WorldWideScience

Sample records for mitochondrial lon protease

  1. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction.

    Science.gov (United States)

    Stanyer, Lee; Jorgensen, Wenche; Hori, Osamu; Clark, John B; Heales, Simon J R

    2008-09-01

    The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.

  2. Inactivation of brain mitochondrial Lon protease by peroxynitrite precedes electron transport chain dysfunction

    DEFF Research Database (Denmark)

    Stanyer, Lee; Jørgensen, Wenche; Hori, Osamu

    2008-01-01

    shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non......-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated...... more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex...

  3. The ATPase and protease domains of yeast mitochondrial Lon : Roles in proteolysis and respiration-dependent growth

    NARCIS (Netherlands)

    van Dijl, JM; Kutejova, E; Suda, K; Perecko, D; Schatz, G; Suzuki, CK

    1998-01-01

    The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex

  4. The Mitochondrial Lon Protease Is Required for Age-Specific and Sex-Specific Adaptation to Oxidative Stress.

    Science.gov (United States)

    Pomatto, Laura C D; Carney, Caroline; Shen, Brenda; Wong, Sarah; Halaszynski, Kelly; Salomon, Matthew P; Davies, Kelvin J A; Tower, John

    2017-01-09

    Multiple human diseases involving chronic oxidative stress show a significant sex bias, including neurodegenerative diseases, cancer, immune dysfunction, diabetes, and cardiovascular disease. However, a possible molecular mechanism for the sex bias in physiological adaptation to oxidative stress remains unclear. Here, we report that Drosophila melanogaster females but not males adapt to hydrogen peroxide stress, whereas males but not females adapt to paraquat (superoxide) stress. Stress adaptation in each sex requires the conserved mitochondrial Lon protease and is associated with sex-specific expression of Lon protein isoforms and proteolytic activity. Adaptation to oxidative stress is lost with age in both sexes. Transgenic expression of transformer gene during development transforms chromosomal males into pseudo-females and confers the female-specific pattern of Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation; these effects were also observed using adult-specific transformation. Conversely, knockdown of transformer in chromosomal females eliminates the female-specific Lon isoform expression, Lon proteolytic activity induction, and H 2 O 2 stress adaptation and produces the male-specific paraquat (superoxide) stress adaptation. Sex-specific expression of alternative Lon isoforms was also observed in mouse tissues. The results develop Drosophila melanogaster as a model for sex-specific stress adaptation regulated by the Lon protease, with potential implications for understanding sexual dimorphism in human disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evidence that two ATP-dependent (Lon proteases in Borrelia burgdorferi serve different functions.

    Directory of Open Access Journals (Sweden)

    James L Coleman

    2009-11-01

    Full Text Available The canonical ATP-dependent protease Lon participates in an assortment of biological processes in bacteria, including the catalysis of damaged or senescent proteins and short-lived regulatory proteins. Borrelia spirochetes are unusual in that they code for two putative ATP-dependent Lon homologs, Lon-1 and Lon-2. Borrelia burgdorferi, the etiologic agent of Lyme disease, is transmitted through the blood feeding of Ixodes ticks. Previous work in our laboratory reported that B. burgdorferi lon-1 is upregulated transcriptionally by exposure to blood in vitro, while lon-2 is not. Because blood induction of Lon-1 may be of importance in the regulation of virulence factors critical for spirochete transmission, the clarification of functional roles for these two proteases in B. burgdorferi was the object of this study. On the chromosome, lon-2 is immediately downstream of ATP-dependent proteases clpP and clpX, an arrangement identical to that of lon of Escherichia coli. Phylogenetic analysis revealed that Lon-1 and Lon-2 cluster separately due to differences in the NH(2-terminal substrate binding domains that may reflect differences in substrate specificity. Recombinant Lon-1 manifested properties of an ATP-dependent chaperone-protease in vitro but did not complement an E. coli Lon mutant, while Lon-2 corrected two characteristic Lon-mutant phenotypes. We conclude that B. burgdorferi Lons -1 and -2 have distinct functional roles. Lon-2 functions in a manner consistent with canonical Lon, engaged in cellular homeostasis. Lon-1, by virtue of its blood induction, and as a unique feature of the Borreliae, may be important in host adaptation from the arthropod to a warm-blooded host.

  6. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease.

    Science.gov (United States)

    Lin, Chien-Chu; Su, Shih-Chieh; Su, Ming-Yuan; Liang, Pi-Hui; Feng, Chia-Cheng; Wu, Shih-Hsiung; Chang, Chung-I

    2016-05-03

    The Lon AAA+ protease (LonA) is an evolutionarily conserved protease that couples the ATPase cycle into motion to drive substrate translocation and degradation. A hallmark feature shared by AAA+ proteases is the stimulation of ATPase activity by substrates. Here we report the structure of LonA bound to three ADPs, revealing the first AAA+ protease assembly where the six protomers are arranged alternately in nucleotide-free and bound states. Nucleotide binding induces large coordinated movements of conserved pore loops from two pairs of three non-adjacent protomers and shuttling of the proteolytic groove between the ATPase site and a previously unknown Arg paddle. Structural and biochemical evidence supports the roles of the substrate-bound proteolytic groove in allosteric stimulation of ATPase activity and the conserved Arg paddle in driving substrate degradation. Altogether, this work provides a molecular framework for understanding how ATP-dependent chemomechanical movements drive allosteric processes for substrate degradation in a major protein-destruction machine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules.

    Science.gov (United States)

    An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin

    2015-10-01

    Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.

  8. StAR Enhances Transcription of Genes Encoding the Mitochondrial Proteases Involved in Its Own Degradation

    Science.gov (United States)

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Lauria, Ines; Langer, Thomas

    2014-01-01

    Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR. PMID:24422629

  9. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    Science.gov (United States)

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  10. Mechanism of protein splicing of the Pyrococcus abyssi lon protease intein

    International Nuclear Information System (INIS)

    O'Brien, Kevin M.; Schufreider, Ann K.; McGill, Melissa A.; O'Brien, Kathryn M.; Reitter, Julie N.; Mills, Kenneth V.

    2010-01-01

    Research highlights: → The Pyrococcus abyssi lon protease intein promotes efficient protein splicing. → Inteins with mutations that interfere with individual steps of splicing do not promote unproductive side reactions. → The intein splices with Lys in place of the highly conserved penultimate His. → The intein is flanked by a Gly-rich region at its C terminus that may increase the efficiency of the third step of splicing, Asn cyclization coupled to peptide bond cleavage. -- Abstract: Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled to ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.

  11. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    Science.gov (United States)

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Lon protease affects the RdxA nitroreductase activity and metronidazole susceptibility in Helicobacter pylori.

    Science.gov (United States)

    Tu, I-Fan; Liao, Jiahn-Haur; Yang, Feng-Ling; Lin, Nien-Tsung; Chan, Hong-Lin; Wu, Shih-Hsiung

    2014-10-01

    The lon gene of Helicobacter pylori strains is constitutively expressed during growth. However, virtually nothing is understood concerning the role of Lon in H. pylori. This study examined the function and physiological role of Lon in H. pylori (HpLon) using a trapping approach to identify putative Lon binding partners in the bacterium. Protease-deficient Lon was expressed and served as the bait in trapping approach to capture the interacting partners in H. pylori. The antibiotic susceptibility of wild-type and lon derivative mutants was determined by the E test trips and the disc diffusion assay. The effect of HpLon on RdxA activity was detected the change in NADPH oxidation and metronidazole reduction by spectrophotometer. Lon in Helicobacter pylori (HpLon) interacting partners are mostly associated with metronidazole activation. lon mutant presents more susceptible to metronidazole than that of the wild type, and this phenotype is recovered by complementation of the wild-type Lon. We found that the ATPases associated with a variety of cellular activities (AAA(+) ) module of HpLon causes a decrease in both NADPH oxidase and Mtz reductase activity in RdxA, a major Mtz-activating enzyme in H. pylori. Metronidazole resistance of H. pylori causes the serious medical problem worldwide. In this study, HpLon is involved in metronidazole susceptibility among H. pylori strains. We provide the evidence that HpLon alters RdxA activity in vitro. The decrease in metronidazole activation caused by HpLon is possibly prior to accumulate mutation in rdxA gene before the metronidazole-resistant strains to be occurred. © 2014 John Wiley & Sons Ltd.

  13. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  14. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities

    Czech Academy of Sciences Publication Activity Database

    Ambro, L.; Pevala, V.; Ondrovičová, G.; Bellová, J.; Kunová, N.; Kutejová, Eva; Bauer, J.

    2014-01-01

    Roč. 281, č. 7 (2014), s. 1784-1797 ISSN 1742-464X Institutional support: RVO:61388971 Keywords : ATP-dependent protease * glycine loop * human Lon protease Subject RIV: CE - Biochemistry Impact factor: 4.001, year: 2014

  15. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  16. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhou

    2018-01-01

    Full Text Available Most pathogenic bacteria deliver virulence factors into host cytosol through type III secretion systems (T3SS to perturb host immune responses. The expression of T3SS is often repressed in rich medium but is specifically induced in the host environment. The molecular mechanisms underlying host-specific induction of T3SS expression is not completely understood. Here we demonstrate in Xanthomonas citri that host-induced phosphorylation of the ATP-dependent protease Lon stabilizes HrpG, the master regulator of T3SS, conferring bacterial virulence. Ser/Thr/Tyr phosphoproteome analysis revealed that phosphorylation of Lon at serine 654 occurs in the citrus host. In rich medium, Lon represses T3SS by degradation of HrpG via recognition of its N terminus. Genetic and biochemical data indicate that phosphorylation at serine 654 deactivates Lon proteolytic activity and attenuates HrpG proteolysis. Substitution of alanine for Lon serine 654 resulted in repression of T3SS gene expression in the citrus host through robust degradation of HrpG and reduced bacterial virulence. Our work reveals a novel mechanism for distinct regulation of bacterial T3SS in different environments. Additionally, our data provide new insight into the role of protein posttranslational modification in the regulation of bacterial virulence.

  17. Mitochondrial contribution to lipofuscin formation

    Directory of Open Access Journals (Sweden)

    Jeannette König

    2017-04-01

    Moreover, we observed that Lon protease downregulation is linked to a higher lipofuscinogenesis whereas the application of the mitochondrial-targeted antioxidant mitoTEMPO is able to prevent the accumulation of this protein aggregate.

  18. Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1

    DEFF Research Database (Denmark)

    Bayot, Aurélien; Gareil, Monique; Rogowska-Wrzesinska, Adelina

    2010-01-01

    , yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to lose integrity of mitochondrial genome, and to be respiration-deficient. Because of the severity of phenotypes associated with the depletion of Pim1, this protease appears to be an essential component...

  19. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    Science.gov (United States)

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  20. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  1. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    Science.gov (United States)

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems.

    Science.gov (United States)

    Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu

    2018-04-01

    Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    Science.gov (United States)

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  4. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    Science.gov (United States)

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  5. A combination of luxR1 and luxR2 genes activates Pr-promoters of psychrophilic Aliivibrio logei lux-operon independently of chaperonin GroEL/ES and protease Lon at high concentrations of autoinducer.

    Science.gov (United States)

    Konopleva, Maria N; Khrulnova, Svetlana A; Baranova, Ancha; Ekimov, Leonid V; Bazhenov, Sergey V; Goryanin, Ignatiy I; Manukhov, Ilya V

    2016-05-13

    Lux-operon of psychrophilic bacteria Aliivibrio logei contains two copies of luxR and is regulated by Type I quorum sensing (QS). Activation of lux-operon of psychrophilic bacteria A. logei by LuxR1 requires about 100 times higher concentrations of autoinducer (AI) than the activation by LuxR2. On the other hand, LuxR1 does not require GroEL/ES chaperonin for its folding and cannot be degraded by protease Lon, while LuxR2 sensitive to Lon and requires GroEL/ES. Here we show that at 10(-5) - 10(-4)М concentrations of AI a combination of luxR1 and luxR2 products is capable of activating the Pr-promoters of A. logei lux-operon in Escherichia coli independently of GroEL/ES and protease Lon. The presence of LuxR1 assists LuxR2 in gro(-) cells when AI was added at high concentration, while at low concentration of AI in a cell LuxR1 decreases the LuxR2 activity. These observations may be explained by the formation of LuxR1/LuxR2 heterodimers that act in complex with AI independently from GroEL/ES and protease Lon. This study expands current understanding of QS regulation in A. logei as it implies cooperative regulation of lux-operon by LuxR1 and LuxR2 proteins. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease

    Czech Academy of Sciences Publication Activity Database

    Kereiche, S.; Kováčik, L.; Bednár, J.; Pevala, V.; Kunová, N.; Ondrovičová, G.; Bauer, J.; Ambro, L.; Bellová, J.; Kutejová, Eva; Raška, I.

    2016-01-01

    Roč. 6, SEP 16 (2016), s. 33631 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : ESCHERICHIA-COLI LON * SUBSTRATE TRANSLOCATION * PROTEOLYTIC MACHINE Subject RIV: EE - Microbiology, Virology Impact factor: 4.259, year: 2016

  7. Three-Dimensional Reconstruction of the S885A Mutant of Human Mitochondrial Lon Protease

    Czech Academy of Sciences Publication Activity Database

    Kereiche, S.; Kováčik, L.; Pevala, V.; Ambro, L.; Bellová, J.; Kutejová, Eva; Raška, I.

    2014-01-01

    Roč. 60, č. 2014 (2014), s. 62-65 ISSN 0015-5632 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : transmission electron microscopy * 3D reconstruction * AAA plus protease Subject RIV: CE - Biochemistry Impact factor: 1.000, year: 2014

  8. The two-component system CpxRA negatively regulates the Locus of Enterocyte Effacement of enterohemorrhagic Escherichia coli involving sigma 32 and Lon protease

    Directory of Open Access Journals (Sweden)

    MIGUEL A. eDE LA CRUZ

    2016-02-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE, which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system consisting of a sensor histidine kinase (CpxA and a cytoplasmic response regulator (CpxR. In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32, which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC’s ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.

  9. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  11. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    International Nuclear Information System (INIS)

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-01-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon - cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes [ 3 H]methyl-casein to acid-soluble products in the presence of ATP and Mg 2+ . ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles

  12. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  13. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    Science.gov (United States)

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The plant i-AAA protease controls the turnover of an essential mitochondrial protein import component.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Murcha, Monika W; Jańska, Hanna

    2018-01-29

    Mitochondria are multifunctional organelles that play a central role in energy metabolism. Owing to the life-essential functions of these organelles, mitochondrial content, quality and dynamics are tightly controlled. Across the species, highly conserved ATP-dependent proteases prevent malfunction of mitochondria through versatile activities. This study focuses on a molecular function of the plant mitochondrial inner membrane-embedded AAA protease (denoted i -AAA) FTSH4, providing its first bona fide substrate. Here, we report that the abundance of the Tim17-2 protein, an essential component of the TIM17:23 translocase (Tim17-2 together with Tim50 and Tim23), is directly controlled by the proteolytic activity of FTSH4. Plants that are lacking functional FTSH4 protease are characterized by significantly enhanced capacity of preprotein import through the TIM17:23-dependent pathway. Taken together, with the observation that FTSH4 prevents accumulation of Tim17-2, our data point towards the role of this i -AAA protease in the regulation of mitochondrial biogenesis in plants. © 2018. Published by The Company of Biologists Ltd.

  15. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    Directory of Open Access Journals (Sweden)

    Magdalena Opalińska

    2017-11-01

    Full Text Available Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4 and Pam18-2 and known (Tim17-2 substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  16. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    Science.gov (United States)

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  17. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    OpenAIRE

    Magdalena Opalińska; Katarzyna Parys; Hanna Jańska

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we...

  18. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    Science.gov (United States)

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  19. Molecular insights into the m-AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.

    Science.gov (United States)

    Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun

    2017-12-08

    Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Yang, Nana; Ding, Shuting; Chen, Feifei; Zhang, Xue; Xia, Yongjie; Di, Hongxia; Cao, Qiao; Deng, Xin; Wu, Min; Wong, Catherine C L; Tian, Xiao-Xu; Yang, Cai-Guang; Zhao, Jing; Lan, Lefu

    2015-05-01

    Rhamnolipid acts as a virulence factor during Pseudomonas aeruginosa infection. Here, we show that deletion of the catabolite repression control (crc) gene in P. aeruginosa leads to a rhamnolipid-negative phenotype. This effect is mediated by the down-regulation of rhl quorum sensing (QS). We discover that a disruption of the gene encoding the Lon protease entirely offsets the effect of crc deletion on the production of both rhamnolipid and rhl QS signal C4-HSL. Crc is unable to bind lon mRNA in vitro in the absence of the RNA chaperon Hfq, while Crc contributes to Hfq-mediated repression of the lon gene expression at a posttranscriptional level. Deletion of crc, which results in up-regulation of lon, significantly reduces the in vivo stability and abundance of the RhlI protein that synthesizes C4-HSL, causing the attenuation of rhl QS. Lon is also capable of degrading the RhlI protein in vitro. In addition, constitutive expression of rhlI suppresses the defects of the crc deletion mutant in rhamnolipid, C4-HSL and virulence on lettuce leaves. This study therefore uncovers a novel posttranscriptional regulatory cascade, Crc-Hfq/Lon/RhlI, for the regulation of rhamnolipid production and rhl QS in P. aeruginosa. © 2015 John Wiley & Sons Ltd.

  1. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

    Science.gov (United States)

    König, Tim; Tröder, Simon E; Bakka, Kavya; Korwitz, Anne; Richter-Dennerlein, Ricarda; Lampe, Philipp A; Patron, Maria; Mühlmeister, Mareike; Guerrero-Castillo, Sergio; Brandt, Ulrich; Decker, Thorsten; Lauria, Ines; Paggio, Angela; Rizzuto, Rosario; Rugarli, Elena I; De Stefani, Diego; Langer, Thomas

    2016-10-06

    Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca 2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca 2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca 2+ homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. LonWorks as Fieldbus for PV-Installations; LonWorks als Feldbus fuer PV-Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bergen, Ch. von

    2003-07-01

    The growing market for photovoltaics increasingly requires suitable quality controls covering plant operators, planners and installers, as well as the electric utilities. Additionally, the interest of the general public in the behaviour of photovoltaic (PV) plants is growing. This includes information from everyday practice. Alongside data retrieval, other themes such as the operative management of the unit and energy management become increasingly important for grid-connected PV systems. Todays measuring systems are not compatible with each other. Data communication between different PV plants with computer-aided analysis- and visualisation programmes is very complicated. LonWorks was introduced by Motorola and Toshiba in 1991. Today it leads the world market for field bus systems. With plug and play, components by several manufacturers can easily be incorporated into a LonWorks network. Today more than 3,500 companies use LonWorks technology. The goal of this project is to introduce the very popular LonWorks technology as a new standard for PV applications. The first objective was to develop a LonWorks interface for our Convert inverters and to connect them into a small network. In a second step we installed a LonWorks system at the 260 kW{sub p} PV plant 'Felsenau' in Berne, Switzerland. All 68 inverters are controlled over power line with LonWorks. The on-site PC acts as LonWorks DataServer and making remote information monitoring and data gathering possible. As soon as a functional error occurs, an alarm will be transmitted via modem to the SMSC (Short Message Service Centre). After two years of operation we can say that all expectations were fulfilled by our new system. Knowledge gained from this project has shown that LonWorks has lived up its considerable promise and can be regarded as a high-quality piece of technology. Integration into an overall system is technically very easy. To do this, however, relatively expensive software solutions have

  3. Proteolytic crosstalk in multi-protease networks

    Science.gov (United States)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  4. LON Technology in Wireless Sensor Networking Applications

    Directory of Open Access Journals (Sweden)

    Ryszard Golanski

    2006-01-01

    Full Text Available In the paper a discussion on how to optimize LonWorks/EIA-709 sensornetworking technology for wireless applications, in presented. Main solutions offered byLocal Operating Networks (LON, LonWorks platform attractive for wirelesscommunication, that is, the send-on-delta concept and the sleep mode, are displayed. Thepredictive p-persistent CSMA MAC protocol constituting the heart of the communicationcapability of LON networks is analysed in detail. Next, the message services are described,and the analytical evaluation of delivery reliability is derived. Performance evaluation basedon simulation results for unicast traffic is presented first. In order to highlight the robustnessof the predictive CSMA to overload situations, the saturation performance for a general caseload scenario including multicast transactions is reported. The methods of effectivemanagement of energy consumption in LonWorks networks are discussed. Finally, the LONdesign tradeoffs are summarized.

  5. The Kunitz-protease inhibitor domain in amyloid precursor protein reduces cellular mitochondrial enzymes expression and function.

    Science.gov (United States)

    Chua, Li-Min; Lim, Mei-Li; Wong, Boon-Seng

    2013-08-09

    Mitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD(+)/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  7. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    Science.gov (United States)

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.

  8. Cross genome comparisons of serine proteases in Arabidopsis and rice

    Directory of Open Access Journals (Sweden)

    Sowdhamini R

    2006-08-01

    Full Text Available Abstract Background Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. Results Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively. Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. Conclusion The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species.

  9. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  10. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  11. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPRMT and increased resistance to oxidative stress in primary cultures of fibroblasts

    Directory of Open Access Journals (Sweden)

    Gavin Pharaoh

    2016-08-01

    Full Text Available Mice deficient in the electron transport chain (ETC complex IV assembly protein SURF1 have reduced assembly and activity of cytochrome c oxidase that is associated with an upregulation of components of the mitochondrial unfolded protein response (UPRMT and increased mitochondrial number. We hypothesized that the upregulation of proteins associated with the UPRMT in response to reduced cytochrome c oxidase activity in Surf1−/− mice might contribute to increased stress resistance. To test this hypothesis we asked whether primary cultures of fibroblasts from Surf1−/− mice exhibit enhanced resistance to stressors compared to wild-type fibroblasts. Here we show that primary dermal fibroblasts isolated from Surf1−/− mice have increased expression of UPRMT components ClpP and Hsp60, and increased expression of Lon protease. Fibroblasts from Surf1−/− mice are significantly more resistant to cell death caused by oxidative stress induced by paraquat or tert-Butyl hydroperoxide compared to cells from wild-type mice. In contrast, Surf1−/− fibroblasts show no difference in sensitivity to hydrogen peroxide stress. The enhanced cell survival in response to paraquat or tert-Butyl hydroperoxide in Surf1−/− fibroblasts compared to wild-type fibroblasts is associated with induced expression of Lon, ClpP, and Hsp60, increased maximal respiration, and increased reserve capacity as measured using the Seahorse Extracellular Flux Analyzer. Overall these data support a protective role for the activation of the UPRMT in cell survival.

  12. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  13. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-01-01

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  14. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  15. Lon gene and photoprotection in Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Waksman, G.; Thomas, G.; Favre, A. (Institut de Recherche en Biologie Moleculaire, Group de Photobiologie Moleculaire, Paris (France))

    1984-03-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA/sup +/ cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA/sup +/ lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv/sup +/ cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle).

  16. Automation technology for intelligent energy management. Communication with LON; Automatisierungstechnik ermoeglicht intelligentes Energiemanagement. Kommunikation mit LON

    Energy Technology Data Exchange (ETDEWEB)

    Leja, C. [Kriwan Industrie-Elektronik GmbH, Forchtenberg (Germany)

    2008-09-15

    Parallel operation of loads causes high load peaks and unnecessarily high energy cost. Energy management systems solve this problem by disconnecting loads selectively according to preset specifications. This contribution presents various strategies for LON-based automation systems, as well as some practical examples. (orig.)

  17. The lon gene and photoprotection in Escherichia coli K-12

    International Nuclear Information System (INIS)

    Waksman, G.; Thomas, G.; Favre, A.

    1984-01-01

    Photoprotection, i.e. the increased resistance of the cells preilluminated with near ultraviolet light (300-380 nm) to the lethal action of 254nm radiations requires either an integrated prophage or a recA mutation in Escherichia coli K12 strains. Significant photoprotection occurs in an Escherichia coli K12 recA + cell containing the lon allele responsible for filamentous growth after 254nm irradiation. The Fil phenotype can be suppressed by the sfiA or sfiB suppressor genes. Since the E. coli K12 recA + lon sfiB strain exhibits no more photoprotection, it is concluded that in lon strains photoprotection is due to the abolition of the 254nm induced filamentation by the near ultraviolet treatment. In addition, near ultraviolet illumination of the cells leads to a severe restriction of the bulk protein synthesis. This effect is observed only in nuv + cells that contain 4-thiouridine the chromophore responsible for photoprotection. It is proposed that in lon (lysogenic strains) photoprotection is due to prevention of the SOS response. During the growth lag, the low residual level of protein synthesis does not allow the induction of the SOS response and accordingly prevents filamentation (the lytic cycle). (author)

  18. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon

    NARCIS (Netherlands)

    Rep, M; van Dijl, J M; Suda, K; Schatz, G; Grivell, L A; Suzuki, C K

    1996-01-01

    Afg3p and Rca1p are adenosine triphosphate (ATP)-dependent metalloproteases in yeast mitochondria. Cells lacking both proteins exhibit defects in respiration-dependent growth, degradation of mitochondrially synthesized proteins, and assembly of inner-membrane complexes. Defects in growth and protein

  19. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm.

    Science.gov (United States)

    Rhee, Sue Goo; Kil, In Sup

    2016-11-01

    Mitochondria produce hydrogen peroxide (H 2 O 2 ) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H 2 O 2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H 2 O 2 -eliminating enzymes, however, it had not been clear how mitochondrial H 2 O 2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H 2 O 2 -eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H 2 O 2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO 2 H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO 2 H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H 2 O 2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO 2 H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO 2 H suggests that mitochondrial release of H 2 O 2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways. Copyright

  20. Colite do cólon excluso: modelo experimental em ratos

    Directory of Open Access Journals (Sweden)

    Biondo-Simões Maria de Lourdes Pessole

    2000-01-01

    Full Text Available Em 1981 Glotzer et al. descreveram um tipo de proctocolite, semelhante à retocolite ulcerativa, limitado ao segmento excluído do trânsito fecal, na ausência de doença intestinal inflamatória. O presente estudo tem por finalidade avaliar as alterações ocorridas no cólon após sua exclusão do trânsito, com o fim de se estabelecer um modelo em ratos que permita estudar a doença. Utilizaram-se 35 ratos Wistar-PUCPR, machos com 120 dias de idade, divididos em 4 grupos. Sob anestesia inalatória procedeu-se à laparotomia mediana, secção transversa do cólon esquerdo e colectomia de 0,5 cm par se ter o padrão inicial (Mo. Seguiu-se o fechamento do coto distal, colostomia terminal com maturação precoce do coto proximal e laparorrafia. Realizaram-se as verificações nos seguintes tempos: grupo A após uma semana, grupo D após 2 semanas, grupo B após 4 semanas e grupo C após 8 semanas. Avaliou-se o cólon excluído macro e microscópicamente (Mf analisando-se: a reação inflamatória, a concentração de colágeno e o comportamento das células caliciformes. Comparadas os momentos Mo e Mf registrou-se a presença de úlceras em 11 cólons (p=0,0010 não relacionadas com o tempo de exclusão. Reação inflamatória agudo-crônica ou crônica discreta esteve presente em todos os tempos. Em todos os cólons observou-se diminuição significante da espessura da parede. No Mo predominou o colágeno tipo I (p=0,008 enquanto que no Mf o predomínio foi do colágeno III (p=0,008. Foi constante a diminuição do colágeno total, a perda de colágeno I e o aumento de colágeno III. Não houve mudança significante do percentual de área ocupada por células caliciformes. Conclui-se que a exclusão do cólon distal, de até 8 semanas, no rato por colostomia determina: atrofia do cólon e o aparecimento de lesões ulceradas superficiais com reação inflamatória discreta.

  1. Regulation of Caenorhabditis elegans body size and male tail development by the novel gene lon-8

    Directory of Open Access Journals (Sweden)

    Korswagen Hendrik C

    2007-03-01

    Full Text Available Abstract Background In C. elegans and other nematode species, body size is determined by the composition of the extracellular cuticle as well as by the nuclear DNA content of the underlying hypodermis. Mutants that are defective in these processes can exhibit either a short or a long body size phenotype. Several mutations that give a long body size (Lon phenotype have been characterized and found to be regulated by the DBL-1/TGF-β pathway, that controls post-embryonic growth and male tail development. Results Here we characterize a novel gene affecting body size. lon-8 encodes a secreted product of the hypodermis that is highly conserved in Rhabditid nematodes. lon-8 regulates larval elongation as well as male tail development. In both processes, lon-8 appears to function independently of the Sma/Mab pathway. Rather, lon-8 genetically interacts with dpy-11 and dpy-18, which encode cuticle collagen modifying enzymes. Conclusion The novel gene lon-8 encodes a secreted product of the hypodermis that controls body size and male ray morphology in C. elegans. lon-8 genetically interacts with enzymes that affect the composition of the cuticle.

  2. Mitochondrial quality control: a matter of life and death for neurons

    OpenAIRE

    Rugarli, Elena I; Langer, Thomas

    2012-01-01

    Mitochondrial integrity and functionality is monitored via multiple levels of cellular and organellar quality control that critically depend on mitochondrial proteases. Defects in these surveillance mechanisms cause neuronal loss in a number of prevalent neurodegenerative diseases.

  3. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    Science.gov (United States)

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis ( Arabidopsis thaliana ) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACID INDUCTION DEFICIENT2 ( SID2 ), NON-RACE-SPECIFIC DISEASE RESISTANCE1 ( NDR1 ), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 ( NPR1 ), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2 , NDR1 , or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40 , WRKY46 , WRKY51 , WRKY60 , WRKY63 , and WRKY75 ; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Loss of Drosophila i-AAA protease, dYME1L, causes abnormal mitochondria and apoptotic degeneration.

    Science.gov (United States)

    Qi, Y; Liu, H; Daniels, M P; Zhang, G; Xu, H

    2016-02-01

    Mitochondrial AAA (ATPases Associated with diverse cellular Activities) proteases i-AAA (intermembrane space-AAA) and m-AAA (matrix-AAA) are closely related and have major roles in inner membrane protein homeostasis. Mutations of m-AAA proteases are associated with neuromuscular disorders in humans. However, the role of i-AAA in metazoans is poorly understood. We generated a deletion affecting Drosophila i-AAA, dYME1L (dYME1L(del)). Mutant flies exhibited premature aging, progressive locomotor deficiency and neurodegeneration that resemble some key features of m-AAA diseases. dYME1L(del) flies displayed elevated mitochondrial unfolded protein stress and irregular cristae. Aged dYME1L(del) flies had reduced complex I (NADH/ubiquinone oxidoreductase) activity, increased level of reactive oxygen species (ROS), severely disorganized mitochondrial membranes and increased apoptosis. Furthermore, inhibiting apoptosis by targeting dOmi (Drosophila Htra2/Omi) or DIAP1, or reducing ROS accumulation suppressed retinal degeneration. Our results suggest that i-AAA is essential for removing unfolded proteins and maintaining mitochondrial membrane architecture. Loss of i-AAA leads to the accumulation of oxidative damage and progressive deterioration of membrane integrity, which might contribute to apoptosis upon the release of proapoptotic molecules such as dOmi. Containing ROS level could be a potential strategy to manage mitochondrial AAA protease deficiency.

  5. The Sleep Disorder in Anti-lgLON5 Disease.

    Science.gov (United States)

    Gaig, Carles; Iranzo, Alex; Santamaria, Joan; Graus, Francesc

    2018-05-23

    To review the clinical and polysomnographic features of the sleep disorder occurring in the recently described anti-IgLON5 disease. The hallmark of the disease is the presence of antibodies against IgLON5, a neural cell adhesion molecule of unknown function. The disease presents a robust HLA association, and the neuropathological examination shows a novel neuronal tauopathy with predominant hypothalamic and brainstem involvement. Most patients (> 80%) present sleep-related vocalizations with movements and behaviors and sleep-disordered breathing. Polysomnographic studies show (1) a complex NREM sleep parasomnia at sleep initiation characterized by undifferentiated NREM or poorly structured N2 sleep with sleep-talking or mumbling, and simple or finalistic movements followed by normal periods of N3 or N2 NREM sleep, (2) REM sleep behavior disorder (RBD), and (3) obstructive sleep apnea with stridor. The last two features appear mainly in periods where NREM sleep normalizes. Identification of the anti-IgLON5 sleep disorder is important to suspect the disease. The combination of abnormal NREM sleep initiation, followed by normal periods of NREM sleep and RBD, represents a novel parasomnia.

  6. Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Science.gov (United States)

    Martinelli, Paola; Cherukuri, Praveen F.; Teer, Jamie K.; Hansen, Nancy F.; Cruz, Pedro; Mullikin for the NISC Comparative Sequencing Program, James C.; Blakesley, Robert W.; Golas, Gretchen; Kwan, Justin; Sandler, Anthony; Fuentes Fajardo, Karin; Markello, Thomas; Tifft, Cynthia; Blackstone, Craig; Rugarli, Elena I.; Langer, Thomas; Gahl, William A.; Toro, Camilo

    2011-01-01

    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias. PMID:22022284

  7. Functional characterization of the mammalian iAAA protease subunit, YME1L

    OpenAIRE

    Majczak, Joanna

    2008-01-01

    The iAAA protease is an ATP-dependent proteolytic complex in the mitochondrial inner membrane and belongs to the highly conserved family of AAA proteins. In the yeast Saccharomyces cerevisiae, the iAAA protease is a homo-oligomeric complex composed of Yme1p subunits which are active in the intermembrane space and mediate protein quality control. Yeast cells lacking Yme1p are characterized by pleiotropic phenotypes including a respiratory deficiency at elevated temperature and an aberrant mito...

  8. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  9. Enhanced mitochondrial degradation of yeast cytochrome c with amphipathic structures.

    Science.gov (United States)

    Chen, Xi; Moerschell, Richard P; Pearce, David A; Ramanan, Durga D; Sherman, Fred

    2005-02-01

    The dispensable N-terminus of iso-1-cytochrome c (iso-1) in the yeast Saccharomyces cerevisiae was replaced by 11 different amphipathic structures. Rapid degradation of the corresponding iso-1 occurred, with the degree of degradation increasing with the amphipathic moments; and this amphipathic-dependent degradation was designated ADD. ADD occurred with the holo-forms in the mitochondria but not as the apo-forms in the cytosol. The extreme mutant type degraded with a half-life of approximately 12 min, whereas the normal iso-1 was stable over hours. ADD was influenced by the rho+/rho- state and by numerous chromosomal genes. Most importantly, ADD appeared to be specifically suppressed to various extents by deletions of any of the YME1, AFG3, or RCA1 genes encoding membrane-associated mitochondrial proteases, probably because the amphipathic structures caused a stronger association with the mitochondrial inner membrane and its associated proteases. The use of ADD assisted in the differentiation of substrates of different mitochondrial degradation pathways.

  10. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1.

    Science.gov (United States)

    Esser, Karlheinz; Tursun, Baris; Ingenhoven, Martin; Michaelis, Georg; Pratje, Elke

    2002-11-08

    The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.

  12. Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration.

    Directory of Open Access Journals (Sweden)

    Burger Symington

    Full Text Available Since the early 1990s human immunodeficiency virus (HIV/acquired immunodeficiency syndrome (AIDS emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV, aspirin (ASP or vitamin C (VitC co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months. Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides, echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail.

  13. Fatores preditivos de morbidade e mortalidade no trauma penetrante do cólon

    OpenAIRE

    Thiago Rodrigues Araujo Calderan

    2014-01-01

    Resumo: A lesão de cólon, que ocorre em 25% a 41% dos ferimentos por projétil de arma de fogo (FPAF) e em 5% a 20% dos ferimentos por arma branca (FAB) que acometem o abdome, apesar de possuir baixa mortalidade, apresenta uma alta morbidade. O presente estudo teve como objetivo analisar quais os fatores prognósticos envolvidos no aumento da morbidade e da mortalidade no trauma penetrante do cólon. Foi realizado um estudo retrospectivo de 21 anos, em que 462 pacientes foram admitidos com traum...

  14. Membrane-associated proteolytic activity in Escherichia coli that is stimulated by ATP

    International Nuclear Information System (INIS)

    Klemes, Y.; Voellmy, R.W.; Goldberg, A.L.

    1986-01-01

    The degradation of proteins in bacteria requires metabolism energy. One important enzyme in this process is protease La, a soluble ATP-dependent protease encoded by the lon gene. However, lon mutants that lack a functional protease La still show some ATP-dependent protein breakdown. The authors have reported an ATP-stimulated endoproteolytic activity associated with the inner membrane of E. coli. This ATP-stimulated activity is found in normal levels in membranes derived from lon mutants, including strains carrying insertions in the lon gene. The membrane-bound activity hydrolyzes 14 C-methylglobin at a linear rate for up to 3 hours. These fractions also contain appreciable proteolytic activity that is not affected by ATP. The stimulation by ATP requires the presence of Mg 2+ . Nonhydrolyzable ATP analogs (e.g. AMPPNP or ATP-γ-S) and ADP do not enhance proteolysis. Unlike protease La, the membrane-associated enzyme does not degrade the fluorometric substrate, Glt-Ala-Ala-Phe-MNA, in an ATP-stimulated fashion, and its level is not influenced by high temperature of by the gene which regulates the heat-shock response. The enzyme is inhibited by dichloroisocoumarin and certain peptide chloromethyl ketones. They conclude that E. coli contain at least two ATP-dependent proteases with distinct specificities: one is soluble and the other is membrane-associated

  15. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Aiman Tanveer

    Full Text Available The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1 that exhibits ATP- and Zn(2+-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.

  16. Fatores preditivos de infecção no trauma de cólon

    OpenAIRE

    Velho,Átila Varela; Mello,Luiz Fernando; Oliveira Filho,Theonas; Dacanal,Francisco Marques; Ostermann,Raffael A. Brandão

    2000-01-01

    Este trabalho procurou avaliar fatores preditivos de infecção no trauma de cólon e sua validade epidemiológica. Durante 24 meses, 160 pacientes com trauma de cólon foram estudados prospectivamente em um centro de trauma, onde foram analisados possíveis fatores de risco para complicações infecciosas como a idade, o mecanismo de trauma, a topografia da lesão, o Colon Organ Injury Scale (CIS), o Abdominal Trauma Index (ATI), a presença de choque, a técnica cirúrgica empregada, o grau de contamin...

  17. Association of chagasic megacolon and cancer of the colon: case report and review of the literature Associação de megacólon chagásico e câncer de cólon: relato de caso e revisão da literatura

    Directory of Open Access Journals (Sweden)

    Sheila Jorge Adad

    2002-02-01

    Full Text Available There are few descriptions of association between chagasic megacolon and colon cancer. We report a case of obstructive abdomen caused by adenocarcinoma of the left colon in chagasic megacolon. A review of the literature revealed 8 cases of this association and, analyzing together the series of findings of cancer in chagasic organomegalies, we found a frequency of 4.8% in megaesophagus and 0.1% in megacolon.Há poucas descrições de associação entre megacólon chagásico e câncer de cólon. Relatamos caso de abdômen obstrutivo por adenocarcinoma do cólon esquerdo, em megacólon chagásico. A revisão da literatura indica 8 casos desta associação e, analisando-se em conjunto as séries de levantamentos de câncer em megas chagásicos, encontra-se freqüência de 4,8% em megaesôfago e 0,1% em megacólon.

  18. Reference: 627 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available omal processing protease (GPP) from the fat-storing cotyledons of watermelon (Citrullus vulgaris) by column ...ptidase, and a Lon-protease. Specific antibodies against the peroxisomal Deg-protease from Arabidopsis (Deg15) identify the watermelo

  19. Actin and myosin contribute to mammalian mitochondrial DNA maintenance

    Science.gov (United States)

    Reyes, A.; He, J.; Mao, C. C.; Bailey, L. J.; Di Re, M.; Sembongi, H.; Kazak, L.; Dzionek, K.; Holmes, J. B.; Cluett, T. J.; Harbour, M. E.; Fearnley, I. M.; Crouch, R. J.; Conti, M. A.; Adelstein, R. S.; Walker, J. E.; Holt, I. J.

    2011-01-01

    Mitochondrial DNA maintenance and segregation are dependent on the actin cytoskeleton in budding yeast. We found two cytoskeletal proteins among six proteins tightly associated with rat liver mitochondrial DNA: non-muscle myosin heavy chain IIA and β-actin. In human cells, transient gene silencing of MYH9 (encoding non-muscle myosin heavy chain IIA), or the closely related MYH10 gene (encoding non-muscle myosin heavy chain IIB), altered the topology and increased the copy number of mitochondrial DNA; and the latter effect was enhanced when both genes were targeted simultaneously. In contrast, genetic ablation of non-muscle myosin IIB was associated with a 60% decrease in mitochondrial DNA copy number in mouse embryonic fibroblasts, compared to control cells. Gene silencing of β-actin also affected mitochondrial DNA copy number and organization. Protease-protection experiments and iodixanol gradient analysis suggest some β-actin and non-muscle myosin heavy chain IIA reside within human mitochondria and confirm that they are associated with mitochondrial DNA. Collectively, these results strongly implicate the actomyosin cytoskeleton in mammalian mitochondrial DNA maintenance. PMID:21398640

  20. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  1. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones

    Directory of Open Access Journals (Sweden)

    Morioka Mizue

    2003-08-01

    Full Text Available Abstract Background It is well known that expression of certain bacterial genes responds rapidly to such stimuli as exposure to toxic chemicals and physical agents. It is generally believed that the proteins encoded in these genes are important for successful survival of the organism under the hostile conditions. Analogously, the proteins induced in bacterial cells exposed to antibiotics are believed to affect the organisms' susceptibility to these agents. Results We demonstrated that Escherichia coli cells exposed to levofloxacin (LVFX, a fluoroquinolone (FQ, induce the syntheses of heat shock proteins and RecA. To examine whether the heat shock proteins affect the bactericidal action of FQs, we constructed E. coli strains with mutations in various heat shock genes and tested their susceptibility to FQs. Mutations in dnaK, groEL, and lon increased this susceptibility; the lon mutant exhibited the greatest effects. The increased susceptibility of the lon mutant was corroborated by experiments in which the gene encoding the cell division inhibitor, SulA, was subsequently disrupted. SulA is induced by the SOS response and degraded by the Lon protease. The findings suggest that the hypersusceptibility of the lon mutant to FQs could be due to abnormally high levels of SulA protein resulting from the depletion of Lon and the continuous induction of the SOS response in the presence of FQs. Conclusion The present results show that the bactericidal action of FQs is moderately affected by the DnaK and GroEL chaperones and strongly affected by the Lon protease. FQs have contributed successfully to the treatment of various bacterial infections, but their widespread use and often misuse, coupled with emerging resistance, have gradually compromised their utility. Our results suggest that agents capable of inhibiting the Lon protease have potential for combination therapy with FQs.

  2. Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients

    Directory of Open Access Journals (Sweden)

    Karina Karis

    2018-01-01

    Full Text Available Neural adhesion proteins are crucial in the development and maintenance of functional neural connectivity. Growing evidence suggests that the IgLON family of neural adhesion molecules LSAMP, NTM, NEGR1, and OPCML are important candidates in forming the susceptibility to schizophrenia (SCZ. IgLON proteins have been shown to be involved in neurite outgrowth, synaptic plasticity and neuronal connectivity, all of which have been shown to be altered in the brains of patients with the diagnosis of schizophrenia. Here we optimized custom 5′-isoform-specific TaqMan gene-expression analysis for the transcripts of human IgLON genes to study the expression of IgLONs in the dorsolateral prefrontal cortex (DLPFC of schizophrenic patients (n = 36 and control subjects (n = 36. Uniform 5′-region and a single promoter was confirmed for the human NEGR1 gene by in silico analysis. IgLON5, a recently described family member, was also included in the study. We detected significantly elevated levels of the NEGR1 transcript (1.33-fold increase and the NTM 1b isoform transcript (1.47-fold increase in the DLPFC of schizophrenia patients compared to healthy controls. Consequent protein analysis performed in male subjects confirmed the increase in NEGR1 protein content both in patients with the paranoid subtype and in patients with other subtypes. In-group analysis of patients revealed that lower expression of certain IgLON transcripts, mostly LSAMP 1a and 1b, could be related with concurrent depressive endophenotype in schizophrenic patients. Additionally, our study cohort provides further evidence that cannabis use may be a relevant risk factor associated with suicidal behaviors in psychotic patients. In conclusion, we provide clinical evidence of increased expression levels of particular IgLON family members in the DLPFC of schizophrenic patients. We propose that alterations in the expression profile of IgLON neural adhesion molecules are associated with brain

  3. m-AAA and i-AAA complexes coordinate to regulate OMA1, the stress-activated supervisor of mitochondrial dynamics.

    Science.gov (United States)

    Consolato, Francesco; Maltecca, Francesca; Tulli, Susanna; Sambri, Irene; Casari, Giorgio

    2018-04-09

    The proteolytic processing of dynamin-like GTPase OPA1, mediated by the activity of both YME1L1 [intermembrane (i)-AAA protease complex] and OMA1, is a crucial step in the regulation of mitochondrial dynamics. OMA1 is a zinc metallopeptidase of the inner mitochondrial membrane that undergoes pre-activating proteolytic and auto-proteolytic cleavage after mitochondrial import. Here, we identify AFG3L2 [matrix (m) - AAA complex] as the major protease mediating this event, which acts by maturing the 60 kDa pre-pro-OMA1 to the 40 kDa pro-OMA1 form by severing the N-terminal portion without recognizing a specific consensus sequence. Therefore, m - AAA and i - AAA complexes coordinately regulate OMA1 processing and turnover, and consequently control which OPA1 isoforms are present, thus adding new information on the molecular mechanisms of mitochondrial dynamics and neurodegenerative diseases affected by these phenomena.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  4. Effect of temperature, pH and metal lons on the activity and stability of alkaline protease from novel bacillus licheniformis mzk03

    International Nuclear Information System (INIS)

    Sayem, S.M.A.; Hoq, M.M.; Alam, M.J.

    2006-01-01

    The effect of temperature, pH and metal ions on the activity and stability of crude protease from Bacillus licheniformis MZK03 was studied. The fermentation in shake culture revealed that maximum level of enzyme was produced at 37 degree C and pH 8.5 after 39 hr at 120 rpm. It lost its activity rapidly above 50 degree C and half-life of the protease at this temperature was 50 min with optimum activity at 40 degree C. It was most stable at pH 8.5 and lost its activity rapidly above pH 10.0, and at pH 11.0 reached 30% of the activity obtained at pH 9.0. The enzyme lost its activity completely at pH 13.0. Optimum proteolytic activity was found at 40 degree C and pH 9.5. The enzyme activity was accelerated by the addition of Mg/sup 2+/, Ca/sup 2+/ and Mn/sup 2+/, whereas it was inhibited by Hg/sup 2+/. (author)

  5. A retrospective study of histopathological findings in 894 cases of megacolon: what is the relationship between megacolon and colonic cancer? Um estudo retrospectivo dos achados histopatológicos em 894 casos de megacólon: qual é a relação entre megacólon e o câncer de cólon?

    Directory of Open Access Journals (Sweden)

    Sérgio Britto Garcia

    2003-04-01

    Full Text Available Patients with megaesophagus (ME have increased prevalence of cancer of the esophagus. In contrast, a higher incidence of colorectal cancer is not observed in patients with megacolon (MC. MC is very common in some regions of Brazil, where it is mainly associated with Chagas disease. We reviewed the pathology records of surgical specimens of all patients submitted for surgical resection of MC in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto (HC-FMRP, from the University of São Paulo. We found that 894 patients were operated from 1952 until 2001 for MC resection. Mucosal ulcers, hyperplasia and chronic inflammation were frequently found, while polyps were uncommon. No patients with MC presented any type of colonic neoplasm. This observation reinforces the hypothesis that MC has a negative association with cancer of the colon. This seems to contradict the traditional concept of carcinogenesis in the colon, since patients with MC presents important chronic constipation that is thought to cause an increase in risk for colon cancer. MC is also associated with other risk factors for cancer of colon, such as hyperplasia, mucosal ulcers and chronic inflammation. In ME these factors lead to a remarkable increase in cancer risk. The study of mucosal cell proliferation in MC may provide new insights and useful information about the role of constipation in colonic carcinogenesis.Pacientes com megaesôfago (ME possuem incidência aumentada de câncer de esôfago. Em contraste, há poucos relatos na literatura de associação entre megacólon (MC e câncer de cólon. O MC é muito comum em algumas regiões do Brasil, e na maioria das vezes, está associado à Doença de Chagas. Nós reavaliamos os arquivos de patologia de peças cirúrgicas de todos os pacientes submetidos à ressecção de MC no Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (HC-FMRP, da Universidade de São Paulo. Encontramos o número de 894

  6. Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Felicity Johnson

    Full Text Available The mitochondrial protease OMI (also known as HtrA2 has been implicated in Parkinson's Disease (PD and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH and isocitrate dehydrogenase (IDH are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism.

  7. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    International Nuclear Information System (INIS)

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-01-01

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with 14 C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition

  8. Mitochondrial fission proteins regulate programmed cell death in yeast.

    Science.gov (United States)

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  9. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    Science.gov (United States)

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  10. SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, and Is Associated with Multiple Clinical Phenotypes

    Directory of Open Access Journals (Sweden)

    Naif A.M. Almontashiri

    2014-05-01

    Full Text Available Mitochondrial production of reactive oxygen species (ROS affects many processes in health and disease. SPG7 assembles with AFG3L2 into the mAAA protease at the inner membrane of mitochondria, degrades damaged proteins, and regulates the synthesis of mitochondrial ribosomes. SPG7 is cleaved and activated by AFG3L2 upon assembly. A variant in SPG7 that replaces arginine 688 with glutamine (Q688 is associated with several phenotypes, including toxicity of chemotherapeutic agents, type 2 diabetes mellitus, and (as reported here coronary artery disease. We demonstrate that SPG7 processing is regulated by tyrosine phosphorylation of AFG3L2. Carriers of Q688 bypass this regulation and constitutively process and activate SPG7 mAAA protease. Cells expressing Q688 produce higher ATP levels and ROS, promoting cell proliferation. Our results thus reveal an unexpected link between the phosphorylation-dependent regulation of the mitochondria mAAA protease affecting ROS production and several clinical phenotypes.

  11. Earthworm Protease

    Directory of Open Access Journals (Sweden)

    Rong Pan

    2010-01-01

    Full Text Available The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibriniolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP. The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate proenzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  12. Earthworm Protease

    International Nuclear Information System (INIS)

    Pan, R.; Zhang, Z.; He, R.

    2010-01-01

    The alimentary tract of earthworm secretes a group of proteases with a relative wide substrate specificity. In 1983, six isozymes were isolated from earthworm with fibrinolytic activities and called fibrinolytic enzymes. So far, more isozymes have been found from different earthworm species such as Lumbricus rubellus and Eisenia fetida. For convenience, the proteases are named on the basis of the earthworm species and the protein function, for instance, Eisenia fetida protease (EfP). The proteases have the abilities not only to hydrolyze fibrin and other protein, but also activate pro enzymes such as plasminogen and prothrombin. In the light of recent studies, eight of the EfPs contain oligosaccharides chains which are thought to support the enzyme structure. Interestingly, EfP-II has a broader substrate specificity presenting alkaline trypsin, chymotrypsin and elastase activities, but EfP-III-1 has a stricter specificity. The protein crystal structures show the characteristics in their specificities. Earthworm proteases have been applied in several areas such as clinical treatment of clotting diseases, anti-tumor study, environmental protection and nutritional production. The current clinical utilizations and some potential new applications of the earthworm protease will be discussed in this paper.

  13. Design of multi-channel amplitude analyzer base on LonWorks

    International Nuclear Information System (INIS)

    Zhang Ying; Zhao Lihong; Chen Aihua

    2008-01-01

    The paper introduces the multi-channel analyzer which adopts LonWorks technology. The system detects the pulse peak by hardware circuits and controls data acquisition and network communication by Micro Controller and Unit and Neuron chip. SCM is programmed by Keil C51; the communication between SCM and nerve cell is realized by Neron C language, and the computer program is written by VB language. Test results show that this analyzer is with fast conversion speed and low power consumption. (authors)

  14. m-AAA Complexes Are Not Crucial for the Survival of Arabidopsis Under Optimal Growth Conditions Despite Their Importance for Mitochondrial Translation.

    Science.gov (United States)

    Kolodziejczak, Marta; Skibior-Blaszczyk, Renata; Janska, Hanna

    2018-05-01

    For optimal mitochondrial activity, the mitochondrial proteome must be properly maintained or altered in response to developmental and environmental stimuli. Based on studies of yeast and humans, one of the key players in this control are m-AAA proteases, mitochondrial inner membrane-bound ATP-dependent metalloenzymes. This study focuses on the importance of m-AAA proteases in plant mitochondria, providing their first experimentally proven physiological substrate. We found that the Arabidopsis m- AAA complexes composed of AtFTSH3 and/or AtFTSH10 are involved in the proteolytic maturation of ribosomal subunit L32. Consequently, in the double Arabidopsis ftsh3/10 mutant, mitoribosome biogenesis, mitochondrial translation and functionality of OXPHOS (oxidative phosphorylation) complexes are impaired. However, in contrast to their mammalian or yeast counterparts, plant m-AAA complexes are not critical for the survival of Arabidopsis under optimal conditions; ftsh3/10 plants are only slightly smaller in size at the early developmental stage compared with plants containing m-AAA complexes. Our data suggest that a lack of significant visible morphological alterations under optimal growth conditions involves mechanisms which rely on existing functional redundancy and induced functional compensation in Arabidopsis mitochondria.

  15. Co-evolution of insect proteases and plant protease inhibitors.

    Science.gov (United States)

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  16. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation.

    Science.gov (United States)

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-08-06

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

  17. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

    Science.gov (United States)

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-01-01

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975

  18. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    Science.gov (United States)

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    Cysticercosis remains a major neglected tropical disease of humanity in many regions, especially in sub-Saharan Africa, Central America and elsewhere. Owing to the emerging drug resistance and the inability of current drugs to prevent re-infection, identification of novel vaccines and chemotherapeutic agents against Taenia solium and related helminth pathogens is a public health priority. The T. solium genome and the predicted proteome were reported recently, providing a wealth of information from which new interventional targets might be identified. In order to characterize and classify the entire repertoire of protease-encoding genes of T. solium, which act fundamental biological roles in all life processes, we analyzed the predicted proteins of this cestode through a combination of bioinformatics tools. Functional annotation was performed to yield insights into the signaling processes relevant to the complex developmental cycle of this tapeworm and to highlight a suite of the proteases as potential intervention targets. Within the genome of this helminth parasite, we identified 200 open reading frames encoding proteases from five clans, which correspond to 1.68% of the 11,902 protein-encoding genes predicted to be present in its genome. These proteases include calpains, cytosolic, mitochondrial signal peptidases, ubiquitylation related proteins, and others. Many not only show significant similarity to proteases in the Conserved Domain Database but have conserved active sites and catalytic domains. KEGG Automatic Annotation Server (KAAS) analysis indicated that ~60% of these proteases share strong sequence identities with proteins of the KEGG database, which are involved in human disease, metabolic pathways, genetic information processes, cellular processes, environmental information processes and organismal systems. Also, we identified signal peptides and transmembrane helices through comparative analysis with classes of important regulatory proteases

  19. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-01-01

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  20. A novel protease activity assay using a protease-responsive chaperone protein

    Energy Technology Data Exchange (ETDEWEB)

    Sao, Kentaro [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Murata, Masaharu, E-mail: m-murata@dem.med.kyushu-u.ac.jp [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Fujisaki, Yuri; Umezaki, Kaori [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan); Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki [Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Nishi-ku Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Hashizume, Makoto [Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582 (Japan)

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  1. OMI/Aura Surface Reflectance Climatology Level 3 Global 0.5deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The OMI Earth Surface Reflectance Climatology product, OMLER (Global 0.5deg Lat/Lon grid) which is based on Version 003 Level-1B top of atmosphere upwelling radiance...

  2. Cortisol sérico de equinos com compactação experimental no cólon maior tratados com hidratações enteral e parenteral

    OpenAIRE

    Ribeiro Filho, José Dantas; Dantas, Waleska de Melo Ferreira; Alves, Geraldo Eleno Silveira

    2011-01-01

    O cortisol sérico foi estudado em equinos com compactação experimental do cólon maior tratados com fluidoterapias enteral (EN) e intravenosa (IV). Utilizaram-se 10 animais separados em dois grupos de cinco cada. Os animais eram portadores de compactação induzida no cólon maior. O grupo EN foi tratado com solução isotônica poliônica enteral (8 mL/kg/h/48 h), enquanto o grupo IV recebeu Ringer lactato (16 mL/kg/h/12 h, durante dois dias). A compactação do cólon maior ocasionou aumento (P < 0,05...

  3. Mitochondrial Stress Signalling: HTRA2 and Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Enrico Desideri

    2012-01-01

    Full Text Available Mitochondria are cellular energy generators whose activity requires a continuous supply of oxygen. Recent genetic analysis has suggested that defects in mitochondrial quality control may be key factors in the development of Parkinson’s disease (PD. Mitochondria have a crucial role in supplying energy to the brain, and their deterioration can affect the function and viability of neurons, contributing to neurodegeneration. These organelles can sow the seeds of their own demise because they generate damaging oxygen-free radicals as a byproduct of their intrinsic physiological functions. Mitochondria have therefore evolved specific molecular quality control mechanisms to compensate for the action of damaging agents such as oxygen-free radicals. PTEN-induced putative kinase 1 (PINK1 and high-temperature-regulated A2 (HTRA2, a mitochondrial protease, have recently been proposed to be key modulators of mitochondrial molecular quality control. Here, we review some of the most recent advances in our understanding of mitochondria stress-control pathways, focusing on how signalling by the p38 stress kinase pathway may regulate mitochondrial stress by modulating the activity of HTRA2 via PINK1 and cyclin-dependent kinase 5 (CDK5. We also propose how defects in this pathway may contribute to PD.

  4. Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    2018-01-01

    Full Text Available Repair and removal of damaged mitochondria is a key process for eukaryotic cell homeostasis. Here we investigate in the yeast model how different protein complexes of the mitochondrial electron transport chain are subject to specific degradation upon high respiration load and organelle damage. We find that the turnover of subunits of the electron transport complex I equivalent and complex III is preferentially stimulated upon high respiration rates. Particular mitochondrial proteases, but not mitophagy, are involved in this activated degradation. Further mitochondrial damage by valinomycin treatment of yeast cells triggers the mitophagic removal of the same respiratory complexes. This selective protein degradation depends on the mitochondrial fusion and fission apparatus and the autophagy adaptor protein Atg11, but not on the mitochondrial mitophagy receptor Atg32. Loss of autophagosomal protein function leads to valinomycin sensitivity and an overproduction of reactive oxygen species upon mitochondrial damage. A specific event in this selective turnover of electron transport chain complexes seems to be the association of Atg11 with the mitochondrial network, which can be achieved by overexpression of the Atg11 protein even in the absence of Atg32. Furthermore, the interaction of various Atg11 molecules via the C-terminal coil domain is specifically and rapidly stimulated upon mitochondrial damage and could therefore be an early trigger of selective mitophagy in response to the organelles dysfunction. Our work indicates that autophagic quality control upon mitochondrial damage operates in a selective manner.

  5. Intestinal spirochetosis and colon diverticulosis Espiroquetose intestinal e diverticulose do cólon

    Directory of Open Access Journals (Sweden)

    Marcus Aurelho de Lima

    2005-02-01

    Full Text Available A case of intestinal spirochetosis in a 62-year-old white male is reported. The condition was characterized by chronic flatulence and episodes of intestinal hemorrhage, in addition to the evidence of hypotonic diverticular disease, with a large number of slender organisms in the colon epithelium and cryptae. Spirochetes were demonstrated by Whartin-Starry stain. The serologic tests for syphilis and HIV were positive. Spirochetosis was treated with penicillin G, and the patient remains free of intestinal complaints 20 months later.Um caso de espiroquetose intestinal é relatado em um homem branco de 62 anos. A condição foi caracterizada por flatulência crônica e episódios de hemorragia intestinal, além da evidência de doença diverticular hipotônica dos cólons, com numerosos organismos filamentosos no epitélio e nas criptas do cólon. Os espiroquetas foram demonstrados pela coloração de Whartin-Starry. Os testes sorológicos para sífilis e HIV foram positivos. A espiroquetose foi tratada com penicilina G e o paciente permanece sem queixas intestinais após 20 meses.

  6. Aspartic Protease Zymography Case Study: Detection of Fungal Acid Proteases by Zymography.

    Science.gov (United States)

    Kernaghan, Gavin; Mayerhofer, Michael

    2017-01-01

    This chapter describes a method for the production and characterization of fungal acid proteases. Protease production is induced by growth on BSA media over a pH gradient and protein levels are monitored over time with the Bradford assay. Once protein is depleted, the media is purified and proteases are characterized by gelatin zymography using acrylamide and buffers at near-neutral pH. Maintaining pH levels below those found in traditional zymographic systems avoids the potential loss of activity that may occur in aspartic proteases under alkaline conditions.

  7. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    , directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection......Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...

  8. Linfoma primário de cólon: relato de caso Primary colorectal lymphoma: case report

    Directory of Open Access Journals (Sweden)

    Rafael Luís Luporini

    2010-09-01

    Full Text Available O linfoma colorretal primário é uma doença rara (0.2 a 0.6% de todas as neoplasias colônicas, apresentando pior prognóstico quando comparado com o linfoma gástrico primário ou com o adenocarcinoma do cólon. É uma doença com sintomatologia inespecífica, o que dificulta o diagnóstico precoce. O objetivo deste relato é mostrar um caso de linfoma primário do cólon, revisar critérios diagnósticos e tratamento.The primary colorectal lymphoma is a rare disease (0.2 to 0.6% of all colonic neoplasias, that has a worse prognosis than primary gastric lymphoma or colon adenocarcinoma. The poor signals makes the early diagnosis difficult. The objectives of this report is to describe a case of primary colon lymphoma, revise diagnosis criteria and treatment.

  9. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy.

    Science.gov (United States)

    Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  10. Proteases and Protease Inhibitors of Urinary Extracellular Vesicles in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Luca Musante

    2015-01-01

    Full Text Available Diabetic nephropathy (DN is one of the major complications of diabetes mellitus (DM, leads to chronic kidney disease (CKD, and, ultimately, is the main cause for end-stage kidney disease (ESKD. Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  11. Cortisol sérico de equinos com compactação experimental no cólon maior tratados com hidratações enteral e parenteral

    Directory of Open Access Journals (Sweden)

    José Dantas Ribeiro Filho

    2011-06-01

    Full Text Available O cortisol sérico foi estudado em equinos com compactação experimental do cólon maior tratados com fluidoterapias enteral (EN e intravenosa (IV. Utilizaram-se 10 animais separados em dois grupos de cinco cada. Os animais eram portadores de compactação induzida no cólon maior. O grupo EN foi tratado com solução isotônica poliônica enteral (8 mL/kg/h/48 h, enquanto o grupo IV recebeu Ringer lactato (16 mL/kg/h/12 h, durante dois dias. A compactação do cólon maior ocasionou aumento (P < 0,05 nos valores do cortisol nos animais de ambos os grupos. As soluções utilizadas no tratamento da compactação, fluidoterapia enteral com solução isotônica poliônica (EN e fluidoterapia intravenosa com solução de Ringer lactato (IV, foram eficientes na redução dos valores do cortisol sérico em equinos com compactação induzida no cólon maior.

  12. Granzyme A Cleaves a Mitochondrial Complex I Protein to Initiate Caspase-Independent Cell Death

    Science.gov (United States)

    Martinvalet, Denis; Dykxhoorn, Derek M.; Ferrini, Roger; Lieberman, Judy

    2010-01-01

    SUMMARY The killer lymphocyte protease granzyme A (GzmA) triggers caspase-independent target cell death with morphological features of apoptosis. We previously showed that GzmA acts directly on mitochondria to generate reactive oxygen species (ROS) and disrupt the transmembrane potential (ΔΨm) but does not permeabilize the mitochondrial outer membrane. Mitochondrial damage is critical to GzmA-induced cell death since cells treated with superoxide scavengers are resistant to GzmA. Here we find that GzmA accesses the mitochondrial matrix to cleave the complex I protein NDUFS3, an iron-sulfur subunit of the NADH:ubiquinone oxidoreductase complex I, after Lys56 to interfere with NADH oxidation and generate superoxide anions. Target cells expressing a cleavage site mutant of NDUFS3 are resistant to GzmA-mediated cell death but remain sensitive to GzmB. PMID:18485875

  13. Síndrome de Chilaiditi associada a volvo de cólon sigmóide: relato de caso Chilaiditi's Syndrome with sigmoid colon volvulus: case report

    Directory of Open Access Journals (Sweden)

    Marcelo Wilson Rocha Almeida

    2006-12-01

    Full Text Available INTRODUÇÃO: Este estudo tem como objetivo relatar um caso de Síndrome de Chilaiditi associada a volvo de cólon sigmóide. RELATO DE CASO: Paciente masculino, branco, 51 anos, admitido no Pronto-Socorro de Pelotas queixando parada da eliminação de gases e fezes, dor abdominal difusa com distensão e inapetência, aceitando somente líquido. Tem diagnóstico de retardo mental e constipação intestinal crônica. Foi realizado Rx de abdome agudo, sendo evidenciada distensão difusa de cólon, e sinais sugestivos de volvo de sigmóide com imagem de cólon transverso entre o fígado e o diafragma. O paciente foi submetido a laparotomia exploradora, sendo constatado volvo de sigmóide, megacólon difuso e interposição do cólon transverso entre o fígado e o diafragma. Procedeu-se a colectomia subtotal, com colostomia terminal em cólon ascendente e fechamento do reto remanescente, recebendo alta no 9º dia. DISCUSSÃO: A interposição do cólon entre o fígado e a cúpula diafragmática (síndrome de Chilaiditi, associada a volvo de cólon sigmóide, constitui causa rara de abdome agudo obstrutivo, embora o volvo de sigmóide seja uma das principais causas de obstrução intestinal mecânica no Brasil. Geralmente o tratamento é clínico, porém se associado a complicações o tratamento é cirúrgico.INTRODUCTION: This study aims at reporting a case of Chilaiditi Syndrome associated to sigmoid colon volvulus. CASE REPORT: Male patient, white, 51 years old, arrives at an emergency hospital in Pelotas with complaints of stoping the elimination of gases, diffuse abdominal pain, increase of abdominal volume, gradual and progressive inappetence, accepting only liquid. He is diagnosed with mental retardation and a situation of intestinal constipation. An acute abdomen Rx highlighted a diffuse colon distension, suggestive of sigmoid volvulus with tranversum colon image between the liver and the diaphragm. The patient was submitted to exploratory

  14. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell...

  15. Pyélonéphrite Emphysémateuse Avec Une Issue Favorable Après ...

    African Journals Online (AJOL)

    28 août 2011 ... 1Service d'Urologie, 2Service de Radio Hôpital militaire Avicenne,. Marrakech, Maroc. RÉSUMÉ. Introduction: La pyélonéphrite emphysémateuse est une infection nécrotique du rein dont la sanction est le plus souvent radicale. Objectif: Notre propos est de montrer que le traitement conservateur pourrait ...

  16. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship

    DEFF Research Database (Denmark)

    Gregersen, N; Andresen, B S; Corydon, M J

    2001-01-01

    implications of mutation type, as well as the modulating effect of the mitochondrial protein quality control systems, composed of molecular chaperones and intracellular proteases. We propose that the unraveling of the genetic and cellular determinants of the modulating effects of protein quality control...

  17. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?

    Directory of Open Access Journals (Sweden)

    Bernadette eGehl

    2014-04-01

    Full Text Available The band-7 protein family comprises a diverse set of membrane-bound proteins characterised by the presence of a conserved domain. The exact function of this band-7 domain remains elusive, but examples from animal and bacterial stomatin-type proteins demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers that form putative scaffolds. Some members, such as prohibitins and human stomatin-like protein 2 (HsSLP2, localise to the mitochondrial inner membrane where they function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has diversified and includes plant-specific members. Mitochondrial-localised members include prohibitins (AtPHBs and two stomatin-like proteins (AtSLP1 and -2. Studies into PHB function in plants have demonstrated an involvement in root meristem proliferation and putative scaffold formation for mAAA proteases, but it remains unknown how these roles are achieved at the molecular level. In this minireview we summarise the current status of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members might recruit specific lipids to form microdomains that could shape the organisation and functioning of the respiratory chain.

  19. TOMS/Earth Probe UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this Level-3...

  20. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hepatic Mitochondrial Dysfunction and Immune Response in a Murine Model of Peanut Allergy

    Directory of Open Access Journals (Sweden)

    Giovanna Trinchese

    2018-06-01

    Full Text Available Background: Evidence suggests a relevant role for liver and mitochondrial dysfunction in allergic disease. However, the role of hepatic mitochondrial function in food allergy is largely unknown. We aimed to investigate hepatic mitochondrial dysfunction in a murine model of peanut allergy. Methods: Three-week-old C3H/HeOuJ mice were sensitized by the oral route with peanut-extract (PNT. We investigated: 1. the occurrence of effective sensitization to PNT by analysing acute allergic skin response, anaphylactic symptoms score, body temperature, serum mucosal mast cell protease-1 (mMCP-1 and anti-PNT immunoglobulin E (IgE levels; 2. hepatic involvement by analysing interleukin (IL-4, IL-5, IL-13, IL-10 and IFN-γ mRNA expression; 3. hepatic mitochondrial oxidation rates and efficiency by polarography, and hydrogen peroxide (H2O2 yield, aconitase and superoxide dysmutase activities by spectrophotometry. Results: Sensitization to PNT was demonstrated by acute allergic skin response, anaphylactic symptoms score, body temperature decrease, serum mMCP-1 and anti-peanut IgE levels. Liver involvement was demonstrated by a significant increase of hepatic Th2 cytokines (IL-4, IL-5 and IL-13 mRNA expression. Mitochondrial dysfunction was demonstrated by lower state 3 respiration rate in the presence of succinate, decreased fatty acid oxidation in the presence of palmitoyl-carnitine, increased yield of ROS proven by the inactivation of aconitase enzyme and higher H2O2 mitochondrial release. Conclusions: We provide evidence of hepatic mitochondrial dysfunction in a murine model of peanut allergy. These data could open the way to the identification of new mitochondrial targets for innovative preventive and therapeutic strategies against food allergy.

  2. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    Science.gov (United States)

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  3. Natural inhibitors of tumor-associated proteases

    International Nuclear Information System (INIS)

    Magdolen, U.; Krol, J.; Sato, S.; Schmitt, M.; Magdolen, V.; Krueger, A.; Mueller, M.M.; Sperl, S.

    2002-01-01

    The turnover and remodelling of extracellular matrix (ECM) is an essential part of many normal biological processes including development, morphogenesis, and wound healing. ECM turnover also occurs in severe pathological situations like artherosclerosis, fibrosis, tumor invasion and metastasis. The major proteases involved in this turnover are serine proteases (especially the urokinase-type plasminogen activator/plasmin system), matrix metalloproteases (a family of about 20 zinc-dependent endopeptidases including collagenases, gelatinases, stromelysins, and membrane-type metalloproteases), and cysteine proteases. In vivo, the activity of these proteases is tightly regulated in the extracellular space by zymogen activation and/or controlled inhibition. In the present review, we give an overview on the structure and biochemical properties of important tumor-associated protease inhibitors such as plasminogen activator inhibitor type 1 and type 2 (PAI-1, PAI-2), tissue inhibitors of metalloproteinases (TIMP-1, -2, -3, and -4), and the cysteine protease inhibitor cystatin C. Interestingly, some of these inhibitors of tumor-associated proteases display multiple functions which rather promote than inhibit tumor progression, when the presence of inhibitors in the tumor tissue is not balanced. (author)

  4. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica.

    Directory of Open Access Journals (Sweden)

    Ming-Yang Zhou

    Full Text Available Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 10(5 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%, Flavobacterium (21.0% and Lacinutrix (16.2%. Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea.

  5. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    International Nuclear Information System (INIS)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group

  6. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Energy Technology Data Exchange (ETDEWEB)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Roszak, Aleksander W. [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel, E-mail: daniel.walker@glasgow.ac.uk [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom)

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  7. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Version 003 of Aura-OMI Spectral Surface UVB Irradiance and Erythemal Dose Level-2G data product (Daily level-2 data binned into global 0.25 deg Lat/Lon grids)...

  8. Three monoclonal antibodies against the serpin protease nexin-1 prevent protease translocation

    DEFF Research Database (Denmark)

    Kousted, Tina Mostrup; Skjoedt, K; Petersen, S V

    2013-01-01

    abolish the protease inhibitory activity of PN-1. In the presence of the antibodies, PN-1 does not form a complex with its target proteases, but is recovered in a reactive centre cleaved form. Using site-directed mutagenesis, we mapped the three overlapping epitopes to an area spanning the gap between...

  9. TOMS/Earth Probe UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this...

  10. TOMS/Nimbus-7 UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  11. TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this...

  12. TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  13. TOMS/Nimbus-7 UV Aerosol Index Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 UV Aerosol Index Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  14. TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 Total Column Ozone Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone Mapping...

  15. Morphometric study of the fibrosis and mast cell count in the circular colon musculature of chronic Chagas patients with and without megacolon Estudo morfométrico da fibrose e do número de mastócitos na muscular circular do cólon de chagásicos crônicos com e sem megacólon

    Directory of Open Access Journals (Sweden)

    Simone Wanderley Pinheiro

    2003-07-01

    Full Text Available A morphometric study of the circular colon musculature was performed, in which the mast cell count was determined and the connective fibrous tissue in this layer was measured. The objective was to gain better understanding of Chagas megacolon morphology and contribute towards the knowledge of fibrosis pathogenesis in Chagas megas. An evaluation was made of 15 distal sigmoid rings from Chagas patients with megacolon (MCC, 15 without megacolon (CSMC and 15 non-Chagas patients (NC. The rings were fixed in formol, embedded in paraffin, and 7mm thick sections were cut and stained using Azan-Heidenhain and Giemsa. The mast cell count and fibrosis were greater in the MCC group than in the CSMC and NC groups (p Com os objetivos de conhecer melhor a morfologia do megacólon chagásico e contribuir para o conhecimento da patogênese da fibrose dos megas, realizou-se estudo morfométrico na muscular circular do cólon, contando-se o número de mastócitos e medindo o conjuntivo fibroso nessa camada. Foram avaliados anéis do sigmóide distal de 15 chagásicos com megacólon (MCC, 15 sem megacólon (CSMC e 15 não chagásicos (NC. Os anéis foram fixados em formol, incluídos em parafina, cortados com 7mm de espessura e corados por Azan-Heidenhain e Giemsa. O número de mastócitos e a fibrose foram maiores no grupo com MCC em relação ao CSMC e NC (p < 0,05; teste de Kruskal-Wallis; não houve diferença significante entre os dois últimos grupos. Diante destes achados, é possível, que haja relação entre mastocitose e fibrose no megacólon chagásico, como já se demonstrou em outras doenças.

  16. Processing Proteases

    DEFF Research Database (Denmark)

    Ødum, Anders Sebastian Rosenkrans

    -terminal of the scissile bond, leaving C-terminal fusions to have non-native C-termini after processing. A solution yielding native C-termini would allow novel expression and purification systems for therapeutic proteins and peptides.The peptidyl-Lys metallopeptidase (LysN) of the fungus Armillaria mellea (Am) is one...... of few known proteases to have substrate specificity for the C-terminal side of the scissile bond. LysN exhibits specificity for lysine, and has primarily been used to complement trypsin in to proteomic studies. A working hypothesis during this study was the potential of LysN as a processing protease...

  17. A novel model of distal colon cancer in athymic mice Novo modelo de câncer de cólon distal em camundongos atímicos

    Directory of Open Access Journals (Sweden)

    Denise Gonçalves Priolli

    2012-06-01

    Full Text Available PURPOSE: The present a novel adenocarcinoma model in athymic mice. METHODS: Seven athymic mice were used. Colon diversion and distal fistula were made. Adenocarcinoma cells were inoculated in the submucosa of fistula. Tumor growth was monitored daily. Scintigraphy with 99mTc-MIBI was performed to identify the tumor. RESULTS: The model of distal colon cancer is feasible. Tumor detection was possible by both, macroscopically and molecular imaging. All resections demonstrated poorly differentiated tumors. Colon obstruction occurred in one case, similarly to evolution in human tumors of distal colon. CONCLUSION: The proposed model of distal colon cancer is feasible, allows for easy monitoring of tumoral growth by both, macroscopically and molecular imaging, and is suitable for studying the evolution of tumor with implementation of cytotoxic therapy in vivo.OBJETIVO: Apresentar novo modelo de adenocarcinoma distal em camundongos atímicos. MÉTODOS: Foram utilizados sete camundongos atímicos. Desvio do cólon distal e fístula foram feitas. Células de adenocarcinoma foram inoculadas na submucosa da fístula. O crescimento do tumor foi monitorado diariamente. Cintilografia com 99mTc-MIBI foi realizada para identificar o tumor. RESULTADOS: O modelo de câncer de cólon distal é viável. Detecção do tumor foi possível macroscopicamente e por imagem molecular. Todas as ressecções demonstraram tumores pouco diferenciados. Obstrução do cólon ocorreu em um caso, de forma semelhante à evolução em tumores humanos do cólon distal. CONCLUSÃO: O modelo de câncer do cólon distal proposto é viável, permite a monitorização fácil do crescimento tumoral macroscopicamente e por imagem molecular, sendo adequado para o estudo da evolução de tumor com aplicação de terapia citotóxica in vivo.

  18. A biotechnology perspective of fungal proteases

    Directory of Open Access Journals (Sweden)

    Paula Monteiro de Souza

    2015-06-01

    Full Text Available Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  19. Intracellular alkaline proteases produced by thermoacidophiles: detection of protease heterogeneity by gelatin zymography and polymerase chain reaction (PCR)

    Energy Technology Data Exchange (ETDEWEB)

    Kocab, S.; Erdem, B. [Middle East Technical University, Ankara (Turkey). Dept. of Biological Sciences

    2002-08-01

    In this study 24 thermoacidophilic archeal and bacterial strains isolated from hot-springs and hot-soils were screened for their ability to produce intracellular alkaline proteases. The protease activities of the strains, based on azocasein hydrolysis, showed a variation from 0.6 to 5.1 U. The cell extracts of three most potent producers were further examined and it was found that their proteases exhibited maximum activity at 60-70{sup o}C and showed a pH optimum over a range of pH 7.0-8.5. Gelatin zymography revealed that two of the selected archeal strains produced multiple active SDS-resistant proteases. On the other hand, PCR amplification of alkaline serine protease gene sequences of total DNA from all isolates yielded four distinct amplification fragments of 650, 450, 400 and 300 bp, which might have been derived from different serine protease genes. (author)

  20. Kinetic intermediates en route to the final serpin-protease complex: studies of complexes of α1-protease inhibitor with trypsin.

    Science.gov (United States)

    Maddur, Ashoka A; Swanson, Richard; Izaguirre, Gonzalo; Gettins, Peter G W; Olson, Steven T

    2013-11-01

    Serpin protein protease inhibitors inactivate their target proteases through a unique mechanism in which a major serpin conformational change, resulting in a 70-Å translocation of the protease from its initial reactive center loop docking site to the opposite pole of the serpin, kinetically traps the acyl-intermediate complex. Although the initial Michaelis and final trapped acyl-intermediate complexes have been well characterized structurally, the intermediate stages involved in this remarkable transformation are not well understood. To better characterize such intermediate steps, we undertook rapid kinetic studies of the FRET and fluorescence perturbation changes of site-specific fluorophore-labeled derivatives of the serpin, α1-protease inhibitor (α1PI), which report the serpin and protease conformational changes involved in transforming the Michaelis complex to the trapped acyl-intermediate complex in reactions with trypsin. Two kinetically resolvable conformational changes were observed in the reactions, ascribable to (i) serpin reactive center loop insertion into sheet A with full protease translocation but incomplete protease distortion followed by, (ii) full conformational distortion and movement of the protease and coupled serpin conformational changes involving the F helix-sheet A interface. Kinetic studies of calcium effects on the labeled α1PI-trypsin reactions demonstrated both inactive and low activity states of the distorted protease in the final complex that were distinct from the intermediate distorted state. These studies provide new insights into the nature of the serpin and protease conformational changes involved in trapping the acyl-intermediate complex in serpin-protease reactions and support a previously proposed role for helix F in the trapping mechanism.

  1. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jin [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Dornbos, Peter [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Steidemann, Michelle [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dunivin, Taylor K. [Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Rizzo, Mike [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824 (United States); LaPres, John J., E-mail: lapres@msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States)

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes ≥ 2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. - Highlights: • The mitoAHR is localized in the mitochondrial intermembrane space. • TOMM20 participates in mitoAHR translocation. • AHR contributes to the maintenance of respiratory control ratio following

  2. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    Science.gov (United States)

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Advances in protease engineering for laundry detergents.

    Science.gov (United States)

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hemogasometria em eqüinos com compactação experimental do cólon maior tratados com sene, fluidoterapia enteral e parenteral

    OpenAIRE

    Ribeiro Filho,José Dantas; Abreu,José Mário Girão; Alves,Geraldo Eleno Silveira; Dantas,Waleska de Melo Ferreira

    2007-01-01

    O equilíbrio ácido-base foi estudado em eqüinos com compactação experimental do cólon maior após o uso de solução isotônica poliônica enteral, sene mais hidratação intravenosa e hidratação intravenosa. As amostras sangüíneas foram colhidas de 20 animais, quatro grupos (E8, RL, SE e C) de cinco animais cada. Os animais dos grupos tratados eram portadores de compactação no cólon maior induzida experimentalmente. Eqüinos no grupo E8 receberam solução isotônica poliônica enteral (8mL kg-1 h-1 48h...

  5. In-cell protease assay systems based on trans-localizing molecular beacon proteins using HCV protease as a model system.

    Directory of Open Access Journals (Sweden)

    Jeong Hee Kim

    Full Text Available This study describes a sensitive in-cell protease detection system that enables direct fluorescence detection of a target protease and its inhibition inside living cells. This live-cell imaging system provides a fluorescent molecular beacon protein comprised of an intracellular translocation signal sequence, a protease-specific cleavage sequence, and a fluorescent tag sequence(s. The molecular beacon protein is designed to change its intracellular localization upon cleavage by a target protease, i.e., from the cytosol to a subcellular organelle or from a subcellular organelle to the cytosol. Protease activity can be monitored at the single cell level, and accordingly the entire cell population expressing the protease can be accurately enumerated. The clear cellular change in fluorescence pattern makes this system an ideal tool for various life science and drug discovery research, including high throughput and high content screening applications.

  6. Quality control of inclusion bodies in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Schweder Thomas

    2010-05-01

    Full Text Available Abstract Background Bacterial inclusion bodies (IBs are key intermediates for protein production. Their quality affects the refolding yield and further purification. Recent functional and structural studies have revealed that IBs are not dead-end aggregates but undergo dynamic changes, including aggregation, refunctionalization of the protein and proteolysis. Both, aggregation of the folding intermediates and turnover of IBs are influenced by the cellular situation and a number of well-studied chaperones and proteases are included. IBs mostly contain only minor impurities and are relatively homogenous. Results IBs of α-glucosidase of Saccharomyces cerevisiae after overproduction in Escherichia coli contain a large amount of (at least 12 different major product fragments, as revealed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE. Matrix-Assisted-Laser-Desorption/Ionization-Time-Of-Flight Mass-Spectrometry (MALDI-ToF MS identification showed that these fragments contain either the N- or the C-terminus of the protein, therefore indicate that these IBs are at least partially created by proteolytic action. Expression of α-glucosidase in single knockout mutants for the major proteases ClpP, Lon, OmpT and FtsH which are known to be involved in the heat shock like response to production of recombinant proteins or to the degradation of IB proteins, clpP, lon, ompT, and ftsH did not influence the fragment pattern or the composition of the IBs. The quality of the IBs was also not influenced by the sampling time, cultivation medium (complex and mineral salt medium, production strategy (shake flask, fed-batch fermentation process, production strength (T5-lac or T7 promoter, strain background (K-12 or BL21, or addition of different protease inhibitors during IB preparation. Conclusions α-glucosidase is fragmented before aggregation, but neither by proteolytic action on the IBs by the common major proteases, nor during downstream IB

  7. Probes of the Mitochondrial cAMP-dependent Protein Kinase

    Science.gov (United States)

    Shell, Jennifer R.; Lawrence, David S.

    2013-01-01

    The development of a fluorescent assay to detect activity of the mitochondrial cAMP-dependent protein kinase (PKA) is described. A peptide-based sensor was utilized to quantify the relative amount of PKA activity present in each compartment of the mitochondria (the outer membrane, the intermembrane space, and the matrix). In the process of validating this assay, we discovered that PKA activity is regulated by the protease calpain. Upon exposure of bovine heart mitochondria to digitonin, Ca2+, and a variety of electron transport chain inhibitors, the regulatory subunits of the PKA holoenzyme (R2C2) are digested, releasing active catalytic subunits. This proteolysis is attenuated by calpain inhibitor I (ALLN). PMID:23410952

  8. Understanding serine proteases implications on Leishmania spp lifecycle.

    Science.gov (United States)

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A genomic survey of proteases in Aspergilli

    NARCIS (Netherlands)

    Budak, Sebnem Ozturkoglu; Zhou, M.; Brouwer, Carlo; Wiebenga, A.; Benoit, Isabelle; Di Falco, Marcos; Tsang, Adrian; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    BACKGROUND: Proteases can hydrolyze peptides in aqueous environments. This property has made proteases the most important industrial enzymes by taking up about 60% of the total enzyme market. Microorganisms are the main sources for industrial protease production due to their high yield and a wide

  10. Can foreign proteins imported into yeast mitochondria interfere with PIM1p protease and/or chaperone function?

    Science.gov (United States)

    Saveliev, A S; Kovaleva, I E; Novikova, L A; Isaeva, L V; Luzikov, V N

    1999-03-15

    When studying the fate of mammalian apocytochrome P450scc (apo-P450scc) imported in small amounts into isolated yeast mitochondria, we found that it undergoes degradation, this process being retarded if recipient mitochondria are preloaded in vivo (to about 0.2% of total organelle protein) with a fusion protein composed of mammalian adrenodoxin reductase and adrenodoxin (AdR-Ad); in parallel we observed aggregation of apo-P450scc. These effects suggest some overload of Pim1p protease and/or mtHsp70 system by AdR-Ad, as both of them are involved in the degradation of apo-P450scc (see Savel'ev et al. J. Biol. Chem. 273, 20596-20602, 1998). However, under the same conditions AdR-Ad was not able to impede the import of proteins into mitochondria and the development of the mitochondrial respiratory machinery in yeast, the processes requiring the mtHsp70 system and Pim1p, respectively. These data imply that chaperones and Pim1p protease prefer their natural targets in mitochondria to imported foreign proteins. Copyright 1999 Academic Press.

  11. A genetic bistable switch utilizing nonlinear protein degradation.

    Science.gov (United States)

    Huang, Daniel; Holtz, William J; Maharbiz, Michel M

    2012-07-09

    Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit. In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon. To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.

  12. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  13. Role of Proteases in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Kailash C. Pandey

    2017-08-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is generally associated with progressive destruction of airways and lung parenchyma. Various factors play an important role in the development and progression of COPD, like imbalance of proteases, environmental and genetic factors and oxidative stress. This review is specifically focused on the role of proteases and their imbalance in COPD. There are three classes (serine, mettalo, and cysteine of proteases involved in COPD. In serine proteases, neutrophil elastase, cathepsin G, and proteinase-3 are involved in destruction of alveolar tissue. Matrix-mettaloproteinase-9, 12, 13, plays an influential role in severity of COPD. Among cysteine proteases, caspase-3, caspases-8 and caspase-9 play an important role in controlling apoptosis. These proteases activities can be regulated by inhibitors like α-1-antitrypsin, neutrophil elastase inhibitor, and leukocyte protease inhibitor. Studies suggest that neutrophil elastase may be a therapeutic target for COPD, and specific inhibitor against this enzyme has potential role to control the disease. Current study suggests that Dipeptidyl Peptidase IV is a potential marker for COPD. Since the expression of proteases and its inhibitors play an important role in COPD pathogenesis, therefore, it is worth investigating the role of proteases and their regulation. Understanding the biochemical basis of COPD pathogenesis using advanced tools in protease biochemistry and aiming toward translational research from bench-to-bedside will have great impact to deal with this health problem.

  14. tolerant alkaline protease from Bacillus coagulans PSB

    African Journals Online (AJOL)

    oyaide

    2013-05-22

    May 22, 2013 ... suggest the suitability of the enzyme for applications in peptide synthesis, detergent formulation and ... The cell free supernatant was recovered as crude enzyme preparation and used for further studies. Assay of protease activity. Protease activity was ... Effect of pH on growth and protease production.

  15. Mosaic serine proteases in the mammalian central nervous system.

    Science.gov (United States)

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  16. Tratamento da compactação experimental do cólon maior em eqüinos: resultados de laboratório e exames bioquímicos

    OpenAIRE

    Alves,G.E.S.; Ribeiro Filho,J.D.; Oliveira,H.P.; Abreu,J.M.G.

    2005-01-01

    Avaliou-se ação da solução isotônica poliônica enteral da sene mais fluidoterapia intravenosa e da fluidoterapia intravenosa no tratamento da compactação no cólon maior em eqüinos. Foram utilizados 20 animais divididos em quatro grupos. Os animais dos grupos tratados eram portadores de compactação no cólon maior induzida experimentalmente. O grupo C, controle, não foi tratado, o grupo E8 foi tratado com solução isotônica poliônica enteral (8ml/kg/hora/48horas), o grupo SE recebeu sene (20mg/k...

  17. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    Directory of Open Access Journals (Sweden)

    Madhusudhan Budatha

    Full Text Available Mice deficient for the fibulin-5 gene (Fbln5(-/- develop pelvic organ prolapse (POP due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/- mice, herein named V1 (25 kDa. V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/- mice. PRSS3 was (a localized in epithelial secretions, (b detected in media of vaginal organ culture from both Fbln5(-/- and wild type mice, and (c cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin and Elafin] was dysregulated in Fbln5(-/- epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice.

  18. Extracellular proteases of Trichoderma species. A review.

    Science.gov (United States)

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  19. Resource sharing of online teaching materials: The lon-capa project

    Science.gov (United States)

    Bauer, Wolfgang

    2004-03-01

    The use of information technology resources in conventional lecture-based courses, in distance-learning offerings, as well as hybrid courses, is increasing. But this may put additional burden on faculty, who are now asked to deliver this new content. Additionally, it may require the installation of commercial courseware systems, putting the colleges and universities in new financial licensing dependencies. To address exactly these two problems, the lon-capa system was invented to provide an open-source, gnu public license based, courseware system that allows for sharing of educational resources across institutional and disciplinary boundaries. This presentation will focus on both aspects of the system, the courseware capabilities that allow for customized environments for individual students, and the educational resources library that enables teachers to take full advantages of the work of their colleagues. Research results on learning effectiveness, resource and system usage patterns, and customization for different learning styles will be shown. Institutional perceptions of and responses to open source courseware systems will be discussed.

  20. Curcumin derivatives as HIV-1 protease inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R. [Univ. of California, San Francisco, CA (United States)

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  1. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  2. Indispensable Role of Proteases in Plant Innate Immunity.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  3. Gut proteases target Yersinia invasin in vivo

    Directory of Open Access Journals (Sweden)

    Freund Sandra

    2011-04-01

    Full Text Available Abstract Background Yersinia enterocolitica is a common cause of food borne gastrointestinal disease. After oral uptake, yersiniae invade Peyer's patches of the distal ileum. This is accomplished by the binding of the Yersinia invasin to β1 integrins on the apical surface of M cells which overlie follicle associated lymphoid tissue. The gut represents a barrier that severely limits yersiniae from reaching deeper tissues such as Peyer's patches. We wondered if gut protease attack on invasion factors could contribute to the low number of yersiniae invading Peyer's patches. Findings Here we show that invasin is rapidly degraded in vivo by gut proteases in the mouse infection model. In vivo proteolytic degradation is due to proteolysis by several gut proteases such as trypsin, α-chymotrypsin, pancreatic elastase, and pepsin. Protease treated yersiniae are shown to be less invasive in a cell culture model. YadA, another surface adhesin is cleaved by similar concentrations of gut proteases but Myf was not cleaved, showing that not all surface proteins are equally susceptible to degradation by gut proteases. Conclusions We demonstrate that gut proteases target important Yersinia virulence factors such as invasin and YadA in vivo. Since invasin is completely degraded within 2-3 h after reaching the small intestine of mice, it is no longer available to mediate invasion of Peyer's patches.

  4. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    Science.gov (United States)

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  5. Fechamento de colostomias: com ou sem estudo do cólon? Colostomy closure: with or without pre-operative colon study

    Directory of Open Access Journals (Sweden)

    Hernán Augusto Centurión Sobral

    2008-09-01

    Full Text Available O estudo pré-operatório do cólon para fechamento de colostomias em alça devido a trauma vem perdendo importância nos últimos anos. A necessidade de se avaliar as alterações anatômicas pós-traumáticas do cólon vai de encontro aos custos, desconforto e morbidade dos exames. OBJETIVO: analisar a real necessidade do estudo prévio do cólon no fechamento de colostomia pós-trauma. MÉTODO: foram analisados, retrospectivamente, 98 prontuários de pacientes, no período de janeiro de 2004 a janeiro de 2006, portadores de colostomia em alça confeccionada após traumatismo e que foram alocados em dois grupos: grupo A, composto de 32 casos com estudo do cólon e o grupo B, 66 casos sem estudo colônico prévio. RESULTADOS: 94,9% dos pacientes eram do sexo masculino e a média de idade foi de 27 anos. O tempo de permanência da colostomia foi, em média, 32,8 meses, sendo o flanco esquerdo a localização mais comum em ambos os grupos. A morbidade geral foi de 7,1%, sendo 3,1% de complicações no grupo A e 9,1% no grupo B (p=0,16 e sem mortalidade. A complicação mais freqüente foi hematoma da parede abdominal em cinco casos (5,1%, e apenas um caso de infecção de ferida operatória (1%, e mais um de deiscência de anastomose (1%. CONCLUSÃO: o estudo pré-operatório do cólon para fechamento de colostomia feita após trauma colorretal é dispensável.The pre-operative study of the colon before loop colostomy closure in trauma patients has been loosing its importance since last few years. The need of evaluating the pos-traumatic anatomic alterations of the colon goes against the costs and morbidity of the examinations. OBJECTIVE: to analyze the real necessity of the colon study before colostomy closure in trauma patients. METHODS: a retrospective study of 98 patients submitted to colostomy closure after trauma, from January of 2004 to January of 2006 was carried out. They were divided in two groups: group A, composed of 32 patients with

  6. TOMS/Earth Probe UV-B Erythemal Local Noon Irradiance Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV-B Erythemal Local Noon Irradiance Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The...

  7. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    Science.gov (United States)

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. PARTIAL PURIFICATION AND CHARACTERIZATION OF ALKALOPHILIC PROTEASE FROM PSEUDOMONAS AERUGINOSA

    Directory of Open Access Journals (Sweden)

    R. Satheeskumar

    2013-10-01

    Full Text Available Partial purification and characterization of alkalophilic protease production from Pseudomonas aeruginosa was isolated from the gut of marine and coastal waters shrimp Penaeus monodon. The protease production was assayed in submerged fermentation to produce maximum protease activity (423 ± 0.09 U/ml. The enzyme was precipitated with ammonium sulphate and partially purified by ion exchange chromatography through DEAE Sephadex A-50 column. In 10th fraction showed maximum protease activity (734 ± 0.18 U/ml with increase in purification fold. The molecular weight of protease from Pseudomonas aeruginosa was recorded as 60 kDa. The stability of protease was tested at various pH and temperature; it showed maximum protease activity at pH-9 and temperature 50ºC. Among the various surfactants tested for enzyme stability, maximum activity was retained in poly ethylene glycol. The compatibility of protease enzyme with various commercial detergents; the enzyme retained maximum protease activity in tide. The results are indicated that all these properties make the bacterial proteases are most suitable for wide industrial applications.

  9. Characterization of a membrane-associated serine protease in Escherichia coli

    International Nuclear Information System (INIS)

    Palmer, S.M.; St John, A.C.

    1987-01-01

    Three membrane-associated proteolytic activities in Escherichia coli were resolved by DEAE-cellulose chromatography from detergent extracts of the total envelope fraction. On the basis of substrate specificity for the hydrolysis of chromogenic amino acid ester substrates, the first two eluting activities were determined previously to be protease V and protease IV, respectively. The third proteolytic activity eluting from the DEAE-cellulose column was further purified by affinity chromatography on benzamidine-Sepharose 6B. They termed this enzyme protease VI. Protease VI did not hydrolyze any of the chromogenic substrates used in the detection of protease IV and protease V. However, all three enzymes generated acid-soluble fragments from a mixture of E. coli membrane proteins which were biosynthetically labeled with radioactive amino acids. The activity of protease VI was sensitive to serine protease inhibitors. Using [ 3 H]diisopropylfluorophosphate as an active-site labeling reagent, they determined that protease VI has an apparent molecular weight of 43,000 in polyacrylamide gels. All three membrane-associated serine proteases were insensitive to inhibition by Ecotin, an endogenous, periplasmic inhibitor of trypsin

  10. TOMS/Nimbus-7 UV-B Erythemal Local Noon Irradiance Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Nimbus-7 UV-B Erythemal Local Noon Irradiance Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. The Total Ozone...

  11. Supermarket Proteases.

    Science.gov (United States)

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  12. Contemporary protease inhibitors and cardiovascular risk

    DEFF Research Database (Denmark)

    Lundgren, Jens; Mocroft, Amanda; Ryom, Lene

    2018-01-01

    PURPOSE OF REVIEW: To review the evidence linking use of HIV protease inhibitors with excess risk of cardiovascular disease (CVD) in HIV+ populations. RECENT FINDINGS: For the two contemporary most frequently used protease inhibitors, darunavir and atazanavir [both pharmacologically boosted...

  13. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD.

    Directory of Open Access Journals (Sweden)

    Lin Qu

    2011-09-01

    Full Text Available Toll-like receptor 3 (TLR3 and cytosolic RIG-I-like helicases (RIG-I and MDA5 sense viral RNAs and activate innate immune signaling pathways that induce expression of interferon (IFN through specific adaptor proteins, TIR domain-containing adaptor inducing interferon-β (TRIF, and mitochondrial antiviral signaling protein (MAVS, respectively. Previously, we demonstrated that hepatitis A virus (HAV, a unique hepatotropic human picornavirus, disrupts RIG-I/MDA5 signaling by targeting MAVS for cleavage by 3ABC, a precursor of the sole HAV protease, 3C(pro, that is derived by auto-processing of the P3 (3ABCD segment of the viral polyprotein. Here, we show that HAV also disrupts TLR3 signaling, inhibiting poly(I:C-stimulated dimerization of IFN regulatory factor 3 (IRF-3, IRF-3 translocation to the nucleus, and IFN-β promoter activation, by targeting TRIF for degradation by a distinct 3ABCD processing intermediate, the 3CD protease-polymerase precursor. TRIF is proteolytically cleaved by 3CD, but not by the mature 3C(pro protease or the 3ABC precursor that degrades MAVS. 3CD-mediated degradation of TRIF depends on both the cysteine protease activity of 3C(pro and downstream 3D(pol sequence, but not 3D(pol polymerase activity. Cleavage occurs at two non-canonical 3C(pro recognition sequences in TRIF, and involves a hierarchical process in which primary cleavage at Gln-554 is a prerequisite for scission at Gln-190. The results of mutational studies indicate that 3D(pol sequence modulates the substrate specificity of the upstream 3C(pro protease when fused to it in cis in 3CD, allowing 3CD to target cleavage sites not normally recognized by 3C(pro. HAV thus disrupts both RIG-I/MDA5 and TLR3 signaling pathways through cleavage of essential adaptor proteins by two distinct protease precursors derived from the common 3ABCD polyprotein processing intermediate.

  14. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao

    2018-02-16

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named \\'tamarillin\\'.

  15. Purification and characterisation of a protease (tamarillin) from tamarillo fruit

    KAUST Repository

    Li, Zhao; Scott, Ken; Hemar, Yacine; Zhang, Huoming; Otter, Don

    2018-01-01

    A protease from tamarillo fruit (Cyphomandra betacea Cav.) was purified by ammonium sulphate precipitation and diethylaminoethyl-Sepharose chromatography. Protease activity was determined on selected peak fractions using a casein substrate. Sodium dodecyl sulphate polyacrylamide gel electrophoresis analysis showed that the peak with the highest protease activity consisted of one protein of molecular mass ca. 70 kDa. The protease showed optimal activity at pH 11 and 60°C. It was sensitive to phenylmethylsulphonyl fluoride while ethylenediaminetetraacetic acid and p-chloromercuribenzoic acid had little effect on its activity, indicating that this enzyme was a serine protease. Hg2+ strongly inhibited enzyme activity, possibly due to formation of mercaptide bonds with the thiol groups of the protease, suggesting that some cysteine residues may be located close to the active site. De novo sequencing strongly indicated that the protease was a subtilisin-like alkaline serine protease. The protease from tamarillo has been named 'tamarillin'.

  16. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    International Nuclear Information System (INIS)

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke; Miura, Masayuki

    2007-01-01

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution

  17. High throughput in vivo protease inhibitor selection platform

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a recombinant microbial cell comprising a selection platform for screening for a protease inhibitor, wherein the platform comprises transgenes encoding a protease having selective peptide bond cleavage activity at a recognition site amino acid sequence; and transgenes...... platform for screening for a protease inhibitor....

  18. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    Science.gov (United States)

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  19. The Effect of Exogenous Protease in Broiler Diets on the Apparent Ileal Digestibility of Amino Acids and on Protease Activity in Jejunum

    Directory of Open Access Journals (Sweden)

    Vojtěch Rada

    2016-01-01

    Full Text Available The objective of this study was to evaluate the effect of a mono-component commercial serine protease supplement in broiler diets on apparent ileal amino acid digestibility and protease activity. A total of 150 male (28 d old ROSS 308 were randomly placed into 30 battery pens and divided into 5 treatment groups with 6 replicates each. The experiment was performed for 7 days. Five dietary treatments were used: 2 standard protein diets without (SP and with protease (SP + P formulated 20.7 % CP, 2 lower-protein diets (19.9 % CP without (LP and with protease (LP + P and one lower‑protein diet with protease and with doubled rapeseed meal (RSM content (SP-RSM + P compared with the other treatments. Lower-protein diets were formulated with a 4 % decrease in the relative CP value compared with the standard protein diet. Enzyme protease was added to the diets at a concentration of 200 ppm (15,000 PROT units per kg. The diets contained 0.3 % Cr2O3 to facilitate the estimation of apparent AA digestibility and overall apparent ileal crude protein digestibility. Mono-component protease had no effect on apparent ileal AA digestibility or jejunum protease activity if diets contained the same level of RSM. The supplement of exogenous protease did not affect (P > 0.05 the apparent ileal AA digestibility coefficients if a higher RSM level was used. The CP level influenced (P < 0.05 only the coefficients of the apparent ileal AA digestibility of Pro and Arg. The RSM level (P < 0.01 had significant effects on protease activity in the jejunum.

  20. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  1. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  2. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  3. A new method for the characterization of strain-specific conformational stability of protease-sensitive and protease-resistant PrPSc.

    Directory of Open Access Journals (Sweden)

    Laura Pirisinu

    Full Text Available Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrP(Sc, a disease-associated isoform of the host-encoded cellular protein (PrP(C. Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrP(Sc. However, PrP(Sc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrP(Sc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrP(C and PrP(Sc by means of differential centrifugation. The conformational solubility and stability assay (CSSA was then developed by measuring PrP(Sc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl](1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl](1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M, followed by sheep scrapie (2.2 M and by MM2 sCJD (1.6 M. In order to test the ability of CSSA to characterise protease-sensitive PrP(Sc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrP(Sc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrP(Sc conformational stabilities of protease-resistant and protease-sensitive PrP(Sc and that it is a valuable tool

  4. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    International Nuclear Information System (INIS)

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-01-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: → Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. → Bt-VSP activates prothrombin. → Bt-VSP directly degrades fibrinogen into fibrin degradation products. → Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  5. Characterization of Fibrinolytic Proteases from Gloydius blomhoffii siniticus Venom

    Directory of Open Access Journals (Sweden)

    Suk Ho Choi

    2011-09-01

    Full Text Available Objectives : This study was undertaken to identify fibrinolytic proteases from Gloydius blomhoffii siniticus venom and to characterize a major fibrinolytic protease purified from the venom. Methods: The venom was subjected to chromatography using columns of Q-Sepharose and Sephadex G-75. The molecular weights of fibrinolytic proteases showing fibrinolytic zone in fibrin plate assay were determined in SDS-PAGE (Sodium dodecyl sulfate-polyacrylamide gel electrophoresis The effects of inhibitors and metal ions on fibrinolytic protease and the proteolysis patterns of fibrinogen, gelatin, and bovine serum albumin were investigated. Results : 1 The fibrinolytic fractions of the three peaks isolated from Gloydius blomhoffii siniticus venom contained two polypeptides of 46 and 59 kDa and three polypeptides of 32, 18, and 15 kDa and a major polypeptide of 54 kDa, respectively. 2 The fibrinolytic activity of the purified protease of 54 kDA was inhibited by metal chelators, such as EDTA, EGTA, and 1,10-phenanthroline, and disulfhydryl-reducing compounds, such as dithiothreitol and cysteine. 3 Calcium chloride promoted the fibrinolytic activity of the protease, but mercuric chloride and cobalt(II chloride inhibited it. 4 The fibrinolytic protease cleaved preferentially A-chain and slowly B-chain of fibrinogen. It also hydrolyzed gelatin but not bovine serum albumin. Conclusions: The Gloydius blomhoffii siniticus venom contained more than three fibrinolytic proteases. The major fibrinolytic protease was a metalloprotease which hydrolyzed both fibrinogen and gelatin, but not bovine serum albumin.

  6. Structure of HIV-1 protease determined by neutron crystallography

    International Nuclear Information System (INIS)

    Adachi, Motoyasu; Kuroki, Ryota

    2009-01-01

    HIV-1 protease is an aspartic protease, and plays an essential role in replication of HIV. To develop HIV-1 protease inhibitors through structure-based drug design, it is necessary to understand the catalytic mechanism and inhibitor recognition of HIV-1 protease. We have determined the crystal structure of HIV-1 protease in complex with KNI-272 to 1.9 A resolution by neutron crystallography in combination with 1.4 A resolution X-ray diffraction data. The results show that the carbonyl group of hydroxymethylcarbonyl (HMC) in KNI-272 forms a hydrogen bonding interaction with protonated Asp 25 and the hydrogen atom from the hydroxyl group of HMC forms a hydrogen bonding interaction with the deprotonated Asp125. This is the first neutron report for HIV-1/inhibitor complex and shows directly the locations of key hydrogen atoms in catalysis and in the binding of a transition-state analog. The results confirm key aspect of the presumed catalytic mechanism of HIV-1 protease and will aid in the further development of protease inhibitors. (author)

  7. Construction of dengue virus protease expression plasmid and in vitro protease assay for screening antiviral inhibitors.

    Science.gov (United States)

    Lai, Huiguo; Teramoto, Tadahisa; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus serotypes 1-4 (DENV1-4) are mosquito-borne human pathogens of global significance causing ~390 million cases annually worldwide. The virus infections cause in general a self-limiting disease, known as dengue fever, but occasionally also more severe forms, especially during secondary infections, dengue hemorrhagic fever and dengue shock syndrome causing ~25,000 deaths annually. The DENV genome contains a single-strand positive sense RNA, approximately 11 kb in length. The 5'-end has a type I cap structure. The 3'-end has no poly(A) tail. The viral RNA has a single long open reading frame that is translated by the host translational machinery to yield a polyprotein precursor. Processing of the polyprotein precursor occurs co-translationally by cellular proteases and posttranslationally by the viral serine protease in the endoplasmic reticulum (ER) to yield three structural proteins (capsid (C), precursor membrane (prM), and envelope (E) and seven nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The active viral protease consists of both NS2B, an integral membrane protein in the ER, and the N-terminal part of NS3 (180 amino acid residues) that contains the trypsin-like serine protease domain having a catalytic triad of H51, D75, and S135. The C-terminal part of NS3, ~170-618 amino acid residues, encodes an NTPase/RNA helicase and 5'-RNA triphosphatase activities; the latter enzyme is required for the first step in 5'-capping. The cleavage sites of the polyprotein by the viral protease consist of two basic amino acid residues such as KR, RR, or QR, followed by short chain amino acid residues, G, S, or T. Since the cleavage of the polyprotein by the viral protease is absolutely required for assembly of the viral replicase, blockage of NS2B/NS3pro activity provides an effective means for designing dengue virus (DENV) small-molecule therapeutics. Here we describe the screening of small-molecule inhibitors against DENV2 protease.

  8. Tratado Sobre os gigantes, de Fílon de Alexandria: apresentação, tradução, notas

    Directory of Open Access Journals (Sweden)

    César Motta Rios

    2008-03-01

    Full Text Available A importância da obra de Fílon de Alexandria ainda hoje é múltipla e real inclusive para o judaísmo. Conforme observado por David Runia (RUNIA, 1990, p. 185-186, seu estudo é válido para qualquer um que se interesse por literatura judaico-­helenística, judaísmo do segundo templo, Novo Testamento, patrística e gnosticismo, cultura helenística e filosofia grega.

  9. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  11. Fatores preditivos de infecção no trauma de cólon

    Directory of Open Access Journals (Sweden)

    Átila Varela Velho

    Full Text Available Este trabalho procurou avaliar fatores preditivos de infecção no trauma de cólon e sua validade epidemiológica. Durante 24 meses, 160 pacientes com trauma de cólon foram estudados prospectivamente em um centro de trauma, onde foram analisados possíveis fatores de risco para complicações infecciosas como a idade, o mecanismo de trauma, a topografia da lesão, o Colon Organ Injury Scale (CIS, o Abdominal Trauma Index (ATI, a presença de choque, a técnica cirúrgica empregada, o grau de contaminação e o intervalo de tempo entre o trauma e a cirurgia. Como complicações infecciosas foram consideradas: infecção da ferida cirúrgica, abscesso intra-abdominal, abscesso retroperitoneal, peritonite e deiscência de sutura colônica. A análise estatística dos dados foi feita por Regressão Logística Múltipla. No grupo estudado, 152 pacientes eram do sexo masculino, a idade média foi de 27,8 ± 12 anos, 104 ferimentos foram produzidos por arma de fogo, 38 por arma branca e 18 foram contusos, sendo de 18 ± 9 o ATI médio. A análise dos fatores de risco para infecção mostrou que o grau de contaminação fecal, o escore CIS, o tempo decorrido entre o trauma e a cirurgia e a faixa etária correlacionaram-se com complicações infecciosas neste estudo. Com base nesses resultados foi traçado um perfil do paciente de risco para infecção no grupo estudado: homem, mais de 35 anos, com trauma abdominal penetrante, com Cis > 3 e contaminação fecal moderada ou grande, submetido à cirurgia após mais de três horas do trauma.

  12. Pengaruh PH dan Suhu terhadap Aktivitas Protease Penicillium SP.

    OpenAIRE

    Yusriah, Yusriah; Kuswytasari, Nengah Dwianita

    2013-01-01

    Tujuan penelitian ini adalah untuk mengetahui pengaruh pH dan suhu terhadap aktivitas protease pada Penicillium sp.3 T3f2. Selanjutnya, isolat Penicillium sp. di kultur dalam media produksi protease untuk menghasilkan protease. Suhu yang digunakan adalah 300 – 500C sedangkan pH-nya 4 – 8. Aktivitas protease ditentukan dan diukur dengan spektrofotometer pada panjang gelombang 275 nm, dengan kasein sebagai substrat. Berdasarkan uji ANOVA yang dilanjutkan dengan uji Duncan dengan taraf kepercaya...

  13. Functional protease profiling for diagnosis of malignant disease.

    Science.gov (United States)

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Identification of cysteine proteases and screening of cysteine protease inhibitors in biological samples by a two-dimensional gel system of zymography and reverse zymography.

    Science.gov (United States)

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-11-18

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the first-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic acid (TCA) fixation. Protease activity in the 2D-gel was visualized as transparent spots where gelatin substrate was digested after commassie brilliant blue (CBB) staining. Some of the transparent spots from the skin mucus extract of rainbow trout were determined to be a cysteine protease through use of E-64 or CA-074. In the reverse zymography technique, the gel was incubated with papain solution at 37 degrees C for 18 h. Cysteine protease inhibitors from broad bean seeds were detected as clear blue spots after CBB staining. The amino (N-) terminal sequences of four papain inhibitor spots thus detected were demonstrated to be identical to that of favin beta chain, a broad bean lectin. Taken together, our system can be considered to be an efficient technique for discovering and characterizing new proteases and protease inhibitors in biological samples. This is the first report describing a 2D-gel system of zymography and reverse zymography.

  15. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients.

    Science.gov (United States)

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard; Schemann, Michael

    2018-01-01

    The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin-the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to

  16. Serine protease inhibitors of parasitic helminths.

    Science.gov (United States)

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  17. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    Science.gov (United States)

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not

  18. Isolasi, Seleksi Dan Opttmasi Produksi Protease Daribeberapaisolat Bakteri*(isolation, Selection and Optimalization of Protease Production of Some Bacterial Isolates)

    OpenAIRE

    Naiola, Elidar; Widhyastuti, Nunuk

    2002-01-01

    Thirty-seven out of sixty-one bacterial isolates from various sources of samples were screened for protease production. The isolate of ISO PL3 could produce the highest enzyme activity, and it was used as a standard bacterial strain in this observation. For any reason,we implemented ISO PL2 to study the optimum condition for producing bacterial protease. Result shows that the maximum protease activity was obtained in a medium containing 100 gram of rice brand in a liter tofu liquid waste. The...

  19. HIV protease drug resistance and its impact on inhibitor design.

    Science.gov (United States)

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  20. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Detection of protease activity in cells and animals.

    Science.gov (United States)

    Verdoes, Martijn; Verhelst, Steven H L

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Microbial alkaline proteases: Optimization of production parameters and their properties

    Directory of Open Access Journals (Sweden)

    Kanupriya Miglani Sharma

    2017-06-01

    Full Text Available Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.

  3. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    Science.gov (United States)

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    Science.gov (United States)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  5. [Analysis of salivary protease spectrum in chronic periodontitis].

    Science.gov (United States)

    Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng

    2017-02-01

    This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (Pchronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.

  6. Identification of Cysteine Proteases and Screening of Cysteine Protease Inhibitors in Biological Samples by a Two-Dimensional Gel System of Zymography and Reverse Zymography

    OpenAIRE

    Saitoh, Eiichi; Yamamoto, Shinya; Okamoto, Eishiro; Hayakawa, Yoshimi; Hoshino, Takashi; Sato, Ritsuko; Isemura, Satoko; Ohtsubo, Sadami; Taniguchi, Masayuki

    2007-01-01

    We have developed a two-dimensional (2D-) gel system of zymography and reverse zymography for the detection and characterization of proteases and protease inhibitors. Isoelectric focusing (IEF) agarose gels with pH gradients were employed for separation in the fi rst-dimension and sodium dodecyl sulfate (SDS)-polyacrylamide gel copolymerized with gelatin used for the second dimension. Proteases and protease inhibitors separated by IEF gel were applied on the second gel without trichloroacetic...

  7. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  8. Expression and Characterization of Coprothermobacter proteolyticus Alkaline Serine Protease

    Directory of Open Access Journals (Sweden)

    Tanveer Majeed

    2013-01-01

    Full Text Available A putative protease gene (aprE from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated that the enzyme had optimal activity under alkaline conditions (pH 8–10. In addition, the enzyme had an elevated optimum temperature (60°C. The protease was also stable in the presence of many surfactants and oxidant. Thus, the C. proteolyticus protease has potential applications in industries such as the detergent market.

  9. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  10. The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development

    Directory of Open Access Journals (Sweden)

    Marian Dorcas Quain

    2013-08-01

    Full Text Available Almost all protease families have been associated with plant development, particularly senescence, which is the final developmental stage of every organ before cell death. Proteolysis remobilizes and recycles nitrogen from senescent organs that is required, for example, seed development. Senescence-associated expression of proteases has recently been characterized using large-scale gene expression analysis seeking to identify and characterize senescence-related genes. Increasing activities of proteolytic enzymes, particularly cysteine proteases, are observed during the senescence of legume nodules, in which a symbiotic relationship between the host plant and bacteria (Rhizobia facilitate the fixation of atmospheric nitrogen. It is generally considered that cysteine proteases are compartmentalized to prevent uncontrolled proteolysis in nitrogen-fixing nodules. In addition, the activities of cysteine proteases are regulated by endogenous cysteine protease inhibitors called cystatins. These small proteins form reversible complexes with cysteine proteases, leading to inactivation. However, very little is currently known about how the cysteine protease-cysteine protease inhibitor (cystatin system is regulated during nodule development. Moreover, our current understanding of the expression and functions of proteases and protease inhibitors in nodules is fragmented. To address this issue, we have summarized the current knowledge and techniques used for studying proteases and their inhibitors including the application of “omics” tools, with a particular focus on changes in the cysteine protease-cystatin system during nodule development.

  11. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.

    Science.gov (United States)

    Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P

    2013-03-01

    Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  12. Identification of an archaeal presenilin-like intramembrane protease.

    Science.gov (United States)

    Torres-Arancivia, Celia; Ross, Carolyn M; Chavez, Jose; Assur, Zahra; Dolios, Georgia; Mancia, Filippo; Ubarretxena-Belandia, Iban

    2010-09-29

    The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP) without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  13. Tunable protease-activatable virus nanonodes.

    Science.gov (United States)

    Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae

    2014-05-27

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.

  14. Efeito da morfina epidural na atividade eletromiográfica do cólon esquerdo durante a recuperação do íleo paralítico pós-operatório

    OpenAIRE

    SILVEIRA, Raquel Kelner

    1997-01-01

    A autora investigou os efeitos da morfina administrada por via epidural sobre as alterações eletromiográficas do cólon esquerdo durante o período de recuperação do íleo paralítico pós-operatório utilizando eletrodos bipolares implantados na camada seromuscular do cólon. Realizou-se um ensaio clínico controlado para fatores de confusão em pacientes com diagnóstico de mioma uterino e indicação cirúrgica (histerectomia total abdominal). O grupo experimental (n = 12) foi submetido à anestesia com...

  15. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  16. Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering.

    Science.gov (United States)

    Chaabane, Wiem; Cieślar-Pobuda, Artur; El-Gazzah, Mohamed; Jain, Mayur V; Rzeszowska-Wolny, Joanna; Rafat, Mehrdad; Stetefeld, Joerg; Ghavami, Saeid; Los, Marek J

    2014-09-01

    The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin-induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin-induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin-induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  17. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  18. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  19. Synthesis of glycinamides using protease immobilized magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Abha Sahu

    2016-12-01

    Full Text Available In the present investigation, Bacillus subtilis was isolated from slaughterhouse waste and screened for the production of protease enzyme. The purified protease was successfully immobilized on magnetic nanoparticles (MNPs and used for the synthesis of series of glycinamides. The binding and thermal stability of protease on MNPs was confirmed by FTIR spectroscopy and TGA analysis. The surface morphology of MNPs before and after protease immobilization was carried out using SEM analysis. XRD pattern revealed no phase change in MNPs after enzyme immobilization. The processing parameters for glycinamides synthesis viz. temperature, pH, and time were optimized using Response Surface Methodology (RSM by using Design Expert (9.0.6.2. The maximum yield of various amides 2 butyramidoacetic acid (AMD-1,83.4%, 2-benzamidoacetic acid (AMD-2,80.5% and 2,2′((carboxymethyl amino-2-oxoethyl-2-hydroxysuccinylbis(azanediyldiacetic acid (AMD-3,80.8% formed was observed at pH-8, 50 °C and 30 min. The synthesized immobilized protease retained 70% of the initial activity even after 8 cycles of reuse.

  20. Optimization of alkaline protease production and its fibrinolytic ...

    African Journals Online (AJOL)

    Optimization of alkaline protease production and its fibrinolytic activity from the ... nitrogen sources and sodium chloride concentration for protease production by the ... exploited to assist in protein degradation in various industrial processes.

  1. Optimizing PHB and Protease Production by Box Behnken Design

    Directory of Open Access Journals (Sweden)

    Amro Abd al fattah Amara

    2013-04-01

    Full Text Available Mixed culture is more suitable to adapt more flexible fermentation process and produce different product simultaneously. In this study a mixed Bacillus culture was investigated for their ability to produce the bioplastic "Polyhydroxybutyrate" and both of the mesophilic and the thermophilic proteases in one flask. Box-Behnken experimental design was used. The produced amount of PHB has been increased significantly. Meanwhile there is a competition between PHB and proteases. The maximum produced amount of PHB using Box-Behnken design was 2.82 g/l/48 h with protease activity equal to 41.9 Units/ml/48 h for thermophilic proteases and 99.65 Units/ml/48 h for mesophilic proteases. Excel solver was used for extra-optimization for the optimum conditions obtained from Box-Behnken experiments and its model. The maximum PHB obtained after using Excel solver was 2.88 g/l/48 h. The maximum mesophilic and thermophilic activities obtained at the same PHB production conditions were 175.68 and 243.38 Units/ml respectively. The model accuracy as obtained from Excel solver was 118.8%, which prove the power of the experimental design in optimizing such complicated process. The strategies used in this study are recommended for the production of PHB and different proteases simultaneously using Bacillus mixed culture. ABSTRAK: Kultur campuran adalah lebih sesuai bagi proses penapaian yang fleksibel dan ia boleh menghasilkan produk yang berbeza secara serentak. Dalam kajian ini keupayaan  menghasilkan "Polyhydroxybutyrate" bioplastik serta mesofilik dan termofilik protease dalam satu flask oleh  kultur Bacillus campuran telah disiasat. Eksperimen rekabentuk Box-Behnken telah digunakan. Jumlah PHB yang dikeluarkan meningkat dengan ketara dan terdapat persaingan antara PHB dan protease. Jumlah keluaran PHB maksima menggunakan rekabentuk Box-Behnken adalah 2.82 g/l/48 jam dengan aktiviti protease sama dengan 41.9 Unit/ml/48 jam untuk protease termofilik dan 99.65 Unit

  2. Optimization of alkaline protease production from Pseudomonas ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... protease production was 37°C at pH 9, with 2% inoculum in the medium for 24 h. .... Positive. Catalase test. Positive ... The enzyme activity gradually decreases from ... Effect of temperature on protease production by Pseudomonas fluorescens. 0 .... between RNA polymerase and upstream promotes DNA.

  3. Identification of an archaeal presenilin-like intramembrane protease.

    Directory of Open Access Journals (Sweden)

    Celia Torres-Arancivia

    Full Text Available BACKGROUND: The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ implicated in Alzheimer's disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs. The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. METHODOLOGY AND PRINCIPAL FINDINGS: We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. CONCLUSIONS AND SIGNIFICANCE: Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.

  4. Desenvolvimento de uma estratégia terapêutica para libertação vectorizada de fármacos no cólon : optimização do processo de síntese de conjugados entre a ß-ciclodextrina e o diclofenac de sódio

    OpenAIRE

    Urbano, Isabel Santos

    2011-01-01

    O tratamento específico de patologias do cólon pode ser conseguido pelo desenvolvimento de profármacos resultantes da conjugação de um fármaco com ciclodextrinas (CDs). A formação destes conjugados permite que os fármacos atinjam o cólon de forma intacta, local no qual sofrem degradação enzimática por acção da vasta microflora existente no cólon, nomeadamente Bacteróides. Estas bactérias quebram as ligações glicosídicas das CDs originando pequenos sacáridos, permitindo a sua ab...

  5. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    Science.gov (United States)

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  6. O pulmão na doença inflamatória do cólon: estudo experimental em ratos

    Directory of Open Access Journals (Sweden)

    Biondo-Simões Maria de Lourdes Pessole

    2000-01-01

    Full Text Available Embora a colite ulcerativa seja conhecida desde 1875 e muitas sejam as manifestações extra-intestinais descritas nesta doença, só recentemente chamou-se a atenção para o envolvimento do aparelho respiratório. Severas complicações têm sido descritas em pacientes como: estenose traqueal inflamatória, bronquiolite com pneumonia, pneumonite intersticial, granulomatose de Wegener, bronquite crônica com bronquiectasia, nódulos necrobióticos, vasculites, fibrose e alveolites. O presente estudo visa reconhecer as alterações pulmonares, na fase aguda da doença inflamatória do cólon, induzida em ratos com ácido acético à 10% e comparar com controles normais. Foi possível constatar que 100% dos animais com colite apresentaram reação inflamatória pulmonar (p=0,0210 de intensidade moderada à severa (p=0,0340. Vasculite foi vista em 58,33% dos pulmões (p=0,0060 e em 3 animais detectou-se hemorragia focal, necrose e abscesso. Estes achados permitem atribuir uma forte associação entre a doença inflamatória do cólon e alterações do aparêlho respiratório, durante a fase aguda da doença, em ratos.

  7. Economic Methods of Ginger Protease'sextraction and Purification

    Science.gov (United States)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  8. Purification and characterization of protease from Bacillus cereus ...

    African Journals Online (AJOL)

    Among them, SU12 isolate was selected due to its high enzyme production ... growth and protease production which includes different carbon and nitrogen sources, ... organism for the industrial production of the extracellular protease enzyme.

  9. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    user

    2013-03-20

    Mar 20, 2013 ... Full Length Research Paper. Purification and ... ting into small peptides and free amino acids, which can ... Isolated strain was cultured in synthetic medium- casein (SMC; ... Protease activity was assayed by sigma's non-specific protease ... following buffers: 0.05 M citrate-phosphate buffer (pH 5 to 6), Tris-.

  11. Current and Novel Inhibitors of HIV Protease

    Czech Academy of Sciences Publication Activity Database

    Pokorná, Jana; Machala, L.; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    Roč. 1, č. 3 (2009), s. 1209-1239 ISSN 1999-4915 R&D Projects: GA MŠk 1M0508 Grant - others:GA AV ČR(CZ) IAAX00320901 Program:IA Institutional research plan: CEZ:AV0Z40550506 Keywords : HIV protease * protease inhibitor * HAART Subject RIV: CE - Biochemistry

  12. Cysteine proteases: Modes of activation and future prospects as pharmacological targets

    Directory of Open Access Journals (Sweden)

    Sonia eVerma

    2016-04-01

    Full Text Available Proteolytic enzymes are crucial for a variety of biological processes in organisms ranging from lower (virus, bacteria and parasite to the higher organisms (mammals. Proteases cleave proteins into smaller fragments by catalyzing peptide bonds hydrolysis. Proteases are classified according to their catalytic site, and distributed into four major classes: cysteine proteases, serine proteases, aspartic proteases and metallo-proteases. This review will cover only cysteine proteases, papain family enzymes which are involved in multiple functions such as extracellular matrix turnover, antigen presentation, processing events, digestion, immune invasion, hemoglobin hydrolysis, parasite invasion, parasite egress and processing surface proteins. Therefore, they are promising drug targets for various diseases. For preventing unwanted digestion, cysteine proteases are synthesized as zymogens, and contain a pro-domain (regulatory and a mature domain (catalytic. The prodomain acts as an endogenous inhibitor of the mature enzyme. For activation of the mature enzyme, removal of the prodomain is necessary and achieved by different modes. The pro-mature domain interaction can be categorized as protein-protein interactions (PPIs and may be targeted in a range of diseases. Cysteine protease inhibitors are available that can block the active site but no such inhibitor available yet that can be targeted to block the pro-mature domain interactions and prevent it activation. This review specifically highlights the modes of activation (processing of papain family enzymes, which involve auto-activation, trans-activation and also clarifies the future aspects of targeting PPIs to prevent the activation of cysteine proteases.

  13. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    Science.gov (United States)

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  14. Bacillus amyloliquefaciens SUBSP. plantarum PROBIOTIC STRAINS AS PROTEASE PRODUCERS

    Directory of Open Access Journals (Sweden)

    E. V. Маtseliukh

    2015-04-01

    Full Text Available Proteases from probiotic strains of the genus Bacillus, just like the antibiotics, bacteriocins and other hydrolytic enzymes, are one of the main factors that determine their biological activity. The aim of this work was to study the synthesis and biochemical properties of proteases from two strains Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 that included in the probiotic Endosporin. The cultivation of strains was carried out in flasks under rotating for two days. The influence of physico-chemical parameters of the reaction medium on proteolytic activity was studied on partially purified protease preparations. Lytic activity was determined by turbidimetric method. On the second day of cultivation B. amyloliquefaciens subsp. plantarum UCM В-5139 and UCM В-5140 synthesized the metal-dependent peptidase and serine protease, respectively. The optimum conditions of their action were the following: temperature 37–40 °C and pH 6.5–7.0. Isolated proteases are able to lyse the living cells of Staphylococcus aureus and Candida albicans. Thus we demonstrated that B. amyloliquefaciens subsp. plantarum UCM B-5140 and UCM B-5139, included in the probiotic veterinary preparation Endosporin, produced proteolytic enzymes that hydrolyze the native insoluble proteins (elastin, fibrin and collagen. These enzymes belong to the group of neutral metal-dependent and serine proteases. They are active under physiological conditions against gram-positive bacteria and yeasts. The application of these proteases in biotechnology is considered.

  15. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  16. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-11-23

    Nov 23, 2016 ... Key words: Production, alkaline protease, Bacillus subtilis, animal wastes, enzyme activity. ... Generally, alkaline proteases are produced using submerged fermentation .... biopolymer concentrations were reported to have an influence ... adding nitrogenous compounds stimulate microorganism growth and ...

  17. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    Science.gov (United States)

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  18. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  19. The Degradome database: mammalian proteases and diseases of proteolysis.

    Science.gov (United States)

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  20. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Mixed carbohydrase and protease enzyme product. 184... RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes...

  1. A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis

    DEFF Research Database (Denmark)

    Halls, C.E.; Rogers, S. W.; Ouffattole, M.

    2006-01-01

    proaleurain maturation protease and of papain when assayed at pH 4.5 but not at pH 6.3. In a pull-down assay, the inhibitor bound tightly to papain, but only weakly to the aspartate protease pepsin. When the cauliflower protease inhibitor was transiently expressed in tobacco suspension culture protoplasts...

  2. Comparative Detection of Alkaline Protease Production in Exiguobacterium acetylicum

    International Nuclear Information System (INIS)

    Gomaa, O.M.; EI Shafey, H.M.

    2009-01-01

    Alkaline protease is one of the most important enzymes in industry, medicine, and research. In the present work, a comparative detection for alkaline protease activity was established for instant detection of enzyme activity. Eight different alkalophilic bacterial isolates were compared based on the clear zone they produced on skim milk agar. One strain gave an absolute clear zone in 16 hours and was used for alkaline protease detection. The result of Phenotypic identification using Biology Microlog 3 identified the isolate as Exiguobacterium acetylicum. The isolate under study showed slightly different characteristics from a known Exiguobacterium acetylicum strain. The isolate tolerated alkaline conditions up to ph 11, while good growth was evident at ph 7, the maximum alkaline protease activity was observed at ph 9 which reached up to 109.01 U/ml. The alkaline activity assay using alkaline protease enzyme assay were coordinating with those obtained by conductivity; there was a relevant decrease in conductivity at the maximum increase in enzyme activity, which proved the cell membrane conductivity has a close relation to alkaline protease production. This isolate has tolerated gamma radiation, the increase in dose (up to 4 Gy) gave wider clear zones in terms of diameter and this was relevant to the conductivity measurements

  3. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  4. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  5. Pnserpin: A Novel Serine Protease Inhibitor from Extremophile Pyrobaculum neutrophilum

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2017-01-01

    Full Text Available Serine protease inhibitors (serpins are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.

  6. Kinetics Study of Extracellular Detergent Stable Alkaline Protease from Rhizopus oryzae

    Directory of Open Access Journals (Sweden)

    Zareena Mushtaq

    2015-04-01

    Full Text Available In this study, extracellular alkaline protease was produced from Rhizopus oryzae in submerged fermentation using dairy waste (whey as a substrate. Fermentation kinetics was studied and various parameters were optimized. The strain produced maximum protease at initial medium pH of 6.0 medium depth of 26 mm, inoculum size of 2% at incubation temperature of 35ºC for 168 h of fermentation. Alkaline protease was purified to homogeneity by ammonium sulphate fractionation followed by sephadex G-100 chromatography. The molecular mass of alkaline protease was 69 kDa determined by 10% SDS-PAGE. The optimum pH and temperature of alkaline protease was 9.0 and 40ºC, respectively. Metal profile of the enzyme showed that the enzyme was non-metallic in nature. The Km , Kcat , Vmax and Kcat/Km values of purified protease were 7.0 mg/mL, 3.8 x102S-1, 54.30 µmol/min and 54.28 s-1mg -1.mL respectively, using casein as substrate. The purified alkaline protease had stability with commercial detergents.

  7. Reverse zymography alone does not confirm presence of a protease inhibitor.

    Science.gov (United States)

    Dutta, Sangita; Bhattacharyya, Debasish

    2013-03-01

    Reverse zymography is applied for identification and semi-quantification of protease inhibitors that are of protein in nature. However, a protein that shows band in reverse zymography against a protease used for digestion of the gel need not be an inhibitor; it might be resistant to degradation by the protease. We demonstrate that in reverse zymography, avidin, streptavidin and the leaf extract of Catharanthus roseus behave like inhibitors of proteases like papain, ficin, bromelain extracts from pineapple leaf, stem and fruit and trypsin. Still, they do not act as inhibitors of those proteases when enzyme assays were done in solution. In reverse zymography, the extract of pineapple crown leaf shows two major inhibitor bands against its own proteases. Identification of these proteins from sequences derived from MALDI TOF MS analysis indicated that they are fruit and stem bromelains. Avidin, streptavidin and bromelains are 'kinetically stable proteins' that are usually resistant to proteolysis. Thus, it is recommended that identification of an inhibitor of a protease by reverse zymography should be supported by independent assay methods for confirmation.

  8. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  9. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    International Nuclear Information System (INIS)

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-01-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF 2α ) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF 2α production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and ROS production

  10. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  11. Depopulation of interstitial cells of cajal in chagasic megacolon: towards tailored surgery? Depleção de células intersticiais de Cajal no megacólon chagásico: a caminho do tratamento cirúrgico individualizado?

    Directory of Open Access Journals (Sweden)

    Sergio Eduardo Alonso Araujo

    2010-06-01

    Full Text Available BACKGROUND: The mechanism of constipation in patients with Chagasic megacolon remains partially explained. In these patients, it was recently demonstrated a reduction in the population of interstitial cells of Cajal. AIM: To evaluate density of Cajal cells in the surgically resected colon of Chagasic patients in comparison to control patients, and to verify possible association between preoperative and postoperative bowel function of Chagasic patients and colonic cell count. METHOD: Sixteen patients with Chagasic megacolon were operated on. Clinical pre- and post-operative evaluation using the Cleveland Clinic Constipation Score was undertaken. Resected colons were examined. Cajal cells were identified by immunohistochemistry using anti-CD117 antibody. The mean cell number was compared to resected colons from 16 patients with non-obstructive sigmoid cancer. Association between pre-and post-operative constipation scores and cell count for megacolon patients was evaluated using the Pearson coefficient correlation test (r. RESULTS: A reduced number of Cajal cells [cells per field: 2.84 (0-6.6 vs. 9.68 (4.3-13 - pRACIONAL: A fisiopatologia da constipação intestinal nos pacientes portadores de megacólon chagásico permanece parcialmente esclarecida. Recentemente demontrou-se que nesses pacientes, o contingente de células intersticiais de Cajal está reduzido assim como ocorre em outros distúrbios funcionais gastrointestinais. OBJETIVO: Avaliar a densidade de células intersticiais de Cajal no intestino ressecado de pacientes submetidos a tratamento cirúrgico eletivo de megacólon chagásico em comparação com a observada no cólon de pacientes controles, e verificar possível associação entre o grau de constipação intestinal de pacientes com megacólon chagásico no pré e no pós-operatório e o grau de despopulação de células de Cajal. MÉTODO: Dezesseis pacientes com megacólon chagásico foram operados. A avaliação da fun

  12. Comparison of protease production from newly isolated bacterial ...

    African Journals Online (AJOL)

    Nasir

    2016-10-12

    Oct 12, 2016 ... Protease has gained a very important position in many industries such as food, pharmaceutical, chemical and leather industries. In this research, protease was obtained from bacteria. The bacterial strain was obtained from soil which was collected from different areas of Lahore, Pakistan. Fermentation ...

  13. High-level expression of alkaline protease using recombinant ...

    African Journals Online (AJOL)

    AJL

    2012-02-16

    Feb 16, 2012 ... compared with that of wild-type B. licheniformis CICIM B5102. Key word: Alkaline protease, Bacillus amyloliquefaciens, Bacillus licheniformis. INTRODUCTION. Proteases are one of the most important industrial enzyme groups, accounting for approximately 60% of the total enzyme sales (Beg et al., 2003).

  14. Cysteine proteases as potential antigens in antiparasitic DNA vaccines

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff; Buchmann, Kurt

    2011-01-01

    En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner.......En litteraturgennemgang af muligheder for at bruge cystein proteaser som antigener i antiparasitære vacciner....

  15. The non-death role of metacaspase proteases

    International Nuclear Information System (INIS)

    Shrestha, Amit; Megeney, Lynn A.

    2012-01-01

    The activation of caspase proteases and the targeting of protein substrates act as key steps in the engagement and conduct of apoptosis/programmed cell death. However, the discovery of caspase involvement in diverse non-apoptotic cellular functions strongly suggests that these proteins may have evolved from a core behavior unrelated to the induction of cell death. The presence of similar proteases, termed metacaspases, in single cell organisms supports the contention that such proteins may have co-evolved or derived from a critical non-death function. Indeed, the benefit(s) for single cell life forms to retain proteins solely dedicated to self destruction would be countered by a strong selection pressure to curb or eliminate such processes. Examination of metacaspase biology provides evidence that these ancient protease forerunners of the caspase family also retain versatility in function, i.e., death and non-death cell functions. Here, we provide a critical review that highlights the non-death roles of metacaspases that have been described thus far, and the impact that these observations have for our understanding of the evolution and cellular utility of this protease family.

  16. Characterizing Protease Specificity: How Many Substrates Do We Need?

    Directory of Open Access Journals (Sweden)

    Michael Schauperl

    Full Text Available Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points. Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4' with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design.

  17. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  18. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions.

    Science.gov (United States)

    Deegan, Shane; Saveljeva, Svetlana; Logue, Susan E; Pakos-Zebrucka, Karolina; Gupta, Sanjeev; Vandenabeele, Peter; Bertrand, Mathieu J M; Samali, Afshin

    2014-01-01

    Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.

  19. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    Science.gov (United States)

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  20. Some physicochemical properties of acid protease produced during ...

    African Journals Online (AJOL)

    The growth of Aspergillus niger (NRRL 1785) was investigated and monitored over a five-day fermentation period. Acid protease synthesis by this fungus was also investigated during the period. The effect of growth of Aspergillus niger on acid protease synthesis was determined. Some of the physicochemical properties of ...

  1. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  2. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  3. Production, Partial Purification and Characterization of Protease From Irradiated Streptomyces Spp

    International Nuclear Information System (INIS)

    Botros, H.W.; Ahmed, A.S.

    2011-01-01

    Production and partial purification of protease by the irradiated Streptomyces spp. was the aim of this study. Streptomyces spp. was allowed to grow in culture broth of 4% shrimp shells for purpose of inducing protease enzymes. Optimal conditions for protease production were 30 degree C, 0.3 kGy, ph 7, 5x10 4 /ml inoculum size and 7 days incubation period. Protease was purified by 80% ammonium sulphate saturation which exhibited 8.7 U/ml enzyme activity. Column chromatography using sephadex G-200 exerted 23.3 U/ml enzyme activity from pooled fraction (13-16). The molecular mass of protease was determined to be 39 kDa by SDS-PAGE. The enzyme was more stable over a wide range of ph 6-8 and temperature up to 40 degree C. The produced protease was activated by Ca, Mn and FeCl 2 and completely inhibited by ethylene-diamin tetraacetic acid (EDTA) at concentration of 1000 μg/ml

  4. Proteases from Latex of Euphorbia spp. and Its Application on Milk Clot Formation

    Directory of Open Access Journals (Sweden)

    Fidia Fibriana

    2015-09-01

    Full Text Available Crude proteases were extracted from Euphorbiaceae family, i.e. E. milii var imperata, E. trigona, and E. maculata. Among those three crude proteases, the activity of protease from E. trigona was the highest (812.50 U/ml, whereas E. milii and E. maculata crude proteases activity were 298.60 U/ml and 95.80 U/ml, respectively. E. maculata protein concentration was the highest among those three crude enzymes (1.206 mg/ml. The optimum pH and temperature of the enzymes were pH 7.0, pH 6.0, pH 6.5 and 60 °C, 50 °C, and 50 °C, respectively. Crude protease from E. milii var imperata, E. trigona, and E. maculata retained proteolytic activity over a wide range of pH (5.0–9.0 and temperature (up to 65 °C with casein as substrate. All crude proteases showed milk clotting activity ranged from 0.58 U/ml to 1.01 U/ml. Thus, these crude proteases are potential to be applied in dairy industries. However, further study on enzyme purification and characterization are necessary to obtain high purity of proteases before its application.Protease kasar berhasil diekstrak dari tanaman family Euphorbiaceae, yaitu E. milii var imperata, E. trigona, dan E. maculata. Diantara ketiga protease tersebut, aktivitas protease tertinggi diperoleh dari E. trigona (812,50 U/ml, sedangkan aktivitas protease dari E. milii dan E. maculata adalah 298,60 U/ml dan 95,80 U/ml, berturut-turut. Konsentrasi total protein tertinggi terdapat pada protease kasar E. maculata (1,206 mg/ml. pH dan suhu optimum ketiga enzim tersebut adalah pH 7.0, pH 6.0, pH 6.5 dan suhu 60 °C, 50 °C, and 50 °C, berturut-turut. Protease kasar dari E. milii var imperata, E. trigona, dan E. maculata menunjukkan aktivitas proteolitik pada rentang pH 5.0–9.0 dan rentang suhu sampai 65 °C menggunakan kasein sebagai substrat. Semua protease kasar menunjukkan aktivitas penggumpalan susu dengan rentang dari 0,58 U/ml sampai 1,01 U/ml. Berdasarkan hasil yang diperoleh, protease kasar dari ketiga jenis tanaman ini

  5. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  6. Cold denaturation of the HIV-1 protease monomer

    DEFF Research Database (Denmark)

    Rösner, Heike Ilona; Caldarini, Martina; Prestel, Andreas

    2017-01-01

    The HIV-1-protease is a complex protein which in its active form adopts a homodimer dominated by -sheet structures. We have discovered a cold-denatured state of the monomeric subunit of HIV-1-protease which is populated above 0ºC and therefore directly accessible to various spectroscopic approac...

  7. Autoprocessing of human immunodeficiency virus type 1 protease miniprecursor fusions in mammalian cells

    Directory of Open Access Journals (Sweden)

    Chen Chaoping

    2010-07-01

    Full Text Available Abstract Background HIV protease (PR is a virus-encoded aspartic protease that is essential for viral replication and infectivity. The fully active and mature dimeric protease is released from the Gag-Pol polyprotein as a result of precursor autoprocessing. Results We here describe a simple model system to directly examine HIV protease autoprocessing in transfected mammalian cells. A fusion precursor was engineered encoding GST fused to a well-characterized miniprecursor, consisting of the mature protease along with its upstream transframe region (TFR, and small peptide epitopes to facilitate detection of the precursor substrate and autoprocessing products. In HEK 293T cells, the resulting chimeric precursor undergoes effective autoprocessing, producing mature protease that is rapidly degraded likely via autoproteolysis. The known protease inhibitors Darunavir and Indinavir suppressed both precursor autoprocessing and autoproteolysis in a dose-dependent manner. Protease mutations that inhibit Gag processing as characterized using proviruses also reduced autoprocessing efficiency when they were introduced to the fusion precursor. Interestingly, autoprocessing of the fusion precursor requires neither the full proteolytic activity nor the majority of the N-terminal TFR region. Conclusions We suggest that the fusion precursors provide a useful system to study protease autoprocessing in mammalian cells, and may be further developed for screening of new drugs targeting HIV protease autoprocessing.

  8. Two-Dimensional Zymography of Proteases from Steatotic Duck Liver.

    Science.gov (United States)

    Wilkesman, Jeff; Padrón, María Fernanda; Kurz, Liliana; Rémignon, Hervé

    2017-01-01

    Protease activity present in liver cells with steatosis can be electrophoretically characterized. Zymographic techniques allow semi-quantitative results, successfully detecting cathepsin and metalloprotease activity using polyacrylamide gels copolymerized with gelatin and quantified by densitometry. By using specific inhibitors, the identity of the proteases can be confirmed. 2D zymography allows the determination of both M r. and pI of the metalloprotease and cathepsin activity present in the homogenates. The analysis of liver proteases activities in force fed ducks may elucidate the mechanisms behind steatosis development.

  9. SjAPI, the first functionally characterized Ascaris-type protease inhibitor from animal venoms.

    Directory of Open Access Journals (Sweden)

    Zongyun Chen

    Full Text Available BACKGROUND: Serine protease inhibitors act as modulators of serine proteases, playing important roles in protecting animal toxin peptides from degradation. However, all known serine protease inhibitors discovered thus far from animal venom belong to the Kunitz-type subfamily, and whether there are other novel types of protease inhibitors in animal venom remains unclear. PRINCIPAL FINDINGS: Here, by screening scorpion venom gland cDNA libraries, we identified the first Ascaris-type animal toxin family, which contains four members: Scorpiops jendeki Ascaris-type protease inhibitor (SjAPI, Scorpiops jendeki Ascaris-type protease inhibitor 2 (SjAPI-2, Chaerilus tricostatus Ascaris-type protease inhibitor (CtAPI, and Buthus martensii Ascaris-type protease inhibitor (BmAPI. The detailed characterization of Ascaris-type peptide SjAPI from the venom gland of scorpion Scorpiops jendeki was carried out. The mature peptide of SjAPI contains 64 residues and possesses a classical Ascaris-type cysteine framework reticulated by five disulfide bridges, different from all known protease inhibitors from venomous animals. Enzyme and inhibitor reaction kinetics experiments showed that recombinant SjAPI was a dual function peptide with α-chymotrypsin- and elastase-inhibiting properties. Recombinant SjAPI inhibited α-chymotrypsin with a Ki of 97.1 nM and elastase with a Ki of 3.7 μM, respectively. Bioinformatics analyses and chimera experiments indicated that SjAPI contained the unique short side chain functional residues "AAV" and might be a useful template to produce new serine protease inhibitors. CONCLUSIONS/SIGNIFICANCE: To our knowledge, SjAPI is the first functionally characterized animal toxin peptide with an Ascaris-type fold. The structural and functional diversity of animal toxins with protease-inhibiting properties suggested that bioactive peptides from animal venom glands might be a new source of protease inhibitors, which will accelerate the

  10. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  11. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  12. Production of alkaline proteases by alkalophilic Bacillus subtilis ...

    African Journals Online (AJOL)

    Among various nitrogen sources, yeast extract was found to be the best inducer of alkaline protease. Among metal salts, KNO3 and NH4Cl were found to increase protease production. The maximum enzyme production (3600 U/ml) was observed with pomegranate peels of fermentation medium in the presence of yeast ...

  13. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS.

    Science.gov (United States)

    Neustadt, Madlen; Costina, Victor; Kupfahl, Claudio; Buchheidt, Dieter; Eckerskorn, Christoph; Neumaier, Michael; Findeisen, Peter

    2009-06-01

    Early diagnosis of life-threatening invasive aspergillosis in neutropenic patients remains challenging because current laboratory methods have limited diagnostic sensitivity and/or specificity. Aspergillus species are known to secrete various pathogenetically relevant proteases and the monitoring of their protease activity in serum specimens might serve as a new diagnostic approach.For the characterization and identification of secreted proteases, the culture supernatant of Aspergillus fumigatus was fractionated using free flow electrophoresis (Becton Dickinson). Protease activity of separated fractions was measured using fluorescently labeled reporter peptides. Fractions were also co-incubated in parallel with various protease inhibitors that specifically inhibit a distinct class of proteases e.g. metallo- or cysteine-proteases. Those fractions with high protease activity were further subjected to LC-MS/MS analysis for protease identification. The highest protease activity was measured in fractions with an acidic pH range. The results of the 'inhibitor-panel' gave a clear indication that it is mainly metallo- and serine-proteases that are involved in the degradation of reporter peptides. Furthermore, several proteases were identified that facilitate the optimization of reporter peptides for functional protease profiling as a diagnostic tool for invasive aspergillosis.

  14. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    Science.gov (United States)

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  15. Cysteine Protease (Capparin from Capsules of Caper (Capparis spinosa

    Directory of Open Access Journals (Sweden)

    Yasar Demir

    2008-01-01

    Full Text Available Proteases are enzymes that perform very important functions in organisms and are used for a variety of objectives in vitro. In recent years, proteases have been used for clinical, pharmaceutical (alimentary digestion, anti-inflammatory, etc. and industrial applications (cheese production, meat tenderizing, leather tanning. In this research, a protease has been purified from capsules of caper (Capparis spinosa and characterized. Caper plants have been used for food and medicine since ancient times. The plant grows abundantly in certain regions of Turkey. Ammonium sulphate fractionation and a CM Sephadex column were used for purification of the enzyme. The purification enzyme has an optimum pH=5.0 and its optimum temperature was 60 °C. The vmax and Km values determined by Lineweaver-Burk graphics were 1.38 μg/(L·min and 0.88 μg/L, respectively. The purification degree and the molecular mass of the enzyme (46 kDa were determined by SDS-PAGE and gel filtration chromatography. It was investigated whether the purified and characterized protease could cause milk to congeal or digest chicken and cow meat. The results show that protease can be used for industrial production.

  16. Colonoscopia ou sigmoidoscopia: risco de lesões isoladas no cólon direito Colonoscopy or flexible sigmoidoscopy: risk of isolated right colon lesions

    Directory of Open Access Journals (Sweden)

    Frank Shigueo NAKAO

    2001-09-01

    Full Text Available Racional — Atualmente existem dúvidas quanto ao método ideal de rastreio e vigilância para o câncer colorretal. A retossigmoidoscopia é preconizada, já que é barata, eficaz e causa pouco desconforto, mas não pode diagnosticar tumores do cólon proximal. Objetivo - Avaliar quantas lesões encontradas no cólon proximal seriam perdidas caso a colonoscopia só fosse empregada em pacientes com lesões detectadas durante sigmoidoscopia. Casuística e Método - Foram revistas as colonoscopias consecutivas com achado de pólipos ou neoplasia, realizadas no Setor de Endoscopia da Disciplina de Gastroenterologia da Universidade Federal de São Paulo, excluindo pacientes repetidos, operados ou com doença inflamatória intestinal. Resultados - Cento e um exames foram elegíveis, sendo 45 pacientes do sexo masculino. A idade média foi 62 anos (DP ± 13,7 anos. Cento e oito fragmentos foram enviados separadamente para exame anatomopatológico, sendo 38 com suspeita de neoplasia e 70 pólipos. Ao se considerarem apenas os achados no cólon proximal, observou-se o total de 45 lesões, sendo 23 adenomas, 10 adenocarcinomas, 1 linfoma e 11 lesões benignas. Destas lesões, 28 eram isoladas, sendo 16 adenomas, 7 adenocarcinomas. Conclusão — Observaram-se que 23 pacientes (22,77% tinham adenoma ou adenocarcinoma apenas no cólon direito, que não seriam diagnosticados se sigmoidoscopia flexível fosse usada isoladamente.Background — Colorectal cancer is an important cause of death in western countries. Screening methods are based on flexible sigmoidoscopy, a cheap, effective, and less painful procedure, but some important lesions on the right colon can be missed. Aim - Evaluate how many important lesions would be missed if colonoscopy indicated only for patients with distal lesions identified during flexible sigmoidoscopy. Material and Methods - All consecutive colonoscopy performed in the Endoscopy Unit of the Gastroenterology Division of Federal

  17. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    Science.gov (United States)

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  18. Hyper production of alkaline protease by mutagenized bacillus subtilis

    International Nuclear Information System (INIS)

    Qureshi, A.M.; Tanseem, F.

    2010-01-01

    The purpose of this work was to augment the alkaline protease production from Bacillus subtilis by using chemical mutagen (MMS) and UV mutagenesis. A number of mutants were isolated which produce high levels of extra cellular proteases. Analysis of culture supernatants of these mutants had shown that the total amounts of proteolysis activity were increased from 1 to 2 fold over the wild strain. Clones showing promote response were further characterized by analyzing different parameters; like of Temperature, pH substrate concentration and incubation period, to study the activity of protease enzyme. (author)

  19. Isolation of alkaline protease from Bacillus subtilis AKRS3

    African Journals Online (AJOL)

    ashok

    2012-08-28

    Aug 28, 2012 ... production proved high protease production than the other tested ... Crude alkaline protease was most active at 55°C, pH 9 with casein as ... 13416 Afr. J. Biotechnol. ... The Gram-positive, aerobic, rod-shaped endospore-.

  20. Partial purification and characterization of alkaline proteases from ...

    African Journals Online (AJOL)

    Alkaline proteases from the digestive tract of anchovy were partially purified by ammonium sulfate fractionation, dialysis and Sephadex G-75 gel filtration. The purification fold and yield were 6.23 and 4.49%, respectively. The optimum activities of partially purified alkaline proteases were observed at 60°C and at pH 11.0.

  1. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  2. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  3. Úlceras em megacólons chagásicos operados na urgência e eletivamente Ulcerations in Chagas' megacolon operated at urgency and electively

    Directory of Open Access Journals (Sweden)

    Augusto Diogo-Filho

    2006-12-01

    Full Text Available RACIONAL: O megacólon é uma doença freqüente no nosso meio e abordado na urgência pelas suas complicações como fecalomas, volvos e perfurações. As úlceras de estases nos megacólons contribuem como prováveis sítios de perfurações OBJETIVO: Comparar as freqüências de úlceras de decúbito em megacólons chagásicos operados na urgência, por volvo e fecaloma, e eletivamente, objetivando melhor conduta cirúrgica na urgência MATERIAL E MÉTODOS: Analisaram-se os laudos de 356 exames anatomopatológicos de ressecções colônicas de pacientes operados por megacólon chagásico na urgência (102 casos; 29% e eletivamente (254 casos; 71%, no período de 1980 a 2000. As indicações cirúrgicas de urgência foram atribuídas a volvo (71 casos; 69,6%, fecaloma (25 casos; 24,5%, abdome agudo perfurativo após sondagem retal ou sigmoidoscopia (6 casos; 5,9%. Compararam-se as freqüências de úlceras nos dois grupos de peças cirúrgicas, com a utilização do teste do qui-quadrado RESULTADOS: Nos laudos das peças cirúrgicas obtidas nas cirurgias de urgência, constatou-se o registro de úlceras em 26 casos (25,5%; nas peças de ressecções eletivas verificaram-se úlceras em 21 casos (8,25%. A diferença observada foi estatisticamente significante. A comparação dos grupos de volvo, fecaloma e volvo com fecaloma, em separado com o grupo das cirurgias eletivas, evidenciou diferenças significantes em relação ao volvo e ao fecaloma CONCLUSÃO: A freqüência muito maior de úlceras nos megas operados em caráter de urgência enfatiza a necessidade da ressecção imediata do cólon sigmóide, ao invés da conduta conservadora de simples colostomia descompressiva, mesmo naquelas laparotomias exploradoras em que o exame macroscópico do sigmóide não mostre sinais de necrose. Desta forma, deve-se prevenir a ocorrência de perfuração do megacólon no pós-operatório mediato, com conseqüências usualmente graves.BACKGROUD: The

  4. The Inflammatory Actions of Coagulant and Fibrinolytic Proteases in Disease

    Directory of Open Access Journals (Sweden)

    Michael Schuliga

    2015-01-01

    Full Text Available Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa, factor VIIa (FVIIa, tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells or inflammatory cells (e.g., macrophages via the proteolytic activation of protease-activated receptors (PARs. Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4 activating fibrin degradation products (FDPs and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β. Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.

  5. Factor VII-activating protease

    DEFF Research Database (Denmark)

    Ramanathan, Ramshanker; Gram, Jørgen B; Sand, Niels Peter R

    2017-01-01

    : Factor VII-activating protease (FSAP) may regulate development of cardiovascular disease (CVD). We evaluated sex differences in FSAP measures and examined the association between FSAP and coronary artery calcification (CAC) in a middle-aged population. Participants were randomly selected citizens...

  6. Purification and characterization of protease enzyme from ...

    African Journals Online (AJOL)

    The enzyme was active in pH range 5 to11 and temperature of 30 to 80°C. The optimum pH and the temperature for protease activity were recorded to be pH 8 and 50°C, respectively. The enzyme was stable up to 40°C and pH 9. The protease activity was inhibited by Zn2+, Ni2+ and Sn2+ and increased by Ca2+, Mg2+ ...

  7. Cysteine Protease Zymography: Brief Review.

    Science.gov (United States)

    Wilkesman, Jeff

    2017-01-01

    Cysteine proteases play multiple roles in basically all aspects of physiology and development. In plants, they are involved in growth and development and in accumulation and mobilization of storage proteins. Furthermore, they are engaged in signalling pathways and in the response to biotic and abiotic stresses. In animals and also in humans, they are responsible for senescence and apoptosis, prohormone processing, and ECM remodelling. When analyzed by zymography, the enzyme must be renaturated after SDS-PAGE. SDS must be washed out and substituted by Triton X-100. Gels are then further incubated under ideal conditions for activity detection. Cysteine proteases require an acidic pH (5.0-6.0) and a reducing agent, usually DTT. When screening biological samples, there is generally no previous clue on what peptidase class will be present, neither optimal proteolysis conditions are known. Hence, it is necessary to assess several parameters, such as incubation time, pH, temperature, influence of ions or reducing agents, and finally evaluate the inhibition profile. For detection of cysteine peptidase activity, the use of specific inhibitors, such as E-64, can be used to prevent the development of cysteine peptidase activity bands and positively confirm its presence. Here four different protocols to assess cysteine protease activity from different sources are presented.

  8. Evolutionary dynamics of hepatitis C virus NS3 protease domain during and following treatment with narlaprevir, a potent NS3 protease inhibitor

    NARCIS (Netherlands)

    de Bruijne, J.; Thomas, X. V.; Rebers, S. P.; Weegink, C. J.; Treitel, M. A.; Hughes, E.; Bergmann, J. F.; de Knegt, R. J.; Janssen, H. L. A.; Reesink, H. W.; Molenkamp, R.; Schinkel, J.

    2013-01-01

    Narlaprevir, a hepatitis C virus (HCV) NS3/4A serine protease inhibitor, has demonstrated robust antiviral activity in a placebo-controlled phase 1 study. To study evolutionary dynamics of resistant variants, the NS3 protease sequence was clonally analysed in thirty-two HCV genotype 1-infected

  9. Erwinia carotovora extracellular proteases : characterization and role in soft rot

    OpenAIRE

    Kyöstiö, Sirkka R. M.

    1990-01-01

    Erwinia carotovora subsp. carotovora (Ecc) strain EC14, a Gram-negative bacterium, causes soft rot on several crops, including potato. Maceration of potato tuber tissue is caused by secreted pectolytic enzymes. Other cell-degrading enzymes may also have roles in pathogenesis, including cellulases, phospholipases, and protease(s). The objectives of this research were to (1) characterize Ecc extracellular protease (Prt) and (2) elucidate its role in potato soft rot. A gene enc...

  10. Boosted protease inhibitors and the electrocardiographic measures of QT and PR durations

    DEFF Research Database (Denmark)

    Soliman, Elsayed Z; Lundgren, Jens D; Roediger, Mollie P

    2011-01-01

    There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown.......There are contradictory reports regarding the effects of protease inhibitors on the ECG measures of QT and PR interval durations. The effect of interrupting use of protease inhibitors on QT and PR progression is also unknown....

  11. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14.

    Directory of Open Access Journals (Sweden)

    Takayuki Shindo

    Full Text Available Secreted papain-like Cys proteases are important players in plant immunity. We previously reported that the C14 protease of tomato is targeted by cystatin-like EPIC proteins that are secreted by the oomycete pathogen Phytophthora infestans (Pinf during infection. C14 has been under diversifying selection in wild potato species coevolving with Pinf and reduced C14 levels result in enhanced susceptibility for Pinf. Here, we investigated the role C14-EPIC-like interactions in the natural pathosystem of Arabidopsis with the oomycete pathogen Hyaloperonospora arabidopsidis (Hpa. In contrast to the Pinf-solanaceae pathosystem, the C14 orthologous protease of Arabidopsis, RD21, does not evolve under diversifying selection in Arabidopsis, and rd21 null mutants do not show phenotypes upon compatible and incompatible Hpa interactions, despite the evident lack of a major leaf protease. Hpa isolates express highly conserved EPIC-like proteins during infections, but it is unknown if these HpaEPICs can inhibit RD21 and one of these HpaEPICs even lacks the canonical cystatin motifs. The rd21 mutants are unaffected in compatible and incompatible interactions with Pseudomonas syringae pv. tomato, but are significantly more susceptible for the necrotrophic fungal pathogen Botrytis cinerea, demonstrating that RD21 provides immunity to a necrotrophic pathogen.

  12. Some Investigations on Protease Enzyme Production Kinetics Using Bacillus licheniformis BBRC 100053 and Effects of Inhibitors on Protease Activity

    Directory of Open Access Journals (Sweden)

    Zahra Ghobadi Nejad

    2014-01-01

    Full Text Available Due to great commercial application of protease, it is necessary to study kinetic characterization of this enzyme in order to improve design of enzymatic reactors. In this study, mathematical modeling of protease enzyme production kinetics which is derived from Bacillus licheniformis BBRC 100053 was studied (at 37°C, pH 10 after 73 h in stationary phase, and 150 rpm. The aim of the present paper was to determine the best kinetic model and kinetic parameters for production of protease and calculating Ki (inhibition constant of different inhibitors to find the most effective one. The kinetic parameters Km (Michaelis-Menten constant and Vm (maximum rate were calculated 0.626 mM and 0.0523 mM/min. According to the experimental results, using DFP (diisopropyl fluorophosphate and PMSF (phenylmethanesulfonyl fluoride as inhibitors almost 50% of the enzyme activity could be inhibited when their concentrations were 0.525 and 0.541 mM, respectively. Ki for DFP and PMSF were 0.46 and 0.56 mM, respectively. Kinetic analysis showed that the Lineweaver-Burk model was the best fitting model for protease production kinetics DFP was more effective than PMSF and both of them should be covered in the group of noncompetitive inhibitors.

  13. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhigang [Wayne State Univ., Detroit, MI (United States); Case Western Reserve Univ., Cleveland, OH (United States); Harbor Hospital Baltimore, MD (United States); Wang, Yong [Wayne State Univ., Detroit, MI (United States); Yedidi, Ravikiran S. [Wayne State Univ., Detroit, MI (United States); National Institutes of Health, Bethesda, MD (United States); Dewdney, Tamaria G. [Wayne State Univ., Detroit, MI (United States); Reiter, Samuel J. [Wayne State Univ., Detroit, MI (United States); Brunzelle, Joseph S. [Northwestern Univ. Feinberg School of Medicine, Chicago, IL (United States); Kovari, Iulia A. [Wayne State Univ., Detroit, MI (United States); Kovari, Ladislau C. [Wayne State Univ., Detroit, MI (United States)

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  14. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance.

    Science.gov (United States)

    Wensing, Annemarie M J; van Maarseveen, Noortje M; Nijhuis, Monique

    2010-01-01

    HIV protease plays a crucial role in the viral life cycle and is essential for the generation of mature infectious virus particles. Detailed knowledge of the structure of HIV protease and its substrate has led to the design of specific HIV protease inhibitors. Unfortunately, resistance to all protease inhibitors (PIs) has been observed and the genetic basis of resistance has been well documented over the past 15 years. The arrival of the early PIs was a pivotal moment in the development of antiretroviral therapy. They made possible the dual class triple combination therapy that became known as HAART. However, the clinical utility of the first generation of PIs was limited by low bioavailability and high pill burdens, which ultimately reduced adherence and limited long-term viral inhibition. When therapy failure occurred multiple protease resistance mutations were observed, often resulting in broad class resistance. To combat PI-resistance development, second-generation approaches have been developed. The first advance was to increase the level of existing PIs in the plasma by boosting with ritonavir. The second was to develop novel PIs with high potency against the known PI-resistant HIV protease variants. Both approaches increased the number of protease mutations required for clinical resistance, thereby raising the genetic barrier. This review provides an overview of the history of protease inhibitor therapy, its current status and future perspectives. It forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Science.gov (United States)

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  16. Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways

    International Nuclear Information System (INIS)

    Dopazo, A.; Tormo, A.; Aldea, M.; Vicente, M.

    1987-01-01

    The inhibition of cell division caused by induction of the SOS pathway in Escherichia coli structurally blocks septation, as deduced from two sets of results. Potential septation sites active at the time of SOS induction became inactivated, while those initiated during the following doubling time were active. Penicillin resistance increased in wild-type UV light-irradiated cells, a behavior similar to that observed in mutants in which structural blocks were introduced by inactivation of FtsA. Potential septation sites that have been structurally blocked by either the SOS division inhibitor, furazlocillin inhibition of PBP3, or inactivation of a TER pathway component, FtsA3, could be reactivated one doubling time after removal of the inhibitory agent in the presence of an active lon gene product. Reactivation of potential septation sites blocked by the presence of an inactivated FtsA3 was significantly lower when the lon protease was not active, suggesting that Lon plays a role in the removal of inactivated TER pathway products from the blocked potential septation sites

  17. Oxidative Stress: Promoter of Allergic Sensitization to Protease Allergens?

    NARCIS (Netherlands)

    van Rijt, Leonie S.; Utsch, Lara; Lutter, René; van Ree, Ronald

    2017-01-01

    Allergies arise from aberrant T helper type 2 responses to allergens. Several respiratory allergens possess proteolytic activity, which has been recognized to act as an adjuvant for the development of a Th2 response. Allergen source-derived proteases can activate the protease-activated receptor-2,

  18. Model building of a thermolysin-like protease by mutagenesis

    NARCIS (Netherlands)

    Frigerio, F; Margarit, [No Value; Nogarotto, R; Grandi, G; Vriend, G; Hardy, F; Veltman, OR; Venema, G; Eijsink, VGH

    The present study concerns the use of site-directed mutagenesis experiments to optimize a three-dimensional model of the neutral protease of Bacillus subtilis (NP-sub), An initial model of NP-sub was constructed using the crystal structures of the homologous neutral proteases of Bacillus

  19. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.

    Science.gov (United States)

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Günther, Stephan; Drosten, Christian; Pützer, Brigitte M; Schaefer, Stephan

    2010-11-18

    The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Amongst alphaviruses, the C-terminal amino acid tryptophan (W261) is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A) completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  20. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  1. Oxidant and solvent stable alkaline protease from Aspergillus flavus ...

    African Journals Online (AJOL)

    The increase in agricultural practices has necessitated the judicious use of agricultural wastes into value added products. In this study, an extracellular, organic solvent and oxidant stable, serine protease was produced by Aspergillus flavus MTCC 9952 under solid state fermentation. Maximum protease yield was obtained ...

  2. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  3. Studies on detection and analysis of proteases in leaf extract of medicinally important plants.

    Science.gov (United States)

    Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani

    2018-02-01

    The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants

  4. Protease activation involved in resistance of human cells to x-ray cell killing

    International Nuclear Information System (INIS)

    Zhang, Hong-Chang; Takahashi, Shuji; Karata, Kiyonobu; Kita, Kazuko; Suzuki, Nobuo

    2003-01-01

    Little is known of proteases that play roles in the early steps of X-ray irradiation response. In the present study, we first searched for proteases whose activity is induced in human RSa-R cells after X-ray irradiation. The activity was identified as fibrinolytic, using 125 I-labeled fibrin as a substrate. Protease samples were prepared by lysation of cells with a buffer containing MEGA-8. RSa-R cells showed an increased level of protease activity 10 min after X-ray (up to 3 Gy) irradiation. We next examined whether this protease inducibility is causally related with the X-ray susceptibility of cells. Leupeptin, a serine-cysteine protease inhibitor, inhibited the protease activity in samples obtained from X-ray-irradiated RSa-R cells. Treatment of RSa-R cells with the inhibitor before and after X-ray irradiation resulted in an increased susceptibility of the cells to X-ray cell killing. However, the treatment of cells with other inhibitors tested did not modulate the X-ray susceptibility. These results suggest that leupeptin-sensitive proteases are involved in the resistance of human cells to X-ray cell killing. (author)

  5. Proteases and antiproteases in chronic neutrophilic lung disease - relevance to drug discovery.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2009-10-01

    Chronic inflammatory lung diseases such as cystic fibrosis and emphysema are characterized by higher-than-normal levels of pulmonary proteases. While these enzymes play important roles such as bacterial killing, their dysregulated expression or activity can adversely impact on the inflammatory process. The existence of efficient endogenous control mechanisms that can dampen or halt this overexuberant protease activity in vivo is essential for the effective resolution of inflammatory lung disease. The function of pulmonary antiproteases is to fulfil this role. Interestingly, in addition to their antiprotease activity, protease inhibitors in the lung also often possess other intrinsic properties that contribute to microbial killing or termination of the inflammatory process. This review will outline important features of chronic inflammation that are regulated by pulmonary proteases and will describe the various mechanisms by which antiproteases attempt to counterbalance exaggerated protease-mediated inflammatory events. These proteases, antiproteases and their modifiers represent interesting targets for therapeutic intervention.

  6. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    International Nuclear Information System (INIS)

    Jin Xin; Li Jufang; Huang Pingying; Dong Xuyan; Guo Lulu; Yang Liang; Cao Yuancheng; Wei Fang; Zhao Yuandi

    2010-01-01

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63±2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  7. Immobilized protease on the magnetic nanoparticles used for the hydrolysis of rapeseed meals

    Energy Technology Data Exchange (ETDEWEB)

    Jin Xin [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Li Jufang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Huang Pingying [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Dong Xuyan [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Guo Lulu [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Yang Liang; Cao Yuancheng [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China); Wei Fang [Key Lab of Oil Crops Biology, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062 (China); Zhao Yuandi, E-mail: zydi@mail.hust.edu.c [Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei 430074 (China)

    2010-07-15

    (3-aminopropl) triethoxysilaneand modified magnetic nanoparticles with the average diameter of 25.4 nm were synthesized in water-phase co-precipitation method. And then these nanoparticles were covalently coupled with alkaline protease as enzyme carrier by using 1,4-phenylene diisothlocyanate as coupling agent. Experiments showed that the immobilized protease can keep the catalytic bioactivity, which can reach to 47.8% when casein was served as substrate. Results showed that the catalytic activity of immobilized protease on these magnetic nanoparticles could retain 98.63+-2.37% after 60 days. And it is more stable than the free protease during the shelf-life test. The enzyme reaction conditions such as optimum reaction temperature and pH are the same as free protease. Furthermore, mix-and-separate experiments showed that the immobilized protease could be recycled through the magnetic nanoparticles after the biocatalysis process. When the rapeseed meals were used as substrate, the degree of hydrolysis of immobilized alkaline protease achieved 9.86%, while it was 10.41% for the free protease. The macromolecular proteins of rapeseed meals were hydrolyzed by immobilized protease into small molecules such as polypeptides or amino acids. Thus, a novel efficient and economic way for the recycling of enzymes in the application of continuous production of active peptides was provided based on these magnetic nanoparticles.

  8. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  9. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  10. Effect of Gastrointestinal Protease Digestion on Bioactivity of Marine Peptides

    DEFF Research Database (Denmark)

    Jensen, Ida-Johanne; Andersen, Lisa Lystbæk; Ossum, Carlo Gunnar

    2014-01-01

    executed without concerning subsequent digestion after intake and the aim of this work was hence to investigate how the in vitro antioxidative, antihypertensive and caspase activating activities of peptides are affected by digestion with gastrointestinal (GI) proteases. Five different fish protein...... hydrolysates were chosen to study the effect of in vitro digestion on bioactivity. The protein concentration decreased in all samples during digestion and the molecular weight distribution of the peptides shifted towards lower values. Thus, in vitro digestion with GI proteases resulted in a further degradation...... of the peptides obtained by hydrolysis. The antihypertensive effect increased in all samples after digestion with GI proteases whereas the antioxidative capacity decreased. The effect on the caspase activity depended on the proteases used in the preparation of hydrolysates. In conclusion, the caspase activity...

  11. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms

    Directory of Open Access Journals (Sweden)

    Timmerman J André B

    2006-03-01

    Full Text Available Abstract House dust mite allergens (HDM cause bronchoconstriction in asthma patients and induce an inflammatory response in the lungs due to the release of cytokines, chemokines and additional mediators. The mechanism how HDM components achieve this is largely unknown. The objective of this study was to assess whether HDM components of Dermatophagoides pteronissinus with protease activity (Der p 1 and unknown enzymatic activity (Der p 2, Der p 5 induce biological responses in a human airway-derived epithelial cell line (A549, and if so, to elucidate the underlying mechanism(s of action. A549 cells were incubated with HDM extract, Der p 1, recombinant Der p 2 and recombinant Der p 5. Cell desquamation was assessed by microscopy. The proinflammatory cytokines, IL-6 and IL-8, were measured by ELISA. Intracellular Ca2+ levels were assessed in A549 cells and in mouse fibroblasts expressing the human protease activated receptor (PAR1, PAR2 or PAR4. HDM extract, Der p 1 and Der p 5 dose-dependently increased the production of IL-6 and IL-8. Added simultaneously, Der p 1 and Der p 5 further increased the production of IL-6 and IL-8. The action of Der p 1 was blocked by cysteine-protease inhibitors, while that of Der p 5 couldn't be blocked by either serine- or cysteine protease inhibitors. Der p 5 only induced cell shrinking, whereas HDM extract and Der p1 also induced cell desquamation. Der p 2 had no effect on A549 cells. Der p 1's protease activity causes desquamation and induced the release of IL6 and IL-8 by a mechanism independent of Ca2+ mobilisation and PAR activation. Der p 5 exerts a protease-independent activation of A549 that involves Ca2+ mobilisation and also leads to the production of these cytokines. Together, our data indicate that allergens present in HDM extracts can trigger protease-dependent and protease-independent signalling pathways in A549 cells.

  12. Changes in protein metabolism after irradiation. Pt. 1. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat spleen after 600 R whole body x irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1975-12-01

    The protease activity of cytoplasm and cell organelles of the rat spleen against spleen protein and hemoglobin as a substrate increases during a initial reaction phase of the organism on the first day after 600 R whole body X-irradiation. The alkaline protease in the cytoplasm and the acid protease in the cell organelles increase, whereas the protease activity against externally added hemoglobin as substrate decreases below the initial values. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the spleen is therefore not explained by an increased protease activity. Acid proteases appear in the cytoplasm which derive probably from the cell organelles. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.

  13. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum.

    Science.gov (United States)

    Gao, Ruichang; Shi, Tong; Liu, Xiangdong; Zhao, Mengqin; Cui, Henglin; Yuan, Li

    2017-03-01

    Because proteases play an important role in the fermentation of fish sauce, the purification and characterisation of an extracellular protease from the halophilic archaeon Halogranum rubrum was investigated. The molecular mass of the protease was estimated to be approximately 47 kDa based on sodium dodecyl sulfate-polyacrylamide gel electropheresis (SDS-PAGE) and native-PAGE analysis. The optimum conditions for catalytic activity were pH 8.0 and 50°C. The protease showed alkaline stability (pH 7.0-10.0). The protease also exhibited novel catalytic ability over a broad range of salinity (NaCl 0-3 mol L -1 ). Calcium ion enhanced the proteolytic activity of the enzyme. The K m and V max values of the purified protease for casein were calculated to be 4.89 mg mL -1 and 1111.11 U mL -1 , respectively. The protease was strongly inhibited by ethylenediamine tetraacetic acid (EDTA) and phenylmethanesulfonyl fluoride (PMSF). Meanwhile, the protease was stable in the presence of Triton X-100, isopropanol, ethanol or dithio-bis-nitrobenzoic (DTNB), but was inhibited by sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO) or methanol. MALDI -TOF/TOF MS analysis revealed that the protease shared some functional traits with protease produced by Halogranum salarium. Furthermore, it exhibited high hydrolytic activity on silver carp myosin protein. The protease is an alkaline and salt-tolerant enzyme that hydrolyses silver carp myosin with high efficiency. These excellent characteristics make this protease an attractive candidate for industrial use in low-salt fish sauce fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Improvement of shelf life of soymilk using immobilized protease of Oerskovia xanthineolytica NCIM 2839

    OpenAIRE

    Sahoo, A. K.; Gaikwad, V. S.; Ranveer, R. C.; Dandge, P. B.; Waghmare, S. R.

    2016-01-01

    Protease enzyme has lot of commercial applications, so the cost-effective production of protease using sunflower oil seed waste was carried out from Oerskovia xanthineolyitca NCIM 2839. The maximum protease production was after 24?h of incubation with 2.5?% oil seed waste concentration. O. xanthineolytica was found to produce two proteases?P1 and P2. The proteases were purified using 60?% cold acetone precipitation and DEAE-cellulose ion exchange chromatography. SDS-PAGE revealed molecular we...

  15. Partial characterisation of digestive proteases of the Mayan cichlid Cichlasoma urophthalmus.

    Science.gov (United States)

    Cuenca-Soria, C A; Álvarez-González, C A; Ortiz-Galindo, J L; Nolasco-Soria, H; Tovar-Ramírez, D; Guerrero-Zárate, R; Castillo-Domínguez, A; Perera-García, M A; Hernández-Gómez, R; Gisbert, E

    2014-06-01

    The characterisation of digestive proteases in native freshwater fish such as the Mayan cichlid Cichlasoma urophthalmus provides scientific elements that may be used to design balanced feed that matches with the digestive capacity of the fish. The purpose of this study was to characterise the digestive proteases, including the effect of the pH and the temperature on enzyme activity and stability, as well as the effect of inhibitors using multienzymatic extracts of the stomach and intestine of C. urophthalmus juveniles. Results showed that the optimum activities of the acid and alkaline proteases occurred at pH values of 3 and 9, respectively, whereas their optimum temperatures were 55 and 65 °C, respectively. The acid proteases were most stable at pH values of 2–3 and at temperatures of 35–45 °C, whereas the alkaline proteases were most stable at pH values of 6–9 and at 25–55 °C. The inhibition assays recorded a residual activity of 4% with pepstatin A for the acid proteases. The inhibition of the alkaline proteases was greater than 80% with TPCK, TLCK, EDTA and ovalbumin, and of 60 and 43.8% with PMSF and SBT1, respectively. The results obtained in this study make it possible to state that C. urophthalmus has a sufficiently complete digestive enzyme machinery to degrade food items characteristic of an omnivorous fish species, although specimens showed a tendency to carnivory.

  16. MAVS dimer is a crucial signaling component of innate immunity and the target of hepatitis C virus NS3/4A protease.

    Science.gov (United States)

    Baril, Martin; Racine, Marie-Eve; Penin, François; Lamarre, Daniel

    2009-02-01

    The mitochondrial antiviral signaling (MAVS) protein plays a central role in innate antiviral immunity. Upon recognition of a virus, intracellular receptors of the RIG-I-like helicase family interact with MAVS to trigger a signaling cascade. In this study, we investigate the requirement of the MAVS structure for enabling its signaling by structure-function analyses and resonance energy transfer approaches in live cells. We now report the essential role of the MAVS oligomer in signal transduction and map the transmembrane domain as the main determinant of dimerization. A combination of mutagenesis and computational methods identified a cluster of residues making favorable van der Waals interactions at the MAVS dimer interface. We also correlated the activation of IRF3 and NF-kappaB with MAVS oligomerization rather than its mitochondrial localization. Finally, we demonstrated that MAVS oligomerization is disrupted upon expression of HCV NS3/4A protease, suggesting a mechanism for the loss of antiviral signaling. Altogether, our data suggest that the MAVS oligomer is essential in the formation of a multiprotein membrane-associated signaling complex and enables downstream activation of IRF3 and NF-kappaB in antiviral innate immunity.

  17. Alkaline protease production on date waste by an alkalophilic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... After 72 h incubation in a shaker incubator ... different incubation times (0 to 72 h) were investigated. Alkaline .... of alkaline protease (75%) and 24% of total protein is precipitated. ... starches and wheat flour as carbon source on protease production .... JP 395, method of making and detergent composition.

  18. Isolation of protease producing novel Bacillus cereus and detection ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... The highest protease activity was determined at 30°C temperature and 6.4 pH conditions and after the 18th hour, it decreased evidently. Key words: Protease, production, optimization, Bacillus sp. INTRODUCTION. Enzymes have been produced in large industrial scale for several decades (Falch, 1991).

  19. Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.

    Science.gov (United States)

    Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E

    2017-11-29

    Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human

  20. Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease.

    Directory of Open Access Journals (Sweden)

    Lior Doron

    Full Text Available Fusobacterium nucleatum is an oral anaerobe associated with periodontal disease, adverse pregnancy outcomes and colorectal carcinoma. A serine endopeptidase of 61-65 kDa capable of damaging host tissue and of inactivating immune effectors was detected previously in F. nucleatum. Here we describe the identification of this serine protease, named fusolisin, in three oral F. nucleatum sub-species. Gel zymogram revealed fusobacterial proteolytic activity with molecular masses ranging from 55-101 kDa. All of the detected proteases were inhibited by the serine protease inhibitor PMSF. analysis revealed that all of the detected proteases are encoded by genes encoding an open reading frame (ORF with a calculated mass of approximately 115 kDa. Bioinformatics analysis of the identified ORFs demonstrated that they consist of three domains characteristic of autotransporters of the type Va secretion system. Our results suggest that the F. nucleatum fusolisins are derived from a precursor of approximately 115 kDa. After crossing the cytoplasmic membrane and cleavage of the leader sequence, the C-terminal autotransporter domain of the remaining 96-113 kDa protein is embedded in the outer membrane and delivers the N-terminal S8 serine protease passenger domain to the outer cell surface. In most strains the N-terminal catalytic 55-65 kDa domain self cleaves and liberates itself from the autotransporter domain after its transfer across the outer cell membrane. In F. nucleatum ATCC 25586 this autocatalytic activity is less efficient resulting in a full length membrane-anchored serine protease. The mature serine protease was found to cleave after Thr, Gly, Ala and Leu residues at the P1 position. Growth of F. nucleatum in complex medium was inhibited when serine protease inhibitors were used. Additional experiments are needed to determine whether fusolisin might be used as a target for controlling fusobacterial infections.

  1. Estudo da motilidade espontânea de segmentos de cólon ascendente, transverso e descendente de ratos, em banhos fisiológicos para órgãos isolados Study of spontaneous motility of parts of colon in physiologic chamber for isolated organ, in rats

    Directory of Open Access Journals (Sweden)

    Francisco Rodrigues de Sales

    2004-01-01

    Full Text Available OBJETIVO: Identificar as diferenças na freqüência, amplitude de contrações, traçados negativos e forma das ondas. MÉTODOS: Fez-se um estudo da motilidade espontânea de segmentos de cólon ascendente, transverso e descendente de ratas, em banhos fisiológicos para órgãos isolados. RESULTADOS: Verificou-se grande variabilidade de freqüências e amplitudes das contrações registradas. Embora tenha havido predominância de contrações fortes no cólon descendente e de contrações menores no cólon transverso, todos os tipos de ondas foram encontrados nos três segmentos. CONCLUSÕES: O cólon apresenta motilidade muito variável, não permitindo identificar padrão característico inconfundível para cada um dos três segmentos, ascendente, transverso e descendente. O cólon transverso apresentou maior quantidade de traçados negativos, menor amplitude de contrações e menor freqüência de contrações. O cólon descendente apresentou o menor número de traçados negativos e a maior média de amplitude de contrações dos três segmentos.PURPOSE: The aim was to identify the difference in frequency, amplitude of contractions, negative tracing and shape of the waves. METHODS: We made one study of spontaneous motility of parts of colon from mouse, in physiologic chamber for isolated organ. RESULTS: It was found the biggest frequence variability and amplitude of contractions registered. Although there has been predominancy of strong contractions in the descending colon and weaker contractions in the transverse one, all kinds of waves were found in the three segments. CONCLUSIONS: The colon shows variable motility, which does not permit identify the unmistakable characteristic pattern for each of the three segments, ascendent, transverse and descending. The transverse colon shows a bigger quantity of negative traces, smaller amplitude of contractions and less frequency of contractions. The descending colon showed a smaller number of

  2. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3.

    Science.gov (United States)

    Zheng, Fengwei; Lu, Guoliang; Li, Ling; Gong, Peng; Pan, Zishu

    2017-11-01

    The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å 2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a "closed" global conformation related to the NS3-NS4A cis -cleavage event. Although this conformation is incompatible with protease trans -cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis -cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through different

  3. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2.

    Science.gov (United States)

    Abdel-Hamed, Asmaa R; Abo-Elmatty, Dina M; Wiegel, Juergen; Mesbah, Noha M

    2016-11-01

    An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH 55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH 55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.

  4. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  5. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression

    NARCIS (Netherlands)

    Verbovšek, Urška; van Noorden, Cornelis J. F.; Lah, Tamara T.

    2015-01-01

    Proteases, including lysosomal cathepsins, are functionally involved in many processes in cancer progression from its initiation to invasion and metastatic spread. Only recently, cathepsin K (CatK), the cysteine protease originally reported as a collagenolytic protease produced by osteoclasts,

  6. Megacólon tóxico fatal por cytomegalovirus em paciente com retocolite ulcerativa idiopática: relato de caso e revisão de literatura Fatal toxic megacolon due to cytomegalovirosis in a patient with ulcerative colitis: case report and review

    Directory of Open Access Journals (Sweden)

    Sérgio Ossamu IOSHII

    2002-04-01

    Full Text Available Racional - O megacólon tóxico é complicação grave e pouco freqüente na retocolite ulcerativa idiopática. Ocorre, geralmente, em pacientes cuja doença ativa é resistente ao tratamento clínico e, em algumas situações, o fator desencadeante é desconhecido. A infecção pelo cytomelogalovirus em seres humanos em geral é evento subclínico; entretanto, em pacientes imunocomprometidos a primoinfecção ou mesmo a reativação de infecção latente pode ter amplas repercussões clínicas, uma das quais o desencadeamento de megacólon tóxico. Objetivo - Descrever um caso de megacólon tóxico fatal por cytomegalovirose em paciente com retocolite ulcerativa idiopática. Paciente - Masculino, 38 anos, com clínica de diarréia e perda ponderal cuja investigação mostrou tratar-se de retocolite ulcerativa idiopática e para a qual foi instituída terapêutica imunossupressora vigorosa. Resultados - Evoluiu com quadro clínico de megacólon tóxico, sendo submetido a colectomia total. Complicações clínicas culminaram no óbito pós-operatório e o estudo anatomopatológico do cólon revelou doença ativa, associada a ulcerações confluentes na base das quais foram observadas células com alterações características da cytomegalovirose. Conclusão - A cytomegalovirose deve ser considerada como um dos agentes causadores de megacólon tóxico em retocolite ulcerativa.Background - The toxic megacolon is a rare and severe complication of ulcerative colitis. In general it complicates patients with active colitis that are resistant to clinical treatment and, in some cases, the developing factor is unknown. Cytomegalovirus infection in humans in general is a subclinical condition. However, in patients with immunodeficiency the primary infection or the reactivation of latent infection could have enormous clinical effects. One of these effects is the toxic megacolon. Aim - To report a case of fatal toxic megacólon due to cytomegalovirosis in a

  7. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  8. Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.

    Science.gov (United States)

    Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2012-12-21

    In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Purification and characterization of alkaline proteases from aspergillus terreus

    International Nuclear Information System (INIS)

    Hussain, A.; Mannan, A.; Zubair, H.; Mirza, B.

    2010-01-01

    Proteases belong to an important class of enzymes known as hydrolases and catalyze hydrolysis of proteins. They act primarily to degrade proteins that are used for energy production and as biosynthetic precursors. In the following study, protease produced from Aspergillus terreus was found to be thermo stable and included in the category of alkaline serine and metallo protease. During partial purification, presence of enzyme in 60% (NH/sub 4/)/sub 2/SO/sub 4/ indicated small molecular weight polypeptide; later purification with Sephadex G-75 fractionation yielded a single proteolytic active molecule. At final purification step, the increase in specific activity of the enzyme was 7.5 fold with 23% yield. SDS-PAGE analysis revealed that alkaline protease of Aspergillus terreus is a monomer with approximate molecular weight of 35 kDa. Optimum pH for protease activity was found in the range of 7.5-11.0 (maximum at pH 8.5), thus apparently classified as an alkaline protease. The enzyme was thermo stable towards high temperature (60 deg. C), however it denatured irreversibly at 70 deg. C showing 80% loss of activity. The maximum proteolytic activity was found at 40 deg. C. The enzyme was effectively inhibited by PMSF, EDTA and urea whereas iodoacetamide and thiourea did not result in any loss in activity while cysteine was found to be activator molecule. The study with metal ions Mg/sup +2/, Mn/sup +2/ and Fe/sup +3/ (1 mM each) showed minute stimulatory effects on enzyme activity. Co/sup +2/ and Ca/sup +2/ (1 mM) had neither excitatory nor inhibitory effect while Hg/sup +2/ and Cu/sup +2/ (1 mM) slightly reduced the enzyme activity. (author)

  10. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  11. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  12. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    Science.gov (United States)

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  13. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  14. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  15. Efeitos da hipotermia perioperatória na cicatrização das anastomoses de cólon, em ratos

    OpenAIRE

    Oliveira, João Carlos Costa de

    2013-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências da Saúde. Programa de Pós-Graduação em Ciências Médicas, Florianópolis, 2013 Introdução: O cólon é a região do trato gastrointestinal mais vulnerável à deiscência anastomótica, complicação que apresenta risco potencialmente letal. A hipotermia perioperatória está associada a efeitos prejudiciais ao paciente, aumentando as taxas de complicações operatórias, anestésicas e pós-operatórias. A hipotermia prejudica a f...

  16. Tratamento de compactação do cólon maior em eqüídeos com fluidoterapia enteral

    OpenAIRE

    Lopes,Marco Aurélio Ferreira; Moura,Gabriela Soares de; Junqueira,Luiz Arthur Camargo; Lima,Leonardo Rodrigues de; Pinto,José de Oliveira; Dantas Filho,José; Assis,Carlos Batista de

    1998-01-01

    A eficiência da fluidoterapia por via enteral foi avaliada em 14 eqüídeos (12 eqüinos e dois muares) que apresentavam compactação do cólon maior. Os animais tinham entre um ano e meio e 20 anos de idade e todos eram alimentados com capim elefante (Pennisetum purpureum Schumach) triturado. O início dos sinais de cólica foi observado no dia do internamento em seis casos, um dia antes em cinco casos, três dias antes em um caso, quatro dias antes em um caso e seis dias antes em um caso. Um cavalo...

  17. In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L. flour using commercial protease and Bacillus sp. protease Digestibilidade protéica in vitro de farinhas de feijão (Phaseolus vulgaris L. pré-tratadas com protease comercial e protease de Bacillus sp.

    Directory of Open Access Journals (Sweden)

    Disney Ribeiro Dias

    2010-03-01

    Full Text Available The common bean (Phaseolus vulgaris L. is a staple food in the Brazilian diet and represents the major source of dietary protein and other micronutrients and minerals. Despite the considerable protein concentration in beans, the food is considered of low biological value when compared to animal proteins and other plant protein sources. To improve the availability of protein in beans, enzymatic treatments were performed in four cultivars (ON, OPNS, TAL and VC3. The approach was a completely randomized design with four replicates. We used a 4 × 3 factorial arrangement (four cultivars and three treatments: treatment 1-addition of commercial protease (Trypsin 250, Difco, treatment 2-addition of protease from Bacillus sp., and treatment 3:-control without enzyme addition. The enzyme: substrate ratio was 5% w/w (amount of enzyme per total protein in bean flour. The approach was a completely randomized design with four replicates. A 4 × 3 factorial arrangement (four cultivars and three treatments, the same as those mentioned above was used. The concentration of total protein (g.100 g-1 of dry matter in the samples ranged from 16.94 to 18.06%, while the concentration of total phenolics was between 0.78 and 1.12% (g Eq. tannic acid.100 g-1 dry matter. The in vitro protein digestibility of enzymatically untreated bean flour (control ranged from 47.30 to 56.17% based on the digestibility of casein. Concentrations of P, K, Ca, Mg, and Zn observed in the four cultivars tested were within the average values available in the literature. Treatment 2 with protease from Bacillus sp. induced decreases in the levels of Cu and Mn. The average Fe content increased in all bean flour samples when treated with proteases, reaching a maximum increase of 102% in the TAL flour treated with protease from Bacillus sp. The digestibility of all beans tested was significantly increased (p O feijão (Phaseolus vulgaris L. é um alimento básico na refeição do brasileiro

  18. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  19. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  20. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    Directory of Open Access Journals (Sweden)

    André Weiss

    Full Text Available EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI, α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition.

  1. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  2. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  3. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    Science.gov (United States)

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  5. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    Science.gov (United States)

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  6. Semi-continuous in situ magnetic separation for enhanced extracellular protease productionmodeling and experimental validation

    DEFF Research Database (Denmark)

    Cerff, M.; Scholz, A.; Käppler, T.

    2013-01-01

    In modern biotechnology proteases play a major role as detergent ingredients. Especially the production of extracellular protease by Bacillus species facilitates downstream processing because the protease can be directly harvested from the biosuspension. In situ magnetic separation (ISMS...... production, and was used to optimize ISMS steps to obtain the maximum overall protease yield. Biotechnol. Bioeng. 2013; 110: 2161–2172. © 2013 Wiley Periodicals, Inc....

  7. Production, purification and characterization of an aspartic protease from Aspergillus foetidus.

    Science.gov (United States)

    Souza, Paula Monteiro; Werneck, Gabriela; Aliakbarian, Bahar; Siqueira, Felix; Ferreira Filho, Edivaldo Ximenes; Perego, Patrizia; Converti, Attilio; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa

    2017-11-01

    An acidic thermostable protease was extracellularly produced either in shake flask or in stirred tank bioreactor by an Aspergillus foetidus strain isolated from the Brazilian savanna soil using different nitrogen sources. Its maximum activity (63.7 U mL -1 ) was obtained in a medium containing 2% (w/v) peptone. A cultivation carried out in a 5.0 L stirred-tank bioreactor provided a maximum protease activity 9% lower than that observed in Erlenmeyer flasks, which was obtained after a significantly shorter (by 16-29%) time. Protease purification by a combination of gel-filtration chromatography resulted in a 16.9-fold increase in specific activity (248.1 U g -1 ). The estimated molecular weight of the purified enzyme was 50.6 kDa, and the optimal pH and temperature were 5.0 and 55 °C, respectively. The enzyme was completely inhibited by pepstatin A, and its activity enhanced by some metals. According to the inhibition profiles, it was confirmed that the purified acid protease belongs to the aspartic protease type. These results are quite promising for future development of large-scale production of such protease, which can be useful in biotechnological applications requiring high enzyme activity and stability under acidic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  9. STABILIZATION OF BACILLUS-STEAROTHERMOPHILUS NEUTRAL PROTEASE BY INTRODUCTION OF PROLINES

    NARCIS (Netherlands)

    HARDY, F; VRIEND, G; VELTMAN, OR; VANDERVINNE, B; VENEMA, G; EIJSINK, VGH

    1993-01-01

    The thermostability of neutral proteases has been shown to depend on autolysis which presumably occurs in flexible regions of the protein. In an attempt to rigidify such a region in the neutral protease of Bacillus stearothermophilus, residues in the solvent-exposed 63-69 loop were replaced by

  10. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    Science.gov (United States)

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570

  11. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  12. Chemical Tools for the Study of Intramembrane Proteases.

    Science.gov (United States)

    Nguyen, Minh T N; Van Kersavond, Tim; Verhelst, Steven H L

    2015-11-20

    Intramembrane proteases (IMPs) reside inside lipid bilayers and perform peptide hydrolysis in transmembrane or juxtamembrane regions of their substrates. Many IMPs are involved in crucial regulatory pathways and human diseases, including Alzheimer's disease, Parkinson's disease, and diabetes. In the past, chemical tools have been instrumental in the study of soluble proteases, enabling biochemical and biomedical research in complex environments such as tissue lysates or living cells. However, IMPs place special challenges on probe design and applications, and progress has been much slower than for soluble proteases. In this review, we will give an overview of the available chemical tools for IMPs, including activity-based probes, affinity-based probes, and synthetic substrates. We will discuss how these have been used to increase our structural and functional understanding of this fascinating group of enzymes, and how they might be applied to address future questions and challenges.

  13. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  14. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  15. Improvement of acid protease production by a mixed culture of ...

    African Journals Online (AJOL)

    The synthesis of acid protease by Aspergillus oryzae AS3042 was enhanced significantly with the mixed culture of Aspergillus niger SL-09 using solid-state fermentation technique. The influence of carbon sources, nitrogen sources and the addition of phytic acid on acid protease production were investigated. The enzyme ...

  16. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

    DEFF Research Database (Denmark)

    Guarino, Carla; Hamon, Yveline; Croix, Cécile

    2017-01-01

    cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites....... These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases...

  17. Potent Inhibition of Feline Coronaviruses with Peptidyl Compounds Targeting Coronavirus 3C-like Protease

    Science.gov (United States)

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C.; Chang, Kyeong-Ok

    2012-01-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against feline coronaviruses in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC50 in a nanomolar range) and, furthermore, the combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in cell culture systems. PMID:23219425

  18. Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Chen, Xiangyun; Wu, Jingjing; Chen, Yitian; Ye, Dongxia; Lei, Hu; Xu, Hanzhang; Yang, Li; Wu, Yingli; Gu, Wenli

    2016-10-01

    Ubiquitin-specific protease 14, a deubiquitinating enzyme, has been implicated in the tumorigenesis and progression of several cancers, but its role in oral squamous cell carcinoma remains to be elucidated. The aim of this study was to explore the expression pattern and roles of Ubiquitin-specific protease 14 in the occurrence and development of oral squamous cell carcinoma. Interestingly, Ubiquitin-specific protease 14 was overexpressed in oral cancer tissues and cell lines at both mRNA and protein levels. b-AP15, a specific inhibitor of Ubiquitin-specific protease 14, significantly inhibited the growth of cancer cells and increased cell apoptosis in a dose-dependent manner. Moreover, knockdown of Ubiquitin-specific protease 14 by shRNA significantly inhibited the proliferation and migration of cancer cells in vitro. Finally, using a xenograft mouse model of oral squamous cell carcinoma, knockdown of Ubiquitin-specific protease 14 markedly inhibited tumor growth and triggered the cancer cell apoptosis in vivo, supporting previous results. In conclusion, for the first time we have demonstrated the expression pattern of Ubiquitin-specific protease 14 in oral squamous cell carcinoma and verified a relationship with tumor growth and metastasis. These results may highlight new therapeutic strategies for tumor treatment, application of Ubiquitin-specific protease 14 selective inhibitor, such as b-AP15, or knockdown by shRNA. Collectively, Ubiquitin-specific protease 14 could be a potential therapeutic target for oral squamous cell carcinoma patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Serological Analysis of Immunogenic Properties of Recombinant Meningococcus IgA1 Protease-Based Proteins.

    Science.gov (United States)

    Kotelnikova, O V; Zinchenko, A A; Vikhrov, A A; Alliluev, A P; Serova, O V; Gordeeva, E A; Zhigis, L S; Zueva, V S; Razgulyaeva, O A; Melikhova, T D; Nokel, E A; Drozhzhina, E Yu; Rumsh, L D

    2016-07-01

    Using the genome sequence of IgA1 protease of N. meningitidis of serogroup B, four recombinant proteins of different structure and molecular weight were constructed. These proteins were equal in inducing the formation of specific antibodies to IgA1 protease and had protective properties against meningococci. In the sera of immunized mice, anti-IgA1 protease antibodies were detected by whole-cell ELISA, which indicated the presence of IgA1 protease on the surface of these bacteria. We hypothesized that the protective properties of IgA1 protease-based antigens and IgA1 protease analogs could be realized not only via impairment of bacterium adhesion to the mucosa, but also via suppression of this pathogen in the organism. The presented findings seem promising for using these proteins as the basis for anti-meningococcus vaccine.

  20. Protease of Stenotrophomonas sp. from Indonesian fermented food: gene cloning and analysis

    Directory of Open Access Journals (Sweden)

    Frans Kurnia

    2018-02-01

    Full Text Available Screening of proteolytic and fibrinolytic bacteria from Indonesian soy bean based fermented food Oncom revealed several potential isolates. Based on 16s rDNA gene analysis, one particular isolate with the highest proteolytic and fibrinolytic activity was identified as Stenotrophomonas sp. The protease gene was amplified to generate a 1749 bp Polymerase Chain Reaction product and BLAST analysis, revealed 90% homology with gene encoding protease enzyme from Stenotrophomonas maltophilia. The putative amino acid sequence indicated a serine protease enzyme with typical amino acid aspartate, histidine and serine in the catalytic triad. The gene was translated into a pre-pro-protein consisted of cleavage site on its N terminal and Pre-Peptidase Cterminal domain. Cloning of the protease gene in pET22b with Escherichia coli BL21 DE3 as the host showed that the gene was expressed as insoluble protein fraction. This is the first report for analysis of protease gene from food origin Stenotrophomonas sp.

  1. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    Science.gov (United States)

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  2. Expressão citofotométrica dos marcadores tumorais CD-34 e fator VIII no câncer de cólon

    OpenAIRE

    Garcia,Cacilda Joyce Ferreira da Silva; Cuenca,Ronaldo M.; Bora,Fabio Roberto; Ribas-Filho,Jurandir Marcondes; Czeczko,Nicolau Gregori; Ribas,Carmen Austrália Paredes Marcondes; Wagenführ Jr.,Jorge

    2009-01-01

    OBJETIVOS: Verificar a posssibilidade de quantificar a expressão dos marcadores tumorais CD-34 e Fator VIII no câncer de cólon; verificar se existe superioridade entre um marcador e outro para estudo da angiogênese; verificar se há correlação na análise do índice de marcagem e a densidade óptica média nos marcadores utilizados. MÉTODOS: Dezessete casos de adenocarcinoma colorretal recuperados de blocos de parafina e confirmados pela hematoxilina-eosina, foram submetidos à coloração imunoistoq...

  3. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  4. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    International Nuclear Information System (INIS)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-01-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze 125 I-α-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P 1 position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtration and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski

  5. Enhanced Productivity of Serine Alkaline Protease by Bacillus sp. Using Soybean as Substrate

    Directory of Open Access Journals (Sweden)

    Saurabh, S.

    2007-01-01

    Full Text Available The growth and protease production by Bacillus sp. (SBP-29 was examined for poultry processing industries. The maximum protease activity was 3028 U/mL using 1.5% (w/v of soybean meal as substrate. Soybean meal is an inexpensive and readily available, thus it can be used as the cost effective crude material for the production of an extracellular protease. Inorganic nitrogen sources proved to be less favorable, for protease production as strong catabolic repression was observed with ammonium ions. A maximum of 3208 U/mL of protease was produced in 18 h in a 10L bioreactor. The enzyme has temperature and pH optima of 60°C and 9.5 respectively. However, the temperature stability range is from 20-90 °C and pH stability range is from 6.0–12.0. The protease was completely inhibited by phenylmethylsulfonyl fluoride (PMSF and diodopropyl fluorophosphate (DFP, with little increase (10-15% in the production of upon addition of Ca++ and Mg++.

  6. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    Science.gov (United States)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  7. Characterization of an alkaline protease associated with a granulosis virus of Plodia interpunctella.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1978-06-01

    An alkaline protease was found to be associated with the granulosis virus of the Indian meal moth. Plodia interpunctella. The protease was located within the protein matrix of the occluded virus and hydrolyzed the major constituent of this matrix, a 28,000-dalton protein (granulin), to a mixture of polypeptides ranging in molecular weight from 10,000 to 27,000. A rapid, sensitive assay for the protease was developed using radioactively labeled granulosis virus as substrate. With this assay, the proteolytic activity could be detected by measuring the release of acid-soluble peptides from the labeled virus. The protease had a pH optimum of 10.5 and a temperature optimum of 40 degrees C and was inhibited by diisopropyl phosphorofluoridate, phenylmethylsulfonyl fluoride, and L-(1-tosylamido-2-phenyl) ethyl chloromethyl ketone. Purification of the protease from matrix protein was achieved by anion-exchange and gel permeation chromatography. The molecular weight of the isolated protease, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, was approximately 14,000.

  8. ISOLASI DAN KARAKTERISASI PROTEASE ALKALIN DARI ISOLAT BAKTERI LIMBAH TERNAK DI EXFARM FAKULTAS PETERNAKAN UNSOED

    Directory of Open Access Journals (Sweden)

    Zusfahair

    2011-05-01

    Full Text Available Protease is one of the widely used enzymes for the industry. The potential resource of microorganism that produced protease is milk cow waste. In this research, isolation and characterization has been done toward isolated protease from milk cow waste of the Exfarm’s Animal Husbandry Faculty at University of Jenderal Soedirman, Purwokerto. The research used experiment method and the parameters observed were the genus of bacteria which produce protease and the activity of protease. The characterizations of protease were determination of optimum pH and temperature, the influence of metal ions, EDTA, surfactant, and commercial detergent toward enzyme activity, and also the study of enzyme stability. The results from the research showed that the isolated bacteria from the Exfarm’s of Animal Husbandry Faculty of UNSOED, which produced protease was Salmonella sp. Characterization of isolated Salmonella sp. from 45% ammonium sulphate fraction indicated that the optimum temperature was 50 ºC, optimum pH was 8, the enzyme was activated by Ca2+ dan Mg2+ ion, whereas it was inhibited by Zn2+, Cu2+ ions and EDTA. The addition of Tween-80 with the concentration of 0.2% and 0.4% increased protease activity, however the addition of Tween-80 with concentration higher than 0.6% decreased the protease activity. Enzyme protease from isolated Salmonella sp. was relatively stable with the addition of commercial detergent such as Attack, Surf, and Bukrim.

  9. Characterization and milk coagulating properties of Cynanchum otophyllum Schneid. proteases.

    Science.gov (United States)

    Luo, Jie; Xiao, Chen; Zhang, Hao; Ren, Fazheng; Lei, Xingen; Yang, Zibiao; Yu, Zhengquan

    2018-04-01

    The herbaceous plant Cynanchum otophyllum Schneid. is widely used as a milk coagulant to make a Chinese traditional milk product, milk cake. However, the milk-clotting compounds and their mechanism remain unclear. In this study, crude proteases were extracted from the dried leaves of Cynanchum otophyllum Schneid. using citric acid-phosphate buffer and then partially purified by weak anion exchange chromatography. Two proteases, QA and QC, with molecular weights of 14 and 27 kDa, respectively, were shown to exhibit milk-clotting activity. A study of the effects of pH and temperature on the milk-clotting activity and proteolytic activity of the proteases showed that they exhibited good pH stability from pH 5.5 to 7.5 and good thermal stability at temperatures from 50 to 70°C. The QA and QC were the cysteine proteases, able to hydrolyze β-casein and κ-casein completely, and α-casein partially. The cleavage site on κ-casein determined by Orbitrap (Thermo Fisher Scientific, San Jose, CA) analysis showed that QA and QC could cleave κ-casein at Ser132-Thr133. Overall, the results suggest that the Cynanchum otophyllum Schneid. proteases are a promising milk-clotting enzyme that could be used for manufacturing milk cake and cheese. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. The action of neutrophil serine proteases on elastin and its precursor

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Jahreis, Günther

    2012-01-01

    This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass...... spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three...... proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P(1), which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr...

  11. Barley (Hordeum vulgare L.) cysteine proteases: heterologous expression, purification and characterization

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    During germination of barley seeds, mobilization of protein is essential and cysteine proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins. Cysteine proteases exist as pro-enzyme and is activated through reduction of the active...... site cysteines and by removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. A cDNA clone of the barley key cysteine endoprotease...

  12. Effectiveness of Ritonavir-Boosted Protease Inhibitor Monotherapy in Clinical Practice Even with Previous Virological Failures to Protease Inhibitor-Based Regimens.

    Directory of Open Access Journals (Sweden)

    Luis F López-Cortés

    Full Text Available Significant controversy still exists about ritonavir-boosted protease inhibitor monotherapy (mtPI/rtv as a simplification strategy that is used up to now to treat patients that have not experienced previous virological failure (VF while on protease inhibitor (PI -based regimens. We have evaluated the effectiveness of two mtPI/rtv regimens in an actual clinical practice setting, including patients that had experienced previous VF with PI-based regimens.This retrospective study analyzed 1060 HIV-infected patients with undetectable viremia that were switched to lopinavir/ritonavir or darunavir/ritonavir monotherapy. In cases in which the patient had previously experienced VF while on a PI-based regimen, the lack of major HIV protease resistance mutations to lopinavir or darunavir, respectively, was mandatory. The primary endpoint of this study was the percentage of participants with virological suppression after 96 weeks according to intention-to-treat analysis (non-complete/missing = failure.A total of 1060 patients were analyzed, including 205 with previous VF while on PI-based regimens, 90 of whom were on complex therapies due to extensive resistance. The rates of treatment effectiveness (intention-to-treat analysis and virological efficacy (on-treatment analysis at week 96 were 79.3% (CI95, 76.8-81.8 and 91.5% (CI95, 89.6-93.4, respectively. No relationships were found between VF and earlier VF while on PI-based regimens, the presence of major or minor protease resistance mutations, the previous time on viral suppression, CD4+ T-cell nadir, and HCV-coinfection. Genotypic resistance tests were available in 49 out of the 74 patients with VFs and only four patients presented new major protease resistance mutations.Switching to mtPI/rtv achieves sustained virological control in most patients, even in those with previous VF on PI-based regimens as long as no major resistance mutations are present for the administered drug.

  13. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    Science.gov (United States)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  14. Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1.

    Directory of Open Access Journals (Sweden)

    Victoria L Patterson

    Full Text Available HTRA2, a serine protease in the intermembrane space, has important functions in mitochondrial stress signaling while its abnormal activity may contribute to the development of Parkinson's disease. Mice with a missense or null mutation of Htra2 fail to thrive, suffer striatal neuronal loss, and a parkinsonian phenotype that leads to death at 30-40 days of age. While informative, these mouse models cannot separate neural contributions from systemic effects due to the complex phenotypes of HTRA2 deficiency. Hence, we developed mice carrying a Htra2-floxed allele to query the consequences of tissue-specific HTRA2 deficiency. We found that mice with neural-specific deletion of Htra2 exhibited atrophy of the thymus and spleen, cessation to gain weight past postnatal (P day 18, neurological symptoms including ataxia and complete penetrance of premature death by P40. Histologically, increased apoptosis was detected in the cerebellum, and to a lesser degree in the striatum and the entorhinal cortex, from P25. Even earlier at P20, mitochondria in the cerebella already exhibited abnormal morphology, including swelling, vesiculation, and fragmentation of the cristae. Furthermore, the onset of these structural anomalies was accompanied by defective processing of OPA1, a key molecule for mitochondrial fusion and cristae remodeling, leading to depletion of the L-isoform. Together, these findings suggest that HTRA2 is essential for maintenance of the mitochondrial integrity in neurons. Without functional HTRA2, a lifespan as short as 40 days accumulates a large quantity of dysfunctional mitochondria that contributes to the demise of mutant mice.

  15. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  16. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  17. Production and partial characterization of alkaline protease from bacillus subtilis mutant induced by gamma radiation

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; Bashandy, A.S.

    2010-01-01

    Fourteen bacterial isolates belonging to B.subtilis were locally isolated from soil and screened for alkaline protease production. Only one strain, the highly potent one, was selected as alkaline protease producer and subjected to further studies to optimize its production. Alkaline protease production was maximum at 35 degree C after 72 h of incubation and at ph 10.0. molasses as a carbon source and combination of peptone and yeast extract as a nitrogen source enhanced greatly alkaline protease production. The mutant strain induced by gamma radiation showed higher alkaline protease production by 1.97 fold as compared with the parent strain. The alkaline protease enzyme was active at 40 degree C and ph 10. It was compatible with many commercial detergents and showed high stability (84 %) of its original activity with Ariel detergent. Moreover, alkaline protease enhanced the washing performance, and retained 95 % of its activity in the formulated dry powder.

  18. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini.

    Directory of Open Access Journals (Sweden)

    Porntip Pinlaor

    Full Text Available The liver fluke Opisthorchis viverrini is classified as a class I carcinogen due to the association between cholangiocarcinoma and chronic O. viverrini infection. During its feeding activity within the bile duct, the parasite secretes several cathepsin F cysteine proteases that may induce or contribute to the pathologies associated with hepatobiliary abnormalities.Here, we describe the cDNA, gene organization, phylogenetic relationships, immunolocalization, and functional characterization of the cathepsin F cysteine protease gene, here termed Ov-cf-1, from O. viverrini. The full length mRNA of 1020 nucleotides (nt encoded a 326 amino acid zymogen consisting of a predicted signal peptide (18 amino acids, aa, prosegment (95 aa, and mature protease (213 aa. BLAST analysis using the Ov-CF-1 protein as the query revealed that the protease shared identity with cathepsin F-like cysteine proteases of other trematodes, including Clonorchis sinensis (81%, Paragonimus westermani (58%, Schistosoma mansoni and S. japonicum (52%, and with vertebrate cathepsin F (51%. Transcripts encoding the protease were detected in all developmental stages that parasitize the mammalian host. The Ov-cf-1 gene, of approximately 3 kb in length, included seven exons interrupted by six introns; the exons ranged from 69 to 267 bp in length, the introns from 43 to 1,060 bp. The six intron/exon boundaries of Ov-cf-1 were conserved with intron/exon boundaries in the human cathepsin F gene, although the gene structure of human cathepsin F is more complex. Unlike Ov-CF-1, human cathepsin F zymogen includes a cystatin domain in the prosegment region. Phylogenetic analysis revealed that the fluke, human, and other cathepsin Fs branched together in a clade discrete from the cathepsin L cysteine proteases. A recombinant Ov-CF-1 zymogen that displayed low-level activity was expressed in the yeast Pichia pastoris. Although the recombinant protease did not autocatalytically process and

  19. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  20. Human eosinophils constitutively express a unique serine protease, PRSS33.

    Science.gov (United States)

    Toyama, Sumika; Okada, Naoko; Matsuda, Akio; Morita, Hideaki; Saito, Hirohisa; Fujisawa, Takao; Nakae, Susumu; Karasuyama, Hajime; Matsumoto, Kenji

    2017-07-01

    Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier

  1. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  2. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  3. Recombinant expression and functional analysis of proteases from Streptococcus pneumoniae, Bacillus anthracis, and Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Pieper Rembert

    2011-05-01

    Full Text Available Abstract Background Uncharacterized proteases naturally expressed by bacterial pathogens represents important topic in infectious disease research, because these enzymes may have critical roles in pathogenicity and cell physiology. It has been observed that cloning, expression and purification of proteases often fail due to their catalytic functions which, in turn, cause toxicity in the E. coli heterologous host. Results In order to address this problem systematically, a modified pipeline of our high-throughput protein expression and purification platform was developed. This included the use of a specific E. coli strain, BL21(DE3 pLysS to tightly control the expression of recombinant proteins and various expression vectors encoding fusion proteins to enhance recombinant protein solubility. Proteases fused to large fusion protein domains, maltosebinding protein (MBP, SP-MBP which contains signal peptide at the N-terminus of MBP, disulfide oxidoreductase (DsbA and Glutathione S-transferase (GST improved expression and solubility of proteases. Overall, 86.1% of selected protease genes including hypothetical proteins were expressed and purified using a combination of five different expression vectors. To detect novel proteolytic activities, zymography and fluorescence-based assays were performed and the protease activities of more than 46% of purified proteases and 40% of hypothetical proteins that were predicted to be proteases were confirmed. Conclusions Multiple expression vectors, employing distinct fusion tags in a high throughput pipeline increased overall success rates in expression, solubility and purification of proteases. The combinatorial functional analysis of the purified proteases using fluorescence assays and zymography confirmed their function.

  4. Novel peptide-based protease inhibitors

    DEFF Research Database (Denmark)

    Roodbeen, Renée

    of novel peptide-based protease inhibitors, efforts were made towards improved methods for peptide synthesis. The coupling of Fmoc-amino acids onto N-methylated peptidyl resins was investigated. These couplings can be low yielding and the effect of the use of microwave heating combined with the coupling...

  5. Carbohydrase and protease supplementation increased ...

    African Journals Online (AJOL)

    A trial was conducted to evaluate whether the addition of commercial enzyme preparations containing carbohydrases and a protease would increase the available metabolizable energy (ME) of maize-soya-based broiler diets. Seven thousand five hundred and sixty (7560) day-old Ross 788 chicks were randomly allocated ...

  6. Molecular models of NS3 protease variants of the Hepatitis C virus

    Directory of Open Access Journals (Sweden)

    Mello Isabel MVGC

    2005-01-01

    Full Text Available Abstract Background Hepatitis C virus (HCV currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. Results The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. Conclusions This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure

  7. An antibiotic, heavy metal resistant and halotolerant Bacillus cereus SIU1 and its thermoalkaline protease

    Directory of Open Access Journals (Sweden)

    Vikram Surendra

    2010-07-01

    Full Text Available Abstract Background Many workers have reported halotolerant bacteria from saline conditions capable of protease production. However, antibiotic resistance and heavy metal tolerance pattern of such organisms is not documented very well. Similarly, only a few researchers have reported the pattern of pH change of fermentation medium during the course of protease production. In this study, we have isolated a halotolerant Bacillus cereus SIU1 strain from a non-saline environment and studied its antibiotic and heavy metal resistance pattern. The isolate produces a thermoalkaline protease and changes the medium pH during the course of fermentation. Thermostability of protease was also studied for 30 min. Results Seventy bacterial strains isolated from the soils of Eastern Uttar Pradesh, India were screened for protease production. All of them exhibited protease activity. However, 40% bacterial isolates were found good protease producers as observed by caseinolytic zones on milk agar plates. Among them, culture S-4 was adjudged as the best protease producer, and was identified as Bacillus cereus by morphological, biochemical and 16 S rDNA sequence analyses. The isolate was resistant to heavy metals (As2+, Pb2+, Cs1+ and antibiotics (penicillin, lincomycin, cloxacillin, pefloxacin. Its growth behavior and protease production was studied at 45°C and pH 9.0. The protease units of 88 ml-1 were noted in unoptimized modified glucose yeast extract (GYE medium during early stationary phase at 20 h incubation period. The enzyme was stable in the temperature range of 35°-55°C. Conclusions An antibiotic and heavy metal resistant, halotolerant Bacillus cereus isolate is capable of producing thermoalkaline protease, which is active and stable at pH 9.0 and 35°-55°C. This isolate may be useful in several industrial applications owing to its halotolerance and antibiotic and heavy metal resistance characteristics.

  8. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  9. Improvement of shelf life of soymilk using immobilized protease of Oerskovia xanthineolytica NCIM 2839.

    Science.gov (United States)

    Sahoo, A K; Gaikwad, V S; Ranveer, R C; Dandge, P B; Waghmare, S R

    2016-12-01

    Protease enzyme has lot of commercial applications, so the cost-effective production of protease using sunflower oil seed waste was carried out from Oerskovia xanthineolyitca NCIM 2839. The maximum protease production was after 24 h of incubation with 2.5 % oil seed waste concentration. O. xanthineolytica was found to produce two proteases-P1 and P2. The proteases were purified using 60 % cold acetone precipitation and DEAE-cellulose ion exchange chromatography. SDS-PAGE revealed molecular weight of P1 and P2 was 36 and 24 kDa, respectively. P1 and P2 were optimally active at pH 7.0 and pH 7.5 at temperature 35 and 40 °C, respectively. Analysis of hydrolyzed product of P1 and P2 by HPLC reveals that the P1 has endoprotease and P2 has exoprotease activity. The treated soy milk with immobilized proteases showed increased shelf life and removal of off flavor.

  10. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    Directory of Open Access Journals (Sweden)

    Landys A. Lopez Quezada

    2011-06-01

    Full Text Available Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL. Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases.Serpinas são uma família de inibidores macromoleculares estruturalmente conservados encontrados em inúmeros sistemas biológicos. O término e a anotação dos genomas de Schistosoma mansoni e de Schistosoma japonicum permitiram a identificação por análise filogenética de dois principais clados de serpinas. S. mansoni mostra uma multiplicidade maior de genes de serpinas, talvez refletindo uma adaptação à infecção de um hospedeiro humano. Alvos putativos das serpinas de esquistossomos podem ser preditos a partir da sequência do "loop" do centro reativo. Serpinas de esquistossomos podem ter importantes papeis tanto na regulação pós-traducional de proteases derivadas do esquistossoma, quanto nos mecanismos de defesa contra a ação de proteases do hospedeiro.

  11. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    Science.gov (United States)

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  12. Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Arun K.; Brindisi, Margherita; Nyalapatla, Prasanth R.; Takayama, Jun; Ella-Menye, Jean-Rene; Yashchuk, Sofiya; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2017-10-01

    Based upon molecular insights from the X-ray structures of inhibitor-bound HIV-1 protease complexes, we have designed a series of isophthalamide-derived inhibitors incorporating substituted pyrrolidines, piperidines and thiazolidines as P2-P3 ligands for specific interactions in the S2-S3 extended site. Compound 4b has shown an enzyme Ki of 0.025 nM and antiviral IC50 of 69 nM. An X-ray crystal structure of inhibitor 4b-HIV-1 protease complex was determined at 1.33 Å resolution. We have also determined X-ray structure of 3b-bound HIV-1 protease at 1.27 Å resolution. These structures revealed important molecular insight into the inhibitor–HIV-1 protease interactions in the active site.

  13. An efficient method to eliminate the protease activity contaminating commercial bovine pancreatic DNase I.

    Science.gov (United States)

    Le, Tien; Lee, Hak Jin; Jin, Hyung Jong

    2015-08-15

    A method was developed to eliminate the proteases contaminating commercial DNase I, which can cause degradation of target protein during the purification process. Bio Basic DNase stock solution (in Tris-HCl buffer [pH 8.0] containing 5mM CaCl2) was first incubated at 50 °C to generate autolysis of proteases and zymogens, leading to a significant reduction in protease activity while preserving DNase activity. The residual protease activity was completely inhibited by further incubation with 2mM PMSF (phenylmethylsulfonyl fluoride) or 2× S8830 inhibitor cocktail. This approach could be readily applicable to eliminate the protease activity in any DNase products or during the preparation of commercial DNase. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Purification and characterization of a serine protease (CESP) from mature coconut endosperm

    Science.gov (United States)

    Panicker, Leelamma M; Usha, Rajamma; Roy, Samir; Mandal, Chhabinath

    2009-01-01

    Background In plants, proteases execute an important role in the overall process of protein turnover during seed development, germination and senescence. The limited knowledge on the proteolytic machinery that operates during seed development in coconut (Cocos nucifera L.) prompted us to search for proteases in the coconut endosperm. Findings We have identified and purified a coconut endosperm protease (CESP) to apparent homogeneity. CESP is a single polypeptide enzyme of approximate molecular mass of 68 kDa and possesses pH optimum of 8.5 for the hydrolysis of BAPNA. Studies relating to substrate specificity and pattern of inhibition by various protease inhibitors indicated that CESP is a serine protease with cleavage specificity to peptide bonds after arginine. Purified CESP was often autolysed to two polypeptides of 41.6 kDa (CESP1) and 26.7 kDa (CESP2) and is confirmed by immunochemistry. We have shown the expression of CESP in all varieties of coconut and in all stages of coconut endosperm development with maximum amount in fully matured coconut. Conclusion Since the involvement of proteases in the processing of pre-proteins and maintenance of intracellular protein levels in seeds are well known, we suspect this CESP might play an important role in the coconut endosperm development. However this need to be confirmed using further studies. PMID:19426537

  15. Chemistry and biology of natural product derived protease inhibitors

    OpenAIRE

    Stolze, Sara Christina

    2012-01-01

    Im Rahmen dieser Dissertation sollten Naturstoffe und davon abgeleitete Derivate synthetisiert und im Hinblick auf ihre biologische Aktivität als Protease-Inhibitoren untersucht werden. Für die Naturstoffklasse der 3-Amino-6-Hydroxy-2-piperidon(Ahp)-Cyclodepsipeptide, die als nicht-kovalente Serin-Protease-Inhibitoren bekannt sind, konnte eine Festphasensynthese basierend auf einem allgemeinen Ahp-Vorläufermolekül entwickelt werden. Für den Ahp-Vorläufer wurde eine Lösungssynthese entwicke...

  16. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  17. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  18. A sensitive fluorescence reporter for monitoring quorum sensing regulated protease production in Vibrio harveyi.

    Science.gov (United States)

    Rajamani, Sathish; Sayre, Richard T

    2011-02-01

    Many bacteria produce and secrete proteases during host invasion and pathogenesis. Vibrio harveyi, an opportunistic pathogen of shrimp, is known to use a two-component quorum sensing (QS) mechanism for coordination of gene expression including protease secretion at high population densities. We examined the role of V. harveyi's QS signaling molecules, N-(3-hydroxybutanoyl)-L-homoserine lactone (AI-1) and the boron derivative of autoinducer-2 (BAI-2) in extracellular protease production. A fusion protein, M3CLPY (Rajamani et al., 2007), consisting of a large protease sensitive BAI-2 mutant receptor LuxP (~38kDa) flanked by two protease insensitive cyan and yellow variants of GFP (~28kDa each) was utilized as a substrate to detect secreted protease activity. The M3CLPY fusion, with the addition of wild-type V. harveyi (BB120) cell-free culture filtrate showed a time-dependent loss in fluorescence resonance energy transfer (FRET) associated with the cleavage of the LuxP linker protein and hence separation of the two fluorophores. This cleavage of LuxP linker protein leading to decreased FRET efficiency was further confirmed by immunoblotting using anti-GFP antibody. The addition of cell-free filtrates from strains defective in one or both of the two-component QS pathways: luxN(-) (defective in AI-1), luxS(-) (defective in BAI-2), and luxN(-)/luxS(-) (defective in both AI-1/BAI-2) showed differential levels of protease production. The observed protease activities were most pronounced in wild-type, followed by the AI-1 defective mutant (BB170) and the least for luxS(-) mutant (MM30) and luxN(-)/luxS(-) double mutant (MM32) strains. Incidentally, the lowest protease producing strains MM30 and MM32 were both defective in BAI-2 production. This observation was validated by addition of synthetic BAI-2 to MM30 and MM32 strains to restore protease production. Our results indicate that BAI-2 signaling in the two-component QS pathway plays the key role in regulating

  19. Studies on the Catalytic Properties of Partially Purified Alkaline Proteases from Some Selected Microorganisms

    Directory of Open Access Journals (Sweden)

    Titilayo Olufunke Femi-Ola

    2012-09-01

    Full Text Available Aims: The research was done to study the conditions enhancing catalytic activities of alkaline proteases from Vibro sp., Lactobacillus brevis, Zymomonas sp., Athrobacter sp., Corynebacterium sp. and Bacillus subtilis.Methodology and Results: The proteolytic enzymes were purified in 2-step procedures involving ammonium sulphate precipitation and sephadex G-150 gel permeation chromatography. The upper and lower limits for the specific activities of proteases from the selected microorganisms were estimated at 20.63 and 47.51 units/mg protein with Zymomonas protease having the highest specific activity towards casein as its substrate and purification fold of 3.46, while that ofLactobacillus brevis protease was 8.06. The native molecular weights of these active proteins ranged from 30.4 to 45.7 kDa with Athrobacter sp. protease having the highest weight for its subunits. The proteolytic enzymes had optimum pH range of 8 to 10 and temperature range of 50 to 62 ºC accounting for the percentage relative activity range of 75 to 94% and 71 to 84 % respectively. The activities of Lactobacillus brevis and Bacillus subtilis proteases were maximum at pH 9 and 10 respectively. Lactobacillus brevis protease activity was maximum at temperature of 62 ºC, while beyond this value, a general thermal instability of these active proteins was observed. At above 70 ºC, the catalytic activities of Corynebacterium sp., Vibrio sp., Zymomonas sp. and Arthrobacter sp. proteases were progressively reduced over a period of 120 min of incubation, while Bacillus subtlis and Lactobacillus brevis proteases were relatively stable. Effect of metal ions was investigated on the catalytic activity of protease from the microorganisms. Lactobacillus brevis,Zymomonas sp., Arthrobacter sp., Corynebacterium sp. and Bacillus subtilis protease activities were strongly activated by metal ions such as Ca+2 and Mg+2. Enzyme activities were inhibited strongly by Cu2+ and Hg2+ but were not

  20. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets.

    Directory of Open Access Journals (Sweden)

    Shuai Liu

    2014-10-01

    Full Text Available Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s of individual proteases and may help to refine anti-proteolytic strategies in blood flukes.

  1. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    Science.gov (United States)

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals.

    Science.gov (United States)

    Olajuyigbe, Folasade M; Demitri, Nicola; De Zorzi, Rita; Geremia, Silvano

    2016-10-31

    Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  3. Developing HIV-1 Protease Inhibitors through Stereospecific Reactions in Protein Crystals

    Directory of Open Access Journals (Sweden)

    Folasade M. Olajuyigbe

    2016-10-01

    Full Text Available Protease inhibitors are key components in the chemotherapy of HIV infection. However, the appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role in determining the binding affinity. Here we report the comparison between three crystal structures at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal. Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described experiments open a pathway for the development of new stereospecific protease inhibitors from a reactive lead compound.

  4. The binding mechanism of a peptidic cyclic serine protease inhibitor

    DEFF Research Database (Denmark)

    Jiang, Longguang; Svane, Anna Sigrid P.; Sørensen, Hans Peter

    2011-01-01

    Serine proteases are classical objects for studies of catalytic and inhibitory mechanisms as well as interesting as therapeutic targets. Since small-molecule serine protease inhibitors generally suffer from specificity problems, peptidic inhibitors, isolated from phage-displayed peptide libraries......, have attracted considerable attention. Here, we have investigated the mechanism of binding of peptidic inhibitors to serine protease targets. Our model is upain-1 (CSWRGLENHRMC), a disulfide-bond-constrained competitive inhibitor of human urokinase-type plasminogen activator with a noncanonical...... inhibitory mechanism and an unusually high specificity. Using a number of modified variants of upain-1, we characterised the upain-1-urokinase-type plasminogen activator complex using X-ray crystal structure analysis, determined a model of the peptide in solution by NMR spectroscopy, and analysed binding...

  5. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  6. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    Science.gov (United States)

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  7. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains

    Directory of Open Access Journals (Sweden)

    Arlem Nascimento de Oliveira

    2010-10-01

    Full Text Available Two rhizobia strains isolated from soils of the Central Amazonian floodplain produced appreciable quantities of crude alkaline protease extracts with inexpensive carbon and nitrogen sources. These protease crude extracts were optimally active at pH 9.0-11.0. The optimum temperatures were 35 ºC for Rhizobium sp. strain R-986 and 55 ºC for Bradyrhizobium sp. strain R-993. Protease activities in the crude extracts were enhanced in the presence of 5 mM metal ions, such as Na+, Ca2+, Mg2+ and Mn2+. Rhizobia proteases were strongly inhibited by PMSF, a serine-protease inhibitor. The enzymes were active in the presence of surfactants (SDS and Triton X-100 and stable in oxidizing (H2O2 and reducing agents (β-mercaptoethanol, and organic solvents (acetone, hexane, methanol, 1-propanol and toluene.Duas estirpes de rizóbia isoladas de solos de várzea da Amazônia Central produziram grandes quantidades de proteases alcalinas extracelulares, usando fontes baratas de carbono e nitrogênio. Os extratos brutos de proteases foram ativos em pH 9,0-11,0. As temperaturas ótimas foram de 35 ºC para a enzima do Rhizobium R-986 e de 55 ºC para a do Bradyrhizobium R-993. As atividades proteolíticas aumentaram na presença de 5 mM dos íons Na+, Ca2+ , Mg2+ e Mn2+ . As proteases secretadas pelos rizóbios foram fortemente inibidas por PMSF, um inibidor de serina protease. As enzimas foram ativas na presença de surfactantes (SDS e Triton X-100, e estáveis na presença de agentes oxidantes (H2O2 e redutores (β-mercaptoetanol e solventes orgânicos (acetona, hexano, metanol, 1-propanol e tolueno.

  8. Effects of protease inhibitors on radiation transformation in vitro

    International Nuclear Information System (INIS)

    Kennedy, A.R.; Little, J.B.

    1981-01-01

    We have investigated the effects of three protease inhibitors, antipain, leupeptin, and soybean trypsin inhibitor, on the induction of oncogenic transformation in mouse C3H10T 1/2 cells by X-rays. The patterns of inhibition by the three protease inhibitors were different. Antipain was the most effective, having the ability to suppress completely radiation transformation as well as radiation transformation enhanced by the phorbol ester promoting agent 12-O-tetradecanoylphorbol-13-acetate. The fact that antipain could suppress transformation when present for only 1 day following irradiation suggests that an effect on a DNA repair process might be important in its action. Leupeptin was less effective than antipain in its inhibition of radiation transformation. Soybean trypsin inhibitor suppressed only the promotional effects of 12-O-tetradecanoylphorbol-13-acetate on transformation. Our results suggest that there may be more than one protease involved in carcinogenesis

  9. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  10. HIV protease inhibitors in pregnancy : pharmacology and clinical use.

    Science.gov (United States)

    Andany, Nisha; Loutfy, Mona R

    2013-03-01

    The impact of antiretroviral therapy (ART) on the natural history of HIV-1 infection has resulted in dramatic reductions in disease-associated morbidity and mortality. Additionally, the epidemiology of HIV-1 infection worldwide is changing, as women now represent a substantial proportion of infected adults. As more highly effective and tolerable antiretroviral regimens become available, and as the prevention of mother-to-child transmission becomes an attainable goal in the management of HIV-infected individuals, more and more HIV-positive women are choosing to become pregnant and have children. Consequently, it is important to consider the efficacy and safety of antiretroviral agents in pregnancy. Protease inhibitors are a common class of medication used in the treatment of HIV-1 infection and are increasingly being used in pregnancy. However, several studies have raised concerns regarding pharmacokinetic alterations in pregnancy, particularly in the third trimester, which results in suboptimal drug concentrations and a theoretically higher risk of virologic failure and perinatal transmission. Drug level reductions have been observed with each individual protease inhibitor and dose adjustments in pregnancy are suggested for certain agents. Furthermore, studies have also raised concerns regarding the safety of protease inhibitors in pregnancy, particularly as they may increase the risk of pre-term birth and metabolic disturbances. Overall, protease inhibitors are safe and effective for the treatment of HIV-infected pregnant women. Specifically, ritonavir-boosted lopinavir- and atazanavir-based regimens are preferred in pregnancy, while ritonavir-boosted darunavir- and saquinavir-based therapies are reasonable alternatives. This paper reviews the use of protease inhibitors in pregnancy, focusing on pharmacokinetic and safety considerations, and outlines the recommendations for use of this class of medication in the HIV-1-infected pregnant woman.

  11. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  12. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  13. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence.

    Science.gov (United States)

    Ranasinghe, Shiwanthi L; McManus, Donald P

    2017-05-01

    Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A cyclic peptidic serine protease inhibitor

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Xu, Peng; Jiang, Longguang

    2014-01-01

    Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase...... pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending......, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity...

  15. Coxsackievirus B3 2A protease promotes encephalomyocarditis virus replication.

    Science.gov (United States)

    Song, Qin-Qin; Lu, Ming-Zhi; Song, Juan; Chi, Miao-Miao; Sheng, Lin-Jun; Yu, Jie; Luo, Xiao-Nuan; Zhang, Lu; Yao, Hai-Lan; Han, Jun

    2015-10-02

    To determine whether 2A protease of the enterovirus genus with type I internal ribosome entry site (IRES) effect on the viral replication of type II IRES, coxsackievirus B3(CVB3)-encoded protease 2A and encephalomyocarditis virus (EMCV) IRES (Type II)-dependent or cap-dependent report gene were transiently co-expressed in eukaryotic cells. We found that CVB3 2A protease not only inhibited translation of cap-dependent reporter genes through the cleavage of eIF4GI, but also conferred high EMCV IRES-dependent translation ability and promoted EMCV replication. Moreover, deletions of short motif (aa13-18 RVVNRH, aa65-70 KNKHYP, or aa88-93 PRRYQSH) resembling the nuclear localization signals (NLS) or COOH-terminal acidic amino acid motif (aa133-147 DIRDLLWLEDDAMEQ) of CVB3 2A protease decreased both its EMCV IRES-dependent translation efficiency and destroy its cleavage on eukaryotic initiation factor 4G (eIF4G) I. Our results may provide better understanding into more effective interventions and treatments for co-infection of viral diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effect of amino acids on the repression of alkaline protease synthesis in haloalkaliphilic Nocardiopsis dassonvillei

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2016-12-01

    Full Text Available A newly isolated salt-tolerant alkaliphilic actinomycete, Nocardiopsis dassonvillei strain OK-18 grows on mineral salts medium with glucose as carbon source. It also grows and produces protease with amino acids as sole carbon source. The synthesis of extracellular alkaline protease parallel to growth was repressible by substrate concentrations. The absolute production of the protease was delinked with growth under nutritional stress, as protease production was high, despite poor growth. When amino acids served as the sole source of carbon and nitrogen, the enzyme production was significantly controlled by the number of amino acids. Maximal protease production was achieved with proline, asparagine, tyrosine, alanine, methionine and valine as sole source of carbon and nitrogen in minimal medium. With the increasing number of different amino acids in the presence and absence of glucose, the protease production was synergistically lower as compared to complex medium.

  17. Metabolic complications associated with HIV protease inhibitor therapy.

    Science.gov (United States)

    Nolan, David

    2003-01-01

    HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.

  18. Isolation, identification and optimization of alkaline protease production by Candida viswanathii

    Directory of Open Access Journals (Sweden)

    Mandana Lotfi

    2014-03-01

    Conclusion: Due to the high demand for industrial enzymes in the Country and the high activity of alkaline proteases produced by strain. It seems that the native strain can achieve high production of alkaline proteases.These native strains could be resulted in the independence of our country in industrial enzymes production.

  19. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  20. Mast cells limit extracellular levels of IL-13 via a serglycin proteoglycan-serine protease axis.

    Science.gov (United States)

    Waern, Ida; Karlsson, Iulia; Thorpe, Michael; Schlenner, Susan M; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Åbrink, Magnus; Hellman, Lars; Pejler, Gunnar; Wernersson, Sara

    2012-12-01

    Mast cell (MC) granules contain large amounts of proteases of the chymase, tryptase and carboxypeptidase A (MC-CPA) type that are stored in complex with serglycin,a proteoglycan with heparin side chains. Hence, serglycinprotease complexes are released upon MC degranulation and may influence local inflammation. Here we explored the possibility that a serglycin-protease axis may regulate levels of IL-13, a cytokine involved in allergic asthma. Indeed, we found that wild-type MCs efficiently degraded exogenous or endogenously produced IL-13 upon degranulation,whereas serglycin −/− MCs completely lacked this ability.Moreover, MC-mediated IL-13 degradation was blocked both by a serine protease inhibitor and by a heparin antagonist,which suggests that IL-13 degradation is catalyzed by serglycin-dependent serine proteases and that optimal IL-13 degradation is dependent on both the serglycin and the protease component of the serglycin-protease complex.Moreover, IL-13 degradation was abrogated in MC-CPA −/−MC cultures, but was normal in cultures of MCs with an inactivating mutation of MC-CPA, which suggests that the IL-13-degrading serine proteases rely on MC-CPA protein.Together, our data implicate a serglycin-serine protease axis in the regulation of extracellular levels of IL-13. Reduction of IL-13 levels through this mechanism possibly can provide a protective function in the context of allergic inflammation.

  1. Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses*

    OpenAIRE

    Jiang, Rui; Kim, Eun-Hye; Gong, Ji-Hee; Kwon, Hyun-Mi; Kim, Chan-Hee; Ryu, Kyoung-Hwa; Park, Ji-Won; Kurokawa, Kenji; Zhang, Jinghai; Gubb, David; Lee, Bok-Luel

    2009-01-01

    Serpins are known to be necessary for the regulation of several serine protease cascades. However, the mechanisms of how serpins regulate the innate immune responses of invertebrates are not well understood due to the uncertainty of the identity of the serine proteases targeted by the serpins. We recently reported the molecular activation mechanisms of three serine protease-mediated Toll and melanin synthesis cascades in a large beetle, Tenebrio molitor. Here, we purified three novel serpins ...

  2. Cross-talk between malarial cysteine proteases and falstatin: the BC loop as a hot-spot target.

    Directory of Open Access Journals (Sweden)

    Srinivasan Sundararaj

    Full Text Available Cysteine proteases play a crucial role in the development of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Our earlier studies demonstrated that these enzymes are equipped with specific domains for defined functions and further suggested the mechanism of activation of cysteine proteases. The activities of these proteases are regulated by a new class of endogenous inhibitors of cysteine proteases (ICPs. Structural studies of the ICPs of Trypanosoma cruzi (chagasin and Plasmodium berghei (PbICP indicated that three loops (termed BC, DE, and FG are crucial for binding to target proteases. Falstatin, an ICP of P. falciparum, appears to play a crucial role in invasion of erythrocytes and hepatocytes. However, the mechanism of inhibition of cysteine proteases by falstatin has not been established. Our study suggests that falstatin is the first known ICP to function as a multimeric protein. Using site-directed mutagenesis, hemoglobin hydrolysis assays and peptide inhibition studies, we demonstrate that the BC loop, but not the DE or FG loops, inhibits cysteine proteases of P. falciparum and P. vivax via hydrogen bonds. These results suggest that the BC loop of falstatin acts as a hot-spot target for inhibiting malarial cysteine proteases. This finding suggests new strategies for the development of anti-malarial agents based on protease-inhibitor interactions.

  3. Production and partial characterization of proteases from Mucor hiemalis URM3773

    Directory of Open Access Journals (Sweden)

    Roana Cecília dos Santos Ribeiro

    2015-03-01

    Full Text Available The current study evaluated the proteases production from 11 fungal species belonging to the genera Mucor, Rhizomucor and Absidia. The species were obtained from the Collection of Cultures URM at the Mycology Department-UFPE, Brazil. The best producing species was Mucor hiemalis URM 3773 (1.689 U mL-1. Plackett-Burman design methodology was employed to select the most effective parameter for protease production out of 11 medium components, including: concentration of filtrate soybean, glucose, incubation period, yeast extract, tryptone, pH, aeration, rotation, NH4Cl, MgSO4 and K2HPO4. Filtrated soybean concentration was the significant variable over the response variable, which was the specific protease activity. The crude enzyme extract showed optimal activity in pH 7.5 and at 50ºC. The enzyme was stable within a wide pH range from 5.8 to 8.0, in the phosphate buffer 0.1M and in stable temperature variation of 40-70ºC, for 180 minutes. The ions FeSO4, NaCl, MnCl2, MgCl2 and KCl stimulated the protease activity, whereas ZnCl2 ion inhibited the activity in 2.27%. Iodoacetic acid at 1mM was the proteases inhibitor that presented greater action.The results indicate that the studied enzyme have great potential for industrial application.

  4. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Alexander Jonathan S

    2010-12-01

    Full Text Available Abstract The normal function of poly (ADP-ribose polymerase-1 (PARP-1 is the routine repair of DNA damage by adding poly (ADP ribose polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.

  5. Analysis of serine proteases from marine sponges by 2-D zymography.

    Science.gov (United States)

    Wilkesman, Jeff G; Schröder, Heinz C

    2007-02-01

    Proteolytic activities isolated from the marine demosponges Geodia cydonium and Suberites domuncula were analyzed by 2-D zymography, a technique that combines IEF and zymography. After purification, a 200 kDa proteolytically active protein band was obtained from G. cydonium when analyzed in gelatin copolymerized 1-D zymograms. The enzymatic activity was quantified using alpha-N-benzoyl-D-arginine p-nitroanilide (BAPNA) as a substrate and corresponded to a serine protease. The protease activity was resistant to urea and SDS. DTT and 2-mercaptoethanol (2-ME) did not significantly change the protease activity, but induced a shift in molecular mass of the proteolytic band to lower M(r) values as detected by zymography. Under mild denaturing conditions, lower M(r) bands (zymography, the protease from G. cydonium revealed a pI of 8.0 and an M(r) shift from 200 to 66 kDa. To contrast these results, a cytosolic sample from S. domuncula was analyzed. The proteolytic activity of this sponge after 2-D zymography corresponded to an M(r) of 40 kDa and a pI of 4.0. The biological function of both sponge proteases is not yet known. This study demonstrates that mild denaturing conditions required for IEF may alter the interpretation of the 2-D zymography, and care must be taken during sample preparation.

  6. A SIMPLE FLUORESCENT LABELING METHOD FOR STUDIES OF PROTEIN OXIDATION, PROTEIN MODIFICATION, AND PROTEOLYSIS

    Science.gov (United States)

    Pickering, Andrew. M.; Davies, Kelvin. J. A.

    2014-01-01

    Proteins are sensitive to oxidation, and oxidized proteins are excellent substrates for degradation by proteolytic enzymes such as the Proteasome and the mitochondrial Lon protease. Protein labeling is required for studies of protein turnover. Unfortunately, most labeling techniques involve 3H or 14C methylation which is expensive, exposes researchers to radioactivity, generates large amounts of radioactive waste, and allows only single-point assays because samples require acid-precipitation. Alternative labeling methods, have largely proven unsuitable, either because the probe itself is modified by the oxidant(s) being studied, or because the alternative labeling techniques are too complex or too costly for routine use. What is needed is a simple, quick, and cheap labeling technique that uses a non-radioactive marker, that binds strongly to proteins, is resistant to oxidative modification, and emits a strong signal. We have devised a new reductive method for labeling free carboxyl groups of proteins with the small fluorophore 7-amino-4-methycoumarin (AMC). When bound to target proteins, AMC fluoresces very weakly but when AMC is released by proteinases, proteases, or peptidases, it fluoresces strongly. Thus, without acid-precipitation, the proteolysis of any target protein can be studied continuously, in multiwell plates. In direct comparisons, 3H-labeled proteins and AMC-labeled proteins exhibited essentially identical degradation patterns during incubation with trypsin, cell extracts, and purified proteasome. AMC-labeled proteins are well-suited to study increased proteolytic susceptibility following protein modification, since the AMC-protein bond is resistant to oxidizing agents such as hydrogen peroxide and peroxynitrite, and is stable over time and to extremes of pH, temperature (even boiling), freeze-thawing, mercaptoethanol, and methanol. PMID:21988844

  7. Sequential Detection of Thermophilic Lipase and Protease by Zymography.

    Science.gov (United States)

    Kurz, Liliana; Hernández, Zully; Contreras, Lellys M; Wilkesman, Jeff

    2017-01-01

    Lipase and protease present in cell-free fractions of thermophilic Bacillus sp. cultures were analyzed by polyacrylamide gel (PAG) electrophoresis. After run, the gel is electrotransferred to another PAG copolymerized with glycerol tributyrate, olive oil, and gelatin. This multi-substrate gel was incubated first for lipase detection, until bands appeared, and then stained with Coomassie for protease detection. Advantages of this sequential procedure are the detection of two different enzyme activities on a single PAG, beside time and resource saving.

  8. Modulation of the epithelial sodium channel (ENaC by bacterial metalloproteases and protease inhibitors.

    Directory of Open Access Journals (Sweden)

    Michael B Butterworth

    Full Text Available The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC, leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions.

  9. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Variably protease-sensitive prionopathy in the UK: a retrospective review 1991-2008

    NARCIS (Netherlands)

    Head, M.W.; Yull, H.M.; Ritchie, D.L.; Langeveld, J.P.M.; Fletcher, N.A.; Knight, R.S.; Ironside, J.W.

    2013-01-01

    Variably protease-sensitive prionopathy is a newly described human prion disease of unknown aetiology lying out with the hitherto recognized phenotypic spectrum of Creutzfeldt-Jakob disease. Two cases that conform to the variably protease-sensitive prionopathy phenotype have been identified

  11. Identification and isoforms specificity of barley (Hordeum vulgare) grain proteinaceous inhibitors of commercial feed protease

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Brinch-Pedersen, Henrik

    2016-01-01

    Protease is commonly used as feed additive. Ronozyme® ProAct, a subtilisin-like serine feed protease is different from the already characterized Bacillus subtilisin-like serine protease. When used in wheat and barley based feed, its degree of efficiency differs according to the cultivar in analys...

  12. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  13. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  14. HIV-1 protease-induced apoptosis

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Křížová, Ivana; Keprová, Alena; Hadravová, Romana; Doležal, Michal; Strohalmová, Karolína; Pichová, Iva; Hájek, Miroslav; Ruml, T.

    2014-01-01

    Roč. 11, May 20 (2014), 37/1-37/15 ISSN 1742-4690 R&D Projects: GA ČR GA204/09/1388 Institutional support: RVO:61388963 Keywords : HIV protease * BCA3 * AKIP-1 * apoptosis * mitochondria Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/37

  15. KAJIAN SIFAT FISIKOKIMIA DAN ORGANOLEPTIK HIDROLISAT TEMPE HASIL HIDROLISIS PROTEASE [Study on physicochemical and organoleptic properties of tempeh hydrolysate produced by protease

    Directory of Open Access Journals (Sweden)

    Bambang Herry

    2002-12-01

    Full Text Available Physicochemical and organoleptic properties of tempeh hydrolysate produced by protease were studied. The tempeh hydrolysate had different properties comparing with those of the unhydrolyzed tempeh powder. Hydrolysis of the tempeh protein could lower the antioxidant activity. Accordingly, the TBA value increased significantly when the tempeh was hydrolyzed by protease. This process also promoted Maillard reaction, resulting in a more brown color than that of the unhydrolyzed tempeh powder. Moreover, the tempeh hydrolysate had a better protein solubility, and a higher index of umami taste by organoleptic evaluation.

  16. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  17. Partial Purification and Characterization of Extracellular Protease ...

    African Journals Online (AJOL)

    USER

    Keywords: Protease, lactic acid bacteria, Pediococcus acidilactici, enzyme ... confers organoleptic improvements in fermented foods ... was characterized by studying the effect of substrate ... addition of solid ammonium sulphate up to 80%.

  18. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  19. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  20. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  1. Fibrinolytic protease production by new Streptomyces sp. DPUA 1576 from Amazon lichens

    Directory of Open Access Journals (Sweden)

    Germana M.M. Silva

    2015-01-01

    Conclusions: These results show that the optimization of the culture medium can enhance protease production, thus becoming a good process for further research. In addition, Streptomyces sp. DPUA 1576, isolated from Amazon lichens, might be a potential strain for fibrinolytic protease production.

  2. Protease digestion from wheat stillage within a dry grind ethanol facility.

    Science.gov (United States)

    Bals, Bryan; Brehmer, Ben; Dale, Bruce; Sanders, Johan

    2011-01-01

    As the current starch based ethanol market increases at its rapid pace, finding new markets for the primary coproduct, distiller's grains, has gained considerable interest. One possibility is to isolate the protein-rich fraction for use as precursors to biochemicals and bioplastics, further decreasing fossil fuel consumption. This research focuses on enzymatic extraction of protein peptides from wheat heavy stillage using commercially available proteases. The energy saved due to this process ranged from ∼ 1.5 to 3.0 GJ/ton wheat stillage compared to fossil fuel-based chemicals. Using Protex 6L (Genencor), ∼ 57% of the protein in the stillage was soluble 24 h after protease addition at 0.1% w/w loading. Of these proteins, ∼ 32% were already soluble, indicating the importance of using wet heavy stillage as the feedstock rather than dried distiller's grains. Peptide size was less than 6 kDa. Further improvements in protein removal may be obtained through a fed batch addition of protease and improved protease cocktails. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  3. Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor

    International Nuclear Information System (INIS)

    Hansen, Daiane; Macedo-Ribeiro, Sandra; Verissimo, Paula; Yoo Im, Sonia; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2007-01-01

    Bauhinia bauhinioides Cruzipain Inhibitor (BbCI) is a cysteine protease inhibitor highly homologous to plant Kunitz-type inhibitors. However, in contrast to classical Kunitz family inhibitors it lacks cysteine residues and therefore disulfide bridges. BbCI is also distinct in the ability to inactivate enzymes belonging to two different classes, cysteine and serine proteases. Besides inhibiting the cysteine protease cruzipain, BbCI also inhibits cathepsin L and the serine proteases HNE (human neutrophil elastase) and PPE (porcine pancreatic elastase). Monoclinic crystals of the recombinant inhibitor that diffract to 1.7 A resolution were obtained using hanging drop method by vapor diffusion at 18 o C. The refined structure shows the conservative β-trefoil fold features of the Kunitz inhibitors. In BbCI, one of the two characteristic S-S bonds is replaced by the water-mediated interaction between Tyr125 and Gly132. In this work we explore the structural differences between Kunitz-type inhibitors and analyze the essential interactions that maintain the protein structural stability preserving its biological function

  4. Cysteine proteases and wheat (Triticum aestivum L) under drought: A still greatly unexplored association.

    Science.gov (United States)

    Botha, Anna-Maria; Kunert, Karl J; Cullis, Christopher A

    2017-09-01

    Bread wheat (Triticum aestivum L.) provides about 19% of global dietary energy. Environmental stress, such as drought, affects wheat growth causing premature plant senescence and ultimately plant death. A plant response to drought is an increase in protease-mediated proteolysis with rapid degradation of proteins required for metabolic processes. Among the plant proteases that are increased in their activity following stress, cysteine proteases are the best characterized. Very little is known about particular wheat cysteine protease sequences, their expression and also localization. The current knowledge on wheat cysteine proteases belonging to the five clans (CA, CD, CE, CF and CP) is outlined, in particular their expression and possible function under drought. The first successes in establishing an annotated wheat genome database are further highlighted which has allowed more detailed mining of cysteine proteases. We also share our thoughts on future research directions considering the growing availability of genomic resources of this very important food crop. Finally, we also outline future application of developed knowledge in transgenic wheat plants for environmental stress protection and also as senescence markers to monitor wheat growth under environmental stress conditions. © 2017 John Wiley & Sons Ltd.

  5. Towards tricking a pathogen's protease into fighting infection: the 3D structure of a stable circularly permuted onconase variant cleavedby HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Mariona Callís

    Full Text Available Onconase® is a highly cytotoxic amphibian homolog of Ribonuclease A. Here, we describe the construction of circularly permuted Onconase® variants by connecting the N- and C-termini of this enzyme with amino acid residues that are recognized and cleaved by the human immunodeficiency virus protease. Uncleaved circularly permuted Onconase® variants are unusually stable, non-cytotoxic and can internalize in human T-lymphocyte Jurkat cells. The structure, stability and dynamics of an intact and a cleaved circularly permuted Onconase® variant were determined by Nuclear Magnetic Resonance spectroscopy and provide valuable insight into the changes in catalytic efficiency caused by the cleavage. The understanding of the structural environment and the dynamics of the activation process represents a first step toward the development of more effective drugs for the treatment of diseases related to pathogens expressing a specific protease. By taking advantage of the protease's activity to initiate a cytotoxic cascade, this approach is thought to be less susceptible to known resistance mechanisms.

  6. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  7. Purification and characterization of an alkaline protease from Micrococcus sp. isolated from the South China Sea

    Science.gov (United States)

    Hou, Enling; Xia, Tao; Zhang, Zhaohui; Mao, Xiangzhao

    2017-04-01

    Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0-11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.

  8. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  9. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  10. Comparative characterization of protease activity in cultured spotted rose snapper juveniles (Lutjanus guttatus

    Directory of Open Access Journals (Sweden)

    Emyr Peña

    2015-09-01

    Full Text Available Partial characterizations of digestive proteases were studied in three life stages of spotted rose snapper: early (EJ, middle (MJ and late juvenile (LJ with corresponding average weights of 21.3 ± 2.6 g (3 months after hatching, MAH, 190 ± 4.4 g (7 MAH, and 400 ± 11.5 g (12 MAH. At sampling points, the digestive tract was dissected into the stomach (St, pyloric caeca (PC, and the intestine in three sections (proximal (PI, middle (MI and distal intestine (DI. The effect of pH and temperature and specific inhibitors were evaluated for acid and alkaline proteases. Total acid and alkaline protease activity showed a tendency to increase with juvenile life stage of fish while trypsin activity decreased. Differences were found in acid and alkaline protease activities at different pH and temperatures during juvenile stages. Pepstatin A inhibited total activity in the stomach extract in all juvenile stages. Activity in total alkaline protease inhibition was significantly higher in EJ using TLCK, PMSF, SBTI, Phen and Ovo than in MJ and LJ, while no significant differences were found with TPCK inhibition. Therefore increases in protease activities with fish growth through juvenile stages in which a substitution or diversification in the type of alkaline enzymes exist. These results lead a better comprehension of changes in digestive potential of Lutjanidae fish.

  11. Effects of cysteine protease inhibitors on rabbit cathepsin D maturation

    International Nuclear Information System (INIS)

    Samarel, A.M.; Ferguson, A.G.; Decker, R.S.; Lesch, M.

    1989-01-01

    To examine the effects of cysteine protease inhibitors on cathepsin D intracellular transport, proteolytic processing, and secretion, primary cultures of rabbit cardiac fibroblasts were grown to confluence and exposed to media containing leupeptin, E 64, or chloroquine. Cathepsin D maturation was then evaluated in pulse-chase biosynthetic labeling experiments. None of the three agents affected the charge modification of procathepsin D within the Golgi apparatus. However, all three agents interfered with the subsequent proteolytic processing of procathepsin D isoforms to active cathepsin D. Both leupeptin and E 64 caused the intracellular accumulation of large amounts of a Mr 51,000 processing intermediate. Trace amounts of this intermediate were also detected in chloroquine-treated cells. Combined activity assay and radioimmunoassay of cell lysates indicated that this partially processed form of cathepsin D possessed proteolytic activity. Whereas low medium concentrations of leupeptin (10-100 microM) but not E 64 appeared to stimulate procathepsin D secretion, neither agent appeared to have a major effect on the rate of proenzyme secretion at doses required to inhibit proteolytic maturation (1-10 mM). Furthermore, pretreatment of cells with 10 mM leupeptin appeared only to delay, but not prevent, the intracellular transport of cathepsin D to lysosomes. In contrast, chloroquine increased procathepsin D secretion in a dose-dependent manner, diverting the majority of newly synthesized procathepsin D from the intracellular protease(s) responsible for proteolytic processing. These results suggest that cysteine proteases participate in the proteolytic maturation of procathepsin D during the transport of newly synthesized enzyme to lysosomes, but cysteine protease-mediated proteolytic processing is not required for cathepsin D activation or lysosomal translocation

  12. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  13. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  14. Extraction, purification and characterization of a protease from Micrococcus sp. VKMM 037.

    Science.gov (United States)

    Manikandan, Muthu; Kannan, Vijayaraghavan; Pasić, Lejla

    2011-10-01

    The haloalkaliphilic bacterium Micrococcus sp. VKMM 037, isolated from an effluent of the caustic soda industry, was found to produce a protease. Maximal proteolytic activity was observed in cell culture grown at 40 degrees C using 2% (w/v) glycerol, 2% (w/v) beef extract and 2% (w/v) peptone as nutrients in medium also containing 0.85 M NaCl with a pH of 10.0. An efficient purification procedure combining ammonium sulphate precipitation and Q-Sepharose ion-exchange chromatography was developed. The purified 41 kDa protease was stable in a temperature range between 20 degrees C and 60 degrees C. The protease remained active over a wide range of pH values (4.0-12.0) and NaCl concentrations (0-3.42 M) with an optimum at pH 10.0 and 0.85 M NaCl, respectively. Furthermore, the enzyme remained stable or was only marginally inhibited in the presence of various organic solvents, surfactants and reducing agents. The purified protease of Micrococcus sp. VKMM 037 efficiently removed blood stains within 40 minutes of treatment. Given the biochemical characteristics determined, this novel protease could be exploited as an additive in the detergent industry and also for the synthesis of biomolecules and the degradation of protein.

  15. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    LENUS (Irish Health Repository)

    Thornton, Roibeard F

    2010-04-23

    Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  16. The dissemination of C10 cysteine protease genes in Bacteroides fragilis by mobile genetic elements

    Directory of Open Access Journals (Sweden)

    Kagawa Todd F

    2010-04-01

    Full Text Available Abstract Background The C10 family of cysteine proteases includes enzymes that contribute to the virulence of bacterial pathogens, such as SpeB in Streptococcus pyogenes. The presence of homologues of cysteine protease genes in human commensal organisms has not been examined. Bacteroides fragilis is a member of the dominant Bacteroidetes phylum of the human intestinal microbiota, and is a significant opportunistic pathogen. Results Four homologues of the streptococcal virulence factor SpeB were identified in the B. fragilis genome. These four protease genes, two were directly contiguous to open reading frames predicted to encode staphostatin-like inhibitors, with which the protease genes were co-transcribed. Two of these protease genes are unique to B. fragilis 638R and are associated with two large genomic insertions. Gene annotation indicated that one of these insertions was a conjugative Tn-like element and the other was a prophage-like element, which was shown to be capable of excision. Homologues of the B. fragilis C10 protease genes were present in a panel of clinical isolates, and in DNA extracted from normal human faecal microbiota. Conclusions This study suggests a mechanism for the evolution and dissemination of an important class of protease in major members of the normal human microbiota.

  17. Teaching Foundational Topics and Scientific Skills in Biochemistry within the Conceptual Framework of HIV Protease

    Science.gov (United States)

    Johnson, R. Jeremy

    2014-01-01

    HIV protease has served as a model protein for understanding protein structure, enzyme kinetics, structure-based drug design, and protein evolution. Inhibitors of HIV protease are also an essential part of effective HIV/AIDS treatment and have provided great societal benefits. The broad applications for HIV protease and its inhibitors make it a…

  18. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes

    NARCIS (Netherlands)

    Punt, P.J.; Schuren, F.H.J.; Lehmbeck, J.; Christensen, T.; Hjort, C.; Hondel, C.A.M.J.J. van den

    2008-01-01

    Expression of several Aspergillus niger genes encoding major secreted, but not vacuolar, protease genes including the major acid protease gene pepA, was shown to be affected in the previously isolated A. niger protease mutant, AB1.13 [Mattern, I.E., van Noort, J.M., van den Berg, P., Archer, D.A.,

  19. Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-Dalfard

    2012-01-01

    Full Text Available Introduction: Organic solvent-tolerant bacteria are relatively novel extermophilic microorganisms, which can produce organic tolerant protease with capacity of being used in industrial biotechnology for producing high-value compounds. Therefore, finding of these bacteria has drawn much researchers attention nowadays. Materials and Methods: In this project, samples were collected from a hot spring, located in Jiroft. Samples were incubated in medium supplemented with cyclohexane and toluene for 3 days. Screening of protease producing bacteria was performed on the specific media, SKM (Skim milk agar, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Protease activity was considered in different temperatures, pH and organic solvents.Results: Sequence alignment and phylogenetic tree results showed that this bacteria was closely related to Bacillus niacini, with 97% homology. Enzymatic studies showed that, this enzyme was active at a wide range of temperatures, 20-90 °C and it,s optimal activity was in 60 °C. In addition, maximum protease activity was obtained in the 8-9 range of pH, and optimal stability was also at pH 9.0. Protease activity in the presence of methanol, toluene, isopropanol, cyclohexane and DMF ‏showed that, remaining activity was at least 80% compared to the control (without organic solvent Discussion and Conclusion: Thermopilic capacity, being active in alkaline protease and high protease stability in the presence of organic solvents all herald a remarkable application for using in different industries.

  20. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  2. Selection of suitable detergents for obtaining an active dengue protease in its natural form from E. coli.

    Science.gov (United States)

    Liew, Lynette Sin Yee; Lee, Michelle Yueqi; Wong, Ying Lei; Cheng, Jinting; Li, Qingxin; Kang, CongBao

    2016-05-01

    Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A parametric study ot protease production in batch and fed-batch cultures of Bacillus firmus.

    Science.gov (United States)

    Moon, S H; Parulekar, S J

    1991-03-05

    Proteolytic enzymes produced by Bacillus species find a wide variety of applications in brewing, detergent, food, and leather industries. Owing to significant differences normally observed in culture conditions promoting cell growth and those promoting production of metabolites such as enzymes, for increased efficacy of bioreactor operations it is essential to identify these sets of conditions (including medium formulation). This study is focused on formulation of a semidefined medium that substantially enhances synthesis and secretion of an alkaline protease in batch cultures of Bacillus firmus NRS 783, a known superior producer of this enzyme. The series of experiments conducted to identify culture conditions that lead to improved protease production also enables investigation of the regulatory effects of important culture parameters including pH, dissolved oxygen, and concentrations of nitrogen and phosphorous sources and yeast extract in the medium on cell growth, synthesis and secretion of protease, and production of two major nonbiomass products, viz., acetic acid and ethanol. Cell growth and formation of the three nonbiomass products are hampered significantly under nitrogen, phosphorous, or oxygen limitation, with the cells being unable to grow in an oxygen-free environment. Improvement in protease production is achieved with respect to each culture parameter, leading in the process to 80% enhancement in protease activity over that attained using media reported in the literature. Results of a few fed-batch experiments with constant feed rate, conducted to examine possible enhancement in protease production and to further investigate repression of protease synthesis by excess of the principal carbon and nitrogen sources, are also discussed. The detailed investigation of stimulatory and repressory effects of simple and complex nutrients on protease production and metabolism of Bacillus firmus conducted in this study will provide useful guidelines for design

  4. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  5. Roles of secretory leukocyte protease inhibitor amniotic membrane in oral wound healing

    Directory of Open Access Journals (Sweden)

    Elly Munadziroh

    2006-12-01

    Full Text Available Secretory Leukocyte Protease Inhibitor (SLPI is serine protease inhibitor. Secretory Leukocyte Protease Inhibitor is a protein found in secretions such as whole saliva, seminal fluid, cervical mucus, synovial fluid, breast milk, tears, and cerebral spinal fluid, as in secretions from the nose and bronchi, amniotic fluid and amniotic membrane etc. These findings demonstrate that SLPI function as a potent anti protease, anti inflammatory, bactericidal, antifungal, tissue repair, extra cellular synthesis. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in the process. The objectives of this article are to investigate the role of SLPI in oral inflammation and how it contributes to tissue repair in oral mucosa. The oral wound healing responses are impaired in the SLPI sufficient mice and matrix synthesis and collagen deposition are delayed. This study indicated that SLPI is a povital factor necessary for optimal wound healing.

  6. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  7. Different contributions of HtrA protease and chaperone activities to Campylobacter jejuni stress tolerance and physiology

    DEFF Research Database (Denmark)

    Bæk, Kristoffer Torbjørn; Vegge, Christina Skovgaard; Skórko-Glonek, Joanna

    2011-01-01

    activity is sufficient for growth at high temperature or oxidative stress, whereas the HtrA protease activity is only essential at conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat-shock response even at optimal......The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope such as HtrA and SurA. HtrA displays both chaperone and protease activity......, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone...

  8. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  9. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  10. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  11. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  12. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.

    Science.gov (United States)

    Shah, Falgun; Mukherjee, Prasenjit; Gut, Jiri; Legac, Jennifer; Rosenthal, Philip J; Tekwani, Babu L; Avery, Mitchell A

    2011-04-25

    Malaria, in particular that caused by Plasmodium falciparum , is prevalent across the tropics, and its medicinal control is limited by widespread drug resistance. Cysteine proteases of P. falciparum , falcipain-2 (FP-2) and falcipain-3 (FP-3), are major hemoglobinases, validated as potential antimalarial drug targets. Structure-based virtual screening of a focused cysteine protease inhibitor library built with soft rather than hard electrophiles was performed against an X-ray crystal structure of FP-2 using the Glide docking program. An enrichment study was performed to select a suitable scoring function and to retrieve potential candidates against FP-2 from a large chemical database. Biological evaluation of 50 selected compounds identified 21 diverse nonpeptidic inhibitors of FP-2 with a hit rate of 42%. Atomic Fukui indices were used to predict the most electrophilic center and its electrophilicity in the identified hits. Comparison of predicted electrophilicity of electrophiles in identified hits with those in known irreversible inhibitors suggested the soft-nature of electrophiles in the selected target compounds. The present study highlights the importance of focused libraries and enrichment studies in structure-based virtual screening. In addition, few compounds were screened against homologous human cysteine proteases for selectivity analysis. Further evaluation of structure-activity relationships around these nonpeptidic scaffolds could help in the development of selective leads for antimalarial chemotherapy.

  13. Optimization of medium composition for thermostable protease ...

    African Journals Online (AJOL)

    SERVER

    2008-04-17

    Apr 17, 2008 ... Optimization of the fermentation medium for maximization of thermostable neutral protease production by Bacillus sp. ..... Each contour curve represented an infinite number of combinations of two ..... Production in sea-water of.

  14. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  15. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  16. Production and Characterization of Keratinolytic Protease from New Wool-Degrading Bacillus Species Isolated from Egyptian Ecosystem

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hassan

    2013-01-01

    Full Text Available Novel keratin-degrading bacteria were isolated from sand soil samples collected from Minia Governorate, Egypt. In this study, the isolates were identified as Bacillus amyloliquefaciens MA20 and Bacillus subtilis MA21 based on morphological and biochemical characteristics as well as 16S rRNA gene sequencing. B. amyloliquefaciens MA20 and B. subtilis MA21 produced alkaline keratinolytic serine protease when cultivated in mineral medium containing 1% of wool straight off sheep as sole carbon and nitrogen source. The two strains were observed to degrade wool completely to powder at pH 7 and 37°C within 5 days. Under these conditions the maximum activity of proteases produced by B. amyloliquefaciens MA20 and B. subtilis MA21 was 922 and 814 U/ml, respectively. The proteases exhibited optimum temperature and pH at 60°C and 9, respectively. However, the keratinolytic proteases were stable in broad range of temperature and pH values towards casein Hammerstein. Furthermore the protease inhibitor studies indicated that the produced proteases belong to serine protease because of their sensitivity to PMSF while they were inhibited partially in presence of EDTA. The two proteases are stable in most of the used organic solvents and enhanced by metals suggesting their potential use in biotechnological applications such as wool industry.

  17. Alkaline protease production from industrial wastes by bacillus subtilis ML-4

    International Nuclear Information System (INIS)

    Sher, M.G.; Nadeem, M.; Syed, Q.; Irfan, M.; Baig, S.

    2010-01-01

    The influence of various culture conditions on protease production by Bacillus subtilis ML-4 was studied in the presence of growth medium containing poultry feed waste (5%), K/sub 2/HPO/sub 4/ (0.3%), CaCl/sub 2/ (0.03%) and MgSO/sub 4/ (0.015%). Maximum protease production (264.25 +- 1.86 U/ml) was observed at initial pH 9 with 3% (v/v) of inoculum size after 48 h of incubation at 37 degree C. The alkaline protease was stable over a broad range of temperature (30 to 60 degree C) and pH (8 to 11). However, maximum activity (155.45 U/ml) was observed at temperature 50 degree C and pH 10. (author)

  18. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  19. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Rok Gaber

    2013-11-01

    Full Text Available To effectively fight against the human immunodeficiency virus infection/ acquired immunodeficiency syndrome (HIV/AIDS epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity.

  20. Noninvasive High-Throughput Single-Cell Analysis of HIV Protease Activity Using Ratiometric Flow Cytometry

    Science.gov (United States)

    Gaber, Rok; Majerle, Andreja; Jerala, Roman; Benčina, Mojca

    2013-01-01

    To effectively fight against the human immunodeficiency virus infection/acquired immunodeficiency syndrome (HIV/AIDS) epidemic, ongoing development of novel HIV protease inhibitors is required. Inexpensive high-throughput screening assays are needed to quickly scan large sets of chemicals for potential inhibitors. We have developed a Förster resonance energy transfer (FRET)-based, HIV protease-sensitive sensor using a combination of a fluorescent protein pair, namely mCerulean and mCitrine. Through extensive in vitro characterization, we show that the FRET-HIV sensor can be used in HIV protease screening assays. Furthermore, we have used the FRET-HIV sensor for intracellular quantitative detection of HIV protease activity in living cells, which more closely resembles an actual viral infection than an in vitro assay. We have developed a high-throughput method that employs a ratiometric flow cytometry for analyzing large populations of cells that express the FRET-HIV sensor. The method enables FRET measurement of single cells with high sensitivity and speed and should be used when subpopulation-specific intracellular activity of HIV protease needs to be estimated. In addition, we have used a confocal microscopy sensitized emission FRET technique to evaluate the usefulness of the FRET-HIV sensor for spatiotemporal detection of intracellular HIV protease activity. PMID:24287545

  1. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  2. Endosymbiotic and host proteases in the digestive tract of the invasive snail Pomacea canaliculata: diversity, origin and characterization.

    Directory of Open Access Journals (Sweden)

    Martín S Godoy

    Full Text Available Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1 a 125 kDa protease in salivary gland extracts and in the crop content; (2 a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3 two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen.

  3. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  4. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  5. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease

    DEFF Research Database (Denmark)

    Studdert, C A; Herrera Seitz, M K; Plasencia, I

    2001-01-01

    A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5.5-12), is rat......A serine protease was purified from Natronococcus occultus stationary phase culture medium (328-fold, yield 19%) and characterized at the biochemical level. The enzyme has a native molecular mass of 130 kDa, has chymotrypsin-like activity, is stable and active in a broad pH range (5.......5-12), is rather thermophilic (optimal activity at 60 degrees C in 1-2 M NaCl) and is dependent on high salt concentrations for activity and stability (1-2 M NaCl or KCl). Polyclonal antibodies were raised against the purified protease. In Western blots, they presented no cross-reactivity with culture medium from...... other halobacteria nor with commercial proteases except subtilisin. The amino acid sequences of three tryptic peptides obtained from Natronococcus occultus protease did not show significant similarity to other known proteolytic enzymes. This fact, in addition to its high molecular mass suggests...

  6. Extracellular proteases of Halobacillus blutaparonensis strain M9, a new moderately halophilic bacterium.

    Science.gov (United States)

    Santos, Anderson F; Valle, Roberta S; Pacheco, Clarissa A; Alvarez, Vanessa M; Seldin, Lucy; Santos, André L S

    2013-12-01

    Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.

  7. Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil

    Directory of Open Access Journals (Sweden)

    Anderson F. Santos

    2015-03-01

    Full Text Available Two psychrophilic bacterial samples were isolated from King George Island soil, in Antarctica. The phylogenetic analysis based on the 16S rRNA (rrs gene led to the correlation with the closest related isolates as Sporosarcina aquimarina (99% and Algoriphagus antarcticus(99%, with query coverage of 99% and 98%, respectively.The spent culture media from both isolates displayed proteolytic activities detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis containing gelatin as protein substrate. Under the employed conditions, S. aquimarina showed a 55 kDa protease with the best activity detected at pH 7.0 and at 27°C. A. antarcticusalso showed a single extracellular protease, however its molecular mass was around 90kDa and its best activity was detected at pH 9.0 and at 37°C. The proteases from both isolates were inhibited by 1,10-phenanthroline and EDTA, two metalloprotease inhibitors. This is the first record of protease detection in both species, and our results may contribute to broaden the basic knowledge of proteases from the Antarctica environment and may help prospecting future biotechnological applications of these enzymes.

  8. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  9. Purification of a 6.5 kDa protease inhibitor from Amazon Inga umbratica seeds effective against serine proteases of the boll weevil Anthonomus grandis.

    Science.gov (United States)

    Calderon, L A; Teles, R C L; Leite, J R S A; Franco, O L; Grossi-de-Sá, M F; Medrano, F J; Bloch, C; Freitas, S M

    2005-08-01

    A 6.5 kDa serine protease inhibitor was purified by anion-exchange chromatography from the crude extract of the Inga umbratica seeds, containing inhibitor isoforms ranging from 6.3 to 6.7 kDa and protease inhibitors of approximately 19 kDa. The purified protein was characterized as a potent inhibitor against trypsin and chymotrypsin and it was named I. umbratica trypsin and chymotrypsin inhibitor (IUTCI). MALDI-TOF spectra of the IUTCI, in the presence of DTT, showed six disulfide bonds content, suggesting that this inhibitor belongs to Bowman-Birk family. The circular dichroism spectroscopy indicates that IUTCI is predominantly formed by unordered and beta-sheet secondary structure. It was also characterized, by fluorescence spectroscopy, as a stable protein at range of pH from 5.0 to 7.0. Moreover, this inhibitor at concentration of 75 microM presented a remarkable inhibitory activity (60%) against digestive serine proteases from boll weevil Anthonomus grandis, an important economical cotton pest.

  10. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Lysine sulfonamides as novel HIV-protease inhibitors: Nepsilon-acyl aromatic alpha-amino acids.

    Science.gov (United States)

    Stranix, Brent R; Lavallée, Jean-François; Sévigny, Guy; Yelle, Jocelyn; Perron, Valérie; LeBerre, Nicholas; Herbart, Dominik; Wu, Jinzi J

    2006-07-01

    A series of lysine sulfonamide analogues bearing Nepsilon-acyl aromatic amino acids were synthesized using an efficient synthetic route. Evaluation of these novel protease inhibitors revealed compounds with high potency against wild-type and multiple-protease inhibitor-resistant HIV viruses.

  12. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Mansoor eKarimi Jashni

    2015-08-01

    Full Text Available Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles.

  13. Primary structure of human pancreatic protease E determined by sequence analysis of the cloned mRNA

    International Nuclear Information System (INIS)

    Shen, W.; Fletcher, T.S.; Largman, C.

    1987-01-01

    Although protease E was isolated from human pancreas over 10 years ago, its amino acid sequence and relationship to the elastases have not been established. The authors report the isolation of a cDNA clone for human pancreatic protease E and determination of the nucleic acid sequence coding for the protein. The deduced amino acid sequence contains all of the features common to serine proteases. The substrate binding region is highly homologous to those of porcine and rat elastases 1, explaining the similar specificity for alanine reported for protease E and these elastases. However, the amino acid sequence outside the substrate binding region is less than 50% conserved, and there is a striking difference in the overall net charge for protease E (6-) and elastases 1 (8+). These findings confirm that protease E is a new member of the serine protease family. They have attempted to identify amino acid residues important for the interaction between elastases and elastin by examining the amino acid sequence differences between elastases and protease E. In addition to the large number of surface charge changes which are outside the substrate binding region, there are several changes which might be crucial for elastolysis: Leu-73/Arg-73; Arg-217A/Ala-217A; Arg-65A/Gln-65A; and the presence of two new cysteine residues (Cys-98 and Cys-99B) which computer modeling studies predict could form a new disulfide bond, not previously observed for serine proteases. They also present evidence which suggests that human pancreas does not synthesize a basic, alanine-specific elastase similar to porcine elastase 1

  14. Expression and characterization of plant aspartic protease nepenthesin-1 from Nepenthes gracilis

    Czech Academy of Sciences Publication Activity Database

    Kádek, Alan; Tretyachenko, V.; Mrázek, Hynek; Ivanova, Ljubina; Halada, Petr; Rey, M.; Schriemer, D. C.; Man, Petr

    2014-01-01

    Roč. 95, MAR 2014 (2014), s. 121-128 ISSN 1046-5928 R&D Projects: GA ČR GAP206/12/0503; GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Plant aspartic protease * Nepenthesin * Protease characterization Subject RIV: CE - Biochemistry Impact factor: 1.695, year: 2014

  15. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  16. Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases

    NARCIS (Netherlands)

    Kaman, W.E.; Voskamp-Visser, I.; de Jongh, D.M.C.; Endtz, H.P.; van Belkum, A.; Hays, J.P.; Bikker, F.J.

    2013-01-01

    Bacterial proteases play an important role in a broad spectrum of processes, including colonization, proliferation, and virulence. In this respect, bacterial proteases are potential biomarkers for bacterial diagnosis and targets for novel therapeutic protease inhibitors. To investigate these

  17. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  18. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  19. Immobilization of bromelain protease on PVA gels for the oligopeptides synthesis

    International Nuclear Information System (INIS)

    Fagundes, Fabio P.; Madruga, Liszt Y.C.; Balaban, Rosangela de C.; Costa, Marta

    2015-01-01

    Enzymatic synthesis of peptides using proteases has attracted a great deal of attention in recent years. One key challenge in peptide synthesis is to find supports for protease immobilization capable of working in aqueous medium at high performance, producing water-soluble oligopeptides. Therefore, the aim of this paper was to immobilize the bromelain protease by Freezing / thawing method on polymeric gels of Poli (vinyl alcohol) in order to produce water-soluble oligopeptides derived from lysine. Calculations of oligolysine yield and average degree of polymerization (DPavg) were monitored by 1 H-NMR analysis. Scanning Electronic Micrograph (SEM) was responsible to associate to the porous size with performance of each system during the production of oligopeptides from lysine. These systems produced oligomers in only 1 hour with DPavg higher than free bromelain. (author)

  20. Changes in protein metabolism after irradiation. Pt. 2. Protease activity, protease pattern, protein and free amino acids in cytoplasm and cell organelles of the rat liver after 600 R whole body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Valet, G [Max-Planck-Institut fuer Biochemie, Muenchen (F.R. Germany). Abt. fuer Experimentelle Medizin

    1976-01-01

    The protease activity of cytoplasm and cell organelles of the rat liver against liver protein and hemoglobin as a substrate increases during an initial reaction phase on the first day after 600 R whole body x irradiation. This is probably a consequence of the degradation of cellular debris. The protein, the protease activity and the free amino acids of the cytoplasm and the cell organelles decrease during the disease phase on day 3 and 4 after irradiation. The protein loss of the liver is therefore not explained by an increased protease activity. The protease activity and the free amino acids are increased in the cytoplasm and the cell organelles during the regeneration phase of the organism between day 15 and 18 after irradiation.