized using graph theory approach. Along with crystallographic applications, qualitative ...
Precise determination of lattice phase shifts and mixing angles
Energy Technology Data Exchange (ETDEWEB)
Lu, Bing-Nan, E-mail: b.lu@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lähde, Timo A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2016-09-10
We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.
Continuum limit and improved action in lattice theories. Pt. 1
International Nuclear Information System (INIS)
Symanzik, K.
1983-03-01
Corrections to continuum theory results stemming from finite lattice-spacing can be diminished systematically by use of lattice actions that include also suitable irrelevant terms. We describe in detail the principles of such constructions at the example of PHI 4 theory. (orig.)
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Polikarpov, M.I.; Zhelonkin, A.V.
1983-01-01
The mixed SU(2) lattice gauge theory (LGT) is approximately represented as an effective SU(2) LGT with Wilson's action. This approach is applied to the nonperturbative calculation of the ratio of Λ-parameters in the mixed SU(2) LGT. It is shown that the formulas obtained fairly describe the Monte Carlo data so that universality holds in the mixed SU(2) LGT
Improved continuum limit lattice action for QCD with Wilson fermions
International Nuclear Information System (INIS)
Sheikholeslami, B.; Wohlert, R.
1985-03-01
Two possible ways of extending Symanzik's improvement programme to lattice fermions namely improvement to first and second order in the lattice spacing 'a' are discussed. The corresponding lattice actions for fermions are constructed and tree level improvement conditions are derived by considering classical improvement. The concept of on shell improvement is generalized to the lattice fermions studied here and the free parameters are determined for O(a) and O(a 2 ) on shell improved actions to all orders of perturbation theory. No evidence is found that the complicated structure of the O(a 2 ) on shell improved action especially the arising fermion contact terms can be removed beyond tree level. The effect of terms in the action that explicitly break chiral symmetry and therefore remove the phenomenon of species doubling are investigated by considering the energy momentum relations of the arising tree level improved actions. Our main result is that the O(a) improved action is a slightly modified Wilson fermion action which can still be written with only nearest neighbour fermion interactions. (orig.)
Machine learning action parameters in lattice quantum chromodynamics
Shanahan, Phiala E.; Trewartha, Daniel; Detmold, William
2018-05-01
Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development.
Improved actions for QCD thermodynamics on the lattice
Beinlich, B; Laermann, E
1996-01-01
Finite cut-off effects strongly influence the thermodynamics of lattice regularized QCD at high temperature in the standard Wilson formulation. We analyze the reduction of finite cut-off effects in formulations of the thermodynamics of SU(N) gauge theories with three different O(a^2) and O(a^4) improved actions. We calculate the energy density and pressure on finite lattices in leading order weak coupling perturbation theory (T\\rightarrow \\infty) and perform Monte Carlo simulations with improved SU(3) actions at non-zero g^2. Already on lattices with temporal extent N_\\tau=4 we find a strong reduction of finite cut-off effects in the high temperature limit, which persists also down to temperatures a few times the deconfinement transition temperature.
Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)
2015-01-01
We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N_{f} = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a^{2} tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a^{2} tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.
Novel fat-link fermion actions for lattice QCD
International Nuclear Information System (INIS)
Zanotti, J.; Bilson-Thompson, S.; Bonnet, F.; Leinweber, D.; Melnitchouk, W.; Williams, A.
2000-01-01
Full text: We are currently exploring new ideas for lattice fermion actions. Naive implementations of fermion actions encounter the well known fermion-doubling problem. In order to solve this problem, Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) which explicitly breaks chiral symmetry. The scaling properties of this Wilson action can be improved by introducing any number of irrelevant operators of increasing dimension which also vanish in the continuum limit. In this manner, one can improve fermion actions at finite 'a' by combining operators to eliminate O(a) and perhaps O(a 2 ) errors etc. A popular formulation of a lattice fermion action that achieves this is the Clover action which removes the O(a) error introduced by the Wilson term by introducing an additional irrelevant dimension-five operator. The Clover action can be O(a) improved to all orders in the strong coupling 'g'. While the Clover action displays excellent scaling, it is responsible for revealing the exceptional configuration problem where the quark propagator encounters singular behaviour particularly as the quark mass becomes small. Moreover, its free dispersion relation between energy and momentum is unchanged from the standard Wilson action dispersion and shows a continuum like behaviour only for relatively small momenta [F. X. Lee and D. B. Leinweber, Phys. Rev. D59, 074504 (1999), hep-lat/9711044]. Finally, significant chiral symmetry breaking is apparent as the renormalised quark mass differs significantly from the bare mass of the theory. Hence we propose a different approach to fermion action improvement. One in which the additive renormalisations become small while expressing good chiral behaviour. This can be achieved through the consideration of 'fat-link' fermion actions [T. DeGrand (the MILC collaboration, Phys. Rev. D60, 094501 (1999)]. Fat links are created by averaging or smearing links on the lattice with their nearest neighbours in
Lattice Based Mix Network for Location Privacy in Mobile System
Directory of Open Access Journals (Sweden)
Kunwar Singh
2015-01-01
Full Text Available In 1981, David Chaum proposed a cryptographic primitive for privacy called mix network (Mixnet. A mixnet is cryptographic construction that establishes anonymous communication channel through a set of servers. In 2004, Golle et al. proposed a new cryptographic primitive called universal reencryption which takes the input as encrypted messages under the public key of the recipients not the public key of the universal mixnet. In Eurocrypt 2010, Gentry, Halevi, and Vaikunthanathan presented a cryptosystem which is an additive homomorphic and a multiplicative homomorphic for only one multiplication. In MIST 2013, Singh et al. presented a lattice based universal reencryption scheme under learning with error (LWE assumption. In this paper, we have improved Singh et al.’s scheme using Fairbrother’s idea. LWE is a lattice hard problem for which till now there is no polynomial time quantum algorithm. Wiangsripanawan et al. proposed a protocol for location privacy in mobile system using universal reencryption whose security is reducible to Decision Diffie-Hellman assumption. Once quantum computer becomes a reality, universal reencryption can be broken in polynomial time by Shor’s algorithm. In postquantum cryptography, our scheme can replace universal reencryption scheme used in Wiangsripanawan et al. scheme for location privacy in mobile system.
SU(N) lattice gauge theory with Villain's action
International Nuclear Information System (INIS)
Onofri, E.
1981-01-01
The pure gauge lattice theory with Villain's action exp[-A(U)] = GAMMAsub(j=1)sup(N) Σsub(n=-infinity)sup(+infinity) exp[-(N/lambda)(THETAsub(j) + 2nπ) 2 ], where THETA 1 ,..., THETAsub(N) are the invariant angles of U is an element of U(N) or SU(N) is considered. For the two-dimensional lattice the partition function Z(lambda,N) is calculated with the specific heat, the level density rhosub(N)(THETA) and Wilson's loops Wsub(n) = (1/N) (n = 1,2,3,...). The 1/N expansion of Z and Wsub(n) is convergent for sufficiently small |lambda/N| and its coefficients are analytic in lambda near the real axis (no ''Gross-Witten'' singularity to all orders in 1/N), but it is still not possible to commute the strong-coupling limit with the planar limit (lambda→infinity, N→infinity). The character expansion which is needed for strong-coupling calculations in four dimensions is also calculated. A comparison with Monte Carlo data (N=2) and a preliminary discussion of the large-N limit is given. (author)
Excess Gibbs Energy for Ternary Lattice Solutions of Nonrandom Mixing
Energy Technology Data Exchange (ETDEWEB)
Jung, Hae Young [DukSung Womens University, Seoul (Korea, Republic of)
2008-12-15
It is assumed for three components lattice solution that the number of ways of arranging particles randomly on the lattice follows a normal distribution of a linear combination of N{sub 12}, N{sub 23}, N{sub 13} which are the number of the nearest neighbor interactions between different molecules. It is shown by random number simulations that this assumption is reasonable. From this distribution, an approximate equation for the excess Gibbs energy of three components lattice solution is derived. Using this equation, several liquid-vapor equilibria are calculated and compared with the results from other equations.
The problem of reactivity and reaction-rate calculations for mixed graphite lattices
International Nuclear Information System (INIS)
Pitcher, H.H.W.
1963-05-01
The dependence of reactor physics quantities, such as η f and Pu239/U235 fission ratio, in a single cell on the environment of the cell, and the relationship of the reactivity of a mixed lattice to the reactivity of its components, in graphite-moderated reactors are investigated. In a particular case, a mixed lattice fuelled with uranium at 0 and 3000 MWD/Te showed at 8 cm. pitch a small but appreciable change (∼ 1%) in cell quantities, and at 25 cm. pitch a smaller change. It is found that the present method of calculating lattice reactivity, ignoring intercell effects, is probably adequate for standard-pitch metal-fuelled graphite-moderated systems. More general mixed-lattice systems, particularly if accurate values of cell quantities are required, may need special calculation techniques; these are discussed, and techniques adequate for most systems are presented. (author)
Additive action model for mixed irradiation
International Nuclear Information System (INIS)
Lam, G.K.Y.
1984-01-01
Recent experimental results indicate that a mixture of high and low LET radiation may have some beneficial features (such as lower OER but with skin sparing) for clinical use, and interest has been renewed in the study of mixtures of high and low LET radiation. Several standard radiation inactivation models can readily accommodate interaction between two mixed radiations, however, this is usually handled by postulating extra free parameters, which can only be determined by fitting to experimental data. A model without any free parameter is proposed to explain the biological effect of mixed radiations, based on the following two assumptions: (a) The combined biological action due to two radiations is additive, assuming no repair has taken place during the interval between the two irradiations; and (b) The initial physical damage induced by radiation develops into final biological effect (e.g. cell killing) over a relatively long period (hours) after irradiation. This model has been shown to provide satisfactory fit to the experiment results of previous studies
D-Meson Mixing in 2+1-Flavor Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [William-Mary Coll.; Bouchard, C. M. [William-Mary Coll.; El-Khadra, A. X. [Illinois U., Urbana; Freeland, E. [Art Inst. of Chicago; Gámiz, E. [Granada U., Theor. Phys. Astrophys.; Kronfeld, A. S. [Fermilab; Laiho, J. W. [Syracuse U.; Neil, E. T. [Colorado U.; Simone, J. N. [Fermilab; Van de Water, R. S. [Fermilab
2017-01-20
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
Mixed Methods and Action Research: similar or different?
Wiśniewska, Danuta
2011-01-01
This article attempts to analyse and compare ELT studies grounded solely in mixed methods and ELT action research studies based on a mixed methods approach in order to identify to what degree action research studies combining different methods in a single study comply with the principles of rigorous mixed methods study.
Scaling of the quark-antiquark potential and improved actions in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Montvay, I.; Gutbrod, F.
1983-11-01
The scaling behaviour of the quark-antiquark potential is investigated by a high statistics Monte Carlo calculation in SU(2) lattice gauge theory. Besides the standard one-plaquette action we also use Symanzik's tree-level improved action and Wilson's block-spin improved action. No significant differences between Symanzik's action and the standard action have been observed. For small β Wilson's action scales differently. The string tension value chi extracted from the data corresponds to Λsub(latt) = (0.018 +- 0.001) √chi for the one-plaquette action. (orig.)
A lattice determination of Sigma-Lambda mixing
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich (Germany). Juelich Supercomputer Centre; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, Dept. of Physics; Collaboration: QCDSF-UKQCD Collaboration
2014-11-15
Isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects and lead to small mass splittings. Between the Sigma and Lambda this mass splitting is much larger, this being mostly due to their different wavefunctions. However when isospin is broken, there is a mixing between between these states. We describe the formalism necessary to determine the QCD mixing matrix and hence find the mixing angle and mass splitting between the Sigma and Lambda particles due to QCD effects.
$C^1$ actions on manifolds by lattices in Lie groups with sufficiently high rank
Damjanovic, Danijela; Zhang, Zhiyuan
2018-01-01
In this paper we study Zimmer's conjecture for $C^1$ actions of higher-rank lattices of a connected, semisimple Lie group with finite center on compact manifolds. We show that if the Lie group has no compact factor, and all of whose non-compact factors are of ranks in some sense sufficiently large with respect to the dimension of the manifold, then every $C^1$ action of an irreducible, co-compact lattice has a finite image. As a corollary of our results, for every (uniform or non-uniform) lat...
Measurements of spin-lattice relaxation time in mixed alkali halide crystals
International Nuclear Information System (INIS)
Tannus, A.
1983-01-01
Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt
Surface solitons of four-wave mixing in an electromagnetically induced lattice
International Nuclear Information System (INIS)
Zhang, Yanpeng; Yuan, Chenzhi; Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Wang, Zhiguo; Xiao, Min
2013-01-01
By creating lattice states with two-dimensional spatial periodic atomic coherence, we report an experimental demonstration of generating two-dimensional surface solitons of a four-wave mixing signal in an electromagnetically induced lattice composed of two electromagnetically induced gratings with different orientations in an atomic medium, each of which can support a one-dimensional surface soliton. The surface solitons can be well controlled by different experimental parameters, such as probe frequency, pump power, and beam incident angles, and can be affected by coherent induced defect states. (letter)
Towards the confirmation of QCD on the lattice. Improved actions and algorithms
Energy Technology Data Exchange (ETDEWEB)
Krieg, Stefan F.
2009-07-01
Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)
Towards the confirmation of QCD on the lattice. Improved actions and algorithms
International Nuclear Information System (INIS)
Krieg, Stefan F.
2009-01-01
Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)
Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations
International Nuclear Information System (INIS)
Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.
1977-01-01
A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex
International Nuclear Information System (INIS)
Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.
1991-01-01
We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented
Detailed design of a lattice composite fuselage structure by a mixed optimization method
Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.
2016-10-01
In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.
Development of a transverse mixing model for large scale impulsion phenomenon in tight lattice
International Nuclear Information System (INIS)
Liu, Xiaojing; Ren, Shuo; Cheng, Xu
2017-01-01
Highlights: • Experiment data of Krauss is used to validate the feasibility of CFD simulation method. • CFD simulation is performed to simulate the large scale impulsion phenomenon for tight-lattice bundle. • A mixing model to simulate the large scale impulsion phenomenon is proposed based on CFD result fitting. • The new developed mixing model has been added in the subchannel code. - Abstract: Tight-lattice is widely adopted in the innovative reactor fuel bundles design since it can increase the conversion ratio and improve the heat transfer between fuel bundles and coolant. It has been noticed that a large scale impulsion of cross-velocity exists in the gap region, which plays an important role on the transverse mixing flow and heat transfer. Although many experiments and numerical simulation have been carried out to study the impulsion of velocity, a model to describe the wave length, amplitude and frequency of mixing coefficient is still missing. This research work takes advantage of the CFD method to simulate the experiment of Krauss and to compare experiment data and simulation result in order to demonstrate the feasibility of simulation method and turbulence model. Then, based on this verified method and model, several simulations are performed with different Reynolds number and different Pitch-to-Diameter ratio. By fitting the CFD results achieved, a mixing model to simulate the large scale impulsion phenomenon is proposed and adopted in the current subchannel code. The new mixing model is applied to some fuel assembly analysis by subchannel calculation, it can be noticed that the new developed mixing model can reduce the hot channel factor and contribute to a uniform distribution of outlet temperature.
Coherent-potential approximation for the lattice vibrations of mixed III-V crystals
International Nuclear Information System (INIS)
Kleinert, P.
1984-01-01
The coherent-potential approximation (CPA) is applied to the lattice dynamics of some III-V mixed crystals. The calculations are based on an eleven-parameter rigid-ion model (RIM 11). Explicit results are reported for the one-mode system In/sub 1-c/Ga/sub c/P and the two mixed-mode crystals In/sub 1-c/Ga/sub c/Sb and GaSb/sub 1-c/As/sub c/. Both, the reflectivity spectra and the composition dependence of vibrations at the GAMMA and X points are compared with existing experimental data. Force-constant changes are considered by the virtual-crystal approximation (VCA). The CPA theory is uniquely successful for III-V mixed-mode systems, which appear to switch from one-mode to two-mode behaviour. (author)
Energy Technology Data Exchange (ETDEWEB)
Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2016-01-01
The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.
Finite-temperature phase structure of lattice QCD with Wilson quark action
International Nuclear Information System (INIS)
Aoki, S.; Ukawa, A.; Umemura, T.
1996-01-01
The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society
Boku, Taisuke; Ishikawa, Ken-Ichi; Kuramashi, Yoshinobu; Meadows, Lawrence
2017-01-01
Lattice Quantum Chromodynamics (Lattice QCD) is a quantum field theory on a finite discretized space-time box so as to numerically compute the dynamics of quarks and gluons to explore the nature of subatomic world. Solving the equation of motion of quarks (quark solver) is the most compute-intensive part of the lattice QCD simulations and is one of the legacy HPC applications. We have developed a mixed-precision quark solver for a large Intel Xeon Phi (KNL) system named "Oakforest-PACS", empl...
Monte Carlo simulations with Symanzik's improved actions in the lattice 0(3) non-linear sigma-model
International Nuclear Information System (INIS)
Berg, B.; Montvay, I.; Meyer, S.
1983-10-01
The scaling properties of the lattice 0(3) non-linear delta-model are studied. The mass-gap, energy-momentum dispersion, correlation functions are measured by numerical Monte Carlo methods. Symanzik's tree-level and 1-loop improved actions are compared to the standard (nearest neigbour) action. (orig.)
Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice
Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan
2018-01-01
We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.
International Nuclear Information System (INIS)
Zhang Peilin; Liu Bin; Yin Shu; Wang Yuhua; Petrykin, Valery; Kakihana, Masato; Sato, Tsugio
2009-01-01
A microwave-assisted hydrothermal method was employed to synthesize nitrogen doped titania nanoparticles. Due to the high heating efficiency of microwave, rapid synthesis could be achieved in comparison with the conventional oven. Mixed crystal lattice was found existing in the obtained product, and the phase transformation behaviour under calcination was studied by XRD measurement together with Raman spectroscopy in details. The obtained nitrogen doped titania showed high specific surface area, about 300 m 2 g -1 . Photocatalytic activity in destructing NO x gas by the prepared sample exceeded that of commercial titania (P 25) or nitrogen doped titania synthesized by conventional hydrothermal method, under both visible-light and ultraviolet-light irradiation.
Mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Keskin, Mustafa
2003-01-01
The mixed spin-((1)/(2)) and spin-1 Blume-Capel Ising ferrimagnetic system is studied on the Bethe lattice by using the exact recursion equations. Exact expressions for the magnetization, the quadrupolar moment, the Curie temperature and the free energy are found and the phase diagrams are constructed on the Bethe lattice with the coordination numbers q=3, 4, 5 and 6. The existence of a tricritical point is investigated for different values of q. The results are compared with those of other approximate methods and with the exact result on the Bethe lattice by using a discrete nonlinear map and also the exact results that are available for the case of the honeycomb lattice
Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature
International Nuclear Information System (INIS)
Kerres, U.; Mack, G.; Palma, G.
1994-12-01
We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)
International Nuclear Information System (INIS)
D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E
2014-01-01
Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration
Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice
International Nuclear Information System (INIS)
Albayrak, Erhan; Yigit, Ali
2006-01-01
In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior
Neutral B Meson Mixing and Heavy-light Decay Constants from Quenched Lattice QCD
Lellouch, Laurent; Lellouch, Laurent
1999-01-01
We present high-statistics results for neutral B-meson mixing and heavy-light-meson leptonic decays in the quenched approximation from tadpole-improved clover actions at beta =6.0 and beta =6.2. We consider quantities such as B(B/sub d/(s)), f(D/sub d/(s)), f(B/sub d /(s)) and the full Delta B=2 matrix elements as well as the corresponding SU(3)-breaking ratios. These quantities are important for determining the CKM matrix element ¦V/sub td/¦. (5 refs).
Approximate critical surface of the bond-mixed square-lattice Ising model
International Nuclear Information System (INIS)
Levy, S.V.F.; Tsallis, C.; Curado, E.M.F.
1979-09-01
The critical surface of the quenched bond-mixed square-lattice spin-1/2 first-neighbour-interaction ferromagnetic Ising model (with exchange interactions J 1 and J 2 ) has been investigated. Through renormalization group and heuristical procedures, a very accurate (error inferior to 3x10 -4 in the variables t sub(i) = th (J sub(i)/k sub(b)T)) approximate numerical proposal for all points of this surface is presented. This proposal simultaneously satisfies all the available exact results concerning the surface, namely P sub(c) = 1/2, t sub(c) = √2 - 1, both limiting slopes in these points, and t 2 = (1-t 1 )/(1+t 1 ) for p = 1/2. Furthemore an analytic approximation (namely (1 - p) 1n(1 + t 1 ) + p 1n(1 + t 2 ) =(1/2)1n 2) is also proposed. In what concerns the available exact results, it only fails in reproducing one of the two limiting slopes, where there is an error of 1% in the derivative: these facts result in an estimated error less than 10 -3 (in the t-variables) for any points in the surface. (Author) [pt
International Nuclear Information System (INIS)
Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee
2013-01-01
Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future
Supersolid-like magnetic states in a mixed honeycomb-triangular lattice system.
Garlea, Ovidiu
Field-induced magnetic states that occur in layered triangular antiferromagnets have been of broad interest due to the emergence of new exotic phases, such as topologically ordered states and supersolids. Experimental realization of the supersolid states where spin components break simultaneously the translational and rotational symmetries remains scarce. In this context, the mixed vanadate -carbonate K2Mn3(VO4)2CO3 is a very promising system. This compound contains two types of two-dimensional layers alternately stacked along the crystallographic c-axis: one layer consists of a honeycomb web structure made of edge sharing MnO6 octahedra, while the other consists of MnO5 trigonal bipyramids linked by [CO3] triangles to form a triangular magnetic lattice. Magnetization and heat capacity measurements reveal a complex magnetic phase diagram that includes three phase transition associated with sequential long range magnetic ordering of the different sublattices. The lowest temperature state resembles a supersolid state that was predicted to occur in two-dimensional frustrated magnet with easy axis anisotropy. Such a supersolid phase is defined by a commensurate √3× √3 magnetic superlattice, where two thirds of the spins are canted away from the easy axis direction. Applied magnetic field destabilizes this ordered state and induces a cascade of new exotic magnetic ground states. The nature of these field-induced magnetic states is evaluated by using neutron scattering techniques. Work at the Oak Ridge National Laboratory was sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Scientific User Facilities Division and Materials Sciences and Engineering Division.
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Energy Technology Data Exchange (ETDEWEB)
Bettaibi, Soufiene, E-mail: Bettaibisoufiene@gmail.com [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Kuznik, Frédéric [INSA-Lyon, CETHIL, F-69621 Villeurbanne (France); Université de Lyon, CNRS, UMR5008, F-69622 Villeurbanne (France); Sediki, Ezeddine [UR: Rayonnement Thermique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)
2014-06-27
Highlights: • Mixed convection heat transfer in 2D lid-driven cavity is studied numerically. • Hybrid scheme with multiple relaxation time lattice Boltzmann method is used to obtain the velocity field. • Finite difference method is used to compute the temperature. • Effect of both Richardson and Reynolds numbers for mixed convection is studied. - Abstract: Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr=0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method (MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy balance equation by using the finite difference method (FDM). The main objective of this work is to investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed approach.
Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)
2015-11-01
The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.
International Nuclear Information System (INIS)
Tsallis, C.
1980-01-01
It is conjectured that a logarithmic provides a very accurate approximation of the yet unknown critical frontier of a fully anisotropic homogeneous quenched bond-mixed q-state Potts ferromagnet in square lattice, where the random coupling constant J is distributed according to the laws P(J) and P'(J) for 'horizontal' and 'vertical' bonds respectively. Such an equation contains as particular cases a great number of exact results as well as a few recent conjectures (which are definitively only approximate). (Author) [pt
Light quark correlators in a mixed-action setup
Energy Technology Data Exchange (ETDEWEB)
Bernardoni, Fabio [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garron, Nicolas [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Hernandez, Pilar [CSIC-Univ. de Valencia (Spain). Inst. de Fisica Corpuscular; Necco, Silvia [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Pena, Carlos [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC
2011-11-15
We report our progress in simulating Neuberger valence fermions on N{sub f}=2 Wilson O(a)-improved sea quarks. We compute correlators with valence quark masses both in the p- and in the e-regime, and we match the results with the predictions of the Chiral Effective Theory in the mixed regime. This allows us to extract the Low Energy Couplings (LECs) of the N{sub f}=2 theory and to test the validity of the approach. (orig.)
Conductivity of a square-lattice bond-mixed resistor network
International Nuclear Information System (INIS)
Costa, U.M.S.; Tsallis, C.; Schwaccheim, G.
1985-01-01
Within a real-space renormalization-group framework based on self-dual clusters, the conductivity of a square-lattice quenched bond-random resistor network is calculated, the conductance on each bond being g 1 or g 2 with probabilities (1-p) and p respectively. The group recovers several already known exact results (including slopes), and is consequently believed to be numerically quite reliable for almost all values of p, and all ratios g 1 /g 2 (in particular, g 1 =0 and g 1 =infinite with finite g 2 respectively correspond to the insulator-resitor and superconductor-resistor mixtures). In addition to that, an heuristic analytic expression is proposed for the conductivity which is believed to be a quite satisfactory approximation everywhere not too close to the percolation point. (Author) [pt
A study of uranium-thorium mixed lattices; Etude de reseaux mixtes uranium - thorium
Energy Technology Data Exchange (ETDEWEB)
Bacher, P; Eckert, R; Mazancourt, R de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1957-07-01
Some subcritical experiments have been carried out during the charging of the pile G1 by introducing thorium bars in a regular lattice into the pile. The spreading out of these experiments over a period of three months has permitted: a) work on a pile gradually increasing in size and b) measurements on comparable charges in so far that they have either the same number of bars of thorium, or the same concentration of thorium. From the measurements at constant charge and at constant concentration, it is possible by extrapolation to determine the critical charges and concentrations. The values obtained have showed that the material Laplacian of the lattice depends linearly on the thorium concentration and must cancel out for a concentration T = 8.8 {+-} 0.3 per cent by volume. These results have been found, to a very good approximation, by a simple calculation. (author) [French] Des experiences sous-critiques ont ete effectuees au cours du chargement de la pile G1 en introduisant des barres de thorium reparties suivant un reseau regulier dans la pile. L'etalement de ces experiences sur trois mois a permis d'operer sur une pile de plus en plus grosse et de faire un grand nombre de mesures sur des chargements comparables par le fait qu'ils avaient soit le meme nombre de barres de thorium, soit la meme concentration en thorium. A partir des mesures a chargement constant et a concentration constante, il a ete possible de determiner par extrapolation les chargements et concentrations critiques. Les valeurs obtenues ont montre que le laplacien matiere moyen du reseau dependait lineairement de la concentration en thorium, et devrait s'annuler pour une concentration T = 8,8 {+-} 0,3% en volume. Ces resultats ont ete retrouves avec une tres bonne approximation par un calcul elementaire. (auteur)
International Nuclear Information System (INIS)
Randjbar-Daemi, S.
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Energy Technology Data Exchange (ETDEWEB)
Randjbar-Daemi, S
1995-12-01
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if {Gamma}/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs.
International Nuclear Information System (INIS)
Hammant, T. C.; Horgan, R. R.; Monahan, C. J.; Hart, A. G.; Hippel, G. M. von
2011-01-01
We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.
Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.
2018-03-01
Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.
Periphony-Lattice Mixed-Order Ambisonic Scheme for Spherical Microphone Arrays
DEFF Research Database (Denmark)
Chang, Jiho; Marschall, Marton
2018-01-01
to performance that is independent of the incident direction of the sound waves. On the other hand, mixed-order ambisonic (MOA) schemes that select an appropriate subset of spherical harmonics can improve the performance for horizontal directions at the expense of other directions. This paper proposes an MOA......Most methods for sound field reconstruction and spherical beamforming with spherical microphone arrays are mathematically based on the spherical harmonics expansion. In many cases, this expansion is truncated at a certain order as in higher order ambisonics (HOA). This truncation leads...
Water treatment technologies for a mixed waste remedial action
Energy Technology Data Exchange (ETDEWEB)
Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)
1992-07-01
Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)
Water treatment technologies for a mixed waste remedial action
International Nuclear Information System (INIS)
Reith, C.; Freeman, G.; Ballew, B.
1992-01-01
Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)
Mixing Energy Models in Genetic Algorithms for On-Lattice Protein Structure Prediction
Directory of Open Access Journals (Sweden)
Mahmood A. Rashid
2013-01-01
Full Text Available Protein structure prediction (PSP is computationally a very challenging problem. The challenge largely comes from the fact that the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A high resolution 20×20 energy model could better capture the behaviour of the actual energy function than a low resolution energy model such as hydrophobic polar. However, the fine grained details of the high resolution interaction energy matrix are often not very informative for guiding the search. In contrast, a low resolution energy model could effectively bias the search towards certain promising directions. In this paper, we develop a genetic algorithm that mainly uses a high resolution energy model for protein structure evaluation but uses a low resolution HP energy model in focussing the search towards exploring structures that have hydrophobic cores. We experimentally show that this mixing of energy models leads to significant lower energy structures compared to the state-of-the-art results.
Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng
2018-03-01
The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.
A Combined Social Action, Mixed Methods Approach to Vocational Guidance Efficacy Research
Perry, Justin C.
2009-01-01
This article proposes a social action, mixed methods approach to verifying the efficacy of vocational guidance programs. Research strategies are discussed in the context of how the processes and purposes of efficacy research have been conceptualized and studied in vocational psychology. Examples of how to implement this approach in future efficacy…
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Was there a scientific ’68? Its repercussion on Action Research and Mixing Methods
Directory of Open Access Journals (Sweden)
José Andrés-Gallego
2018-04-01
Full Text Available The author asks whether there was a “scientific ‘68”, and focuses on aspects of two specific methodological proposals defined in the 1940s and 50s by the terms “action research” and “mixing methods”, applied particularly to social sciences. In the first, the climate surrounding the events of 1968 contributed to heightening the participative element to be found –by definition– in “action research”; that is: the importance of making the research subjects themselves participants in the design, execution and application of the study of which they are the focus. This approach captured the democratic and anti-authoritarian spirit at the heart of the proposal, which was part of the prevailing climate in those days. The repercussions of 1968 on “mixing methods” focused on studying what had actually occurred, especially between the youth and workers, and therefore, particularly from the point of view of sociology and social psychology, using a “mixed methods” approach. The author explores the proposal of Norman Denzin; but traces the recent origins of both “mixing methods” and “action research” back to the proposals of mainly Kurt Lewin and the Chicago School.
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Directory of Open Access Journals (Sweden)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Mixed heavy–light matching in the Universal One-Loop Effective Action
International Nuclear Information System (INIS)
Ellis, Sebastian A.R.; Quevillon, Jérémie; You, Tevong; Zhang, Zhengkang
2016-01-01
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. Here we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure of the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.
Energy Technology Data Exchange (ETDEWEB)
Batı, Mehmet, E-mail: mehmet.bati@erdogan.edu.tr [Department of Physics, Recep Tayyip Erdoğan University, 53100 Rize (Turkey); Ertaş, Mehmet [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)
2017-05-15
The hysteresis properties of a kinetic mixed spin (1/2, 1) Ising ferrimagnetic system on a hexagonal lattice are studied by means of the dynamic mean field theory. In the present study, the effects of the nearest-neighbor interaction, temperature, frequency of oscillating magnetic field and the exchange anisotropy on the hysteresis properties of the kinetic system are discussed in detail. A number of interesting phenomena such as the shape of hysteresis loops with one, two, three and inverted-hysteresis/proteresis (butterfly shape hysteresis) have been obtained. Finally, the obtained results are compared with some experimental and theoretical results and a qualitatively good agreement is found.
Miarka, Bianca; Brito, Ciro José; Bello, Fábio Dal; Amtmann, John
2017-10-01
This study compared motor actions and spatiotemporal changes between weight divisions from Ultimate Fighting Championship (UFC™), conducting a practical application for mixed martial arts (MMA) training. For this, we analyzed 2814 rounds of all weight divisions by motor actions and spatiotemporal changes according actions and time of the Keeping distance, Clinch and Groundwork combat phases. We observed differences between weight divisions in the keeping distance on stand-up combat (p≤0.001; with lower time in Featherweight 131.4s and bantamweight 127.9s) clinch without attack (p≤0.001; with higher timer in Flyweight 11.4s and Half-middleweight 12.6s) and groundwork without attack (p≤0.001; with higher timer in Half-middleweight 0.9s). During keeping distance, half-middleweight presented a higher frequency of Head Strikes Landed (p=0.026; 7±8 times) and attempted (p=0.003; 24±22 times). In clinch actions heavyweight present a higher frequency (p≤0.023) of head strike landed (3±7 times) and attempted (4±9 times) and half-middleweight for body strikes (p≤0.023) landed (2±5 times) and attempted (3±5 times). At the last, during groundwork, Bantamweight present a higher frequency (p≤0.036) of head strikes landed (8±10 times) and attempted (10±13 times) body strikes landed (p≤0.044; 3±5 times) and attempted (3±6 times). This study reveals important point to training and provide a challenge applied referential to the conditioning plains. From the weight divisions differences should be aware of the increase in the frequency of distance actions, especially in light and middleweights. On the Ground, bantamweight can focus on striking and grappling actions than others. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Kim, Jin Kyu; Kim, Dong Keon
2016-01-01
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jin Kyu [School of Architecture and Architectural Engineering, Hanyang University, Ansan (Korea, Republic of); Kim, Dong Keon [Dept. of Architectural Engineering, Dong A University, Busan (Korea, Republic of)
2016-09-15
A common approach for dynamic analysis in current practice is based on a discrete time-integration scheme. This approach can be largely attributed to the absence of a true variational framework for initial value problems. To resolve this problem, a new stationary variational principle was recently established for single-degree-of-freedom oscillating systems using mixed variables, fractional derivatives and convolutions of convolutions. In this mixed convolved action, all the governing differential equations and initial conditions are recovered from the stationarity of a single functional action. Thus, the entire description of linear elastic dynamical systems is encapsulated. For its practical application to structural dynamics, this variational formalism is systemically extended to linear elastic multidegree- of-freedom systems in this study, and a corresponding weak form is numerically implemented via a quadratic temporal finite element method. The developed numerical method is symplectic and unconditionally stable with respect to a time step for the underlying conservative system. For the forced-damped vibration, a three-story shear building is used as an example to investigate the performance of the developed numerical method, which provides accurate results with good convergence characteristics.
Allton, C R; Lubicz, V; Martinelli, G; Rapuano, F; Stella, N; Vladikas, A; Bartoloni, A; Battista, C; Cabasino, S; Cabibbo, Nicola; Panizzi, E; Paolucci, P S; Sarno, R; Todesco, G M; Torelli, M; Vicini, P
1995-01-01
We present the results of a high statistics lattice calculation of hadronic form factors relevant for $D-$ and $B-$meson semi-leptonic decays into light pseudoscalar and vector mesons. The results have been obtained by averaging over 170 gauge field configurations, generated in the quenched approximation, at $\\beta=6.0$, on a $18^3 \\times 64$ lattice, using the $O(a)$-improved SW-Clover action.From the study of the matrix element $$, we obtain $f_+ (0)=0.78\\pm 0.08$ and from the matrix element $$ we obtain $V(0)=1.08\\pm 0.22$, $A_1(0)=0.67\\pm 0.11$ and $A_2(0)=0.49\\pm 0.34$. We also obtain the ratios $V(0)/A_1(0)=1.6\\pm 0.3$ and $A_2(0)/A_1(0)= 0.7\\pm 0.4$. Our predictions for the different form factors are in good agreement with the experimental data, although, in the case of $A_2(0)$, the errors are still too large to draw any firm conclusion. With the help of the Heavy Quark Effective Theory (HQET) we have also extrapolated the lattice results to $B$-meson decays. The form factors follow a behaviour compat...
Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-γ
Lee, Hong Jin; Ju, Jihyeung; Paul, Shiby; So, Jae-Young; DeCastro, Andrew; Smolarek, Amanda; Lee, Mao-Jung; Yang, Chung S.; Newmark, Harold L.; Suh, Nanjoo
2009-01-01
Purpose Tocopherols are lipophilic antioxidants present in vegetable oils. Although the antioxidant and anticancer activities of α-tocopherol (vitamin E) have been studied for decades, recent intervention studies with α-tocopherol have been negative for protection from cancer in humans. The tocopherols consist of 4 isoforms, α, β, γ, and δ variants, and recent attention is being made to other isoforms. In the present study, we investigated the inhibitory effect of a tocopherol mixture rich in γ- and δ-tocopherols against mammary tumorigenesis. Experimental Design Female Sprague Dawley rats were treated with N-methyl-N-nitrosourea (NMU), and then fed diets containing 0.1%, 0.3%, or 0.5% mixed tocopherols rich in γ- and δ-tocopherols for 9 weeks. Tumor burden and multiplicity were determined, and the levels of markers of inflammation, proliferation and apoptosis were evaluated in the serum and in mammary tumors. The regulation of nuclear receptor signaling by tocopherols was studied in mammary tumors and in breast cancer cells. Results Dietary administration of 0.1%, 0.3%, or 0.5% mixed tocopherols suppressed mammary tumor growth by 38%, 50%, or 80%, respectively. Tumor multiplicity was also significantly reduced in all three mixed tocopherol groups. Mixed tocopherols increased the expression of p21, p27, caspase-3 and peroxisome proliferator activated receptor-γ (PPAR-γ), and inhibited AKT and estrogen signaling in mammary tumors. Our mechanistic study found that γ- and δ-tocopherols, but not α-tocopherol, activated PPAR-γ and antagonized estrogen action in breast cancer. Conclusion The results suggest that γ- and δ-tocopherols may be effective agents for the prevention of breast cancer. PMID:19509159
International Nuclear Information System (INIS)
Hart, A.; Horgan, R.R.
2008-12-01
We perform a perturbative calculation of the influence of dynamical HISQ fermions on the perturbative improvement of the gluonic action in the same way as we have previously done for asqtad fermions. We nd the fermionic contributions to the radiative corrections in the Luescher-Weisz gauge action to be somewhat larger for HISQ fermions than for asqtad. Using one-loop perturbation theory as a test, we estimate that omission of the fermion-induced radiative corrections in dynamical asqtad simulations will give a measurable effect. The one-loop result gives a systematic shift of about -0:6% in r 1 on the coarsest asqtad improved staggered ensembles. This is the correct sign and magnitude to explain the scaling violations seen in Φ B on dynamical lattice ensembles. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brambilla, M.; Di Renzo, F. [Universita di Parma (Italy); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy); Hasegawa, M. [Universita di Parma (Italy); Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); INFN, Gruppo Collegato di Parma, Dipartimento di Fisica e Scienze della Terra, Parma (Italy)
2014-07-15
This is the third of a series of papers on three-loop computation of renormalization constants for Lattice QCD. Our main points of interest are results for the regularization defined by the Iwasaki gauge action and n{sub f} Wilson fermions. Our results for quark bilinears renormalized according to the RI'-MOM scheme can be compared to non-perturbative results. The latter are available for twisted mass QCD: being defined in the chiral limit, the renormalization constants must be the same. We also address more general problems. In particular, we discuss a few methodological issues connected to summing the perturbative series such as the effectiveness of boosted perturbation theory and the disentanglement of irrelevant and finite-volume contributions. Discussing these issues we consider not only the new results of this paper, but also those for the regularization defined by the tree-level Symanzik improved gauge action and n{sub f} Wilson fermions, which we presented in a recent paper of ours. We finally comment on the extent to which the techniques we put at work in the NSPT context can provide a fresher look into the lattice version of the RI'-MOM scheme. (orig.)
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Schliesser, Jacob M.
Low-temperature heat capacity data contain information on the physical properties of materials, and new models continue to be developed to aid in the analysis and interpretation of heat capacity data into physically meaningful properties. This work presents the development of two such models and their application to real material systems. Equations describing low-energy vibrational modes with a gap in the density of states (DOS) have been derived and tested on several material systems with known gaps in the DOS, and the origins of such gaps in the DOS are presented. Lattice vacancies have been shown to produce a two-level system that can be modeled with a sum of low-energy Schottky anomalies that produce an overall linear dependence on temperature in the low-temperature heat capacity data. These two models for gaps in the vibrational DOS and the relationship between a linear heat capacity and lattice vacancies and many well-known models have been applied to several systems of materials to test their validity and applicability as well as provide greater information on the systems themselves. A series of bulk and nanoscale Mn-Fe and Co-Fe spinel solid solutions were analyzed using the entropies derived from heat capacity data, and excess entropies of mixing were determined. These entropies show that changes in valence, cation distribution, bonding, and the microstructure between the mixing ions is non-ideal, especially in the nanoparticles. The heat capacity data of ten Al doped TiO2 anatase nanoparticle samples have also been analyzed to show that the Al3+ dopant ions form small regions of short-range order, similar to a glass, within the TiO2 particles, while the overall structure of TiO2 remains unchanged. This has been supported by X-ray diffraction (XRD) and electron energy-loss spectroscopy and provides new insights to the synthesis and characterization of doped materials. The final investigation examines nanocrystalline CuO using heat capacities, magnetization
Use of micronucleus test in evaluating radioprotective action of mixed tremella preparation
International Nuclear Information System (INIS)
Lu Jiaben; Huang Yinmei; Zhu Bingchai
1993-01-01
The radioprotective action of mixed tremella preparation (Yinshen Yin) on whole body gamma irradiated dogs has been studied. 25 male dogs were divided into five groups: tremella, mercaminum, Yinshen Yin at high dose, Yinshen Yin at low dose and control. All the dogs were given above drugs in 10 successive days before acute exposure of 1 Gy radiation. The results showed that the prophylactic use of Yinshen Yin had good anti-irradiation effect, and the radioprotective effect was similar to the mercaminum, but significantly higher than tremella. Thereby it was considered as a good radioprotective agent. The dose reduction factor in different groups were: Yinshen Yin high dose 2.01, Yinshen Yin low dose group 1.72, mercaminum group 1.55 and tremella group 1.11
Energy Technology Data Exchange (ETDEWEB)
Deviren, Bayram [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); School of Computational Science, Florida State University, Tallahassee, FL 32306-4120 (United States); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr
2009-05-15
The magnetic properties of the ternary system ABC consisting of spins {sigma}=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q{<=}3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors.
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2009-01-01
The magnetic properties of the ternary system ABC consisting of spins σ=1/2 , S=1, and m=3/2 are investigated on the Bethe lattice by using the exact recursion relations. We consider both ferromagnetic and antiferromagnetic exchange interactions. The exact expressions for magnetizations and magnetic susceptibilities are found, and thermal behaviors of magnetizations and susceptibilities are studied. We construct the phase diagrams and find that the system exhibits one, two or even three compensation temperatures depending on the values of the interaction parameters in the Hamiltonian. Moreover, the system undergoes a second-order phase transition for the coordination number q≤3 and a second- and first-order phase transitions for q>3; hence the system gives a tricritical point. The system also exhibits the reentrant behaviors
International Nuclear Information System (INIS)
Cruz, H. A.; Brazhnyi, V. A.; Konotop, V. V.; Alfimov, G. L.; Salerno, M.
2007-01-01
We study localized modes in binary mixtures of Bose-Einstein condensates embedded in one-dimensional optical lattices. We report a diversity of asymmetric modes and investigate their dynamics. We concentrate on the cases where one of the components is dominant, i.e., has a much larger number of atoms than the other one, and where both components have the numbers of atoms of the same order but different symmetries. In the first case we propose a method of systematically obtaining the modes, considering the ''small'' component as bifurcating from the continuum spectrum. A generalization of this approach combined with the use of the symmetry of the coupled Gross-Pitaevskii equations allows for obtaining breather modes, which are also presented
Gálisová, Lucia; Strečka, Jozef
2018-05-01
The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.
Energy Technology Data Exchange (ETDEWEB)
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Zhang, A.-Jie [Military Operational Research Teaching Division of the 4th Department, PLA Academy of National Defense Information, Wuhan 430000 (China)
2016-02-01
The magnetic properties of a mixed spin-1/2 and spin-1 Heisenberg ferrimagnetic system on a two-dimensional square lattice are investigated by means of the double-time Green's function technique within the random phase decoupling approximation. The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. And their effects on the critical and compensation temperature are discussed in detail. Our investigation indicates that both the next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram. - Highlights: • Spin-1/2 and spin-1 ferrimagnetic model is examined. • Green's function technique is used. • The role of the nearest-, next-nearest-neighbors interactions and the exchange anisotropy in the Hamiltonian is explored. • The next-nearest-neighbor interactions and the anisotropy have a great effect on the phase diagram.
International Nuclear Information System (INIS)
Temizer, Ümüt
2014-01-01
In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system. - Highlights: • The mixed spin (1, 3/2) Ising system is studied on a two-layer square lattice. • The Glauber transition rates are employed to construct the dynamic equations. • The dynamic phase diagrams are presented in seven different planes. • The system displays many dynamic critical points. • The reentrant behavior is observed for AFM/FM interaction
Rowell, Lonnie L.; Polush, Elena Yu; Riel, Margaret; Bruewer, Aaron
2015-01-01
The purpose of this study was to identify distinguishing characteristics of action research within the Action Research Special Interest Group of the American Educational Research Association. The authors sought to delineate the foundational framework endorsed by this community. The study was conducted during January-April 2012 and employed an…
Mixed meson masses with domain-wall valence and staggered sea fermions
International Nuclear Information System (INIS)
Orginos, Kostas; Walker-Loud, Andre
2008-01-01
Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Two-body spectra of pseudoscalar mesons with an O(a2)-improved lattice action using Wilson fermions
International Nuclear Information System (INIS)
Fiebig, H.R.; Mihaly, A.; Woloshyn, R.M.
1998-01-01
We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons (π-π) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Fiebig, H.R. [FIU-University Park, Miami, FL (United States). Phys. Dept.; Markum, H.; Rabitsch, K. [Institut fuer Kernphysik, Technische Universitaet Wien, 1040 Vienna (Austria); Mihaly, A. [Department of Theoretical Physics, Lajos Kossuth University, 4010 Debrecen (Hungary); Woloshyn, R.M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada)
1998-04-01
We extend our calculations with the second-order tree-level and tadpole improved next-nearest-neighbor action to meson-meson systems. Correlation matrices built from interpolating fields representing two pseudoscalar mesons ({pi}-{pi}) with relative momenta vector-p are diagonalized, and the mass spectrum is extracted. Link variable fuzzing and operator smearing at both sinks and sources is employed. Calculations are presented for two values of the hopping parameter. The spectrum is used to discuss the residual interaction in the meson-meson system. (orig.). 6 refs.
International Nuclear Information System (INIS)
Chase, J.
2000-01-01
This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events
Edwards, Katie M; Rodenhizer-Stämpfli, Kara Anne; Eckstein, Robert P
2015-12-01
Bystander action is a critical component of dating and sexual aggression prevention; however, little is known about barriers and facilitators of bystander action among high school youth and in what situations youth are willing to engage in bystander action. The current study examined bystander action in situations of dating and sexual aggression using a mixed methodological design. Participants included primarily Caucasian (83.0%, n = 181) male (54.6%, n = 119) and female (44.5%, n = 97) high school youth (N = 218). Most (93.6%) students had the opportunity to take action during the past year in situations of dating or sexual aggression; being female and histories of dating and sexual aggression related to bystander action. Thematic analysis of the focus group data identified barriers (e.g., the aggression not meeting a certain threshold, anticipated negative consequences) to bystander action, as well as insight on promising forms of action (e.g., verbally telling the perpetrator to stop, getting a teacher); problematic intervention methods (e.g., threatening or using physical violence to stop the perpetrator) were also noted. Implications for programming are discussed.
International Nuclear Information System (INIS)
Ertaş Mehmet; Keskin Mustafa
2013-01-01
Using the mean-field theory and Glauber-type stochastic dynamics, we study the dynamic magnetic properties of the mixed spin (2, 5/2) Ising system for the antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the bilayer square lattice under a time varying (sinusoidal) magnetic field. The time dependence of average magnetizations and the thermal variation of the dynamic magnetizations are examined to calculate the dynamic phase diagrams. The dynamic phase diagrams are presented in the reduced temperature and magnetic field amplitude plane and the effects of interlayer coupling interaction on the critical behavior of the system are investigated. We also investigate the influence of the frequency and find that the system displays richer dynamic critical behavior for higher values of frequency than that of the lower values of it. We perform a comparison with the ferromagnetic/ferromagnetic (FM/FM) and AFM/FM interactions in order to see the effects of AFM/AFM interaction and observe that the system displays richer and more interesting dynamic critical behaviors for the AFM/AFM interaction than those for the FM/FM and AFM/FM interactions. (general)
Gimenez, V.; Sachrajda, Christopher T.
1996-01-01
We present a short review of our most recent high statistics lattice determinations in the HQET of the following important parameters in B physics: the B--meson binding energy, $\\overline{\\Lambda}$ and the kinetic energy of the b quark in the B meson, $\\lambda_1$, which due to the presence of power divergences require a non--perturbative renormalization to be defined; the value in the HQET is determined by the matrix element of the chromo--magnetic operator between B meson states, $\\lambda_2$; the B parameter of the $B^{0}$--$\\bar{B}^{0}$ mixing, $B_{B}$, and the decay constant of the B meson, $f_{B}$. All these quantities have been computed using a sample of $600$ gauge field configurations on a $24^{3}\\times 40$ lattice at $\\beta=6.0$. For estimates by combining results from three independent lattice simulations at
Pseudoscalar decay constants from N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Farchioni, Federico [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Herdoiza, Gregorio; Jansen, Karl; Nube, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Inst. fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2010-12-15
We present first results for the pseudoscalar decay constants f{sub K}, f{sub D} and f{sub D{sub S}} from lattice QCD with N{sub f} = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Pseudoscalar decay constants from Nf=2+1+1 twisted mass lattice QCD
International Nuclear Information System (INIS)
Farchioni, Federico; Petschlies, Marcus; Urbach, Carsten
2010-12-01
We present first results for the pseudoscalar decay constants f K , f D and f D S from lattice QCD with N f = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Instantons and topological charge in lattice gauge theory
International Nuclear Information System (INIS)
Iwasaki, Y.; Yoshie, T.
1983-01-01
The existence of instantons on the lattice in SU(2) lattice gauge theory is investigated for various lattice actions with loops of up to six lattice spacings. Instantons exist only for the actions where short range fluctuations are suppressed. A formula for topological properties of the solutions are examined. (orig.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)
Remarks on lattice gauge models
International Nuclear Information System (INIS)
Grosse, H.
1981-01-01
The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Geometry of lattice field theory
International Nuclear Information System (INIS)
Honan, T.J.
1986-01-01
Using some tools of algebraic topology, a general formalism for lattice field theory is presented. The lattice is taken to be a simplicial complex that is also a manifold and is referred to as a simplicial manifold. The fields on this lattice are cochains, that are called lattice forms to emphasize the connections with differential forms in the continuum. This connection provides a new bridge between lattice and continuum field theory. A metric can be put onto this simplicial manifold by assigning lengths to every link or I-simplex of the lattice. Regge calculus is a way of defining general relativity on this lattice. A geometric discussion of Regge calculus is presented. The Regge action, which is a discrete form of the Hilbert action, is derived from the Hilbert action using distribution valued forms. This is a new derivation that emphasizes the underlying geometry. Kramers-Wannier duality in statistical mechanics is discussed in this general setting. Nonlinear field theories, which include gauge theories and nonlinear sigma models are discussed in the continuum and then are put onto a lattice. The main new result here is the generalization to curved spacetime, which consists of making the theory compatible with Regge calculus
International Nuclear Information System (INIS)
Thorn, C.B.
1988-01-01
The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs
Yzer, Marco; Weisman, Susan; Mejia, Nicole; Hennrikus, Deborah; Choi, Kelvin; DeSimone, Susan
2015-08-01
Blue-collar workers typically have high rates of tobacco use but low rates of using tobacco cessation resources available through their health benefits. Interventions to motivate blue-collar tobacco users to use effective cessation support are needed. Reasoned action theory is useful in this regard as it can identify the beliefs that shape tobacco cessation benefit use intentions. However, conventional reasoned action research cannot speak to how those beliefs can best be translated into intervention messages. In the present work, we expand the reasoned action approach by adding additional qualitative inquiry to better understand blue-collar smokers' beliefs about cessation benefit use. Across three samples of unionized blue-collar tobacco users, we identified (1) the 35 attitudinal, normative, and control beliefs that represented tobacco users' belief structure about cessation benefit use; (2) instrumental attitude as most important in explaining cessation intention; (3) attitudinal beliefs about treatment options' efficacy, health effects, and monetary implications of using benefits as candidates for message design; (4) multiple interpretations of cessation beliefs (e.g., short and long-term health effects); and (5) clear implications of these interpretations for creative message design. Taken together, the findings demonstrate how a mixed-method reasoned action approach can inform interventions that promote the use of tobacco cessation health benefits.
International Nuclear Information System (INIS)
Smith, L.
1975-01-01
An analysis is given of a number of variants of the basic lattice of the planned ISABELLE storage rings. The variants were formed by removing cells from the normal part of the lattice and juggling the lengths of magnets, cells, and insertions in order to maintain a rational relation of circumference to that of the AGS and approximately the same dispersion. Special insertions, correction windings, and the working line with nonlinear resonances are discussed
Chiral effective field theory on the lattice at next-to-leading order
International Nuclear Information System (INIS)
Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.
2008-01-01
We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)
DEFF Research Database (Denmark)
Yaron, U.; Gammel, P.L.; Boebinger, G.S.
1997-01-01
Small angle neutron scattering studies of the flux line lattice (FLL) in UPt3 for fields H perpendicular to c provide direct microscopic evidence for the 5 kOe B --> C transition. We find a pronounced maximum in the longitudinal correlation length of the FLL at the transition and an abrupt change...
International Nuclear Information System (INIS)
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references
Computing nucleon EDM on a lattice
Abramczyk, Michael; Aoki, Sinya; Blum, Tom; Izubuchi, Taku; Ohki, Hiroshi; Syritsyn, Sergey
2018-03-01
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Computing nucleon EDM on a lattice
Energy Technology Data Exchange (ETDEWEB)
Abramczyk, Michael; Izubuchi, Taku
2017-06-18
I will discuss briefly recent changes in the methodology of computing the baryon EDM on a lattice. The associated correction substantially reduces presently existing lattice values for the proton and neutron theta-induced EDMs, so that even the most precise previous lattice results become consistent with zero. On one hand, this change removes previous disagreements between these lattice results and the phenomenological estimates of the nucleon EDM. On the other hand, the nucleon EDM becomes much harder to compute on a lattice. In addition, I will review the progress in computing quark chromo-EDM-induced nucleon EDM using chiral quark action.
Light Hadron Spectroscopy on course lattices with
Lee, F
1999-01-01
The masses and dispersions of light hadrons are calculated in lattice QCD using an O(a sup 2) tadpole-improved gluon action and an O(a sup 2) tadpole-improved next-nearest-neighbor fermion action originally proposed by Hamber and Wu. Two lattices of constant volume with lattice spacings of approximately 0.40 fm and 0.24 fm are considered. The results reveal some scaling violations at the coarser lattice spacing on the order of 5%. At the finer lattice spacing, the nucleon to rho mass ratio reproduces state-of-the-art results using unimproved actions. Good dispersion and rotational invariance up to momenta of pa approx = 1 are also found. The relative merit of alternative choices for improvement operators is assessed through close comparisons with other plaquette-based tadpole-improved actions.
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1983-06-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Dielectric lattice gauge theory
International Nuclear Information System (INIS)
Mack, G.
1984-01-01
Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Energy Technology Data Exchange (ETDEWEB)
NSTec Environmental Restoration
2009-07-31
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative
International Nuclear Information System (INIS)
2010-01-01
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative
Energy Technology Data Exchange (ETDEWEB)
NSTec Environmental Restoration
2010-11-22
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed
International Nuclear Information System (INIS)
2009-01-01
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the
Unquenched lattice upsilon spectroscopy
International Nuclear Information System (INIS)
Marcantonio, L.M.
2001-03-01
A non-relativistic effective theory of QCD (NRQCD) is used in calculations of the upsilon spectrum. Simultaneous multi-correlation fitting routines are used to yield lattice channel energies and amplitudes. The lattice configurations used were both dynamical, with two flavours of sea quarks included in the action; and quenched, with no sea quarks. These configurations were generated by the UKQCD collaboration. The dynamical configurations used were ''matched'', having the same lattice spacing, but differing in the sea quark mass. Thus, it was possible to analyse trends of observables with sea quark mass, in the certainty that the trend isn't partially due to varying lattice spacing. The lattice spacing used for spectroscopy was derived from the lattice 1 1 P 1 - 1 3 S 1 splitting. On each set of configurations two lattice bare b quark masses were used, giving kinetic masses bracketing the physical Υ mass. The only quantity showing a strong dependence on these masses was the hyperfine splitting, so it was interpolated to the real Υ mass. The radial and orbital splittings gave good agreement with experiment. The hyperfine splitting results showed a clear signal for unquenching and the dynamical hyperfine splitting results were extrapolated to a physical sea quark mass. This result, combined with the quenched result yielded a value for the hyperfine splitting at n f = 3, predicting an η b mass of 9.517(4) GeV. The NRQCD technique for obtaining a value of the strong coupling constant in the M-barS-bar scheme was followed. Using quenched and dynamical results a value was extrapolated to n f = 3. Employing a three loop beta function to run the coupling, with suitable matching conditions at heavy quark thresholds, the final result was obtained for n f = 5 at a scale equal to the Z boson mass. This result was α(5)/MS(Mz)=0.110(4). Two methods for finding the mass of the b quark in the MS scheme were employed. The results of both methods agree within error but the
Arbitrary spin fermions on the lattice
International Nuclear Information System (INIS)
Bullinaria, J.A.
1985-01-01
Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out
International Nuclear Information System (INIS)
Kilcup, G.
1986-01-01
A progress report on a lattice project at Los Alamos is presented. The projects are basically of two sorts: approaching the continuum (determination of MCRG flows under the blocking transformation, and beta-function along Wilson and improved action lines); and arriving at the continuum (hadron spectrum, coupling constants, and matrix elements). Since the ultimate goal is to determine matrix elements for which chiral symmetry is very relevant, the authors choose the formalism whose chiral properties are easier to understand, i.e., staggered fermions
Compact lattice QED with Wilson fermions
International Nuclear Information System (INIS)
Hoferichter, A.
1994-08-01
We study the phase structure and the chiral limit of 4d compact lattice QED with Wilson fermions (both dynamical and quenched). We use the standard Wilson gauge action and also a modified one suppressing lattice artifacts. Different techniques and observables to locate the chiral limit are discussed. (orig.)
Whiteman, Rodney S.
2015-01-01
Purpose: Mixed methods research can provide a fruitful line of inquiry for educational leadership, program evaluation, and policy analysis; however, mixed methods research requires a metatheory that allows for mixing what have traditionally been considered incompatible qualitative and quantitative inquiry. The purpose of this paper is to apply…
Renormalized action improvements
International Nuclear Information System (INIS)
Zachos, C.
1984-01-01
Finite lattice spacing artifacts are suppressed on the renormalized actions. The renormalized action trajectories of SU(N) lattice gauge theories are considered from the standpoint of the Migdal-Kadanoff approximation. The minor renormalized trajectories which involve representations invariant under the center are discussed and quantified. 17 references
Scott, Paul
2006-01-01
A lattice is a (rectangular) grid of points, usually pictured as occurring at the intersections of two orthogonal sets of parallel, equally spaced lines. Polygons that have lattice points as vertices are called lattice polygons. It is clear that lattice polygons come in various shapes and sizes. A very small lattice triangle may cover just 3…
Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I
2015-04-24
We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.
Internal space decimation for lattice gauge theories
International Nuclear Information System (INIS)
Flyvbjerg, H.
1984-01-01
By a systematic decimation of internal space lattice gauge theories with continuous symmetry groups are mapped into effective lattice gauge theories with finite symmetry groups. The decimation of internal space makes a larger lattice tractable with the same computational resources. In this sense the method is an alternative to Wilson's and Symanzik's programs of improved actions. As an illustrative test of the method U(1) is decimated to Z(N) and the results compared with Monte Carlo data for Z(4)- and Z(5)-invariant lattice gauge theories. The result of decimating SU(3) to its 1080-element crystal-group-like subgroup is given and discussed. (orig.)
Supersymmetry on a space-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Supersymmetry on a space-time lattice
International Nuclear Information System (INIS)
Kaestner, Tobias
2008-01-01
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
LATTICE: an interactive lattice computer code
International Nuclear Information System (INIS)
Staples, J.
1976-10-01
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
International Nuclear Information System (INIS)
Mack, G.
1982-01-01
After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)
Lattice renormalisation of O(a) improved heavy-light operators
International Nuclear Information System (INIS)
Blossier, B.
2007-05-01
Analytical expressions and numerical values of renormalisation constants of O(a) improved heavy-light currents are given at 1-loop order of perturbation theory in the framework of Heavy Quark Effective Theory: the heavy quark is described by the HYP action and the light quark is described either with the Clover or the Neuberger action. These factors are relevant to extract from a lattice computation the decay constants f B , f B S and the set of bag parameters B i associated with B- anti B mixing phenomenology in the Standard Model and beyond. (orig.)
Lattices with unique complements
Saliĭ, V N
1988-01-01
The class of uniquely complemented lattices properly contains all Boolean lattices. However, no explicit example of a non-Boolean lattice of this class has been found. In addition, the question of whether this class contains any complete non-Boolean lattices remains unanswered. This book focuses on these classical problems of lattice theory and the various attempts to solve them. Requiring no specialized knowledge, the book is directed at researchers and students interested in general algebra and mathematical logic.
Temperature-dependent errors in nuclear lattice simulations
International Nuclear Information System (INIS)
Lee, Dean; Thomson, Richard
2007-01-01
We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems
2011-01-01
Background Although principles based in motor learning, rehabilitation, and human-computer interfaces can guide the design of effective interactive systems for rehabilitation, a unified approach that connects these key principles into an integrated design, and can form a methodology that can be generalized to interactive stroke rehabilitation, is presently unavailable. Results This paper integrates phenomenological approaches to interaction and embodied knowledge with rehabilitation practices and theories to achieve the basis for a methodology that can support effective adaptive, interactive rehabilitation. Our resulting methodology provides guidelines for the development of an action representation, quantification of action, and the design of interactive feedback. As Part I of a two-part series, this paper presents key principles of the unified approach. Part II then describes the application of this approach within the implementation of the Adaptive Mixed Reality Rehabilitation (AMRR) system for stroke rehabilitation. Conclusions The accompanying principles for composing novel mixed reality environments for stroke rehabilitation can advance the design and implementation of effective mixed reality systems for the clinical setting, and ultimately be adapted for home-based application. They furthermore can be applied to other rehabilitation needs beyond stroke. PMID:21875441
Automated generation of lattice QCD Feynman rules
Energy Technology Data Exchange (ETDEWEB)
Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS
2009-04-15
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Automated generation of lattice QCD Feynman rules
International Nuclear Information System (INIS)
Hart, A.; Mueller, E.H.; Horgan, R.R.
2009-04-01
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Vector fields and gravity on the lattice
International Nuclear Information System (INIS)
Khatsymovsky, V.M.
1988-01-01
The problem of discretization of vector field on Regge lattice is considered. Our approach is based on geometrical interpretation of the vector field as the field of infinitesimal coordinate transformation. A discrete version of the vector field action is obtained as a particular case of the continuum action, and it is shown to have the true continuum limit
Nucleon Structure and Hyperon Form Factors from Lattice QCD.
Energy Technology Data Exchange (ETDEWEB)
Lin,H.W.
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).
Nucleon Structure and hyperon form factors from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lin, Huey-Wen
2007-06-11
In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).
Standing, Vicky; Fearon, Colm; Dee, Tim
2012-01-01
Purpose: In response to an increasingly high level of exclusion rates for boys within secondary school in the UK, this study seeks to explore the value of restorative practice and justice for changing student behaviour. Design/methodology/approach: As a piece of action research, the authors aimed to look at how methods of restorative practice…
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
New integrable lattice hierarchies
International Nuclear Information System (INIS)
Pickering, Andrew; Zhu Zuonong
2006-01-01
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula
Differential geometry of group lattices
International Nuclear Information System (INIS)
Dimakis, Aristophanes; Mueller-Hoissen, Folkert
2003-01-01
In a series of publications we developed ''differential geometry'' on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first-order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of ''bicovariant'' Cayley graphs with the property ad(S)S subset of S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first-order calculi extend to higher orders and then allow us to introduce further differential geometric structures. Furthermore, we explore the properties of ''discrete'' vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analog of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained
Senthamarai, R.; Jana Ranjani, R.
2018-04-01
In this paper, a mathematical model of an amperometric biosensor at mixed enzyme kinetics and diffusion limitation in the case of substrate inhibition has been developed. The model is based on time dependent reaction diffusion equation containing a non -linear term related to non -Michaelis - Menten kinetics of the enzymatic reaction. Solution for the concentration of the substrate has been derived for all values of parameters using the homotopy perturbation method. All the approximate analytic expressions of substrate concentration are compared with simulation results using Scilab/Matlab program. Finally, we have given a satisfactory agreement between them.
Energy Technology Data Exchange (ETDEWEB)
NSTec Environmental Restoration
2012-02-21
This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.
International Nuclear Information System (INIS)
2012-01-01
This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 (as amended March 2010)). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.
Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M
1998-03-01
The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.
Generalized isothermic lattices
International Nuclear Information System (INIS)
Doliwa, Adam
2007-01-01
We study multi-dimensional quadrilateral lattices satisfying simultaneously two integrable constraints: a quadratic constraint and the projective Moutard constraint. When the lattice is two dimensional and the quadric under consideration is the Moebius sphere one obtains, after the stereographic projection, the discrete isothermic surfaces defined by Bobenko and Pinkall by an algebraic constraint imposed on the (complex) cross-ratio of the circular lattice. We derive the analogous condition for our generalized isothermic lattices using Steiner's projective structure of conics, and we present basic geometric constructions which encode integrability of the lattice. In particular, we introduce the Darboux transformation of the generalized isothermic lattice and we derive the corresponding Bianchi permutability principle. Finally, we study two-dimensional generalized isothermic lattices, in particular geometry of their initial boundary value problem
Cold collisions in dissipative optical lattices
International Nuclear Information System (INIS)
Piilo, J; Suominen, K-A
2005-01-01
The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix
Perturbative matching of continuum and lattice quasi-distributions
Directory of Open Access Journals (Sweden)
Ishikawa Tomomi
2018-01-01
Full Text Available Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a operators for the nonlocal operators based on a symmetry argument on lattice.
Chiral fermions on the lattice
International Nuclear Information System (INIS)
Randjbar Daemi, S.; Strathdee, J.
1995-01-01
The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs
González-García, E; Gourdine, J L; Alexandre, G; Archimède, H; Vaarst, M
2012-05-01
Mixed farming systems (MFS) have demonstrated some success by focusing on the use of integrative and holistic mechanisms, and rationally building on and using the natural and local resource base without exhausting it, while enhancing biodiversity, optimizing complementarities between crops and animal systems and finally increasing opportunities in rural livelihoods. Focusing our analysis and discussion on field experiences and empirical knowledge in the Caribbean islands, this paper discusses the opportunities for a change needed in current MFS research-development philosophy. The importance of shifting from fragile/specialized production systems to MFS under current global conditions is argued with an emphasis on the case of Small Islands Developing States (SIDS) and the Caribbean. Particular vulnerable characteristics as well as the potential and constraints of SIDS and their agricultural sectors are described, while revealing the opportunities for the 'richness' of the natural and local resources to support authentic and less dependent production system strategies. Examples are provided of the use of natural grasses, legumes, crop residues and agro-industrial by-products. We analyse the requirement for a change in research strategies and initiatives through the development of a complex but necessary multi-/inter-/trans-disciplinary teamwork spirit. We stress as essential the collaboration and active participation of local and regional actors, stakeholders and end-users in the identification of research priorities, as well as the generation, exchange and dissemination of knowledge and technology innovations, while strengthening the leadership roles in the conduct of integrative and participative research and development projects.
International Nuclear Information System (INIS)
1988-09-01
The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling
Automatically generating Feynman rules for improved lattice field theories
International Nuclear Information System (INIS)
Hart, A.; Hippel, G.M. von; Horgan, R.R.; Storoni, L.C.
2005-01-01
Deriving the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially when improvement terms are present. This physically important task is, however, suitable for automation. We describe a flexible algorithm for generating Feynman rules for a wide range of lattice field theories including gluons, relativistic fermions and heavy quarks. We also present an efficient implementation of this in a freely available, multi-platform programming language (PYTHON), optimised to deal with a wide class of lattice field theories
International Nuclear Information System (INIS)
Trabalka, J.R.
1987-09-01
Some options for stabilization and treatment of contaminated sites can theoretically provide a once-and-for-all solution (e.g., removal or destruction of contaminants). Most realizable options, however, leave contaminants in place (in situ), potentially isolated by physical or chemical, but more typically, by hydrologic measures. As a result of the dynamic nature of the interactions between contaminants, remedial measures, and the environment, in situ stablization measures are likely to have limited life spans, and maintenance and monitoring of performance become an essential part of the scheme. The length of formal institutional control over the site and related questions about future uses of the land and waters are of paramount importance. Unique features of the ORNL site and environs appear to be key ingredients in achieving the very long term institutional control necessary for successful financing and implementation of in situ stabilization. Some formal regulatory interface is necessary to ensure that regulatory limitations and new guidance which can affect planning and implementation of the ORNL Remedial Action Program are communicated to ORNL staff and potential technical and financial limitations which can affect schedules or alternatives for achievement of long-term site stabilization and the capability to meet environmental regulations are provided to regulatory bodies as early as possible. Such an interface should allow decisions on closure criteria to be based primarily on technical merit and protection of human health and the environment. A plan for interfacing with federal and state regulatory authorities is described. 93 refs., 1 fig., 4 tabs
van Rinsum, Celeste E; Gerards, Sanne M P L; Rutten, Geert M; van de Goor, Ien A M; Kremers, Stef P J
2018-01-08
Combined lifestyle interventions (CLIs) have proved to be effective in changing and maintaining behavioural lifestyle changes and reducing overweight and obesity, in clinical and real-world settings. In this CLI, lifestyle coaches are expected to promote lifestyle changes of participants regarding physical activity and diet. In the Coaching on Lifestyle (CooL) intervention, which takes a period of 8 to 10 months, lifestyle coaches counsel adults and children aged 4 years and older (and their parents) who are obese or are overweight with an increased risk of developing cardiovascular diseases or type II diabetes. In group and individual sessions, themes such as physical activity, dietary behaviours, sleep and stress are addressed. The aim of the present study is to monitor the implementation process of the CooL intervention and to examine how the lifestyle coaches contribute to a healthier lifestyle of the participants. This action-oriented study involves monitoring the implementation process of the CooL intervention and examining the lifestyle changes achieved by participants over time, in a one-group pre-post design using mixed methods. Methods include semi-structured interviews, observations, document analysis, biomedical parameters and questionnaires. The added value of the CooL study lies in its action-oriented approach and the use of mixed methods, including both qualitative and quantitative research methods. The long-term coaching used in the CooL intervention is expected to have beneficial effects on sustained lifestyle changes. NTR6208 ; date registered: 13-01-2017.
Lattice theory for nonspecialists
International Nuclear Information System (INIS)
Hari Dass, N.D.
1984-01-01
These lectures were delivered as part of the academic training programme at the NIKHEF-H. These lectures were intended primarily for experimentalists, and theorists not specializing in lattice methods. The goal was to present the essential spirit behind the lattice approach and consequently the author has concentrated mostly on issues of principle rather than on presenting a large amount of detail. In particular, the author emphasizes the deep theoretical infra-structure that has made lattice studies meaningful. At the same time, he has avoided the use of heavy formalisms as they tend to obscure the basic issues for people trying to approach this subject for the first time. The essential ideas are illustrated with elementary soluble examples not involving complicated mathematics. The following subjects are discussed: three ways of solving the harmonic oscillator problem; latticization; gauge fields on a lattice; QCD observables; how to solve lattice theories. (Auth.)
International Nuclear Information System (INIS)
Creutz, M.
1983-04-01
In the last few years lattice gauge theory has become the primary tool for the study of nonperturbative phenomena in gauge theories. The lattice serves as an ultraviolet cutoff, rendering the theory well defined and amenable to numerical and analytical work. Of course, as with any cutoff, at the end of a calculation one must consider the limit of vanishing lattice spacing in order to draw conclusions on the physical continuum limit theory. The lattice has the advantage over other regulators that it is not tied to the Feynman expansion. This opens the possibility of other approximation schemes than conventional perturbation theory. Thus Wilson used a high temperature expansion to demonstrate confinement in the strong coupling limit. Monte Carlo simulations have dominated the research in lattice gauge theory for the last four years, giving first principle calculations of nonperturbative parameters characterizing the continuum limit. Some of the recent results with lattice calculations are reviewed
International Nuclear Information System (INIS)
Whelan, G.; Strenge, D.L.; Steelman, B.L.; Hawley, K.A.
1985-08-01
The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap that exists between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment, and remediation efforts. The HRS was designed as an initial screening tool to discriminate between hazardous waste sites that do not and those that are likely to pose significant problems to human health, safety, and/or the environment. The HRS is used by the US Environmental Protection Agency to identify sites for nomination to the National Priorites List (NPL). Because the HRS is not designed to evaluate sites containing radionuclides, a modified Hazard Ranking System (mHRS) addressing both hazardous and radioactive mixed wastes was developed by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE). Neither the HRS nor the mHRS was designed to prioritize sites that are nominated to the NPL according to their potential risks. 15 refs., 6 figs., 3 tabs
International Nuclear Information System (INIS)
Whelan, G.; Strenge, D.L.; Steelman, B.L.; Hawley, K.A.
1985-01-01
The Remedial Action Priority System (RAPS) represents a methodology that prioritizes inactive hazardous and radioactive mixed-waste disposal sites in a scientific and objective manner based on limited site information. This methodology is intended to bridge the technology gap that exists between the initial site evaluation using the Hazard Ranking System (HRS) and the time-consuming process of actual field site characterization, assessment and remediation efforts. The HRS was designed as an initial screening tool to discriminate between hazardous waste sites that do not and those that are likely to power significant problems to human health, safety and/or the environment. The HRS is used by the U.S. EPA to identify sites for nomination to the National Priorities List (NPL). Because the HRS is not designed to evaluate sites containing radionuclides, a modified Hazard Ranking System (mHRS) addressing both hazardous and radioactive mixed wastes was developed by Pacific Northwest Laboratory (PNL) for the U.S. Department of Energy (DOE). Neither the HRS nor the mHRS was designed to prioritize sites that are nominated to the NPL according to their potential risks. To provide DOE with a better management tool for prioritizing funding and human resource allocations for further investigations and possible remediations at its inactive waste sites, PNL is developing the risk assessment methodology called RAPS. Use of RAPS will help DOE ensure that those sites posing the highest potential risk are addressed first
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Lattice degeneracies of fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-10-01
We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)
Directory of Open Access Journals (Sweden)
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
International Nuclear Information System (INIS)
Jersak, J.
1986-01-01
This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development
On singularities of lattice varieties
Mukherjee, Himadri
2013-01-01
Toric varieties associated with distributive lattices arise as a fibre of a flat degeneration of a Schubert variety in a minuscule. The singular locus of these varieties has been studied by various authors. In this article we prove that the number of diamonds incident on a lattice point $\\a$ in a product of chain lattices is more than or equal to the codimension of the lattice. Using this we also show that the lattice varieties associated with product of chain lattices is smooth.
Two Dimensional Super QCD on a Lattice
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab
2017-10-04
We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf
International Nuclear Information System (INIS)
Laudon, L.S.
1994-01-01
The Base Realignment and Closure Act (BRAC) mandated the closing and transfer of Department of Defense (DoD) properties within specific timeframes. Due to requirements of federal and state laws, closing bases must be environmentally remediated to alleviate threats to human health and the environment upon transfer. Certain barriers such as legislative, regulatory, administrative, and technical issues, have been identified which threaten the timely restoration and transfer of these BRAC properties. The state of California, faced with the scheduled closure or realignment of 26 military bases, recognized the need to establish a base closure environmental committee to address issues affecting the timely cleanup and reuse of DoD properties and promote accelerated restoration. Accordingly, the California Base Closure Environmental Committee (CBCEC) was formed by executive order of Governor Pete Wilson. One of the barriers identified by the CBCEC is the potential contamination of DoD facilities with radioactive materials. As a result of the difficulties encountered in assessing the nature and extent of radioactive contamination at DoD sites in California, the CBCEC formed the Radioactive and Mixed Waste Process Action Team (RMWPAT). The RMWPAT was tasked with ''demystifying'' and working to address issues associated with radioactive contamination
Tan, Ricardo; Giral, Philippe; Robillard, Paul; Kontush, Anatol; Chapman, M. John
2016-01-01
Atherogenic mixed dyslipidemia associates with oxidative stress and defective HDL antioxidative function in metabolic syndrome (MetS). The impact of statin treatment on the capacity of HDL to inactivate LDL-derived, redox-active phospholipid hydroperoxides (PCOOHs) in MetS is indeterminate. Insulin-resistant, hypertriglyceridemic, hypertensive, obese males were treated with pitavastatin (4 mg/day) for 180 days, resulting in marked reduction in plasma TGs (−41%) and LDL-cholesterol (−38%), with minor effects on HDL-cholesterol and apoAI. Native plasma LDL (baseline vs. 180 days) was oxidized by aqueous free radicals under mild conditions in vitro either alone or in the presence of the corresponding pre- or poststatin HDL2 or HDL3 at authentic plasma mass ratios. Lipidomic analyses revealed that statin treatment i) reduced the content of oxidizable polyunsaturated phosphatidylcholine (PUPC) species containing DHA and linoleic acid in LDL; ii) preferentially increased the content of PUPC species containing arachidonic acid (AA) in small, dense HDL3; iii) induced significant elevation in the content of phosphatidylcholine and phosphatidylethanolamine (PE) plasmalogens containing AA and DHA in HDL3; and iv) induced formation of HDL3 particles with increased capacity to inactivate PCOOH with formation of redox-inactive phospholipid hydroxide. Statin action attenuated LDL oxidability Concomitantly, the capacity of HDL3 to inactivate redox-active PCOOH was enhanced relative to HDL2, consistent with preferential enrichment of PE plasmalogens and PUPC in HDL3. PMID:27581680
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
DEFF Research Database (Denmark)
Risager, Morten S.; Södergren, Carl Anders
2017-01-01
It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den......It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior...... of the density function in both the small and large variable limits. This extends earlier results by Boca, Pasol, Popa and Zaharescu and Kelmer and Kontorovich in dimension 2 to general dimension n . Our proofs use the decay of matrix coefficients together with a number of careful estimates, and lead...
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
Mackenzie, Paul
1989-03-15
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab.
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
Kulikowska, T.
2001-01-01
The description of reactor lattice codes is carried out on the example of the WIMSD-5B code. The WIMS code in its various version is the most recognised lattice code. It is used in all parts of the world for calculations of research and power reactors. The version WIMSD-5B is distributed free of charge by NEA Data Bank. The description of its main features given in the present lecture follows the aspects defined previously for lattice calculations in the lecture on Reactor Lattice Transport Calculations. The spatial models are described, and the approach to the energy treatment is given. Finally the specific algorithm applied in fuel depletion calculations is outlined. (author)
International Nuclear Information System (INIS)
Petronzio, R.
1992-01-01
Lattice gauge theories are about fifteen years old and I will report on the present status of the field without making the elementary introduction that can be found in the proceedings of the last two conferences. The talk covers briefly the following subjects: the determination of α s , the status of spectroscopy, heavy quark physics and in particular the calculation of their hadronic weak matrix elements, high temperature QCD, non perturbative Higgs bounds, chiral theories on the lattice and induced theories
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Lattice sigma models with exact supersymmetry
International Nuclear Information System (INIS)
Simon Catterall; Sofiane Ghadab
2004-01-01
We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Vortex lattices in layered superconductors
International Nuclear Information System (INIS)
Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.
1995-01-01
We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear
International Nuclear Information System (INIS)
Gould, T.A.
1978-08-01
The phonon and magnetic measurements described in the thesis produced the following significant results concerning the lattice dynamical and magnetic properties of γ-Ce. The phonon spectrum is relatively soft, which is consistent with results obtained for CeSn 3 . The L [110] and T [111] branches of the dispersion curve are anomalous. The C 11 and C 44 elastic constants are quite close in value. No discrete magnetic excitations were observed. The magnetic scattering is qualitatively similar to the results from Ce 0 . 74 Th 0 . 26 , however, GAMMA/sub Ce/ less than GAMMA/sub Ce-Th/. The various lattice dynamical and magnetic similarities among γ-Ce, CeSn 3 , and Ce 0 . 74 Th 0 . 26 are mixed valence compounds. Therefore, a complete theoretical description of the observed properties of Ce and its compounds may provide a basis for understanding a whole class of mixed valence materials
Spin-2 NΩ dibaryon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Etminan, Faisal [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Department of Physics, Faculty of Sciences, University of Birjand, Birjand 97175-615 (Iran, Islamic Republic of); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Nemura, Hidekatsu [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Aoki, Sinya [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Doi, Takumi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Hatsuda, Tetsuo [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583 (Japan); Ikeda, Yoichi [Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan); Inoue, Takashi [Nihon University, College of Bioresource Sciences, Kanagawa 252-0880 (Japan); Ishii, Noriyoshi [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Murano, Keiko [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sasaki, Kenji [Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan)
2014-08-15
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm){sup 3}× 3.8 fm lattice. The ud and s quark masses in our study correspond to m{sub π}=875(1) MeV and m{sub K}=916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)({sup +12.1}{sub −1.8}) MeV, where the first error is the statistical one, while the second represents the systematic error.
Spin-2 NΩ dibaryon from lattice QCD
International Nuclear Information System (INIS)
Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji
2014-01-01
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error
Chiral lattice fermions, minimal doubling, and the axial anomaly
International Nuclear Information System (INIS)
Tiburzi, B. C.
2010-01-01
Exact chiral symmetry at finite lattice spacing would preclude the axial anomaly. In order to describe a continuum quantum field theory of Dirac fermions, lattice actions with purported exact chiral symmetry must break the flavor-singlet axial symmetry. We demonstrate that this is indeed the case by using a minimally doubled fermion action. For simplicity, we consider the Abelian axial anomaly in two dimensions. At finite lattice spacing and with gauge interactions, the axial anomaly arises from nonconservation of the flavor-singlet current. Similar nonconservation also leads to the axial anomaly in the case of the naieve lattice action. For minimally doubled actions, however, fine-tuning of the action and axial current is necessary to arrive at the anomaly. Conservation of the flavor nonsinglet vector current additionally requires the current to be fine-tuned. Finally, we determine that the chiral projection of a minimally doubled fermion action can be used to arrive at a lattice theory with an undoubled Dirac fermion possessing the correct anomaly in the continuum limit.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Theory of chemical equilibrium in a lattice
International Nuclear Information System (INIS)
Dietrich, K.; Dufour, M.; Balazs, N.L.
1989-01-01
The chemical equilibrium is studied for the reaction A+B↔C, assuming that, initially, the particles B form a lattice and the particles A are statistically distributed on interstices. A mass action law is derived which defines the numbers n A , n B , n C of particles A, B, C in the chemical equilibrium assuming the initial distribution to be known. It predicts a considerably larger number n C of fused particles C compared to the mass action law for the gaseous phase. The result holds for an ordinary as well as for a nuclear lattice. Its possible relevance for the production of proton-rich isotopes in the universe is discussed. (orig.)
Perturbative analysis for Kaplan's lattice chiral fermions
International Nuclear Information System (INIS)
Aoki, S.; Hirose, H.
1994-01-01
Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J P =0 + , S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the ΛΛ threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Karsch, F. [Bielefeld Univ. (Germany). Fakultaet fuer Physik
2002-08-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P}=0{sup +}, S=-2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8-24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the {lambda}{lambda} threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wetzorke, I.; Karsch, F
2003-05-01
We present our final results for the mass of the six quark flavor singlet state (J{sup P} = 0{sup +}, S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24){sup 3} x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation.
International Nuclear Information System (INIS)
Wetzorke, I.; Karsch, F.
2003-01-01
We present our final results for the mass of the six quark flavor singlet state (J P = 0 + , S = -2) called H dibaryon, which would be the lightest possible strangelet in the context of strange quark matter. The calculations are performed in quenched QCD on (8 - 24) 3 x 30 lattices with the (1,2) Symanzik improved gauge action and the clover fermion action. Furthermore the fuzzing technique for the fermion fields and smearing of the gauge fields is applied in order to enhance the overlap with the ground state. Depending on the lattice size we observe an H mass slightly above or comparable with the AA threshold for strong decay. Therefore a bound H dibaryon state seemed to be ruled out by our simulation
International Nuclear Information System (INIS)
Chodos, A.
1978-01-01
A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
International Nuclear Information System (INIS)
Fort, H.
1994-01-01
We present a survey on the state of the art in the formulation of lattice compact QED in the space of loops. In a first part we review our most recent Hamiltonian results which signal a second order transition for (3+1) compact QED. We devote the second part to the Lagrangian loop formalism, showing the equivalence of the recently proposed loop action with the Villain form. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Lattice gauge theory approach to quantum chromodynamics
International Nuclear Information System (INIS)
Kogut, J.B.
1983-01-01
The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromodynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analyses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics. Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simulations, and weak coupling expansions. A #betta#-parameter calculation for asymptotically free-spin models is presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the context of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational symmetry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A brief discussion of the continuity of fields and topologial charge in asymptotically free lattice models is presented. The final major topic of this review concerns lattice fermions. The species doubling problem and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are reviewed
Magnetic properties of checkerboard lattice: a Monte Carlo study
Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.
2017-12-01
The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.
International Nuclear Information System (INIS)
Krojts, M.
1987-01-01
The book by the known american physicist-theoretist M.Kreuts represents the first monography in world literature, where a new perspective direction in elementary particle physics and quantum field theory - lattice formulation of gauge theories is stated systematically. Practically all main ideas of this direction are given. Material is stated in systematic and understandable form
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
International Nuclear Information System (INIS)
Bali, G.S.
2005-01-01
I comment on progress of lattice QCD techniques and calculations. Recent results on pentaquark masses as well as of the spectrum of excited baryons are summarized and interpreted. The present state of calculations of quantities related to the nucleon structure and of electromagnetic transition form factors is surveyed
Finite lattice extrapolation algorithms
International Nuclear Information System (INIS)
Henkel, M.; Schuetz, G.
1987-08-01
Two algorithms for sequence extrapolation, due to von den Broeck and Schwartz and Bulirsch and Stoer are reviewed and critically compared. Applications to three states and six states quantum chains and to the (2+1)D Ising model show that the algorithm of Bulirsch and Stoer is superior, in particular if only very few finite lattice data are available. (orig.)
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
International Nuclear Information System (INIS)
Autin, B.
1984-01-01
After a description of the constraints imposed by the cooling of Antiprotons on the lattice of the rings, the reasons which motivate the shape and the structure of these machines are surveyed. Linear and non-linear beam optics properties are treated with a special amplification to the Antiproton Accumulator. (orig.)
Absence of evidence for pentaquarks on the lattice
International Nuclear Information System (INIS)
Holland, Kieran; Juge, K. Jimmy
2006-01-01
We study the question of whether or not QCD predicts a pentaquark state Θ + . We use the improved, fixed point lattice QCD action which has very little sensitivity to the lattice spacing and also allows us to reach light quark masses. The analysis was performed on a single volume of size (1.8 fm) 3 x3.6 fm with lattice spacing of a=0.102 fm. We use the correlation matrix method to identify the ground and excited states in the isospin 0, negative parity channel. In the quenched approximation where dynamical quark effects are omitted, we do not find any evidence for a pentaquark resonance in QCD
Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions
Energy Technology Data Exchange (ETDEWEB)
Bornyakov, V. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Boyda, D. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Goy, V. [School of Natural Sciences, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Molochkov, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Nakamura, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka, 567-0047 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Nikolaev, A. [School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Zakharov, V.I. [ITEP, B. Cheremushkinskaya 25, Moscow, 117218 (Russian Federation); School of Biomedicine, Far Eastern Federal University, Sukhanova 8, Vladivostok 690950 (Russian Federation); Moscow Inst Phys & Technol, Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2016-12-15
We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.
Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions
International Nuclear Information System (INIS)
Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.
2016-01-01
We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.
Nf=2 Lattice QCD and Chiral Perturbation Theory
International Nuclear Information System (INIS)
Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.
2006-01-01
By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit
Superspace approach to lattice supersymmetry
International Nuclear Information System (INIS)
Kostelecky, V.A.; Rabin, J.M.
1984-01-01
We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Basis reduction for layered lattices
E.L. Torreão Dassen (Erwin)
2011-01-01
htmlabstractWe develop the theory of layered Euclidean spaces and layered lattices. With this new theory certain problems that usually are solved by using classical lattices with a "weighting" gain a new, more natural form. Using the layered lattice basis reduction algorithms introduced here these
Directory of Open Access Journals (Sweden)
D. M. Borodulin
2018-01-01
Full Text Available The influence of the number of screw turns of a centrifugal-screw mixer, the number of holes in the screw turns and the rotor speed on the quality of mixing of flour baking mixes of functional purpose enriched with amino acids was studied. Flour baking mix is composed of wheat flour, whole wheat flour, chickpeas flour, rye flour, buckwheat flour, oat bran, gluten, dry milk powder, sesame seeds, flax seed, dried onions, table salt and sugar. The homogeneity of the mixture reflects table salt because it has a minimal weight relative to other components of the mix. The coefficient of heterogeneity was calculated to assess the quality of mixing. The centrifugal-screw mixer optimal operation parameters were investigated for different flour baking mixes. For the mix № 1 and mix № 2 optimal parameters are rotor rotating speed of 900 rpm, the number of turns of the screw 4 and the number of holes on the threads of the screw 4. For the mix № 3 optimal parameters are rotor speed of 500 rpm, the number of turns of the screw 2 and the number of holes on the threads of the screw 8. The centrifugal–screw mixer allow to obtain enriched with amino acids flour baking mix of good quality. The coefficient of heterogeneity of mixes does not exceed 5%. For all samples of bread amino acid content is significantly higher compared to the control sample. Depending on the bread recipe contents of amino acids increased by 83–97% for arginine, 52–61% for tyrosine, 52–66% for phenylalanine, 72–74% for histidine, 91% for leucine+ isoleucine, 53–56% for methionine, 90–97% for valine, 64–72% for proline, 87–93% for threonine, 58–87% for serine and 74% for alanine. The greatest biological value is attributed to flour the baking mix № 1 and № 2. The economic effect of selling an enriched flour bakery mixture prepared on a centrifugal–screw mixer has been determined. It is established that the operating costs for the production of 1 kg of such
Radiative Transitions in Charmonium from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek; Robert Edwards; David Richards
2006-01-17
Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.
Properties of pseudoscalar flavor singlet mesons from lattice QCD
International Nuclear Information System (INIS)
Ottnad, Konstantin
2014-01-01
indeed described well by a single mixing angle, indicating that the η' is mostly a flavor singlet state. Moreover, our results confirm that the charm quark does not contribute to any of the two states within errors. Apart from the flavor singlet sector, we also perform calculations of masses for the remaining light pseudoscalar octet mesons. Matching these masses to two-flavor Wilson chiral perturbation theory allows for a determination of the low energy constants W 6 ' , W 8 ' and their linear combination c 2 which controls the O(a 2 ) mass splitting between charged and neutral pion. We study the dependence of these low energy constants on the number of dynamical quark flavors and for different choices of the lattice action.
Cheek, Julianne; Lipschitz, David L; Abrams, Elizabeth M; Vago, David R; Nakamura, Yoshio
2015-06-01
Dynamic reflexivity is central to enabling flexible and emergent qualitatively driven inductive mixed-method and multiple methods research designs. Yet too often, such reflexivity, and how it is used at various points of a study, is absent when we write our research reports. Instead, reports of mixed-method and multiple methods research focus on what was done rather than how it came to be done. This article seeks to redress this absence of emphasis on the reflexive thinking underpinning the way that mixed- and multiple methods, qualitatively driven research approaches are thought about and subsequently used throughout a project. Using Morse's notion of an armchair walkthrough, we excavate and explore the layers of decisions we made about how, and why, to use qualitatively driven mixed-method and multiple methods research in a study of mindfulness training (MT) in schoolchildren. © The Author(s) 2015.
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
International Nuclear Information System (INIS)
Lutz, H.D.; Willich, P.
1977-01-01
The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
International Nuclear Information System (INIS)
Hasenfratz, A.; Hasenfratz, P.
1985-01-01
This paper deals almost exclusively with applications in QCD. Presumably QCD will remain in the center of lattice calculations in the near future. The existing techniques and the available computer resources should be able to produce trustworthy results in pure SU(3) gauge theory and in quenched hadron spectroscopy. Going beyond the quenched approximation might require some technical breakthrough or exceptional computer resources, or both. Computational physics has entered high-energy physics. From this point of view, lattice QCD is only one (although the most important, at present) of the research fields. Increasing attention is devoted to the study of other QFTs. It is certain that the investigation of nonasymptotically free theories, the Higgs phenomenon, or field theories that are not perturbatively renormalizable will be important research areas in the future
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
International Nuclear Information System (INIS)
1962-01-01
The panel was attended by prominent physicists from most of the well-known laboratories in the field of light-water lattices, who exchanged the latest information on the status of work in their countries and discussed both the theoretical and the experimental aspects of the subjects. The supporting papers covered most problems, including criticality, resonance absorption, thermal utilization, spectrum calculations and the physics of plutonium bearing systems. Refs, figs and tabs
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
Automated lattice data generation
Directory of Open Access Journals (Sweden)
Ayyar Venkitesh
2018-01-01
Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Automated lattice data generation
Ayyar, Venkitesh; Hackett, Daniel C.; Jay, William I.; Neil, Ethan T.
2018-03-01
The process of generating ensembles of gauge configurations (and measuring various observables over them) can be tedious and error-prone when done "by hand". In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.
Energy Technology Data Exchange (ETDEWEB)
Kumar, J [Agra Coll. (India). Dept. of Physics
1977-03-01
In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.
International Nuclear Information System (INIS)
Bowler, Ken
1990-01-01
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Lattice QCD inputs to the CKM unitarity triangle analysis
International Nuclear Information System (INIS)
Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.
2010-01-01
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.
Toward lattice fractional vector calculus
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Improving the lattice axial vector current
International Nuclear Information System (INIS)
Horsley, R.; Perlt, H.; Schiller, A.; Zanotti, J.M.
2015-11-01
For Wilson and clover fermions traditional formulations of the axial vector current do not respect the continuum Ward identity which relates the divergence of that current to the pseudoscalar density. Here we propose to use a point-split or one-link axial vector current whose divergence exactly satisfies a lattice Ward identity, involving the pseudoscalar density and a number of irrelevant operators. We check in one-loop lattice perturbation theory with SLiNC fermion and gauge plaquette action that this is indeed the case including order O(a) effects. Including these operators the axial Ward identity remains renormalisation invariant. First preliminary results of a nonperturbative check of the Ward identity are also presented.
On the equivalence of continuum and lattice models for fluids
International Nuclear Information System (INIS)
Panagiotopoulos, Athanassios Z.
2000-01-01
It was demonstrated that finely discretized lattice models for fluids with particles interacting via Lennard-Jones or exponential-6 potentials have essentially identical thermodynamic and structural properties to their continuum counterparts. Grand canonical histogram reweighting Monte Carlo calculations were performed for systems with repulsion exponents between 11 and 22. Critical parameters were determined from mixed-field finite-size scaling methods. Numerical equivalence of lattice and continuous space models, within simulation uncertainties, was observed for lattices with ratio of particle diameter σ to grid spacing of 10. The lattice model calculations were more efficient computationally by factors between 10 and 20. It was also shown that Lennard-Jones and exponential-6 based models with identical critical properties can be constructed by appropriate choice of the repulsion exponent. (c) 2000 American Institute of Physics
Precision Light Flavor Physics from Lattice QCD
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
International Nuclear Information System (INIS)
Beloy, K.
2010-01-01
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10 -18 and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, Regis; Lester, Daniel; Meheust, Yves; Le Borgne, Tanguy
2017-11-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insights are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures. The authors acknowledge the support of ERC project ReactiveFronts (648377).
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2017-12-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.
Statistical mechanics view of quantum chromodynamics: Lattice gauge theory
International Nuclear Information System (INIS)
Kogut, J.B.
1984-01-01
Recent developments in lattice gauge theory are discussed from a statistial mechanics viewpoint. The basic physics problems of quantum chromodynamics (QCD) are reviewed for an audience of critical phenomena theorists. The idea of local gauge symmetry and color, the connection between statistical mechanics and field theory, asymptotic freedom and the continuum limit of lattice gauge theories, and the order parameters (confinement and chiral symmetry) of QCD are reviewed. Then recent developments in the field are discussed. These include the proof of confinement in the lattice theory, numerical evidence for confinement in the continuum limit of lattice gauge theory, and perturbative improvement programs for lattice actions. Next, we turn to the new challenges facing the subject. These include the need for a better understanding of the lattice Dirac equation and recent progress in the development of numerical methods for fermions (the pseudofermion stochastic algorithm and the microcanonical, molecular dynamics equation of motion approach). Finally, some of the applications of lattice gauge theory to QCD spectrum calculations and the thermodynamics of QCD will be discussed and a few remarks concerning future directions of the field will be made
Simulating Photons and Plasmons in a Three-dimensional Lattice
International Nuclear Information System (INIS)
Pletzer, A.; Shvets, G.
2002-01-01
Three-dimensional metallic photonic structures are studied using a newly developed mixed finite element-finite difference (FE-FD) code, Curly3d. The code solves the vector Helmholtz equation as an eigenvalue problem in the unit cell of a triply periodic lattice composed of conductors and/or dielectrics. The mixed FE-FD discretization scheme ensures rapid numerical convergence of the eigenvalue and allows the code to run at low resolution. Plasmon and photonic band structure calculations are presented
Glueball Spectrum and Matrix Elements on Anisotropic Lattices
Energy Technology Data Exchange (ETDEWEB)
Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang
2006-01-01
The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.
Lattice of quantum predictions
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Lattice Vibrations in Chlorobenzenes:
DEFF Research Database (Denmark)
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...
Diamond lattice Heisenberg antiferromagnet
Oitmaa, J.
2018-04-01
We investigate ground-state and high-temperature properties of the nearest-neighbour Heisenberg antiferromagnet on the three-dimensional diamond lattice, using series expansion methods. The ground-state energy and magnetization, as well as the magnon spectrum, are calculated and found to be in good agreement with first-order spin-wave theory, with a quantum renormalization factor of about 1.13. High-temperature series are derived for the free energy, and physical and staggered susceptibilities for spin S = 1/2, 1 and 3/2, and analysed to obtain the corresponding Curie and Néel temperatures.
Lattice cell burnup calculation
International Nuclear Information System (INIS)
Pop-Jordanov, J.
1977-01-01
Accurate burnup prediction is a key item for design and operation of a power reactor. It should supply information on isotopic changes at each point in the reactor core and the consequences of these changes on the reactivity, power distribution, kinetic characters, control rod patterns, fuel cycles and operating strategy. A basic stage in the burnup prediction is the lattice cell burnup calculation. This series of lectures attempts to give a review of the general principles and calculational methods developed and applied in this area of burnup physics
Crisafulli, M.; Martinelli, G.; Sachrajda, Christopher T.; Crisafulli, M; Gimenez, V; Martinelli, G; Sachrajda, C T
1994-01-01
We present the first lattice calculation of the B-meson binding energy \\labar and of the kinetic energy \\lambda_1/2 m_Q of the heavy-quark inside the pseudoscalar B-meson. In order to cancel the ambiguities due to the ultraviolet renormalons present in the operator matrix elements, this calculation has required the non-perturbative subtraction of the power divergences present in the Lagrangian operator \\energy and in the kinetic energy operator \\kkinetic. The non-perturbative renormalization of the relevant operators has been implemented by imposing suitable renormalization conditions on quark matrix elements in the Landau gauge.
International Nuclear Information System (INIS)
Vidovsky, I.; Kereszturi, A.
1991-11-01
The results of experiments and calculations on Gd lattices are presented, and a comparison of experimental and calculational data is given. This latter can be divided into four groups. The first belongs to the comparison of criticality parameters, the second group is related with the comparison of 2D distributions, the third one relates the comparison of intra-macrocell distributions, whereas the fourth group is devoted for the comparison of spectral parameters. For comparison, the computer code RFIT based on strict statistical criteria has been used. The calculated and measured results agree, in most cases, sufficiently. (R.P.) 11 refs.; 13 figs.; 9 tabs
SU(2)-breaking effects for meson masses in lattice QCD
International Nuclear Information System (INIS)
Bramon, A.; Casulleras, J.
1989-01-01
The quenched approximation of lattice QCD for Wilson fermions is used to calculate isospin breaking effects in the pseudoscalar- and vector-meson nonets. Mass differences inside the K and K * isodoublets and mixing phenomena for π 0 -η and ρ-ω are found to agree with the experimental data. A new and specific method of analysis is proposed and successfully tested. (orig.)
One-loop calculations in Supersymmetric Lattice QCD
Directory of Open Access Journals (Sweden)
Costa M.
2017-01-01
We present here results from dimensional regularization, relegating to a forthcoming publication [1] our results along with a more complete list of references. Part of the lattice study regards also the renormalization of quark bilinear operators which, unlike the nonsupersymmetric case, exhibit a rich pattern of operator mixing at the quantum level.
Infinitesimal diffeomorfisms on the lattice
CERN. Geneva
2015-01-01
The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...
Universality and scaling in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Michael, C.; Teper, M.; Oxford Univ.
1988-01-01
We calculate the lowest glueball masses and the string tension for both Manton's action and for Symanzik's tree-level improved action. We do so on large lattices and for small lattice spacings using techniques recently employed in an extensive investigation of the Wilson plaquette action. Comparing all these results we find that the ratios of the lightest masses are universal to a high degree of accuracy. In particular, we confirm that on large volumes the tensor glueball is heavier than the scalar glueball: m[2 + ] ≅ 1.5 m[0 + ]. We repeat these calculations for larger lattice spacings and find that the string tension follows 2-loop perturbation theory more closely in the case of these alternative actions than in the case of the standard plaquette action. Our attempt to repeat the analysis with Wilson's block-spin improved action foundered on the strong breakdown of positivity apparent in the calculated correlation functions. In all the cases which we were able to study the observed violations of scaling are in the same direction. This suggests that the causes of the scaling violations observed with Wilson's plaquette action are 'semi-universal'. It also weakens the implication of the observed universality for the question of how close we are to the continuum limit. (orig.)
Hatziconstantis, Christos; Kolympari, Tania
2016-01-01
The International Baccalaureate Diploma Programme for secondary education students requires the successful completion of the Creativity, Action, Service (CAS) component (more recently renamed Creativity, Activity, Service) which is based on the philosophy of experiential learning and Academic Service Learning. In this article, the technique of…
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Introduction to lattice gauge theories
International Nuclear Information System (INIS)
La Cock, P.
1988-03-01
A general introduction to Lattice Gauge Theory (LGT) is given. The theory is discussed from first principles to facilitate an understanding of the techniques used in LGT. These include lattice formalism, gauge invariance, fermions on the lattice, group theory and integration, strong coupling methods and mean field techniques. A review of quantum chromodynamics on the lattice at finite temperature and density is also given. Monte Carlo results and analytical methods are discussed. An attempt has been made to include most relevant data up to the end of 1987, and to update some earlier reviews existing on the subject. 224 refs., 33 figs., 14 tabs
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Lattice formulations of reggeon interactions
International Nuclear Information System (INIS)
Brower, R.C.; Ellis, J.; Savit, R.; Zinn-Justin, J.
1976-01-01
A class of lattice analogues to reggeon field theory is examined. First the transition from a continuum to a lattice field theory is discussed, emphasizing the necessity of a Wick rotation and the consideration of symmetry properties. Next the theory is transformed to a discrete system with two spins at each lattice site, and the problems of the triple-reggeon interaction and the reggeon energy gap are discussed. It is pointed out that transferring the theory from the continuum to a lattice necesarily introduces new relevant operators not normally present in reggeon field theory. (Auth.)
International Nuclear Information System (INIS)
Craig, Robert B.; Rothermich, Nancy E.
1991-01-01
In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations
MARKETING MIX THEORETICAL ASPECTS
Margarita Išoraitė
2016-01-01
Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...
Evidence for the existence of Gribov copies in Landau gauge lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)
1991-09-16
We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).
Convection-diffusion lattice Boltzmann scheme for irregular lattices
Sman, van der R.G.M.; Ernst, M.H.
2000-01-01
In this paper, a lattice Boltzmann (LB) scheme for convection diffusion on irregular lattices is presented, which is free of any interpolation or coarse graining step. The scheme is derived using the axioma that the velocity moments of the equilibrium distribution equal those of the
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Ito terms and the Maxwell field on the lattice
International Nuclear Information System (INIS)
D'Olivo, J.C.; Socolovsky, M.
1988-01-01
If lattice renormalization effects are ignored and the number of space-time dimensions is less than four, it is explicitly shown that the effective continuum action for the Maxwell field does not contain the so-called Ito terms. As is known, the qualitative reason for this result is the flat character of the integration measure
Optimization of renormalization group transformations in lattice gauge theory
International Nuclear Information System (INIS)
Lang, C.B.; Salmhofer, M.
1988-01-01
We discuss the dependence of the renormalization group flow on the choice of the renormalization group transformation (RGT). An optimal choice of the transformation's parameters should lead to a renormalized trajectory close to a few-parameter action. We apply a recently developed method to determine an optimal RGT to SU(2) lattice gauge theory and discuss the achieved improvement. (orig.)
Analysis and reconstruction of stochastic coupled map lattice models
International Nuclear Information System (INIS)
Coca, Daniel; Billings, Stephen A.
2003-01-01
The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived
Interactions of pion-like particles from lattice QCD
International Nuclear Information System (INIS)
Markum, H.; Pullirsch, R.; Rabitsch, K.; Fiebig, H.R.; Mihaly, A.
1999-01-01
An approximate local potential for the residual π + - π + interaction is computed. We use an O(a 2 ) improved action on a coarse 9 3 x 13 lattice with spacing a ∼ 0.4 fm. We attempt extrapolation of the π + - π + potential to the chiral limit. Refs. 6, figs. 2 (author)
Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-10-01
Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.
Lattice quantum chromodynamics
International Nuclear Information System (INIS)
Hassenfratz, P.
1983-01-01
It is generally accepted that relativistic field theory is relevant in high energy physics. It is also recognized that even in QCD, which is asymptotically free, the scope of perturbation theory is very limited. Despite the tremendous theoretical and experimental effort to study scaling, scaling violations, e + e - , lepton pair creation, jets, etc., the answer to the question whether and to what extent is QCD the theory of strong interactions is vague. At present-day energies it is difficult to disentangle perturbative and non-perturbative effects. The author states that QCD must be understood and that quantitative non-perturbative methods are needed. He states that the lattice formulation of field theories is a promising approach to meeting this need and discusses the formulation in detail in this paper
Lattice chiral symmetry and the Wess-Zumino model
International Nuclear Information System (INIS)
Fujikawa, Kazuo; Ishibashi, Masato
2002-01-01
A lattice regularization of the supersymmetric Wess-Zumino model is studied by using Ginsparg-Wilson operators. We recognize a certain conflict between the lattice chiral symmetry and the Majorana condition for Yukawa couplings, or in Weyl representation a conflict between the lattice chiral symmetry and Yukawa couplings. This conflict is also related, though not directly, to the fact that the kinetic (Kaehler) term and the superpotential term are clearly distinguished in the continuum Wess-Zumino model, whereas these two terms are mixed in the Ginsparg-Wilson operators. We illustrate a case where lattice chiral symmetry together with naive Bose-Fermi symmetry is imposed by preserving a SUSY-like symmetry in the free part of the Lagrangian; one-loop level non-renormalization of the superpotential is then maintained for finite lattice spacing, though the finite parts of wave function renormalization deviate from the supersymmetric value. All these properties hold for the general Ginsparg-Wilson algebra independently of the detailed construction of lattice Dirac operators
Homogenization theory in reactor lattices
International Nuclear Information System (INIS)
Benoist, P.
1986-02-01
The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr
Lattices, supersymmetry and Kaehler fermions
International Nuclear Information System (INIS)
Scott, D.M.
1984-01-01
It is shown that a graded extension of the space group of a (generalised) simple cubic lattice exists in any space dimension, D. The fermionic variables which arise admit a Kaehlerian interpretation. Each graded space group is a subgroup of a graded extension of the appropriate Euclidean group, E(D). The relevance of this to the construction of lattice theories is discussed. (author)
Lattice polytopes in coding theory
Directory of Open Access Journals (Sweden)
Ivan Soprunov
2015-05-01
Full Text Available In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also include a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.
Conformal field theories, representations and lattice constructions
International Nuclear Information System (INIS)
Dolan, L.; Montague, P.
1996-01-01
An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z 2 -twisted theories, H(Λ) and H(Λ) respectively, which may be constructed from a suitable even Euclidean lattice Λ. Similarly, one may construct lattices Λ C and Lambda C by analogous constructions from a doubly-even binary code C. In the case when C is self-dual, the corresponding lattices are also. Similarly, H(Λ) and H(Λ) are self-dual if and only if Λ is. We show that H(Λ C ) has a natural triality structure, which induces an isomorphism H(Λ C )≡H(Λ C ) and also a triality structure on H(Λ C ). For C the Golay code, Λ C is the Leech lattice, and the triality on H(Λ C ) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ) and H(Λ) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code. (orig.). With 8 figs., 2 tabs
Computing the writhe on lattices
International Nuclear Information System (INIS)
Laing, C; Sumners, D W
2006-01-01
Given a polygonal closed curve on a lattice or space group, we describe a method for computing the writhe of the curve as the average of weighted projected writhing numbers of the polygon in a few directions. These directions are determined by the lattice geometry, the weights are determined by areas of regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix to the polygonal curve. We give a new formula for the writhe of polygons on the face centred cubic lattice and prove that the writhe of polygons on the body centred cubic lattice, the hexagonal simple lattice, and the diamond space group is always a rational number, and discuss applications to ring polymers
Dynamics of surface solitons at the edge of chirped optical lattices
International Nuclear Information System (INIS)
Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.
2007-01-01
We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it
Nucleon structure functions from lattice operator product expansion
Energy Technology Data Exchange (ETDEWEB)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2017-03-15
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Lattice algebra approach to multispectral analysis of ancient documents.
Valdiviezo-N, Juan C; Urcid, Gonzalo
2013-02-01
This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.
Nucleon structure functions from lattice operator product expansion
International Nuclear Information System (INIS)
Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.
2017-03-01
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Nucleon Structure Functions from Operator Product Expansion on the Lattice.
Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M
2017-06-16
Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.
Optimised Dirac operators on the lattice. Construction, properties and applications
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2006-11-15
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)
Optimised Dirac operators on the lattice: construction, properties and applications
International Nuclear Information System (INIS)
Bietenholz, Wolfgang
2006-12-01
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)
Optimised Dirac operators on the lattice. Construction, properties and applications
International Nuclear Information System (INIS)
Bietenholz, W.; Deutsches Elektronen-Synchrotron
2006-11-01
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the epsilon-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (orig.)
Tadpole-improved SU(2) lattice gauge theory
Shakespeare, Norman H.; Trottier, Howard D.
1999-01-01
A comprehensive analysis of tadpole-improved SU(2) lattice gauge theory is made. Simulations are done on isotropic and anisotropic lattices, with and without improvement. Two tadpole renormalization schemes are employed, one using average plaquettes, the other using mean links in the Landau gauge. Simulations are done with spatial lattice spacings as in the range of about 0.1-0.4 fm. Results are presented for the static quark potential, the renormalized lattice anisotropy at/as (where at is the ``temporal'' lattice spacing), and for the scalar and tensor glueball masses. Tadpole improvement significantly reduces discretization errors in the static quark potential and in the scalar glueball mass, and results in very little renormalization of the bare anisotropy that is input to the action. We also find that tadpole improvement using mean links in the Landau gauge results in smaller discretization errors in the scalar glueball mass (as well as in the static quark potential), compared to when average plaquettes are used. The possibility is also raised that further improvement in the scalar glueball mass may result when the coefficients of the operators which correct for discretization errors in the action are computed beyond the tree level.
Majorana and Majorana-Weyl fermions in lattice gauge theory
International Nuclear Information System (INIS)
Inagaki, Teruaki; Suzuki, Hiroshi
2004-01-01
In various dimensional Euclidean lattice gauge theories, we examine a compatibility of the Majorana decomposition and the charge conjugation property of lattice Dirac operators. In 8n and 1 + 8n dimensions, we find a difficulty to decompose a classical lattice action of the Dirac fermion into a system of the Majorana fermion and thus to obtain a factorized form of the Dirac determinant. Similarly, in 2 + 8n dimensions, there is a difficulty to decompose a classical lattice action of the Weyl fermion into a system of the Majorana-Weyl fermion and thus to obtain a factorized form of the Weyl determinant. Prescriptions based on the overlap formalism do not remove these difficulties. We argue that these difficulties are reflections of the global gauge anomaly associated to the real Weyl fermion in 8n dimensions. For this reason (besides other well-known reasons), a lattice formulation of the N = 1 super Yang-Mills theory in these dimensions is expected to be extremely difficult to find. (author)
Optimised Dirac operators on the lattice: construction, properties and applications
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, Wolfgang [Humbolt-Universitaet zu Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing (NIC)
2006-12-15
We review a number of topics related to block variable renormalisation group transformations of quantum fields on the lattice, and to the emerging perfect lattice actions. We first illustrate this procedure by considering scalar fields. Then we proceed to lattice fermions, where we discuss perfect actions for free fields, for the Gross-Neveu model and for a supersymmetric spin model. We also consider the extension to perfect lattice perturbation theory, in particular regarding the axial anomaly and the quark gluon vertex function. Next we deal with properties and applications of truncated perfect fermions, and their chiral correction by means of the overlap formula. This yields a formulation of lattice fermions, which combines exact chiral symmetry with an optimisation of further essential properties. We summarise simulation results for these so-called overlap-hypercube fermions in the two-flavour Schwinger model and in quenched QCD. In the latter framework we establish a link to Chiral Perturbation Theory, both, in the p-regime and in the e-regime. In particular we present an evaluation of the leading Low Energy Constants of the chiral Lagrangian - the chiral condensate and the pion decay constant - from QCD simulations with extremely light quarks. (author)
The strange and light quark contributions to the nucleon mass from lattice QCD
International Nuclear Information System (INIS)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf
2011-12-01
We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m q left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n F =2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing ∼0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon σ-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values σ πN =(38±12) MeV at the physical point and f T s =σ s /m N =0.012(14) +10 -3 for the strangeness contribution at our larger than physical sea quark mass. (orig.)
The strange and light quark contributions to the nucleon mass from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m{sub q} left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n{sub F}=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing {approx}0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon {sigma}-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values {sigma}{sub {pi}}{sub N}=(38{+-}12) MeV at the physical point and f{sub T{sub s}}={sigma}{sub s}/m{sub N}=0.012(14){sup +10}{sub -3} for the strangeness contribution at our larger than physical sea quark mass. (orig.)
Lattice gas cellular automata and lattice Boltzmann models an introduction
Wolf-Gladrow, Dieter A
2000-01-01
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
DEFF Research Database (Denmark)
Swantes, Melody
2011-01-01
In the United States, the agricultural industry is dependent on men and women from Mexico who migrate throughout the country to participate in the care and harvest of crops. They often migrate independently of their families and leave loved ones behind. Separation from families and difficult...... are not able to meet the needs in culturally sensitive ways presented by this population. The purpose of this study was to examine the effects of music therapy on Mexican farmworkers’ levels of depression, anxiety, and social isolation. In addition, this study sought to examine how the migrant farmworkers used...... music-making sessions between music therapy sessions as a coping skill to further improve their overall mental health. Finally, this study sought to examine how migrant farmworkers engaged in the research process and how they valued their relationship with the researcher. This study utilized a mixed...
Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model
International Nuclear Information System (INIS)
Catterall, Simon; Karamov, Sergey
2002-01-01
We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing
Irreversible stochastic processes on lattices
International Nuclear Information System (INIS)
Nord, R.S.
1986-01-01
Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed
Toward lattice fractional vector calculus
International Nuclear Information System (INIS)
Tarasov, Vasily E
2014-01-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)
Introduction to lattice gauge theory
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off ≅ 1/α, where α is the lattice spacing. The continuum (physical) behavior is recovered in the limit α → 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics. This will be the emphasis of the first lecture. In the second lecture, the author reviews the essential ingredients of formulating QCD on the lattice and discusses scaling and the continuum limit. In the last lecture the author summarizes the status of some of the main results. He also mentions the bottlenecks and possible directions for research. 88 refs
Lattice vortices in the two-dimensional Abelian Higgs model
International Nuclear Information System (INIS)
Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.
1986-01-01
Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations
Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test
International Nuclear Information System (INIS)
Aoki, S.; Levien, R.B.
1995-01-01
We test perturbatively a recent scheme for implementing chiral fermions on the lattice, proposed by Kaplan and modified by Narayanan and Neuberger, using as our testing ground the chiral Schwinger model. The scheme is found to reproduce the desired form of the effective action, whose real part is gauge invariant and whose imaginary part gives the correct anomaly in the continuum limit, once technical problems relating to the necesary infinite extent of the extra dimension are properly addressed. The indications from this study are that the Kaplan-Narayanan-Neuberger scheme has a good chance at being a correct lattice regularization of chiral gauge theories
Optical-lattice Hamiltonians for relativistic quantum electrodynamics
International Nuclear Information System (INIS)
Kapit, Eliot; Mueller, Erich
2011-01-01
We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in 1+1, 2+1, and 3+1 dimensions whose low-energy effective action reduces to that of photons coupled to Dirac fermions of the corresponding dimensionality. We give special attention to (2+1)-dimensional quantum electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and Chern-Simons physics, could be observed experimentally.
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Localized structures in Kagome lattices
Energy Technology Data Exchange (ETDEWEB)
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Lattice QCD: Status and Prospect
International Nuclear Information System (INIS)
Ukawa, Akira
2006-01-01
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Energy Technology Data Exchange (ETDEWEB)
NONE
2010-01-15
The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.
Tallarita, Gianni; Peterson, Adam
2018-04-01
We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Harmonic oscillator on a lattice
International Nuclear Information System (INIS)
Ader, J.P.; Bonnier, B.; Hontebeyrie, M.; Meyers, C.
1983-01-01
The continuum limit of the ground state energy for the harmonic oscillator with discrete time is derived for all possible choices of the lattice derivative. The occurrence of unphysical values is shown to arise whenever the lattice laplacian is not strictly positive on its Brillouin zone. These undesirable limits can either be finite and arbitrary (multiple spectrum) or infinite (overlapping sublattices with multiple spectrum). (orig.)
Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.
2000-01-01
The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also ...
Racetrack lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Wienands, U.; Craddock, M.K.; Rees, G.H.
1989-03-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. In addition the new lattices have fewer depolarizing resonances than the old circular lattices
International Nuclear Information System (INIS)
Jevicki, A.; Ninomiya, M.
1985-01-01
We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)
International Nuclear Information System (INIS)
Smith, G.S.
1985-01-01
The lattice dynamics of the fcc α-phase of cerium metal was investigated using inelastic neutron scattering techniques. This phase of cerium is an example of a mixed-valent system. Various physical properties of α-Ce suggest that there may be coupling between the phonons and the f d transitions associated with the mixed valence phenomenon. These measurements of the dispersion curves provide important information about the electron-phonon interaction in this phase of cerium. These studies were not performed in the past because single crystals of α-Ce were not available. We were able to prepare a single α-Ce crystal using a high temperature, high pressure technique. The sample was of sufficient size for inelastic neutron scattering experiments, but the measurements were complicated because of the large mosaic spread (approx.7.0 0 ) of the crystal. It was possible, however, to obtain a set of dispersion curves along the [00zeta], [zeta,zeta,0], and [zeta,zeta,zeta] symmetry directions. Comparison of the dispersion curves with those of fcc γ-Ce indicate that the branches exhibit anomalous features that may be related to the mixed-valence effects
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
International Nuclear Information System (INIS)
Yamaguchi, A.; Sugamoto, A.
2000-01-01
Applying Genetic Algorithm for the Lattice Gauge Theory is formed to be an effective method to minimize the action of gauge field on a lattice. In 4 dimensions, the critical point and the Wilson loop behaviour of SU(2) lattice gauge theory as well as the phase transition of U(1) theory have been studied. The proper coding methodi has been developed in order to avoid the increase of necessary memory and the overload of calculation for Genetic Algorithm. How hichhikers toward equilibrium appear against kidnappers is clarified
Microscopic theory for coupled atomistic magnetization and lattice dynamics
Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.
2017-12-01
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for
Embedded Lattice and Properties of Gram Matrix
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Influence of “whirlwind” mixing grids on the critical power of WWER fuel assembly
International Nuclear Information System (INIS)
Selivanov, Yu.F.; Pomet'ko, R.S.; Volkov, S.E.
2014-01-01
The problem of optimizing the number and placement of lattices in different types assemblies is discussed. The effect of the amount of mixing lattices and their locations in assemblies on the conditions of occurrence of boiling crisis in the fuel assembly on its critical power (power of assembly in case of boiling crisis) is studied. Experiments were carried out with the use of freon as a coolant. It is recommended simultaneous use in the assembly of lattices of “whirlwind” type, well-intensifying heat exchange, and cell lattices of “pass” type (or lattices with deflectors) affecting on moving flow, provided the optimal location of lattices in the assembly [ru
Ghost circles in lattice Aubry-Mather theory
Mramor, Blaz; Rink, Bob
Monotone lattice recurrence relations such as the Frenkel-Kontorova lattice, arise in Hamiltonian lattice mechanics, as models for ferromagnetism and as discretization of elliptic PDEs. Mathematically, they are a multi-dimensional counterpart of monotone twist maps. Such recurrence relations often admit a variational structure, so that the solutions x:Z→R are the stationary points of a formal action function W(x). Given any rotation vector ω∈R, classical Aubry-Mather theory establishes the existence of a large collection of solutions of ∇W(x)=0 of rotation vector ω. For irrational ω, this is the well-known Aubry-Mather set. It consists of global minimizers and it may have gaps. In this paper, we study the parabolic gradient flow {dx}/{dt}=-∇W(x) and we will prove that every Aubry-Mather set can be interpolated by a continuous gradient-flow invariant family, the so-called 'ghost circle'. The existence of these ghost circles is known in dimension d=1, for rational rotation vectors and Morse action functions. The main technical result of this paper is therefore a compactness theorem for lattice ghost circles, based on a parabolic Harnack inequality for the gradient flow. This implies the existence of lattice ghost circles of arbitrary rotation vectors and for arbitrary actions. As a consequence, we can give a simple proof of the fact that when an Aubry-Mather set has a gap, then this gap must be filled with minimizers, or contain a non-minimizing solution.
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.
2018-04-01
Light-induced structural dynamics plays a vital role in the physical properties, device performance, and stability of hybrid perovskite–based optoelectronic devices. We report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in situ structural and device characterizations reveal that light-induced lattice expansion benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5 to 20.5%. The lattice expansion leads to the relaxation of local lattice strain, which lowers the energetic barriers at the perovskite-contact interfaces, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion did not compromise the stability of these high-efficiency photovoltaic devices under continuous operation at full-spectrum 1-sun (100 milliwatts per square centimeter) illumination for more than 1500 hours.
Review of lattice results concerning low energy particle physics
DEFF Research Database (Denmark)
Aoki, Sinya; Aoki, Yasumichi; Bernard, Claude
2014-01-01
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in semileptonic K -> pi transition...... Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, for this review, we focus on D- and B-meson decay constants, form factors, and mixing parameters...
Green-Schwarz superstring on the lattice
Energy Technology Data Exchange (ETDEWEB)
Bianchi, L. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Bianchi, M.S. [Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom); Forini, V.; Leder, B.; Vescovi, E. [Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)
2016-07-04
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
Green-Schwarz superstring on the lattice
International Nuclear Information System (INIS)
Bianchi, L.; Bianchi, M.S.; Forini, V.; Leder, B.; Vescovi, E.
2016-01-01
We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry of the model. We compare our results with the expected behavior at various values of g=((√λ)/(4π)). For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in http://arxiv.org/abs/1601.04670.
Lattice gauge theory in the microcanonical ensemble
International Nuclear Information System (INIS)
Callaway, D.J.E.; Rahman, A.
1983-01-01
The microcanonical-ensemble formulation of lattice gauge theory proposed recently is examined in detail. Expectation values in this new ensemble are determined by solving a large set of coupled ordinary differential equations, after the fashion of a molecular dynamics simulation. Following a brief review of the microcanonical ensemble, calculations are performed for the gauge groups U(1), SU(2), and SU(3). The results are compared and contrasted with standard methods of computation. Several advantages of the new formalism are noted. For example, no random numbers are required to update the system. Also, this update is performed in a simultaneous fashion. Thus the microcanonical method presumably adapts well to parallel processing techniques, especially when the p action is highly nonlocal (such as when fermions are included)
Lattice studies of quark spectra and supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Schierenberg, Sebastian
2012-06-24
In the first part of this work, we study quark spectra at either non-zero temperature or chemical potential. In the first case, we find a possible explanation for the Anderson localization that is observed in the spectrum. We introduce a random matrix model that has the same localization and shares other important properties of the QCD Dirac operator, too. In the case of a non-vanishing chemical potential, we show that the eigenvalue spacing distributions of the Dirac operator are described by simple random matrix models. In the second part of this work, we study supersymmetry on the lattice. We summarize our progress with the blocking approach and show possible problems. Furthermore, we construct a lattice action which is improved with respect to supersymmetry and study this action numerically.
Lattice studies of quark spectra and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Schierenberg, Sebastian
2012-01-01
In the first part of this work, we study quark spectra at either non-zero temperature or chemical potential. In the first case, we find a possible explanation for the Anderson localization that is observed in the spectrum. We introduce a random matrix model that has the same localization and shares other important properties of the QCD Dirac operator, too. In the case of a non-vanishing chemical potential, we show that the eigenvalue spacing distributions of the Dirac operator are described by simple random matrix models. In the second part of this work, we study supersymmetry on the lattice. We summarize our progress with the blocking approach and show possible problems. Furthermore, we construct a lattice action which is improved with respect to supersymmetry and study this action numerically.
Finite-lattice-spacing corrections to masses and g factors on a lattice
International Nuclear Information System (INIS)
Roskies, R.; Wu, J.C.
1986-01-01
We suggest an alternative method for extracting masses and g factors from lattice calculations. Our method takes account of more of the infrared and ultraviolet lattice effects. It leads to more reasonable results in simulations of QED on a lattice
Quantum lattice model solver HΦ
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Frustrated lattices of Ising chains
International Nuclear Information System (INIS)
Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A
2012-01-01
The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Monte Carlo simulation of Su(2) lattice gauge theory with internal quark loops
International Nuclear Information System (INIS)
Azcoiti, V.; Nakamura, A.
1982-01-01
Dynamical effects of quark loops in lattice gauge theory with icosahedral group are studied. The standard Wilson action is employed and the fermionic part by a discretize pseudo fermionic method is calculated. The masses of π, rho, ω are computed and the average value of an effective fermionic action is evaluated
A Dirac-Kaehler approach to the two dimensional Wess-Zumino N=2 model on the lattice
International Nuclear Information System (INIS)
Zimerman, A.H.; Aratyn, H.
1983-08-01
We introduce a Dirac-Kaehler model for the two dimensional Wess-Zumino N=2 Lagrangean. We can show that in the model, when we go to the euclidean space-time lattive, we have no energy doubling, the action has no lattice surface terms (contrary to other authors), while the Hamiltonians (when time is continuous) present lattice surface terms. (orig.)
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
Hadron spectrum in quenched lattice QCD and quark potential models
International Nuclear Information System (INIS)
Iwasaki, Y.; Yoshie, T.
1989-01-01
We show that the quenched lattice QCD gives a hadron spectrum which remarkably agrees with that of quark potential models for quark mass m q ≥ m strange , even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. (orig.)
Lattice QCD at finite density via a new canonical approach
International Nuclear Information System (INIS)
Alexandru, Andrei; Horvath, Ivan; Liu, K.-F.; Faber, Manfried
2005-01-01
We carry out a finite density calculation based on a canonical approach which is designed to address the overlap problem. Two degenerate flavor simulations are performed using Wilson gauge action and Wilson fermions on 4 4 lattices, at temperatures close to the critical temperature T c ≅170 MeV and large densities (5 to 20 times nuclear matter density). In this region, we find that the algorithm works well. We compare our results with those from other approaches
Decays of mesons with charm quarks on the lattice
International Nuclear Information System (INIS)
Ali Khan, A.; Braun, V.; Burch, T.; Goeckeler, M.; Schaefer, A.; Schierholz, G.
2007-10-01
We investigate mesons containing charm quarks on fine lattices with a -1 ∝ 5 GeV. The quenched approximation is employed using theWilson gauge action at β = 6.6 and nonperturbatively O(a) improvedWilson quarks. We present results for decay constants using various interpolating fields and give preliminary results for form factors of semileptonic decays of D s mesons to light pseudoscalar mesons. (orig.)
Nanoscale Mixing of Soft Solids
International Nuclear Information System (INIS)
Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.
2011-01-01
Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C 30 H 62 ) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ( 1 H and 2 H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.
Kondo length in bosonic lattices
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
Supersymmetry on the noncommutative lattice
International Nuclear Information System (INIS)
Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko
2003-01-01
Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)
Machines for lattice gauge theory
International Nuclear Information System (INIS)
Mackenzie, P.B.
1989-05-01
The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig
Graphene on graphene antidot lattices
DEFF Research Database (Denmark)
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Unconventional superconductivity in honeycomb lattice
Directory of Open Access Journals (Sweden)
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
[Lattice degeneration of the retina].
Boĭko, E V; Suetov, A A; Mal'tsev, D S
2014-01-01
Lattice degeneration of the retina is a clinically important type of peripheral retinal dystrophies due to its participation in the pathogenesis of rhegmatogenous retinal detachment. In spite of extensive epidemiological, morphological, and clinical data, the question on causes of this particular type of retinal dystrophies currently remains debatable. Existing hypotheses on pathogenesis of retinal structural changes in lattice degeneration explain it to a certain extent. In clinical ophthalmology it is necessary to pay close attention to this kind of degenerations and distinguish between cases requiring preventive treatment and those requiring monitoring.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Energy Technology Data Exchange (ETDEWEB)
Blossier, B
2006-06-15
We have studied some phenomenological aspects of the B meson physics by using lattice QCD, which is a non perturbative method (based on the first principles of Quantum Field Theory) of computing Green functions of the theory. Pionic couplings g{sub 1} and g{sub 2}, parameterizing the effective chiral Lagrangian which describes interactions between heavy-light mesons and soft pions, have been computed beyond the quenched approximation (at N{sub f} = 2). We have renormalized the operator q-bar{gamma}{sub {mu}}{gamma}{sup 5}q non perturbatively by using chiral Ward identities. We obtain g{sub 1} = 0.4/0.6 and g{sub 2} = -0.1/-0.3. We have estimated from an un-quenched simulation (at N{sub f} = 2) the strange quark mass: the non perturbative renormalisation scheme RI-MOM has been applied. After the matching in the MS scheme the result is m{sub s}(2 GeV) = 101 {+-} 8(-0,+25) MeV. We have proposed a method to calculate on the lattice the Heavy Quark Effective Theory form factors of the semileptonic transitions B {yields} D{sup **} at zero recoil. The renormalisation constant of the operator h-bar{gamma}{sub i}{gamma}{sup 5}D{sub j}h has been computed at one-loop order of the perturbation theory. We obtain {tau}{sub 1/2}(1) = 0.3/0.5 and {tau}{sub 3/2}(1) 0.5/0.7. Eventually the bag parameter B{sub B{sub s}} associated the B{sub s} - B{sub s}-bar mixing amplitude in the Standard Model has been estimated in the quenched approximation by using for the strange quark an action which verifies the chiral symmetry at finite lattice spacing a. Thus systematic errors are significantly reduced in the renormalisation procedure because the spurious mixing of the four-fermion operator h-bar{gamma}{sub {mu}}{sub L}qh-bar{gamma}{sub {mu}}{sub L}q with four-fermion operators of different chirality is absent. The result is B{sub B{sub s}} = 0.92(3). (author)
Representation theory of lattice current algebras
International Nuclear Information System (INIS)
Alekseev, A.Yu.; Eidgenoessische Technische Hochschule, Zurich; Faddeev, L.D.; Froehlich, L.D.; Schomerus, V.; Kyoto Univ.
1996-04-01
Lattice current algebras were introduced as a regularization of the left-and right moving degrees of freedom in the WZNW model. They provide examples of lattice theories with a local quantum symmetry U q (G). Their representation theory is studied in detail. In particular, we construct all irreducible representations along with a lattice analogue of the fusion product for representations of the lattice current algebra. It is shown that for an arbitrary number of lattice sites, the representation categories of the lattice current algebras agree with their continuum counterparts. (orig.)
Computers for lattice field theories
International Nuclear Information System (INIS)
Iwasaki, Y.
1994-01-01
Parallel computers dedicated to lattice field theories are reviewed with emphasis on the three recent projects, the Teraflops project in the US, the CP-PACS project in Japan and the 0.5-Teraflops project in the US. Some new commercial parallel computers are also discussed. Recent development of semiconductor technologies is briefly surveyed in relation to possible approaches toward Teraflops computers. (orig.)
Synthesis of spatially variant lattices.
Rumpf, Raymond C; Pazos, Javier
2012-07-02
It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.
From lattice gases to polymers
Frenkel, D.
1990-01-01
The modification of a technique that was developed to study time correlations in lattice-gas cellular automata to facilitate the numerical simulation of chain molecules is described. As an example, the calculation of the excess chemical potential of an ideal polymer in a dense colloidal
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Nuclear physics on the lattice?
International Nuclear Information System (INIS)
Koonin, S.E.
1985-01-01
The goal of the paper is to try to adapt lattice gauge theory to build in some biases in order for being applicable to nuclear physics. In so doing the calculations are made more precise, and the author can address questions like the size of the nucleon, the nucleon-nucleon potential, the modifications of the nucleon in the nuclear medium, etc. (Auth.)
Lattice dynamics of lithium oxide
Indian Academy of Sciences (India)
Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...
Lattice fields and strong interactions
International Nuclear Information System (INIS)
Creutz, M.
1989-06-01
I review the lattice formulation of gauge theories and the use of numerical methods to investigate nonperturbative phenomena. These methods are directly applicable to studying hadronic matter at high temperatures. Considerable recent progress has been made in numerical algorithms for including dynamical fermions in such calculations. Dealing with a nonvanishing baryon density adds new unsolved challenges. 33 refs
Borgs, C.; Chayes, J.T.; Hofstad, van der R.W.; Slade, G.
1999-01-01
We introduce a mean-field model of lattice trees based on embeddings into d of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade [9], and provides an
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to .... The Monte Carlo technique to evaluate C(t), or the expectation value of any other observable ... x }occurs with a probability proportional to. 890.
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
International Nuclear Information System (INIS)
Itzykson, C.
1983-10-01
We review the formulation of field theory and statistical mechanics on a Poissonian random lattice. Topics discussed include random geometry, the construction of field equations for arbitrary spin, the free field spectrum and the question of localization illustrated in the one dimensional case
Development of an object oriented lattice QCD code ''Bridge++''
International Nuclear Information System (INIS)
Ueda, S; Aoki, S; Aoyama, T; Kanaya, K; Taniguchi, Y; Matsufuru, H; Motoki, S; Namekawa, Y; Nemura, H; Ukita, N
2014-01-01
We are developing a new lattice QCD code set ''Bridge++'' aiming at extensible, readable, and portable workbench for QCD simulations, while keeping a high performance at the same time. Bridge++ covers conventional lattice actions and numerical algorithms. The code set is constructed in C++ with an object oriented programming. In this paper we describe fundamental ingredients of the code and the current status of development
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
International Nuclear Information System (INIS)
Moriarty, K.J.M.; Blackshaw, J.E.
1983-01-01
The computer program calculates the average action per plaquette for SU(6)/Z 6 lattice gauge theory. By considering quantum field theory on a space-time lattice, the ultraviolet divergences of the theory are regulated through the finite lattice spacing. The continuum theory results can be obtained by a renormalization group procedure. Making use of the FPS Mathematics Library (MATHLIB), we are able to generate an efficient code for the Monte Carlo algorithm for lattice gauge theory calculations which compares favourably with the performance of the CDC 7600. (orig.)
Topological charge and cooling scales in pure SU(2) lattice gauge theory
Berg, Bernd A.; Clarke, David A.
2018-01-01
Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β=2.928, size 604, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1/4/Tc=0.643(12), where Tc is the SU(2) deconfinement temperature. Differences between ...
Supersymmetry on a euclidean spacetime lattice 1. A target theory with four supercharges
International Nuclear Information System (INIS)
Cohen, Andrew G.; Kaplan, David B.; Katz, Emanuel; Uensal, Mithat
2003-01-01
We formulate a euclidean spacetime lattice whose continuum limit is (2,2) supersymmetric Yang-Mills theory in two dimensions, a theory which possesses four supercharges and an anomalous global chiral symmetry. The lattice action respects one exact supersymmetry, which allows the target theory to emerge in the continuum limit without fine-tuning. Our method exploits an orbifold construction described previously for spatial lattices in Minkowski space, and can be generalized to more complicated theories with additional supersymmetry and more spacetime dimensions. (author)
O (a) improvement of 2D N = (2 , 2) lattice SYM theory
Hanada, Masanori; Kadoh, Daisuke; Matsuura, So; Sugino, Fumihiko
2018-04-01
We perform a tree-level O (a) improvement of two-dimensional N = (2 , 2) supersymmetric Yang-Mills theory on the lattice, motivated by the fast convergence in numerical simulations. The improvement respects an exact supersymmetry Q which is needed for obtaining the correct continuum limit without a parameter fine tuning. The improved lattice action is given within a milder locality condition in which the interactions are decaying as the exponential of the distance on the lattice. We also prove that the path-integral measure is invariant under the improved Q-transformation.
International Nuclear Information System (INIS)
Grossman, Y.
1997-10-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed
Statistical hydrodynamics of lattice-gas automata
Grosfils, Patrick; Boon, Jean-Pierre; Brito López, Ricardo; Ernst, M. H.
1993-01-01
We investigate the space and time behavior of spontaneous thermohydrodynamic fluctuations in a simple fluid modeled by a lattice-gas automaton and develop the statistical-mechanical theory of thermal lattice gases to compute the dynamical structure factor, i.e., the power spectrum of the density correlation function. A comparative analysis of the theoretical predictions with our lattice gas simulations is presented. The main results are (i) the spectral function of the lattice-gas fluctuation...
Review of lattice results concerning low-energy particle physics
International Nuclear Information System (INIS)
Aoki, S.; Aoki, Y.; Brookhaven National Laboratory, Upton, NY; Becirevic, D.
2016-07-01
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f_+(0), arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio f_K/f_π and its consequences for the CKM matrix elements V_u_s and V_u_d. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)_L x SU(2)_R and SU(3)_L x SU(3)_R Chiral Perturbation Theory. We review the determination of the B_K parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m_c and m_b (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α_s.
Review of lattice results concerning low-energy particle physics
Energy Technology Data Exchange (ETDEWEB)
Aoki, S. [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Necco, S.; Wenger, U. [Institut fuer theoretische Physik, Universitaet Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Duerr, S. [Bergische Universitaet Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Juelich (Germany); El-Khadra, A.X. [University of Illinois, Department of Physics, Urbana, IL (United States); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Osaka (Japan); Horsley, R. [University of Edinburgh, School of Physics, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Kaneko, T. [High Energy Accelerator Research Organization (KEK), Ibaraki (Japan); Laiho, J. [University of Glasgow, SUPA, Department of Physics and Astronomy, Glasgow (United Kingdom); Syracuse University, Department of Physics, Syracuse, New York (United States); Lellouch, L. [Aix-Marseille Universite, CNRS, CPT, UMR 7332, Marseille (France); Universite de Toulon, CNRS, CPT, UMR 7332, La Garde (France); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); Sezione di Roma Tre, INFN, Rome (Italy); Lunghi, E. [Indiana University, Physics Department, Bloomington, IN (United States); Pena, C. [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC and Departamento de Fisica Teorica, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [Sezione di Roma Tre, INFN, Rome (Italy); Sommer, R. [NIC rate at DESY, Zeuthen (Germany); Water, R.S.V. de [Fermi National Accelerator Laboratory, Batavia, IL (United States); Vladikas, A. [Universita di Roma Tor Vergata, INFN, Sezione di Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: FLAG Working Group
2014-09-15
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the lightquark masses, the form factor f{sub +}(0), arising in semileptonic K → π transition at zero momentum transfer, as well as the decay-constant ratio f{sub K}/f{sub π} of decay constants and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} andSU(3)L{sub L} x SU(3){sub R} Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D- and B-meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Gauge theories on a small lattice
International Nuclear Information System (INIS)
Robson, D.; Webber, D.M.
1980-01-01
We present exact solutions to U(1), SU(2), and SU(3) lattice gauge theories on a Kogut-Susskind lattice consisting of a single plaquette. We demonstrate precise equivalence between the U(1) theory and the harmonic oscillator on an infinite one-dimensional lattice, and between the SU(N) theory and an N-fermion Schroedinger equation. (orig.)
Spatiotemporal complexity in coupled map lattices
International Nuclear Information System (INIS)
Kaneko, Kunihiko
1986-01-01
Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)
Clar sextets in square graphene antidot lattices
DEFF Research Database (Denmark)
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Spatial classification with fuzzy lattice reasoning
Mavridis, Constantinos; Athanasiadis, I.N.
2017-01-01
This work extends the Fuzzy Lattice Reasoning (FLR) Classifier to manage spatial attributes, and spatial relationships. Specifically, we concentrate on spatial entities, as countries, cities, or states. Lattice Theory requires the elements of a Lattice to be partially ordered. To match such
Nucleon structure by Lattice QCD computations with twisted mass fermions
International Nuclear Information System (INIS)
Harraud, P.A.
2010-11-01
Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)
SU(N) chiral gauge theories on the lattice
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2004-01-01
We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory
Finite size effects in lattice QCD with dynamical Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Orth, B.
2004-06-01
Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Entropy favours open colloidal lattices
Mao, Xiaoming; Chen, Qian; Granick, Steve
2013-03-01
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.
Electroweak interactions on the lattice
International Nuclear Information System (INIS)
Kieu, T.D.
1994-07-01
It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig
Entanglement scaling in lattice systems
Energy Technology Data Exchange (ETDEWEB)
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Transitionless lattices for LAMPF II
International Nuclear Information System (INIS)
Franczak, B.J.
1984-10-01
Some techniques are described for the design of synchrotron lattices that have zero dispersion in the straight sections and/or imaginary transition energy (negative momentum-compaction factor) but no excessive amplitudes of the dispersion function. Included as an application is a single-stage synchrotron, with variable optics, that has different ion-optical properties at injection and extraction but requires a complex way of programming the quadrupoles. In addition, a two-stage facility consisting of a 45-GeV synchrotron of 1100-m circumference and a 9-GeV booster of half that size is presented. As alternates to these separated-function lattices, some combined-function modules are given that can be used to construct a synchrotron with similar properties
Graphene antidot lattice transport measurements
DEFF Research Database (Denmark)
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
We investigate graphene devices patterned with a narrow band of holes perpendicular to the current flow, a few-row graphene antidot lattice (FR-GAL). Theoretical reports suggest that a FR-GAL can have a bandgap with a relatively small reduction of the transmission compared to what is typical...... for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Cellular automata in cytoskeletal lattices
Energy Technology Data Exchange (ETDEWEB)
Smith, S A; Watt, R C; Hameroff, S R
1984-01-01
Cellular automata (CA) activities could mediate biological regulation and information processing via nonlinear electrodynamic effects in cytoskeletal lattice arrays. Frohlich coherent oscillations and other nonlinear mechanisms may effect discrete 10/sup -10/ to 10/sup -11/ s interval events which result in dynamic patterns in biolattices such as cylindrical protein polymers: microtubules (MT). Structural geometry and electrostatic forces of MT subunit dipole oscillations suggest neighbor rules among the hexagonally packed protein subunits. Computer simulations using these suggested rules and MT structural geometry demonstrate CA activities including dynamical and stable self-organizing patterns, oscillators, and traveling gliders. CA activities in MT and other cytoskeletal lattices may have important biological regulatory functions. 23 references, 6 figures, 1 table.
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Orginos, Konstantinos
2006-01-01
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Multigrid for Staggered Lattice Fermions
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard C. [Boston U.; Clark, M. A. [Unlisted, US; Strelchenko, Alexei [Fermilab; Weinberg, Evan [Boston U.
2018-01-23
Critical slowing down in Krylov methods for the Dirac operator presents a major obstacle to further advances in lattice field theory as it approaches the continuum solution. Here we formulate a multi-grid algorithm for the Kogut-Susskind (or staggered) fermion discretization which has proven difficult relative to Wilson multigrid due to its first-order anti-Hermitian structure. The solution is to introduce a novel spectral transformation by the K\\"ahler-Dirac spin structure prior to the Galerkin projection. We present numerical results for the two-dimensional, two-flavor Schwinger model, however, the general formalism is agnostic to dimension and is directly applicable to four-dimensional lattice QCD.
Lattice Gauge Theories Within and Beyond the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Gelzer, Zechariah John [Iowa U.
2017-01-01
The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \
The gluon structure of hadrons and nuclei from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2018-04-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
Elucidations on the reciprocal lattice and the Ewald sphere
International Nuclear Information System (INIS)
Foadi, J; Evans, G
2008-01-01
The reciprocal lattice is derived through the Fourier transform of a generic crystal lattice, as done previously in the literature. A few key derivations are this time handled in detail, and the connection with x-ray diffraction is clearly pointed out. The Ewald sphere is subsequently thoroughly explained and a few comments on its representation in a mixed real-reciprocal space are made. In particular, it appears that the majority of textbooks or papers on the subject are limited in their way of picturing it. This paper will be useful to solid state and/or crystallography teachers. It is also suitable for graduate students researching these subjects and for talented undergraduate students
Diffusion and transport in locally disordered driven lattices
Energy Technology Data Exchange (ETDEWEB)
Wulf, Thomas, E-mail: Thomas.Wulf@physnet.uni-hamburg.de; Okupnik, Alexander [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); Schmelcher, Peter, E-mail: Peter.Schmelcher@physnet.uni-hamburg.de [Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)
2016-09-15
We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.
Diffusion and transport in locally disordered driven lattices
International Nuclear Information System (INIS)
Wulf, Thomas; Okupnik, Alexander; Schmelcher, Peter
2016-01-01
We study the effect of disorder on the particle density evolution in a classical Hamiltonian driven lattice setup. If the disorder is localized within a finite sub-domain of the lattice, the emergence of strong tails in the density distribution which even increases towards larger positions is shown, thus yielding a highly non-Gaussian particle density evolution. As the key underlying mechanism, we identify the conversion between different components of the unperturbed systems mixed phase space which is induced by the disorder. Based on the introduction of individual conversion rates between chaotic and regular components, a theoretical model is developed which correctly predicts the scaling of the particle density. The effect of disorder on the transport properties is studied where a significant enhancement of the transport for cases of localized disorder is shown, thereby contrasting strongly the merely weak modification of the transport for global disorder.
The gluon structure of hadrons and nuclei from lattice QCD
Shanahan, Phiala
2018-03-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
Influence of lattice defects on criticality of Potts ferromagnet
International Nuclear Information System (INIS)
Souza Costa, U.M. de.
1985-01-01
The critical properties of the q-state Potts ferromagnet and the anisotropic Heisenberg model on hypercubic lattices (d = 2,3); emphasis is given to the free surface and the interface effects, the Real Space Renormalization Group approach. The criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. It is shown that, the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relation-ship with the Harris criterion is analyzed. High precision numerical values for the critical temperatures corresponding to arbitrary concentrations of the coupling constants J sub(1) and J sub(2), and arbitrary ratios J sub(1)/J sub(2) are presented.(author)
Heavy water critical experiments on plutonium lattice
International Nuclear Information System (INIS)
Miyawaki, Yoshio; Shiba, Kiminori
1975-06-01
This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)
Aliasing modes in the lattice Schwinger model
International Nuclear Information System (INIS)
Campos, Rafael G.; Tututi, Eduardo S.
2007-01-01
We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass
International Nuclear Information System (INIS)
Sommer, Rainer
2014-02-01
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Apiary B Factory lattice design
International Nuclear Information System (INIS)
Donald, M.H.R.; Garren, A.A.
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab
BROOKHAVEN: Lattice gauge theory symposium
Energy Technology Data Exchange (ETDEWEB)
Anon.
1986-12-15
Originally introduced by Kenneth Wilson in the early 70s, the lattice formulation of a quantum gauge theory became a hot topic of investigation after Mike Creutz, Laurence Jacobs and Claudio Rebbi demonstrated in 1979 the feasibility of meaningful computer simulations. The initial enthusiasm led gradually to a mature research effort, with continual attempts to improve upon previous results, to develop better computational techniques and to find new domains of application.
Harmonic Lattice Dynamics of Germanium
Energy Technology Data Exchange (ETDEWEB)
Nelin, G
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Screening in graphene antidot lattices
DEFF Research Database (Denmark)
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Symplectic maps for accelerator lattices
International Nuclear Information System (INIS)
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Harmonic Lattice Dynamics of Germanium
International Nuclear Information System (INIS)
Nelin, G.
1974-01-01
The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Wave transmission in nonlinear lattices
International Nuclear Information System (INIS)
Hennig, D.; Tsironis, G.P.
1999-01-01
The interplay of nonlinearity with lattice discreteness leads to phenomena and propagation properties quite distinct from those appearing in continuous nonlinear systems. For a large variety of condensed matter and optics applications the continuous wave approximation is not appropriate. In the present review we discuss wave transmission properties in one dimensional nonlinear lattices. Our paradigmatic equations are discrete nonlinear Schroedinger equations and their study is done through a dynamical systems approach. We focus on stationary wave properties and utilize well known results from the theory of dynamical systems to investigate various aspects of wave transmission and wave localization. We analyze in detail the more general dynamical system corresponding to the equation that interpolates between the non-integrable discrete nonlinear Schroedinger equation and the integrable Albowitz-Ladik equation. We utilize this analysis in a nonlinear Kronig-Penney model and investigate transmission and band modification properties. We discuss the modifications that are effected through an electric field and the nonlinear Wannier-Stark localization effects that are induced. Several applications are described, such as polarons in one dimensional lattices, semiconductor superlattices and one dimensional nonlinear photonic band gap systems. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Spin lattices of walking droplets
Saenz, Pedro; Pucci, Giuseppe; Goujon, Alexis; Dunkel, Jorn; Bush, John
2017-11-01
We present the results of an experimental investigation of the spontaneous emergence of collective behavior in spin lattice of droplets walking on a vibrating fluid bath. The bottom topography consists of relatively deep circular wells that encourage the walking droplets to follow circular trajectories centered at the lattice sites, in one direction or the other. Wave-mediated interactions between neighboring drops are enabled through a thin fluid layer between the wells. The sense of rotation of the walking droplets may thus become globally coupled. When the coupling is sufficiently strong, interactions with neighboring droplets may result in switches in spin that lead to preferred global arrangements, including correlated (all drops rotating in the same direction) or anti-correlated (neighboring drops rotating in opposite directions) states. Analogies with ferromagnetism and anti-ferromagnetism are drawn. Different spatial arrangements are presented in 1D and 2D lattices to illustrate the effects of topological frustration. This work was supported by the US National Science Foundation through Grants CMMI-1333242 and DMS-1614043.
Calculational methods for lattice cells
International Nuclear Information System (INIS)
Askew, J.R.
1980-01-01
At the current stage of development, direct simulation of all the processes involved in the reactor to the degree of accuracy required is not an economic proposition, and this is achieved by progressive synthesis of models for parts of the full space/angle/energy neutron behaviour. The split between reactor and lattice calculations is one such simplification. Most reactors are constructed of repetitions of similar geometric units, the fuel elements, having broadly similar properties. Thus the provision of detailed predictions of their behaviour is an important step towards overall modelling. We shall be dealing with these lattice methods in this series of lectures, but will refer back from time to time to their relationship with overall reactor calculation The lattice cell is itself composed of somewhat similar sub-units, the fuel pins, and will itself often rely upon a further break down of modelling. Construction of a good model depends upon the identification, on physical and mathematical grounds, of the most helpful division of the calculation at this level
Towards a multigrid scheme in SU(2) lattice gauge theory
International Nuclear Information System (INIS)
Gutbrod, F.
1992-12-01
The task of constructing a viable updating multigrid scheme for SU(2) lattice gauge theory is discussed in connection with the classical eigenvalue problem. For a nonlocal overrelaxation Monte Carlo update step, the central numerical problem is the search for the minimum of a quadratic approximation to the action under nonlocal constraints. Here approximate eigenfunctions are essential to reduce the numerical work, and these eigenfunctions are to be constructed with multigrid techniques. A simple implementation on asymmetric lattices is described, where the grids are restricted to 3-dimensional hyperplanes. The scheme is shown to be moderately successful in the early stages of the updating history (starting from a cold configuration). The main results of another, less asymmetric scheme are presented briefly. (orig.)
Lattice gauge fixing as quenching and the violation of spectral positivity
International Nuclear Information System (INIS)
Aubin, C.; Ogilvie, Michael C.
2004-01-01
Lattice Landau gauge and other related lattice gauge-fixing schemes are known to violate spectral positivity. The most direct sign of the violation is the rise of the effective mass as a function of distance. The origin of this phenomenon lies in the quenched character of the auxiliary field g used to implement lattice gauge-fixing, and is similar to quenched QCD in this respect. This is best studied using the Parrinello Jona-Lasinio Zwanziger formalism, leading to a class of covariant gauges similar to the one-parameter class of covariant gauges commonly used in continuum gauge theories. Soluble models are used to illustrate the origin of the violation of spectral positivity. The phase diagram of the lattice theory, as a function of the gauge coupling β and the gauge-fixing parameter α, is similar to that of the unquenched theory, a Higgs model of a type first studied by Fradkin and Shenker. The gluon propagator is interpreted as yielding bound states in the confined phase, and a mixture of fundamental particles in the Higgs phase, but lattice simulation shows the two phases are connected. Gauge-field propagators from the simulation of an SU(2) lattice gauge theory on a 20 4 lattice are well described by a quenched mass-mixing model. The mass of the lightest state, which we interpret as the gluon mass, appears to be independent of α for sufficiently large α
Light-induced lattice expansion leads to high-efficiency perovskite solar cells
Energy Technology Data Exchange (ETDEWEB)
Tsai, Hsinhan; Asadpour, Reza; Blancon, Jean-Christophe; Stoumpos, Constantinos C.; Durand, Olivier; Strzalka, Joseph W.; Chen, Bo; Verduzco, Rafael; Ajayan, Pulickel M.; Tretiak, Sergei; Even, Jacky; Alam, Muhammad Ashraf; Kanatzidis, Mercouri G.; Nie, Wanyi; Mohite, Aditya D.
2018-04-05
Hybrid-perovskite based high-performance optoelectronic devices and clues from their operation has led to the realization that light-induced structural dynamics play a vital role on their physical properties, device performance and stability. Here, we report that continuous light illumination leads to a uniform lattice expansion in hybrid perovskite thin-films, which is critical for obtaining high-efficiency photovoltaic devices. Correlated, in-situ structural and device characterizations reveal that light-induced lattice expansion significantly benefits the performances of a mixed-cation pure-halide planar device, boosting the power conversion efficiency from 18.5% to 20.5%. This is a direct consequence of the relaxation of local lattice strains during lattice expansion, which results in the reduction of the energetic barriers at the perovskite/contact interfaces in devices, thus improving the open circuit voltage and fill factor. The light-induced lattice expansion stabilizes these high-efficiency photovoltaic devices under continuous operation of full-spectrum 1-Sun illumination for over 1500 hours. One Sentence Summary: Light-induced lattice expansion improves crystallinity, relaxes lattice strain, which enhances photovoltaic performance in hybrid perovskite device.
SUSY WT identity in a lattice formulation of 2D N=(2,2) SYM
International Nuclear Information System (INIS)
Kadoh, Daisuke; Suzuki, Hiroshi
2010-01-01
We address some issues relating to a supersymmetric (SUSY) Ward-Takahashi (WT) identity in Sugino's lattice formulation of two-dimensional (2D) N=(2,2)SU(k) supersymmetric Yang-Mills theory (SYM). A perturbative argument shows that the SUSY WT identity in the continuum theory is reproduced in the continuum limit without any operator renormalization/mixing and tuning of lattice parameters. As application of the lattice SUSY WT identity, we show that a prescription for the Hamiltonian density in this lattice formulation, proposed by Kanamori, Sugino and Suzuki, is justified also from a perspective of an operator algebra among correctly-normalized supercurrents. We explicitly confirm the SUSY WT identity in the continuum limit to the first nontrivial order in a semi-perturbative expansion.
Geometry, rigidity, and group actions
Farb, Benson; Zimmer, Robert J
2011-01-01
The study of group actions is more than a hundred years old but remains to this day a vibrant and widely studied topic in a variety of mathematic fields. A central development in the last fifty years is the phenomenon of rigidity, whereby one can classify actions of certain groups, such as lattices in semi-simple Lie groups. This provides a way to classify all possible symmetries of important spaces and all spaces admitting given symmetries. Paradigmatic results can be found in the seminal work of George Mostow, Gergory Margulis, and Robert J. Zimmer, among others.The p
Topological magnon bands in ferromagnetic star lattice
International Nuclear Information System (INIS)
Owerre, S A
2017-01-01
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1–3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii–Moriya (DM) spin–orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases. (paper)
Topological magnon bands in ferromagnetic star lattice.
Owerre, S A
2017-05-10
The experimental observation of topological magnon bands and thermal Hall effect in a kagomé lattice ferromagnet Cu(1-3, bdc) has inspired the search for topological magnon effects in various insulating ferromagnets that lack an inversion center allowing a Dzyaloshinskii-Moriya (DM) spin-orbit interaction. The star lattice (also known as the decorated honeycomb lattice) ferromagnet is an ideal candidate for this purpose because it is a variant of the kagomé lattice with additional links that connect the up-pointing and down-pointing triangles. This gives rise to twice the unit cell of the kagomé lattice, and hence more interesting topological magnon effects. In particular, the triangular bridges on the star lattice can be coupled either ferromagnetically or antiferromagnetically which is not possible on the kagomé lattice ferromagnets. Here, we study DM-induced topological magnon bands, chiral edge modes, and thermal magnon Hall effect on the star lattice ferromagnet in different parameter regimes. The star lattice can also be visualized as the parent material from which topological magnon bands can be realized for the kagomé and honeycomb lattices in some limiting cases.
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
Energy Technology Data Exchange (ETDEWEB)
Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)
2014-11-15
The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Quark structure from the lattice operator product expansion
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2009-11-01
We have reported elsewhere in this conference on our continuing project to determine nonperturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing. (orig.)
Square-lattice random Potts model: criticality and pitchfork bifurcation
International Nuclear Information System (INIS)
Costa, U.M.S.; Tsallis, C.
1983-01-01
Within a real space renormalization group framework based on self-dual clusters, the criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. On qualitative grounds it is exhibited that the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relationship with Harris criterion is analyzed. On quantitative grounds high precision numerical values are presented for the critical temperatures corresponding to various concentrations of the coupling constants J 1 and J 2 , and various ratios J 1 /J 2 . The pure, random and crossover critical exponents are discussed as well. (Author) [pt
Spin-lattice relaxation in phosphorescent triplet state molecules
International Nuclear Information System (INIS)
Verbeek, P.J.F.
1979-01-01
The present thesis contains the results of a study of spin-lattice relaxation (SLR) in the photo-excited triplet state of aromatic molecules, dissolved in a molecular host crystal. It appears that SLR in phosphorescent triplet state molecules often is related to the presence of so-called (pseudo) localized phonons in the molecular mixed crystals. These local phonons can be thought to correspond with vibrations (librations) of the guest molecule in the force field of the surrounding host molecules. Since the intermolecular forces are relatively weak, the frequencies corresponding with these vibrations are relatively low and usually are of the order of 10-30 cm -1 . (Auth.)
DEFF Research Database (Denmark)
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Nucleon Structure from Lattice QCD
International Nuclear Information System (INIS)
Zanotti, J. M.
2011-01-01
Lattice simulations of hadronic structure are now reaching a level where they are able to not only complement, but also provide guidance to current and forthcoming experimental programmes.By considering new simulations at low quark masses and on large volumes, we review the recent progress that has been made in this area by the QCDSF/UKQCD collaboration. In particular, results obtained close to the physical point for several quantities, including electromagnetic form factors and moments of parton distribution functions, show some indication of approaching their phenomenological values.
GLAD: a generic lattice debugger
International Nuclear Information System (INIS)
Lee, M.J.
1992-01-01
Today, numerous simulation and analysis codes exist for the design, commission, and operation of accelerator beam lines. There is a need to develop a common user interface and database link to run these codes interactively. This paper will describe a proposed system, GLAD (Generic LAttice Debugger), to fulfill this need. Specifically, GLAD can be used to find errors in beam lines during commissioning, control beam parameters during operation, and design beam line optics and error correction systems for the next generation of linear accelerators and storage rings. (author)
Lattice dynamics of ionic crystals
International Nuclear Information System (INIS)
Mahan, G.D.
1990-01-01
The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces
Rojas Bocanegra, Alberto
2004-01-01
Objetivo: Determinar la prevalencia de degeneración periférica de retina Lattice y su relación con estados refractivos y rupturas retinales. Metodología: Estudio de corte transversal con exploración de asociación, mediante análisis de casos y controles. Se examinaron 680 ojos en el Instituto de Investigaciones Optométricas e Instituto de Córnea. El estado refractivo se determinó mediante técnica estática y el estado retinal mediante oftalmoscopia indirecta con indentación escleral. Resultados...
Lattice degeneration of the retina.
Byer, N E
1979-01-01
Lattice degeneration of the retina is the most important of all clinically distinct entities that effect the peripheral fundus and are related to retinal detachment. The purpose of this review is to survey the extensive literature, to evaluate the many diverse opinions on this subject, and to correlate and summarize all the known facts regarding this disease entity. The disease is fully defined and described, both clinically and histologically. Some aspects of the disease are still poorly understood, and some remain controversial, especially in the area of management. For this reason, the indications for treatment are discussed under eight subsections, with a view toward providing practical guidelines for recommendations in management.
The lattice dynamics of imidazole
International Nuclear Information System (INIS)
Link, K.H.
1983-05-01
The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)
Spinor bose gases in cubic optical lattice
International Nuclear Information System (INIS)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-01
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
International Nuclear Information System (INIS)
Richter, W.
1976-01-01
α-rhombohedral boron is the simplest boron modification, with only 12 atoms per unit cell. The boron atoms are arranged in B 12 icosahedra, which are centered at the lattice points of a primitive rhombohedral lattice. The icosahedra are slightly deformed, as the five-fold symmetry of the ideal icosahedron is incompatible with any crystal structure. The lattice dynamics of α-boron are discussed in terms of the model developed by Weber and Thorpe. (Auth.)
Experimental generation of optical coherence lattices
Energy Technology Data Exchange (ETDEWEB)
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Introduction to Vortex Lattice Theory
Directory of Open Access Journals (Sweden)
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
Coherent lattice vibrations in superconductors
International Nuclear Information System (INIS)
Kadin, Alan M.
2008-01-01
A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed
Lattice dynamics in solid oxygen
International Nuclear Information System (INIS)
Kobashi, K.; Klein, M.L.; Chandrasekharan, V.
1979-01-01
Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted
Distinguishability of countable quantum states and von Neumann lattice
International Nuclear Information System (INIS)
Kawakubo, Ryûitirô; Koike, Tatsuhiko
2016-01-01
The condition for distinguishability of a countably infinite number of pure states by a single measurement is given. Distinguishability is to be understood as the possibility of an unambiguous measurement. For a finite number of states, it is known that the necessary and sufficient condition of distinguishability is that the states are linearly independent. For an infinite number of states, several natural classes of distinguishability can be defined. We give a necessary and sufficient condition for a system of pure states to be distinguishable. It turns out that each level of distinguishability naturally corresponds to one of the generalizations of linear independence to families of infinite vectors. As an important example, we apply the general theory to von Neumann’s lattice, a subsystem of coherent states which corresponds to a lattice in the classical phase space. We prove that the condition for distinguishability is that the area of the fundamental region of the lattice is greater than the Planck constant, and also find subtle behavior on the threshold. These facts reveal the measurement theoretical meaning of the Planck constant and give a justification for the interpretation that it is the smallest unit of area in the phase space. The cases of uncountably many states and of mixed states are also discussed. (paper)
The gluon momentum fraction of the nucleon from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Constantinou, Martha; Jansen, Karl; Wiese, Christian; Panagopoulos, Haralambos
2016-01-01
We perform a direct calculation of the gluon momentum fraction of the nucleon using maximally twisted mass fermion ensembles with N_f=2+1+1 flavors at a pion mass of about 370 MeV and a lattice spacing of a∼0.082 fm and with N_f=2 flavors at the physical pion mass and a lattice spacing of a∼0.093 fm. In the definition of the gluon operator we employ stout smearing to obtain a statistically significant result for the bare matrix elements. In addition, we perform a lattice perturbative calculation including 2 levels of stout smearing to carry out the mixing and the renormalization of the quark and gluon operators. We find, after conversion to the MS scheme at a scale of 2 GeV: left angle x right angle "R_g=0.284(23)(23) for pion mass of about 370 MeV and left angle x right angle "R_g=0.283(23)(15) for the physical pion mass.
Fractional scaling of quantum walks on percolation lattices
International Nuclear Information System (INIS)
Kendon, Viv; Knott, Paul; Leung, Godfrey; Bailey, Joe
2011-01-01
Quantum walks can be used to model processes such as transport in spin chains and bio-molecules. The enhanced spreading and mixing properties of quantum walks compared with their classical counterparts have been well-studied on regular structures and also shown to be sensitive to defects and imperfections. Using numerical simulation, we study the spreading properties of quantum walks on percolation lattices for both bond and site percolation. The randomly missing edges or sites provide a controlled amount of disorder in the regular Cartesian lattice. In one dimension (the line) we introduce a simple model of quantum tunneling to allow the walk to proceed past the missing edges or sites. This allows the quantum walk to spread faster than a classical random walk for short times, but at longer times the disorder localises the quantum walk. In two dimensions, we observe fractional scaling of the spreading with the number of steps of the walk. For percolation above the 85% level, we obtain faster spreading than classical random walks on the full lattice.
Polarization response of RHIC electron lens lattices
International Nuclear Information System (INIS)
Ranjbar, V. H.; Méot, F.; Bai, M.; Abell, D. T.; Meiser, D.
2016-01-01
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Advancements in simulations of lattice quantum chromodynamics
International Nuclear Information System (INIS)
Lippert, T.
2008-01-01
An introduction to lattice QCD with emphasis on advanced fermion formulations and their simulation is given. In particular, overlap fermions will be presented, a quite novel fermionic discretization scheme that is able to exactly preserve chiral symmetry on the lattice. I will discuss efficiencies of state-of-the-art algorithms on highly scalable supercomputers and I will show that, due to many algorithmic improvements, overlap simulations will soon become feasible for realistic physical lattice sizes. Finally I am going to sketch the status of some current large scale lattice QCD simulations. (author)
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Elastic lattice in an incommensurate background
International Nuclear Information System (INIS)
Dickman, R.; Chudnovsky, E.M.
1995-01-01
We study a harmonic triangular lattice, which relaxes in the presence of an incommensurate short-wavelength potential. Monte Carlo simulations reveal that the elastic lattice exhibits only short-ranged translational correlations, despite the absence of defects in either lattice. Extended orientational order, however, persists in the presence of the background. Translational correlation lengths exhibit approximate power-law dependence upon cooling rate and background strength. Our results may be relevant to Wigner crystals, atomic monolayers on crystals surfaces, and flux-line and magnetic bubble lattices
Anomalous diffusion in a dynamical optical lattice
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Polarization response of RHIC electron lens lattices
Directory of Open Access Journals (Sweden)
V. H. Ranjbar
2016-10-01
Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Testing the holographic principle using lattice simulations
Directory of Open Access Journals (Sweden)
Jha Raghav G.
2018-01-01
Full Text Available The lattice studies of maximally supersymmetric Yang-Mills (MSYM theory at strong coupling and large N is important for verifying gauge/gravity duality. Due to the progress made in the last decade, based on ideas from topological twisting and orbifolding, it is now possible to study these theories on the lattice while preserving an exact supersymmetry on the lattice. We present some results from the lattice studies of two-dimensional MSYM which is related to Type II supergravity. Our results agree with the thermodynamics of different black hole phases on the gravity side and the phase transition (Gregory–Laflamme between them.
Non-perturbative O(a) improvement of lattice QCD
Lüscher, Martin; Sommer, Rainer; Weisz, P; Wolff, U; Luescher, Martin; Sint, Stefan; Sommer, Rainer; Weisz, Peter; Wolff, Ulli
1997-01-01
The coefficients multiplying the counterterms required for O($a$) improvement of the action and the isovector axial current in lattice QCD are computed non-perturbatively, in the quenched approximation and for bare gauge couplings $g_0$ in the range $0 \\leq g_0 \\leq 1$. A finite-size method based on the Schrödinger functional is employed, which enables us to perform all calculations at zero or nearly zero quark mass. As a by-product the critical hopping parameter $\\kappa_c$ is obtained at all couplings considered.
Differentiability and continuity of quantum fields on a lattice
International Nuclear Information System (INIS)
deLyra, J.L.; Foong, S.K.; Gallivan, T.E.
1991-01-01
The differentiability and continuity properties of quantized bosonic fields on a lattice are examined. It is shown for free fields that, in the continuum limit, the dominant configurations in the functional integral become discontinuous when the spacetime dimension is greater than 1. It is argued that the same is true for interacting fields. This is unlike the one-dimensional case of quantum mechanics, in which the dominant configurations are continuous but not differentiable. As a consequence of this discontinuity, classically equivalent actions may produce inequivalent quantum field theories upon functional-integral quantization
Hadron spectrum in quenched lattice QCD and distribution of zero modes
International Nuclear Information System (INIS)
Iwasaki, Yoichi
1989-01-01
I report the results of the calculation of the hadron spectrum with the standard one-plaquette gauge action on a 16 3 x48 lattice at β=5.85 in the quenched lattice QCD. The result remarkably agrees with that of quark potential models for the case where the quark mass is equal to or is larger than the strange quark mass, even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. Further, I show the distribution of zero modes of quark matrix, both in the cases of a RG improved gauge action and the standard action, and discuss the difference between the two cases. (orig.)
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Lattices for laymen: a non-specialist's introduction to lattice gauge theory
International Nuclear Information System (INIS)
Callaway, D.J.E.
1985-01-01
The review on lattice gauge theory is based upon a series of lectures given to the Materials Science and Technology Division at Argonne National Laboratory. Firstly the structure of gauge theories in the continuum is discussed. Then the lattice formulation of these theories is presented, including quantum electrodynamics and non-abelian lattice gauge theories. (U.K.)
Review of lattice results concerning low-energy particle physics
DEFF Research Database (Denmark)
Aoki, Sinya; Aoki, Yasumichi; Bečirević, D.
2017-01-01
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) , arising in the semileptonic K→ π transition...... review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb...... (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status...
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
Hadronic corrections to electroweak observables from twisted mass lattice QCD
International Nuclear Information System (INIS)
Pientka, Grit
2015-01-01
For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.
A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD
International Nuclear Information System (INIS)
Luescher, M.
1993-11-01
Lattice QCD with an even number of degenerate quark flavours is shown to be a limit of a local bosonic field theory. The action of the bosonic theory is real and bounded from below so that standard simulation algorithms can be expected to apply. The feasibility of such calculations is discussed, but no practical tests have yet been made. (orig.)
Diffusion coefficients for periodically induced multi-step persistent walks on regular lattices
International Nuclear Information System (INIS)
Gilbert, Thomas; Sanders, David P
2012-01-01
We present a generalization of our formalism for the computation of diffusion coefficients of multi-step persistent random walks on regular lattices to walks which include zero-displacement states. This situation is especially relevant to systems where tracer particles move across potential barriers as a result of the action of a periodic forcing whose period sets the timescale between transitions. (paper)
Induced Chern-Simons term in lattice QCD at finite temperature
International Nuclear Information System (INIS)
Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.
1995-01-01
The general conditions for the Chern-Simons action to be induced as a non-universal contribution of fermionic determinant are formulated in finite-temperature lattice QCD. The dependence of the corresponding coefficient in the action on non-universal parameters (chemical potentials, vacuum features, etc.) is explored. Special attention is paid to the role of A 0 -condensate if it is available in this theory. ((orig.))
Computer programs for lattice calculations
International Nuclear Information System (INIS)
Keil, E.; Reich, K.H.
1984-01-01
The aim of the workshop was to find out whether some standardisation could be achieved for future work in this field. A certain amount of useful information was unearthed, and desirable features of a ''standard'' program emerged. Progress is not expected to be breathtaking, although participants (practically from all interested US, Canadian and European accelerator laboratories) agreed that the mathematics of the existing programs is more or less the same. Apart from the NIH (not invented here) effect, there is a - to quite some extent understandable - tendency to stay with a program one knows and to add to it if unavoidable rather than to start using a new one. Users of the well supported program TRANSPORT (designed for beam line calculations) would prefer to have it fully extended for lattice calculations (to some extent already possible now), while SYNCH users wish to see that program provided with a user-friendly input, rather than spending time and effort for mastering a new program
Monte Carlo lattice program KIM
International Nuclear Information System (INIS)
Cupini, E.; De Matteis, A.; Simonini, R.
1980-01-01
The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed
Particle states of lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)
2017-11-15
We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)
Review of lattice results concerning low-energy particle physics
Energy Technology Data Exchange (ETDEWEB)
Aoki, S. [Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics; Aoki, Y. [Nagoya Univ. (Japan). Kobayashi-Maskawa Inst. for the Origin of Particles and the Universe; Brookhaven National Laboratory, Upton, NY (United States). RIKEN BNL Research Center; Becirevic, D. [Univ. Paris-Saclay, Orsay (France). CNRS; Collaboration: FLAG Working Group; and others
2016-07-15
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}.
Review of lattice results concerning low-energy particle physics
Energy Technology Data Exchange (ETDEWEB)
Aoki, S. [Kyoto University, Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Aoki, Y. [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Becirevic, D. [Universite Paris-Sud, Universite Paris-Saclay, Laboratoire de Physique Theorique (UMR8627), CNRS, Orsay (France); Bernard, C. [Washington University, Department of Physics, Saint Louis, MO (United States); Blum, T. [Brookhaven National Laboratory, RIKEN BNL Research Center, Upton, NY (United States); University of Connecticut, Physics Department, Storrs, CT (United States); Colangelo, G.; Leutwyler, H.; Wenger, U. [Universitaet Bern, Albert Einstein Center for Fundamental Physics, Institut fuer Theoretische Physik, Bern (Switzerland); Della Morte, M. [University of Southern Denmark, CP3-Origins and Danish IAS, Odense M (Denmark); IFIC (CSIC), Paterna (Spain); Dimopoulos, P. [Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi Compendio del Viminale, Rome (Italy); Universita di Roma Tor Vergata, c/o Dipartimento di Fisica, Rome (Italy); Duerr, S. [University of Wuppertal, Wuppertal (Germany); Juelich Supercomputing Center, Forschungszentrum Juelich, Juelich (Germany); Fukaya, H.; Onogi, T. [Osaka University, Department of Physics, Toyonaka, Osaka (Japan); Golterman, M. [San Francisco State University, Department of Physics and Astronomy, San Francisco, CA (United States); Gottlieb, Steven; Lunghi, E. [Indiana University, Department of Physics, Bloomington, IN (United States); Hashimoto, S.; Kaneko, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); The Graduate University for Advanced Studies (Sokendai), School of High Energy Accelerator Science, Tsukuba (Japan); Heller, U.M. [American Physical Society (APS), Ridge, NY (United States); Horsley, R. [University of Edinburgh, Higgs Centre for Theoretical Physics, School of Physics and Astronomy, Edinburgh (United Kingdom); Juettner, A.; Sachrajda, C.T. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Lellouch, L. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); Lin, C.J.D. [CNRS, Aix-Marseille Universite, Universite de Toulon, Centre de Physique Theorique, UMR 7332, Marseille (France); National Chiao-Tung University, Institute of Physics, Hsinchu (China); Lubicz, V. [Universita Roma Tre, Dipartimento di Matematica e Fisica, Rome (Italy); INFN, Sezione di Roma Tre, Rome (Italy); Mawhinney, R. [Columbia University, Physics Department, New York, NY (United States); Pena, C. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Sharpe, S.R. [University of Washington, Physics Department, Seattle, WA (United States); Simula, S. [INFN, Sezione di Roma Tre, Rome (Italy); Sommer, R. [DESY, John von Neumann Institute for Computing (NIC), Zeuthen (Germany); Vladikas, A. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Wittig, H. [University of Mainz, PRISMA Cluster of Excellence, Institut fuer Kernphysik and Helmholtz Institute Mainz, Mainz (Germany); Collaboration: Flavour Lattice Averaging Group (FLAG)
2017-02-15
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f{sub +}(0), arising in the semileptonic K → π transition at zero momentum transfer, as well as the decay constant ratio f{sub K}/f{sub π} and its consequences for the CKM matrix elements V{sub us} and V{sub ud}. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2){sub L} x SU(2){sub R} and SU(3){sub L} x SU(3){sub R} Chiral Perturbation Theory. We review the determination of the B{sub K} parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for m{sub c} and m{sub b} (also new compared to the previous review), as well as those for D- and B-meson-decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant α{sub s}. (orig.)
Fermion determinants in lattice QCD
International Nuclear Information System (INIS)
Johnson, Christopher Andrew
2001-01-01
The main topic of this thesis concerns efficient algorithms for the calculation of determinants of the kind of matrix typically encountered in lattice QCD. In particular an efficient method for calculating the fermion determinant is described. Such a calculation is useful to illustrate the effects of light dynamical (virtual) quarks. The methods employed in this thesis are stochastic methods, based on the Lanczos algorithm, which is used for the solution of large, sparse matrix problems via a partial tridiagonalisation of the matrix. Here an implementation is explored which requires less exhaustive treatment of the matrix than previous Lanczos methods. This technique exploits the analogy between the Lanczos tridiagonalisation algorithm and Gaussian quadrature in order to calculate the fermion determinant. A technique for determining a number of the eigenvalues of the matrix is also presented. A demonstration is then given of how one can improve upon this estimate considerably using variance reduction techniques, reducing the variance by a factor of order 100 with a further, equal amount of work. The variance reduction method is a two-stage process, involving a Chebyshev approximation to the quantity in question and then the subtraction of traceless operators. The method is applied to the fermion determinant for non-perturbatively improved Wilson fermions on a 16 3 x 32 lattice. It is also applicable to a wider class of matrix operators. Finally we discuss how dynamical quark effects may be simulated in a Monte Carlo process with an effective partitioning of low and high eigenmodes. This may be done via selective updating of a trial configuration which highlights the physically relevant effects of light quark modes. (author)
An Application of Linear Algebra over Lattices
Directory of Open Access Journals (Sweden)
M. Hosseinyazdi
2008-03-01
Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
An Application of Linear Algebra over Lattices
M. Hosseinyazdi
2008-01-01
In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
Chimera states in Gaussian coupled map lattices
Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian
2018-04-01
We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.
Dark Solitons in FPU Lattice Chain
Wang, Deng-Long; Yang, Ru-Shu; Yang, You-Tian
2007-11-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Dark Solitons in FPU Lattice Chain
International Nuclear Information System (INIS)
Wang Denglong; Yang Youtian; Yang Rushu
2007-01-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton. Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
Lattice-Valued Possibilistic Entropy Measure
Czech Academy of Sciences Publication Activity Database
Kramosil, Ivan
2008-01-01
Roč. 16, č. 6 (2008), s. 829-846 ISSN 0218-4885 R&D Projects: GA AV ČR IAA100300503 Institutional research plan: CEZ:AV0Z10300504 Keywords : complete lattice * lattice-valued possibilistic distribution * entropy measure * product of possibilistic distribution Subject RIV: BA - General Mathematics Impact factor: 1.000, year: 2008
Unorthodox lattice fermion derivatives and their shortcomings
International Nuclear Information System (INIS)
Bodwin, G.T.; Kovacs, E.V.
1987-01-01
We discuss the DWY (Lagrangian), Quinn-Weinstein, and Rebbi proposals for incorporating fermions into lattice gauge theory and analyze them in the context of weak coupling perturbation theory. We find that none of these proposals leads to a completely satisfactory lattice transcription of fully-interacting gauge theory
Gauge field theories on a || lattice
International Nuclear Information System (INIS)
Burkardt, Matthias
1999-01-01
In these notes, the transverse || lattice approach is presented as a means to control the k + →0 divergences in light-front QCD. Technical difficulties of both the canonical compact formulation as well as the non-compact formulation of the || lattice motivate the color-dielectric formulation, where the link fields are linearized
Selective nanoscale growth of lattice mismatched materials
Lee, Seung-Chang; Brueck, Steven R. J.
2017-06-20
Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
Spectral Gaps in Graphene Antidot Lattices
DEFF Research Database (Denmark)
Barbaroux, Jean-Marie; Cornean, Decebal Horia; Stockmeyer, Edgardo
2017-01-01
We consider the gap creation problem in an antidot graphene lattice, i.e. a sheet of graphene with periodically distributed obstacles. We prove several spectral results concerning the size of the gap and its dependence on different natural parameters related to the antidot lattice....
Tadpole renormalization and relativistic corrections in lattice NRQCD
Shakespeare, Norman H.; Trottier, Howard D.
1998-08-01
We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.
Quantum transport in d -dimensional lattices
International Nuclear Information System (INIS)
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-01-01
We show that both fermionic and bosonic uniform d -dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. We then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations. (paper)
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Design of the SPEAR 3 magnet lattice
International Nuclear Information System (INIS)
Corbett, J.; Limborg, C.; Nosochkov, Y.; Safranek, J.
1998-01-01
The SPEAR 3 Upgrade Project seeks to replace the present 160 nm-rad FODO lattice with an 18 nm-rad double bend achromat (DBA) lattice. The new lattice must conform to the layout of the SPEAR racetrack tunnel and service the existing photon beamlines. Working within these constraints, the authors designed a lattice with 18 achromatic cells and 3 GeV beam energy. This paper reports on design of the main DBA cells, design of the matching cells leading into the 6.5 m racetrack straights, and simulation of the dynamic aperture. The new lattice has gradient dipoles, conventional quadrupoles, and provides horizontal dynamic aperture to ± 20 mm with conservative magnetic multipole errors
Lattices for the TRIUMF KAON factory
International Nuclear Information System (INIS)
Servranckx, R.V.; Craddock, M.K.
1989-09-01
Separated-function racetrack lattices have been developed for the KAON Factory accelerators that have more flexibility than the old circular lattices. The arcs of the large rings have a regular FODO structure with a superimposed six-fold symmetric modulation of the betafunction in order to raise γ t to infinity. Straight sections with zero dispersion are provided for rf cavities and fast injection and extraction, and with controlled dispersion for H - injection and slow extraction. For the small rings, sixfold symmetric circular lattices with high γ t are retained. In the Accumulator lattice, a straight section with double waist and controlled η function allows for H - injection and phase-space painting. The ion-optical properties of the lattices and the results from tracking studies are discussed
Ising antiferromagnet on the Archimedean lattices
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Synthesizing lattice structures in phase space
International Nuclear Information System (INIS)
Guo, Lingzhen; Marthaler, Michael
2016-01-01
In one dimensional systems, it is possible to create periodic structures in phase space through driving, which is called phase space crystals (Guo et al 2013 Phys. Rev. Lett. 111 205303). This is possible even if for particles trapped in a potential without periodicity. In this paper we discuss ultracold atoms in a driven optical lattice, which is a realization of such a phase space crystals. The corresponding lattice structure in phase space is complex and contains rich physics. A phase space lattice differs fundamentally from a lattice in real space, because its coordinate system, i.e., phase space, has a noncommutative geometry, which naturally provides an artificial gauge (magnetic) field. We study the behavior of the quasienergy band structure and investigate the dissipative dynamics. Synthesizing lattice structures in phase space provides a new platform to simulate the condensed matter phenomena and study the intriguing phenomena of driven systems far away from equilibrium. (paper)
Lattice gravity near the continuum limit
International Nuclear Information System (INIS)
Feinberg, G.; Friedberg, R.; Lee, T.D.; Ren, H.C.
1984-01-01
We prove that the lattice gravity always approaches the usual continuum limit when the link length l -> 0, provided that certain general boundary conditions are satisfied. This result holds for any lattice, regular or irregular. Furthermore, for a given lattice, the deviation from its continuum limit can be expressed as a power series in l 2 . General formulas for such a perturbative calculation are given, together with a number of illustrative examples, including the graviton propagator. The lattice gravity satisfies all the invariance properties of Einstein's theory of general relativity. In addition, it is symmetric under a new class of transformations that are absent in the usual continuum theory. The possibility that the lattice theory (with a nonzero l) may be more fundamental is discussed. (orig.)
Synthetic magnetic fluxes on the honeycomb lattice
Energy Technology Data Exchange (ETDEWEB)
Gorecka, Agnieszka [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Gremaud, Benoit [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Laboratoire Kastler Brossel, Ecole Normale Superieure, CNRS, UPMC, 4 Place Jussieu, FR-75005 Paris (France); Miniatura, Christian [Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Institut Non Lineaire de Nice, UMR 6618, UNS, CNRS, 1361 Route des Lucioles, FR-06560 Valbonne (France); Institute of Advanced Studies, Nanyang Technological university, 60 Nanyang View, Singapore 639673 (Singapore)
2011-08-15
We devise experimental schemes that are able to mimic uniform and staggered magnetic fluxes acting on ultracold two-electron atoms, such as ytterbium atoms, propagating in a honeycomb lattice. The atoms are first trapped into two independent state-selective triangular lattices and then further exposed to a suitable configuration of resonant Raman laser beams. These beams induce hops between the two triangular lattices and make atoms move in a honeycomb lattice. Atoms traveling around each unit cell of this honeycomb lattice pick up a nonzero phase. In the uniform case, the artificial magnetic flux sustained by each cell can reach about two flux quanta, thereby realizing a cold-atom analog of the Harper model with its notorious Hofstadter's butterfly structure. Different condensed-matter phenomena such as the relativistic integer and fractional quantum Hall effects, as observed in graphene samples, could be targeted with this scheme.
Interstructure Lattices and Types of Peano Arithmetic
Abdul-Quader, Athar
The collection of elementary substructures of a model of PA forms a lattice, and is referred to as the substructure lattice of the model. In this thesis, we study substructure and interstructure lattices of models of PA. We apply techniques used in studying these lattices to other problems in the model theory of PA. In Chapter 2, we study a problem that had its origin in Simpson ([Sim74]), who used arithmetic forcing to show that every countable model of PA has an expansion to PA* that is pointwise definable. Enayat ([Ena88]) later showed that there are 2N0 models with the property that every expansion to PA* is pointwise definable. In this Chapter, we use techniques involved in representations of lattices to show that there is a model of PA with this property which contains an infinite descending chain of elementary cuts. In Chapter 3, we study the question of when subsets can be coded in elementary end extensions with prescribed interstructure lattices. This problem originated in Gaifman [Gai76], who showed that every model of PA has a conservative, minimal elementary end extension. That is, every model of PA has a minimal elementary end extension which codes only definable sets. Kossak and Paris [KP92] showed that if a model is countable and a subset X can be coded in any elementary end extension, then it can be coded in a minimal extension. Schmerl ([Sch14] and [Sch15]) extended this work by considering which collections of sets can be the sets coded in a minimal elementary end extension. In this Chapter, we extend this work to other lattices. We study two questions: given a countable model M, which sets can be coded in an elementary end extension such that the interstructure lattice is some prescribed finite distributive lattice; and, given an arbitrary model M, which sets can be coded in an elementary end extension whose interstructure lattice is a finite Boolean algebra?
Leading hadronic contributions to the running of the electroweak coupling constants from lattice QCD
International Nuclear Information System (INIS)
Burger, Florian; Jansen, Karl; Petschlies, Marcus; Pientka, Grit
2015-12-01
The quark-connected leading-order hadronic contributions to the running of the electromagnetic fine structure constant, α QED , and the weak mixing angle, θ W , are determined by a four-flavour lattice QCD computation with twisted mass fermions. Full agreement of the results with a phenomenological analysis is observed with an even comparable statistical uncertainty. We show that the uncertainty of the lattice calculation is dominated by systematic effects which then leads to significantly larger errors than obtained by the phenomenological analysis.
Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow
International Nuclear Information System (INIS)
Hammond, L A; Halliday, I; Care, C M; Stevens, A
2002-01-01
We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 5 . In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow
Lattice study of finite volume effect in HVP for muon g-2
Directory of Open Access Journals (Sweden)
Izubuchi Taku
2018-01-01
Full Text Available We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp,in lattice QCD by comparison with two different volumes, L4 = (5.44 and (8.14 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a−1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
Lattice study of finite volume effect in HVP for muon g-2
Izubuchi, Taku; Kuramashi, Yoshinobu; Lehner, Christoph; Shintani, Eigo
2018-03-01
We study the finite volume effect of the hadronic vacuum polarization contribution to muon g-2, aμhvp, in lattice QCD by comparison with two different volumes, L4 = (5.4)4 and (8.1)4 fm4, at physical pion. We perform the lattice computation of highly precise vector-vector current correlator with optimized AMA technique on Nf = 2 + 1 PACS gauge configurations in Wilson-clover fermion and stout smeared gluon action at one lattice cut-off, a-1 = 2.33 GeV. We compare two integrals of aμhvp, momentum integral and time-slice summation, on the lattice and numerically show that the different size of finite volume effect appears between two methods. We also discuss the effect of backward-state propagation into the result of aμhvp with the different boundary condition. Our model-independent study suggest that the lattice computation at physical pion is important for correct estimate of finite volume and other lattice systematics in aμhvp.
2017-12-01
After years of working towards a climate accord, the Paris Agreement of 2015 marked the shift from negotiating to reach consensus on climate action to implementation of such action. The challenge now is to ensure transparency in the processes and identify the details of what is required.
Enforcement actions: Significant actions resolved
International Nuclear Information System (INIS)
1994-03-01
This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication
Enforcement actions: Significant actions resolved
International Nuclear Information System (INIS)
1992-11-01
This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication
Bidirectional Fano Algorithm for Lattice Coded MIMO Channels
Al-Quwaiee, Hessa
2013-01-01
channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered
Enforcement actions: Significant actions resolved
International Nuclear Information System (INIS)
1990-05-01
This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication
Enforcement actions: Significant actions resolved
International Nuclear Information System (INIS)
1989-06-01
This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication