WorldWideScience

Sample records for mitochondrial rna import

  1. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  2. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  3. Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria.

    Science.gov (United States)

    Karicheva, Olga Z; Kolesnikova, Olga A; Schirtz, Tom; Vysokikh, Mikhail Y; Mager-Heckel, Anne-Marie; Lombès, Anne; Boucheham, Abdeldjalil; Krasheninnikov, Igor A; Martin, Robert P; Entelis, Nina; Tarassov, Ivan

    2011-10-01

    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNA(Leu(UUR)). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNA(Leu(UUR)) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders.

  4. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  5. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  6. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.

    Science.gov (United States)

    Srinivasan, Hemalatha; Das, Samarjit

    2015-10-01

    Cardiovascular disease is one of the major causes of human morbidity and mortality in the world. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and are known to be involved in the pathogenesis of heart diseases, but the translocation phenomenon and the mode of action in mitochondria are largely unknown. Recent mitochondrial proteome analysis unveiled at least 2000 proteins, of which only 13 are made by the mitochondrial genome. There are numerous studies demonstrating the translocation of proteins into the mitochondria and also translocation of ribosomal RNA (viz., 5S rRNA) into mitochondria. Recent studies have suggested that miRNAs contain sequence elements that affect their subcellular localization, particularly nuclear localization. If there are sequence elements that direct miRNAs to the nucleus, it is also possible that similar sequence elements exist to direct miRNAs to the mitochondria. In this review we have summarized most of the miRNAs that have been shown to play an important role in mitochondrial function, either by regulating mitochondrial genes or by regulating nuclear genes that are known to influence mitochondrial function. While the focus of this review is cardiovascular diseases, we also illustrate the role of mitochondrial miRNA (MitomiR) in the initiation and progression of various diseases, including cardiovascular diseases, metabolic diseases, and cancer. Our goal here is to summarize the miRNAs that are localized to the mitochondrial fraction of cells, and how these miRNAs modulate cardiovascular health.

  7. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    Science.gov (United States)

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  8. Mitochondrial tRNA gene translocations in highly eusocial bees

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  9. Mapping of Mitochondrial RNA-Protein Interactions by Digital RNase Footprinting

    Directory of Open Access Journals (Sweden)

    Ganqiang Liu

    2013-11-01

    Full Text Available Human mitochondrial DNA is transcribed as long polycistronic transcripts that encompass each strand of the genome and are processed subsequently into mature mRNAs, tRNAs, and rRNAs, necessitating widespread posttranscriptional regulation. Here, we establish methods for massively parallel sequencing and analyses of RNase-accessible regions of human mitochondrial RNA and thereby identify specific regions within mitochondrial transcripts that are bound by proteins. This approach provides a range of insights into the contribution of RNA-binding proteins to the regulation of mitochondrial gene expression.

  10. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    Science.gov (United States)

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  11. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  12. HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP

    Science.gov (United States)

    Noh, Ji Heon; Kim, Kyoung Mi; Abdelmohsen, Kotb; Yoon, Je-Hyun; Panda, Amaresh C.; Munk, Rachel; Kim, Jiyoung; Curtis, Jessica; Moad, Christopher A.; Wohler, Christina M.; Indig, Fred E.; de Paula, Wilson; Dudekula, Dawood B.; De, Supriyo; Piao, Yulan; Yang, Xiaoling; Martindale, Jennifer L.; de Cabo, Rafael; Gorospe, Myriam

    2016-01-01

    Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria. PMID:27198227

  13. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  14. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  15. Global Identification of New Substrates for the Yeast Endoribonuclease, RNase Mitochondrial RNA Processing (MRP)*

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.

    2012-01-01

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255

  16. Fluorescent in situ hybridization of mitochondrial DNA and RNA

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    Roč. 57, č. 4 (2010), s. 403-408 ISSN 0001-527X R&D Projects: GA ČR GAP302/10/0346; GA ČR GPP304/10/P204; GA AV ČR KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondrial DNA and RNA * nucleoids of mitochondrial DNA * molecular beacon fluorescent hybridization probes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.234, year: 2010

  17. Differential Binding of Mitochondrial Transcripts by MRB8170 and MRB4160 Regulates Distinct Editing Fates of Mitochondrial mRNA in Trypanosomes

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    2017-01-01

    Full Text Available A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei. Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1. Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome.

  18. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  19. Mitochondrial phenylalanyl-tRNA synthetase mutations underlie fatal infantile Alpers encephalopathy

    DEFF Research Database (Denmark)

    Elo, Jenni M; Yadavalli, Srujana S; Euro, Liliya

    2012-01-01

    was impaired. Our results imply that the three FARS2 mutations directly impair aminoacylation function and stability of mtPheRS, leading to a decrease in overall tRNA charging capacity. This study establishes a new genetic cause of infantile mitochondrial Alpers encephalopathy and reports a new mitochondrial...

  20. Relationship between PPARα mRNA expression and mitochondrial respiratory function and ultrastructure of the skeletal muscle of patients with COPD.

    Science.gov (United States)

    Zhang, Jian-Qing; Long, Xiang-Yu; Xie, Yu; Zhao, Zhi-Huan; Fang, Li-Zhou; Liu, Ling; Fu, Wei-Ping; Shu, Jing-Kui; Wu, Jiang-Hai; Dai, Lu-Ming

    2017-11-02

    Peripheral muscle dysfunction is an important complication in patients with chronic obstructive pulmonary disease (COPD). The objective of this study was to explore the relationship between the levels of peroxisome proliferator-activated receptor α (PPARα) mRNA expression and the respiratory function and ultrastructure of mitochondria in the vastus lateralis of patients with COPD. Vastus lateralis biopsies were performed on 14 patients with COPD and 6 control subjects with normal lung function. PPARα mRNA levels in the muscle tissue were detected by real-time PCR. A Clark oxygen electrode was used to assess mitochondrial respiratory function. Mitochondrial number, fractional area in skeletal muscle cross-sections, and Z-line width were observed via transmission electron microscopy. The PPARα mRNA expression was significantly lower in COPD patients with low body mass index (BMIL) than in both COPD patients with normal body mass index (BMIN) and controls. Mitochondrial respiratory function (assessed by respiratory control ratio) was impaired in COPD patients, particularly in BMIL. Compared with that in the control group, mitochondrial number and fractional area were lower in the BMIL group, but were maintained in the BMIN group. Further, the Z-line became narrow in the BMIL group. PPARα mRNA expression was positively related to mitochondrial respiratory function and volume density. In COPD patients with BMIN, mitochondria volume density was maintained, while respiratory function decreased, whereas both volume density and respiratory function decreased in COPD patients with BMIL. PPARα mRNA expression levels are associated with decreased mitochondrial respiratory function and volume density, which may contribute to muscle dysfunction in COPD patients.

  1. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  2. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  3. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes.

    Science.gov (United States)

    Tzagoloff, A; Shtanko, A

    1995-06-01

    Three complementation groups of a pet mutant collection have been found to be composed of respiratory-deficient deficient mutants with lesions in mitochondrial protein synthesis. Recombinant plasmids capable of restoring respiration were cloned by transformation of representatives of each complementation group with a yeast genomic library. The plasmids were used to characterize the complementing genes and to institute disruption of the chromosomal copies of each gene in respiratory-proficient yeast. The sequences of the cloned genes indicate that they code for isoleucyl-, arginyl- and glutamyl-tRNA synthetases. The properties of the mutants used to obtain the genes and of strains with the disrupted genes indicate that all three aminoacyl-tRNA synthetases function exclusively in mitochondrial proteins synthesis. The ISM1 gene for mitochondrial isoleucyl-tRNA synthetase has been localized to chromosome XVI next to UME5. The MSR1 gene for the arginyl-tRNA synthetase was previously located on yeast chromosome VIII. The third gene MSE1 for the mitochondrial glutamyl-tRNA synthetase has not been localized. The identification of three new genes coding for mitochondrial-specific aminoacyl-tRNA synthetases indicates that in Saccharomyces cerevisiae at least 11 members of this protein family are encoded by genes distinct from those coding for the homologous cytoplasmic enzymes.

  4. [Analysis of mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes in patients with nonsyndromic sensorineural hearing loss from various regions of Russia].

    Science.gov (United States)

    Dzhemileva, L U; Posukh, O L; Tazetdinov, A M; Barashkov, N A; Zhuravskiĭ, S G; Ponidelko, S N; Markova, T G; Tadinova, V N; Fedorova, S A; Maksimova, N R; Khusnutdinova, E K

    2009-07-01

    Mitochondrial DNA (mtDNA) mutations play an important role in etiology of hereditary hearing loss. In various regions of the world, patients suffer from nonsyndromic sensorineural hearing loss initiated by aminoglycoside antibiotics. Mutations that had been shown as pathogenetically important for hearing function disturbance were identified in mitochondrial 12S rRNA and tRNA(Ser(UCN)) genes while pathogenic role of several DNA sequences requires additional studies. This work presents the results of studying the spectrum of mutations and polymorphic variations in mtDNA genes 12S rRNA and tRNA(Ser(UGN)) in 410 patients with nonsyndromal sensoneural hearing impairment/loss from the Volga Ural region, St Petersburg, Yakutia, and Altai and in 520 individuals with normal hearing, which represent several ethnic groups (Russians, Tatars, Bashkirs, Yakuts, Altaians) residing in the Russian Federation. Pathogenetically significant mutation A1555G (12S rRNA) was found in two families (from Yakutia and St Peresburg) with hearing loss, probably caused by treatment with aminoglucosides, and in the population sample of Yakuts with a frequency of 0.83%. Further research is needed to confirm the role in hearing impairment of mutations 961insC, 961insC(n), 961delTinsC(n), T961G, T1095C (12S rRNA) and G7444A, A7445C (tRNA(Ser(UGN revealed in the patients. In addition, in the patients and the population groups, polymorphic mt DNA variants were detected, which are characteristic also of other Eurasian populations both in spectrum and frequency.

  5. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy.

    Science.gov (United States)

    Long, Jianyin; Badal, Shawn S; Ye, Zengchun; Wang, Yin; Ayanga, Bernard A; Galvan, Daniel L; Green, Nathanael H; Chang, Benny H; Overbeek, Paul A; Danesh, Farhad R

    2016-11-01

    The regulatory roles of long noncoding RNAs (lncRNAs) in transcriptional coactivators are still largely unknown. Here, we have shown that the peroxisome proliferator-activated receptor γ (PPARγ) coactivator α (PGC-1α, encoded by Ppargc1a) is functionally regulated by the lncRNA taurine-upregulated gene 1 (Tug1). Further, we have described a role for Tug1 in the regulation of mitochondrial function in podocytes. Using a murine model of diabetic nephropathy (DN), we performed an unbiased RNA-sequencing (RNA-seq) analysis of kidney glomeruli and identified Tug1 as a differentially expressed lncRNA in the diabetic milieu. Podocyte-specific overexpression (OE) of Tug1 in diabetic mice improved the biochemical and histological features associated with DN. Unexpectedly, we found that Tug1 OE rescued the expression of PGC-1α and its transcriptional targets. Tug1 OE was also associated with improvements in mitochondrial bioenergetics in the podocytes of diabetic mice. Mechanistically, we found that the interaction between Tug1 and PGC-1α promotes the binding of PGC-1α to its own promoter. We identified a Tug1-binding element (TBE) upstream of the Ppargc1a gene and showed that Tug1 binds with the TBE to enhance Ppargc1a promoter activity. These findings indicate that a direct interaction between PGC-1α and Tug1 modulates mitochondrial bioenergetics in podocytes in the diabetic milieu.

  6. Expression of a novel non-coding mitochondrial RNA in human proliferating cells.

    Science.gov (United States)

    Villegas, Jaime; Burzio, Veronica; Villota, Claudio; Landerer, Eduardo; Martinez, Ronny; Santander, Marcela; Martinez, Rodrigo; Pinto, Rodrigo; Vera, María I; Boccardo, Enrique; Villa, Luisa L; Burzio, Luis O

    2007-01-01

    Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5' end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.

  7. Mutational analysis of the mitochondrial 12S rRNA and tRNASer(UCN) genes in Tunisian patients with nonsyndromic hearing loss

    International Nuclear Information System (INIS)

    Mkaouar-Rebai, Emna; Tlili, Abdelaziz; Masmoudi, Saber; Louhichi, Nacim; Charfeddine, Ilhem; Amor, Mohamed Ben; Lahmar, Imed; Driss, Nabil; Drira, Mohamed; Ayadi, Hammadi; Fakhfakh, Faiza

    2006-01-01

    We explored the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and the tRNA Ser(UCN) genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA Ser(UCN) gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA Ser(UCN) genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene

  8. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  9. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.

    Science.gov (United States)

    Meseguer, Salvador; Martínez-Zamora, Ana; García-Arumí, Elena; Andreu, Antonio L; Armengod, M-Eugenia

    2015-01-01

    Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email

  10. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    Science.gov (United States)

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  11. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2 defects predicts differential effects on aminoacylation

    Directory of Open Access Journals (Sweden)

    Liliya eEuro

    2015-02-01

    Full Text Available The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19 is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations.The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change p.R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

  12. MELAS syndrome associated with a new mitochondrial tRNA-Val gene mutation (m.1616A>G).

    Science.gov (United States)

    Toyoshima, Yuka; Tanaka, Yuji; Satomi, Kazuo

    2017-09-11

    We describe the case of a 40-year-old-man with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, with cardiomyopathy and severe heart failure. He had a mitochondrial transfer RNA (tRNA) mutation (m.1616A>G) of the (tRNA-Val) gene, and it was not found in MELAS syndrome ever before. The presence of this newly observed tRNA-Val mutation (m.1616A>G) may induce multiple respiratory chain enzyme deficiencies and contribute to MELAS syndrome symptoms that are associated with mitochondrial DNA (mtDNA) mutations. We report that the pathognomonic symptom in MELAS syndrome caused by this newly observed mtDNA mutation may be rapid progression of cardiomyopathy and severe heart failure. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  14. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    Science.gov (United States)

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe). © 2013. Published by Elsevier B.V. All rights reserved.

  15. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  16. Transfer RNA and human disease.

    Science.gov (United States)

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  17. Defective mitochondrial rRNA methyltransferase MRM2 causes MELAS-like clinical syndrome.

    Science.gov (United States)

    Garone, Caterina; D'Souza, Aaron R; Dallabona, Cristina; Lodi, Tiziana; Rebelo-Guiomar, Pedro; Rorbach, Joanna; Donati, Maria Alice; Procopio, Elena; Montomoli, Martino; Guerrini, Renzo; Zeviani, Massimo; Calvo, Sarah E; Mootha, Vamsi K; DiMauro, Salvatore; Ferrero, Ileana; Minczuk, Michal

    2017-11-01

    Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation. © The Author 2017. Published by Oxford University Press.

  18. Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Directory of Open Access Journals (Sweden)

    Quagliariello Carla

    2008-03-01

    Full Text Available Abstract Background In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Results Based on our simulation study we suggest that the editing ‘noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1 no differences in the comparison between inferred genomic and cDNA topologies could be detected. Conclusions Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0% and reduced in length (shorter than 500 bp. In the current lack of direct experimental evidence the results

  19. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNA(Phe) gene.

    Science.gov (United States)

    Zsurka, G; Hampel, K G; Nelson, I; Jardel, C; Mirandola, S R; Sassen, R; Kornblum, C; Marcorelles, P; Lavoué, S; Lombès, A; Kunz, W S

    2010-02-09

    To present 2 families with maternally inherited severe epilepsy as the main symptom of mitochondrial disease due to point mutations at position 616 in the mitochondrial tRNA(Phe) (MT-TF) gene. Histologic stainings were performed on skeletal muscle slices from the 2 index patients. Oxidative phosphorylation activity was measured by oxygraphic and spectrophotometric methods. The patients' complete mitochondrial DNA (mtDNA) and the relevant mtDNA region in maternal relatives were sequenced. Muscle histology showed only decreased overall COX staining, while a combined respiratory chain defect, most severely affecting complex IV, was noted in both patients' skeletal muscle. Sequencing of the mtDNA revealed in both patients a mutation at position 616 in the MT-TF gene (T>C or T>G). These mutations disrupt a base pair in the anticodon stem at a highly conserved position. They were apparently homoplasmic in both patients, and had different heteroplasmy levels in the investigated maternal relatives. Deleterious mutations in the mitochondrial tRNA(Phe) may solely manifest with epilepsy when segregating to homoplasmy. They may be overlooked in the absence of lactate accumulation and typical mosaic mitochondrial defects in muscle.

  20. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  1. The bipartite mitochondrial genome of Ruizia karukerae (Rhigonematomorpha, Nematoda).

    Science.gov (United States)

    Kim, Taeho; Kern, Elizabeth; Park, Chungoo; Nadler, Steven A; Bae, Yeon Jae; Park, Joong-Ki

    2018-05-10

    Mitochondrial genes and whole mitochondrial genome sequences are widely used as molecular markers in studying population genetics and resolving both deep and shallow nodes in phylogenetics. In animals the mitochondrial genome is generally composed of a single chromosome, but mystifying exceptions sometimes occur. We determined the complete mitochondrial genome of the millipede-parasitic nematode Ruizia karukerae and found its mitochondrial genome consists of two circular chromosomes, which is highly unusual in bilateral animals. Chromosome I is 7,659 bp and includes six protein-coding genes, two rRNA genes and nine tRNA genes. Chromosome II comprises 7,647 bp, with seven protein-coding genes and 16 tRNA genes. Interestingly, both chromosomes share a 1,010 bp sequence containing duplicate copies of cox2 and three tRNA genes (trnD, trnG and trnH), and the nucleotide sequences between the duplicated homologous gene copies are nearly identical, suggesting a possible recent genesis for this bipartite mitochondrial genome. Given that little is known about the formation, maintenance or evolution of abnormal mitochondrial genome structures, R. karukerae mtDNA may provide an important early glimpse into this process.

  2. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    International Nuclear Information System (INIS)

    Levin, Inna; Kessler, Naama; Moor, Nina; Klipcan, Liron; Koc, Emine; Templeton, Paul; Spremulli, Linda; Safro, Mark

    2007-01-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55, b = 90, c = 96 Å

  4. Partial suppression of the respiratory defect of qrs1/her2 glutamyl-tRNA amidotransferase mutants by overexpression of the mitochondrial pentatricopeptide Msc6p.

    Science.gov (United States)

    Moda, Bruno S; Ferreira-Júnior, José Ribamar; Barros, Mario H

    2016-08-01

    Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.

  5. Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia).

    Science.gov (United States)

    Douzery, E; Catzeflis, F M

    1995-11-01

    The complete 12S rRNA gene has been sequenced in 4 Ungulata (hoofed eutherians) and 1 marsupial and compared to 38 available mammalian sequences in order to investigate the molecular evolution of the mitochondrial small-subunit ribosomal RNA molecule. Ungulata were represented by one artiodactyl (the collared peccary, Tayassu tajacu, suborder Suiformes), two perissodactyls (the Grevy's zebra, Equus grevyi, suborder Hippomorpha; the white rhinoceros, Ceratotherium simum, suborder Ceratomorpha), and one hyracoid (the tree hyrax, Dendrohyrax dorsalis). The fifth species was a marsupial, the eastern gray kangaroo (Macropus giganteus). Several transition/transversion biases characterized the pattern of changes between mammalian 12S rRNA molecules. A bias toward transitions was found among 12S rRNA sequences of Ungulata, illustrating the general bias exhibited by ribosomal and protein-encoding genes of the mitochondrial genome. The derivation of a mammalian 12S rRNA secondary structure model from the comparison of 43 eutherian and marsupial sequences evidenced a pronounced bias against transversions in stems. Moreover, transversional compensatory changes were rare events within double-stranded regions of the ribosomal RNA. Evolutionary characteristics of the 12S rRNA were compared with those of the nuclear 18S and 28S rRNAs. From a phylogenetic point of view, transitions, transversions and indels in stems as well as transversional and indels events in loops gave congruent results for comparisons within orders. Some compensatory changes in double-stranded regions and some indels in single-stranded regions also constituted diagnostic events. The 12S rRNA molecule confirmed the monophyly of infraorder Pecora and order Cetacea and demonstrated the monophyly of the suborder Ruminantia was not supported and the branching pattern between Cetacea and the artiodacytyl suborders Ruminantia and Suiformes was not established. The monophyly of the order Perissodactyla was evidenced

  6. Mitochondrial Protein Synthesis, Import, and Assembly

    Science.gov (United States)

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  7. Mitochondrial 12S rRNA A827G mutation is involved in the genetic susceptibility to aminoglycoside ototoxicity

    International Nuclear Information System (INIS)

    Xing Guangqian; Chen Zhibin; Wei Qinjun; Tian Huiqin; Li Xiaolu; Zhou Aidong; Bu Xingkuan; Cao Xin

    2006-01-01

    We have analyzed the clinical and molecular characterization of a Chinese family with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluations revealed that only those family members who had a history of exposure to aminoglycoside antibiotics subsequently developed hearing loss, suggesting mitochondrial genome involvement. Sequence analysis of the mitochondrial 12S rRNA and tRNA Ser(UCN) genes led to the identification of a homoplasmic A827G mutation in all maternal relatives, a mutation that was identified previously in a few sporadic patients and in another Chinese family with non-syndromic deafness. The pathogenicity of the A827G mutation is strongly supported by the occurrence of the same mutation in two independent families and several genetically unrelated subjects. The A827G mutation is located at the A-site of the mitochondrial 12S rRNA gene which is highly conserved in mammals. It is possible that the alteration of the tertiary or quaternary structure of this rRNA by the A827G mutation may lead to mitochondrial dysfunction, thereby playing a role in the pathogenesis of hearing loss and aminoglycoside hypersensitivity. However, incomplete penetrance of hearing impairment indicates that the A827G mutation itself is not sufficient to produce clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Indeed, aminoglycosides may contribute to the phenotypic manifestation of the A827G mutation in this family. In contrast with the congenital or early-onset hearing impairment in another Chinese family carrying the A827G mutation, three patients in this pedigree developed hearing loss only after use of aminoglycosides. This discrepancy likely reflects the difference of genetic backgrounds, either mitochondrial haplotypes or nuclear modifier genes, between two families

  8. Frequency and spectrum of mitochondrial 12S rRNA variants in 440 Han Chinese hearing impaired pediatric subjects from two otology clinics

    Directory of Open Access Journals (Sweden)

    Zhou Jianjin

    2011-01-01

    Full Text Available Abstract Background Aminoglycoside ototoxicity is one of the common health problems. Mitochondrial 12S rRNA mutations are one of the important causes of aminoglycoside ototoxicity. However, the incidences of 12S rRNA mutations associated with aminoglycoside ototoxicity are less known. Methods A total of 440 Chinese pediatric hearing-impaired subjects were recruited from two otology clinics in the Ningbo and Wenzhou cities of Zhejiang Province, China. These subjects underwent clinical, genetic evaluation and molecular analysis of mitochondrial 12S rRNA. Resultant mtDNA variants were evaluated by structural and phylogenetic analysis. Results The study samples consisted of 227 males and 213 females. The age of all participants ranged from 1 years old to 18 years, with the median age of 9 years. Ninety-eight subjects (58 males and 40 females had a history of exposure to aminoglycosides, accounting for 22.3% cases of hearing loss in this cohort. Molecular analysis of 12S rRNA gene identified 41 (39 known and 2 novel variants. The incidences of the known deafness-associated 1555A > G, 1494C > T and 1095T > C mutations were 7.5%, 0.45% and 0.91% in this entire hearing-impaired subjects, respectively, and 21.4%, 2% and 2% among 98 subjects with aminoglycoside ototoxicity, respectively. The structural and phylogenetic evaluations showed that a novel 747A > G variant and known 839A > G, 1027A > G, 1310C > T and 1413T > C variants conferred increased sensitivity to aminoglycosides or nonsyndromic deafness as they were absent in 449 Chinese controls and localized at highly conserved nucleotides of this rRNA. However, other variants were polymorphisms. Of 44 subjects carrying one of definite or putative deafness-related 12S rRNA variants, only one subject carrying the 1413T > C variant harbored the 235DelC/299DelAT mutations in the GJB2 gene, while none of mutations in GJB2 gene was detected in other 43 subjects. Conclusions Mutations in mitochondrial 12S rRNA

  9. DEAD-box RNA helicase is dispensable for mitochondrial translation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Richterová, Lenka; Vávrová, Zuzana; Lukeš, Julius

    2011-01-01

    Roč. 127, č. 1 (2011), 300-303 ISSN 0014-4894 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Mitochondrial translation * RNA helicase * Cytochrome c oxidase * Mitochondrion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2011

  10. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Inna; Kessler, Naama [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Moor, Nina [Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk (Russian Federation); Klipcan, Liron [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Koc, Emine [Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 (United States); Templeton, Paul [Department Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215 (United States); Spremulli, Linda [Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290 (United States); Safro, Mark, E-mail: mark.safro@weizmann.ac.il [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2007-09-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55, b = 90, c = 96 Å.

  11. The mitochondrial genome of the stingless bee Melipona bicolor (Hymenoptera, Apidae, Meliponini: sequence, gene organization and a unique tRNA translocation event conserved across the tribe Meliponini

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2008-01-01

    Full Text Available At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini. The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced. We also report the genome organization (gene content and order, gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

  12. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes)

    OpenAIRE

    Hrbek,Tomas; Farias,Izeni Pires

    2008-01-01

    We sequenced the complete mitochondrial genome of the pirarucu, Arapaima gigas, the largest fish of the Amazon basin, and economically one of the most important species of the region. The total length of the Arapaima gigas mitochondrial genome is 16,433 bp. The mitochondrial genome contains 13 protein-coding genes, two rRNA genes and 22 tRNA genes. Twelve of the thirteen protein-coding genes are coded on the heavy strand, while nad6 is coded on the light strand. The Arapaima gene order and co...

  13. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    International Nuclear Information System (INIS)

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-01-01

    Research highlights: → LRPPRC orthologs are restricted to metazoans. → LRPPRC is imported to the mitochondrial matrix. → No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  14. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    NARCIS (Netherlands)

    L.M. 't Hart (Leen); H.A.P. Pols (Huib); T. Hansen (Torben); I. Rietveld (Ingrid); J.M. Dekker (Jacqueline); J.A. Maassen (Johannes); M.G.A.A.M. Nijpels (Giel); G.M.C. Janssen (George); P.P. Arp (Pascal); R.J. Heine (Robert); A.G. Uitterlinden (André); T. Jorgensen (Torben); C.M. van Duijn (Cornelia); K. Borch-Johnsen; O. Pedersen (Oluf)

    2005-01-01

    textabstractPreviously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA

  15. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  16. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  17. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    Science.gov (United States)

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  19. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; RUBIO, M. A. T.; Lukeš, Julius; Alfonzo, J. D.

    2009-01-01

    Roč. 15, č. 7 (2009), s. 1398-1406 ISSN 1355-8382 R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : T. brucei * tRNA import * 2-thiolation * RIC * Rieske * Fe-S cluster Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  20. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens

    Czech Academy of Sciences Publication Activity Database

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D. T. J.

    2015-01-01

    Roč. 8, JUN 19 2015 (2015), s. 336 ISSN 1756-3305 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR(CZ) GA15-14198S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : Diplostomum (Platyhelminthes: Trematoda) * fish pathogens * mitochondrial genome * ribosomal RNA * illumina next-generation sequencing * phylogeny Subject RIV: EG - Zoology Impact factor: 3.234, year: 2015

  1. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  2. Plasmodium falciparum mitochondria import tRNAs along with an active phenylalanyl-tRNA synthetase.

    Science.gov (United States)

    Sharma, Arvind; Sharma, Amit

    2015-02-01

    The Plasmodium falciparum protein translation enzymes aminoacyl-tRNA synthetases (aaRSs) are an emergent family of drug targets. The aaRS ensemble catalyses transfer of amino acids to cognate tRNAs, thus providing charged tRNAs for ribosomal consumption. P. falciparum proteome expression relies on a total of 36 aaRSs for the three translationally independent compartments of cytoplasm, apicoplast and mitochondria. In the present study, we show that, of this set of 36, a single genomic copy of mitochondrial phenylalanyl-tRNA synthetase (mFRS) is targeted to the parasite mitochondria, and that the mFRS gene is exclusive to malaria parasites within the apicomplexan phyla. Our protein cellular localization studies based on immunofluorescence data show that, along with mFRS, P. falciparum harbours two more phenylalanyl-tRNA synthetase (FRS) assemblies that are localized to its apicoplast and cytoplasm. The 'extra' mFRS is found in mitochondria of all asexual blood stage parasites and is competent in aminoacylation. We show further that the parasite mitochondria import tRNAs from the cytoplasmic tRNA pool. Hence drug targeting of FRSs presents a unique opportunity to potentially stall protein production in all three parasite translational compartments.

  3. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.

    Science.gov (United States)

    Hauler, Aron; Jonietz, Christian; Stoll, Birgit; Stoll, Katrin; Braun, Hans-Peter; Binder, Stefan

    2013-05-01

    The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Mitochondrial genome of the African lion Panthera leo leo.

    Science.gov (United States)

    Ma, Yue-ping; Wang, Shuo

    2015-01-01

    In this study, the complete mitochondrial genome sequence of the African lion P. leo leo was reported. The total length of the mitogenome was 17,054 bp. It contained the typical mitochondrial structure, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region; 21 of the tRNA genes folded into typical cloverleaf secondary structure except for tRNASe. The overall composition of the mitogenome was A (32.0%), G (14.5%), C (26.5%) and T (27.0%). The new sequence will provide molecular genetic information for conservation genetics study of this important large carnivore.

  5. Cardiac abnormalities in diabetic patients with mutation in the mitochondrial tRNA Leu(UUR)Gene

    International Nuclear Information System (INIS)

    Ueno, Hiroshi; Shiotani, Hideyuki

    1999-01-01

    An A-to-G transition at position 3243 of the mitochondrial DNA is known to be a pathogenic factor for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), diabetes and cardiomyopathy. This mutation causes dysfunction of the central nervous system in MELAS. Because the heart, as well as the brain and nervous system, is highly dependent on the energy produced by mitochondrial oxidation, these tissues are more vulnerable to mitochondrial defects. Cardiac abnormalities were assessed in 10 diabetic patients associated with this mutation using echocardiography and 123 I-metaiodobenzylguanidine (MIBG) scintigraphy, and compared with 19 diabetic patients without the mutation. Duration of diabetes, therapy, control of blood glucose and diabetic complications, such as diabetic retinopathy and nephropathy, were not different between the 2 groups. Diabetic patients with the mutation had a significantly thicker interventricular septum (16.8±3.7 vs 11.0±1.6 mm, p 0.05). In conclusion, left ventricular hypertrophy with or without abnormal wall motion and severely reduced MIBG uptake may be characteristic in diabetic patients with a mutation in the mitochondrial tRNA Leu(UUR) gene. (author)

  6. The complete mitochondrial genome of Pseudocellus pearsei (Chelicerata: Ricinulei and a comparison of mitochondrial gene rearrangements in Arachnida

    Directory of Open Access Journals (Sweden)

    Braband Anke

    2007-10-01

    Full Text Available Abstract Background Mitochondrial genomes are widely utilized for phylogenetic and population genetic analyses among animals. In addition to sequence data the mitochondrial gene order and RNA secondary structure data are used in phylogenetic analyses. Arachnid phylogeny is still highly debated and there is a lack of sufficient sequence data for many taxa. Ricinulei (hooded tickspiders are a morphologically distinct clade of arachnids with uncertain phylogenetic affinities. Results The first complete mitochondrial DNA genome of a member of the Ricinulei, Pseudocellus pearsei (Arachnida: Ricinulei was sequenced using a PCR-based approach. The mitochondrial genome is a typical circular duplex DNA molecule with a size of 15,099 bp, showing the complete set of genes usually present in bilaterian mitochondrial genomes. Five tRNA genes (trnW, trnY, trnN, trnL(CUN, trnV show different relative positions compared to other Chelicerata (e.g. Limulus polyphemus, Ixodes spp.. We propose that two events led to this derived gene order: (1 a tandem duplication followed by random deletion and (2 an independent translocation of trnN. Most of the inferred tRNA secondary structures show the common cloverleaf pattern except tRNA-Glu where the TψC-arm is missing. In phylogenetic analyses (maximum likelihood, maximum parsimony, Bayesian inference using concatenated amino acid and nucleotide sequences of protein-coding genes the basal relationships of arachnid orders remain unresolved. Conclusion Phylogenetic analyses (ML, MP, BI of arachnid mitochondrial genomes fail to resolve interordinal relationships of Arachnida and remain in a preliminary stage because there is still a lack of mitogenomic data from important taxa such as Opiliones and Pseudoscorpiones. Gene order varies considerably within Arachnida – only eight out of 23 species have retained the putative arthropod ground pattern. Some gene order changes are valuable characters in phylogenetic analysis of

  7. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation.

    Science.gov (United States)

    Wolf, Joachim; Obermaier-Kusser, Bert; Jacobs, Martina; Milles, Cornelia; Mörl, Mario; von Pein, Harald D; Grau, Armin J; Bauer, Matthias F

    2012-05-15

    We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  9. The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses.

    Science.gov (United States)

    Zhu, Qiang; Dugardeyn, Jasper; Zhang, Chunyi; Mühlenbock, Per; Eastmond, Peter J; Valcke, Roland; De Coninck, Barbara; Oden, Sevgi; Karampelias, Michael; Cammue, Bruno P A; Prinsen, Els; Van Der Straeten, Dominique

    2014-02-01

    Recently, we reported that the novel mitochondrial RNA editing factor SLO2 is essential for mitochondrial electron transport, and vital for plant growth through regulation of carbon and energy metabolism. Here, we show that mutation in SLO2 causes hypersensitivity to ABA and insensitivity to ethylene, suggesting a link with stress responses. Indeed, slo2 mutants are hypersensitive to salt and osmotic stress during the germination stage, while adult plants show increased drought and salt tolerance. Moreover, slo2 mutants are more susceptible to Botrytis cinerea infection. An increased expression of nuclear-encoded stress-responsive genes, as well as mitochondrial-encoded NAD genes of complex I and genes of the alternative respiratory pathway, was observed in slo2 mutants, further enhanced by ABA treatment. In addition, H2O2 accumulation and altered amino acid levels were recorded in slo2 mutants. We conclude that SLO2 is required for plant sensitivity to ABA, ethylene, biotic, and abiotic stress. Although two stress-related RNA editing factors were reported very recently, this study demonstrates a unique role of SLO2, and further supports a link between mitochondrial RNA editing events and stress response.

  10. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Yuan Huijun; Chen Jing; Liu Xin; Cheng Jing; Wang Xinjian; Yang Li; Yang Shuzhi; Cao Juyang; Kang Dongyang; Dai Pu; Zha, Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2007-01-01

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNA Ser(UCN) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families

  11. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  12. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens.

    Science.gov (United States)

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D Timothy J

    2015-06-19

    The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and

  13. NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana.

    Science.gov (United States)

    Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena

    2012-10-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.

  14. WBSCR16 Is a Guanine Nucleotide Exchange Factor Important for Mitochondrial Fusion

    Directory of Open Access Journals (Sweden)

    Guorui Huang

    2017-07-01

    Full Text Available Regulated inter-mitochondrial fusion/fission is essential for maintaining optimal mitochondrial respiration and control of apoptosis and autophagy. In mammals, mitochondrial fusion is controlled by outer membrane GTPases MFN1 and MFN2 and by inner membrane (IM GTPase OPA1. Disordered mitochondrial fusion/fission contributes to various pathologies, and MFN2 or OPA1 mutations underlie neurodegenerative diseases. Here, we show that the WBSCR16 protein is primarily associated with the outer face of the inner mitochondrial membrane and is important for mitochondrial fusion. We provide evidence of a WBSCR16/OPA1 physical interaction in the intact cell and of a WBSCR16 function as an OPA1-specific guanine nucleotide exchange factor (GEF. Homozygosity for a Wbscr16 mutation causes early embryonic lethality, whereas neurons of mice heterozygous for the mutation have mitochondria with reduced membrane potential and increased susceptibility to fragmentation upon exposure to stress, suggesting roles for WBSCR16 deficits in neuronal pathologies.

  15. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  16. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available Glutathione peroxidase-1 (GPx1 is a pivotal intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. This study aims to identify a microRNA (miRNA that targets GPx1 to maintain redox homeostasis. Dual luciferase assays combined with mutational analysis and immunoblotting were used to validate the bioinformatically predicted miRNAs. We sought to select miRNAs that were responsive to oxidative stress induced by hydrogen peroxide (H2O2 in the H9c2 rat cardiomyocyte cell line. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-181a in H2O2-treated H9c2 cells was markedly upregulated. The downregulation of miR-181a significantly inhibited H2O2-induced cellular apoptosis, ROS production, the increase in malondialdehyde (MDA levels, the disruption of mitochondrial structure, and the activation of key signaling proteins in the mitochondrial apoptotic pathway. Our results suggest that miR-181a plays an important role in regulating the mitochondrial apoptotic pathway in cardiomyocytes challenged with oxidative stress. MiR-181a may represent a potential therapeutic target for the treatment of oxidative stress-associated cardiovascular diseases.

  17. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  18. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    Science.gov (United States)

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  19. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    Science.gov (United States)

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  20. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats

    Science.gov (United States)

    Cahyadi, M.; Puruhita; Barido, F. H.; Hertanto, B. S.

    2018-01-01

    Polymerase chain reaction (PCR) is a molecular technique that widely used in agriculture area including species identification in animal-based products for halalness and food safety reasons. Amplification of DNA using PCR needs a primer pair (forward and reverse primers) to isolate specific DNA fragment in the genome. This objective of this study was to design specific primer from mitochondrial 12S rRNA region for species identification in raw beef, pork and chicken meat. Three published sequences, HQ184045, JN601075, and KT626857, were downloaded from National Center for Biotechnology Information (NCBI) website. Furthermore, those reference sequences were used to design specific primer for bovine, pig, and chicken species using primer3 v.0.4.0. A total of 15 primer pairs were picked up from primer3 software. Of these, an universal forward primer and three reverse primers which are specific for bovine, pig, and chicken species were selected to be optimized using multiplex-PCR technique. The selected primers were namely UNIF (5’-ACC GCG GTC ATA CGA TTA AC-3’), SPR (5’-AGT GCG TCG GCT ATT GTA GG-3’), BBR (5’-GAA TTG GCA AGG GTT GGT AA-3’), and AR (5’-CGG TAT GTA CGT GCC TCA GA-3’). In addition, the PCR products were visualized using 2% agarose gels under the UV light and sequenced to be aligned with reference sequences using Clustal Omega. The result showed that those primers were specifically amplified mitochondrial 12S rRNA regions from bovine, pig, and chicken using PCR. It was indicated by the existence of 155, 357, and 611 bp of DNA bands for bovine, pig, and chicken species, respectively. Moreover, sequence analysis revealed that our sequences were identically similar with reference sequences. It can be concluded that mitochondrial 12S rRNA may be used as a genetic marker for species identification in meat products.

  1. Limited diagnostic value of enzyme analysis in patients with mitochondrial tRNA mutations

    DEFF Research Database (Denmark)

    Wibrand, Flemming; Jeppesen, Tina Dysgaard; Frederiksen, Anja L

    2010-01-01

    We evaluated the diagnostic value of respiratory chain (RC) enzyme analysis of muscle in adult patients with mitochondrial myopathy (MM). RC enzyme activity was measured in muscle biopsies from 39 patients who carry either the 3243A>G mutation, other tRNA point mutations, or single, large......, respectively, in these three groups. The results indicate that RC enzyme analysis in muscle is not a sensitive test for MM in adults. In these patients, abnormal muscle histochemistry appears to be a better predictor ofMM....

  2. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  3. Complete Mitochondrial Genome of the Medicinal Mushroom Ganoderma lucidum

    Science.gov (United States)

    Chen, Haimei; Chen, Xiangdong; Lan, Jin; Liu, Chang

    2013-01-01

    Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the understanding of the

  4. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  5. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    Science.gov (United States)

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  6. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  7. A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Ashley L Waldron

    Full Text Available Histidyl tRNA Synthetase (HARS is a member of the aminoacyl tRNA synthetase (ARS family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.

  8. The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the ecdysozoa hypothesis.

    Science.gov (United States)

    Podsiadlowski, Lars; Braband, Anke; Mayer, Georg

    2008-01-01

    Onychophora (velvet worms) play a crucial role in current discussions on position of arthropods. The ongoing Articulata/Ecdysozoa debate is in need of additional ground pattern characters for Panarthropoda (Arthropoda, Tardigrada, and Onychophora). Hence, Onychophora is an important outgroup taxon in resolving the relationships among arthropods, irrespective of whether morphological or molecular data are used. To date, there has been a noticeable lack of mitochondrial genome data from onychophorans. Here, we present the first complete mitochondrial genome sequence of an onychophoran, Epiperipatus biolleyi (Peripatidae), which shows several characteristic features. Specifically, the gene order is considerably different from that in other arthropods and other bilaterians. In addition, there is a lack of 9 tRNA genes usually present in bilaterian mitochondrial genomes. All these missing tRNAs have anticodon sequences corresponding to 4-fold degenerate codons, whereas the persisting 13 tRNAs all have anticodons pairing with 2-fold degenerate codons. Sequence-based phylogenetic analysis of the mitochondrial protein-coding genes provides a robust support for a clade consisting of Onychophora, Priapulida, and Arthropoda, which confirms the Ecdysozoa hypothesis. However, resolution of the internal ecdysozoan relationships suffers from a cluster of long-branching taxa (including Nematoda and Platyhelminthes) and a lack of data from Tardigrada and further nemathelminth taxa in addition to nematodes and priapulids.

  9. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    Science.gov (United States)

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  10. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  11. The complete mitochondrial genome of the Feral Rock Pigeon (Columba livia breed feral).

    Science.gov (United States)

    Li, Chun-Hong; Liu, Fang; Wang, Li

    2014-10-01

    Abstract In the present work, we report the complete mitochondrial genome sequence of feral rock pigeon for the first time. The total length of the mitogenome was 17,239 bp with the base composition of 30.3% for A, 24.0% for T, 31.9% for C, and 13.8% for G and an A-T (54.3 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of feral rock pigeon would serve as an important data set of the germplasm resources for further study.

  12. The complete mitochondrial genome of the Jacobin pigeon (Columba livia breed Jacobin).

    Science.gov (United States)

    He, Wen-Xiao; Jia, Jin-Feng

    2015-06-01

    The Jacobin is a breed of fancy pigeon developed over many years of selective breeding that originated in Asia. In the present work, we report the complete mitochondrial genome sequence of Jacobin pigeon for the first time. The total length of the mitogenome was 17,245 bp with the base composition of 30.18% for A, 23.98% for T, 31.88% for C, and 13.96% for G and an A-T (54.17 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of Jacobin pigeon would serve as an important data set of the germplasm resources for further study.

  13. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  14. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU.

    Directory of Open Access Journals (Sweden)

    Elena Favaro

    2010-04-01

    Full Text Available Hypoxia in cancers results in the upregulation of hypoxia inducible factor 1 (HIF-1 and a microRNA, hsa-miR-210 (miR-210 which is associated with a poor prognosis.In human cancer cell lines and tumours, we found that miR-210 targets the mitochondrial iron sulfur scaffold protein ISCU, required for assembly of iron-sulfur clusters, cofactors for key enzymes involved in the Krebs cycle, electron transport, and iron metabolism. Down regulation of ISCU was the major cause of induction of reactive oxygen species (ROS in hypoxia. ISCU suppression reduced mitochondrial complex 1 activity and aconitase activity, caused a shift to glycolysis in normoxia and enhanced cell survival. Cancers with low ISCU had a worse prognosis.Induction of these major hallmarks of cancer show that a single microRNA, miR-210, mediates a new mechanism of adaptation to hypoxia, by regulating mitochondrial function via iron-sulfur cluster metabolism and free radical generation.

  15. The importance of mitochondrial DNA in aging and cancer

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Espersen, Maiken Lise Marcker; Singh, Keshav K

    2011-01-01

    Mitochondrial dysfunction has been implicated in premature aging, age-related diseases, and tumor initiation and progression. Alterations of the mitochondrial genome accumulate both in aging tissue and tumors. This paper describes our contemporary view of mechanisms by which alterations...... of the mitochondrial genome contributes to the development of age- and tumor-related pathological conditions. The mechanisms described encompass altered production of mitochondrial ROS, altered regulation of the nuclear epigenome, affected initiation of apoptosis, and a limiting effect on the production...

  16. Phylogenetic relationships among the species of the genus testudo (Testudines : Testudinidae) inferred from mitochondrial 12S rRNA gene sequences

    NARCIS (Netherlands)

    van der Kuyl, Antoinette C.; Ph Ballasina, Donato L.; Dekker, John T.; Maas, Jolanda; Willemsen, Ronald E.; Goudsmit, Jaap

    2002-01-01

    To test phylogenetic relationships within the genus Testudo (Testudines: Testudinidae), we have sequenced a fragment of the mitochondrial (mt) 12S rRNA gene of 98 tortoise specimens belonging to the genera Testudo, Indotestudo, and Geochelone. Maximum likelihood and neighbor-joining methods identify

  17. Thymidine kinase 2 and alanyl-tRNA synthetase 2 deficiencies cause lethal mitochondrial cardiomyopathy: case reports and review of the literature.

    Science.gov (United States)

    Mazurova, Stella; Magner, Martin; Kucerova-Vidrova, Vendula; Vondrackova, Alzbeta; Stranecky, Viktor; Pristoupilova, Anna; Zamecnik, Josef; Hansikova, Hana; Zeman, Jiri; Tesarova, Marketa; Honzik, Tomas

    2017-07-01

    Cardiomyopathy is a common manifestation in neonates and infants with mitochondrial disorders. In this study, we report two cases manifesting with fatal mitochondrial hypertrophic cardiomyopathy, which include the third known patient with thymidine kinase 2 deficiency and the ninth patient with alanyl-tRNA synthetase 2 deficiency. The girl with thymidine kinase 2 deficiency had hypertrophic cardiomyopathy together with regression of gross motor development at the age of 13 months. Neurological symptoms and cardiac involvement progressed into severe myopathy, psychomotor arrest, and cardiorespiratory failure at the age of 22 months. The imaging methods and autoptic studies proved that she suffered from unique findings of leucoencephalopathy, severe, mainly cerebellar neuronal degeneration, and hepatic steatosis. The girl with alanyl-tRNA synthetase 2 deficiency presented with cardiac failure and underlying hypertrophic cardiomyopathy within 12 hours of life and subsequently died at 9 weeks of age. Muscle biopsy analyses demonstrated respiratory chain complex I and IV deficiencies, and histological evaluation revealed massive mitochondrial accumulation and cytochrome c oxidase-negative fibres in both cases. Exome sequencing in the first case revealed compound heterozygozity for one novel c.209T>C and one previously published c.416C>T mutation in the TK2 gene, whereas in the second case homozygozity for the previously described mutation c.1774C>T in the AARS2 gene was determined. The thymidine kinase 2 mutations resulted in severe mitochondrial DNA depletion (to 12% of controls) in the muscle. We present, for the first time, severe leucoencephalopathy and hepatic steatosis in a patient with thymidine kinase 2 deficiency and the finding of a ragged red fibre-like image in the muscle biopsy in a patient with alanyl-tRNA synthetase 2 deficiency.

  18. [Investigation into the relationship between mitochondrial 12 S rRNA gene, tRNA gene and cytochrome oxidase Ⅱ gene variations and the risk of noise-induced hearing loss].

    Science.gov (United States)

    Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F

    2017-01-06

    Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis

  19. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    Science.gov (United States)

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Summary Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion (GSIS) by 50%, whereas suppression of the parallel ATP-producing isoform (ΔSCS-ATP) increased GSIS by two-fold in INS-1 832/13 cells and cultured rat islets. Insulin secretion correlated with increases in cytosolic calcium but not with changes in NAD(P)H or the ATP/ADP ratio. These data suggest an important role for mtGTP in mediating GSIS in β-cells by modulation of mitochondrial metabolism possibly via influencing mitochondrial calcium. Furthermore, by virtue of its tight coupling to TCA oxidation rates, mtGTP production may serve as an important molecular signal of TCA cycle activity. PMID:17403370

  20. Cardiac abnormalities in diabetic patients with mutation in the mitochondrial tRNA {sup Leu(UUR)}Gene

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Hiroshi [Hyogo Medical Center for Adults, Akashi (Japan); Shiotani, Hideyuki

    1999-11-01

    An A-to-G transition at position 3243 of the mitochondrial DNA is known to be a pathogenic factor for mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS), diabetes and cardiomyopathy. This mutation causes dysfunction of the central nervous system in MELAS. Because the heart, as well as the brain and nervous system, is highly dependent on the energy produced by mitochondrial oxidation, these tissues are more vulnerable to mitochondrial defects. Cardiac abnormalities were assessed in 10 diabetic patients associated with this mutation using echocardiography and {sup 123}I-metaiodobenzylguanidine (MIBG) scintigraphy, and compared with 19 diabetic patients without the mutation. Duration of diabetes, therapy, control of blood glucose and diabetic complications, such as diabetic retinopathy and nephropathy, were not different between the 2 groups. Diabetic patients with the mutation had a significantly thicker interventricular septum (16.8{+-}3.7 vs 11.0{+-}1.6 mm, p<0.001) than those without the mutation. Fractional shortening was lower in diabetic patients with the mutation than those without it (30.7{+-}7.0 vs 42.5{+-}6.6, p<0.001). MIBG uptake on the delayed MIBG image was significantly lower in diabetic patients with the mutation than in those without the mutation (mean value of the heart to mediastinum ratio: 1.6{+-}0.2 vs 2.0{+-}0.4, p>0.05). In conclusion, left ventricular hypertrophy with or without abnormal wall motion and severely reduced MIBG uptake may be characteristic in diabetic patients with a mutation in the mitochondrial tRNA {sup Leu(UUR)} gene. (author)

  1. Complete mitochondrial genome of a wild Siberian tiger.

    Science.gov (United States)

    Sun, Yujiao; Lu, Taofeng; Sun, Zhaohui; Guan, Weijun; Liu, Zhensheng; Teng, Liwei; Wang, Shuo; Ma, Yuehui

    2015-01-01

    In this study, the complete mitochondrial genome of Siberian tiger (Panthera tigris altaica) was sequenced, using muscle tissue obtained from a male wild tiger. The total length of the mitochondrial genome is 16,996 bp. The genome structure of this tiger is in accordance with other Siberian tigers and it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes, and 1 control region.

  2. The complete mitochondrial genome of the Fancy Pigeon, Columba livia (Columbiformes: Columbidae).

    Science.gov (United States)

    Zhang, Rui-Hua; Xu, Ming-Ju; Wang, Cun-Lian; Xu, Tong; Wei, Dong; Liu, Bao-Jian; Wang, Guo-Hua

    2015-02-01

    The fancy pigeons are domesticated varieties of the rock pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of fancy pigeon for the first time. The total length of the mitogenome was 17,233 bp with the base composition of 30.1% for A, 24.0% for T, 31.9% for C, and 14.0% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of fancy pigeon would serve as an important data set of the germplasm resources for further study.

  3. The complete mitochondrial genome of the ice pigeon (Columba livia breed ice).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao

    2015-02-01

    The ice pigeon is a breed of fancy pigeon developed over many years of selective breeding. In the present work, we report the complete mitochondrial genome sequence of ice pigeon for the first time. The total length of the mitogenome was 17,236 bp with the base composition of 30.2% for A, 24.0% for T, 31.9% for C, and 13.9% for G and an A-T (54.2 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of ice pigeon would serve as an important data set of the germplasm resources for further study.

  4. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  5. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  6. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  7. Complete mitochondrial genome sequence of Melipona scutellaris, a Brazilian stingless bee.

    Science.gov (United States)

    Pereira, Ulisses de Padua; Bonetti, Ana Maria; Goulart, Luiz Ricardo; Santos, Anderson Rodrigues Dos; Oliveira, Guilherme Correa de; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos

    2016-09-01

    Melipona scutellaris is a Brazilian stingless bee species and a highly important native pollinator besides its use in rational rearing for honey production. In this study, we present the whole mitochondrial DNA sequence of M. scutellaris from a haploid male. The mitogenome has a size of 14,862 bp and harbors 13 protein-coding genes (PCGs), 2 rRNA genes and 21 tRNA genes.

  8. Complete mitochondrial genome of the Kwangtung skate: Dipturus kwangtungensis (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho

    2015-01-01

    The complete sequence of mitochondrial DNA of a Kwangtung skate, Dipturus kwangtungensis, was determined as being circular molecules of 16,912 bp including 2 rRNA, 22 tRNA, 13 protein coding genes (PCGs) and a control region. The arrangement of the PCGs is the same as that found in other Rajidae species. The nucleotide of L-strand which encodes most of the proteins is composed of 30.2% A, 27.4% C, 28.2% T and 14.2% G with a bias toward A+T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of tRNA(Ser)AGY, which has a reduced DHU arm. This mitogenome is the first report for a species of the genus Dipturus, which will become an important source of information on the phylogenetic relationship and the evolution of the genus Dipturus within the family Rajidae.

  9. Analyzing import intermediates of mitochondrial proteins by blue native gel electrophoresis.

    Science.gov (United States)

    Waizenegger, Thomas; Rapaport, Doron

    2007-01-01

    Blue native gel electrophoresis (BNGE) is a powerful tool for analyzing native protein complexes from biological membranes as well as water-soluble proteins. It can be used for determining relative molecular masses of protein complexes and their subunit composition and for the detection of subcomplexes. We describe the analysis by BNGE of in vitro import reactions composed of radiolabeled precursor proteins and isolated mitochondria. Such an analysis is a powerful tool to follow import intermediates and to study assembly of protein complexes. Analysis of import reactions by BNGE provides information on the molecular mass of the complex with which the imported precursor is associated. In addition, components of such a complex can be identified by incubating the mitochondrial lysate with either soluble antibodies or antibodies coupled to protein A matrix. The binding of soluble antibodies to specific complexes results in an observed shift in their apparent molecular mass (antibody shift). Alternatively, addition of matrix-bound antibodies followed by removal of the matrix from the mixture will result in depletion of the specific complex from the mitochondrial lysate (antibody depletion). The experimental details of these techniques are described.

  10. Elevated mitochondrial gene expression during rat liver regeneration after portal vein ligation.

    Science.gov (United States)

    Shimizu, Y; Suzuki, H; Nimura, Y; Onoue, S; Nagino, M; Tanaka, M; Ozawa, T

    1995-10-01

    We explored the molecular basis of mitochondrial energy production during rat liver regeneration after portal vein ligation. Ligation of the left branch of the portal vein induces an increase in the weight of the nonligated lobe, counterbalancing the reduced weight of the ligated lobe. Using this model, we investigated changes in mitochondrial DNA-binding proteins, mitochondrial DNA, and mitochondrial messenger RNA (mRNA) in rat hepatocytes of the nonligated lobes. The amount of mitochondrial DNA-binding protein increased maximally (200% to 300% of the preoperative level) at 12 hours after the operation, before an increase (390%) in mitochondrial DNA content at 24 hours, and parallel to an increase (240%) in mitochondrial mRNA levels at 12 hours. These results suggest that the energy supply for liver regeneration is achieved through enhancement of mitochondrial DNA replication as well as transcription, in which the mitochondrial DNA-binding proteins probably play regulatory roles. We also found that in the nonligated lobes, mRNA levels of hepatocyte growth factor increased to a detectable level only 12 hours after the operation. These molecular biochemical data help explain why preoperative portal vein embolization, which is a modification of portal vein branch ligation, is an effective method to prevent posthepatectomy liver failure.

  11. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and and Suv3p from the fission yeast, Schizosaccharomyces pombe, have been cloned for heterologous expression in E. coli. Of the two, we have succeeded in purifying the 73kDa Suv3p by Ni2+-affinity chromatography followed by cleavage of the N-terminal His-tag, cation exchange, and gel filtration. Crystals...

  12. Structure and function of initiator methionine tRNA from the mitochondria of Neurospora crassa

    International Nuclear Information System (INIS)

    Heckman, J.E.; Hecker, L.I.; Schwartzbach, S.D.; Barnett, W.E.; Baumstark, B.; RajBhandary, U.L.

    1978-01-01

    Initiator methionine tRNA from the mitochondria of Neurospora crassa has been purified and sequenced. This mitochondrial tRNA can be aminoacylated and formylated by E. coli enzymes, and is capable of initiating protein synthesis in E. coli extracts. The nucleotide composition of the mitochondrial initiator tRNA (the first mitochondrial tRNA subjected to sequence analysis) is very rich in A + U, like that reported for total mitochondrial tRNA. In two of the unique features which differentiate procaryotic from eucaryotic cytoplasmic initiator tRNAs, the mitochondrial tRNA appears to resemble the eucaryotic initiator tRNAs. Thus unlike procaryotic initiator tRNAs in which the 5' terminal nucleotide cannot form a Watson-Crick base pair to the fifth nucleotide from 3' end, the mitochondrial tRNA can form such a base pair; and like the eucaryotic cytoplasmic initiator tRNAs, the mitochondrial initiator tRNA lacks the sequence - T psiCG(or A) in loop IV. The corresponding sequence in the mitochondrial tRNA, however, is -UGCA- and not -AU(or psi)CG- as found in all eucaryotic cytoplasmic initiator tRNAs. In spite of some similarity of the mitochondrial initiator tRNA to both eucaryotic and procaryotic initiator tRNAs, the mitochondrial initiator tRNA is basically different from both these tRNAs. Between these two classes of initiator tRNAs, however, it is more homologous in sequence to procaryotic (56 to 60%) than to eucaryotic cytoplasmic initiator tRNAs

  13. Putative DNA-dependent RNA polymerase in Mitochondrial Plasmid of Paramecium caudatum Stock GT704

    Directory of Open Access Journals (Sweden)

    Trina Ekawati Tallei

    2015-10-01

    Full Text Available Mitochondria of Paramecium caudatum stock GT704 has a set of four kinds of linear plasmids with sizes of 8.2, 4.1, 2.8 and 1.4 kb. The plasmids of 8.2 and 2.8 kb exist as dimers consisting of 4.1- and 1.4-kb monomers, respectively. The plasmid 2.8 kb, designated as pGT704-2.8, contains an open reading frame encodes for putative DNA-dependent RNA polymerase (RNAP. This study reveals that this RNAP belongs to superfamily of DNA/RNA polymerase and family of T7/T3 single chain RNA polymerase and those of mitochondrial plasmid of fungi belonging to Basidiomycota and Ascomycota. It is suggested that RNAP of pGT704-2.8 can perform transcription without transcription factor as promoter recognition. Given that only two motifs were found, it could not be ascertained whether this RNAP has a full function independently or integrated with mtDNA in carrying out its function.

  14. Targeted siRNA Screens Identify ER-to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells

    Directory of Open Access Journals (Sweden)

    Thomas D. B. MacVicar

    2015-06-01

    Full Text Available Autophagy is an important stress response pathway responsible for the removal and recycling of damaged or redundant cytosolic constituents. Mitochondrial damage triggers selective mitochondrial autophagy (mitophagy, mediated by a variety of response factors including the Pink1/Parkin system. Using human retinal pigment epithelial cells stably expressing autophagy and mitophagy reporters, we have conducted parallel screens of regulators of endoplasmic reticulum (ER and mitochondrial morphology and function contributing to starvation-induced autophagy and damage-induced mitophagy. These screens identified the ER chaperone and Ca2+ flux modulator, sigma non-opioid intracellular receptor 1 (SIGMAR1, as a regulator of autophagosome expansion during starvation. Screens also identified phosphatidyl ethanolamine methyl transferase (PEMT and the IP3-receptors (IP3Rs as mediators of Parkin-induced mitophagy. Further experiments suggested that IP3R-mediated transfer of Ca2+ from the ER lumen to the mitochondrial matrix via the mitochondrial Ca2+ uniporter (MCU primes mitochondria for mitophagy. Importantly, recruitment of Parkin to damaged mitochondria did not require IP3R-mediated ER-to-mitochondrial Ca2+ transfer, but mitochondrial clustering downstream of Parkin recruitment was impaired, suggesting involvement of regulators of mitochondrial dynamics and/or transport. Our data suggest that Ca2+ flux between ER and mitochondria at presumed ER/mitochondrial contact sites is needed both for starvation-induced autophagy and for Parkin-mediated mitophagy, further highlighting the importance of inter-organellar communication for effective cellular homeostasis.

  15. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  16. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin

    2006-01-01

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  17. Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis

    OpenAIRE

    SUN, F; CHENG, S; GUAN, X; ZHANG, R; LAW, YS; Duncan, O; Murcha, M; Whelan, J; Lim, BL

    2015-01-01

    The nuclear-encoded mitochondrial-targeted proteins, multiple organellar RNA editing factors (MORF3, MORF5, MORF6) interact with AtPAP2 (Purple acid phosphatase 2) located on the chloroplast and mitochondrial outer membranes in a presequence dependent manner. Phosphorylation of the presequence of the precursor MORF3 (pMORF3) by endogenous kinases in wheat germ translation lysate, leaf extracts, or STY kinases, but not in rabbit reticulocyte translation lysate, resulted in the inhibition of pr...

  18. A cryptic targeting signal creates a mitochondrial FEN1 isoform with tailed R-Loop binding properties.

    Directory of Open Access Journals (Sweden)

    Lawrence Kazak

    Full Text Available A growing number of DNA transacting proteins is found in the nucleus and in mitochondria, including the DNA repair and replication protein Flap endonuclease 1, FEN1. Here we show a truncated FEN1 isoform is generated by alternative translation initiation, exposing a mitochondrial targeting signal. The shortened form of FEN1, which we term FENMIT, localizes to mitochondria, based on import into isolated organelles, immunocytochemistry and subcellular fractionation. In vitro FENMIT binds to flap structures containing a 5' RNA flap, and prefers such substrates to single-stranded RNA. FENMIT can also bind to R-loops, and to a lesser extent to D-loops. Exposing human cells to ethidium bromide results in the generation of RNA/DNA hybrids near the origin of mitochondrial DNA replication. FENMIT is recruited to the DNA under these conditions, and is released by RNase treatment. Moreover, high levels of recombinant FENMIT expression inhibit mtDNA replication, following ethidium bromide treatment. These findings suggest FENMIT interacts with RNA/DNA hybrids in mitochondrial DNA, such as those found at the origin of replication.

  19. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  20. Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong

    2015-06-01

    The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study.

  1. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    Science.gov (United States)

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  2. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins.

    Science.gov (United States)

    Aj Harris; Goldman, Aaron David

    2018-04-25

    Here, we generate a robust phylogenetic framework for the rRNA adenine N(6)-methyltransferase (RAMTase) protein family that shows a more ancient and complex evolutionary history within the family than previously reported. RAMTases occur universally by descent across the three domains of life, and typical orthologs within the family perform methylation of the small subunits of ribosomal RNA (rRNA). However, within the RAMTase family, two different groups of mitochondrial transcription factors, mtTFB1 and mtTFB2, have evolved in eukaryotes through neofunctionalization. Previous phylogenetic analyses have suggested that mtTFB1 and mtTFB2 comprise sister clades that arose via gene duplication, which occurred sometime following the endosymbiosis event that produced the mitochondrion. Through dense and taxonomically broad sampling of RAMTase family members especially within bacteria, we found that these eukaryotic mitochondrial transcription factors, mtTFB1 and mtTFB2, have independent origins in phylogenetically distant clades such that their divergence most likely predates the last universal common ancestor of life. The clade of mtTFB2s comprises orthologs in Opisthokonts and the clade of mtTFB1s includes orthologs in Amoebozoa and Metazoa. Thus, we clearly demonstrate that the neofunctionalization producing the transcription factor function evolved twice independently within the RAMTase family. These results are consistent with and help to elucidate outcomes from prior experimental studies, which found that some members of mtTFB1 still perform the ancestral rRNA methylation function, and the results have broader implications for understanding the evolution of new protein functions. Our phylogenetic reconstruction is also in agreement with prior studies showing two independent origins of plastid RAMTases in Viridiplantae and other photosynthetic autotrophs. We believe that this updated phylogeny of RAMTases should provide a robust evolutionary framework for ongoing

  4. Mitochondrial damage: An important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats

    International Nuclear Information System (INIS)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing; Cai, Zongwei; Dong, Chuan

    2015-01-01

    Highlights: • PM 2.5 induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM 2.5 ) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM 2.5 -induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM 2.5 with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM 2.5 exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM 2.5 exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na + K + -ATPase and Ca 2+ -ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM 2.5 -induced heart injury, and may have relations with cardiovascular disease

  5. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    International Nuclear Information System (INIS)

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-01-01

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  6. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1

    DEFF Research Database (Denmark)

    Vohra, Rupali; Gurubaran, Iswariyaraja Sridevi; Henriksen, Ulrik

    2017-01-01

    Using the human Müller cell line, MIO-M1, the aim was to study the impact of mitochondrial inhibition in Müller glia through antimycin A treatment. MIO-M1 cell survival, levels of released lactate, mitochondrial function, and glutamate uptake were studied in response to mitochondrial inhibition...... and glucose restriction. Lactate release decreased in response to glucose restriction. Combined glucose restriction and blocked mitochondrial activity decreased survival and caused collapse of the respiratory chain measured by oxygen consumption rate and extracellular acidification rate. Mitochondrial...... inhibition caused impaired glutamate uptake and decreased mRNA expression of the glutamate transporter, EAAT1. Over all, we show important roles of mitochondrial activity in MIO-M1 cell function and survival....

  7. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Gadir, Noga; Haim-Vilmovsky, Liora; Kraut-Cohen, Judith; Gerst, Jeffrey E.

    2011-01-01

    Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with m...

  8. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    Science.gov (United States)

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  9. The mitochondrial genome of the prasinophyte Prasinoderma coloniale reveals two trans-spliced group I introns in the large subunit rRNA gene.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI, we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V. This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI. Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the

  10. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    DEFF Research Database (Denmark)

    hart, Leen M; Hansen, Torben; Rietveld, Ingrid

    2005-01-01

    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase...... gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations...... in the Netherlands and Denmark. A -109 g/a variant was not associated with type 2 diabetes. Allele frequencies for the other variant, H324Q, were 3.5% in type 2 diabetic and 2.7% in control subjects, respectively. The common odds ratio across all four studies was 1.40 (95% CI 1.12-1.76), P = 0.004. There were...

  11. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer

    Science.gov (United States)

    Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

    2014-01-01

    Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

  12. EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.

    Science.gov (United States)

    Picardi, Ernesto; Quagliariello, Carla

    2006-02-01

    EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.

  13. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  14. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  15. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  16. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  17. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes

    Directory of Open Access Journals (Sweden)

    Tomas Hrbek

    2008-01-01

    Full Text Available We sequenced the complete mitochondrial genome of the pirarucu, Arapaima gigas, the largest fish of the Amazon basin, and economically one of the most important species of the region. The total length of the Arapaima gigas mitochondrial genome is 16,433 bp. The mitochondrial genome contains 13 protein-coding genes, two rRNA genes and 22 tRNA genes. Twelve of the thirteen protein-coding genes are coded on the heavy strand, while nad6 is coded on the light strand. The Arapaima gene order and content is identical to the common vertebrate form, as is codon usage and base composition. Its control region is atypical in being short at 767 bp. The control region also contains a conserved ATGTA motif recently identified in the Asian arowana, three conserved sequence blocks (CSB-1, CBS-2 and CBS-3 and its 3' end contains long series of di- and mono-nucleotide microsatellite repeats. Other osteoglossiform species for which control region sequences have been published show similar control region characteristics.

  18. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  19. Novel Functional Role of Heat Shock Protein 90 in Mitochondrial Connexin 43-Mediated Hypoxic Postconditioning

    Directory of Open Access Journals (Sweden)

    Rong-Hui Tu

    2017-11-01

    Full Text Available Background/Aims: Previous studies have shown that heat shock protein 90 (HSP90-mediated mitochondrial import of connexin 43 (Cx43 is critical in preconditioning cardioprotection. The present study was designed to test whether postconditioning has the same effect as preconditioning in promoting Cx43 translocation to mitochondria and whether mitochondrial HSP90 modulates this effect. Methods: Cellular models of hypoxic postconditioning (HPC from rat heart-derived H9c2 cells and neonatal rat cardiomyocytes were employed. The effects of HPC on cardiomyocytes apoptosis were examined by flow cytometry and Hoechst 33342 fluorescent staining. Reactive oxidative species (ROS production was assessed with the peroxide-sensitive fluorescent probe 2′,7′-dichlorofluorescin in diacetate (DCFH-DA. The anti- and pro-apoptotic markers Bcl-2 and Bax, HSP90 and Cx43 protein levels were studied by Western blot analysis in total cell homogenate and sarcolemmal and mitochondrial fractions. The effects on HPC of the HSP90 inhibitor geldanamycin (GA, ROS scavengers superoxide dismutase (SOD and catalase (CAT, and small interfering RNA (siRNA targeting Cx43 and HSP90 were also investigated. Results: HPC significantly reduced hypoxia/reoxygenation (H/R-induced cardiomyocyte apoptosis. These beneficial effects were accompanied by an increase in Bcl-2 levels and a decrease in Bax levels in both sarcolemmal and mitochondrial fractions. HPC with siRNA targeting Cx43 or the ROS scavengers SOD plus CAT significantly prevented ROS generation and HPC cardioprotection, but HPC with either SOD or CAT did not. These data strongly supported the involvement of Cx43 in HPC cardioprotection, likely via modulation of the ROS balance which plays a central role in HPC protection. Furthermore, HPC increased total and mitochondrial levels of HSP90 and the mitochondria-to-sarcolemma ratio of Cx43; blocking the function of HSP90 with the HSP90 inhibitor geldanamycin (GA or siRNA targeting

  20. Characterisation of peacock (Pavo cristatus) mitochondrial 12S rRNA sequence and its use in differentiation from closely related poultry species.

    Science.gov (United States)

    Saini, M; Das, D K; Dhara, A; Swarup, D; Yadav, M P; Gupta, P K

    2007-04-01

    1. Poaching of peacocks, the national bird of India, is illegal. People kill this beautiful pheasant bird for tail feathers and mix the meat with chicken or turkey. Differentiation of the meat of these species is essential in order to address the ambiguity about the origin of the sample. 2. The present study was carried out to investigate the use of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene for identification of these species. 3. Peacock mitochondrial 12S rRNA partial gene was amplified using universal primers, cloned and characterised. It was found to be 446 nucleotides long. 4. Sequence analysis revealed 86.8 and 84.1% similarity with reported turkey and chicken sequences, respectively. Sequence and phylogenetic analysis showed that the peacock is much closer to the turkey than the chicken. 5. PCR-RFLP of 446 bp amplicon using commonly available restriction enzymes AluI and Sau3AI produced a differential pattern for identifying these poultry species unambiguously.

  1. Mitochondrial GTP Regulates Glucose-Induced Insulin Secretion

    OpenAIRE

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Substrate-level mitochondrial GTP (mtGTP) and ATP (mtATP) synthesis occurs by nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl CoA synthetase (SCS). Unlike mtATP, each molecule of glucose metabolized produces approximately one mtGTP in pancreatic β-cells independent of coupling with oxidative phosphorylation making mtGTP a potentially important fuel signal. siRNA suppression of the GTP-producing pathway (ΔSCS-GTP) reduced glucose-stimulated insulin secretion ...

  2. The complete mitochondrial genome of the three-spot seahorse, Hippocampus trimaculatus (Teleostei, Syngnathidae).

    Science.gov (United States)

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Liao, Yun-Chih

    2013-12-01

    The complete mitochondrial genome of the three-spot seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,535 bp and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The mitochondrial gene order of the three-spot seahorse also conforms to the distinctive vertebrate mitochondrial gene order. The base composition of the genome is A (32.7%), T (29.3%), C (23.4%), and G (14.6%) with an A + T-rich hallmark as that of other vertebrate mitochondrial genomes.

  3. Complete mitochondrial genome of Eruca sativa Mill. (Garden rocket.

    Directory of Open Access Journals (Sweden)

    Yankun Wang

    Full Text Available Eruca sativa (Cruciferae family is an ancient crop of great economic and agronomic importance. Here, the complete mitochondrial genome of Eruca sativa was sequenced and annotated. The circular molecule is 247,696 bp long, with a G+C content of 45.07%, containing 33 protein-coding genes, three rRNA genes, and 18 tRNA genes. The Eruca sativa mitochondrial genome may be divided into six master circles and four subgenomic molecules via three pairwise large repeats, resulting in a more dynamic structure of the Eruca sativa mtDNA compared with other cruciferous mitotypes. Comparison with the Brassica napus MtDNA revealed that most of the genes with known function are conserved between these two mitotypes except for the ccmFN2 and rrn18 genes, and 27 point mutations were scattered in the 14 protein-coding genes. Evolutionary relationships analysis suggested that Eruca sativa is more closely related to the Brassica species and to Raphanus sativus than to Arabidopsis thaliana.

  4. Mitochondrial damage: An important mechanism of ambient PM{sub 2.5} exposure-induced acute heart injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Tian, Jingjing [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China); Cai, Zongwei, E-mail: zwcai@hkbu.edu.hk [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR (China); Dong, Chuan, E-mail: dc@sxu.edu.cn [Institute of Environmental Science, College of Environmental & Resource Sciences, Shanxi University, Taiyuan (China)

    2015-04-28

    Highlights: • PM{sub 2.5} induces heart mitochondrial morphological damage of rats. • Mitochondrial fission/fusion gene expression is important regulation mechanism. • Proinflammatoy cytokine level changes are accompanied with mitochondrial damage. • Alterations in oxidative stress and calcium homeostasis are focused on. - Abstract: Epidemiological studies suggested that ambient fine particulate matter (PM{sub 2.5}) exposure was associated with cardiovascular disease. However, the underlying mechanism, especially the mitochondrial damage mechanism, of PM{sub 2.5}-induced heart acute injury is still unclear. In this study, the alterations of mitochondrial morphology and mitochondrial fission/fusion gene expression, oxidative stress, calcium homeostasis and inflammation in hearts of rats exposed to PM{sub 2.5} with different dosages (0.375, 1.5, 6.0 and 24.0 mg/kg body weight) were investigated. The results indicated that the PM{sub 2.5} exposure induced pathological changes and ultra-structural damage in hearts such as mitochondrial swell and cristae disorder. Furthermore, PM{sub 2.5} exposure significantly increased specific mitochondrial fission/fusion gene (Fis1, Mfn1, Mfn2, Drp1 and OPA1) expression in rat hearts. These changes were accompanied by decreases of activities of superoxide dismutase (SOD), Na{sup +}K{sup +}-ATPase and Ca{sup 2+}-ATPase and increases of levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) as well as levels of pro-inflammatory mediators including TNF-α, IL-6 and IL-1β in rat hearts. The results implicate that mitochondrial damage, oxidative stress, cellular homeostasis imbalance and inflammation are potentially important mechanisms for the PM{sub 2.5}-induced heart injury, and may have relations with cardiovascular disease.

  5. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  6. The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.

    Science.gov (United States)

    Tang, Bo-Ping; Xin, Zhao-Zhe; Liu, Yu; Zhang, Dai-Zhen; Wang, Zheng-Fei; Zhang, Hua-Bin; Chai, Xin-Yue; Zhou, Chun-Lin; Liu, Qiu-Ning

    2017-01-01

    Mitochondrial genome (mitogenome) is very important to understand molecular evolution and phylogenetics. Herein, in this study, the complete mitogenome of Sesarmops sinensis was reported. The mitogenome was 15,905 bp in size, and contained 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The AT skew and the GC skew are both negative in the mitogenomes of S. sinensis. The nucleotide composition of the S. sinensis mitogenome was also biased toward A + T nucleotides (75.7%). All tRNA genes displayed a typical mitochondrial tRNA cloverleaf structure, except for the trnS1 gene, which lacked a dihydroxyuridine arm. S. sinensis exhibits a novel rearrangement compared with the Pancrustacean ground pattern and other Brachyura species. Based on the 13 PCGs, the phylogenetic analysis showed that S. sinensis and Sesarma neglectum were clustered on one branch with high nodal support values, indicating that S. sinensis and S. neglectum have a sister group relationship. The group (S. sinensis + S. neglectum) was sister to (Parasesarmops tripectinis + Metopaulias depressus), suggesting that S. sinensis belongs to Grapsoidea, Sesarmidae. Phylogenetic trees based on amino acid sequences and nucleotide sequences of mitochondrial 13 PCGs using BI and ML respectively indicate that section Eubrachyura consists of four groups clearly. The resulting phylogeny supports the establishment of a separate subsection Potamoida. These four groups correspond to four subsections of Raninoida, Heterotremata, Potamoida, and Thoracotremata.

  7. The mitochondrial genome of Toxocara canis.

    Science.gov (United States)

    Jex, Aaron R; Waeschenbach, Andrea; Littlewood, D Timothy J; Hu, Min; Gasser, Robin B

    2008-08-06

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  8. The mitochondrial genome of Toxocara canis.

    Directory of Open Access Journals (Sweden)

    Aaron R Jex

    2008-08-01

    Full Text Available Toxocara canis (Ascaridida: Nematoda, which parasitizes (at the adult stage the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secementean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida. The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts.

  9. The Mitochondrial Genome of Toxocara canis

    Science.gov (United States)

    Littlewood, D. Timothy J.; Hu, Min; Gasser, Robin B.

    2008-01-01

    Toxocara canis (Ascaridida: Nematoda), which parasitizes (at the adult stage) the small intestine of canids, can be transmitted to a range of other mammals, including humans, and can cause the disease toxocariasis. Despite its significance as a pathogen, the genetics, epidemiology and biology of this parasite remain poorly understood. In addition, the zoonotic potential of related species of Toxocara, such as T. cati and T. malaysiensis, is not well known. Mitochondrial DNA is known to provide genetic markers for investigations in these areas, but complete mitochondrial genomic data have been lacking for T. canis and its congeners. In the present study, the mitochondrial genome of T. canis was amplified by long-range polymerase chain reaction (long PCR) and sequenced using a primer-walking strategy. This circular mitochondrial genome was 14162 bp and contained 12 protein-coding, 22 transfer RNA, and 2 ribosomal RNA genes consistent for secernentean nematodes, including Ascaris suum and Anisakis simplex (Ascaridida). The mitochondrial genome of T. canis provides genetic markers for studies into the systematics, population genetics and epidemiology of this zoonotic parasite and its congeners. Such markers can now be used in prospecting for cryptic species and for exploring host specificity and zoonotic potential, thus underpinning the prevention and control of toxocariasis in humans and other hosts. PMID:18682828

  10. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  11. Kinetoplastid guide RNA biogenesis is dependent on subunits of the mitochondrial RNA binding complex 1 and mitochondrial RNA polymerase

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Číčová, Zdeňka; Novotná, Lucie; Wen, Y.-Z.; Lukeš, Julius

    2009-01-01

    Roč. 15, č. 4 (2009), s. 588-599 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667; GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GD524/03/H133 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * guide RNA * mitochondrion * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  12. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  13. Mitochondrial GTP Regulates Glucose-Stimulated Insulin Secretion

    OpenAIRE

    Kibbey, Richard G.; Pongratz, Rebecca L.; Romanelli, Anthony J.; Wollheim, Claes B.; Cline, Gary W.; Shulman, Gerald I.

    2007-01-01

    Nucleotide-specific isoforms of the tricarboxylic acid (TCA) cycle enzyme succinyl-CoA synthetase (SCS) catalyze substrate-level synthesis of mitochondrial GTP (mtGTP) and ATP (mtATP). While mtATP yield from glucose metabolism is coupled with oxidative phosphorylation and can vary, each molecule of glucose metabolized within pancreatic beta cells produces approximately one mtGTP, making mtGTP a potentially important fuel signal. In INS-1 832/13 cells and cultured rat islets, siRNA suppression...

  14. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules.

    Science.gov (United States)

    Aldinger, Carolin A; Leisinger, Anne-Katrin; Gaston, Kirk W; Limbach, Patrick A; Igloi, Gabor L

    2012-10-01

    It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.

  15. Mitochondrial genome sequence of Egyptian swift Rock Pigeon (Columba livia breed Egyptian swift).

    Science.gov (United States)

    Li, Chun-Hong; Shi, Wei; Shi, Wan-Yu

    2015-06-01

    The Egyptian swift Rock Pigeon is a breed of fancy pigeon developed over many years of selective breeding. In this work, we report the complete mitochondrial genome sequence of Egyptian swift Rock Pigeon. The total length of the mitogenome was 17,239 bp and its overall base composition was estimated to be 30.2% for A, 24.0% for T, 31.9% for C and 13.9% for G, indicating an A-T (54.2%)-rich feature in the mitogenome. It contained the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a non-coding control region (D-loop region). The complete mitochondrial genome sequence of Egyptian swift Rock Pigeon would serve as an important data set of the germplasm resources for further study.

  16. The mitochondrial genome of an aquatic plant, Spirodela polyrhiza.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt genome could provide clues for the understanding of the evolution of mt genomes in plant. METHODS: Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method. CONCLUSIONS: This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs cover 71,783 bp (31.0% of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1% of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot

  17. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    He, Shu-Lan [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Tan, Wu-Hong, E-mail: tanwh@mail.xjtu.edu.cn [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Zhang, Zeng-Tie; Zhang, Feng [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Qu, Cheng-Juan [Institute of Biomedicine, University of Eastern Finland, Kuopio (Finland); Lei, Yan-Xia; Zhu, Yan-He [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Yu, Han-Jie [Department of Biotechnology, Northwest University, Xi' an, Shaanxi 710069 (China); Xiang, You-Zhang [Shandong Institute for prevention and Treatment of Endemic Disease, Jinan, Shandong 250014 (China); and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  18. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity.

    Directory of Open Access Journals (Sweden)

    Janet H C Yeo

    Full Text Available We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.

  19. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability.

    Science.gov (United States)

    Cechová, Jana; Lýsek, Jirí; Bartas, Martin; Brázda, Václav

    2018-04-01

    The NCBI database contains mitochondrial DNA (mtDNA) genomes from numerous species. We investigated the presence and locations of inverted repeat sequences (IRs) in these mtDNA sequences, which are known to be important for regulating nuclear genomes. IRs were identified in mtDNA in all species. IR lengths and frequencies correlate with evolutionary age and the greatest variability was detected in subgroups of plants and fungi and the lowest variability in mammals. IR presence is non-random and evolutionary favoured. The frequency of IRs generally decreased with IR length, but not for IRs 24 or 30 bp long, which are 1.5 times more abundant. IRs are enriched in sequences from the replication origin, followed by D-loop, stem-loop and miscellaneous sequences, pointing to the importance of IRs in regulatory regions of mitochondrial DNA. Data were produced using Palindrome analyser, freely available on the web at http://bioinformatics.ibp.cz. vaclav@ibp.cz. Supplementary data are available at Bioinformatics online.

  20. The mitochondrial genome of Paramphistomum cervi (Digenea, the first representative for the family Paramphistomidae.

    Directory of Open Access Journals (Sweden)

    Hong-Bin Yan

    Full Text Available We determined the complete mitochondrial DNA (mtDNA sequence of a fluke, Paramphistomum cervi (Digenea: Paramphistomidae. This genome (14,014 bp is slightly larger than that of Clonorchis sinensis (13,875 bp, but smaller than those of other digenean species. The mt genome of P. cervi contains 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 2 non-coding regions (NCRs, a complement consistent with those of other digeneans. The arrangement of protein-coding and ribosomal RNA genes in the P. cervi mitochondrial genome is identical to that of other digeneans except for a group of Schistosoma species that exhibit a derived arrangement. The positions of some transfer RNA genes differ. Bayesian phylogenetic analyses, based on concatenated nucleotide sequences and amino-acid sequences of the 12 protein-coding genes, placed P. cervi within the Order Plagiorchiida, but relationships depicted within that order were not quite as expected from previous studies. The complete mtDNA sequence of P. cervi provides important genetic markers for diagnostics, ecological and evolutionary studies of digeneans.

  1. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  2. The complete mitochondrial genome of the tiger tail seahorse, Hippocampus comes (Teleostei, Syngnathidae).

    Science.gov (United States)

    Chang, Chia-Hao; Lin, Han-Yang; Jang-Liaw, Nian-Hong; Shao, Kwang-Tsao; Lin, Yeong-Shin; Ho, Hsuan-Ching

    2013-06-01

    The complete mitochondrial genome of the tiger tail seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,525 bp and includes 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, and a control region. The mitochondrial gene arrangement of the tiger tail seahorse is also matching the one observed in the most vertebrate creatures. Base composition of the genome is A (32.8%), T (29.8%), C (23.0%), and G (14.4%) with an A+T-rich hallmark as that of other vertebrate mitochondrial genomes.

  3. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Wahlestedt Claes

    2007-03-01

    Full Text Available Abstract Background Mutations in the PTEN induced putative kinase 1 (PINK1 are implicated in early-onset Parkinson's disease. PINK1 is expressed abundantly in mitochondria rich tissues, such as skeletal muscle, where it plays a critical role determining mitochondrial structural integrity in Drosophila. Results Herein we characterize a novel splice variant of PINK1 (svPINK1 that is homologous to the C-terminus regulatory domain of the protein kinase. Naturally occurring non-coding antisense provides sophisticated mechanisms for diversifying genomes and we describe a human specific non-coding antisense expressed at the PINK1 locus (naPINK1. We further demonstrate that PINK1 varies in vivo when human skeletal muscle mitochondrial content is enhanced, supporting the idea that PINK1 has a physiological role in mitochondrion. The observation of concordant regulation of svPINK1 and naPINK1 during in vivo mitochondrial biogenesis was confirmed using RNAi, where selective targeting of naPINK1 results in loss of the PINK1 splice variant in neuronal cell lines. Conclusion Our data presents the first direct observation that a mammalian non-coding antisense molecule can positively influence the abundance of a cis-transcribed mRNA under physiological abundance conditions. While our analysis implies a possible human specific and dsRNA-mediated mechanism for stabilizing the expression of svPINK1, it also points to a broader genomic strategy for regulating a human disease locus and increases the complexity through which alterations in the regulation of the PINK1 locus could occur.

  4. Association of mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol involves catalytic domain of the synthetase and transframe and integrase domains of Pol

    Directory of Open Access Journals (Sweden)

    Shalak V. F.

    2011-10-01

    Full Text Available Aim. Analyze the interaction between Lysyl-tRNA synthetase (LysRS and HIV-1 GagPol to know whether a particular N-terminal sequence of mitochondrial LysRS triggers a specific recognition with GagPol. Methods. Yeast two-hybrid analysis, immunoprecipitation. Results. We have shown that LysRS associates with the Pol domain of GagPol. Conclusions. A model of the assembly of the LysRS:tRNA3Lys:GagPol packaging complex is proposed.

  5. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner.

    Science.gov (United States)

    Loutre, Romuald; Heckel, Anne-Marie; Jeandard, Damien; Tarassov, Ivan; Entelis, Nina

    2018-01-01

    Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion

  6. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    Science.gov (United States)

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  7. Complete mitochondrial genome of the Freshwater Catfish Rita rita (Siluriformes, Bagridae).

    Science.gov (United States)

    Lashari, Punhal; Laghari, Muhammad Younis; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Deng, Yulin; Sun, Xiaowen; Zhang, Yan

    2015-01-01

    The complete mitochondrial genome of Catfish, Rita rita, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome, which is listed Critically Endangered and Red Listed species. The complete mitogenome was 16,449 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 33.40% A, 27.43% C, 14.26% G and 24.89% T. The complete mitochondrial genome of catfish, Rita rita provides the basis for genetic breeding and conservation studies.

  8. Complete mitochondrial genome of the Loligo opalescence.

    Science.gov (United States)

    Jiang, Lihua; Liu, Wei; Zhu, Aiyi; Zhang, Jianshe; Wu, Changwen

    2016-09-01

    In this study, we determined the complete mitochondrial genome of the Loligo opalescence. The genome was 17,370 bp in length and contained 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 3 main non-coding regions. The composition and order of genes, were similar to most other invertebrates. The overall base composition of L. opalescence is A 38.62%, C 19.40%, T 32.37% and G 9.61%, with a highly A + T bias of 70.99%. All of the three control regions (CR) contain termination-associated sequences and conserved sequence blocks. This mitogenome sequence data would play an important role in the investigation of phylogenetic relationship, taxonomic resolution and phylogeography of the Loliginidae.

  9. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer.

    Science.gov (United States)

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D; Upadhyay, Daya

    2009-02-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 muM) followed by cisplatin (35 muM) plus etoposide (20 muM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4'diisothiocyanatostilbene-2,2'disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-rho0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer

  10. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    Science.gov (United States)

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger

  11. Optimization of chemiluminescent detection of mitochondrial RNA ...

    African Journals Online (AJOL)

    RNA mobility shift is one among many procedures used to study RNA-protein interaction. Yet, there are some limitations for the radioactive RNA mobility shift including; 1) the risk of using radiolabeled nucleotides, 2) the long time to get the results; this could range from days to weeks, and 3) its high cost as compared to ...

  12. Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales).

    Science.gov (United States)

    Yang, Eun Chan; Kim, Kyeong Mi; Boo, Ga Hun; Lee, Jung-Hyun; Boo, Sung Min; Yoon, Hwan Su

    2014-08-01

    We describe the first complete mitochondrial genome of Gelidium vagum (Gelidiales) (24,901 bp, 30.4% GC content), an agar-producing red alga. The circular mitochondrial genome contains 43 genes, including 23 protein-coding, 18 tRNA and 2 rRNA genes. All the protein-coding genes have a typical ATG start codon. No introns were found. Two genes, secY and rps12, were overlapped by 41 bp.

  13. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development.

    Science.gov (United States)

    Zhang, Chenwang; Gao, Liuze; Xu, Eugene Yujun

    2016-11-01

    Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. E+ subgroup PPR protein defective kernel 36 is required for multiple mitochondrial transcripts editing and seed development in maize and Arabidopsis.

    Science.gov (United States)

    Wang, Gang; Zhong, Mingyu; Shuai, Bilian; Song, Jiandong; Zhang, Jie; Han, Liang; Ling, Huiling; Tang, Yuanping; Wang, Guifeng; Song, Rentao

    2017-06-01

    Mitochondria are semi-autonomous organelles that are the powerhouse of the cells. Plant mitochondrial RNA editing guided by pentatricopeptide repeat (PPR) proteins is essential for energy production. We identify a maize defective kernel mutant dek36, which produces small and collapsed kernels, leading to embryos and/or seedlings lethality. Seed filling in dek36 is drastically impaired, in line with the defects observed in the organization of endosperm transfer tissue. Positional cloning reveals that DEK36, encoding a mitochondria-targeted E+ subgroup PPR protein, is required for mitochondrial RNA editing at atp4-59, nad7-383 and ccmF N -302, thus resulting in decreased activities of mitochondrial complex I, complex III and complex IV in dek36. Loss-of-function of its Arabidopsis ortholog At DEK36 causes arrested embryo and endosperm development, leading to embryo lethality. At_dek36 also has RNA editing defects in atp4, nad7, ccmF N 1 and ccmF N 2 , but at the nonconserved sites. Importantly, efficiency of all editing sites in ccmF N 1 , ccmF N 2 and rps12 is severely decreased in At_dek36, probably caused by the impairment of their RNA stabilization. These results suggest that the DEK36 orthologue pair are essential for embryo and endosperm development in both maize and Arabidopsis, but through divergent function in regulating RNA metabolism of their mitochondrial targets. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  16. Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Qinyong Ye

    2017-05-01

    Full Text Available The dopaminergic neuron degeneration and loss that occurs in Parkinson’s disease (PD has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+-induced SH-SY5Y cells. We utilized RNA interference (RNAi technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα, nuclear respiratory factor 1 (NRF-1, NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ also decreased. Our finding indicates that small interfering RNA (siRNA interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD.

  17. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  18. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  19. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  20. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization.

    Science.gov (United States)

    Varas-Godoy, Manuel; Lladser, Alvaro; Farfan, Nicole; Villota, Claudio; Villegas, Jaime; Tapia, Julio C; Burzio, Luis O; Burzio, Veronica A; Valenzuela, Pablo D T

    2018-01-01

    The family of non-coding mitochondrial RNAs (ncmtRNA) is differentially expressed according to proliferative status. Normal proliferating cells express sense (SncmtRNA) and antisense ncmtRNAs (ASncmtRNAs), whereas tumor cells express SncmtRNA and downregulate ASncmtRNAs. Knockdown of ASncmtRNAs with oligonucleotides induces apoptotic cell death of tumor cells, leaving normal cells unaffected, suggesting a potential application for developing a novel cancer therapy. In this study, we knocked down the ASncmtRNAs in melanoma cell lines with a lentiviral-encoded shRNA approach. Transduction with lentiviral constructs targeted to the ASncmtRNAs induced apoptosis in murine B16F10 and human A375 melanoma cells in vitro and significantly retarded B16F10 primary tumor growth in vivo. Moreover, the treatment drastically reduced the number of lung metastatic foci in a tail vein injection assay, compared to controls. These results provide additional proof of concept to the knockdown of ncmtRNAs for cancer therapy and validate lentiviral-shRNA vectors for gene therapy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.

    Science.gov (United States)

    Sedman, Tiina; Gaidutšik, Ilja; Villemson, Karin; Hou, YingJian; Sedman, Juhan

    2014-12-01

    Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae. Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3Δ mutants. irc3Δ-related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. The Force Exerted by the Membrane Potential During Protein Import into the Mitochondrial Matrix

    Science.gov (United States)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2002-01-01

    The electrostatic force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated and found to vary from 1.4 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 12 to 6.5 Angstroms, its measured range. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a nonaqueous pore gives a force of 3.1 pN per unit charge, which represents an upper limit. When applied to mitochondrial import experiments on the protein harness, these results imply that a force of 11 plus or minus 4 pN is sufficient to catalyze the unfolding of harness during import. Comparison of these results with unfolding forces measured using atomic force microscopy suggests that the two are not inconsistent.

  3. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    Directory of Open Access Journals (Sweden)

    Xuepeng Sun

    Full Text Available Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations.

  4. Liver ultrastructural morphology and mitochondrial DNA levels in HIV/hepatitis C virus coinfection: no evidence of mitochondrial damage with highly active antiretroviral therapy.

    Science.gov (United States)

    Matsukura, Motoi; Chu, Fanny F S; Au, May; Lu, Helen; Chen, Jennifer; Rietkerk, Sonja; Barrios, Rolando; Farley, John D; Montaner, Julio S; Montessori, Valentina C; Walker, David C; Côté, Hélène C F

    2008-06-19

    Liver mitochondrial toxicity is a concern, particularly in HIV/hepatitis C virus (HCV) coinfection. Liver biopsies from HIV/HCV co-infected patients, 14 ON-highly active antiretroviral therapy (HAART) and nine OFF-HAART, were assessed by electron microscopy quantitative morphometric analyses. Hepatocytes tended to be larger ON-HAART than OFF-HAART (P = 0.05), but mitochondrial volume, cristae density, lipid volume, mitochondrial DNA and RNA levels were similar. We found no evidence of increased mitochondrial toxicity in individuals currently on HAART, suggesting that concomitant HAART should not delay HCV therapy.

  5. Mitochondrial 12S ribosomal RNA A1555G mutation associated with cardiomyopathy and hearing loss following high-dose chemotherapy and repeated aminoglycoside exposure

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim

    2014-01-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of ...... of febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides....

  6. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Science.gov (United States)

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  7. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    Directory of Open Access Journals (Sweden)

    Olga V Popova

    Full Text Available Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida and Pycnophyes kielensis (Allomalorhagida. Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even

  8. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells.

    Science.gov (United States)

    Burzio, Verónica A; Villota, Claudio; Villegas, Jaime; Landerer, Eduardo; Boccardo, Enrique; Villa, Luisa L; Martínez, Ronny; Lopez, Constanza; Gaete, Fancy; Toro, Viviana; Rodriguez, Ximena; Burzio, Luis O

    2009-06-09

    We reported the presence in human cells of a noncoding mitochondrial RNA that contains an inverted repeat (IR) of 815 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). The transcript contains a stem-loop structure and is expressed in human proliferating cells but not in resting cells. Here, we demonstrate that, in addition to this transcript, normal human proliferating cells in culture express 2 antisense mitochondrial transcripts. These transcripts also contain stem-loop structures but strikingly they are down-regulated in tumor cell lines and tumor cells present in 17 different tumor types. The differential expression of these transcripts distinguishes normal from tumor cells and might contribute a unique vision on cancer biology and diagnostics.

  9. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Science.gov (United States)

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  10. Complete mitochondrial genome of the blacknose shark Carcharhinus acronotus (Elasmobranchii: Carcharhinidae).

    Science.gov (United States)

    Yang, Lei; Matthes-Rosana, Kerri A; Naylor, Gavin J P

    2016-01-01

    The complete mitochondrial genome of the blacknose shark Carcharhinus acronotus has been determined in this work. It has a length of 16,719 bp and consisted of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region. The gene composition and genome organization was similar to other vertebrates. This study represents part of an ongoing effort to obtain mitochondrial genome sequences for chondrichthyan species in order to better estimate their phylogenetic relationships.

  11. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Bieri, Philipp; Leibundgut, Marc; Leitner, Alexander; Aebersold, Ruedi; Boehringer, Daniel; Ban, Nenad

    2015-04-17

    Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity. Copyright © 2015, American Association for the Advancement of Science.

  12. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  13. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    Science.gov (United States)

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  14. The complete mitochondrial genome of the bagarius yarrelli from honghe river

    Science.gov (United States)

    Du, M.; Zhou, C. J.; Niu, B. Z.; Liu, Y. H.; Li, N.; Ai, J. L.; Xu, G. L.

    2016-08-01

    The total length of mitochondrial DNA sequence of the Bagarius yarrelli from the Honghe river of China is determined in this paper. The total length of the circular molecule is 16524 base pair which denoted a similar gene order to that of the other bony fishes, which include a non-coding control region, a replicated origin, two ribosome RNA (rRNA) genes, 22 transfer RNA (tRNA) genes as well as 13 protein-coding genes. Its whole base constitution is 31.4% for A, 26.9% for C, 15.7% for G and 26.0% for T, with an A+T bias of 57.4%. Those mitochondrial data would contribute to further study molecular evolution and population genetics of this species.

  15. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  16. Characterization of Bombyx mori mitochondrial transcription factor A, a conserved regulator of mitochondrial DNA.

    Science.gov (United States)

    Sumitani, Megumi; Kondo, Mari; Kasashima, Katsumi; Endo, Hitoshi; Nakamura, Kaoru; Misawa, Toshihiko; Tanaka, Hiromitsu; Sezutsu, Hideki

    2017-04-15

    In the present study, we initially cloned and characterized a mitochondrial transcription factor A (Tfam) homologue in the silkworm, Bombyx mori. Bombyx mori TFAM (BmTFAM) localized to mitochondria in cultured silkworm and human cells, and co-localized with mtDNA nucleoids in human HeLa cells. In an immunoprecipitation analysis, BmTFAM was found to associate with human mtDNA in mitochondria, indicating its feature as a non-specific DNA-binding protein. In spite of the low identity between BmTFAM and human TFAM (26.5%), the expression of BmTFAM rescued mtDNA copy number reductions and enlarged mtDNA nucleoids in HeLa cells, which were induced by human Tfam knockdown. Thus, BmTFAM compensates for the function of human TFAM in HeLa cells, demonstrating that the mitochondrial function of TFAM is highly conserved between silkworms and humans. BmTfam mRNA was strongly expressed in early embryos. Through double-stranded RNA (dsRNA)-based RNA interference (RNAi) in silkworm embryos, we found that the knockdown of BmTFAM reduced the amount of mtDNA and induced growth retardation at the larval stage. Collectively, these results demonstrate that BmTFAM is a highly conserved mtDNA regulator and may be a good candidate for investigating and modulating mtDNA metabolism in this model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study of modifiers factors associated to mitochondrial mutations in individuals with hearing impairment

    International Nuclear Information System (INIS)

    Sousa de Moraes, Vanessa Cristine; Alexandrino, Fabiana; Andrade, Paula Baloni; Camara, Marilia Fontenele; Sartorato, Edi Lucia

    2009-01-01

    Hearing impairment is the most prevalent sensorial deficit in the general population. Congenital deafness occurs in about 1 in 1000 live births, of which approximately 50% has hereditary cause in development countries. Non-syndromic deafness can be caused by mutations in both nuclear and mitochondrial genes. Mutations in mtDNA have been associated with aminoglycoside-induced and non-syndromic deafness in many families worldwide. However, the nuclear background influences the phenotypic expression of these pathogenic mutations. Indeed, it has been proposed that nuclear modifier genes modulate the phenotypic manifestation of the mitochondrial A1555G mutation in the MTRNR1 gene. The both putative nuclear modifiers genes TRMU and MTO1 encoding a highly conserved mitochondrial related to tRNA modification. It has been hypothesizes that human TRMU and also MTO1 nuclear genes may modulate the phenotypic manifestation of deafness-associated mitochondrial mutations. The aim of this work was to elucidate the contribution of mitochondrial mutations, nuclear modifier genes mutations and aminoglycoside exposure in the deafness phenotype. Our findings suggest that the genetic background of individuals may play an important role in the pathogenesis of deafness-associated with mitochondrial mutation and aminoglycoside-induced.

  18. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  19. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    Science.gov (United States)

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.

  20. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  1. New progress in snake mitochondrial gene rearrangement.

    Science.gov (United States)

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.

  2. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  3. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  4. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    Science.gov (United States)

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this

  5. The complete mitochondrial genome of eastern lowland gorilla, Gorilla beringei graueri, and comparative mitochondrial genomics of Gorilla species.

    Science.gov (United States)

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we determined the complete mitochondrial (mt) genome of eastern lowland gorilla, Gorilla beringei graueri for the first time. The total genome was 16,416 bp in length. It contained a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop region). The base composition was A (30.88%), G (13.10%), C (30.89%) and T (25.13%), indicating that the percentage of A+T (56.01%) was higher than G+C (43.99%). Comparisons with the other publicly available Gorilla mitogenome showed the conservation of gene order and base compositions but a bunch of nucleotide diversity. This complete mitochondrial genome sequence will provide valuable genetic information for further studies on conservation genetics of eastern lowland gorilla.

  6. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira

    2008-01-01

    that extracellulary applied Abeta can be internalized by human neuroblastoma cells and can colocalize with mitochondrial markers. Together, these results provide further insight into the mitochondrial uptake of Abeta, a peptide considered to be of major significance in Alzheimer's disease....

  7. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone, E-mail: simone.baltrusch@med.uni-rostock.de

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of

  8. Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms.

    Science.gov (United States)

    Kemper, Martin F; Zhao, Yuanzi; Duckles, Sue P; Krause, Diana N

    2013-01-01

    Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice. This preparation reflects physiologic influences of circulating hormones, hemodynamic forces, and cell-cell interactions of the neurovascular unit. Loss of ovarian hormones affected endothelial expression of the key mitochondrial regulator family, peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), but in a unique way. Ovariectomy increased endothelial PGC-1α mRNA but decreased PGC-1β mRNA. The change in PGC-1β correlated with decreased mRNA for crucial downstream mitochondrial regulators, nuclear respiratory factor 1 and mitochondrial transcription factor A, as well as for ATP synthase and ROS protection enzymes, glutamate-cysteine ligase and manganese superoxide dismutase. Ovariectomy also decreased mitochondrial biogenesis (mitochondrial/nuclear DNA ratio). These results indicate ovarian hormones normally act through a distinctive regulatory pathway involving PGC-1β to support cerebral endothelial mitochondrial content and guide mitochondrial function to favor ATP coupling and ROS protection.

  9. Complete mitochondrial genome of freshwater shark Wallago attu (Bloch & Schneider) from Indus River Sindh, Pakistan.

    Science.gov (United States)

    Laghari, Muhammad Younis; Lashari, Punhal; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Xin, Baoping; Sun, Xiaowen; Zhang, Yan

    2016-01-01

    Complete mitochondrial genome of fresh water giant catfish, Wallago attu, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome. The complete mitogenome was 15,639 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 31.17% A, 28.15% C, 15.55% G and 25.12% T. The complete mitochondrial genome of catfish, W. attu, provides the fundamental tools for genetic breeding.

  10. The complete mitochondrial genome of the Border Collie dog.

    Science.gov (United States)

    Wu, An-Quan; Zhang, Yong-Liang; Li, Li-Li; Chen, Long; Yang, Tong-Wen

    2016-01-01

    Border Collie dog is one of the famous breed of dog. In the present work we report the complete mitochondrial genome sequence of Border Collie dog for the first time. The total length of the mitogenome was 16,730 bp with the base composition of 31.6% for A, 28.7% for T, 25.5% for C, and 14.2% for G and an A-T (60.3%)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of dogs.

  11. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Directory of Open Access Journals (Sweden)

    Chenyu Zhang

    2009-05-01

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  12. The complete mitochondrial genome of the great white shark, Carcharodon carcharias (Chondrichthyes, Lamnidae).

    Science.gov (United States)

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Fang, Yi-Chiao; Ho, Hsuan-Ching

    2014-10-01

    The complete mitochondrial genome of the great white shark having 16,744 bp and including 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, 1 replication origin region and 1 control region. The mitochondrial gene arrangement of the great white shark is the same as the one observed in the most vertebrates. Base composition of the genome is A (30.6%), T (28.7%), C (26.9%) and G (13.9%).

  13. Complete mitochondrial genome of the big-eared horseshoe bat Rhinolophus macrotis (Chiroptera, Rhinolophidae).

    Science.gov (United States)

    Zhang, Lin; Sun, Keping; Feng, Jiang

    2016-11-01

    We sequenced and characterized the complete mitochondrial genome of the big-eared horseshoe bat, Rhinolophus macrotis. Total length of the mitogenome is 16,848 bp, with a base composition of 31.2% A, 25.3% T, 28.8% C and 14.7% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S rRNA) genes, 22 tRNA genes and 1 control region. It has the same gene arrangement pattern as those of typical vertebrate mitochondrial genome. The results will contribute to our understanding of the taxonomic status and evolution in the genus Rhinolophus bats.

  14. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  15. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  16. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee; Kim, Young Sang

    2011-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H 2 O 2 -treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H 2 O 2 -treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  17. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  18. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  19. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity

    NARCIS (Netherlands)

    Speijer, Dave

    2011-01-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory

  20. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    Science.gov (United States)

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  1. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  2. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    Directory of Open Access Journals (Sweden)

    Jung Hyun Park

    2017-01-01

    Full Text Available Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2 regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA- transfected Lewis lung carcinoma (LLC cells and idh2-deficient (idh2−/− mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2−/− mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  3. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration.

    Science.gov (United States)

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP + -dependent isocitrate dehydrogenase ( idh2 ) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2 -deficient ( idh2 -/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2 -/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  4. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  5. The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    NARCIS (Netherlands)

    Stuart, Rosemary A.; Gruhler, Albrecht; Klei, Ida van der; Guiard, Bernard; Koll, Hans; Neupert, Walter

    1994-01-01

    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted.

  6. Dysregulated mitophagy and mitochondrial organization in optic atrophy due to OPA1 mutations.

    Science.gov (United States)

    Liao, Chunyan; Ashley, Neil; Diot, Alan; Morten, Karl; Phadwal, Kanchan; Williams, Andrew; Fearnley, Ian; Rosser, Lyndon; Lowndes, Jo; Fratter, Carl; Ferguson, David J P; Vay, Laura; Quaghebeur, Gerardine; Moroni, Isabella; Bianchi, Stefania; Lamperti, Costanza; Downes, Susan M; Sitarz, Kamil S; Flannery, Padraig J; Carver, Janet; Dombi, Eszter; East, Daniel; Laura, Matilde; Reilly, Mary M; Mortiboys, Heather; Prevo, Remko; Campanella, Michelangelo; Daniels, Matthew J; Zeviani, Massimo; Yu-Wai-Man, Patrick; Simon, Anna Katharina; Votruba, Marcela; Poulton, Joanna

    2017-01-10

    To investigate mitophagy in 5 patients with severe dominantly inherited optic atrophy (DOA), caused by depletion of OPA1 (a protein that is essential for mitochondrial fusion), compared with healthy controls. Patients with severe DOA (DOA plus) had peripheral neuropathy, cognitive regression, and epilepsy in addition to loss of vision. We quantified mitophagy in dermal fibroblasts, using 2 high throughput imaging systems, by visualizing colocalization of mitochondrial fragments with engulfing autophagosomes. Fibroblasts from 3 biallelic OPA1(-/-) patients with severe DOA had increased mitochondrial fragmentation and mitochondrial DNA (mtDNA)-depleted cells due to decreased levels of OPA1 protein. Similarly, in siRNA-treated control fibroblasts, profound OPA1 knockdown caused mitochondrial fragmentation, loss of mtDNA, impaired mitochondrial function, and mitochondrial mislocalization. Compared to controls, basal mitophagy (abundance of autophagosomes colocalizing with mitochondria) was increased in (1) biallelic patients, (2) monoallelic patients with DOA plus, and (3) OPA1 siRNA-treated control cultures. Mitophagic flux was also increased. Genetic knockdown of the mitophagy protein ATG7 confirmed this by eliminating differences between patient and control fibroblasts. We demonstrated increased mitophagy and excessive mitochondrial fragmentation in primary human cultures associated with DOA plus due to biallelic OPA1 mutations. We previously found that increased mitophagy (mitochondrial recycling) was associated with visual loss in another mitochondrial optic neuropathy, Leber hereditary optic neuropathy (LHON). Combined with our LHON findings, this implicates excessive mitochondrial fragmentation, dysregulated mitophagy, and impaired response to energetic stress in the pathogenesis of mitochondrial optic neuropathies, potentially linked with mitochondrial mislocalization and mtDNA depletion. Copyright © 2016 The Author(s). Published by Wolters Kluwer Health, Inc

  7. Overexpression of the mitochondrial methyltransferase TFB1M in the mouse does not impact mitoribosomal methylation status or hearing

    DEFF Research Database (Denmark)

    Lee, Seungmin; Rose, Simon; Metodiev, Metodi D

    2015-01-01

    maternally inherited traits. The pathophysiology induced by mtDNA mutations has traditionally been attributed to deficient oxidative phosphorylation, which causes energy crisis with functional impairment of multiple cellular processes. In contrast, it was recently reported that signaling induced......Mitochondrial dysfunction is a well-established cause of sensorineural deafness, but the pathophysiological events are poorly understood. Non-syndromic deafness and predisposition to aminoglycoside-induced deafness can be caused by specific mutations in the 12S rRNA gene of mtDNA and are thus...... by 'hypermethylation' of two conserved adenosines of 12S rRNA in the mitoribosome is of key pathophysiological importance in sensorineural deafness. In support for this concept, it was reported that overexpression of the essential mitochondrial methyltransferase TFB1M in the mouse was sufficient to induce...

  8. The mitochondrial genome of Elodia flavipalpis Aldrich (Diptera: Tachinidae and the evolutionary timescale of Tachinid flies.

    Directory of Open Access Journals (Sweden)

    Zhe Zhao

    Full Text Available Tachinid flies are natural enemies of many lepidopteran and coleopteran pests of forests, crops, and fruit trees. In order to address the lack of genetic data in this economically important group, we sequenced the complete mitochondrial genome of the Palaearctic tachinid fly Elodia flavipalpis Aldrich, 1933. Usually found in Northern China and Japan, this species is one of the primary natural enemies of the leaf-roller moths (Tortricidae, which are major pests of various fruit trees. The 14,932-bp mitochondrial genome was typical of Diptera, with 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. However, its control region is only 105 bp in length, which is the shortest found so far in flies. In order to estimate dipteran evolutionary relationships, we conducted a phylogenetic analysis of 58 mitochondrial genomes from 23 families. Maximum-likelihood and Bayesian methods supported the monophyly of both Tachinidae and superfamily Oestroidea. Within the subsection Calyptratae, Muscidae was inferred as the sister group to Oestroidea. Within Oestroidea, Calliphoridae and Sarcophagidae formed a sister clade to Oestridae and Tachinidae. Using a Bayesian relaxed clock calibrated with fossil data, we estimated that Tachinidae originated in the middle Eocene.

  9. The efficiency of mitochondrial DNA markers in constructing genetic ...

    African Journals Online (AJOL)

    Administrator

    2011-05-30

    May 30, 2011 ... To date, only parts of mitochondrial DNA from cytochrome b, 12S rRNA, 16S rRNA and non-coding D- loop had been sequenced for different species of Oryx. Discrepancy in the genetic relationship among. Oryx species was previously revealed when combinations of these sequences were analyzed. In the.

  10. Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta).

    Science.gov (United States)

    Kim, Kyeong Mi; Yang, Eun Chan; Kim, Jeong Ha; Nelson, Wendy A; Yoon, Hwan Su

    2015-02-01

    We present the first mitochondrial genome of the nongeniculate coralline red alga, Sporolithon durum (Sporolithales). The genome consists of 45 genes, including 24 protein-coding, 2 rRNA and 19 tRNA genes in a circular molecule of 26,202 bp with overall 28.4% GC content.

  11. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  12. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  13. Primer retention owing to the absence of RNase H1 is catastrophic for mitochondrial DNA replication.

    Science.gov (United States)

    Holmes, J Bradley; Akman, Gokhan; Wood, Stuart R; Sakhuja, Kiran; Cerritelli, Susana M; Moss, Chloe; Bowmaker, Mark R; Jacobs, Howard T; Crouch, Robert J; Holt, Ian J

    2015-07-28

    Encoding ribonuclease H1 (RNase H1) degrades RNA hybridized to DNA, and its function is essential for mitochondrial DNA maintenance in the developing mouse. Here we define the role of RNase H1 in mitochondrial DNA replication. Analysis of replicating mitochondrial DNA in embryonic fibroblasts lacking RNase H1 reveals retention of three primers in the major noncoding region (NCR) and one at the prominent lagging-strand initiation site termed Ori-L. Primer retention does not lead immediately to depletion, as the persistent RNA is fully incorporated in mitochondrial DNA. However, the retained primers present an obstacle to the mitochondrial DNA polymerase γ in subsequent rounds of replication and lead to the catastrophic generation of a double-strand break at the origin when the resulting gapped molecules are copied. Hence, the essential role of RNase H1 in mitochondrial DNA replication is the removal of primers at the origin of replication.

  14. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and

  15. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  16. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  17. Co-ordinate induction of hepatic mitochondrial and peroxisomal carnitine acyltransferase synthesis by diet and drugs.

    Science.gov (United States)

    Brady, P S; Marine, K A; Brady, L J; Ramsay, R R

    1989-01-01

    The present studies examined the effect of agents that induce peroxisomal and mitochondrial beta-oxidation on hepatic mitochondrial carnitine palmitoyltransferase (CPT) and peroxisomal carnitine acyltransferase [CPTs of Ramsay (1988) Biochem. J. 249, 239-245; COT of Farrell & Bieber (1983) Arch. Biochem. Biophys. 222, 123-132 and Miyazawa, Ozasa, Osumi & Hashimoto (1983) J. Biochem. 94, 529-542]. In the first studies, high fat diets containing corn oil or fish oil were used to induce peroxisomal and mitochondrial enzymes. Rats were fed one of three diets for 4 weeks: (1) low fat, with corn oil as 11% of energy (kJ); (2) high fat, with corn oil as 45% of kJ; (3) high fat, with fish oil as 45% of kJ. At the end of 4 weeks, both mitochondrial CPT and peroxisomal CPTs exhibited increases in activity, immunoreactive protein, mRNA levels and transcription rates in livers of rats fed either high-fat diet compared to the low fat diet. Riboflavin deficiency or starvation for 48 h also increased the peroxisomal CPTs mRNA. A second set of studies used the plasticizer 2-(diethylhexyl)phthalate (DEHP), 0.5% clofibrate or 1% acetylsalicylic acid (fed for 3 weeks) to alter peroxisomal and mitochondrial fatty acid oxidation. With DEHP, the mitochondrial CPT and peroxisomal CPTs activity, immunoreactive protein, mRNA levels and and transcription rate were all increased by 3-5-fold. The peroxisomal CPTs activity, immunoreactive protein, mRNA levels and transcription rate were increased 2-3-fold by clofibrate and acetylsalicylic acid, again similar to mitochondrial CPT. The results of the combined studies using both diet and drugs to cause enzyme induction suggest that the synthesis of the carnitine acyltransferases (mitochondrial CPT and peroxisomal CPTs) may be co-ordinated with each other; however, the co-ordinate regulatory factors have not yet been identified. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2775196

  18. Dysregulation of RNA Mediated Gene Expression in Motor Neuron Diseases.

    Science.gov (United States)

    Gonçalves, Inês do Carmo G; Rehorst, Wiebke A; Kye, Min Jeong

    2016-01-01

    Recent findings indicate an important role for RNA-mediated gene expression in motor neuron diseases, including ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). ALS, also known as Lou Gehrig's disease, is an adult-onset progressive neurodegenerative disorder, whereby SMA or "children's Lou Gehrig's disease" is considered a pediatric neurodevelopmental disorder. Despite the difference in genetic causes, both ALS and SMA share common phenotypes; dysfunction/loss of motor neurons that eventually leads to muscle weakness and atrophy. With advanced techniques in molecular genetics and cell biology, current data suggest that these two distinct motor neuron diseases share more than phenotypes; ALS and SMA have similar cellular pathological mechanisms including mitochondrial dysfunction, oxidative stress and dysregulation in RNA-mediated gene expression. Here, we will discuss the current findings on these two diseases with specific focus on RNA-mediated gene regulation including miRNA expression, pre-mRNA processing and RNA binding proteins.

  19. Evolution of a pseudogene: exclusive survival of a functional mitochondrial nad7 gene supports Haplomitrium as the earliest liverwort lineage and proposes a secondary loss of RNA editing in Marchantiidae.

    Science.gov (United States)

    Groth-Malonek, Milena; Wahrmund, Ute; Polsakiewicz, Monika; Knoop, Volker

    2007-04-01

    Gene transfer from the mitochondrion into the nucleus is a corollary of the endosymbiont hypothesis. The frequent and independent transfer of genes for mitochondrial ribosomal proteins is well documented with many examples in angiosperms, whereas transfer of genes for components of the respiratory chain is a rarity. A notable exception is the nad7 gene, encoding subunit 7 of complex I, in the liverwort Marchantia polymorpha, which resides as a full-length, intron-carrying and transcribed, but nonspliced pseudogene in the chondriome, whereas its functional counterpart is nuclear encoded. To elucidate the patterns of pseudogene degeneration, we have investigated the mitochondrial nad7 locus in 12 other liverworts of broad phylogenetic distribution. We find that the mitochondrial nad7 gene is nonfunctional in 11 of them. However, the modes of pseudogene degeneration vary: whereas point mutations, accompanied by single-nucleotide indels, predominantly introduce stop codons into the reading frame in marchantiid liverworts, larger indels introduce frameshifts in the simple thalloid and leafy jungermanniid taxa. Most notably, however, the mitochondrial nad7 reading frame appears to be intact in the isolated liverwort genus Haplomitrium. Its functional expression is shown by cDNA analysis identifying typical RNA-editing events to reconstitute conserved codon identities and also confirming functional splicing of the 2 liverwort-specific group II introns. We interpret our results 1) to indicate the presence of a functional mitochondrial nad7 gene in the earliest land plants and strongly supporting a basal placement of Haplomitrium among the liverworts, 2) to indicate different modes of pseudogene degeneration and chondriome evolution in the later branching liverwort clades, 3) to suggest a surprisingly long maintenance of a nonfunctional gene in the presumed oldest group of land plants, and 4) to support the model of a secondary loss of RNA-editing activity in marchantiid

  20. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    Science.gov (United States)

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  1. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis.

    Science.gov (United States)

    Yao, Jie; Yang, Hong; Dai, Renhuai

    2017-10-01

    Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.

  2. Next Generation Sequencing Analysis of Human Platelet PolyA+ mRNAs and rRNA-Depleted Total RNA

    Science.gov (United States)

    Kissopoulou, Antheia; Jonasson, Jon; Lindahl, Tomas L.; Osman, Abdimajid

    2013-01-01

    Background Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. Materials and Methods We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT) isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts. Results Consistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq. Conclusion The present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components compared with other cell and

  3. Next generation sequencing analysis of human platelet PolyA+ mRNAs and rRNA-depleted total RNA.

    Directory of Open Access Journals (Sweden)

    Antheia Kissopoulou

    Full Text Available BACKGROUND: Platelets are small anucleate cells circulating in the blood vessels where they play a key role in hemostasis and thrombosis. Here, we compared platelet RNA-Seq results obtained from polyA+ mRNA and rRNA-depleted total RNA. MATERIALS AND METHODS: We used purified, CD45 depleted, human blood platelets collected by apheresis from three male and one female healthy blood donors. The Illumina HiSeq 2000 platform was employed to sequence cDNA converted either from oligo(dT isolated polyA+ RNA or from rRNA-depleted total RNA. The reads were aligned to the GRCh37 reference assembly with the TopHat/Cufflinks alignment package using Ensembl annotations. A de novo assembly of the platelet transcriptome using the Trinity software package and RSEM was also performed. The bioinformatic tools HTSeq and DESeq from Bioconductor were employed for further statistical analyses of read counts. RESULTS: Consistent with previous findings our data suggests that mitochondrially expressed genes comprise a substantial fraction of the platelet transcriptome. We also identified high transcript levels for protein coding genes related to the cytoskeleton function, chemokine signaling, cell adhesion, aggregation, as well as receptor interaction between cells. Certain transcripts were particularly abundant in platelets compared with other cell and tissue types represented by RNA-Seq data from the Illumina Human Body Map 2.0 project. Irrespective of the different library preparation and sequencing protocols, there was good agreement between samples from the 4 individuals. Eighteen differentially expressed genes were identified in the two sexes at 10% false discovery rate using DESeq. CONCLUSION: The present data suggests that platelets may have a unique transcriptome profile characterized by a relative over-expression of mitochondrially encoded genes and also of genomic transcripts related to the cytoskeleton function, chemokine signaling and surface components

  4. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  5. Periodic expression of nuclear and mitochondrial DNA replication genes during the trypanosomatid cell cycle.

    Science.gov (United States)

    Pasion, S G; Brown, G W; Brown, L M; Ray, D S

    1994-12-01

    In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.

  6. The complete mitochondrial genome of the redeye mullet Liza haematocheila (Teleostei, Mugilidae).

    Science.gov (United States)

    Chen, Jianhua; Li, Yinglei; Chen, Haigang; Yan, Binlun; Meng, Xueping

    2015-01-01

    The complete mitochondrial sequence of the redeye mullet Liza haematocheila has been determined. The circle genome is 16,822 bp in size, and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a control region. The gene order and composition of L. haematocheila was similar to that of most other teleosts. The base composition of H-strand is 26.42% (A), 26.38% (T), 16.72% (G) and 30.47% (C), with an AT content of 52.8%. All genes are encoded on the heavy strand with the exception of ND6 and eight tRNA genes. The mitochondrial genome of L. haematocheila presented will be in favor of resolving phylogenetic relationships within the family Scatophagidae and the Mugiliformes.

  7. The complete mitochondrial genome of Ambastaia sidthimunki (Cypriniformes: Cobitidae).

    Science.gov (United States)

    Yu, Peng; Wei, Min; Yang, Qichao; Yang, Yingming; Wan, Quan

    2016-09-01

    Ambastaia sidthimunki is a beautiful small-sized fish and it was categorized as Endangered B2ab (iii,v) in the IUCN Red List. In this study, we reported the complete mitochondrial genome of the A. sidthimunki. The mitochondrial genome sequence was a circular molecule with 16,574 bp in length, and it contained 2 ribosomal RNA genes, 22 transfer RNA genes, 13 protein-coding genes, an L-strand replication origin (OL) and a control region (D-loop). The nucleotide acid composition of the entire mitogenome was 26.94% for C, 15.55% for G, 31.84% for A and 25.67% for T, with an AT content of 57.51%. This research contributes new molecular data for the conservation of this Endangered species.

  8. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene.

    Science.gov (United States)

    Wang, Ning; Wang, Jiahai; Hu, Dandan; Zhong, Xiuqin; Jiang, Zhongrong; Yang, Aiguo; Deng, Shijin; Guo, Li; Tsering, Dawa; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2015-06-01

    Echinococcus granulosus is the etiological agent of cystic echinococcosis, a major zoonotic disease of both humans and animals. In this study, we assessed genetic variability and genetic structure of E. granulosus in the Tibet plateau, using the complete mitochondrial 16 S ribosomal RNA gene for the first time. We collected and sequenced 62 isolates of E. granulosus from 3 populations in the Tibet plateau. A BLAST analysis indicated that 61 isolates belonged to E. granulosus sensu stricto (genotypes G1-G3), while one isolate belonged to E. canadensis (genotype G6). We detected 16 haplotypes with a haplotype network revealing a star-like expansion, with the most common haplotype occupying the center of the network. Haplotype diversity and nucleotide diversity were low, while negative values were observed for Tajima's D and Fu's Fs. AMOVA results and Fst values revealed that the three geographic populations were not genetically differentiated. Our results suggest that a population bottleneck or population expansion has occurred in the past, and that this explains the low genetic variability of E. granulosus in the Tibet Plateau.

  9. The m.3291T>C mt-tRNALeu(UUR) mutation is definitely pathogenic and causes multisystem mitochondrial disease

    Science.gov (United States)

    Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904

  10. The complete mitochondrial genome sequence of the spider habronattus oregonensis reveals rearranged and extremely truncated tRNAs

    International Nuclear Information System (INIS)

    Masta, Susan E.; Boore, Jeffrey L.

    2004-01-01

    We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs appear to be lacking, because fully paired acceptor stems are not possible and because the downstream sequences instead encode adjacent genes. Hence, these appear to be among the smallest known tRNA genes. We postulate that an RNA editing mechanism must exist to restore the 3' aminoacyl acceptor stems in order to allow the tRNAs to function. At least seven tRN As are rearranged with respect to the chelicerate Limulus polyphemus, although the arrangement of the protein-coding genes is identical. Most mitochondrial protein-coding genes of H. oregonensis have ATN as initiation codons, as commonly found in arthropod mtDNAs, but cytochrome oxidase subunit 2 and 3 genes apparently use UUG as an initiation codon. Finally, many of the gene sequences overlap one another and are truncated. This 14,381 bp genome, the first mitochondrial genome of a spider yet sequenced, is one of the smallest arthropod mitochondrial genomes known. We suggest that post transcriptional RNA editing can likely maintain function of the tRNAs while permitting the accumulation of mutations that would otherwise be deleterious. Such mechanisms may have allowed for the minimization of the spider mitochondrial genome

  11. Study on the Mitochondrial Genome of Sea Island Cotton (Gossypium barbadense) by BAC Library Screening

    Institute of Scientific and Technical Information of China (English)

    SU Ai-guo; LI Shuang-shuang; LIU Guo-zheng; LEI Bin-bin; KANG Ding-ming; LI Zhao-hu; MA Zhi-ying; HUA Jin-ping

    2014-01-01

    The plant mitochondrial genome displays complex features, particularly in terms of cytoplasmic male sterility (CMS). Therefore, research on the cotton mitochondrial genome may provide important information for analyzing genome evolution and exploring the molecular mechanism of CMS. In this paper, we present a preliminary study on the mitochondrial genome of sea island cotton (Gossypium barbadense) based on positive clones from the bacterial artiifcial chromosome (BAC) library. Thirty-ifve primers designed with the conserved sequences of functional genes and exons of mitochondria were used to screen positive clones in the genome library of the sea island cotton variety called Pima 90-53. Ten BAC clones were obtained and veriifed for further study. A contig was obtained based on six overlapping clones and subsequently laid out primarily on the mitochondrial genome. One BAC clone, clone 6 harbored with the inserter of approximate 115 kb mtDNA sequence, in which more than 10 primers fragments could be ampliifed, was sequenced and assembled using the Solexa strategy. Fifteen mitochondrial functional genes were revealed in clone 6 by gene annotation. The characteristics of the syntenic gene/exon of the sequences and RNA editing were preliminarily predicted.

  12. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  13. The complete mitochondrial genome of the gray garden slug Deroceras reticulatum (Gastropoda: Pulmonata: Stylommatophora)

    Science.gov (United States)

    The complete circular mitochondrial genome of D. reticulatum is 14,048 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA) genes (GenBank accession number: KY765589). The overall base composition was 31.0 % A, 12.2 % C, 17.7 % G and 39...

  14. The first mitochondrial genome for the butterfly family Riodinidae (Abisara fylloides) and its systematic implications.

    Science.gov (United States)

    Zhao, Fang; Huang, Dun-Yuan; Sun, Xiao-Yan; Shi, Qing-Hui; Hao, Jia-Sheng; Zhang, Lan-Lan; Yang, Qun

    2013-10-01

    The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides, the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose that the riodinids be categorized into the family Lycaenidae as a subfamilial taxon. The Riodinidae is one of the lepidopteran butterfly families. This study describes the complete mitochondrial genome of the butterfly species Abisara fylloides , the first mitochondrial genome of the Riodinidae family. The results show that the entire mitochondrial genome of A. fylloides is 15 301 bp in length, and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a 423 bp A+T-rich region. The gene content, orientation and order are identical to the majority of other lepidopteran insects. Phylogenetic reconstruction was conducted using the concatenated 13 protein-coding gene (PCG) sequences of 19 available butterfly species covering all the five butterfly families (Papilionidae, Nymphalidae, Peridae, Lycaenidae and Riodinidae). Both maximum likelihood and Bayesian inference analyses highly supported the monophyly of Lycaenidae+Riodinidae, which was standing as the sister of Nymphalidae. In addition, we propose

  15. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    Science.gov (United States)

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  16. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  17. Polymorphism in Mitochondrial Group I Introns among Cryptococcus neoformans and Cryptococcus gattii Genotypes and Its Association with Drug Susceptibility

    Directory of Open Access Journals (Sweden)

    Felipe E. E. S. Gomes

    2018-02-01

    Full Text Available Cryptococcosis, one of the most important systemic mycosis in the world, is caused by different genotypes of Cryptococcus neoformans and Cryptococcus gattii, which differ in their ecology, epidemiology, and antifungal susceptibility. Therefore, the search for new molecular markers for genotyping, pathogenicity and drug susceptibility is necessary. Group I introns fulfill the requisites for such task because (i they are polymorphic sequences; (ii their self-splicing is inhibited by some drugs; and (iii their correct splicing under parasitic conditions is indispensable for pathogen survival. Here, we investigated the presence of group I introns in the mitochondrial LSU rRNA gene in 77 Cryptococcus isolates and its possible relation to drug susceptibility. Sequencing revealed two new introns in the LSU rRNA gene. All the introns showed high sequence similarity to other mitochondrial introns from distinct fungi, supporting the hypothesis of an ancient non-allelic invasion. Intron presence was statistically associated with those genotypes reported to be less pathogenic (p < 0.001. Further virulence assays are needed to confirm this finding. In addition, in vitro antifungal tests indicated that the presence of LSU rRNA introns may influence the minimum inhibitory concentration (MIC of amphotericin B and 5-fluorocytosine. These findings point to group I introns in the mitochondrial genome of Cryptococcus as potential molecular markers for antifungal resistance, as well as therapeutic targets.

  18. Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.

    Directory of Open Access Journals (Sweden)

    Martin Kaltenpoth

    Full Text Available Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae, and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase. The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes. Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of

  19. Plastid and mitochondrial genomes of Coccophora langsdorfii (Fucales, Phaeophyceae and the utility of molecular markers.

    Directory of Open Access Journals (Sweden)

    Louis Graf

    Full Text Available Coccophora langsdorfii (Turner Greville (Fucales is an intertidal brown alga that is endemic to Northeast Asia and increasingly endangered by habitat loss and climate change. We sequenced the complete circular plastid and mitochondrial genomes of C. langsdorfii. The circular plastid genome is 124,450 bp and contains 139 protein-coding, 28 tRNA and 6 rRNA genes. The circular mitochondrial genome is 35,660 bp and contains 38 protein-coding, 25 tRNA and 3 rRNA genes. The structure and gene content of the C. langsdorfii plastid genome is similar to those of other species in the Fucales. The plastid genomes of brown algae in other orders share similar gene content but exhibit large structural recombination. The large in-frame insert in the cox2 gene in the mitochondrial genome of C. langsdorfii is typical of other brown algae. We explored the effect of this insertion on the structure and function of the cox2 protein. We estimated the usefulness of 135 plastid genes and 35 mitochondrial genes for developing molecular markers. This study shows that 29 organellar genes will prove efficient for resolving brown algal phylogeny. In addition, we propose a new molecular marker suitable for the study of intraspecific genetic diversity that should be tested in a large survey of populations of C. langsdorfii.

  20. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress

    DEFF Research Database (Denmark)

    Akbari, M; Otterlei, M; Pena Diaz, Javier

    2007-01-01

    , indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence...... BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines....

  1. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    Science.gov (United States)

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints.

  2. Morphometric Analysis of Larval Rostellar Hooks in Taenia multiceps of Sheep in Iran and Its Association with Mitochondrial Gene Variability.

    Directory of Open Access Journals (Sweden)

    Sima Rostami

    2013-12-01

    Full Text Available The purposes of the present study were morphometric characterization of rostellar hooks of Taenia multiceps and to investigate the association of hook length variation and the variability within two mitochondrial genes of sheep isolates of the parasite.Up to 4500 sheep brains were examined for the presence of C. cerebralis. Biometric characters based on the larval rostellar hook size were measured for each individual isolate. Representative mitochondrial CO1 and 12S rRNA gene sequences for each of the isolates were obtained from NCBI GenBank. Morphometric and genetic data were analyzed using cluster analysis, Interclass Correlation Coefficient (ICC and random effects model.One hundred and fourteen sheep (2.5% were found infected with the coenuri. The minimum and maximum number of scoleces per cyst was 40 and 550 respectively. Each scolex contained 22-27 hooks arranged in two rows of large and small hooks. The average total length of the large and small hooks was 158.9 and 112.1 μm, respectively. Using ICC, statistically significant clusters of different hook sizes were identified within the isolates. The length of the large and small hooks was significantly associated with the variability in mitochondrial 12S rRNA gene.Taenia multiceps, is a relatively important zoonotic infection in Iranian sheep with the prevalence rate of 2.5%. Hook length analysis revealed statistically significant difference among individual isolates. Associations between the rostellar hook length and variability in the mitochondrial 12S rRNA was documented.

  3. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The long noncoding RNA Tug1 connects metabolic changes with kidney disease in podocytes.

    Science.gov (United States)

    Li, Szu Yuan; Susztak, Katalin

    2016-11-01

    An increasing amount of evidence suggests that metabolic alterations play a key role in chronic kidney disease (CKD) pathogenesis. In this issue of the JCI, Long et al. report that the long noncoding RNA (lncRNA) taurine-upregulated 1 (Tug1) contributes to CKD development. The authors show that Tug1 regulates mitochondrial function in podocytes by epigenetic targeting of expression of the transcription factor PPARγ coactivator 1α (PGC-1α, encoded by Ppargc1a). Transgenic overexpression of Tug1 specifically in podocytes ameliorated diabetes-induced CKD in mice. Together, these results highlight an important connection between lncRNA-mediated metabolic alterations in podocytes and kidney disease development.

  5. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes.

    Science.gov (United States)

    Zhang, Kai-Jun; Zhu, Wen-Chao; Rong, Xia; Zhang, Yan-Kai; Ding, Xiu-Lei; Liu, Jing; Chen, Da-Song; Du, Yu; Hong, Xiao-Yue

    2013-06-22

    Nilaparvata lugens (the brown planthopper, BPH) and Laodelphax striatellus (the small brown planthopper, SBPH) are two of the most important pests of rice. Up to now, there was only one mitochondrial genome of rice planthopper has been sequenced and very few dependable information of mitochondria could be used for research on population genetics, phylogeographics and phylogenetic evolution of these pests. To get more valuable information from the mitochondria, we sequenced the complete mitochondrial genomes of BPH and SBPH. These two planthoppers were infected with two different functional Wolbachia (intracellular endosymbiont) strains (wLug and wStri). Since both mitochondria and Wolbachia are transmitted by cytoplasmic inheritance and it was difficult to separate them when purified the Wolbachia particles, concomitantly sequencing the genome of Wolbachia using next generation sequencing method, we also got nearly complete mitochondrial genome sequences of these two rice planthoppers. After gap closing, we present high quality and reliable complete mitochondrial genomes of these two planthoppers. The mitogenomes of N. lugens (BPH) and L. striatellus (SBPH) are 17, 619 bp and 16, 431 bp long with A + T contents of 76.95% and 77.17%, respectively. Both species have typical circular mitochondrial genomes that encode the complete set of 37 genes which are usually found in metazoans. However, the BPH mitogenome also possesses two additional copies of the trnC gene. In both mitochondrial genomes, the lengths of the atp8 gene were conspicuously shorter than that of all other known insect mitochondrial genomes (99 bp for BPH, 102 bp for SBPH). That two rearrangement regions (trnC-trnW and nad6-trnP-trnT) of mitochondrial genomes differing from other known insect were found in these two distantly related planthoppers revealed that the gene order of mitochondria might be conservative in Delphacidae. The large non-coding fragment (the A+T-rich region) putatively

  6. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patientswith type 2 diabetes

    DEFF Research Database (Denmark)

    Kruse Sørensen, Rikke; Pedersen, Andreas James Thestrup; Kristensen, Jonas Møller

    2017-01-01

    AIMS: Type 2 diabetes (T2D) is characterized by insulin resistance, mitochondrial dysregulation, and, in some studies, exercise resistance in skeletal muscle. Regulation of autophagy and mitochondrial dynamics during exercise and recovery is important for skeletal muscle homeostasis......, and these responses may be altered in T2D. MATERIALS AND METHODS: We examined the effect of acute exercise on markers of autophagy and mitochondrial fusion and fission in skeletal muscle biopsies from patients with T2D (n=13) and weight-matched controls (n=14) before, immediately after and 3h after an acute bout...... of exercise. RESULTS: While mRNA levels of most markers of autophagy ( PIK3C, MAP1LC3B, SQSTM1, BNIP3, BNIP3L ) and mitochondrial dynamics ( OPA1, FIS1 ) remained unchanged, some either increased during and after exercise (GABARAPL1 ), decreased in the recovery period ( BECN1, ATG7, DNM1L ), or both ( MFN2...

  7. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  8. Complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus Perry, 1810 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Zhang, Yanhong; Zhang, Huixian; Lin, Qiang; Huang, Liangmin

    2015-01-01

    The complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus was first determined in this article. The total length of H. erectus mitogenome is 16,529 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. erectus mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. erectus is 31.8% A, 28.6% T, 24.3% C and 15.3% G, with a slight A + T rich feature (60.4%).

  9. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect

    DEFF Research Database (Denmark)

    Antonicka, Hana; Østergaard, Elsebet; Sasarman, Florin

    2010-01-01

    We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed...... severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using...... includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species...

  10. Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2.

    Science.gov (United States)

    Guha, Manti; Fang, Ji-Kang; Monks, Robert; Birnbaum, Morris J; Avadhani, Narayan G

    2010-10-15

    Mitochondrial respiratory stress (also called mitochondrial retrograde signaling) activates a Ca(2+)/calcineurin-mediated signal that culminates in transcription activation/repression of a large number of nuclear genes. This signal is propagated through activation of the regulatory proteins NFκB c-Rel/p50, C/EBPδ, CREB, and NFAT. Additionally, the heterogeneous ribonucleoprotein A2 (hnRNPA2) functions as a coactivator in up-regulating the transcription of Cathepsin L, RyR1, and Glut-4, the target genes of stress signaling. Activation of IGF1R, which causes a metabolic switch to glycolysis, cell invasiveness, and resistance to apoptosis, is a phenotypic hallmark of C2C12 myoblasts subjected to mitochondrial stress. In this study, we report that mitochondrial stress leads to increased expression, activation, and nuclear localization of Akt1. Mitochondrial respiratory stress also activates Akt1-gene expression, which involves hnRNPA2 as a coactivator, indicating a complex interdependency of these two factors. Using Akt1(-/-) mouse embryonic fibroblasts and Akt1 mRNA-silenced C2C12 cells, we show that Akt1-mediated phosphorylation is crucial for the activation and recruitment of hnRNPA2 to the enhanceosome complex. Akt1 mRNA silencing in mtDNA-depleted cells resulted in reversal of the invasive phenotype, accompanied by sensitivity to apoptotic stimuli. These results show that Akt1 is an important regulator of the nuclear transcriptional response to mitochondrial stress.

  11. Changes in nuclear receptor corepressor RIP140 do not influence mitochondrial content in the cortex.

    Science.gov (United States)

    Herbst, Eric A F; Bonen, Arend; Holloway, Graham P

    2015-10-01

    Changes in nuclear receptor interacting protein 140 (RIP140) influences mitochondrial content in skeletal muscle; however, the translation of these findings to the brain has not been investigated. The present study examined the impact of overexpressing and ablating RIP140 on mitochondrial content in muscle and the cortex through examining mRNA, mtDNA, and mitochondrial protein content. Our results show that changes in RIP140 expression significantly alters markers of mitochondrial content in skeletal muscle but not the brain.

  12. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  13. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription.

    Science.gov (United States)

    Dalla Rosa, Ilaria; Zhang, Hongliang; Khiati, Salim; Wu, Xiaolin; Pommier, Yves

    2017-12-08

    Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.

  14. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  15. Reanalysis and revision of the complete mitochondrial genome of Rachycentron canadum (Teleostei, Perciformes, Rachycentridae).

    Science.gov (United States)

    Musika, Jidapa; Khongchatee, Adison; Phinchongsakuldit, Jaros

    2014-08-01

    The complete mitochondrial genome of cobia, Rachycentron canadum, was reanalyzed and revised. The genome is 18,008 bp in length, containing 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region or displacement loop (D-loop). The gene arrangement is identical to that observed in most vertebrates. Base composition on the heavy strand is 30.14% A, 25.22% C, 15.80% G and 28.84% T. The D-loop region exhibits an A + T rich pattern, containing short tandem repeats of TATATACATGG, TATATGCACAA and TATATGCACGG. The mitochondrial genome studied differs from the previously published genome in two segments; the control region to 12S and ND5 to tRNA(Glu). The 12S sequence also differs from those published in the databases. Phylogeny analyses revealed that the differences could be due to errors in sequence assembly and/or sample misidentification of the previous studies.

  16. Complete mitochondrial genome of the mottled skate: Raja pulchra (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Myoung, Jung-Goo; Lee, Youn-Ho

    2016-05-01

    The complete sequence of mitochondrial DNA of a mottled skate, Raja pulchra was sequenced as being circular molecules of 16,907 bp including 2 rRNA, 22 tRNA, 13 protein-coding genes (PCGs), and an AT-rich control region. The organization of the PCGs is the same as those found in other Rajidae species. The nucleotide of L-strand is composed of 29.8% A, 28.0% C, 27.9% T, and 14.3% G with a bias toward A + T slightly. Twelve of 13 PCGs are initiated by the ATG codon while COX1 starts with GTG. Only ND4 harbors the incomplete termination codon, TA. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA with the exception of [Formula: see text] which has a reduced DHU arm. This mitogenome will provide essential information for better phylogenetic resolution and precision of the family Rajidae and the genus Raja as well as for establishment of a fish stock recovery plan of the species.

  17. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  18. Roles of dynamin-related protein 1 in the regulation of mitochondrial fission and apoptosis in response to UV stimuli

    Science.gov (United States)

    Zhang, Zhenzhen; Feng, Jie; Wu, Shengnan

    2011-03-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, it remains unclear whether this event has a significant impact on the rate of cell death or only accompanies apoptosis as an epiphenomenon. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial morphology and apoptosis in response to UV irradiation in human lung adenocarcinoma cells (ASTC-a-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Down-regulation of Drp1 by shRNA inhibits UV-induced apoptosis. Our results suggest that Drp1 is involved in the regulation of transition from a reticulo-tubular to a punctiform mitochondrial phenotype and mitochondrial fission plays an important role in UV-induced apoptosis.

  19. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂-induced apoptosis through targeting the mitochondria apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    Ruotian Li

    Full Text Available MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H₂O₂-treated neonatal rat ventricle myocytes (NRVMs was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H₂O₂-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.

  1. Interplay of mitochondrial metabolism and microRNAs

    DEFF Research Database (Denmark)

    Geiger, Julian; Dalgaard, Louise Torp

    2017-01-01

    or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their m...

  2. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes

    Directory of Open Access Journals (Sweden)

    Yamada Mari

    2010-03-01

    Full Text Available Abstract Background Plant mitochondrial genomes are known for their complexity, and there is abundant evidence demonstrating that this organelle is important for plant sexual reproduction. Cytoplasmic male sterility (CMS is a phenomenon caused by incompatibility between the nucleus and mitochondria that has been discovered in various plant species. As the exact sequence of steps leading to CMS has not yet been revealed, efforts should be made to elucidate the factors underlying the mechanism of this important trait for crop breeding. Results Two CMS mitochondrial genomes, LD-CMS, derived from Oryza sativa L. ssp. indica (434,735 bp, and CW-CMS, derived from Oryza rufipogon Griff. (559,045 bp, were newly sequenced in this study. Compared to the previously sequenced Nipponbare (Oryza sativa L. ssp. japonica mitochondrial genome, the presence of 54 out of 56 protein-encoding genes (including pseudo-genes, 22 tRNA genes (including pseudo-tRNAs, and three rRNA genes was conserved. Two other genes were not present in the CW-CMS mitochondrial genome, and one of them was present as part of the newly identified chimeric ORF, CW-orf307. At least 12 genomic recombination events were predicted between the LD-CMS mitochondrial genome and Nipponbare, and 15 between the CW-CMS genome and Nipponbare, and novel genetic structures were formed by these genomic rearrangements in the two CMS lines. At least one of the genomic rearrangements was completely unique to each CMS line and not present in 69 rice cultivars or 9 accessions of O. rufipogon. Conclusion Our results demonstrate novel mitochondrial genomic rearrangements that are unique in CMS cytoplasm, and one of the genes that is unique in the CW mitochondrial genome, CW-orf307, appeared to be the candidate most likely responsible for the CW-CMS event. Genomic rearrangements were dynamic in the CMS lines in comparison with those of rice cultivars, suggesting that 'death' and possible 'birth' processes of the

  3. The mitochondrial genome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae).

    Science.gov (United States)

    Xin, Tianrong; Li, Lei; Yao, Chengyi; Wang, Yayu; Zou, Zhiwen; Wang, Jing; Xia, Bin

    2016-07-01

    We present the complete mitogenome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae) in this article. The mitogenome was a circle molecular consisting of 15,286 nucleotides, 37 genes, and an A + T-rich region. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. The overall base composition of the genome is A (37.41%), T (42.80%), C (11.87%), and G (7.91%) with an A + T-rich hallmark as that of other invertebrate mitochondrial genomes. The start codon was mainly ATA in most of the mitochondrial protein-coding genes such as ND2, COI, ATP8, ND3, ND5, ND4, ND6, and ND1, but COII, ATP6, COIII, ND4L, and Cob genes employing ATG. The stop codon was TAA in all the protein-coding genes. The A + T region is located between 12S rRNA and tRNA(M)(et). The phylogenetic relationships of Lepidoptera species were constructed based on the nucleotides sequences of 13 PCGs of mitogenomes using the neighbor-joining method. The molecular-based phylogeny supported the traditional morphological classification on relationships within Lepidoptera species.

  4. Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Deep Raj; Sunkaria, Aditya; Wani, Willayat Yousuf; Sharma, Reeta Kumari; Kandimalla, Ramesh J.L. [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India); Bal, Amanjit [Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh (India); Gill, Kiran Dip, E-mail: kdgill2002@yahoo.co.in [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012 (India)

    2013-12-01

    The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10 mg/kg b.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits–NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases. - Highlights: • Aluminium decreases the mRNA levels of mitochondrial and nuclear encoded

  5. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  6. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  7. The NDUFB6 subunit of the mitochondrial respiratory chain complex I is required for electron transfer activity: A proof of principle study on stable and controlled RNA interference in human cell lines

    International Nuclear Information System (INIS)

    Loublier, Sandrine; Bayot, Aurelien; Rak, Malgorzata; El-Khoury, Riyad; Benit, Paule; Rustin, Pierre

    2011-01-01

    Highlights: → NDUFB6 is required for activity of mitochondrial complex I in human cell lines. → Lentivirus based RNA interference results in frequent off target insertions. → Flp-In recombinase mediated miRNA insertion allows gene-specific extinction. -- Abstract: Molecular bases of inherited deficiencies of mitochondrial respiratory chain complex I are still unknown in a high proportion of patients. Among 45 subunits making up this large complex, more than half has unknown function(s). Understanding the function of these subunits would contribute to our knowledge on mitochondrial physiology but might also reveal that some of these subunits are not required for the catalytic activity of the complex. A direct consequence of this finding would be the reduction of the number of candidate genes to be sequenced in patients with decreased complex I activity. In this study, we tested two different methods to stably extinct complex I subunits in cultured cells. We first found that lentivirus-mediated shRNA expression frequently resulted in the unpredicted extinction of additional gene(s) beside targeted ones. This can be ascribed to uncontrolled genetic material insertions in the genome of the host cell. This approach thus appeared inappropriate to study unknown functions of a gene. Next, we found it possible to specifically extinct a CI subunit gene by direct insertion of a miR targeting CI subunits in a Flp site (HEK293 Flp-In cells). By using this strategy we unambiguously demonstrated that the NDUFB6 subunit is required for complex I activity, and defined conditions suitable to undertake a systematic and stable extinction of the different supernumerary subunits in human cells.

  8. The NDUFB6 subunit of the mitochondrial respiratory chain complex I is required for electron transfer activity: A proof of principle study on stable and controlled RNA interference in human cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loublier, Sandrine; Bayot, Aurelien; Rak, Malgorzata; El-Khoury, Riyad; Benit, Paule [Inserm U676, Hopital Robert Debre, F-75019 Paris (France); Universite Paris 7, Faculte de medecine Denis Diderot, IFR02 Paris (France); Rustin, Pierre, E-mail: pierre.rustin@inserm.fr [Inserm U676, Hopital Robert Debre, F-75019 Paris (France); Universite Paris 7, Faculte de medecine Denis Diderot, IFR02 Paris (France)

    2011-10-22

    Highlights: {yields} NDUFB6 is required for activity of mitochondrial complex I in human cell lines. {yields} Lentivirus based RNA interference results in frequent off target insertions. {yields} Flp-In recombinase mediated miRNA insertion allows gene-specific extinction. -- Abstract: Molecular bases of inherited deficiencies of mitochondrial respiratory chain complex I are still unknown in a high proportion of patients. Among 45 subunits making up this large complex, more than half has unknown function(s). Understanding the function of these subunits would contribute to our knowledge on mitochondrial physiology but might also reveal that some of these subunits are not required for the catalytic activity of the complex. A direct consequence of this finding would be the reduction of the number of candidate genes to be sequenced in patients with decreased complex I activity. In this study, we tested two different methods to stably extinct complex I subunits in cultured cells. We first found that lentivirus-mediated shRNA expression frequently resulted in the unpredicted extinction of additional gene(s) beside targeted ones. This can be ascribed to uncontrolled genetic material insertions in the genome of the host cell. This approach thus appeared inappropriate to study unknown functions of a gene. Next, we found it possible to specifically extinct a CI subunit gene by direct insertion of a miR targeting CI subunits in a Flp site (HEK293 Flp-In cells). By using this strategy we unambiguously demonstrated that the NDUFB6 subunit is required for complex I activity, and defined conditions suitable to undertake a systematic and stable extinction of the different supernumerary subunits in human cells.

  9. Loss of the SIN3 transcriptional corepressor results in aberrant mitochondrial function

    Directory of Open Access Journals (Sweden)

    Hüttemann Maik

    2010-07-01

    Full Text Available Abstract Background SIN3 is a transcriptional repressor protein known to regulate many genes, including a number of those that encode mitochondrial components. Results By monitoring RNA levels, we find that loss of SIN3 in Drosophila cultured cells results in up-regulation of not only nuclear encoded mitochondrial genes, but also those encoded by the mitochondrial genome. The up-regulation of gene expression is accompanied by a perturbation in ATP levels in SIN3-deficient cells, suggesting that the changes in mitochondrial gene expression result in altered mitochondrial activity. In support of the hypothesis that SIN3 is necessary for normal mitochondrial function, yeast sin3 null mutants exhibit very poor growth on non-fermentable carbon sources and show lower levels of ATP and reduced respiration rates. Conclusions The findings that both yeast and Drosophila SIN3 affect mitochondrial activity suggest an evolutionarily conserved role for SIN3 in the control of cellular energy production.

  10. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    Science.gov (United States)

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  11. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  12. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  13. The complete mitochondrial genome of Chrysopa pallens (Insecta, Neuroptera, Chrysopidae).

    Science.gov (United States)

    He, Kun; Chen, Zhe; Yu, Dan-Na; Zhang, Jia-Yong

    2012-10-01

    The complete mitochondrial genome of Chrysopa pallens (Neuroptera, Chrysopidae) was sequenced. It consists of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA (rRNA) genes, and a control region (AT-rich region). The total length of C. pallens mitogenome is 16,723 bp with 79.5% AT content, and the length of control region is 1905 bp with 89.1% AT content. The non-coding regions of C. pallens include control region between 12S rRNA and trnI genes, and a 75-bp space region between trnI and trnQ genes.

  14. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  15. Complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri Jordan & Richardson, 1908 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Wang, Bo; Zhang, Yanhong; Zhang, Huixian; Lin, Qiang

    2015-01-01

    The complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri was first determined in this paper. The total length of H. barbouri mitogenome is 16,526 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. barbouri mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. barbouri is 32.68% A, 29.75% T, 22.91% C and 14.66% G, with an AT content of 62.43%.

  16. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Science.gov (United States)

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests

  17. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  18. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors

    Directory of Open Access Journals (Sweden)

    Heyman Yvan

    2005-11-01

    Full Text Available Abstract Background Recent work has shown that mitochondrial biogenesis and mitochondrial functions are critical determinants of embryonic development. However, the expression of the factors controlling mitochondrial biogenesis in early embryogenesis has received little attention so far. Methods We used real-time quantitative PCR to quantify mitochondrial DNA (mtDNA in bovine oocytes and in various stages of in vitro produced embryos. To investigate the molecular mechanisms responsible for the replication and the transcriptional activation of mtDNA, we quantified the mRNA corresponding to the mtDNA-encoded cytochrome oxidase 1 (COX1, and two nuclear-encoded factors, i.e. the Nuclear Respiratory Factor 1 (NRF1, and the nuclear-encoded Mitochondrial Transcription Factor A (mtTFA. Results Unlike findings reported in mouse embryos, the mtDNA content was not constant during early bovine embryogenesis. We found a sharp, 60% decrease in mtDNA content between the 2-cell and the 4/8-cell stages. COX1 mRNA was constant until the morula stage after which it increased dramatically. mtTFA mRNA was undetectable in oocytes and remained so until the 8/16-cell stage; it began to appear only at the morula stage, suggesting de novo synthesis. In contrast, NRF1 mRNA was detectable in oocytes and the quantity remained constant until the morula stage. Conclusion Our results revealed a reduction of mtDNA content in early bovine embryos suggesting an active process of mitochondrial DNA degradation. In addition, de novo mtTFA expression associated with mitochondrial biogenesis activation and high levels of NRF1 mRNA from the oocyte stage onwards argue for the essential function of these factors during the first steps of bovine embryogenesis.

  20. The complete mitochondrial genome sequence of the maned wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Zhao, Chao; Yang, Xiufeng; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the maned wolf (Chrysocyon brachyurus), the unique species in Chrysocyon, was sequenced and reported for the first time using blood samples obtained from a female individual in Shanghai Zoo, China. Sequence analysis showed that the genome structure was in accordance with other Canidae species and it contained 12 S rRNA gene, 16 S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region.

  1. Mechanistic study on the nuclear modifier gene MSS1 mutation suppressing neomycin sensitivity of the mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng

    2014-01-01

    The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.

  2. Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy

    Directory of Open Access Journals (Sweden)

    Giovanna Trinchese

    2018-06-01

    Full Text Available Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT. We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1 and anti-PNT immunoglobulin E (IgE levels; 2. hepatic involvement by analysing interleukin (IL-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2 yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13 mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.

  3. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Mitochondrial genome of the North African Sahara Honeybee, Apis mellifera sahariensis (Hymenoptera: Apidae)

    DEFF Research Database (Denmark)

    Haddad, Nizar; Adjlane, Noureddine; Loucif-Ayad, Wahida

    2017-01-01

    e present the complete mitochondrial genome of honey bee subspecies, Apis mellifera sahariensis (Apidae) belonging to the African lineage. The assembled circular genome has a length of 16,569 bp which comprises 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and AT rich...

  5. Complete mitochondrial genome of Skylark, Alauda arvensis (Aves: Passeriformes): the first representative of the family Alaudidae with two extensive heteroplasmic control regions.

    Science.gov (United States)

    Qian, Chaoju; Wang, Yuanxiu; Guo, Zhichun; Yang, Jianke; Kan, Xianzhao

    2013-06-01

    The circular mitochondrial genome of Alauda arvensis is 17,018 bp in length, containing 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, 22 transfer RNA (tRNA) genes, and 2 extensive heteroplasmic control regions. All of the genes encoded on the H-strand, with the exceptions of one PCG (nad6) and eight tRNA genes (tRNA(Gln), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr), tRNA(Ser(UCN)), tRNA(Pro), and tRNA(Glu)), as found in other birds' mitochondrial genomes. All of these PCGs are initiated with ATG, while stopped by six types of stop codons. All tRNA genes have the potential to fold into typical clover-leaf structure. Two extensive heteroplasmic control regions were found, and more interestingly, a minisatellite of 37 nucleotides (5'-TCAATCCCATTGATTTCATTATATTAGTATAAAGAAA-3') with 6 tandem repeats was detected at the end of CR2.

  6. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  7. RNase-L regulates the stability of mitochondrial DNA-encoded mRNAs in mouse embryo fibroblasts

    International Nuclear Information System (INIS)

    Chandrasekaran, Krish; Mehrabian, Zara; Li Xiaoling; Hassel, Bret

    2004-01-01

    Accelerated decrease in the levels of mitochondrial DNA-encoded mRNA (mt-mRNA) occurs in neuronal cells exposed either to the excitatory amino acid, glutamate or to the sodium ionophore, monensin, suggesting a role of mitochondrial RNase(s) on the stability of mt-mRNAs. Here we report that in mouse embryo fibroblasts that are devoid of the interferon-regulated RNase, RNase-L, the monensin-induced decrease in the half-life of mt-mRNA was reduced. In monensin (250 nM)-treated RNase-L +/+ cells the average half-life of mt-mRNA, determined after termination of transcription with actinomycin D, was found to be 3 h, whereas in monensin-treated RNase-L -/- cells the half-life of mt-mRNA was >6 h. In contrast, the stability of nuclear DNA-encoded β-actin mRNA was unaffected. Induction of RNase-L expression in mouse 3T3 fibroblasts further decreased the monensin-induced reduction in mt-mRNA half-life to 1.5 h. The results indicate that the RNase-L-dependent decrease in mtDNA-encoded mRNA transcript levels occurs through a decrease in the half-life of mt-mRNA, and that RNase-L may play a role in the stability of mt-mRNA

  8. The complete mitochondrial genome of the endangered spotback skate, Atlantoraja castelnaui.

    Science.gov (United States)

    Duckett, Drew J L; Naylor, Gavin J P

    2016-05-01

    Chondrichthyes are a highly threatened class of organisms, largely due to overfishing and other human activities. The present study describes the complete mitochondrial genome (16,750 bp) of the endangered spotback skate, Atlantoraja castelnaui. The mitogenome is arranged in a typical vertebrate fashion, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and 1 control region.

  9. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs.

    Science.gov (United States)

    Bauer, Bianca S; Forsyth, George W; Sandmeyer, Lynne S; Grahn, Bruce H

    2011-04-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm²) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.

  10. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) {beta}1-induced senescence

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Hae-Ok; Jung, Hyun-Jung; Seo, Yong-Hak; Lee, Young-Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of); Hwang, Sung-Chul [Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Seong Hwang, Eun [Department of Life Science, University of Seoul, Seoul 130-743 (Korea, Republic of); Yoon, Gyesoon, E-mail: ypeace@ajou.ac.kr [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721 (Korea, Republic of); Department of Molecular Science and Technology, The Graduate School, Ajou University, Suwon 443-721 (Korea, Republic of)

    2012-09-10

    Transforming growth factor {beta}1 (TGF {beta}1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF {beta}1 on mitochondrial complex IV activity. TGF {beta}1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) {alpha} and {beta}, corresponding well to the intracellular ROS generation profile. Pre-treatment of N-acetyl cysteine, an antioxidant, did not alter this GSK3 phosphorylation (inactivation), whereas pharmacological inhibition of GSK3 by SB415286 significantly increased mitochondrial ROS, implying that GSK3 phosphorylation is an upstream event of the ROS generation. GSK3 inhibition by SB415286 decreased complex IV activity and cellular O{sub 2} consumption rate and eventually induced senescence of Mv1Lu cell. Similar results were obtained with siRNA-mediated knockdown of GSK3. Moreover, we found that GSK3 not only exists in cytosol but also in mitochondria of Mv1Lu cell and the mitochondrial GSK3 binds complex IV subunit 6b which has no electron carrier and is topologically located in the mitochondrial intermembrane space. Involvement of subunit 6b in controlling complex IV activity and overall respiration rate was proved with siRNA-mediated knockdown of subunit 6b. Finally, TGF {beta}1 treatment decreased the binding of the subunit 6b to GSK3 and subunit 6b phosphorylation. Taken together, our results suggest that GSK3 inactivation is importantly involved in TGF {beta}1-induced complex IV defects through decreasing phosphorylation of the subunit 6b, thereby contributing to senescence-associated mitochondrial ROS generation.

  11. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  12. Importance of diffuse metal ion binding to RNA.

    Science.gov (United States)

    Tan, Zhi-Jie; Chen, Shi-Jie

    2011-01-01

    RNAs are highly charged polyanionic molecules. RNA structure and function are strongly correlated with the ionic condition of the solution. The primary focus of this article is on the role of diffusive ions in RNA folding. Due to the long-range nature of electrostatic interactions, the diffuse ions can contribute significantly to RNA structural stability and folding kinetics. We present an overview of the experimental findings as well as the theoretical developments on the diffuse ion effects in RNA folding. This review places heavy emphasis on the effect of magnesium ions. Magnesium ions play a highly efficient role in stabilizing RNA tertiary structures and promoting tertiary structural folding. The highly efficient role goes beyond the mean-field effect such as the ionic strength. In addition to the effects of specific ion binding and ion dehydration, ion-ion correlation for the diffuse ions can contribute to the efficient role of the multivalent ions such as the magnesium ions in RNA folding.

  13. Proteome Imbalance of Mitochondrial Electron Transport Chain in Brown Adipocytes Leads to Metabolic Benefits.

    Science.gov (United States)

    Masand, Ruchi; Paulo, Esther; Wu, Dongmei; Wang, Yangmeng; Swaney, Danielle L; Jimenez-Morales, David; Krogan, Nevan J; Wang, Biao

    2018-03-06

    Brown adipose tissue (BAT) thermogenesis is critical for thermoregulation and contributes to total energy expenditure. However, whether BAT has non-thermogenic functions is largely unknown. Here, we describe that BAT-specific liver kinase b1 knockout (Lkb1 BKO ) mice exhibited impaired BAT mitochondrial respiration and thermogenesis but reduced adiposity and liver triglyceride accumulation under high-fat-diet feeding at room temperature. Importantly, these metabolic benefits were also present in Lkb1 BKO mice at thermoneutrality, where BAT thermogenesis was not required. Mechanistically, decreased mRNA levels of mtDNA-encoded electron transport chain (ETC) subunits and ETC proteome imbalance led to defective BAT mitochondrial respiration in Lkb1 BKO mice. Furthermore, reducing mtDNA gene expression directly in BAT by removing mitochondrial transcription factor A (Tfam) in BAT also showed ETC proteome imbalance and the trade-off between BAT thermogenesis and systemic metabolism at room temperature and thermoneutrality. Collectively, our data demonstrate that ETC proteome imbalance in BAT regulates systemic metabolism independently of thermogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    Science.gov (United States)

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  15. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae).

    Science.gov (United States)

    Chen, Long; Chen, Peng-Yan; Xue, Xiao-Feng; Hua, Hai-Qing; Li, Yuan-Xi; Zhang, Fan; Wei, Shu-Jun

    2018-05-04

    Animal mitochondrial genomes usually exhibit conserved gene arrangement across major lineages, while those in the Hymenoptera are known to possess frequent rearrangements, as are those of several other orders of insects. Here, we sequenced two complete mitochondrial genomes of Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae). In total, 37 mitochondrial genes were identified in both species. The same gene arrangement pattern was found in the two species, with extensive gene rearrangement compared with the ancestral insect mitochondrial genome. Most tRNA genes and all protein-coding genes were encoded on the minority strand. In total, 15 tRNA genes and seven protein-coding genes were rearranged. The rearrangements of cox1 and nad2 as well as most tRNA genes were novel. Phylogenetic analysis based on nucleotide sequences of protein-coding genes and on gene arrangement patterns produced identical topologies that support the relationship of (Agaonidae + Pteromalidae) + Trichogrammatidae in Chalcidoidea. CREx analysis revealed eight rearrangement operations occurred from presumed ancestral gene order of Chalcidoidea to form the derived gene order of Trichogramma. Our study shows that gene rearrangement information in Chalcidoidea can potentially contribute to the phylogeny of Chalcidoidea when more mitochondrial genome sequences are available.

  16. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Kazak, L; Wood, S R; Mao, C C; Fearnley, I M; Walker, J E; Holt, I J

    2012-07-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.

  17. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jin [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Dornbos, Peter [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Steidemann, Michelle [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dunivin, Taylor K. [Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Rizzo, Mike [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824 (United States); LaPres, John J., E-mail: lapres@msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States)

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes ≥ 2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. - Highlights: • The mitoAHR is localized in the mitochondrial intermembrane space. • TOMM20 participates in mitoAHR translocation. • AHR contributes to the maintenance of respiratory control ratio following

  18. Cytochrome c oxidase subunit 1-based human RNA quantification to enhance mRNA profiling in forensic biology

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2017-01-01

    Full Text Available RNA analysis offers many potential applications in forensic science, and molecular identification of body fluids by analysis of cell-specific RNA markers represents a new technique for use in forensic cases. However, due to the nature of forensic materials that often admixed with nonhuman cellular components, human-specific RNA quantification is required for the forensic RNA assays. Quantification assay for human RNA has been developed in the present study with respect to body fluid samples in forensic biology. The quantitative assay is based on real-time reverse transcription-polymerase chain reaction of mitochondrial RNA cytochrome c oxidase subunit I and capable of RNA quantification with high reproducibility and a wide dynamic range. The human RNA quantification improves the quality of mRNA profiling in the identification of body fluids of saliva and semen because the quantification assay can exclude the influence of nonhuman components and reduce the adverse affection from degraded RNA fragments.

  19. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    Science.gov (United States)

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes.

  20. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  1. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.

    Science.gov (United States)

    van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya

    2017-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.

  2. Extremely low penetrance of hearing loss in four Chinese families with the mitochondrial 12S rRNA A1555G mutation

    International Nuclear Information System (INIS)

    Young Wieyen; Zhao Lidong; Qian Yaping; Wang Qiuju; Li Ning; Greinwald, John H.; Guan Minxin

    2005-01-01

    Mutations in mitochondrial DNA (mtDNA) have been found to be associated with sensorineural hearing loss. We report here the clinical, genetic, and molecular characterization of four Chinese pedigrees with aminoglycoside-induced and nonsyndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects, although these subjects share some common features: bilateral and sensorineural hearing impairment. Strikingly, these Chinese pedigrees exhibited extremely low penetrance of hearing loss (5.2%, 4.8%, 4.2%, and 13.3%, respectively, and with an average 8% penetrance). In particular, four of all five affected matrilineal relatives of these pedigrees had aminoglycoside-induced hearing loss. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical homoplasmic A1555G mutation, associated with hearing impairment in many families from different genetic backgrounds. The fact that mtDNA of those pedigrees belonged to different haplogroups R9a, N9a, D4a, and D4 suggested that the A1555G mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. These data imply that the nuclear background or/and mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycoside appears to be a major modifier factor for the phenotypic manifestation of the A1555G mutation in these Chinese families

  3. The nuclear import of RNA helicase A is mediated by importin-α3

    International Nuclear Information System (INIS)

    Aratani, Satoko; Oishi, Takayuki; Fujita, Hidetoshi; Nakazawa, Minako; Fujii, Ryouji; Imamoto, Naoko; Yoneda, Yoshihiro; Fukamizu, Akiyoshi; Nakajima, Toshihiro

    2006-01-01

    RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-α/β-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-α. Furthermore, the nuclear import of RHA-NLS was supported by importin-α1 and preferentially importin-α3. Our results indicate that the nuclear import of RHA is mediated by the importin-α3/importin-β-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins

  4. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  5. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  6. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  7. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-01-01

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  8. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  9. Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa?

    Czech Academy of Sciences Publication Activity Database

    Flegontov, Pavel; Gray, M.W.; Burger, G.; Lukeš, Julius

    2011-01-01

    Roč. 57, č. 4 (2011), 225-232 ISSN 0172-8083 Institutional research plan: CEZ:AV0Z60220518 Keywords : Euglena * Diplonema * Mitochondrial genome * RNA editing * Constructive neutral evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.556, year: 2011

  10. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  11. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Raquel Montero

    Full Text Available We previously described increased levels of growth and differentiation factor 15 (GDF-15 in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21. To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA.Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM relative to healthy (350, 21 and myopathic (350, 32 controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4% and 92.3% (81.5%-97.9%, respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated.Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels correlate in vitro with FGF

  12. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    International Nuclear Information System (INIS)

    He, Haiyan; Huh, Jin; Wang, Huihua; Kang, Yi; Lou, Jianshi; Xu, Zhelong

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced

  13. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Michał Rurek

    2018-04-01

    Full Text Available Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS. Respiratory (e.g., complex II, IV (CII, CIV and ATP synthase subunits, transporter (including diverse porin isoforms and matrix multifunctional proteins (e.g., components of RNA editing machinery were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation.

  14. Mitochondrial Biogenesis in Diverse Cauliflower Cultivars under Mild and Severe Drought. Impaired Coordination of Selected Transcript and Proteomic Responses, and Regulation of Various Multifunctional Proteins

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Staszak, Aleksandra Maria; Nowak, Witold; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Mitochondrial responses under drought within Brassica genus are poorly understood. The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower (Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes (decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter (including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of RNA editing machinery) were diversely affected in their abundance under two drought levels. Western immunoassays showed additional cultivar-specific responses of selected mitochondrial proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for the drought response. The abundance of selected mRNAs participating in drought response was also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome interactions, and/or miRNA impact on transcript abundance and translation. PMID:29642585

  15. The mitochondrial genome of Grateloupia taiwanensis (Halymeniaceae, Rhodophyta) and comparative mitochondrial genomics of red algae.

    Science.gov (United States)

    DePriest, Michael S; Bhattacharya, Debashish; López-Bautista, Juan M

    2014-10-01

    Although red algae are economically highly valuable for their gelatinous cell wall compounds as well as being integral parts of marine benthic habitats, very little genome data are currently available. We present mitochondrial genome sequence data from the red alga Grateloupia taiwanensis S.-M. Lin & H.-Y. Liang. Comprising 28,906 nucleotide positions, the mitochondrial genome contig contains 25 protein-coding genes and 24 transfer RNA genes. It is highly similar to other red algal genomes in gene content as well as overall structure. An intron in the cox1 gene was found to be shared by G. taiwanensis and Grateloupia angusta (Okamura) S. Kawaguchi & H. W. Wang. We also used whole-genome alignments to compare G. taiwanensis to different groups of red algae, and these results are consistent with the currently accepted phylogeny of Rhodophyta. © 2014 Marine Biological Laboratory.

  16. Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis

    Czech Academy of Sciences Publication Activity Database

    Dobáková, Eva; Flegontov, Pavel; Skalický, Tomáš; Lukeš, Julius

    2015-01-01

    Roč. 7, č. 12 (2015), s. 3358-3367 ISSN 1759-6653 R&D Projects: GA ČR GA15-21974S Institutional support: RVO:60077344 Keywords : Euglena gracilis * mitochondrial genome * transcription * RNA editing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.098, year: 2015

  17. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile)

    OpenAIRE

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-01-01

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PC...

  18. The complete mitochondrial genome of the Chinese hook snout carp Opsariichthys bidens (Actinopterygii: Cypriniformes) and an alternative pattern of mitogenomic evolution in vertebrate

    DEFF Research Database (Denmark)

    Wang, Xuzhen; Wang, Jun; He, Shunping

    2007-01-01

    The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes, and a no......The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S), 22 tRNA genes...

  19. The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum – two hookworms of animal health and zoonotic importance

    Directory of Open Access Journals (Sweden)

    Littlewood D Timothy J

    2009-02-01

    Full Text Available Abstract Background Hookworms are blood-feeding nematodes that parasitize the small intestines of many mammals, including humans and cattle. These nematodes are of major socioeconomic importance and cause disease, mainly as a consequence of anaemia (particularly in children or young animals, resulting in impaired development and sometimes deaths. Studying genetic variability within and among hookworm populations is central to addressing epidemiological and ecological questions, thus assisting in the control of hookworm disease. Mitochondrial (mt genes are known to provide useful population markers for hookworms, but mt genome sequence data are scant. Results The present study characterizes the complete mt genomes of two species of hookworm, Ancylostoma caninum (from dogs and Bunostomum phlebotomum (from cattle, each sequenced (by 454 technology or primer-walking, following long-PCR amplification from genomic DNA (~20–40 ng isolated from individual adult worms. These mt genomes were 13717 bp and 13790 bp in size, respectively, and each contained 12 protein coding, 22 transfer RNA and 2 ribosomal RNA genes, typical for other secernentean nematodes. In addition, phylogenetic analysis (by Bayesian inference and maximum likelihood of concatenated mt protein sequence data sets for 12 nematodes (including Ancylostoma caninum and Bunostomum phlebotomum, representing the Ascaridida, Spirurida and Strongylida, was conducted. The analysis yielded maximum statistical support for the formation of monophyletic clades for each recognized nematode order assessed, except for the Rhabditida. Conclusion The mt genomes characterized herein represent a rich source of population genetic markers for epidemiological and ecological studies. The strong statistical support for the construction of phylogenetic clades and consistency between the two different tree-building methods employed indicate the value of using whole mt genome data sets for systematic studies of

  20. RPO41-independent maintenance of [rho-] mitochondrial DNA in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fangman, W L; Henly, J W; Brewer, B J

    1990-01-01

    A subset of promoters in the mitochondrial DNA (mtDNA) of the yeast Saccharomyces cerevisiae has been proposed to participate in replication initiation, giving rise to a primer through site-specific cleavage of an RNA transcript. To test whether transcription is essential for mtDNA maintenance, we examined two simple mtDNA deletion ([rho-]) genomes in yeast cells. One genome (HS3324) contains a consensus promoter (ATATAAGTA) for the mitochondrial RNA polymerase encoded by the nuclear gene RPO41, and the other genome (4a) does not. As anticipated, in RPO41 cells transcripts from the HS3324 genome were more abundant than were transcripts from the 4a genome. When the RPO41 gene was disrupted, both [rho-] genomes were efficiently maintained. The level of transcripts from HS3324 mtDNA was decreased greater than 400-fold in cells carrying the RPO41 disrupted gene; however, the low-level transcripts from 4a mtDNA were undiminished. These results indicate that replication of [rho-] genomes can be initiated in the absence of wild-type levels of the RPO41-encoded RNA polymerase.

  1. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  2. The complete mitochondrial genome of the gall-forming fly, Fergusonina taylori Nelson and Yeates (Diptera: Fergusoninidae).

    Science.gov (United States)

    Nelson, Leigh A; Cameron, Stephen L; Yeates, David K

    2011-10-01

    The monogeneric family Fergusoninidae consists of gall-forming flies that, together with Fergusobia (Tylenchida: Neotylenchidae) nematodes, form the only known mutualistic association between insects and nematodes. In this study, the entire 16,000 bp mitochondrial genome of Fergusonina taylori Nelson and Yeates was sequenced. The circular genome contains one encoding region including 27 genes and one non-coding A+T-rich region. The arrangement of the protein-coding, ribosomal RNA (rRNA) and transfer RNA (tRNA) genes was the same as that found in the ancestral insect. Nucleotide composition is highly A+T biased. All of the protein initiation codons are ATN, except for nad1 which begins with TTT. All 22 tRNA anticodons of F. taylori match those observed in Drosophila yakuba, and all form the typical cloverleaf structure except for tRNA-Ser((AGN)) which lacks a dihydrouridine (DHU) arm. Secondary structural features of the rRNA genes of Fergusonina are similar to those proposed for other insects, with minor modifications. The mitochondrial genome of Fergusonina presented here may prove valuable for resolving the sister group to the Fergusoninidae, and expands the available mtDNA data sources for acalyptrates overall.

  3. On the importance of cotranscriptional RNA structure formation

    Science.gov (United States)

    Lai, Daniel; Proctor, Jeff R.; Meyer, Irmtraud M.

    2013-01-01

    The expression of genes, both coding and noncoding, can be significantly influenced by RNA structural features of their corresponding transcripts. There is by now mounting experimental and some theoretical evidence that structure formation in vivo starts during transcription and that this cotranscriptional folding determines the functional RNA structural features that are being formed. Several decades of research in bioinformatics have resulted in a wide range of computational methods for predicting RNA secondary structures. Almost all state-of-the-art methods in terms of prediction accuracy, however, completely ignore the process of structure formation and focus exclusively on the final RNA structure. This review hopes to bridge this gap. We summarize the existing evidence for cotranscriptional folding and then review the different, currently used strategies for RNA secondary-structure prediction. Finally, we propose a range of ideas on how state-of-the-art methods could be potentially improved by explicitly capturing the process of cotranscriptional structure formation. PMID:24131802

  4. The 2D Structure of the T. brucei Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding

    Directory of Open Access Journals (Sweden)

    W.-Matthias Leeder

    2017-01-01

    Full Text Available Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme “crowding” conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.

  5. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis.

    Science.gov (United States)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting; Zheng, Ruimao; Zhu, Shigong

    2014-07-18

    14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen-glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  7. Mitochondrial DNA-based identification of some forensically important blowflies in Thailand.

    Science.gov (United States)

    Preativatanyou, Kanok; Sirisup, Nantana; Payungporn, Sunchai; Poovorawan, Yong; Thavara, Usavadee; Tawatsin, Apiwat; Sungpradit, Sivapong; Siriyasatien, Padet

    2010-10-10

    Accurate identification of insects collected from death scenes provides not only specific developmental data assisting forensic entomologists to determine the postmortem interval more precisely but also other kinds of forensic evidence. However, morphological identification can be complicated due to the similarity among species, especially in the early larval stages. To simplify and make the species identification more practical and reliable, DNA-based identification is preferentially considered. In this study, we demonstrate the application of partial mitochondrial cytochrome oxidase I (COI) and cytochrome oxidase II (COII) sequences for differentiation of forensically important blowflies in Thailand; Chrysomya megacephala, Chrysomya rufifacies and Lucilia cuprina by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The PCR yields a single 1324bp-sized amplicon in all blowfly specimens, followed by direct DNA sequencing. Taq(α)I and VspI predicted from the sequencing data provide different RFLP profiles among these three species. Sequence analysis reveals no significant intraspecific divergence in blowfly specimens captured from different geographical regions in Thailand. Accordingly, neighbor-joining tree using Kimura's 2-parameter model illustrates reciprocal monophyly between species. Thus, these approaches serve as promising tools for molecular identification of these three common forensically important blowfly species in Thailand. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Impaired expression of mitochondrial and adipogenic genes in adipose tissue from a patient with acquired partial lipodystrophy (Barraquer-Simons syndrome: a case report

    Directory of Open Access Journals (Sweden)

    Guallar Jordi P

    2008-08-01

    Full Text Available Abstract Introduction Acquired partial lipodystrophy or Barraquer-Simons syndrome is a rare form of progressive lipodystrophy. The etiopathogenesis of adipose tissue atrophy in these patients is unknown. Case presentation This is a case report of a 44-year-old woman with acquired partial lipodystrophy. To obtain insight into the molecular basis of lipoatrophy in acquired partial lipodystrophy, we examined gene expression in adipose tissue from this patient newly diagnosed with acquired partial lipodystrophy. A biopsy of subcutaneous adipose tissue was obtained from the patient, and DNA and RNA were extracted in order to evaluate mitochondrial DNA abundance and mRNA expression levels. Conclusion The expression of marker genes of adipogenesis and adipocyte metabolism, including the master regulator PPARγ, was down-regulated in subcutaneous adipose tissue from this patient. Adiponectin mRNA expression was also reduced but leptin mRNA levels were unaltered. Markers of local inflammatory status were unaltered. Expression of genes related to mitochondrial function was reduced despite unaltered levels of mitochondrial DNA. It is concluded that adipogenic and mitochondrial gene expression is impaired in adipose tissue in this patient with acquired partial lipodystrophy.

  10. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  11. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  12. Sequence and Secondary Structure of the Mitochondrial Small-Subunit rRNA V4, V6, and V9 Domains Reveal Highly Species-Specific Variations within the Genus Agrocybe

    OpenAIRE

    Gonzalez, Patrice; Labarère, Jacques

    1998-01-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same specie...

  13. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    Science.gov (United States)

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  14. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  15. Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae and phylogeny of Polyneoptera.

    Directory of Open Access Journals (Sweden)

    Xinlong Wan

    Full Text Available The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes, were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

  16. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  17. The complete mitochondrial genome of the medicinal fungus Ganoderma applanatum (Polyporales, Basidiomycota).

    Science.gov (United States)

    Wang, Xin-Cun; Shao, Junjie; Liu, Chang

    2016-07-01

    We have determined the complete nucleotide sequence of the mitochondrial genome of the medicinal fungus Ganoderma applanatum (Pers.) Pat. using the next-generation sequencing technology. The circular molecule is 119,803 bp long with a GC content of 26.66%. Gene prediction revealed genes encoding 15 conserved proteins, 25 tRNAs, the large and small ribosomal RNAs, all genes are located on the same strand except trnW-CCA. Compared with previously sequenced genomes of G. lucidum, G. meredithiae and G. sinense, the order of the protein and rRNA genes is highly conserved; however, the types of tRNA genes are slightly different. The mitochondrial genome of G. applanatum will contribute to the understanding of the phylogeny and evolution of Ganoderma and Ganodermataceae, the group containing many species with high medicinal values.

  18. Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia)

    KAUST Repository

    Terraneo, Tullia Isotta; Arrigoni, Roberto; Benzoni, Francesca; Forsman, Zac H.; Berumen, Michael L.

    2018-01-01

    Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites.

  19. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    Science.gov (United States)

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  20. Using ezRAD to reconstruct the complete mitochondrial genome of Porites fontanesii (Cnidaria: Scleractinia)

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-09

    Corals in the genus Porites are among the major framework builders of reef structures worldwide, yet the genus has been challenging to study due to a lack of informative molecular markers. Here, we used ezRAD sequencing to reconstruct the complete mitochondrial genome of Porites fontanesii (GenBank accession number MG754069), a widespread coral species endemic to the Red Sea and Gulf of Aden. The gene arrangement of P. fontanesii did not differ from other Scleractinia and consisted of 18,658 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes. This mitochondrial genome contributes essential data to work towards a better understanding of evolutionary relationships within Porites.

  1. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  2. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  3. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  4. The complete mitochondrial genome of the giant African snail Achatina fulica (Mollusca: Achatinidae).

    Science.gov (United States)

    Yang, Huirong; Zhang, Jia-En; Guo, Jing; Deng, Zhixin; Luo, Hao; Luo, Mingzhu; Zhao, Benliang

    2016-05-01

    We present the complete mitochondrial genome of the Achatina fulica in this study. The results show that the mitochondrial genome is 15,057 bp in length, which is comprised of 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes. The nucleotide compositions of the light strand are 35.47% of A, 27.97% of T 19.46% of C, and 17.10% of G. Except the ND3, 7 tRNA, ATP6, ATP8, COX3 and 12S-rRNA on the light strand, the rest are encoded on the heavy strand. Five types of inferred initiation codons are ATA (ND1, ND5), GTG (ND6), ATG (COX3, COX2), ATT (ND4) and TTG (COX1, ND2, ND3, ND4L, ATP6, ATP8, Cytb), and 3 types of inferred termination codons are T (COX3, ND2), TAA (ND1, ND4L, ND5, ND6, ATP6), and TAG (ND3, ND4, COX1, COX2, Cytb, ATP8). There are 24 intergenic spacers and 6 gene overlaps. The tandem repeat sequence (total 52 bp) of (AATAATT)n is observed in 16S-rRNA. Gene arrangement and distribution are inconsistent with the typical vertebrates.

  5. Dealing with an Unconventional Genetic Code in  Mitochondria: The Biogenesis and Pathogenic  Defects of the 5‐Formylcytosine Modification in  Mitochondrial tRNAMet

    Directory of Open Access Journals (Sweden)

    Lindsey Van Haute

    2017-03-01

    Full Text Available Human mitochondria contain their own genome, which uses an unconventional genetic code. In addition to the standard AUG methionine codon, the single mitochondrial tRNA Methionine (mt‐tRNAMet also recognises AUA during translation initiation and elongation. Post‐transcriptional modifications of tRNAs are important for structure, stability, correct folding and aminoacylation as well as decoding. The unique 5‐formylcytosine (f5C modification of position 34 in mt‐tRNAMet has been long postulated to be crucial for decoding of unconventional methionine codons and efficient mitochondrial translation. However, the enzymes responsible for the formation of mitochondrial f5C have been identified only recently. The first step of the f5C pathway consists of methylation of cytosine by NSUN3. This is followed by further oxidation by ABH1. Here, we review the role of f5C, the latest breakthroughs in our understanding of the biogenesis of this unique mitochondrial tRNA modification and its involvement in human disease.

  6. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  7. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    Science.gov (United States)

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting

  8. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p.

    Directory of Open Access Journals (Sweden)

    Marc Chatenay-Lapointe

    Full Text Available Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

  9. Mitochondrial genome of the spotless smooth-hound Mustelus griseus (Carcharhiniformes: Triakidae).

    Science.gov (United States)

    Chen, Xiao; Peng, Zaiqing; Pan, Lianghao; Shi, Xiaofang; Cai, Ling

    2016-01-01

    The complete mitochondrial genome of Mustelus griseus was first determined in this study. It is 16,754 bp in length, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region with the typical gene order in vertebrates. Overall nucleotide base composition of the mitogenome is 30.7% A, 24.9% C, 14.0% G and 30.3% T. After aligning, it comes to us that the mitogenomic portions of M. griseus are very similar to those of Mustelus manazo, ranging from 86.92% (control region) to 100% (tRNA-His and tRNA-Leu2). The origin of L-strand replication (OL) is identified between tRNA-Asn and tRNA-Cys genes. The control region is located between the tRNA-Pro and tRNA-Phe genes, containing one termination-associated sequence (TAS) and three short conserved sequences (CSB 1-3).

  10. Investigation of the Mitochondrial ATPase 6/8 and tRNA(Lys) Genes Mutations in Autism.

    Science.gov (United States)

    Piryaei, Fahimeh; Houshmand, Massoud; Aryani, Omid; Dadgar, Sepideh; Soheili, Zahra-Soheila

    2012-01-01

    Autism results from developmental factors that affect many or all functional brain systems. Brain is one of tissues which are crucially in need of adenosine triphosphate (ATP). Autism is noticeably affected by mitochondrial dysfunction which impairs energy metabolism. Considering mutations within ATPase 6, ATPase 8 and tRNA(Lys) genes, associated with different neural diseases, and the main role of ATPase 6/8 in energy generation, we decided to investigate mutations on these mtDNA-encoded genes to reveal their roles in autism pathogenesis. In this experimental study, mutation analysis for the mentioned genes were performed in a cohort of 24 unrelated patients with idiopathic autism by employing amplicon sequencing of mtDNA fragments. In this study, 12 patients (50%) showed point mutations that represent a significant correlation between autism and mtDNA variations. Most of the identified substitutions (55.55%) were observed on MT-ATP6, altering some conserved amino acids to other ones which could potentially affect ATPase 6 function. Mutations causing amino acid replacement denote involvement of mtDNA genes, especially ATPase 6 in autism pathogenesis. MtDNA mutations in relation with autism could be remarkable to realize an understandable mechanism of pathogenesis in order to achieve therapeutic solutions.

  11. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2014-01-01

    Full Text Available Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ, an important component in Alzheimer’s disease (AD pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.

  12. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  13. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  14. Phylogenetic systematics of Barn Owl (Tyto alba (Scopoli, 1769 complex inferred from mitochondrial rDNA (16S rRNA taxonomic implication

    Directory of Open Access Journals (Sweden)

    Mansour Aliabadian

    2012-09-01

    Full Text Available The Barn owl, Tyto alba (Scopoli, 1769, occurs worldwide and shows a considerable amount of morphological and geographical variations, leading to the recognition of many subspecies throughout the world. Yet, no comprehensive study has not been done on this species. Data from mitochondrial gene (16S Ribosomal RNA (16S with 569 bp length were analyzed for 41 individuals around the world. Maximum likelihood (ML, maximum parsimony (MP and Bayesian analysis showed two distinct clades including alba clad (old world and furcata clad (new world. The amount of genetic variation within each of these clades ranged from 0.5-1.7 but variation between clades was 3.7. This data may suggest that Barn owls of the Old World may be a separate species from those of the New World.

  15. Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes.

    Science.gov (United States)

    Tahrir, Farzaneh G; Knezevic, Tijana; Gupta, Manish K; Gordon, Jennifer; Cheung, Joseph Y; Feldman, Arthur M; Khalili, Kamel

    2017-04-01

    Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Czech Academy of Sciences Publication Activity Database

    Lin, R.-H.; Lai, D.-H.; Zheng, L.-L.; Wu, J.; Lukeš, Julius; Hide, G.; Lun, Z.-R.

    2015-01-01

    Roč. 8, 30 December 2015 (2015), s. 665 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Trypanosoma lewisi * Kinetoplast maxicircle * Mitochondrial DNA * RNA editing * Palindrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2015

  17. Keeping it complicated: Mitochondrial genome plasticity across diplonemids.

    Science.gov (United States)

    Valach, Matus; Moreira, Sandrine; Hoffmann, Steve; Stadler, Peter F; Burger, Gertraud

    2017-10-26

    Chromosome rearrangements are important drivers in genome and gene evolution, with implications ranging from speciation to development to disease. In the flagellate Diplonema papillatum (Euglenozoa), mitochondrial genome rearrangements have resulted in nearly hundred chromosomes and a systematic dispersal of gene fragments across the multipartite genome. Maturation into functional RNAs involves separate transcription of gene pieces, joining of precursor RNAs via trans-splicing, and RNA editing by substitution and uridine additions both reconstituting crucial coding sequence. How widespread these unusual features are across diplonemids is unclear. We have analyzed the mitochondrial genomes and transcriptomes of four species from the Diplonema/Rhynchopus clade, revealing a considerable genomic plasticity. Although gene breakpoints, and thus the total number of gene pieces (~80), are essentially conserved across this group, the number of distinct chromosomes varies by a factor of two, with certain chromosomes combining up to eight unrelated gene fragments. Several internal protein-coding gene pieces overlap substantially, resulting, for example, in a stretch of 22 identical amino acids in cytochrome c oxidase subunit 1 and NADH dehydrogenase subunit 5. Finally, the variation of post-transcriptional editing patterns across diplonemids indicates compensation of two adverse trends: rapid sequence evolution and loss of genetic information through unequal chromosome segregation.

  18. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  19. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanli [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhao, Chaoxian; Sun, Xuewen [Medical College of Hebei Engineering University, Handan, 056002, Hebei (China); Liu, Zhijun, E-mail: liuzhij1207@163.com [Affiliated Hospital of Hebei Engineering University, Handan, 056002, Hebei (China); Zhang, Jianzhong, E-mail: zhangjianzhong@icdc.cn [National Institute for Communicable Disease Control and Prevention (ICDC), Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206 (China)

    2015-11-06

    MicroRNAs (miRNAs) have been suggested to play critical roles in skeletal muscle in response to exercise. Previous study has shown that miR-761 was involved in a novel model regulating the mitochondrial network. However, its role in mitochondrial biogenesis remains poorly understood. Therefore, the current study was aimed to examine the effect of miR-761 on mitochondrial biogenesis in skeletal muscle. Real-time quantitative PCR analysis demonstrated that aberrantly expressed miR-761 is involved in exercise activity and miR-761 is decreased by exercise training compared with the sedentary control mice. miR-761 suppresses mitochondrial biogenesis of C{sub 2}C{sub 12} myocytes by targeting the 3′-UTR of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1α). Overexpression of miR-761 was capable of inhibiting the protein expression levels of PGC-1α. Moreover, miR-761 overexpression suppressed the p38 MAPK signaling pathway and down-regulated the expression of phosphorylated MAPK-activated protein kinase-2 (P-MK2), a downstream kinase of p38 MAPK. The phosphorylation of activating transcription factors 2 (ATF2) that plays a functional role in linking the activation of the p38 MAPK pathway to enhanced transcription of the PGC-1α was also inhibited by the overexpression of miR-761. These findings revealed a novel regulation mechanism for miR-761 in skeletal myocytes, and contributed to a better understanding of the modulation of skeletal muscle in response to exercise. - Highlights: • Endurance exercise decreases miR-761 expression in skeletal muscle. • MiR-761 suppresses mitochondrial biogenesis in C{sub 2}C{sub 12} myocytes. • MiR-761 directly targeted PGC-1α expression. • MiR-761 suppresses p38 MAPK signaling pathways in C{sub 2}C{sub 12} myocytes. • A novel mechanism for miR-761 in skeletal myocytes is demonstrated.

  20. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  1. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  2. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  3. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity

    Directory of Open Access Journals (Sweden)

    Peter W. Lindinger

    2015-09-01

    Full Text Available Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  5. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1 in tobacco.

    Directory of Open Access Journals (Sweden)

    Alessandra Vasconcellos Nunes Laitz

    Full Text Available Mitochondrial inner membrane uncoupling proteins (UCP dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1 in tobacco seedlings. Compared to wild-type (WT, AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.

  6. Stroke due to mitochondrial disorders in Saudi children

    International Nuclear Information System (INIS)

    Salih, Mustafa A.; Zahraa, Jihad N.; Abdel-Gader, Abdel-Galil M.; Alorainy, Ibrahim A.; Hassan, Hamdy H.; Al-Rayees, Molham; Ruitenbeek, W.; Zeviani, M.

    2006-01-01

    raised cerebrospinal fluid lactate but no ragged red fibres on muscle histochemistry. Biochemical assay of muscle homogenate showed reduction in respiratory chain complexes I, III and IV. Mutation screening of mtDNA at nucleotides 3243 (tRNA) and 8344 (tRNA) was negative. Mitochondrial disorders constitute a risk factor for stroke in Saudi children. However, demanding and highly specialized investigations are needed to confirm the diagnosis. These are better performed at supraregional centers where facilities for clinical biochemical and molecular work-up are available. (author)

  7. Structure based hypothesis of a mitochondrial ribosome rescue mechanism

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2012-05-01

    Full Text Available Abstract Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann and Dr. Shamil Sunyaev.

  8. Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

    Directory of Open Access Journals (Sweden)

    Stalleicken Dirk

    2006-11-01

    Full Text Available Abstract Background Chronic therapy with nitroglycerin (GTN results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS. According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2 play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT and heterozygous manganese superoxide dismutase mice (Mn-SOD+/- with ethanolic solution of GTN (12.5 μg/min/kg for 4 d. For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2 activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh, increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.

  9. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD. 1-methyl-4-phenylpyridinium iodide (MPP(+, the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3beta (GSK-3beta, a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3beta in modulating MPP(+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP(+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3beta, evidenced by the increased level of the active form of the kinase, i.e. GSK-3beta phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3beta partially localized within mitochondria in both neuronal cell models. Moreover, MPP(+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3beta labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP(+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3beta activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP(+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3beta is a critical mediator of MPTP/MPP(+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3beta activity might provide protection against

  10. A single mutation in the 15S rRNA gene confers nonsense suppressor activity and interacts with mRF1 the release factor in yeast mitochondria

    Directory of Open Access Journals (Sweden)

    Ali Gargouri

    2015-08-01

    Full Text Available We have determined the nucleotide sequence of the mim3-1 mitochondrial ribosomal suppressor, acting on ochre mitochondrial mutations and one frameshift mutation in Saccharomyces cerevisiae. The 15s rRNA suppressor gene contains a G633 to C transversion. Yeast mitochondrial G633 corresponds to G517 of the E.coli 15S rRNA, which is occupied by an invariant G in all known small rRNA sequences. Interestingly, this mutation has occurred at the same position as the known MSU1 mitochondrial suppressor which changes G633 to A. The suppressor mutation lies in a highly conserved region of the rRNA, known in E.coli as the 530-loop, interacting with the S4, S5 and S12 ribosomal proteins. We also show an interesting interaction between the mitochondrial mim3-1 and the nuclear nam3-1 suppressors, both of which have the same action spectrum on mitochondrial mutations: nam3-1 abolishes the suppressor effect when present with mim3-1 in the same haploid cell. We discuss these results in the light of the nature of Nam3, identified by [1] as the yeast mitochondrial translation release factor. A hypothetical mechanism of suppression by "ribosome shifting" is also discussed in view of the nature of mutations suppressed and not suppressed.

  11. Characterization of the complete mitochondrial genome of Khawia sinensis belongs among platyhelminths, cestodes.

    Science.gov (United States)

    Feng, Yan; Feng, Han-Li; Fang, Yi-Hui; Su, Ying-Bing

    2017-06-01

    Khawia sinensis is an important species in freshwater fish causing considerable economic losses to the breeding industry. This is the first mt genome of a caryophyllidean cestode characterised. The entire mt genome of K. sinensis is 13,759 bp in length. This mt genome contains 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and two non-coding regions. The arrangement of the K. sinensis mt genome is the same as other tapeworms, however, the incomplete stop codon (A) is more frequent that other species. Phylogenetic analyses based on concatenated amino-acid sequences of the 12 protein-coding genes of 17 tapeworms including K. sinensis were conducted to assess the relationship of K. sinensis with other species, the result indicated K. sinensis was closely related with cestode species. This complete mt genome of K. sinensis will enrich the mitochondrial genome databases of tapeworms and provide important molecular markers for ecology, diagnostics, population variation and evolution of K. sinensis and other species. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity

    International Nuclear Information System (INIS)

    Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo

    2013-01-01

    Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP + -dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report an autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer

  13. Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree.

    Science.gov (United States)

    Villela, Luciana Cristine Vasques; Alves, Anderson Luis; Varela, Eduardo Sousa; Yamagishi, Michel Eduardo Beleza; Giachetto, Poliana Fernanda; da Silva, Naiara Milagres Augusto; Ponzetto, Josi Margarete; Paiva, Samuel Rezende; Caetano, Alexandre Rodrigues

    2017-02-01

    The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.

  14. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  15. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis

    Directory of Open Access Journals (Sweden)

    Walter Arancio

    2015-01-01

    Full Text Available It has been suggested that cancer stem cells (CSC may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2, in the control cell cycle (TP53, CCND1, and in mitochondrial activity (COX8A. The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.

  16. Multiple independent structural dynamic events in the evolution of snake mitochondrial genomes.

    Science.gov (United States)

    Qian, Lifu; Wang, Hui; Yan, Jie; Pan, Tao; Jiang, Shanqun; Rao, Dingqi; Zhang, Baowei

    2018-05-10

    Mitochondrial DNA sequences have long been used in phylogenetic studies. However, little attention has been paid to the changes in gene arrangement patterns in the snake's mitogenome. Here, we analyzed the complete mitogenome sequences and structures of 65 snake species from 14 families and examined their structural patterns, organization and evolution. Our purpose was to further investigate the evolutionary implications and possible rearrangement mechanisms of the mitogenome within snakes. In total, eleven types of mitochondrial gene arrangement patterns were detected (Type I, II, III, III-A, III-B, III-B1, III-C, III-D, III-E, III-F, III-G), with mitochondrial genome rearrangements being a major trend in snakes, especially in Alethinophidia. In snake mitogenomes, the rearrangements mainly involved three processes, gene loss, translocation and duplication. Within Scolecophidia, the O L was lost several times in Typhlopidae and Leptotyphlopidae, but persisted as a plesiomorphy in the Alethinophidia. Duplication of the control region and translocation of the tRNA Leu gene are two visible features in Alethinophidian mitochondrial genomes. Independently and stochastically, the duplication of pseudo-Pro (P*) emerged in seven different lineages of unequal size in three families, indicating that the presence of P* was a polytopic event in the mitogenome. The WANCY tRNA gene cluster and the control regions and their adjacent segments were hotspots for mitogenome rearrangement. Maintenance of duplicate control regions may be the source for snake mitogenome structural diversity.

  17. Mitochondrial aminoacyl-tRNA synthetase single-nucleotide polymorphisms that lead to defects in refolding but not aminoacylation

    DEFF Research Database (Denmark)

    Banerjee, Rajat; Reynolds, Noah M; Yadavalli, Srujana S

    2011-01-01

    Defects in organellar translation are the underlying cause of a number of mitochondrial diseases, including diabetes, deafness, encephalopathy, and other mitochondrial myopathies. The most common causes of these diseases are mutations in mitochondria-encoded tRNAs. It has recently become apparent...

  18. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  19. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    OpenAIRE

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and ...

  20. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  1. The mitochondrial genome of the Arizona Snowfly Mesocapnia arizonensis (Plecoptera, Capniidae).

    Science.gov (United States)

    Elbrecht, Vasco; Leese, Florian

    2016-09-01

    We assembled the mitochondrial genome of the capniid stonefly Mesocapnia arizonensis (Baumann & Gaufin, 1969) using Illumina HiSeq sequence data. The recovered mitogenome is 14,921 bp in length and includes 13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The control region could only be assembled partially. Gene order resembles that of basal arthropods. This is the first partial mitogenome sequence for the stonefly superfamily group Euholognatha and will be useful in future phylogenetic analyses.

  2. Adverse Intrauterine Environment and Cardiac miRNA Expression

    Directory of Open Access Journals (Sweden)

    Mitchell C. Lock

    2017-12-01

    Full Text Available Placental insufficiency, high altitude pregnancies, maternal obesity/diabetes, maternal undernutrition and stress can result in a poor setting for growth of the developing fetus. These adverse intrauterine environments result in physiological changes to the developing heart that impact how the heart will function in postnatal life. The intrauterine environment plays a key role in the complex interplay between genes and the epigenetic mechanisms that regulate their expression. In this review we describe how an adverse intrauterine environment can influence the expression of miRNAs (a sub-set of non-coding RNAs and how these changes may impact heart development. Potential consequences of altered miRNA expression in the fetal heart include; Hypoxia inducible factor (HIF activation, dysregulation of angiogenesis, mitochondrial abnormalities and altered glucose and fatty acid transport/metabolism. It is important to understand how miRNAs are altered in these adverse environments to identify key pathways that can be targeted using miRNA mimics or inhibitors to condition an improved developmental response.

  3. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  4. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Complete mitochondrial genome of the Pigeye Shark Carcharhinus amboinensis (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Feutry, Pierre; Every, Sharon L; Kyne, Peter M; Sun, Renjie; Chen, Xiao

    2016-05-01

    In this manuscript we describe the first complete mitochondrial sequence for the Data Deficient Pigeye Shark Carcharhinus amboinensis. The mitogenome is 16,704 bp long and consists of 1 control region, 2 rRNA genes, 22 tRNA genes and 13 protein-coding genes with an overall base composition of 31.6% A, 24.9% C, 13.1% G and 30.4% T. The gene arrangement pattern and transcriptional direction were typical for a vertebrate species. The tRNA-Ser2 lacks the dihydrouridine arm and forms a simple loop, therefore it cannot be folded into the typical cloverleaf secondary structures like other tRNAs.

  6. Differential mitochondrial DNA and gene expression in inherited retinal dysplasia in miniature Schnauzer dogs.

    Science.gov (United States)

    Appleyard, Greg D; Forsyth, George W; Kiehlbauch, Laura M; Sigfrid, Kristen N; Hanik, Heather L J; Quon, Anita; Loewen, Matthew E; Grahn, Bruce H

    2006-05-01

    To investigate the molecular basis of inherited retinal dysplasia in miniature Schnauzers. Retina and retinal pigment epithelial tissues were collected from canine subjects at the age of 3 weeks. Total RNA isolated from these tissues was reverse transcribed to make representative cDNA pools that were compared for differences in gene expression by using a subtractive hybridization technique referred to as representational difference analysis (RDA). Expression differences identified by RDA were confirmed and quantified by real-time reverse-transcription PCR. Mitochondrial morphology from leukocytes and skeletal muscle of normal and affected miniature Schnauzers was examined by transmission electron microscopy. RDA screening of retinal pigment epithelial cDNA identified differences in mRNA transcript coding for two mitochondrial (mt) proteins--cytochrome oxidase subunit 1 and NADH dehydrogenase subunit 6--in affected dogs. Contrary to expectations, these identified sequences did not contain mutations. Based on the implication of mt-DNA-encoded proteins by the RDA experiments we used real-time PCR to compare the relative amounts of mt-DNA template in white blood cells from normal and affected dogs. White blood cells of affected dogs contained less than 30% of the normal amount of two specific mtDNA sequences, compared with the content of the nuclear-encoded glyceraldehyde-3-phosphate dehydrogenase (GA-3-PDH) reference gene. Retina and RPE tissue from affected dogs had reduced mRNA transcript levels for the two mitochondrial genes detected in the RDA experiment. Transcript levels for another mtDNA-encoded gene as well as the nuclear-encoded mitochondrial Tfam transcription factor were reduced in these tissues in affected dogs. Mitochondria from affected dogs were reduced in number and size and were unusually electron dense. Reduced levels of nuclear and mitochondrial transcripts in the retina and RPE of miniature Schnauzers affected with retinal dysplasia suggest that

  7. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  8. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    Science.gov (United States)

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  10. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  11. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  12. The complete mitochondrial genome of Octopus conispadiceus (Sasaki, 1917) (Cephalopoda: Octopodidae).

    Science.gov (United States)

    Ma, Yuanyuan; Zheng, Xiaodong; Cheng, Rubin; Li, Qi

    2016-01-01

    In this paper, we determined the complete mitochondrial genome of Octopus conispadiceus (Cephalopoda: Octopodidae). The whole mitogenome of O. conispadiceus is 16,027 basepairs (bp) in length with a base composition of 41.4% A, 34.8% T, 16.1% C, 7.7% G and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a major non-coding region (MNR). The gene arrangements of O. conispadiceus showed remarkable similarity to that of O. vulgaris, Amphioctopus fangsiao, Cistopus chinensis and C. taiwanicus.

  13. Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes.

    Science.gov (United States)

    Zhao, J H; Tu, G J; Wu, X B; Li, C P

    2018-05-01

    Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.

  14. Full Mitochondrial Genome Sequence of the Sugar Beet Wireworm Limonius californicus (Coleoptera: Elateridae), a Common Agricultural Pest.

    Science.gov (United States)

    Gerritsen, Alida T; New, Daniel D; Robison, Barrie D; Rashed, Arash; Hohenlohe, Paul; Forney, Larry; Rashidi, Mahnaz; Wilson, Cathy M; Settles, Matthew L

    2016-01-21

    We report here the full mitochondrial genome sequence of Limonius californicus, a species of click beetle that is an agricultural pest in its larval form. The circular genome is 16.5 kb and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. Copyright © 2016 Gerritsen et al.

  15. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  16. Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer.

    Science.gov (United States)

    Rivas, Alexis; Burzio, Verónica; Landerer, Eduardo; Borgna, Vincenzo; Gatica, Sebastian; Ávila, Rodolfo; López, Constanza; Villota, Claudio; de la Fuente, Rodrigo; Echenique, Javiera; Burzio, Luis O; Villegas, Jaime

    2012-12-18

    Bladder cancer is a significant cause of morbidity and mortality with a high recurrence rate. Early detection of bladder cancer is essential in order to remove the tumor, to preserve the organ and to avoid metastasis. The aim of this study was to analyze the differential expression of mitochondrial non-coding RNAs (sense and antisense) in cells isolated from voided urine of patients with bladder cancer as a noninvasive diagnostic assay. The differential expression of the sense (SncmtRNA) and the antisense (ASncmtRNAs) transcripts in cells isolated from voided urine was determined by fluorescent in situ hybridization. The test uses a multiprobe mixture labeled with different fluorophores and takes about 1 hour to complete. We examined the expression of these transcripts in cells isolated from urine of 24 patients with bladder cancer and from 15 healthy donors. This study indicates that the SncmtRNA and the ASncmtRNAs are stable in cells present in urine. The test reveals that the expression pattern of the mitochondrial transcripts can discriminate between normal and tumor cells. The analysis of 24 urine samples from patients with bladder cancer revealed expression of the SncmtRNA and down-regulation of the ASncmtRNAs. Exfoliated cells recovered from the urine of healthy donors do not express these mitochondrial transcripts. This is the first report showing that the differential expression of these mitochondrial transcripts can detect tumor cells in the urine of patients with low and high grade bladder cancer. This pilot study indicates that fluorescent in situ hybridization of cells from urine of patients with different grades of bladder cancer confirmed the tumor origin of these cells. Samples from the 24 patients with bladder cancer contain cells that express the SncmtRNA and down-regulate the ASncmtRNAs. In contrast, the hybridization of the few exfoliated cells recovered from healthy donors revealed no expression of these mitochondrial transcripts. This assay

  17. Determination of the differential expression of mitochondrial long non-coding RNAs as a noninvasive diagnosis of bladder cancer

    Directory of Open Access Journals (Sweden)

    Rivas Alexis

    2012-12-01

    Full Text Available Abstract Background Bladder cancer is a significant cause of morbidity and mortality with a high recurrence rate. Early detection of bladder cancer is essential in order to remove the tumor, to preserve the organ and to avoid metastasis. The aim of this study was to analyze the differential expression of mitochondrial non-coding RNAs (sense and antisense in cells isolated from voided urine of patients with bladder cancer as a noninvasive diagnostic assay. Methods The differential expression of the sense (SncmtRNA and the antisense (ASncmtRNAs transcripts in cells isolated from voided urine was determined by fluorescent in situ hybridization. The test uses a multiprobe mixture labeled with different fluorophores and takes about 1 hour to complete. We examined the expression of these transcripts in cells isolated from urine of 24 patients with bladder cancer and from 15 healthy donors. Results This study indicates that the SncmtRNA and the ASncmtRNAs are stable in cells present in urine. The test reveals that the expression pattern of the mitochondrial transcripts can discriminate between normal and tumor cells. The analysis of 24 urine samples from patients with bladder cancer revealed expression of the SncmtRNA and down-regulation of the ASncmtRNAs. Exfoliated cells recovered from the urine of healthy donors do not express these mitochondrial transcripts. This is the first report showing that the differential expression of these mitochondrial transcripts can detect tumor cells in the urine of patients with low and high grade bladder cancer. Conclusion This pilot study indicates that fluorescent in situ hybridization of cells from urine of patients with different grades of bladder cancer confirmed the tumor origin of these cells. Samples from the 24 patients with bladder cancer contain cells that express the SncmtRNA and down-regulate the ASncmtRNAs. In contrast, the hybridization of the few exfoliated cells recovered from healthy donors

  18. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    Science.gov (United States)

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  19. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  20. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  1. Mitochondrial Contribution to Parkinson's Disease Pathogenesis

    Directory of Open Access Journals (Sweden)

    Anthony H. V. Schapira

    2011-01-01

    Full Text Available The identification of the etiologies and pathogenesis of Parkinson's disease (PD should play an important role in enabling the development of novel treatment strategies to prevent or slow the progression of the disease. The last few years have seen enormous progress in this respect. Abnormalities of mitochondrial function and increased free radical mediated damage were described in post mortem PD brain before the first gene mutations causing familial PD were published. Several genetic causes are now known to induce loss of dopaminergic cells and parkinsonism, and study of the mechanisms by which these mutations produce this effect has provided important insights into the pathogenesis of PD and confirmed mitochondrial dysfunction and oxidative stress pathways as central to PD pathogenesis. Abnormalities of protein metabolism including protein mis-folding and aggregation are also crucial to the pathology of PD. Genetic causes of PD have specifically highlighted the importance of mitochondrial dysfunction to PD: PINK1, parkin, DJ-1 and most recently alpha-synuclein proteins have been shown to localise to mitochondria and influence function. The turnover of mitochondria by autophagy (mitophagy has also become a focus of attention. This review summarises recent discoveries in the contribution of mitochondrial abnormalities to PD etiology and pathogenesis.

  2. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    Science.gov (United States)

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  3. The complete mitochondrial genome of a stonefly species, Kamimuria chungnanshana Wu, 1948 (Plecoptera: Perlidae).

    Science.gov (United States)

    Wang, Kai; Ding, Shuangmei; Yang, Ding

    2016-09-01

    This study determined the complete mitochondrial (mt) genome of the stonefly, Kamimuria chungnanshana Wu, 1948. The mt genome is 15, 943 bp in size and contains 37 canonical genes which include 22 transfer RNA genes, 13 protein-coding genes, and two ribosomal RNA genes, the control region is 1062 bp in length. The phylogenetic tree shows that Kamimuria chungnanshana is sister group of Kamimuria wangi.

  4. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  5. Estrogen/ERα signaling axis participates in osteoblast maturation via upregulating chromosomal and mitochondrial complex gene expressions

    Science.gov (United States)

    Lin, Pei-I; Tai, Yu-Ting; Chan, Wing P.; Lin, Yi-Ling; Liao, Mei-Hsiu; Chen, Ruei-Ming

    2018-01-01

    Estrogen deficiency usually leads to bone loss and osteoporosis in postmenopausal women. Osteoblasts play crucial roles in bone formation. However, osteoblast functions are influenced by mitochondrial bioenergetic conditions. In this study, we investigated the roles of the estrogen and estrogen receptor alpha (ERα) axis in mitochondrial energy metabolism and subsequent osteoblast mineralization. Exposure of rat calvarial osteoblasts to estradiol caused substantial improvements in alkaline phosphatase activities and cell calcification. In parallel, treatment of human osteoblast-like U2OS cells, derived from a female osteosarcoma patient, with estradiol specifically augmented ERα levels. Sequentially, estradiol stimulated translocation of ERα to nuclei in human osteoblasts and induced expressions of genomic respiratory chain complex NDUFA10, UQCRC1, cytochrome c oxidase (COX)8A, COX6A2, COX8C, COX6C, COX6B2, COX412, and ATP12A genes. Concurrently, estradiol stimulated translocation of ERα to mitochondria from the cytoplasm. A bioinformatic search found the existence of four estrogen response elements in the 5’-promoter region of the mitochondrial cox i gene. Interestingly, estradiol induced COX I mRNA and protein expressions in human osteoblasts or rat calvarial osteoblasts. Knocking-down ERα translation concurrently downregulated estradiol-induced COX I mRNA expression. Consequently, exposure to estradiol led to successive increases in the mitochondrial membrane potential, the mitochondrial enzyme activity, and cellular adenosine triphosphate levels. Taken together, this study showed the roles of the estradiol/ERα signaling axis in improving osteoblast maturation through upregulating the mitochondrial bioenergetic system due to induction of definite chromosomal and mitochondrial complex gene expressions. Our results provide novel insights elucidating the roles of the estrogen/ERα alliance in regulating bone formation. PMID:29416685

  6. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    Science.gov (United States)

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  7. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    Science.gov (United States)

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  8. Complete mitochondrial genome of the Spadenose shark Scoliodon laticaudus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Periasamy, Rengaiyan; Chen, Xiao; Ingole, Baban; Liu, Wenai

    2016-09-01

    The complete mitochondrial genome of the Spadenose shark Scoliodon laticaudus has been determined for the first time in this study. It was 16,695 bp in length and consisted of 37 genes with typical gene order in vertebrate mitogenome. The nucleotide base content of S. laticaudus mitogenome was 31.5% A, 23.7% C, 13.2% G and 31.6% T. Two start codons (GTG and ATG) and three stop codons (AGA, TAG and TAA/T) were used in the protein-coding genes. The 22 tRNAs ranged from 67 bp (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1) in length. The tRNA-Ser2 could not be folded into typical cloverleaf secondary structure by lacking the dihydrouridine (DHC) arm stem.

  9. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    He, Haiyan [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China); Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Huh, Jin [Department of Anesthesia and Pain Medicine, Medical College, Kangwon National University, Chuncheon City (Korea, Republic of); Wang, Huihua [Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province (China); Kang, Yi; Lou, Jianshi [Department of Pharmacology, Tianjin Medical University, Tianjin 300070 (China); Xu, Zhelong, E-mail: zxu@tmu.edu.cn [Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin 300070 (China)

    2016-01-01

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphine reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine

  10. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial......-oxidation by redox state is thought to be an important mechanism for the slowing of lipid oxidation during intensive exercise....

  11. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  12. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  13. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    Science.gov (United States)

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. The Complete Mitochondrial Genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and Phylogenetic Analysis of Pentatomomorpha

    Science.gov (United States)

    Guo, Zhong-Long; Wang, Juan; Shen, Yu-Ying

    2015-01-01

    Insect mitochondrial genome (mitogenome) are the most extensively used genetic information for molecular evolution, phylogenetics and population genetics. Pentatomomorpha (>14,000 species) is the second largest infraorder of Heteroptera and of great economic importance. To better understand the diversity and phylogeny within Pentatomomorpha, we sequenced and annotated the complete mitogenome of Corizus tetraspilus (Hemiptera: Rhopalidae), an important pest of alfalfa in China. We analyzed the main features of the C. tetraspilus mitogenome, and provided a comparative analysis with four other Coreoidea species. Our results reveal that gene content, gene arrangement, nucleotide composition, codon usage, rRNA structures and sequences of mitochondrial transcription termination factor are conserved in Coreoidea. Comparative analysis shows that different protein-coding genes have been subject to different evolutionary rates correlated with the G+C content. All the transfer RNA genes found in Coreoidea have the typical clover leaf secondary structure, except for trnS1 (AGN) which lacks the dihydrouridine (DHU) arm and possesses a unusual anticodon stem (9 bp vs. the normal 5 bp). The control regions (CRs) among Coreoidea are highly variable in size, of which the CR of C. tetraspilus is the smallest (440 bp), making the C. tetraspilus mitogenome the smallest (14,989 bp) within all completely sequenced Coreoidea mitogenomes. No conserved motifs are found in the CRs of Coreoidea. In addition, the A+T content (60.68%) of the CR of C. tetraspilus is much lower than that of the entire mitogenome (74.88%), and is lowest among Coreoidea. Phylogenetic analyses based on mitogenomic data support the monophyly of each superfamily within Pentatomomorpha, and recognize a phylogenetic relationship of (Aradoidea + (Pentatomoidea + (Lygaeoidea + (Pyrrhocoroidea + Coreoidea)))). PMID:26042898

  15. Phenotypic diversity associated with the mitochondrial m.8313G>A point mutation.

    LENUS (Irish Health Repository)

    O'Rourke, Killian

    2012-02-01

    We report the clinical, histochemical, and molecular genetic findings in a patient with progressive mitochondrial cytopathy due to the m.8313G>A point mutation in the mitochondrial tRNA(Lys) (MTTK) gene. The clinical features in this case are severe, including short stature, myopathy, peripheral neuropathy, and osteoporosis, while extensive analysis of maternal relatives indicate that the mutation has arisen de novo and was not maternally inherited. This report of a second case, together with single muscle fiber mutation analysis that shows clear segregation of mutation load with cytochrome c oxidase deficiency, confirms that the mutation is pathologic.

  16. Architecture of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leitner, Alexander; Bieri, Philipp; Voigts-Hoffmann, Felix; Erzberger, Jan P; Leibundgut, Marc; Aebersold, Ruedi; Ban, Nenad

    2014-01-23

    Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

  17. Molecular phylogeny of the neritidae (Gastropoda: Neritimorpha) based on the mitochondrial genes cytochrome oxidase I (COI) and 16S rRNA

    International Nuclear Information System (INIS)

    Quintero Galvis, Julian Fernando; Castro, Lyda Raquel

    2013-01-01

    The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina, Septaria, Theodoxus, Puperita, and Clithon, while in the Bayesian analyses Theodoxus is separated from the other genera. The phylogenetic status of the species from the genus Nerita from the Colombian Caribbean generated in this study was consistent with that reported for the genus in previous studies. In the resulting consensus tree obtained using maximum parsimony, we included information on habitat type for each species, to map the evolution by habitat. Species of the family Neritidae possibly have their origin in marine environments, which is consistent with conclusions from previous reports based on anatomical studies.

  18. Mitochondrial Sirtuin 4 Resolves Immune Tolerance in Monocytes by Rebalancing Glycolysis and Glucose Oxidation Homeostasis

    Directory of Open Access Journals (Sweden)

    Jie Tao

    2018-03-01

    Full Text Available The goal of this investigation was to define the molecular mechanism underlying physiologic conversion of immune tolerance to resolution of the acute inflammatory response, which is unknown. An example of this knowledge gap and its clinical importance is the broad-based energy deficit and immunometabolic paralysis in blood monocytes from non-survivors of human and mouse sepsis that precludes sepsis resolution. This immunometabolic dysregulation is biomarked by ex vivo endotoxin tolerance to increased glycolysis and TNF-α expression. To investigate how tolerance switches to resolution, we adapted our previously documented models associated with acute inflammatory, immune, and metabolic reprogramming that induces endotoxin tolerance as a model of sepsis in human monocytes. We report here that mitochondrial sirtuin 4 (SIRT4 physiologically breaks tolerance and resolves acute inflammation in human monocytes by coordinately reprogramming of metabolism and bioenergetics. We find that increased SIRT4 mRNA and protein expression during immune tolerance counters the increase in pyruvate dehydrogenase kinase 1 (PDK1 and SIRT1 that promote tolerance by switching glucose-dependent support of immune resistance to fatty acid oxidation support of immune tolerance. By decreasing PDK1, pyruvate dehydrogenase complex reactivation rebalances mitochondrial respiration, and by decreasing SIRT1, SIRT4 represses fatty acid oxidation. The precise mechanism for the mitochondrial SIRT4 nuclear feedback is unclear. Our findings are consistent with a new concept in which mitochondrial SIRT4 directs the axis that controls anabolic and catabolic energy sources.

  19. Fe(III Is Essential for Porcine Embryonic Development via Mitochondrial Function Maintenance.

    Directory of Open Access Journals (Sweden)

    Ming-Hui Zhao

    Full Text Available Iron is an important trace element involved in several biological processes. The role of iron in porcine early embryonic development remains unknown. In the present study, we depleted iron (III, Fe3+ with deferoxamine (DFM, a specific Fe3+ chelator, in cultured porcine parthenotes and monitored embryonic development, apoptosis, mitochondrial membrane potential, and ATP production. Results showed biphasic function of Fe3+ in porcine embryo development. 0.5 μM DFM obviously increased blastocyst formation (57.49 ± 2.18% vs. control, 43.99 ± 1.72%, P < 0.05 via reduced (P < 0.05 production of reactive oxygen species (ROS, further increased mitochondrial membrane potential and ATP production in blastocysts (P < 0.05. 0.5 μM DFM decreased mRNA expression of Caspase 3 (Casp3 and increased Bcl-xL. However, results showed a significant reduction in blastocyst formation in the presence of 5.0 μM DFM compared with the control group (DFM, 21.62 ± 3.92% vs. control, 43.99 ± 1.73%, P < 0.05. Fe3+ depletion reduced the total (DFM, 21.10 ± 8.78 vs. control, 44.09 ± 13.65, P < 0.05 and increased apoptotic cell number (DFM, 11.10 ± 5.24 vs. control, 2.64 ± 1.43, P < 0.05 in the blastocyst. An obvious reduction in mitochondrial membrane potential and ATP level after 5.0 μM DFM treatment was observed. Co-localization between mitochondria and cytochrome c was reduced after high concentration of DFM treatment. In conclusion, Fe3+ is essential for porcine embryonic development via mitochondrial function maintenance, but redundant Fe3+ impairs the function of mitochondria.

  20. A ribosome without RNA

    Directory of Open Access Journals (Sweden)

    Harold S Bernhardt

    2015-11-01

    Full Text Available It was Francis Crick who first asked why the ribosome contains so much RNA, and discussed the implications of this for the direct flow of genetic information from DNA to protein. Remarkable advances in our understanding of the ribosome and protein synthesis, including the recent publication of two mammalian mitochondrial ribosome structures, have shed new light on this intriguing aspect of evolution in molecular biology. We examine here whether RNA is indispensable for coded protein synthesis, or whether an all-protein ‘ribosome’ (or ‘synthosome’ might be possible, with a protein enzyme catalyzing peptide synthesis, and release factor-like protein adaptors able to read a message composed of deoxyribonucleotides. We also compare the RNA world hypothesis with the alternative ‘proteins first’ hypothesis in terms of their different understandings of the evolution of the ribosome, and whether this might have been preceded by an ancestral form of nonribosomal peptide synthesis catalyzed by protein enzymes.

  1. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  2. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    -order eukaryotic lineages. Conclusion Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.

  3. Breaking the ritual metabolic cycle in order to save acetyl CoA: A potential role for mitochondrial humanin in T2 bladder cancer aggressiveness

    Directory of Open Access Journals (Sweden)

    Nesreen Nabil Omar

    2017-06-01

    Full Text Available Introduction: Cancer cells may exhibit outsourcing of their high energy need in order to avoid the intrinsic mitochondrial apoptosis. Reduced mitochondrial respiration and accumulation of mitochondrial genome mutations are among metabolic transformations in this regard. Mitochondrial humanin (MT-RNR2 is a small peptide with anti-apoptotic activities attributed to binding some pro-apoptotic proteins. Aim of the work: The current study aims at investigating the expression of mitochondrial humanin in bladder tumor cells and the possible casting of humanin anti-apoptotic action through orchestrating some of the mitochondrial metabolic enzymes. Material and methods: Here messenger RNA of humanin, succinate dehydrogenase, glutaminase, isocitrate dehydrogenase were compared in tissues from patients with T2 bladder carcinoma in comparison to tumor associated normal tissues from the same patients. Levels of lactate and mitochondrial pyruvate carrier (MPC1 mRNA were determined to scrutinize the prevalence of aerobic glycolysis. Results: The present study found that tumor cells had suppressed aerobic glycolysis, augmented mitochondrial respiration and interrupted tricarboxylic acid cycle, all of which were suggested to serve tumor aggressiveness. MT-RNR2 was found closely related to the alterations in mitochondrial activity. Conclusion: MT-RNR2 plays its anti-apoptotic role partly by avoiding deploying energy from complete oxidation of organic compounds to inorganic wastes. Thus MT-RNR2 can potentially serve as a new biomarker in the diagnosis of bladder carcinoma especially that it is present in blood circulation.

  4. Importance of mitochondrial PO2in maximal O2 transport and utilization: A theoretical analysis

    OpenAIRE

    Cano Franco, Isaac; Mickael, M.; Gomez Cabrero, David; Tegnér, Jesper; Roca Torrent, Josep; Wagner, P. D. (Peter D.)

    2013-01-01

    In previous calculations of how the O2 transport system limits .VO2(max), it was reasonably assumed that mitochondrial P(O2) (Pm(O2)) could be neglected (set to zero). However, in reality, Pm(O2) must exceed zero and the red cell to mitochondrion diffusion gradient may therefore be reduced, impairing diffusive transport of O2 and .VO2(max). Accordingly, we investigated the influence of Pm(O2) on these calculations by coupling previously used equations for O2 transport to one for mitochondrial...

  5. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy.

    Science.gov (United States)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Triiodothyronine induces lipid oxidation and mitochondrial biogenesis in rat Harderian gland.

    Science.gov (United States)

    Santillo, A; Burrone, L; Falvo, S; Senese, R; Lanni, A; Chieffi Baccari, G

    2013-10-01

    The rat Harderian gland (HG) is an orbital gland producing a copious lipid secretion. Recent studies indicate that its secretory activity is regulated by thyroid hormones. In this study, we found that both isoforms of the thyroid hormone receptor (Trα (Thra) and Trβ (Thrb)) are expressed in rat HGs. Although Thra is expressed at a higher level, only Thrb is regulated by triiodothyronine (T3). Because T3 induces an increase in lipid metabolism in rat HGs, we investigated the effects of an animal's thyroid state on the expression levels of carnitine palmitoyltransferase-1A (Cpt1a) and carnitine palmitoyltransferase-1B (Cpt1b) and acyl-CoA oxidase (Acox1) (rate-limiting enzymes in mitochondrial and peroxisomal fatty acid oxidation respectively), as well as on the mitochondrial compartment, thereby correlating mitochondrial activity and biogenesis with morphological analysis. We found that hypothyroidism decreased the expression of Cpt1b and Acox1 mRNA, whereas the administration of T3 to hypothyroid rats increased transcript levels. Respiratory parameters and catalase protein levels provided further evidence that T3 modulates mitochondrial and peroxisomal activities. Furthermore, in hypothyroid rat HGs, the mitochondrial number and their total area decreased with respect to the controls, whereas the average area of the individual mitochondrion did not change. However, the average area of the individual mitochondrion was reduced by ∼50% in hypothyroid T3-treated HGs, and the mitochondrial number and the total area of the mitochondrial compartment increased. The mitochondrial morphometric data correlated well with the molecular results. Indeed, hypothyroid status did not modify the expression of mitochondrial biogenesis genes such as Ppargc1a, Nrf1 and Tfam, whereas T3 treatment increased the expression level of these genes.

  7. Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair.

    Science.gov (United States)

    Hedberg, Annica; Knutsen, Erik; Løvhaugen, Anne Silje; Jørgensen, Tor Erik; Perander, Maria; Johansen, Steinar D

    2018-04-19

    Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T). Most sites were clustered within the highly conserved Complex IV and ribosomal RNA genes. Two heteroplasmic variants in normal cells were found as fixed mutations in cancer cells. This indicates a positive selection of these variants in cancer cells. RNA-Seq analysis identified upregulated L-strand specific transcripts in cancer cells, which include three mitochondrial long non-coding RNA molecules. We hypothesize that this is due to two cancer cell-specific mutations in the control region.

  8. Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol.

    Science.gov (United States)

    Wu, Bin; Luo, Hong; Zhou, Xu; Cheng, Cai-Yi; Lin, Lin; Liu, Bao-Lin; Liu, Kang; Li, Ping; Yang, Hua

    2017-09-01

    Mitochondrial dysfunction is known as one of causative factors in ischemic stroke, leading to neuronal cell death. The present work was undertaken to investigate whether succinate induces neuron apoptosis by regulating mitochondrial morphology and function. In neurons, oxygen-glucose deprivation induced succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activation, leading to mitochondrial fission. Kaempferol inhibited mitochondrial fission and maintained mitochondrial HK-II through activation of Akt, and thereby protected neurons from succinate-mediated ischemi injury. Knockdown of Akt2 with siRNA diminished the effect of kaempferol, indicating that kaempferol suppressed dynamin-related protein 1 (Drp1) activation and promoted HK-II mitochondrial binding dependently on Akt. Moreover, we demonstrated that kaempferol potentiated autophagy during oxygen and glucose deprivation, contributing to protecting neuron survival against succinate insult. In vivo, oral administration of kaempferol in mice attenuated the infract volume after ischemic and reperfusion (I/R) injury and reproduced the similar mitochondrial protective effect in the brain infract area. This study indicates that succinate accumulation plays a pivotal role in I/R injury-induced neuronal mitochondrial dysfunction, and suggests that modulation of Drp1 phosphorylation might be potential therapeutic strategy to protect neuron mitochondrial integrity and treat ischemic stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mitochondrial deoxyribonucleoside triphosphate pools in thymidine kinase 2 deficiency.

    Science.gov (United States)

    Saada, Ann; Ben-Shalom, Efrat; Zyslin, Rivka; Miller, Chaya; Mandel, Hanna; Elpeleg, Orly

    2003-10-24

    Deficiency of mitochondrial thymidine kinase (TK2) is associated with mitochondrial DNA (mtDNA) depletion and manifests by severe skeletal myopathy in infancy. In order to elucidate the pathophysiology of this condition, mitochondrial deoxyribonucleoside triphosphate (dNTP) pools were determined in patients' fibroblasts. Despite normal mtDNA content and cytochrome c oxidase (COX) activity, mitochondrial dNTP pools were imbalanced. Specifically, deoxythymidine triphosphate (dTTP) content was markedly decreased, resulting in reduced dTTP:deoxycytidine triphosphate ratio. These findings underline the importance of balanced mitochondrial dNTP pools for mtDNA synthesis and may serve as the basis for future therapeutic interventions.

  10. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  11. Bayesian, maximum parsimony and UPGMA models for inferring the phylogenies of antelopes using mitochondrial markers.

    Science.gov (United States)

    Khan, Haseeb A; Arif, Ibrahim A; Bahkali, Ali H; Al Farhan, Ahmad H; Al Homaidan, Ali A

    2008-10-06

    This investigation was aimed to compare the inference of antelope phylogenies resulting from the 16S rRNA, cytochrome-b (cyt-b) and d-loop segments of mitochondrial DNA using three different computational models including Bayesian (BA), maximum parsimony (MP) and unweighted pair group method with arithmetic mean (UPGMA). The respective nucleotide sequences of three Oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) and an out-group (Addax nasomaculatus) were aligned and subjected to BA, MP and UPGMA models for comparing the topologies of respective phylogenetic trees. The 16S rRNA region possessed the highest frequency of conserved sequences (97.65%) followed by cyt-b (94.22%) and d-loop (87.29%). There were few transitions (2.35%) and none transversions in 16S rRNA as compared to cyt-b (5.61% transitions and 0.17% transversions) and d-loop (11.57% transitions and 1.14% transversions) while comparing the four taxa. All the three mitochondrial segments clearly differentiated the genus Addax from Oryx using the BA or UPGMA models. The topologies of all the gamma-corrected Bayesian trees were identical irrespective of the marker type. The UPGMA trees resulting from 16S rRNA and d-loop sequences were also identical (Oryx dammah grouped with Oryx leucoryx) to Bayesian trees except that the UPGMA tree based on cyt-b showed a slightly different phylogeny (Oryx dammah grouped with Oryx gazella) with a low bootstrap support. However, the MP model failed to differentiate the genus Addax from Oryx. These findings demonstrate the efficiency and robustness of BA and UPGMA methods for phylogenetic analysis of antelopes using mitochondrial markers.

  12. In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis1[W][OA

    Science.gov (United States)

    Narsai, Reena; Law, Simon R.; Carrie, Chris; Xu, Lin; Whelan, James

    2011-01-01

    Germination represents a rapid transition from dormancy to a high level of metabolic activity. In-depth transcriptomic profiling at 10 time points in Arabidopsis (Arabidopsis thaliana), including fresh seed, ripened seed, during stratification, germination, and postgermination per se, revealed specific temporal expression patterns that to our knowledge have not previously been identified. Over 10,000 transcripts were differentially expressed during cold stratification, with subequal numbers up-regulated as down-regulated, revealing an active period in preparing seeds for germination, where transcription and RNA degradation both play important roles in regulating the molecular sequence of events. A previously unidentified transient expression pattern was observed for a group of genes, whereby a significant rise in expression was observed at the end of stratification and significantly lower expression was observed 6 h later. These genes were further defined as germination specific, as they were most highly expressed at this time in germination, in comparison with all developmental tissues in the AtGenExpress data set. Functional analysis of these genes using genetic inactivation revealed that they displayed a significant enrichment for embryo-defective or -arrested phenotype. This group was enriched in genes encoding mitochondrial and nuclear RNA-processing proteins, including more than 45% of all pentatricopeptide domain-containing proteins expressed during germination. The presence of mitochondrial DNA replication factors and RNA-processing functions in this germination-specific subset represents the earliest events in organelle biogenesis, preceding any changes associated with energy metabolism. Green fluorescent protein analysis also confirmed organellar localization for 65 proteins, largely showing germination-specific expression. These results suggest that mitochondrial biogenesis involves a two-step process to produce energetically active organelles: an

  13. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    Science.gov (United States)

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

  14. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    International Nuclear Information System (INIS)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu; Yoon, Young Eun; Han, Woong Kyu; Choi, Kyung Hwa; Kim, Kyung-Sup

    2016-01-01

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  15. Mitochondrial Sirt3 supports cell proliferation by regulating glutamine-dependent oxidation in renal cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jieun; Koh, Eunjin; Lee, Yu Shin; Lee, Hyun-Woo; Kang, Hyeok Gu [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Yoon, Young Eun; Han, Woong Kyu [Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Choi, Kyung Hwa [Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 463-712 (Korea, Republic of); Kim, Kyung-Sup, E-mail: KYUNGSUP59@yuhs.ac [Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2016-06-03

    Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised. -- Highlights: •Sirt3 is required for the maintenance of RCC cell proliferation. •Mitochondrial usage of cytosolic pyruvate is severely compromised in RCC. •Sirt3 supports glutamine-dependent oxidation in RCC.

  16. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  17. Elucidation of the therapeutic role of mitochondrial biogenesis transducers NRF-1 in the regulation of renal fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Pei-Fang [Graduate Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Liu, Shu-Fen [Department of Internal Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan (China); Hung, Tsung-Jen [Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Hung, Chien-Ya [Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Liu, Guo-Zheng [Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Chuang, Lea-Yea [Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Chen, Mei-Fen [Department of Acupressure Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Wang, Jue-Long [Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Taiwan (China); Shi, Ming-Der [Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan (China); Hsu, Chen Hung [Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Shiue, Yow-Ling, E-mail: shiue.shirley@gmail.com [Graduate Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Yang, Yu-Lin, E-mail: Call0955443221@gmail.com [Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan (China); Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan, Taiwan (China)

    2016-11-15

    Background: Mitochondrial dysfunction is a newly established risk factor for the development of renal fibrosis. Cell survival and injury repair is facilitated by mitochondrial biogenesis. Nuclear respiratory factor 1 (NRF-1) is a transcriptional regulation factor that plays a central role in the regulation of mitochondrial biogenesis. However, the transcription factor of this process in renal fibrosis is unknown. Thus, we hereby discussed the correlations of NRF-1 and renal interstitial fibrosis. Materials and methods: In vitro fibrosis model was established by treatment with transforming growth factor-β1 (TGF-β1) in NRK-49F (Normal Rat kidney fibroblast). We investigated the ROS production, mitochondrial biogenesis and fibrogenic marker (e.q. fibronectin) during the progression of renal fibrosis by kit and Western blotting assay. Here, we used that two distinct mechanisms regulate NRF-1 activation and degradation of NRF-1. NRF-1 was transfect by pcDNA-NRF-1 overexpression gene to evaluate the NRF-1 activity of the therapeutic effect in renal fibrosis. In addition, NRF-1 was silenced by shRNA-NRF-1 to evaluate the significance of NRF-1. ELISA was used to evaluate the secreted fibronectin. Immunofluorescence staining was used to assay the in situ expression of proteins (e.g. fibronectin, NRF-1). Results: Under renal fibrosis conditions, TGF-β1 (5 ng/ml) increased ROS. Simultaneously, TGF-β1-induced extracellular fibronectin by ELISA assay. In addition, TGF-β1 decreased expression of mitochondrial biogenesis. This is the first time to demonstrate that expression of NRF-1 is significantly decreased in renal fibrosis. However, NRK49F was a transfection with pcDNA-NRF-1 (2 μg/ml) expression vector dramatically reverse TGF-β1-induced cellular fibrosis concomitantly with the suppression of fibronectin (both intracellular and extracellular fibronectin). More importantly, transfection with shRNA-NRF-1 (2 μg/ml) significantly increased the expression of fibronectin

  18. Mitochondrial genome evolution in the Saccharomyces sensu stricto complex.

    Science.gov (United States)

    Ruan, Jiangxing; Cheng, Jian; Zhang, Tongcun; Jiang, Huifeng

    2017-01-01

    Exploring the evolutionary patterns of mitochondrial genomes is important for our understanding of the Saccharomyces sensu stricto (SSS) group, which is a model system for genomic evolution and ecological analysis. In this study, we first obtained the complete mitochondrial sequences of two important species, Saccharomyces mikatae and Saccharomyces kudriavzevii. We then compared the mitochondrial genomes in the SSS group with those of close relatives, and found that the non-coding regions evolved rapidly, including dramatic expansion of intergenic regions, fast evolution of introns and almost 20-fold higher rearrangement rates than those of the nuclear genomes. However, the coding regions, and especially the protein-coding genes, are more conserved than those in the nuclear genomes of the SSS group. The different evolutionary patterns of coding and non-coding regions in the mitochondrial and nuclear genomes may be related to the origin of the aerobic fermentation lifestyle in this group. Our analysis thus provides novel insights into the evolution of mitochondrial genomes.

  19. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao; Cui, Peng; Chen, Hao; Ali, Shahjahan; Zhang, ShouDong; Xiong, Liming

    2013-01-01

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  20. A KH-Domain RNA-Binding Protein Interacts with FIERY2/CTD Phosphatase-Like 1 and Splicing Factors and Is Important for Pre-mRNA Splicing in Arabidopsis

    KAUST Repository

    Chen, Tao

    2013-10-17

    Eukaryotic genomes encode hundreds of RNA-binding proteins, yet the functions of most of these proteins are unknown. In a genetic study of stress signal transduction in Arabidopsis, we identified a K homology (KH)-domain RNA-binding protein, HOS5 (High Osmotic Stress Gene Expression 5), as required for stress gene regulation and stress tolerance. HOS5 was found to interact with FIERY2/RNA polymerase II (RNAP II) carboxyl terminal domain (CTD) phosphatase-like 1 (FRY2/CPL1) both in vitro and in vivo. This interaction is mediated by the first double-stranded RNA-binding domain of FRY2/CPL1 and the KH domains of HOS5. Interestingly, both HOS5 and FRY2/CPL1 also interact with two novel serine-arginine (SR)-rich splicing factors, RS40 and RS41, in nuclear speckles. Importantly, FRY2/CPL1 is required for the recruitment of HOS5. In fry2 mutants, HOS5 failed to be localized in nuclear speckles but was found mainly in the nucleoplasm. hos5 mutants were impaired in mRNA export and accumulated a significant amount of mRNA in the nuclei, particularly under salt stress conditions. Arabidopsis mutants of all these genes exhibit similar stress-sensitive phenotypes. RNA-seq analyses of these mutants detected significant intron retention in many stress-related genes under salt stress but not under normal conditions. Our study not only identified several novel regulators of pre-mRNA processing as important for plant stress response but also suggested that, in addition to RNAP II CTD that is a well-recognized platform for the recruitment of mRNA processing factors, FRY2/CPL1 may also recruit specific factors to regulate the co-transcriptional processing of certain transcripts to deal with environmental challenges. © 2013 Chen et al.

  1. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  2. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  3. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  4. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    Science.gov (United States)

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  5. Downregulation of the psychiatric susceptibility gene Cacna1c promotes mitochondrial resilience to oxidative stress in neuronal cells.

    Science.gov (United States)

    Michels, Susanne; Ganjam, Goutham K; Martins, Helena; Schratt, Gerhard M; Wöhr, Markus; Schwarting, Rainer K W; Culmsee, Carsten

    2018-01-01

    Affective disorders such as major depression and bipolar disorder are among the most prevalent forms of mental illness and their etiologies involve complex interactions between genetic and environmental risk factors. Over the past ten years, several genome wide association studies (GWAS) have identified CACNA1C as one of the strongest genetic risk factors for the development of affective disorders. However, its role in disease pathogenesis is still largely unknown. Vulnerability to affective disorders also involves diverse environmental risk factors such as perinatal insults, childhood maltreatment, and other adverse pathophysiological or psychosocial life events. At the cellular level, such environmental influences may activate oxidative stress pathways, thereby altering neuronal plasticity and function. Mitochondria are the key organelles of energy metabolism and, further, highly important for the adaptation to oxidative stress. Accordingly, multiple lines of evidence including post-mortem brain and neuro-imaging studies suggest that psychiatric disorders are accompanied by mitochondrial dysfunction. In this study, we investigated the effects of Cacna1c downregulation in combination with glutamate-induced oxidative stress on mitochondrial function, Ca 2+ homeostasis, and cell viability in mouse hippocampal HT22 cells. We found that the siRNA-mediated knockdown of Cacna1c preserved mitochondrial morphology, mitochondrial membrane potential, and ATP levels after glutamate treatment. Further, Cacna1c silencing inhibited excessive mitochondrial reactive oxygen species formation and calcium influx, and protected the HT22 cells from oxidative cell death. Overall, our findings suggest that the GWAS-confirmed psychiatric risk gene CACNA1C plays a major role in oxidative stress pathways with particular impact on mitochondrial integrity and function.

  6. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  7. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  8. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Jiang, Shao-Tong; Hong, Gui-Yun; Yu, Miao; Li, Na; Yang, Ying; Liu, Yan-Qun; Wei, Zhao-Jun

    2009-05-22

    The complete mitochondrial genome (mitogenome) of Eriogyna pyretorum (Lepidoptera: Saturniidae) was determined as being composed of 15,327 base pairs (bp), including 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031), indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%). All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2). Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN) and trnS2(UCN). Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina), Sphingoidae (Manduca sexta) and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii) formed a group.

  9. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda bears a novel gene order and unusual control region features

    Directory of Open Access Journals (Sweden)

    Podsiadlowski Lars

    2006-09-01

    Full Text Available Abstract Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc. comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp, and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already

  10. Seryl-tRNA Synthetases in Translation and Beyond

    Directory of Open Access Journals (Sweden)

    Marko Močibob

    2016-06-01

    Full Text Available For a long time seryl-tRNA synthetases (SerRSs stood as an archetypal, canonical aminoacyl-tRNA synthetases (aaRS, exhibiting only basic tRNA aminoacylation activity and with no moonlighting functions beyond protein biosynthesis. The picture has changed substantially in recent years after the discovery that SerRSs play an important role in antibiotic production and resistance and act as a regulatory factor in vascular development, as well as after the discovery of mitochondrial morphogenesis factor homologous to SerRS in insects. In this review we summarize the recent research results from our laboratory, which advance the understanding of seryl-tRNA synthetases and further paint the dynamic picture of unexpected SerRS activities. SerRS from archaeon Methanothermobacter thermautotrophicus was shown to interact with the large ribosomal subunit and it was postulated to contribute to a more efficient translation by the"tRNA channeling" hypothesis. Discovery of the atypical SerRS in a small number of methanogenic archaea led to the discovery of a new family of enzymes in numerous bacteria - amino acid:[carrier protein] ligases (aa:CP ligases. These SerRS homologues resigned tRNA aminoacylation activity, and instead adopted carrier proteins as the acceptors of activated amino acids. The crystal structure of the aa:CP ligase complex with the carrier protein revealed that the interactions between two macromolecules are incomparable to tRNA binding by the aaRS and consequently represent a true evolutionary invention. Kinetic investigations of SerRSs and the accuracy of amino acid selection revealed that SerRSs possess pre-transfer proofreading activity, challenging the widely accepted presumption that hydrolytic proofreading activity must reside in an additional, separate editing domain, not present in SerRSs. Finally, the plant tRNA serylation system is discussed, which is particularly interesting due to the fact that protein biosynthesis takes place

  11. The mitochondrial genomes of Campodea fragilis and C. lubbocki(Hexapoda: Diplura): high genetic divergence in a morphologically uniformtaxon

    Energy Technology Data Exchange (ETDEWEB)

    Podsiadlowski, L.; Carapelli, A.; Nardi, F.; Dallai, R.; Koch,M.; Boore, J.L.; Frati, F.

    2005-12-01

    Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.

  12. The complete mitochondrial genome of the Korean skate: Hongeo koreana (Rajiformes, Rajidae).

    Science.gov (United States)

    Jeong, Dageum; Kim, Sung; Kim, Choong-Gon; Lee, Youn-Ho

    2014-12-01

    The complete mitochondrial genome of the Korean skate, Hongeo koreana, the sole member of its genus, is investigated for the first time. The genome consists of 16,906 bp in length including 2 rRNA, 22 tRNA and 13 protein coding genes with the same gene order and structure of the genome as those of other Rajidae species. The overall nucleotide composition of the L-strand is A = 29.8%, C = 27.9%, T = 27.9% and G = 14.3%, showing a high A + T bias. The anti-G bias (6.0%) is more significant in the third codon position. Twelve of the 13 protein-coding genes use ATG as their start codon while the COX1 gene starts with GTG. For stop codon, ND3 and ND4 genes show incomplete stop codon T. The mitogenome sequence of H. koreana will provide important information on the evolution and the phylogenetic relation of the genus Hongeo in relation to the other genera of the family Rajidae.

  13. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  14. Base pairing and structural insights into the 5-formylcytosine in RNA duplex

    Science.gov (United States)

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O.; Chen, Doris; Sheng, Jia

    2016-01-01

    Abstract 5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  15. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report.

    Science.gov (United States)

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in mitochondrial tRNA and the electron transport chain, both particularly vulnerable to point mutations, and clinical research also supports a relationship between the two pathologies. Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms, and these symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians. The authors report the case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction. This case illustrates the need for a high index of suspicion for mitochondrial disease in patients with autism, as they have two orders of magnitude greater risk for such diseases than the general population. The literature shows that mitochondrial disease is underdiagnosed in autism spectrum disorder patients and should not be viewed as a "zebra" (i.e., an obscure diagnosis that is made when a more common explanation is more likely).

  16. The rearranged mitochondrial genome of Leptopilina boulardi (Hymenoptera: Figitidae, a parasitoid wasp of Drosophila

    Directory of Open Access Journals (Sweden)

    Daniel S. Oliveira

    Full Text Available Abstract The partial mitochondrial genome sequence of Leptopilina boulardi (Hymenoptera: Figitidae was characterized. Illumina sequencing was used yielding 35,999,679 reads, from which 102,482 were utilized in the assembly. The length of the sequenced region of this partial mitochondrial genome is 15,417 bp, consisting of 13 protein-coding, two rRNA, and 21tRNA genes (the trnaM failed to be sequenced and a partial A+T-rich region. All protein-coding genes start with ATN codons. Eleven protein-coding genes presented TAA stop codons, whereas ND6 and COII that presented TA, and T nucleotides, respectively. The gene pattern revealed extensive rearrangements compared to the typical pattern generally observed in insects. These rearrangements involve two protein-coding and two ribosomal genes, along with the 16 tRNA genes. This gene order is different from the pattern described for Ibalia leucospoides (Ibaliidae, Cynipoidea, suggesting that this particular gene order can be variable among Cynipoidea superfamily members. A maximum likelihood phylogenetic analysis of the main groups of Apocrita was performed using amino acid sequence of 13 protein-coding genes, showing monophyly for the Cynipoidea superfamily within the Hymenoptera phylogeny.

  17. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  18. Complete mitochondrial genome of sublittoral macroalga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta).

    Science.gov (United States)

    Kim, Kyeong Mi; Yang, Eun Chan; Yi, Gangman; Yoon, Hwan Su

    2014-08-01

    We sequenced and characterized the first complete mitochondrial genome of the sublittoral red alga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta). The mitogenome is 26,166 bp in length with 29.5% GC content. The circular mitogenome contains 47 genes, including 24 protein-coding, 2 rRNA and 21 tRNA genes including two copies of trnG, trnL, trnM and trnS. There are two cases of gene-overlapping, found between sdhD and nad4, and between secY and rps12. The R. pseudopalmata mitochondria genome differs from that of Gracilariopsis lemaneiformis by three missing genes (orf60, rpl20 and trnH).

  19. Detection of Deafness-Causing Mutations in the Greek Mitochondrial Genome

    Directory of Open Access Journals (Sweden)

    Haris Kokotas

    2011-01-01

    Full Text Available Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser(UCN, and the MTTL1 gene, encoding the tRNA for Leu(UUR. We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population.

  20. Complete mitochondrial genome of the scalloped hammerhead Sphyrna lewini (Carcharhiniformes: Sphyrnidae).

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Xu, Yuziwei; Shi, Xiaofang

    2015-08-01

    The complete mitochondrial genome of the endangered scalloped hammerhead Sphyrna lewini was firstly determined in this study. It is 16,726 bp in length with the typical gene composition and orders in vertebrates. The overall base composition is 31.4% A, 26.3% C, 13.2% G and 29.1% T. Two start codon (ATG and GTG) and three stop codon (TAG, AGA and TAA/TA/T) patterns were found in protein-coding genes. Except for the tRNA-Ser2, the remaining 21 tRNAs can be folded into the typical cloverleaf structure. The control region possess the highest A + T content (66.1%) and lowest G content (12.6%) among all mitochondrial partitions.

  1. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  2. Differences in mitochondrial gene expression profiles, enzyme activities and myosin heavy chain types in yak versus bovine skeletal muscles.

    Science.gov (United States)

    Lin, Y Q; Xu, Y O; Yue, Y; Jin, S Y; Qu, Y; Dong, F; Li, Y P; Zheng, Y C

    2012-08-29

    Hypoxia can affect energy metabolism. We examined gene expression and enzyme activity related to mitochondrial energy metabolism, as well as myosin heavy chain (MyHC) types in yaks (Bos grunniens) living at high altitudes. Real-time quantitative PCR assays indicated that the yak has significantly lower levels of carnitine palmitoyltransferase (CPT) mRNA in the biceps femoris and lower levels of uncoupling protein 3 (UCP3) mRNA in both biceps femoris and longissimus dorsi than in Yellow cattle. No significant differences between yak and Yellow cattle were observed in the activities of mitochondrial β-hydroxyacyl-CoA dehydrogenase, isocitrate dehydrogenase and cytochrome oxidase in the same muscles. Semi-quantitative RT-PCR analysis showed that the MyHC 1 mRNA levels in yak biceps femoris was lower than in Yellow cattle. We conclude that the yak has significantly lower mRNA levels of CPT, UCP3, and MyHC 1 in biceps femoris than in Yellow cattle, suggesting that the yak biceps femoris has lower fatty acid oxidation capacity and greater glycolytic metabolic potential.

  3. The complete mitochondrial genome of the spinner shark Carcharhinus brevipinna.

    Science.gov (United States)

    Chen, Xiao; Xiang, Dan; Peng, Xin; Ai, Weiming; Chen, Hao

    2016-05-01

    The mitochondrial genome of the spinner shark (Carcharhinus brevipinna) was determined in this study. It was 16,706 bp in length with the typical genomic organization and gene order as most vertebrates. Whole nucleotide base composition was 31.3% A, 25.3% C, 13.2% G and 30.1% T. Among the protein-coding genes, there are three overlapping reading-frames on the same strand, while one of it on the opposite strand. Two start codons (ATG and GTG) and three stop codons (AGG, TAG and TAA/T) were used in 13 protein-coding genes. The 22 tRNA ranged from 67 (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1) in length. Only the tRNA-Ser2 could not fold into the typical clover-leaf structure, which lost the dihydrouridine (DHU) arm and replaced by a simple loop. The control region was 1064 bp in length and showed a higher AT content (66.8%) than the average value of whole mitogenome (61.4%).

  4. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy); Bianchi, Vera, E-mail: vbianchi@bio.unipd.it [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy)

    2012-10-15

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [{sup 3}H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1{sup -} cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1{sup +} cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: Black-Right-Pointing-Pointer Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. Black-Right-Pointing-Pointer siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1{sup -} cells. Black-Right-Pointing-Pointer PNC1 overexpression accumulates dTTP in mitochondria of TK1{sup +} cells. Black-Right-Pointing-Pointer PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. Black-Right-Pointing-Pointer PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  5. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    International Nuclear Information System (INIS)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara; Bianchi, Vera

    2012-01-01

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [ 3 H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1 − cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1 + cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: ► Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. ► siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1 − cells. ► PNC1 overexpression accumulates dTTP in mitochondria of TK1 + cells. ► PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. ► PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  6. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    Science.gov (United States)

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  7. Structural Basis of Mitochondrial Transcription Initiation.

    Science.gov (United States)

    Hillen, Hauke S; Morozov, Yaroslav I; Sarfallah, Azadeh; Temiakov, Dmitry; Cramer, Patrick

    2017-11-16

    Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics.

  9. Are mitochondrial reactive oxygen species required for autophagy?

    International Nuclear Information System (INIS)

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-01-01

    Highlights: → Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. → Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. → Autophagy was detectable in mitochondrial DNA deficient ρ 0 cells. → Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H 2 O 2 was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient ρ o HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  10. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  11. Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).

    Science.gov (United States)

    Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang

    2016-07-01

    The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.

  12. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  13. Non-electron transfer chain mitochondrial defects differently regulate HIF-1α degradation and transcription

    Directory of Open Access Journals (Sweden)

    Antonina N. Shvetsova

    2017-08-01

    Full Text Available Mitochondria are the main consumers of molecular O2 in a cell as well as an abundant source of reactive oxygen species (ROS. Both, molecular oxygen and ROS are powerful regulators of the hypoxia-inducible factor-1α-subunit (HIF-α. While a number of mechanisms in the oxygen-dependent HIF-α regulation are quite well known, the view with respect to mitochondria is less clear. Several approaches using pharmacological or genetic tools targeting the mitochondrial electron transport chain (ETC indicated that ROS, mainly formed at the Rieske cluster of complex III of the ETC, are drivers of HIF-1α activation. However, studies investigating non-ETC located mitochondrial defects and their effects on HIF-1α regulation are scarce, if at all existing. Thus, in the present study we examined three cell lines with non-ETC mitochondrial defects and focused on HIF-1α degradation and transcription, target gene expression, as well as ROS levels. We found that cells lacking the key enzyme 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (MECR, and cells lacking manganese superoxide dismutase (MnSOD showed a reduced induction of HIF-1α under long-term (20 h hypoxia. By contrast, cells lacking the mitochondrial DNA depletion syndrome channel protein Mpv17 displayed enhanced levels of HIF-1α already under normoxic conditions. Further, we show that ROS do not exert a uniform pattern when mediating their effects on HIF-1α, although all mitochondrial defects in the used cell types increased ROS formation. Moreover, all defects caused a different HIF-1α regulation via promoting HIF-1α degradation as well as via changes in HIF-1α transcription. Thereby, MECR- and MnSOD-deficient cells showed a reduction in HIF-1α mRNA levels whereas the Mpv17 lacking cells displayed enhanced HIF-1α mRNA levels under normoxia and hypoxia. Altogether, our study shows for the first time that mitochondrial defects which are not related to the ETC and Krebs cycle

  14. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  15. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  16. The role of p38 in mitochondrial respiration in male and female mice.

    Science.gov (United States)

    Ju, Xiaohua; Wen, Yi; Metzger, Daniel; Jung, Marianna

    2013-06-07

    p38 is a mitogen-activated protein kinase and mediates cell growth, cell differentiation, and synaptic plasticity. The aim of this study is to determine the extent to which p38 plays a role in maintaining mitochondrial respiration in male and female mice under a normal condition. To achieve this aim, we have generated transgenic mice that lack p38 in cerebellar Purkinje neurons by crossing Pcp2 (Purkinje cell protein 2)-Cre mice with p38(loxP/loxP) mice. Mitochondria from cerebellum were then isolated from the transgenic and wild-type mice to measure mitochondrial respiration using XF24 respirometer. The mRNA and protein expression of cytochrome c oxidase (COX) in cerebellum were also measured using RT-PCR and immunoblot methods. Separately, HT22 cells were used to determine the involvement of 17β-estradiol (E2) and COX in mitochondrial respiration. The genetic knockout of p38 in Purkinje neurons suppressed the mitochondrial respiration only in male mice and increased COX expression only in female mice. The inhibition of COX by sodium azide (SA) sharply suppressed mitochondrial respiration of HT22 cells in a manner that was protected by E2. These data suggest that p38 is required for the mitochondrial respiration of male mice. When p38 is below a normal level, females may maintain mitochondrial respiration through COX up-regulation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  18. Live cell imaging of mitochondrial movement along actin cables in budding yeast.

    Science.gov (United States)

    Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Gay, Anna Card; Huckaba, Thomas M; Pon, Liza A

    2004-11-23

    Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.

  19. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    Science.gov (United States)

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  20. Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation.

    Science.gov (United States)

    Battersby, Brendan J; Richter, Uwe

    2013-10-01

    Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.